GENETIC PORE TYPES AND THEIR RELATIONSHIP TO RESERVOIR QUALITY: CANYON FORMATION (PENNSYLVANIAN), DIAMOND M FIELD, SCURRY COUNTY, TEXAS

A Thesis

by

TRAVIS JAMES BARRY

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2011

Major Subject: Geology
GENETIC PORE TYPES AND THEIR RELATIONSHIP TO RESERVOIR QUALITY: CANYON FORMATION (PENNSYLVANIAN), DIAMOND M FIELD, SCURRY COUNTY, TEXAS

A Thesis

by

TRAVIS JAMES BARRY

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Wayne M. Ahr
Committee Members, Michael Pope
 David S. Schechter
Head of Department, John R. Giardino

December 2011

Major Subject: Geology
ABSTRACT

Genetic Pore Types and Their Relationship to Reservoir Quality: Canyon Formation (Pennsylvanian), Diamond M Field, Scurry County, Texas. (December 2011)

Travis James Barry, B.S., University of Louisiana Lafayette

Chair of Advisory Committee: Dr. Wayne M. Ahr

Carbonate reservoirs may have a variety of porosity types created by depositional, diagenetic, and fracture processes. This leads to the formation of complex pore systems, and in turn creates heterogeneities in reservoir performance and quality. In carbonate reservoirs affected by diagenesis and fracturing, porosity and permeability can be independent of depositional facies or formation boundaries; consequently, conventional reservoir characterization methods are unreliable for predicting reservoir flow characteristics.

This thesis provides an integrated petrographic, stratigraphic, and petrophysical study of the ‘Canyon Reef’ reservoir, a Pennsylvanian phylloid algal mound complex in the Horseshoe atoll. Core descriptions on three full-diameter cores led to the identification of 5 distinct depositional facies based on fundamental rock properties and biota. Fifty-four thin sections taken from the core were described are pores were classified using the Humbolt modification of the Ahr porosity classification.

In order to rank reservoir quality, flow units were established on the basis of combined porosity and permeability values from core analysis. A cut off criterion for
porosity and permeability was established to separate good and poor flow units. Ultimately cross sections were created to show the spatial distribution of flow units in the field.
ACKNOWLEDGEMENTS

I would first like to thank my advisor, Dr. Wayne Ahr, for accepting me as a student and guiding me throughout my journey at Texas A&M University. He sparked my interest in carbonate rocks and has provided me many unique and interesting experiences during my time here. Special thanks also go out to my committee members, Dr. Michael Pope and Dr. David Schechter, for helping me inside and outside of the classroom.

Thanks go out to my fellow office mates Ben, Kelli, Emily, Lora, and Sandra for always being there and making Texas A&M University an enjoyable and wonderful experience. I would also like to express thanks to Alexa Shamshoian, who helped me through the final stretch of graduate school when things were most difficult.

Lastly I would like to thank my amazing family. My mother, father, sister, and brother-in-law have always been there for me, and have supported and motivated me throughout my personal and professional life. I owe much of my success to their continuing patience, understanding, and love. Thank you.
NOMENCLATURE

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>BBL</td>
<td>Barrels</td>
</tr>
<tr>
<td>R1</td>
<td>Reef 1 Facies</td>
</tr>
<tr>
<td>R2</td>
<td>Reef 2 Facies</td>
</tr>
<tr>
<td>R3</td>
<td>Reef 3 Facies</td>
</tr>
<tr>
<td>GS/PS</td>
<td>Grainstone/Packstone Facies</td>
</tr>
<tr>
<td>DEB</td>
<td>Debris Facies</td>
</tr>
</tbody>
</table>
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABSTRACT</td>
<td>iii</td>
</tr>
<tr>
<td>ACKNOWLEDGEMENTS</td>
<td>v</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
<td>vi</td>
</tr>
<tr>
<td>TABLE OF CONTENTS</td>
<td>vii</td>
</tr>
<tr>
<td>LIST OF TABLES</td>
<td>x</td>
</tr>
<tr>
<td>INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Definition of Problem</td>
<td>3</td>
</tr>
<tr>
<td>Purpose of Study</td>
<td>3</td>
</tr>
<tr>
<td>REGIONAL GEOLOGIC SETTING</td>
<td>4</td>
</tr>
<tr>
<td>Structural Setting</td>
<td>4</td>
</tr>
<tr>
<td>Late Pennsylvanian Stratigraphy</td>
<td>6</td>
</tr>
<tr>
<td>PREVIOUS WORK</td>
<td>8</td>
</tr>
<tr>
<td>Diamond M Field and Horseshoe Atoll</td>
<td>8</td>
</tr>
<tr>
<td>Carbonate Porosity Classification</td>
<td>9</td>
</tr>
<tr>
<td>METHODS</td>
<td>13</td>
</tr>
<tr>
<td>Materials for Study</td>
<td>13</td>
</tr>
<tr>
<td>Lithologic Study of Cores</td>
<td>13</td>
</tr>
<tr>
<td>Thin Section Petrography</td>
<td>14</td>
</tr>
<tr>
<td>Borehole Log Interpretation</td>
<td>15</td>
</tr>
<tr>
<td>RESULTS</td>
<td>16</td>
</tr>
<tr>
<td>Depositional Lithofacies</td>
<td>16</td>
</tr>
<tr>
<td>Grainstone/Packstone Facies</td>
<td>17</td>
</tr>
<tr>
<td>Reef 1 Facies</td>
<td>17</td>
</tr>
<tr>
<td>Reef 2 Facies</td>
<td>18</td>
</tr>
<tr>
<td>Reef 3 Facies</td>
<td>19</td>
</tr>
<tr>
<td>Debris Facies</td>
<td>19</td>
</tr>
<tr>
<td>Topic</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>Diagenesis</td>
<td>20</td>
</tr>
<tr>
<td>Cementation</td>
<td>20</td>
</tr>
<tr>
<td>Recrystallization</td>
<td>21</td>
</tr>
<tr>
<td>Replacement</td>
<td>21</td>
</tr>
<tr>
<td>Dissolution</td>
<td>23</td>
</tr>
<tr>
<td>Compaction</td>
<td>25</td>
</tr>
<tr>
<td>H1 Genetic Pore Types</td>
<td>26</td>
</tr>
<tr>
<td>H1 Enhanced Pores</td>
<td>26</td>
</tr>
<tr>
<td>H1 Reduced Pores</td>
<td>27</td>
</tr>
<tr>
<td>Discussion of Results</td>
<td>28</td>
</tr>
<tr>
<td>Porosity and Permeability Data Patterns</td>
<td>29</td>
</tr>
<tr>
<td>Core Analysis Poroperm vs. Depth</td>
<td>29</td>
</tr>
<tr>
<td>Poroperm Values and Depositional Facies</td>
<td>30</td>
</tr>
<tr>
<td>Poroperm Values and Genetic Pore Types</td>
<td>30</td>
</tr>
<tr>
<td>DISCUSSION</td>
<td>32</td>
</tr>
<tr>
<td>Timing of Diagenesis</td>
<td>32</td>
</tr>
<tr>
<td>Flow Units</td>
<td>34</td>
</tr>
<tr>
<td>Petrophysical Relationship with Depositional Facies</td>
<td>34</td>
</tr>
<tr>
<td>Petrophysical Relationship with Genetic Pore Types</td>
<td>35</td>
</tr>
<tr>
<td>Petrophysical Rock Types</td>
<td>36</td>
</tr>
<tr>
<td>Spatial Distribution of Flow Units</td>
<td>37</td>
</tr>
<tr>
<td>CONCLUSIONS</td>
<td>38</td>
</tr>
<tr>
<td>REFERENCES</td>
<td>39</td>
</tr>
<tr>
<td>APPENDIX A CORE DESCRIPTION</td>
<td>44</td>
</tr>
<tr>
<td>APPENDIX B GRAPHICAL CORE DESCRIPTION</td>
<td>66</td>
</tr>
<tr>
<td>APPENDIX C CORE PHOTOGRAPHS</td>
<td>79</td>
</tr>
<tr>
<td>APPENDIX D THIN SECTION DESCRIPTION</td>
<td>87</td>
</tr>
<tr>
<td>APPENDIX E THIN SECTION PHOTOMICROGRAPHS</td>
<td>144</td>
</tr>
<tr>
<td>APPENDIX F FACIES DESCRIPTIONS</td>
<td>155</td>
</tr>
<tr>
<td>APPENDIX G CROSS SECTIONS</td>
<td>161</td>
</tr>
</tbody>
</table>
LIST OF TABLES

<table>
<thead>
<tr>
<th>TABLE</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Humbolt Porosity Classification Scheme</td>
</tr>
<tr>
<td>2</td>
<td>Porosity and Permeability Values for Depositional Facies, Dominant Porosity Type, and Genetic Pore Type</td>
</tr>
</tbody>
</table>
INTRODUCTION

The Permian Basin of West Texas and New Mexico is one of the major petroleum producing regions of the United States since oil was discovered there in 1921. Seventeen percent of all domestic United States oil production in 2002 came from the Permian Basin, and the region has the greatest potential for production growth in the country with an estimated 29% (17.6 billion bbl) of the United States future oil reserve growth (Dutton et al., 2005). Diamond M field, in Scurry County, Texas, produces from the Horseshoe atoll (Figure H.1), an isolated carbonate platform covering around 6300 square miles in the northern Midland Basin (Waite, 1993). The Horseshoe atoll, commonly called the “Canyon Reef”, consists of Late Paleozoic Strawn through Wolfcampian strata, and is one of the largest oil reservoirs in the Midland Basin (Figure H.2).

Seventy-five percent of the total oil production in the Permian Basin is from carbonate reservoirs (Dutton et al., 2005); however, these reservoirs have not been studied in detail or with the most recent techniques for reservoir characterization. Unlike siliciclastic rocks, carbonates are primarily composed of skeletal and chemical grains, which are greatly susceptible to diagenetic alteration. This leads to the formation of complex pore systems, and in turn creates heterogeneities in reservoir performance and quality.

This thesis follows the style of the American Association of Petroleum Geologists Bulletin.
Terrigenous sandstone reservoirs are typically dominated by depositional interparticle porosity that has a relatively consistent relationship with porosity and permeability (Ahr, 2009). Carbonate reservoirs may have a variety of porosity types created by depositional, diagenetic, or fracture processes. These pore types were subdivided into three end-member genetic categories: depositional, diagenetic, and fracture with hybrids between the end members (Ahr et al., 2005). The scale between depositional and diagenetic end members was expanded to more precisely define hybrid pore types for use in distinguishing petrophysical rock types (Humbolt, 2008).

Because carbonate pore types are formed by depositional, diagenetic, or fracture processes, porosity and permeability may not conform to depositional facies boundaries. Therefore it is crucial to: 1) classify genetic pore types by mode of origin; 2) establish flow units by determining which genetic pore types have high, medium, and low combined values of porosity and permeability; 3) identify bulk-rock properties that can be used as correlatable makers, or proxies, for the genetic pore types; and 4) correlate the pore-proxy rock properties between wells to determine the 3-D spatial distribution of flow units and pore types at a reservoir scale (Humbolt, 2008). Flow units are reservoir zones with high connectivity, meaning high porosity and permeability and low capillary resistance to fluid flow (Ahr, 2008). Baffles are zones with low poroperm values, but are limited in lateral and vertical extent so fluids can still flow around or through them. Barriers are zones that do not allow fluid to flow at reasonable rates, and may be laterally and vertically extensive (Ahr, 2009). Carbonate reservoir performance depends on the distribution and connectivity of flow units, baffles, and barriers.
Definition of Problem

Diamond M field produces from a Pennsylvanian aged phylloid algal mound complex in the Horseshoe atoll. In 2002, Parallel Petroleum drilled four ‘Gemstone’ wells (Emerald, Garnet, Jade, and Topaz) in search of ‘attic’ oil locations (Fisher, 2005). The field is undergoing stages of secondary recovery, but the 3-D distribution of porosity and permeability in the field was not thoroughly studied. Also, the geologic origins of porosity and permeability are not fully documented.

Purpose of Study

The primary objective of this study is to determine the 3-D distribution of porosity and permeability in part of the Diamond M field. This study will determine the cause-effect system by which porosity and permeability were created in this field. This knowledge will be the basis for a geologic model that explains the Diamond M reservoir performance characteristics and be used to recommend methods for further enhanced recovery.
REGIONAL GEOLOGIC SETTING

Structural Setting

Tai (2001) presented a brief tectonic history of the Permian Basin. In Early Paleozoic time, the present Permian Basin area was covered by the shallow Tobosa Basin, and thought to be formed by a regional sag in the stable passive margin along the southern side of Laurasia (Galley, 1958; Frenzel et al., 1988). Only minor deformation occurred until the Late Mississippian when the Hercynian orogeny was initiated by the collision of North America and Gondwana Land (South America and Africa). This collision gave rise to the Ouachita - Marathon fold belt and deformed the ancestral Tobosa Basin intensively along high angle basement faults and pre-existing zones of weaknesses (Horak, 1985) in (Alnaji, 2002). The Tobosa Basin began to segment into a series of fault-bounded basement uplifts (e.g., Central Basin Platform and Diablo Platform) and created sub-basins (e.g., Midland and Delaware Basins) in Late Mississippian times (Galley, 1958; Frenzel et al., 1988; Figures H.3, H.4). The Central Basin Platform (Figure H.5), which geographically separates the Midland Basin and Delaware Basin, achieved maximum uplift during the Late Pennsylvanian (middle Wolfcampian) (Frenzel et al., 1988; Yang and Dorobek, 1995a). Both the Midland and Delaware Basins are asymmetrical in east-west profiles, and are deepest near the structural margins of the Central Basin Platform (Yang and Dorobek, 1995a). The Midland Basin is shallower than the Delaware Basin, and has a much gentler basement profile. The asymmetric profiles of both sub-basins suggest that the Central Basin
Platform acted as a topographic load within the Marathon foreland, causing flexural subsidence in the adjacent Midland and Delaware Basins (Yang and Dorobek, 1995b; Ye et al., 1996) in (Tai, 2001, p. 9). This subsidence created deep water which led to the deeper areas of the Midland Basin becoming relatively sediment-starved. The uplifted Central Basin Platform, however, became an area for shallow carbonate platform sedimentation (Frenzel et al., 1988; Hanson et al., 1991; Ewing, 1991; Yang and Dorobek, 1995b). Even though by the early Leonardian most of the deformation associated with the Central Basin Platform was over, the Permian Basin continued to subside at a decreasing rate throughout the Permian (Frenzel et al., 1988; Hanson et al., 1991; Ewing, 1991; Yang and Dorobek, 1995b). The greatest relief from the top of the Central Basin Platform to the adjacent sub-basins was generated during the early Leonardian (Mazzullo and Reid, 1989).

During the Late Permian (Guadalupian), the Midland Basin, as well as the Central Basin Platform, Eastern Shelf, and Northern Shelf ceased to be sites of carbonate platform sedimentation and became areas where cyclical deposition of siliciclastic, evaporite, and mixed carbonate facies dominated (Figure H.6). By the end of the Permian (Figure H.5), the Midland Basin was essentially filled with sediment (Galley, 1958; Ward et al., 1986; Frenzel et al., 1988). Since the Late Permian, the Permian Basin has not experienced significant deformation, and the present structural features are similar to those existing during the Late Paleozoic (Frenzel et al., 1988).

Diamond M field is one of many fields located within the Horseshoe atoll isolated carbonate platform. The aggrading platform margins that formed the distinctive
U-shaped atoll began in the Missourian (mid-late Pennsylvanian) and lasted until the Wolfcampian (early Permian); (Myers et al., 1956; Stafford 1959). During the Late Pennsylvanian the Eastern shelf of the Midland Basin was located within the tropics less than 10 degrees from the equator (Heckel, 1980), and extensive Strawn carbonate sedimentation produced an aggradational isolated carbonate platform measuring roughly 80 miles across with no significant well defined buildups surrounding it (Cleaves, 2000). The highest points of the rim crest were as high as 3,000 feet above the basin floor (Galloway et al., 1983 in Cleaves, 2000).

Late Pennsylvanian Stratigraphy

The Horseshoe atoll is subdivided into major biostratigraphic units (i.e., Strawn, Canyon, Cisco, Wolfcamp units) based on fusulinid foraminiferal biostratigraphy (Waite, 1993). Biostratigraphic correlations are necessary because the massive atoll carbonates are depositionally heterogeneous and lack regionally extensive, internal log markers (Rothrock et al., 1953) in (Waite, 1993). During the Late Pennsylvanian, shallow water carbonate deposition dominated most of the northern Midland Basin, and the area of the present Diamond M field was a quiet water shallow subtidal depositional environment (Schatzinger, 1988).

Diamond M field produces from Late Pennsylvanian (Canyon) rocks (Figure H.2). These rocks are composed of reefal limestones up to 680 ft thick, deposited unconformably over Strawn limestone beds that are up to 760 ft thick (Vest, 1970).
Cisco reef limestone deposits up to 500 ft thick unconformably lie on Canyon rocks (Figure H.7), but in many places the Cisco rocks are not present (Vest, 1970).

The Horseshoe atoll developed on top of 40 to 100 ft of Strawn limestones, and in Scurry County these bedded limestones grade upwards into reefal limestones of the atoll (Stafford, 1959). The top of the Horseshoe atoll is composed of Wolfcampian reef rocks up 1,120 ft thick (Figure H.8), although most of the atoll lacks these reef rocks and is instead covered with Wolfcamp shale and sandstone that form the top seal of the reservoir (Vest, 1970).

Cross sections were made to better understand the stratigraphy in the study area (Appendix G). These cross sections correlate depositional lithofacies outward from the 3 cored wells. Correlation between wells was difficult, however, since carbonate buildups modify the depositional topography causing major variations in thickness and lithological characteristics. Wireline log character varies greatly from well to well as a result.
PREVIOUS WORK

Diamond M Field and Horseshoe Atoll

Diamond M field was discovered in 1948 by Lion Oil Company and 111 wells were drilled between 1948 and 1951, including one water injection well. Secondary recovery by water flooding has been utilized since the beginning of field development (Fisher, 2005). The field has produced over 3.6 million barrels of oil since discovery, and continues to produce today. The field is currently operated by Parallel Petroleum Company, which purchased the field in 2000 from Burlington Resources. In 2002, Parallel Petroleum Company drilled four ‘gemstone’ wells (Emerald, Garnet, Jade, and Topaz) based on a 1992 3-D seismic shoot (Fisher, 2005). With the exception of the Garnet well, the gemstone wells were cored in the Canyon Formation and the cores were analyzed by Rotary Labs Incorporated.

The stratigraphic architecture, depositional and diagenetic histories, and reservoir characteristics of Diamond M field were delineated by Fisher (2005). His study focused on predicting the spatial distribution and quality of flow units in the field by using a “slice map” technique developed by Hammel (1996). Slice mapping involves averaging porosity and permeability over ten foot thick reservoir slices in the study area. Porosity and permeability values are estimated from logs when core analysis is not available. The spatial distribution of porous and permeable zones can be identified by stacking the slices, and flow units can be constructed based on these superimposed slices (Fisher, 2005).
Earlier papers on the Horseshoe atoll such as Myers et al. (1956), Stafford (1959), Burnside (1959), and Vest (1970) focused mainly on the regional biostratigraphic aspects and “reefal” nature of the buildup (Schatzinger, 1988). The transition of facies and depositional environments in the eastern portion of the Horseshoe atoll was studied by Schatzinger (1988). More recent studies involve using 2-D and 3-D seismic to define seismic sequences and improve the accuracy of reservoir modeling. 2-D seismic was used to sub-divide Late Pennsylvanian carbonates in the eastern and southern Horseshoe atoll into four, biostratigraphically contained third order seismic sequences by Waite (1993). 3-D seismic surveys were used to locate and develop smaller Pennsylvanian age pinnacle reefs southeast of the Horseshoe atoll by Jumper and Pardue (1996). Attribute volumes calculated from P and S wave data were investigated to better understand reservoir compartmentalization, define reef edges, and resolve inner reef structure in the Diamond M field by Russian et al. (2010). This thesis builds on previous work by conducting a reservoir characterization study of the “Canyon Reef” reservoir of Diamond M field by integrating genetic porosity classification with reservoir petrophysical properties.

Carbonate Porosity Classification

Several carbonate porosity classification schemes have been developed throughout history. Many group pores according to pore size, (Archie, 1952 and Lucia, 1983), or relationship to depositional fabric (Choquette & Pray, 1970). The problem with these classifications is that they do not illustrate the relationships between pore
origin (genetic pore types) and ways to define 3-D distribution of effective porosity (Ahr, 2008).

One of the first carbonate porosity classifications was proposed by Archie (1952). Archie divided porosity space into visible and matrix categories, where matrix porosity was based on texture (chalky, sucrosic, or compact), and visible porosity was described by size (Humbolt, 2008). Archie’s classification was significant because it related petrophysical properties such as capillary pressure and permeability to different rock types. Unfortunately he did not relate the pore origin to rock origin, and when mode of origin is not part of the porosity classification, establishing a correspondence between pore types and rock matrix properties is not possible (Ahr, 2008).

Unlike Archie, Choquette and Pray (1970) recognized the importance of including mode of origin in their porosity classification, and organized pores into three groups depending on whether they are fabric selective, not fabric selective, or fabric selective or not (Ahr, 2008). The main problem with this classification is that no correlation is made between pore type and external geological characteristics with which spatial distribution of pore types and associated poroperm values can be determined.

Lucia (1983) developed a classification emphasizing two pore types: interparticle and vuggy. He divided pores into vuggy (separate or touching) and interparticle (between grains or crystals) categories (Ahr, 2008). The major difficulty in using Lucia’s classification is that even though it relates pore type petrophysical characteristics (Archie m values, porosity, and permeability), it does not offer any way to establish 3-D distribution of poroperm values associated with pore types.
A new genetic porosity classification was developed by Ahr et al. (2005). This classification divides pores based on three end-member processes: *depositional*, *diagenetic*, or *fracture* (Figure H.9). Depositional pores are closely related to original rock texture and fabric, including interparticle, intraparticle, fenestral, shelter, and reef porosity. Diagenetic pores are formed and either enhanced or reduced through processes like dissolution, replacement, recrystallization, compaction, and cementation. Fracture porosity forms when rocks undergo brittle failure from differential stress (Ahr et al., 2005). Hybrid pore types exist between each of these end members. By linking pore genesis and pore geometry, the Ahr porosity classification can be used for subsurface mapping to establish 3-D distribution of poroperm values, to aid in generating petrophysical rock types, and to establish flow units.

In the Ahr porosity classification, depositional pores that were subjected to diagenesis are classified as Hybrid 1 pores. Humbolt (2008) subdivided the hybrid 1 pores into three categories based on the amount of diagenetic alteration: H1-A, H1-B, and H1-C (Figure H.10).

If depositional aspects dominate but diagenesis has affected the pore/ pore throat geometry, then the porosity is classified as Hybrid 1-A. In this instance porosity is still facies selective, so facies maps are reliable proxies for porosity maps. If depositional and diagenetic aspects equally contribute to porosity, then the porosity is classified as Hybrid 1-B. In this case facies maps are still proxies for porosity maps, but they are less reliable than for H1-A pores. When diagenetic aspects dominate, the porosity is
classified as H1-C. Facies maps are no longer reliable proxies for porosity maps, and diagenetic alteration controls flow unit characteristics.

The Ahr classification notes that hybrid pore types can be further classified as enhanced or reduced, depending on the direction of diagenetic change, e.g., changes such as cementation, compaction, replacement and recrystallization can reduce porosity in a rock; while processes such as dissolution and some forms of replacement and recrystallization can enhance porosity. These alterations are denoted by adding either the letter ‘r’ or ‘e’ to the hybrid pore types, so for example, an H1-B pore that was reduced would be denoted H1-Br.
METHODS

Materials for Study

Parallel Petroleum Co. provided approximately 350 feet of full diameter core from three gemstone wells, along with full core and core plug analysis data from Rotary Labs Incorporated. The core analysis included vertical, horizontal, and maximum permeability, porosity, grain density, fluorescence, lithology, water saturation, and oil saturation taken at one foot intervals. The three cored wells had paper logs including gamma ray, resistivity, neutron porosity and density porosity data. Well locations for nearly 400 wells and wireline logs for 147 wells were also provided.

Fifty-four thin sections from the study by Aaron Fisher (Fisher, 2005) were used in this study. These thin sections are representative of major facies and pore type variations in the cores. No additional thin sections were required. Porosity and permeability values at thin section locations were not available, so core analysis poroperm values for the 1 foot interval containing the thin section were used instead.

Lithologic Study of Cores

Three full diameter cores totaling approximately 350 feet were etched in diluted HCl to provide a fresh rock surface and described wet at one inch intervals using a low-zoom stereo microscope. The core descriptions follow the AAPG Sample Examination Manual format. Focus was placed on identifying constituent grains, visible porosity, sedimentary structures, depositional texture, and significant facies changes. Detrital
facies were classified using the Dunham (1962) classification, and reef rocks were classified using the Riding (2002) classification. Core descriptions led to the identification of 5 distinct depositional facies based on fundamental rock properties and biota.

Porosity and permeability values from core analysis data were compared to visual porosity estimates from core description and calculated porosity from wireline logs. Plots were created in Microsoft Excel to compare core poroperm values and depth, facies, and genetic pore type. The combined poroperm values were used to define and rank different reservoir flow units.

Thin Section Petrography

Fifty-four thin sections provided by Aaron Fisher (Fisher, 2005) were examined in this study. The thin sections were described using a petrographic microscope in both plain and polarized light. The main emphasis of the petrographic analysis was to classify the genetic pore types for each thin section using the Humbolt (2008) modification of the Ahr porosity classification (Figure H.10), and to confirm the depositional facies interpretation from core descriptions. Fracturing was not important as a reservoir performance characteristic. All of the thin sections exhibit pore types in the hybrid 1 group.
Borehole Log Interpretation

One hundred forty-seven wells had wireline logs available for this study, but many of these wells only had one or two digital log curves. The gemstone wells had paper logs available. Those logs were scanned and digitized into a software program called Petra. Almost all of the wells had gamma ray log curves, but these were of limited use in the carbonate rocks of Diamond M field, which do not have variations in gamma-ray traces that facilitate stratigraphic correlation (Fisher, 2005). Gamma ray logs may help identify concentrations of insoluble residue at unconformities, but they do not indicate anything about depositional environment, particle characteristics, or pore types (Ahr, 2008). Only 13 wells had density log curves, and many of the wells were not located near the cored gemstone wells. One hundred twenty-six wells had neutron logs, 82 wells had neutron porosity logs, and roughly 50 wells had both.

In order to correlate outward from the gemstone wells, an equation was derived to convert neutron logs to neutron porosity logs and vice versa. In wells that had both sets of logs, the neutron values were plotted against the neutron porosity values in Microsoft Excel and a logarithmic best fit curve was determined for each well. An average equation was created that fit most data sets with 95% accuracy or above.

Eq. 1 \[\text{Neutron Porosity} = -0.1427647 \ln (\text{Neutron}) + 0.9494235 \]

Using this equation neutron and neutron porosity digital logs were created for most wells, and were used to correlate depositional facies outward from the cored wells (Appendix G).
RESULTS

Depositional Lithofacies

Unlike modern reefs which have a rigid framework composed of aragonitic scleractinian corals, Pennsylvanian reefs were often constructed by small calcareous phylloid algae (*Eugonophyllum*) and to a lesser extent sponges and problematica (*Tubiphytes* and *Archaeolithoparella*) (Forsythe, 2003). It was originally thought that *Eugonophyllum* constructed reefs by passive baffling and trapping, but Forsythe (2003) suggests that *Eugonophyllum* are capable of both initiating reef growth and forming a stable substrate. This new substrate, known as the ‘pioneer community’, is commonly later stabilized by secondary encrusters (problematica and sponges), microbialites, and early marine cements. The study area is interpreted to be part of a phylloid algal pioneer community, because it lacks *Archaeolithoparella, Tubiphytes*, and other encrusters. Subsequent encrustation most likely occurred, because without encrustation by both calcareous organisms and microbialites many communities of phylloid algae may have grown, died, and been rapidly fragmented (Forsythe, 2003).

Core description revealed five lithofacies: three of which are reef facies, one is a detrital grainstone/packstone facies, and the remaining one is a debris facies. The three reef facies are mainly phylloid algal dominated automicrite. “Automicrite”, short for autochthonous micrite, refers to carbonate mud that has formed in place (Riding, 2002). The grainstone/packstone facies is dominated by moderate to well sorted forams and phylloid algal fragments. The debris facies contains similar grains to the
Grainstone/Packstone Facies

The grainstone/packstone facies varies in color from tan to dark gray, and is typically moderately to well sorted. The color roughly correlates to grain size, with tan areas usually being finer grained, brown areas medium to coarse grained, and grey areas composed of large phylloid algae grains. The facies generally has indistinct bedding, but parallel layering can be seen in some areas, usually near the bottom erosional surface (Figure C.1). Forams and phylloid algae make up a majority of the rock, but bivalves, brachiopods, bryozoans, crinoids, fusulinids, gastropods, peloids, and sponge spicules are also present.

Stylolites, dissolution seams, calcite filled veins, geopetal structures, pyrite, silica, and saddle dolomite are all present in this facies. Pockets of automicritic reef rock usually around 4 feet thick are present in the Emerald and Jade wells. Solution enhanced interparticle porosity dominates, but moldic, vuggy, solution enhanced intercrystalline and solution enhanced intraparticle are all present.

Reef 1 Facies

The reef 1 facies ranges from light brown to dark gray in color, and is typically moderately to poorly sorted. The majority of the section is composed of heavily mottled automicrite (Figure C.2), but some parallel layers can be identified in well sorted
grainstone/packstone areas. Approximately half of this facies is micritic, while the other half is dominated by phylloid algae, brachiopods, and forams. Bryozoans, crinoids, fusulinids, gastropods, micritic clasts, peloids, and trilobite fragments are present as well.

Calcite filled veins, geopetal structures, silica nodules up to 5 cm, and grain replacing silica are common. Stylolites, dissolution seams, pyrite, and saddle dolomite are present. Detrital grainstone/packstone intervals usually less than 3 feet thick occur in the Emerald and Jade wells. These detrital intervals often have parallel bedding and erosional truncation. Vuggy porosity dominates this facies (Figure C.6). Moldic porosity is common, and solution enhanced interparticle and solution enhanced intraparticle are present usually in the grainstone/packstone intervals.

Reef 2 Facies

The reef 2 facies ranges from light to dark gray in color, and is usually moderately to poorly sorted. Most of the facies is automicrite with indistinct bedding, but some areas are slightly mottled. This facies has a higher mud to grain ratio than the reef 1 facies. Approximately 2/3 of this facies is micritic, with the remaining 1/3 dominated by forams and phylloid algae. Large crinoids (5-35 mm) are more common than in reef 1, and brachiopods, bivalves, bryozoans, fusulinids, gastropods, peloids, and sponge spicules are all present.

Stylolites and calcite filled veins are common (Figure C.3) in the reef 2 facies. Dissolution seams, geopetal structures and pyrite are present. Reef 2 has less visible
porosity than reef 1. Moldic porosity dominates, vuggy porosity is common, and solution enhanced interparticle and solution enhanced intraparticle also occur.

Reef 3 Facies

The reef 3 facies varies from light to dark brown in color, and is mostly poorly sorted with some areas being moderately sorted. The upper 2/3 of this facies is a mottled automicrite, whereas the basal 1/3 is automicrite with indistinct bedding. Forams and phylloid algae dominate the facies, but brachiopods, bivalves, crinoids, fusulinids, peloids and sponge spicules are also present.

Blue-gray silica nodules are abundant, replacing about 30% of the facies and often spanning across the entire width of the core (Figure C.4). Stylolites, dissolution seams, and calcite filled veins are common. This facies is only present at the very bottom of the Topaz #1 core and contains almost no visible porosity.

Debris Facies

The debris facies ranges from gray to dark gray in color, and is composed primarily of poorly sorted intraclasts (Figure C.5). Packstones with indistinct bedding are the majority of this facies, but micrite is also common. Similar to the grainstone/packstone facies, forams and phylloid algae dominate, but bivalves, brachiopods, bryozoans, crinoids, fusulinids, gastropods, peloids, and sponge spicules are present as well.
Pyrite and saddle dolomite are abundant in the facies (Figure C.7). Stylolites, dissolution seams, geopetal structures, and silica are present. The facies is only present in the Jade #1 core, and is only 6 feet thick. Moldic porosity dominates and solution enhanced interparticle porosity is common, but overall visible porosity is fairly low.

Diagenesis

Diagenesis is defined as any changes that happen to a sedimentary rock after deposition and before metamorphism (Ahr, 2008). Diagenesis can result from mechanical, biological, or chemical processes, or any combination of these processes. The dominant forms of diagenetic change that affected Diamond M reservoir rocks are discussed below.

Cementation

Cementation is one of the most common forms of diagenesis in Diamond M field, and is seen in all of the cored wells. Cements in the study area are exclusively composed of calcite. The two main forms of cementation seen are small blocky (equant) calcite and large blocky calcite. Small blocky calcite typically ranges from 10 to 30 microns, and large blocky calcite from 40 to 120 microns. Three other types of cement are observed, but they are not volumetrically significant. The first is syntaxial overgrowth cement of crinoid fragments, which occurs when cement grows around a crystal in such a way that they form a single larger crystal, and share the same crystallographic axes (Scholle and Ulmer-Scholle, 2003). The second is drusy cement,
in which crystals line a cavity and crystal sizes increase from the edges to the center of pores (Scholle and Ulmer-Scholle, 2003). The last observed cement is poikilotopic spar, where small grains or crystals are irregularly scattered without common orientation in a larger crystal of another mineral (Scholle and Ulmer-Scholle, 2003).

Recrystallization

Two forms of recrystallization are very common in the study area, micritization and neomorphism. Micritization occurs when sand or silt sized particles are partly or completely converted to calcite micrite, by retrograde diagenesis or by filling of microborings by algae or fungi (Bathurst, 1975 in Scholle and Ulmer-Scholle, 2003). Micritization is observed in every thin section; especially affecting, brachiopods, forams, fusulinids, and phylloid algae (Figure E.4).

The term neomorphism includes both mineralogical inversion and true recrystallization (Folk, 1965). True recrystallization occurs when small calcite crystals dissolve and reprecipitate as larger neomorphic spar crystals, while inversion is the process in which metastable minerals change to stable minerals (Ahr, 2008). Neomorphism commonly is observed in the muddier reef facies, but at the Diamond M field also occurs in some of its grainier facies as well.

Replacement

Replacement occurs when a mineral is replaced by a polymorph or mineral of a different composition (Scholle and Ulmer-Scholle, 2003). Replacement in Diamond M
field is restricted to replacement of calcite by pyrite, silica, and saddle dolomite. Pyrite replacement commonly occurs in small amounts throughout the field. It can easily be identified in core description, and in thin section (Figure E.5).

Silica, in the form of chert, is another common replacement mineral in the study area. It usually replaces blocky calcite cement, and grains (typically crinoids and brachiopods) in small amounts irregularly throughout the field. The major exception is the Reef 3 facies, where blue-gray chert has replaced about 30% of the section and often spans the width of the core. Sponge spicules are common biogenic contributors of diagenetic silica (Scholle and Ulmer-Scholle, 2003), and occur commonly in the field.

Saddle dolomite is a variety of dolomite that is characterized by curved crystal faces, curved cleavage, and sweeping extinction (Scholle and Ulmer-Scholle, 2003). The homogenization temperature for saddle dolomite ranges from below 80 to more than 235° C, but usually falls into the 100-180° C range (Davies and Smith, 2006). Saddle dolomite can form in at least three ways: from advection, from local redistribution of older dolomite during stylolization, and as a by-product of thermochemical sulphate reduction in a closed or semi-closed system (Machel, 2004; Radke and Mathis, 1980; Machel, 1987; Machel and Lonnee, 2002). Saddle dolomite occurs in all the lithofacies, but is most common in the Debris facies, often times replacing grains and large crystals of pore filling blocky calcite (Figure E.8).
Dissolution

Dissolution occurs when undersaturated waters dissolve surrounding rock, producing a variety of different pore types that share a common origin, but differ in size, shape, and connectivity (Ahr, 2008). The porosity types seen in this study are listed below in order of abundance.

Vugs

Vugs are large pores that form from either the dissolution enlargement of previous pores or the combination of pores into a much larger pore. A characteristic of vugs is that they are larger than the surrounding grains, and do not conform to the outline of any grain type. In the study area, vugs nearly always have high porosity and permeability, and account for approximately 40% of the total porosity. The fact that the areas dominated by vuggy porosity consistently have higher poroperm values suggests that the vugs in the study area are touching, rather than separate vugs. Vugs occur in all of the facies, but tend to be more prevalent in the muddier reef rocks.

Molds

Moldic porosity is formed when grains are dissolved and the pores conform to the outline of the original grain. Molds are common in every facies in the study area, and make up about 30% of the overall porosity. They occur with vugs or solution enhanced interparticle porosity, and have a wide range of poroperm values from low to high.
Solution Enhanced Interparticle

While interparticle porosity is normally a depositional feature, solution enhanced interparticle porosity occurs when cement or matrix between grains is dissolved. This type of porosity occurs most commonly in the grainstone/packstone facies, but small amounts also occur in the muddier reef facies. Solution enhanced interparticle porosity makes up approximately 20% of the total porosity in the field. Poroperm values are generally better than moldic pores, but not as good as separate vug porosity.

Intercrystalline, Solution Enhanced Intraparticle, and Fracture

The last three observed types of porosity comprise the remaining 10% of porosity in the field. Intercrystalline porosity in the study area occurs in incompletely cemented pores and in neomorphosed micrite. This type of porosity occurs mostly in grainstone/packstone facies and contributes less than 3% of the total porosity.

Solution enhanced intraparticle porosity occurs within larger grains that have been partially dissolved. This type of porosity occurs in every facies, typically in large fusulinids (Figure E.1). Solution enhanced intraparticle porosity contributes about 6% to the total porosity.

Fractures formed throughout the study area, but often they have been healed with calcite cement. The open fractures in the field are uncommon and contribute less than 1% to the total porosity of the study area. The occurrence of fractures does not correspond to higher permeability values in core analysis, because fracture apertures are small, and fracture abundance is commonly low.
Compaction

Mechanical compaction occurs when tectonism or overburden stress during burial deform a rock. When compaction effects are accentuated by dissolution and compaction acting together, then chemical compaction takes place (Ahr, 2008). Mechanical compaction is commonly recognized by identifying brittle grain deformation and fractures in core and thin section. Brittle grain deformation is most common in grain dominated rocks, and large grains such as brachiopods, phylloid algae, and crinoids are the most commonly deformed grains. Fractures result from the brittle failure of a rock under differential stress, and often cut across grains, matrix, and cement (Ahr, 2009). Fractures occur sporadically throughout the study area, are typically small and often healed with calcite cement.

Chemical compaction in Diamond M field occurs as stylolites and dissolution seams (microstylolites), both of which are very common in all three cores. Stylolites are jagged, columnar surfaces in carbonate rocks that form from pressure induced dissolution of carbonate material (Scholle and Ulmer-Scholle, 2003). They are often easily visible due to insoluble carbonate residue left in jagged “teeth” of the stylolites. Typically the larger the amplitude of the stylolite, the more carbonate material was dissolved during its formation. Dissolution seams are similar to stylolites, but have lower amplitude and less insoluble carbonate residue. Stylolites and dissolution seams occur most commonly in the muddier facies.
H1 Genetic Pore Types

Fifty-four thin sections were examined in this study, and the genetic pore types were classified using the Humbolt (2008) modification of the Ahr porosity classification (Appendix D). None of the thin sections displayed purely depositional or diagenetic porosity, so all the sample were classified as hybrid type 1 pore systems (H1). The samples were divided into H1-Ae, H1-Ar, H1-Be, H1-Br, H1-Ce and H1-Cr based on the amount of diagenetic alteration, and whether diagenesis enhanced or reduced porosity (Table 1).

Table 1. Humbolt porosity classification scheme. Hybrid pore types are subdivided based on the ratio of depositional to diagenetic porosity. Source: Humbolt (2008)

<table>
<thead>
<tr>
<th>H1</th>
<th>Enhanced</th>
<th>Reduced</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Depositional porosity dominate</td>
<td>Depositional porosity dominate</td>
</tr>
<tr>
<td></td>
<td>Equal ratio of depositional to diagenetic</td>
<td>Equal ratio of depositional to diagenetic</td>
</tr>
<tr>
<td></td>
<td>Diagenetic porosity dominate</td>
<td>Diagenetic porosity dominate</td>
</tr>
<tr>
<td>Ae</td>
<td></td>
<td>Ar</td>
</tr>
<tr>
<td>Be</td>
<td></td>
<td>Br</td>
</tr>
<tr>
<td>Ce</td>
<td></td>
<td>Cr</td>
</tr>
</tbody>
</table>

H1 Enhanced Pores

The majority of porosity enhancement in this portion of Diamond M field comes from the dissolution of framework grains, cements, and matrix. Recrystallization in the
form of neomorphism of micrite provides some intercrystalline porosity in rare cases, but typically neomorphism reduces porosity in the study area.

H1-Ae pores typically are dominated by solution enhanced interparticle porosity; however moldic porosity also is common. Approximately 50% the H1-Be pores are dominated by vuggy porosity, 35% are dominated by moldic porosity, and the remaining 15% is dominated by solution enhanced interparticle porosity. Vuggy and moldic H1-Be pores are most common in the reef facies, while solution enhanced interparticle porosity is most common in the grainstone/packstone facies. H1-Be pores are the most common genetic pore type in this study, with 29 out of the 54 thin sections being in the H1-Be category. Only one example of the H1-Ce pore type was observed, and it contained primarily vuggy porosity.

H1 Reduced Pores

Porosity reduction is related to three main processes in Diamond M field, cementation, compaction, and recrystallization. The most common form of porosity reduction is cementation. Cement occurs in every thin section and commonly seals pores.

Compaction is another common form of porosity reduction in the study area. Carbonate reservoirs lose much of their original porosity due to chemical and mechanical compaction. Stylolites and dissolution seams identified in thin section and throughout the core suggest that chemical compaction and dissolution of carbonate material were extensive in the study area.
While not as prominent as cementation or compaction, recrystallization is observed as a porosity reducing mechanism in some thin sections. Neomorphism of micrite is common in many of the muddier reef facies, and this often creates a tight mosaic of interlocking calcite crystals that exhibit almost no porosity.

H1-Ar pores have undergone small to moderate amounts of replacement, cementation, recrystallization, and compaction, but the porosity is still strongly controlled by depositional characteristics. H1-Br pores have experienced significant diagenetic alteration, but many depositional attributes are still visible. Only one example of H1-Cr porosity was observed, and the sample was so altered that a relationship between depositional and diagenetic characteristics cannot be established.

Discussion of Results

Data on permeability, porosity, grain density, fluorescence, lithology, water saturation, and oil saturation for the three cored wells was gleaned from routine core analysis. This data was compared to depositional lithofacies, genetic pore type, and porosity type to test for correspondence between data types. Linear regression was done using Microsoft Excel to find out how strong of a relationship exists between the X and Y values in each of the plots. Linear trend lines were added to each plot, using the equation \(y = mx + b \), to determine an \(R^2 \) value for each plot. The \(R^2 \) value is a standard measure of how well the trend line fits the data, with an \(R^2 \) value of zero indicating no relationship and an \(R^2 \) value of one indicating a perfect relationship.
Porosity and Permeability Data Patterns

Porosity and permeability do not have a strong correlation to one another in any of the cored wells. The strongest correlation is in the Topaz #1 well, where a linear trend line has an R^2 value of 0.3736 (Figures H.11-H.14).

Porosity calculated from wireline log data also does not correlate well with values from core analysis. The strongest correlation is in the Jade #1 well, where a linear trend line has an R^2 value of 0.7674, but the other cored wells have considerably lower R^2 values (Figure H.15-H.17).

Core Analysis Poroperm Values vs. Depth

Porosity and permeability do not correspond well to depth. Typically porosity decreases with depth due to overburden stresses on the rock, but this is not necessarily the case in carbonate rocks, where diagenesis can enhance or reduce depositional porosity and permeability. This lack of correspondence suggests that the Diamond M field has undergone significant diagenetic alteration. The strongest correlation is in the Topaz #1 well were the R^2 value on a linear trend line between porosity and depth is 0.5657, but typically R^2 values fall below 0.1 (Figures H.18-H.23).

Oil and water saturation values also typically do not correlate well to depth. This indicates that the reservoir is most likely compartmentalized. Barriers created by depositional or diagenetic processes can isolate oil and water zones. The strongest correlation is in the Topaz #1 well, where a linear trend line for water saturation vs. depth has an R^2 value of 0.7245, but most R^2 values fall below 0.1 (Figures H.24-H.29).
The core analysis data is summarized in Figures H.30-H.32. The porosity ranges from 0.01% to 19.7% and the permeability ranges from 0 md to 282.90 md, although only 5 values exceed 80 md. Water saturation ranges from 11.7% to 99.7%, and oil saturation ranges from 0.0% to 44.9%. In general core analysis data has a very poor relationship with depth. The Topaz #1 well, which had the best relationships, may not be entirely accurate since large gaps exist in the core data.

Poroperm Values and Depositional Facies

Porosity and permeability values seem to correspond to different depositional lithofacies. The reef 1 facies has the best average poroperm values, with the grainstone/packstone facies being the second best (Table 2). The reef 2, reef 3, and debris facies all tend to have lower poroperm values.

Poroperm Values and Genetic Pore Types

Genetic pore types also seem to correlate to an extent with poroperm values. On average, H1 enhanced pores have higher porosity than H1 reduced pores, but they do not always have higher permeability. H1-Be pores typically have the highest porosity and permeability values, while H1-Br has the second highest permeability and H1-Ae has the second highest porosity. Distribution of hybrid pore types in the study area does not seem to be controlled by depositional facies composition. Both mud dominated and grain dominated facies experienced significant porosity enhancement and reduction (Figure H.33).
It is important to remember that the porosity and permeability values for genetic pore types in Table 2 are not representative of true thin section poroperm values. As stated in the methods portion, thin section poroperm data was not available so core analysis poroperm for the 1 foot interval in which the thin section was taken from was used instead. In some cases the thin section location and surrounding core may have largely different petrophysical properties. For example a thin section may have had large connected vugs and been classified as H1-Be, but the surrounding foot of core could have been heavily cemented, causing the poroperm values to appear lower than expected.

Table 2. Porosity and permeability values for depositional facies, dominant porosity type, and genetic pore type. Data from core analysis. H1-Ce and H1-Cr omitted because only one example of each was observed.
DISCUSSION

Timing of Diagenesis

Mapping flow units in diagenetically altered pore systems requires understanding the relative timing of different diagenetic events with respect to each other, and also the geologic conditions or events that caused these episodes of diagenesis to occur (Ahr, 2008). This information can be used to find rock properties that act as proxies for porosity when depositional facies boundaries are no longer reliable indicators of flow unit dimensions (Ahr, 2008). Thin section petrography has revealed multiple stages of diagenesis in the Diamond M rocks; these different types of diagenesis include diagenesis in the marine and meteoric phreatic, and burial diagenetic environments. Marine phreatic diagenesis led to the creation of stable micritic envelopes around metastable aragonitic grains such as phylloid algae, forams, and brachiopods. In many cases this micritization (Figure E.7) provides the only traces of the original nature of the sediment (Scholle and Ulmer-Scholle, 2003). Micritization of grains is interpreted to be early diagenesis.

Meteoric phreatic and shallow burial diagenesis are often difficult to distinguish, because similar products are formed during meteoric phreatic and early burial-stage transformations (Scholle and Ulmer-Scholle, 2003). Dissolution porosity commonly forms during burial diagenesis as well at exposure surfaces, and the study area acquired porosity changes from both settings. The Horseshoe atoll experienced at least four periods of subaerial exposure and consequent erosion during Canyon FM time (Reid,
1998 in Fisher, 2005). Most of the effective porosity and permeability in the Horseshoe atoll reef limestones resulted from one or more periods of exposure to meteoric water (Vest, 1970). Vugs constitute nearly half of the total porosity of the field, and Saller et al. (1999) found that intermediate duration (50,000 – 130,000 years) subaerial exposure in West Texas carbonates can create dissolution vugs, fractures, and fissures.

Deep burial (mesogenetic) diagenesis often plays the most important role in the diagenesis of sediments in terms of porosity changes, because rocks tend to spend the longest amount of time in the burial diagenetic setting (Scholle and Ulmer-Scholle, 2003). Many features commonly associated with mesogentic diagenesis occur in the study area, including brittle grain deformation, stylolites, dissolution seams, blocky calcite, drusy cement, poikilotopic calcite spar, syntaxial overgrowth, saddle dolomite, silica replacement, and pyrite replacement (Mazzullo and Harris, 1992).

Cross cutting relationships give clues to the order in which diagenetic processes occurred. Many of the micritized grains associated with early diagenesis are partially dissolved, and the dissolution pores are filled with cement. This suggests that after micritization there was an episode of dissolution and subsequent cementation of pores by small blocky calcite crystals. This small blocky calcite is often irregularly dissolved creating irregular pores that cut across grains and are filled with large blocky calcite, indicating a second stage of dissolution and cementation. Lastly, saddle dolomite, which indicates a mesogenetic environment, is seen replacing the large blocky calcite in some pores.
Flow Units

In order to rank reservoir quality, flow units were established based on combined porosity and permeability ranges. Nine reservoir quality pairs for Diamond M field were used in slice mapping this area by Fisher (2005), and this study uses similar quality pairs. To designate the ranges for each flow unit porosity and permeability values were taken from core analysis and separated into poroperm brackets. These flow units are ranked from 1 to 9 in sequential order from worst to best. Cooler colors (purple, blue) represent poor reservoir quality while warmer colors (orange, red) represent good reservoir zones (Figure H.34). A cut-off criterion was chosen to designate flow units 1 – 4 as poor reservoirs and flow units 5 – 9 as good reservoirs. Because no zones fall into flow unit 6, the good reservoir zones have porosities greater than 6.67 % and permeabilities above 8 md. Figures H.35-H.40 show core porosity and permeability for the gemstone wells, as well as depths for high ranking flow units.

Petrophysical Relationship with Depositional Facies

Results from this study show that a tenuous relationship exists between facies and reservoir performance characteristics in the study area. On average, the reef 1 facies has the highest poroperm values in the field, and the grainstone/packstone facies has the second highest; however they typically have low poroperm values. The worst reservoir facies (debris, reef 3) always fall into the poorer flow units (1-4), while the best reservoir facies (reef 1, grainstone/packstone) still fall into the poorer flow units at least 70% of
the time (Figure H.41). Therefore no significant correlation occurs between petrophysical characteristics and depositional facies on the reservoir scale.

Petrophysical Relationship with Genetic Pore Types

Results from this study show there is a better relationship between genetic pore type and reservoir performance characteristics than with depositional facies. Typically areas dominated by enhanced pore types fall into better flow units than areas dominated by reduced pores, but this is not always the case. Out of the 54 thin sections, there are two examples where reduced pore types have high poroperm values. One H1-Ar thin section has 6.54 % porosity and a permeability of 13 md, and one H1-Br thin section has 12.14 % porosity and a permeability of 70.05 md (Figure H.42). These are most likely erroneous values, where the core around the thin section had largely different petrophysical properties. As mentioned in the methods section, thin section poroperm data was not available so core analysis poroperm for the surrounding foot of core was used. It is likely that while the thin section showed reduced porosity, the surrounding core had enhanced properties, and elevated poroperm values would show in core analysis.

The H1-Be pore type has the best distribution of high ranking flow units, with 48% of flow units being good reservoir quality (flow units 5-9). The second best is H1-Ae, but this pore type only has 14% of flow units that can be considered of good reservoir quality. Typically, the reduced hybrid pore systems have the lowest reservoir quality, with the exception of the possibly erroneous values mentioned above. One-
hundred percent of the H1-Ar flow units being ranked poorly, and 92% of the H1-Br flow units being poor (Figure H.43).

The correlation of pore types to flow units is more obvious when considering samples falling in the “good reservoir zone”, flow units 5 and above. Looking at core analysis from all 3 wells, 60 feet of the cored zone qualifies for flow unit rank 5 or higher. From this area, 56 feet are H1-Be pore type, while the remaining 4 feet are split between H1-Ae and H1-Br (Figure H.44). It logically follows that H1-Be pore types should comprise the highest quality flow units, because they contain the most vuggy porosity, which typically has the highest poroperm values (Figure H.45). Forty-one percent of H1-Be pores are dominated by vuggy porosity (Figure H.46).

While there is some overlap between poroperm values for enhanced and reduced pore types, it appears that genetic pore types are a more reliable predictor of reservoir flow properties than depositional facies. If thin section poroperm values were acquired and plotted, there is a strong possibility that the grouping of data points would be much better.

Petrophysical Rock Types

Petrophysical rock types are characterized through porosity/permeability ratio analysis on the basis of genetic pore types, and are defined independently of facies. Unfortunately petrophysical rock types could not be established for Diamond M field, because no strong groupings in the porosity/permeability data could be identified. Enhanced and reduced pore types overlap and do not form distinct groupings (Figure
H.42). This lack of grouping can likely be attributed to not having poroperm data for the thin sections intervals, where the genetic pore types were identified. Using core analysis poroperm values as a substitute does not accurately represent true thin section, and therefore genetic pore type, poroperm values. Flow units based on core analysis poroperm values were determined to be the most accurate way to depict the spatial distribution of good reservoir zones.

Spatial Distribution of Flow Units

Flow units in Diamond M field do not conform to facies boundaries, and do not correlate well to depth. Correlating these units between wells was difficult, because they lack distinct gamma ray and neutron log signatures. Even between the cored wells, flow units vary. High ranking flow units typically occur in pockets less than 10 feet thick, and are most often only a few feet thick. Figure G.5 shows the distribution of high ranking flow units in the three cored wells.

Results from this study show that the reef 1 facies contains the highest average poroperm values, and the grainstone/packstone facies contains the second highest. This ranking of depositional facies is shown on the cross section (Figure G.5), with the reef 1 facies containing the largest number of high ranking flow units, and the grainstone/packstone facies coming in second. Likewise, the poorer quality depositional facies had the fewest high ranking flow units. The reef 2 facies had a couple zones with high ranking flow units, while the reef 3 and debris facies had none.
CONCLUSIONS

- Diamond M field produces from a diagenetically altered carbonate reservoir.
- Reservoir quality in Diamond M field is related to genetic pore types but not to pore types as defined by Lucia or Choquette and Pray.
- The reef 1 and grainstone/packstone facies contained the largest number of high ranking flow units, which indicate reservoir quality based on combined poroperm values.
REFERENCES

Ahr, W. M., 2009, GEOL-624 Carbonate Reservoirs, Course Notes, Texas A&M University.

Dunham, R. J., 1962, Classification of carbonate rocks according to depositional texture, in W. E. Ham, ed., Classification of carbonate rocks-a symposium: AAPG Memoir 1, p. 108-121.

Hammel, B. S., 1996, High resolution characterization of the Permian (Upper Leonardian) Spraberry Formation, Happy Spraberry Field, Garza County, Texas, Master’s thesis, Texas A&M University, College Station, Texas, 176 p.

APPENDIX A

CORE DESCRIPTION
Note: ‘Intramatrix’ porosity refers to intercrystalline porosity in the matrix.

Core Description: Emerald #1
Core Interval: 6613.0’ – 6632.2’

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6613.0 - 6617.0</td>
<td>4.0</td>
<td>Grainstone</td>
<td>Estimated: 10 % Intramatrix Moldic Intraparticle</td>
<td>Dominant: skeletal hash Present: bivalves, brachiopods, crinoids, forams, fusulinids, phylloid algae (broken), sponge spicules,</td>
</tr>
<tr>
<td>Description: Tan limestone, moderate sorting, indistinct bedding, fine grained, abundant broken grains. 6614.7’ to 6615’ preserved.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6617.0 – 6625.9</td>
<td>8.9</td>
<td>Automicrite</td>
<td>Estimated:3-5 % Moldic Intraparticle Intramatrix</td>
<td>Dominant: fusulinids, skeletal hash Present: bivalves, brachiopods, crinoids, forams, phylloid algae (broken), sponge spicules,</td>
</tr>
<tr>
<td>Description: Tan to brown limestone, indistinct bedding, moderate sorting below 6620’, poor sorting above. Stylolites and saddle dolomite present, calcite filled veins and silica replacement common in certain areas. 6622.7’ to 6623’ preserved.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6625.9 – 6630.0</td>
<td>4.1</td>
<td>Automicrite</td>
<td>Estimated: 1-2% Fracture</td>
<td>Dominant: phylloid algae (broken) Present: bivalves, brachiopods, crinoids, forams, fusulinids, gastropods, micritic clasts, skeletal hash</td>
</tr>
<tr>
<td>Description: Brown to gray limestone, mottled texture, poorly sorted abundant dissolution seams, pyrite and blue gray silica replacement. Calcite filled veins, stylolites, and geopetal structures present. Many grains replaced with clear calcite.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Core Description: Emerald #1 (continued)
Core Interval: 6630.0’– 6639.7’

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6630.0 – 6632.2</td>
<td>2.2</td>
<td>Grainstone</td>
<td>Estimated: 0 %</td>
<td>Dominant: skeletal hash, crinoids</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Present: bivalves, brachiopods, forams, phylloid algae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(broken)</td>
</tr>
</tbody>
</table>

Description: Light gray to dark gray limestone, indistinct bedding, well sorted below 6631’, sorting decreased to moderate above 6631’. Pyrite present, abundant cement between grains and silica replacement of grains.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6632.2 – 6634.5</td>
<td>2.3</td>
<td>Automicrite</td>
<td>Estimated: 1 % Fracture</td>
<td>Dominant: phylloid algae (broken)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Present: bivalves, brachiopods, crinoids, forams, skeletal hash, possible trilobites</td>
</tr>
</tbody>
</table>

Description: Brown to gray limestone, mottled texture, very port sorting, abundant stylolites and dissolution seams. Common blue silica replacement of grains. Phylloid algae are mostly dissolved.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6634.5 – 6639.7</td>
<td>5.2</td>
<td>Grainstone</td>
<td>Estimated: 10 % Interparticle</td>
<td>Dominant: skeletal hash, crinoids</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Present: bivalves, brachiopods, bryozoans, forams, fusulinids, phylloid algae (broken), sponge spicules</td>
</tr>
</tbody>
</table>

Description: Tan to gray limestone, indistinct bedding, moderate sorting that increases to well sorted above the stylolite at 6637.7’. Stylolites and dissolution seams present below 6656.5’. Pyrite and blue silica replacement of grains present. 6635.6’ to 6636’ preserved.
Core Description: Emerald #1 (continued)
Core Interval: 6639.7’ – 6647.9’

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6639.7 – 6640.4</td>
<td>0.7</td>
<td>Automicrite</td>
<td>Estimated: <1 % Microporosity</td>
<td>Dominant: fusulinids Present: brachiopods, crinoids, forams, phylloid algae (broken), skeletal hash</td>
</tr>
</tbody>
</table>

Description: Light brown to gray limestone, mottled texture, moderately sorted, abundant stylolites and dissolution seams. Looks similar to area below the absent core (6640.4’- 6643’), but with fewer grains. Some pyrite and blue silica replacement of grains.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6640.4– 6643.0</td>
<td>2.6</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Core Absent

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6643.0 – 6647.9</td>
<td>4.9</td>
<td>Packstone</td>
<td>Estimated: 1-3 % Intraparticle Intraparticle Moldic</td>
<td>Dominant: fusulinids, phylloid algae Present: bivalves, brachiopods, crinoids, forams, skeletal hash</td>
</tr>
</tbody>
</table>

Description: Brown to gray limestone, mostly indistinct bedding, but horizontal grain layers from 6646’ – 6648’, moderate sorting. Large amount of dissolution seams with grey argillaceous material. Pyrite and blue silica replacement of phylloid algae present. Tan fusulinids surrounded by gray argillaceous material in dissolution seams.
Core Description: Emerald #1 (continued)
Core Interval: 6647.9’ – 6671.4’

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6647.9–6655.0</td>
<td>7.1</td>
<td>Packstone</td>
<td>Estimated: 3-10 % Dominant: fusulinids, skeletal hash</td>
<td>Inframatrix Intraparticle Interparticle Fracture Present: bivalves, brachiopods, crinoids, forams, phylloid algae (broken), sponge spicules</td>
</tr>
<tr>
<td>6655.0–6671.0</td>
<td>16.0</td>
<td>Automicrite</td>
<td>Estimated: 3-5 % Dominant: phylloid algae (whole & broken), fusulinids Present: bivalves, brachiopods, crinoids, forams, micritic clasts at 6669.4, sponge spicules</td>
<td>Moldic Inframatrix Vuggy Fracture Intraparticle</td>
</tr>
</tbody>
</table>

Description: Tan to light gray limestone, indistinct bedding, moderate to poor sorting, sorting decreases up section. Stylolites, dissolution seams, and blue silica replacement of grains present. Some partially healed veins.

Description: Tan to dark gray limestone, mottled texture, poor to moderate sorting, stylolites and geopetal features common. Pyrite present in lower section, calcite filled veins common throughout section. Yellow staining near some stylolites, large silica nodule at 6667.5’, argillaceous green material at 6655’.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6671.0–6671.4</td>
<td>0.4</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Core Preserved
Core Description: Emerald #1 (continued)
Core Interval: 6671.4’ – 6682.9’

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6671.4 – 6675.8</td>
<td>4.4</td>
<td>Automicrite</td>
<td>Estimated: 5-10%</td>
<td>Dominant: fusulinids, skeletal hash</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moldic</td>
<td>Present: bivalves, brachiopods, crinoids,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vuggy</td>
<td>forams, phylloid algae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Intramatrix</td>
<td></td>
</tr>
</tbody>
</table>

Description: Light brown to gray limestone, mottled texture, poor sorting near bottoming, moderate sorting near top. Stylolites and geopetal structures common. Abundant pyrite replacement and calcite filled veins. Some vug filling calcite present, large gray silica nodules at 6674.6’ and 6672.2’. Porosity varies with 5-10% from 6671’ to 6672’, and 5% from 6673’ to 6674’. Vuggy porosity dominates 6675’.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6675.8 – 6682.5</td>
<td>6.7</td>
<td>Packstone</td>
<td>Estimated: 3-5%</td>
<td>Dominant: phylloid algae (broken), skeletal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Vuggy, Intramatrix, Fracture</td>
<td>hash</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Porosity 10-15%</td>
<td>Present: bivalves, brachiopods, forams,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>at 6680.5’</td>
<td>fusulinids, gastropods, peloids, sponge</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>mainly Vuggy</td>
<td>spicules</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>and Moldic</td>
<td></td>
</tr>
</tbody>
</table>

Description: Tan to light gray limestone, indistinct bedding, moderately sorted. Stylolites, geopetal structures, and dissolution seams present. Blue silica replacement of grains common. Large gray silica nodules at 6681.3’ and 6678.5’. Phylloid algae replaced with calcite. Abundant microporosity from 6680’ – 6682’.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6682.5 – 6682.9</td>
<td>0.4</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Core Preserved
Core Description: Emerald #1 (continued)
Core Interval: 6682.9’ – 6695.2’

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6682.9 – 6690.0</td>
<td>7.1</td>
<td>Automicrite</td>
<td>Estimated: 10-15 %</td>
<td>Dominant: phylloid algae, crinoids, forams Present: bivalves, brachiopods, fusulinids, gastropods, sponge spicules</td>
</tr>
<tr>
<td>6690.0 – 6690.4</td>
<td>0.4</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6690.4 – 6695.2</td>
<td>4.8</td>
<td>Automicrite</td>
<td>Estimated: 5-10 %</td>
<td>Dominant: phylloid algae (broken), crinoids Present: bivalves, brachiopods, forams, skeletal hash, sponge spicules</td>
</tr>
</tbody>
</table>

Description: Light brown to gray limestone, mottled texture, moderate to well sorting. Stylolites, dissolution seams, and geopetal structures present. Some pore filling calcite cement and pyrite present. Dark stain at 6686.6’. Porosity higher in vuggy areas.

Core Preserved

Description: Tan to gray limestone, mottled texture, moderately sorted. Stylolites, dissolution seams, geopetal structures, and calcite filled veins present. Phylloid algae mostly dissolved. Possible burrowing at 6694’.
Core Description: Emerald #1 (continued)
Core Interval: 6695.2’ – 6703.0’

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6695.2 – 6698.5</td>
<td>3.3</td>
<td>Automicrite</td>
<td>Estimated: 0 %</td>
<td>Dominant: skeletal hash, crinoids Present: bivalves, forams, phylloid algae (broken), sponge spicules</td>
</tr>
<tr>
<td>Description: Brown to gray limestone, mottled texture, moderately sorted. Stylolites, pyrite, and blue silica replacement of grains present. Abundant vein filling calcite. Large area of grey silica replacement at 6695.3’.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6698.5 – 6700.0</td>
<td>1.5</td>
<td>Grainstone</td>
<td>Estimated: 0 %</td>
<td>Dominant: crinoids, phylloid algae (broken) Present: brachiopods, forams, fusulinids, peloids, skeletal hash</td>
</tr>
<tr>
<td>Description: Tan to gray limestone, fine grained, mostly indistinct bedding but mottled texture near top of section. Well sorted at base but decreases to moderate sorting at the top of the section. Stylolites and dissolution seams sparse, pyrite present. Large vertical calcite vein from 6699.5’ – 6700’.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6700.0 – 6702.0</td>
<td>2.0</td>
<td>Automicrite</td>
<td>Estimated: 10%</td>
<td>Dominant: phylloid algae Moldic Intramatrix Fracture Present: bivalves, brachiopods, crinoids, forams, fusulinids</td>
</tr>
<tr>
<td>Description: Tan to gray limestone, mottled texture, well sorted. Stylolites and fractures present, calcite filled veins and pyrite replacement common.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6702.0 – 6703.0</td>
<td>1.0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Core Absent</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Core Description: Emerald #1 (continued)
Core Interval: 6703.0’ – 6709.1’

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6703.0 – 6704.3</td>
<td>1.3</td>
<td>Automicrite</td>
<td>Estimated: 10%</td>
<td>Dominant: phylloid algae</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Moldic Intramatrix Vuggy</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Present: bivalves, brachiopods, crinoids, fusulinids, sponge spicules</td>
</tr>
</tbody>
</table>

Description: Tan to gray limestone, mottled texture, poorly sorted. Stylolites, geopetal structures, and calcite filled veins present. Abundant pyrite replacement. Calcite and possible saddle dolomite partially filling some vugs.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6704.3 – 6706.2</td>
<td>1.9</td>
<td>Automicrite</td>
<td>Estimated: 0%</td>
<td>Dominant: phylloid algae, fusulinids</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1% Vuggy porosity at 6705.3’</td>
<td>Present: bivalves, brachiopods, crinoids, forams</td>
</tr>
</tbody>
</table>

Description: Brown limestone, indistinct bedding, moderately sorted. Stylolites and dissolution seams present. Vein filling calcite common. Grain abundance decreases towards the top of the section.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6706.2 – 6709.1</td>
<td>2.9</td>
<td>Automicrite</td>
<td>Estimated: 0%</td>
<td>Dominant: phylloid algae, fusulinids</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Packstone areas from 6707.7’ – 6708.7’</td>
<td></td>
<td>Present: bivalves, brachiopods, bryozoans, crinoids, forams, gastropods, skeletal hash</td>
</tr>
</tbody>
</table>

Description: Light gray to gray limestone, light brown from 6707’ – 6707.5’, mottled texture, poorly sorted. Stylolites, geopetal structures, and calcite filled veins present. Pyrite present near top of section. Many grains dissolved and replaced with clear calcite.
Core Description: Emerald #1 (continued)
Core Interval: 6709.1’ – 6718.9’

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6709.1 –</td>
<td>2.1</td>
<td>Automicrite</td>
<td>Estimated: 0 %</td>
<td>Dominant: phylloid algae, fusulinids</td>
</tr>
<tr>
<td>6711.2</td>
<td></td>
<td></td>
<td></td>
<td>Present: bivalves, brachiopods, crinoids, forams,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>skeletal hash</td>
</tr>
<tr>
<td>Description: Brown limestone, indistinct bedding, moderate to poor sorting. Areas with abundant dissolution seams. Calcite filled veins present. Many large whole grains surrounded by fine skeletal hash.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6711.2 –</td>
<td>3.5</td>
<td>Packstone</td>
<td>Estimated: 0 %</td>
<td>Dominant: fusulinids, peloids, phylloid algae</td>
</tr>
<tr>
<td>6714.7</td>
<td></td>
<td></td>
<td></td>
<td>Present: bivalves, crinoids, forams, skeletal</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>hash</td>
</tr>
<tr>
<td>Description: Brown limestone, indistinct bedding, moderate to well sorting, medium to coarse grained. Dissolution seams, geopetal structures, and calcite filled veins present. Areas of clear calcite and blue silica replacement of grains.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6714.7 –</td>
<td>4.2</td>
<td>Grainstone</td>
<td>Estimated: 5 %</td>
<td>Dominant: forams, fusulinids</td>
</tr>
<tr>
<td>6718.9</td>
<td></td>
<td>6714.7’ – 6718’</td>
<td></td>
<td>Present: bivalves, brachiopods, crinoids, forams,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Packstone</td>
<td></td>
<td>phylloid algae, skeletal hash, sponge spicules</td>
</tr>
<tr>
<td></td>
<td></td>
<td>6718’ - 6718.9’</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description: Tan limestone that darkens to brown at the top of section, mainly indistinct bedding but parallel layers from 6716’-6717’. Well sorted and fine grained at 6718’, coarsens upwards and sorting decreases to moderate at 6717’ and decreases further to poor at 6715’. Sparse stylolites, fractures, and geopetal structures at 6716’. Trace amounts of pyrite.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Core Description: Emerald #1 (continued)
Core Interval: 6718.9’ – 6737.9’

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6718.9 –</td>
<td>4.2</td>
<td>Automicrite</td>
<td>Estimated: <1 % Fracture</td>
<td>Dominant: phylloid algae (whole & broken)</td>
</tr>
<tr>
<td>6723.1</td>
<td></td>
<td></td>
<td></td>
<td>Present: bivalves, brachiopods, crinoids,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>fusulinids</td>
</tr>
</tbody>
</table>

Description: Brown to light gray limestone, patches of both mottled texture and indistinct bedding throughout section, moderate to poor sorting. Areas with abundant dissolution seams. Geopetal structure and calcite filled veins common. Large 3 cm foram at 6719.5’.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6723.1 –</td>
<td>13.0</td>
<td>Automicrite</td>
<td>Estimated: 0 % Small patch of Moldic porosity at 6731.1’</td>
<td>Dominant: phylloid algae >70%</td>
</tr>
<tr>
<td>6736.1</td>
<td></td>
<td></td>
<td></td>
<td>Present: bivalves, brachiopods, crinoids,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description: Light gray to gray limestone, patches of light brown, indistinct bedding, moderate to poor sorting. Stylolites, dissolution seams, and geopetal structures common. Trace amounts of pyrite (6730’) and blue silica replacement of brachiopods (6725’). Many grains dissolved and replaced with clear calcite.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6736.1 –</td>
<td>1.8</td>
<td>Automicrite</td>
<td>Estimated: 10-15% Moldic Intraparticle</td>
<td>Dominant: fusulinids, skeletal hash</td>
</tr>
<tr>
<td>6737.9</td>
<td></td>
<td></td>
<td></td>
<td>Present: brachiopods, crinoids, forams, phylloid algae (whole and broken)</td>
</tr>
</tbody>
</table>

Description: Tan to light gray limestone, indistinct bedding, poorly sorted. Dissolution seams, fractures, and vein filling calcite present. Blue silica replacement of crinoids common. Some fractures filled with a green residue. Amount of grain increases towards the top of the section and porosity decreases towards the top of the section.
Core Description: Emerald #1 (continued)
Core Interval: 6737.9’ – 6740.3’

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6737.9 –</td>
<td>0.6</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6738.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core Preserved

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6738.5 –</td>
<td>0.6</td>
<td>Automicrite</td>
<td>Estimated: 5 %</td>
<td>Dominant: phylloid algae, skeletal hash</td>
</tr>
<tr>
<td>6739.1</td>
<td></td>
<td></td>
<td>Vuggy</td>
<td>Present: brachiopods, crinoids, forams, fusulinids, peloids</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moldic Intraparticle</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description: Tan to light gray limestone, indistinct bedding, moderately sorted. Fractures and vugs commonly filled with calcite. Large vug (15 mm) at 6738.6’. Phylloid algae often dissolved.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6739.1 –</td>
<td>0.4</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>6739.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core Preserved

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6739.5 –</td>
<td>0.8</td>
<td>Automicrite</td>
<td>Estimated: 10-15 %</td>
<td>Dominant: phylloid algae, fusulinids</td>
</tr>
<tr>
<td>6740.3</td>
<td></td>
<td></td>
<td>Vuggy</td>
<td>Present: bivalves, brachiopods, crinoids, micritic clasts, skeletal hash</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Moldic</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Intraparticle</td>
<td></td>
</tr>
<tr>
<td>Description: Tan to gray limestone, indistinct bedding, moderately sorted. Stylolites and calcite filled veins present. Phylloid algae often dissolved.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Core Description: Emerald #1 (continued)
Core Interval: 6740.3’ – 6763.0’

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6740.3 – 6740.6</td>
<td>0.3</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Core Preserved

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6740.6 – 6758.8</td>
<td>18.2</td>
<td>Automicrite</td>
<td>Estimated: 10-15 % Moldic Intramatrix Intraparticle</td>
<td>Dominant: phylloid algae, fusulinids Present: bivalves, brachiopods, crinoids, forams, gastropods, skeletal hash, sponge spicules</td>
</tr>
</tbody>
</table>

Description: Tan to gray limestone, indistinct bedding, moderate to poor sorting. Stylolites, dissolution seams, geopetal structures, and calcite filled veins present. Blue silica replacement of crinoids at 6747’. Some yellow-orange staining near stylolites, and porosity is usually found closer to stylolites. Grains often dissolved and replaced by clear calcite.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6758.8 – 6759.0</td>
<td>0.2</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Core Preserved

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6759.0 – 6763.0</td>
<td>4.0</td>
<td>Automicrite</td>
<td>Estimated: 10 % Moldic Intramatrix</td>
<td>Dominant: phylloid algae, skeletal hash Present: bivalves, brachiopods, crinoids, forams, fusulinids</td>
</tr>
</tbody>
</table>

Description: Tan to gray limestone, indistinct bedding, moderately sorted. Stylolites present. Phylloid algae often dissolved and replaced with clear calcite. Core broken into fragments from 6761.2’ to 6763’.
Core Description: Jade #1
Core Interval: 6745.0’ – 6762.8’

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6745.0 – 6750.4</td>
<td>5.4</td>
<td>Automicrite</td>
<td>Estimated: 1-2% Intramatrix Fracture</td>
<td>Dominant: skeletal hash, fusulinids Present: bivalves, brachiopods, forams, gastropods, green algae, phylloid algae (whole and broken)</td>
</tr>
<tr>
<td>6750.4 – 6752.4</td>
<td>2.0</td>
<td>Grainstone</td>
<td>Estimated: 0%</td>
<td>Dominant: skeletal hash, fusulinids Present: bivalves, brachiopods, forams, phylloid algae (broken)</td>
</tr>
<tr>
<td>6752.4 – 6762.8</td>
<td>10.4</td>
<td>Automicrite</td>
<td>Estimated: 1-2% Intramatrix Fracture</td>
<td>Dominant: phylloid algae (broken), skeletal hash Present: bivalves, brachiopods, crinoids, forams, fusulinids, micritic clasts</td>
</tr>
</tbody>
</table>

Description: Light tan to gray limestone, mottled texture, poorly sorted. Abundant stylolites and dissolution seams with black argillaceous material in seams. Blue silica replacement of grains and calcite filled veins present. Pyrite at 6745’, possible bioturbation from 6749’-6750.4’, unusual bright orange deposit at 6746’.

Description: Brown with grey patches, limestone, indistinct bedding, moderate sorting at base that decreases to poor sorting at the top of the section. Grain size increases from base to top. Yellow rust color on some crinoids, fusulinid layer forms the top boundary.

Description: Brown to gray limestone, mottled texture, moderate to poor sorting. Abundant fractures and dissolution seams. Blue silica replacement of grains and calcite filled veins common throughout the section. Many areas have >75% grains and are borderline packstone.
Core Description: Jade #1 (continued)

Core Interval: 6762.8' – 6784.7'

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6762.8 – 6766.5</td>
<td>3.7</td>
<td>Automicrite</td>
<td>Estimated: 1-2% Intramatrix Fracture</td>
<td>Dominant: skeletal hash, micritic clasts Present: brachiopods, crinoids, forams, phylloid algae (broken)</td>
</tr>
</tbody>
</table>

Description: Tan to light brown limestone, mottled texture, fine grained with larger grains near the top of the section, well to moderate sorting. Stylolites, dissolution seams, geopetal structures, and blue silica replacement of grains present. Abundant calcite filled veins. Large angular micritic clasts present.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6766.5 – 6772.0</td>
<td>5.5</td>
<td>Automicrite</td>
<td>Estimated: 5% Intramatrix, Moldic, Vuggy</td>
<td>Dominant: phylloid algae (broken), peloids Present: bivalves, brachiopods, crinoids, forams, gastropods, sponge spicules</td>
</tr>
</tbody>
</table>

Description: Tan to light brown limestone, indistinct bedding except at 6795.5' which has parallel bedding in fine grainstone. Large poorly sorted grains in automicrite, fine well to moderate sorted grains in packstone/grainstone. Dissolution seams, vertical and horizontal stylolites present. Blue silica replacement of grains and partial vug filling calcite also present.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6772.0 – 6784.7</td>
<td>12.7</td>
<td>Automicrite Packstone from 6776.5' – 6779.0'</td>
<td>Estimated: 3-8% Intramatrix Moldic Fracture</td>
<td>Dominant: phylloid algae (broken), forams Present: bivalves, brachiopods, bryozoans, crinoids, micritic clasts, skeletal hash, sponge spicules</td>
</tr>
</tbody>
</table>

Description: Light tan to light gray limestone, mottled texture, moderate to poor sorting. Poorer sorting in packstone interval. Stylolites, dissolution seams, and calcite filled veins common. Patches of subangular micritic clasts. Grains commonly replaced with clear calcite. Core preserved from 6779.7' - 6780.3'.
Core Description: Jade #1 (continued)
Core Interval: 6784.7' – 6816.5'

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6784.7 – 6798.0</td>
<td>13.3</td>
<td>Packstone</td>
<td>Estimated: 5-12% Intramatrix Moldic Intraparticle</td>
<td>Dominant: phylloid algae (broken), skeletal hash Present: bivalves, brachiopods, forams, peloids</td>
</tr>
</tbody>
</table>

Description: Tan limestone with areas of tan/gray color, indistinct bedding, moderate to well sorted. Fine grained below 6790', and coarsens upward above 6790'. Stylolites, dissolution seams, and calcite filled veins present. Core preserved from 6786.6' - 6787', 6790' - 6790.3', and 6793.7' - 6794.3'.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6798.0 – 6807.8</td>
<td>9.8</td>
<td>Grainstone</td>
<td>Estimated: 5-10% Intraparticle Moldic Intramatrix Vuggy</td>
<td>Dominant: phylloid algae (whole & broken), forams Present: bivalves, brachiopods, crinoids, fusulinids, gastropods, micritic clasts</td>
</tr>
</tbody>
</table>

Description: Tan to gray limestone, 6803' - 6807.9' parallel to horizontal beds, 6798' - 6803' indistinct bedding. Mostly well sorted with areas of moderate sorting. Stylolites, dissolution seams, and partial vug filling calcite present. Pyrite from 6800' - 6802'. Forams and phylloid algae more than 80% of grains. Many grains micritized.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6807.8 – 6816.5</td>
<td>8.7</td>
<td>Grainstone/ Packstone</td>
<td>Estimated: 3-4% above 6812' Moldic Intramatrix Fracture</td>
<td>Dominant: forams, skeletal hash Present: bivalves, brachiopods, bryozoans, crinoids, fusulinids, gastropods, micritic clasts, phylloid algae (broken), sponge spicules</td>
</tr>
</tbody>
</table>

Description: Light gray to tan limestone, indistinct bedding, moderate to well sorted. Stylolites, dissolution seams, and geopetal structures present. Calcite filled veins common. Mostly fine forams with some larger grains, many grains have micritic rims. Core broken into fragments from 6812' - 6183'.
Core Description: Jade #1 (continued)
Core Interval: 6816.5' – 6849.8'

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6816.5 – 6821.2</td>
<td>4.7</td>
<td>Automicrite</td>
<td>Estimated: 0 %</td>
<td>Dominant: forams, skeletal hash Present: bivalves, brachiopods, crinoids, micritic clasts, phylloid algae (broken)</td>
</tr>
</tbody>
</table>

Description: Light to dark gray limestone, mottled texture, moderate to poor sorting. Stylolites and dissolution seams common. Geopetal structures and calcite filled veins present. Many grains have been micritized.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6821.2 – 6837.8</td>
<td>16.6</td>
<td>Packstone</td>
<td>Estimated: 5-7 % above 6829' Moldic, Vuggy, Intramatrix Estimated: 10-15 % below 6829' Moldic, Intramatrix</td>
<td>Dominant: phylloid algae (whole & broken), forams Present: bivalves, brachiopods, bryozoans, crinoids, fusulinids, gastropods, micritic clasts, sponge spicules</td>
</tr>
</tbody>
</table>

Description: Light brown to gray limestone, indistinct bedding, moderate sorting below 6829, decreases to poor then very poor upwards as the appearance of very large grains (>20 mm) becomes abundant. Stylolites filled with green and black residue, geopetal structures, and calcite filled veins present. Many grains have been replaced with clear calcite or have been micritized. Some grain replacing saddle dolomite present. Core preserved from 6828.6' - 6829', 6831.7' - 6832', and 6834.7' to 6835'.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6837.8 – 6849.8</td>
<td>12.0</td>
<td>Automicrite</td>
<td>Estimated: 1-3 % Moldic Fracture</td>
<td>Dominant: forams Present: bivalves, brachiopods, crinoids, fusulinids, green algae, phylloid algae (broken), sponge spicules</td>
</tr>
</tbody>
</table>

Description: Light gray to gray limestone, slightly mottled texture, well to moderate sorting that decreases to poor at 6848'. Abundant stylolites and calcite filled veins. Fine grained, usually around 40% grains, but increases to 60-70% grains above 6842', possible packstone areas.
Core Description: Jade #1 (continued)
Core Interval: 6849.8' – 6871.7'

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6849.8 – 6864.9</td>
<td>15.1</td>
<td>Automicrite</td>
<td>Estimated: 1 % Fracture</td>
<td>Dominant: crinoids, forams Present: bivalves, brachiopods, bryozoans, fusulinids, green algae, phylloid algae (broken), skeletal hash</td>
</tr>
</tbody>
</table>

Description: Light brown to dark gray limestone, mottled texture, moderate to poor sorting. Stylolites, dissolution seams, and pyrite present. Abundant calcite filled veins. Large crinoids fragments throughout section, many grains dissolved and replaced with clear calcite.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6864.9 – 6871.7</td>
<td>6.8</td>
<td>Packstone</td>
<td>Estimated: 1-5 % Intramatrix Fracture Moldic</td>
<td>Dominant: phylloid algae (whole & broken), forams Present: bivalves, brachiopods, bryozoans, crinoids, fusulinids, green algae, micritic clasts</td>
</tr>
</tbody>
</table>

Description: Brown to gray limestone, debrite, poorly sorted angular clasts. Stylolites, dissolution seams, geopetal structures, and blue silica replacement of grains present. Abundant pyrite. Large patches of yellow/white saddle dolomite 6864.8' - 6870.5'.
Core Description: Topaz #1
Core Interval: 6706.0' – 6721.2'

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
</table>
| 6706.0 –
6709.0 | 3.0 | Grainstone | Estimated: 10-15 % | Dominant: forams, skeletal hash |
| | | | Intramatrix Moldic | Present: brachiopods, crinoids, fusulinids, |
| | | | | phylloid algae (broken). |
| Description: Light gray to dark brown limestone, parallel alternating layers of brown micrite and lighter calcite cement, fine grained. Stylolites and dissolution seams common. Blue silica replacement of grains, mainly crinoids, present. Core preserved from 6706.8' - 6707'. |

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
</table>
| 6709.0 –
6713.2 | 4.2 | Packstone | Estimated: 20 % | Dominant: fusulinids |
| | | Grainstone | Intramatrix Moldic| Present: bivalves, brachiopods, crinoids, fusulinids, phylloid algae (broken), skeletal hash, sponge spicules |
| Description: Light gray limestone, indistinct bedding, poorly sorted, medium to coarse grained. Stylolites present, porosity decreases towards the top of the section. Core preserved from 6710.8' to 6711'. |

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
</table>
| 6713.2 –
6721.2 | 8.0 | Automicrite | Estimated: 10-15 %| Dominant: phylloid algae (broken), fusulinids |
| | | | Moldic Intramatrix| Present: bivalves, brachiopods, crinoids, forams, skeletal hash |
| | | | Vuggy Intraparticle| |
| Description: Light gray to light brown limestone, mottled texture, moderately sorted. Stylolites, dissolution seams, and calcite filled veins present. Grain abundance increases up section. Porosity in the bottom of the section is mainly near stylolites. |
Core Description: Topaz #1 (continued)

Core Interval: 6721.2’ – 6753.2’

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6721.2 – 6722.0</td>
<td>0.8</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Core Absent

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6722.0 – 6726.0</td>
<td>4.0</td>
<td>Automicrite</td>
<td>Estimated: 3-5%</td>
<td>Dominant: phylloid algae (whole & broken) Present: brachiopods, crinoids, forams, fusulinids</td>
</tr>
</tbody>
</table>

Description: Light brown to light gray limestone, mottled texture, moderately sorted. Stylolites and dissolution seams present. Phylloid algae often dissolved.

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6726.0 – 6750.0</td>
<td>24.0</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

Core Not Recovered

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6750.0 – 6753.2</td>
<td>3.2</td>
<td>Automicrite</td>
<td>Estimated: 10%</td>
<td>Dominant: phylloid algae (whole), fusulinids Present: bivalves, brachiopods, crinoids, forams, sponge spicules, possible trilobites</td>
</tr>
</tbody>
</table>

Description: Light gray to light brown limestone, mottled texture, moderately sorted. Stylolites, dissolution seams, and geopetal structures present. Phylloid algae often dissolved into molds. Fusulinids often have intraparticle porosity.
Core Description: Topaz #1 (continued)
Core Interval: 6753.2’ – 6831.5’

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6753.2 –</td>
<td>8.3</td>
<td>Automicrite</td>
<td>Estimated: 5-15%</td>
<td>Dominant: forams, fusulinids</td>
</tr>
<tr>
<td>6761.5</td>
<td></td>
<td></td>
<td>above 6759.0' and 5% below 6759.0'</td>
<td></td>
</tr>
<tr>
<td>6761.5 –</td>
<td>58.5</td>
<td>N/A</td>
<td>N/A</td>
<td>Present: brachiopods, crinoids, phylloid algae (broken), skeletal hash, sponge spicules</td>
</tr>
<tr>
<td>6820.0</td>
<td>11.5</td>
<td>Automicrite</td>
<td>Estimated: 1-2%</td>
<td></td>
</tr>
<tr>
<td>6820.0 –</td>
<td></td>
<td></td>
<td>Fracture</td>
<td></td>
</tr>
<tr>
<td>6831.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Description: Light brown to gray limestone, mainly indistinct bedding, but slightly mottled above 6758’. Well sorted below 6757’, but above 6757’ grains get large and sorting decreases to moderate. Stylolites, dissolution seams, and pyrite present. Patches of blue/gray silica replacement from 6758'-6760'. Core preserved from 6754.4’ - 6754.7’, and 6756.8’ - 6757.1’.

Core Not Recovered

Description: Light brown to gray limestone, mottled texture, poor sorting below 6828' and moderate sorting above 6828'. Stylolites and dissolution seams common. Calcite filled veins and blue silica replacement of grains present. Grains are often dissolved and replaced with clear calcite. Above 6826' areas of >60% grains common, possible oil stains from 6821' - 6823'.

Core Description: Topaz #1 (continued)
Core Interval: 6831.5' – 6836.5'

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Thickness (ft)</th>
<th>Dunham/Riding</th>
<th>Porosity</th>
<th>Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td>6831.5 – 6836.5</td>
<td>5.0</td>
<td>Automicrite</td>
<td>Estimated: <1 % Fracture</td>
<td></td>
</tr>
</tbody>
</table>

Description: Brown limestone, indistinct bedding, poorly sorted. Around 30% of section replaced with blue/gray silica. Dissolution seams, calcite filled veins, and blue silica replacement of grains common. Phylloid algae, fusulinids, and crinoids much larger than other grains.
APPENDIX B

GRAPHICAL CORE DESCRIPTION
Figure B.1: Rock type key for core description.
Bedding

<table>
<thead>
<tr>
<th>Core Description Key</th>
<th>Model Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indistinct</td>
<td></td>
</tr>
<tr>
<td>Mottled</td>
<td>![mottled.png]</td>
</tr>
<tr>
<td>Parallell</td>
<td>![parallell.png]</td>
</tr>
</tbody>
</table>

Structures

<table>
<thead>
<tr>
<th>Core Description Key</th>
<th>Model Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stylolites</td>
<td>![stylolites.png]</td>
</tr>
<tr>
<td>Dissolution Seams</td>
<td>![dissolution.png]</td>
</tr>
<tr>
<td>Fractures</td>
<td>![fractures.png]</td>
</tr>
</tbody>
</table>

Sorting

<table>
<thead>
<tr>
<th>Sorting</th>
<th>Extremely Well</th>
<th>XW</th>
<th>Well</th>
<th>W</th>
<th>Poorly</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Very Well</td>
<td>VW</td>
<td>Moderately</td>
<td>M</td>
<td>Very Poorly</td>
<td>VP</td>
</tr>
</tbody>
</table>

Roundness

<table>
<thead>
<tr>
<th>Roundness</th>
<th>Angular</th>
<th>Subrounded</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>![angular.png]</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td>![subangular.png]</td>
<td>Rounded</td>
</tr>
</tbody>
</table>

Grains

<table>
<thead>
<tr>
<th>Grains</th>
<th>Bivalves</th>
<th>Fusulinids</th>
<th>Macro Fossils</th>
<th>Brachiopods</th>
<th>Phylloid Algae</th>
<th>Intraclasts</th>
<th>Bryozoans</th>
<th>Sponge Spicules</th>
<th>Gastropods</th>
<th>Crinoids</th>
<th>Micritic Clasts</th>
<th>Trilobites</th>
</tr>
</thead>
</table>

Porosity

<table>
<thead>
<tr>
<th>Porosity</th>
<th>Interparticle</th>
<th>Intraparticle</th>
<th>Microporosity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>![interparticle.png]</td>
<td>![intraparticle.png]</td>
<td>![microporosity.png]</td>
</tr>
</tbody>
</table>

Accessory Minerals

<table>
<thead>
<tr>
<th>Accessory Minerals</th>
<th>Pyrite</th>
<th>Vug Filling Calcite</th>
<th>Silica Nodule</th>
<th>Silica Replacing Grains</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>![pyrite.png]</td>
<td>![vug_filling_calcite.png]</td>
<td>![silica_nodule.png]</td>
<td>![silicaReplacingGrains.png]</td>
</tr>
<tr>
<td>Depth (feet)</td>
<td>Lithology</td>
<td>Bddg</td>
<td>Structures</td>
<td>Accessories</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>6613</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6614</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6615</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6616</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6617</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6618</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6619</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6620</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6621</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6622</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6623</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6624</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6625</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6626</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6627</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6628</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6629</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6630</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6631</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6632</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6633</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6634</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6635</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6636</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6637</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6638</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6639</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6640</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6641</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6642</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6643</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6644</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6645</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6646</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6647</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6648</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6649</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6650</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6651</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6652</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6653</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6654</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6655</td>
<td>Abundant green argillaceous material</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6656</td>
<td>Partially healed vertical fractures</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6657</td>
<td>Abundant blocky calcite cement</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6658</td>
<td>Silica nodule at 6667.5'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6659</td>
<td>Yellow staining near stylolites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6660</td>
<td>Large angular clasts at 6669.4'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6661</td>
<td>Vug filling calcite present</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6662</td>
<td>Gray silica nodule at 6672.2'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6663</td>
<td>Gray silica nodule at 6674.6'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6664</td>
<td>Calcite replacement of P. Algae</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6665</td>
<td>Gray silica nodule at 6678.5'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6666</td>
<td>Abundant microporosity 6680-6682'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6667</td>
<td>Large gray silica nodule at 6681.3'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6668</td>
<td>Pore filling calcite cement common</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6669</td>
<td>Very large crinoids (10 mm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6670</td>
<td>Dark stain at 6686.6'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6671</td>
<td>P. Algae is often dissolved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6672</td>
<td>Abundant silica replacement at 6695.3'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6673</td>
<td>Sorting decreases upwards</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6674</td>
<td>Core Absent 6702-6703'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6703</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6704</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6705</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6706</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6707</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6708</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6709</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6710</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6711</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6712</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6713</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6714</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6715</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6716</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6717</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6718</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6719</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6720</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6721</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6722</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6723</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6724</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6725</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6726</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6727</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6728</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6729</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6730</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6731</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6732</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6733</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6734</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6735</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6736</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6737</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6738</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6739</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Text</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6740</td>
<td>Porosity found near stylolites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6741</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6742</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6743</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6744</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6745</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6746</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6747</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6748</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6749</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6750</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6751</td>
<td>Yellow-orange stains near stylolites</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6752</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6753</td>
<td>Grains replaced with clear calcite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6754</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6755</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6756</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6757</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6758</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6759</td>
<td>Blocky calcite filling some molds</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6760</td>
<td>Abundant skeletal hash</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6761</td>
<td>P. Algae often dissolved</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6762</td>
<td>Core broken into fragments</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6763</td>
<td>6763’ End of Core</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Well: Jade #1

<table>
<thead>
<tr>
<th>Depth (feet)</th>
<th>Lithology</th>
<th>Bddg</th>
<th>Structures</th>
<th>Accessories</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>6745</td>
<td></td>
<td>6</td>
<td></td>
<td>#</td>
<td>6745' Top of Core Unusual bright orange deposit present</td>
</tr>
<tr>
<td>6746</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>Abundant argillaceous material</td>
</tr>
<tr>
<td>6747</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>Fine grained, coarsens upwards</td>
</tr>
<tr>
<td>6748</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>Blue silica replacement common</td>
</tr>
<tr>
<td>6749</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>Abundant fractures</td>
</tr>
<tr>
<td>6750</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>Large crinoid fragments common</td>
</tr>
<tr>
<td>6751</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>Moderate to poor sorting P. algae often dissolved</td>
</tr>
<tr>
<td>6752</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>Very fine grained Large angular micritic clasts</td>
</tr>
<tr>
<td>6753</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>Moderately sorted Parallel layering of forams</td>
</tr>
<tr>
<td>6754</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>Abundant stylolites and dis. seams</td>
</tr>
<tr>
<td>6755</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>Poorly sorted</td>
</tr>
<tr>
<td>6756</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>Moderate sorting</td>
</tr>
<tr>
<td>6757</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td>Micritic clasts present</td>
</tr>
<tr>
<td>6758</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6759</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6760</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6761</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6762</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6763</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6764</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6765</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6766</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6767</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6768</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6769</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6770</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6771</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6772</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6773</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6774</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6775</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6776</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6777</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6778</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6779</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6780</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6781</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6782</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6783</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6784</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6785</td>
<td>6786</td>
<td>6787</td>
<td>6788</td>
<td>6789</td>
<td>6790</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>6791</td>
<td>6792</td>
<td>6793</td>
<td>6794</td>
<td>6795</td>
<td>6796</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6797</td>
<td>6798</td>
<td>6799</td>
<td>6800</td>
<td>6801</td>
<td>6802</td>
</tr>
<tr>
<td></td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>6803</td>
<td>6804</td>
<td>6805</td>
<td>6806</td>
<td>6807</td>
<td>6808</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6809</td>
<td>6810</td>
<td>6811</td>
<td>6812</td>
<td>6813</td>
<td>6814</td>
</tr>
<tr>
<td></td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
<td>!</td>
</tr>
<tr>
<td>6815</td>
<td>6816</td>
<td>6817</td>
<td>6818</td>
<td>6819</td>
<td>6820</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6821</td>
<td>6822</td>
<td>6823</td>
<td>6824</td>
<td>6825</td>
<td>6826</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>Saddle dolomite filling shells</td>
<td>Many grains heavily micritized</td>
<td>Blocky calcite filling many pores</td>
<td>Very poorly sorted</td>
<td>Abundant stylolites</td>
<td>Some large p. algae >20 mm</td>
</tr>
<tr>
<td>Depth (feet)</td>
<td>Lithology</td>
<td>Bddg Structures</td>
<td>Accessories</td>
<td>Comments</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td>-----------------</td>
<td>-------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>6706</td>
<td></td>
<td></td>
<td></td>
<td>6706’ Top of Core</td>
<td></td>
</tr>
<tr>
<td>6707</td>
<td></td>
<td></td>
<td></td>
<td>Alternating layers of brown micrite and light calcite cement, fine grained</td>
<td></td>
</tr>
<tr>
<td>6708</td>
<td></td>
<td></td>
<td></td>
<td>Medium to coarse grained</td>
<td></td>
</tr>
<tr>
<td>6709</td>
<td></td>
<td></td>
<td></td>
<td>Grain abundance increases upwards</td>
<td></td>
</tr>
<tr>
<td>6710</td>
<td></td>
<td></td>
<td></td>
<td>Moderately sorted</td>
<td></td>
</tr>
<tr>
<td>6711</td>
<td></td>
<td></td>
<td></td>
<td>Porosity near stylolites</td>
<td></td>
</tr>
<tr>
<td>6712</td>
<td></td>
<td></td>
<td></td>
<td>Core absent 6721.2 - 6722.0’</td>
<td></td>
</tr>
<tr>
<td>6713</td>
<td></td>
<td></td>
<td></td>
<td>Moderately sorted</td>
<td></td>
</tr>
<tr>
<td>6714</td>
<td></td>
<td></td>
<td></td>
<td>P. algae often dissolved and replaced with calcite</td>
<td></td>
</tr>
<tr>
<td>6715</td>
<td></td>
<td></td>
<td></td>
<td>Core not recovered 6726.0 - 6750.0’</td>
<td></td>
</tr>
<tr>
<td>6716</td>
<td></td>
<td></td>
<td></td>
<td>Moderately sorted</td>
<td></td>
</tr>
<tr>
<td>6717</td>
<td></td>
<td></td>
<td></td>
<td>Phylloid algae dissolved into molds</td>
<td></td>
</tr>
<tr>
<td>6718</td>
<td></td>
<td></td>
<td></td>
<td>Core not recovered 6726.0 - 6750.0’</td>
<td></td>
</tr>
<tr>
<td>Mark</td>
<td>Description</td>
<td>Core not recovered 6761.5 - 6820.0'</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-------------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>🌱</td>
<td>Larger grains more common upwards</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>🌱</td>
<td>Slightly mottled texture</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>#</td>
<td>Abundant argillaceous material</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>🌱</td>
<td>Large silica nodule</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>🌱</td>
<td>Fine grained</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Core not recovered 6761.5 - 6820.0'
<table>
<thead>
<tr>
<th>Area</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>6761.5 - 6820.0'</td>
<td>Core not recovered</td>
</tr>
<tr>
<td>>60% grains</td>
<td>Areas of >60% grains</td>
</tr>
<tr>
<td>Poor sorting below, moderate above</td>
<td>Poor sorting below, moderate above</td>
</tr>
<tr>
<td>Grains often dissolved and replaced with calcite and silica</td>
<td>Grains often dissolved and replaced with calcite and silica</td>
</tr>
<tr>
<td>Coarse grained p. algae dissolved and replaced with calcite and silica</td>
<td>Coarse grained p. algae dissolved and replaced with calcite and silica</td>
</tr>
<tr>
<td>Abundant blue/gray silica replacement</td>
<td>Abundant blue/gray silica replacement</td>
</tr>
<tr>
<td>6836.5'</td>
<td>End of Core</td>
</tr>
</tbody>
</table>
APPENDIX C

CORE PHOTOGRAPHS
Figure C.1: Grainstone/Packstone Facies in Emerald #1 well at 6717’. Note the parallel layering of grains. All core photographs are 3 inches across.
Figure C.2: Reef 1 Facies in Jade #1 well at 6764’. Note the heavily mottled texture.
Figure C.3: Reef 2 Facies in Jade #1 well at 6847’. Stylolites present as well as large crinoid fragments.
Figure C.4: Reef 3 Facies in Topaz #1 well at 6834’. Note the large amount of dark gray silica replacement.
Figure C.5: Debris Facies in Jade #1 well at 6868’.
Figure C.6: Large vugs in Reef 1 Facies, Topaz #1 at 6752’.
Figure C.7: White saddle dolomite in Debris facies, Jade #1 well, at 6870’.
APPENDIX D

THIN SECTION DESCRIPTION
<table>
<thead>
<tr>
<th>Well</th>
<th>Thin Section Locations (ft)</th>
<th>Facies</th>
<th>Hybrid 1 Pore Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emerald</td>
<td>6614.3</td>
<td>GS/PS</td>
<td>Be</td>
</tr>
<tr>
<td>Emerald</td>
<td>6621.9</td>
<td>GS/PS</td>
<td>Ae</td>
</tr>
<tr>
<td>Emerald</td>
<td>6626.4</td>
<td>GS/PS</td>
<td>Br</td>
</tr>
<tr>
<td>Emerald</td>
<td>6631.8</td>
<td>GS/PS</td>
<td>Br</td>
</tr>
<tr>
<td>Emerald</td>
<td>6637.8</td>
<td>GS/PS</td>
<td>Be</td>
</tr>
<tr>
<td>Emerald</td>
<td>6645.9</td>
<td>GS/PS</td>
<td>Br</td>
</tr>
<tr>
<td>Emerald</td>
<td>6649.8</td>
<td>GS/PS</td>
<td>Ae</td>
</tr>
<tr>
<td>Emerald</td>
<td>6654.6</td>
<td>GS/PS</td>
<td>Br</td>
</tr>
<tr>
<td>Emerald</td>
<td>6656.6</td>
<td>R1</td>
<td>Be</td>
</tr>
<tr>
<td>Emerald</td>
<td>6668.6</td>
<td>R1</td>
<td>Be</td>
</tr>
<tr>
<td>Emerald</td>
<td>6675.5</td>
<td>R1</td>
<td>Ce</td>
</tr>
<tr>
<td>Emerald</td>
<td>6676.6</td>
<td>R1</td>
<td>Be</td>
</tr>
<tr>
<td>Emerald</td>
<td>6679.3</td>
<td>R1</td>
<td>Ae</td>
</tr>
<tr>
<td>Emerald</td>
<td>6684.4</td>
<td>R1</td>
<td>Be</td>
</tr>
<tr>
<td>Emerald</td>
<td>6694.7</td>
<td>R1</td>
<td>Be</td>
</tr>
<tr>
<td>Emerald</td>
<td>6699.4</td>
<td>R1</td>
<td>Br</td>
</tr>
<tr>
<td>Emerald</td>
<td>6700.5</td>
<td>R1</td>
<td>Be</td>
</tr>
<tr>
<td>Emerald</td>
<td>6703.6</td>
<td>R1</td>
<td>Be</td>
</tr>
<tr>
<td>Emerald</td>
<td>6712.2</td>
<td>GS/PS</td>
<td>Br</td>
</tr>
<tr>
<td>Emerald</td>
<td>6717.4</td>
<td>GS/PS</td>
<td>Ae</td>
</tr>
<tr>
<td>Emerald</td>
<td>6718.5</td>
<td>GS/PS</td>
<td>Br</td>
</tr>
<tr>
<td>Emerald</td>
<td>6726.8</td>
<td>R2</td>
<td>Br</td>
</tr>
<tr>
<td>Emerald</td>
<td>6736.8</td>
<td>R2</td>
<td>Ae</td>
</tr>
<tr>
<td>Emerald</td>
<td>6742.7</td>
<td>R2</td>
<td>Be</td>
</tr>
<tr>
<td>Emerald</td>
<td>6758.4</td>
<td>R2</td>
<td>Be</td>
</tr>
<tr>
<td>Jade</td>
<td>6747.6</td>
<td>R1</td>
<td>Ae</td>
</tr>
<tr>
<td>Jade</td>
<td>6767.5</td>
<td>R1</td>
<td>Ae</td>
</tr>
<tr>
<td>Jade</td>
<td>6769.3</td>
<td>R1</td>
<td>Ar</td>
</tr>
<tr>
<td>Jade</td>
<td>6771.9</td>
<td>R1</td>
<td>Be</td>
</tr>
<tr>
<td>Jade</td>
<td>6784.4</td>
<td>R1</td>
<td>Be</td>
</tr>
<tr>
<td>Well</td>
<td>Thin Section Locations (ft)</td>
<td>Facies</td>
<td>Hybrid 1 Pore Type</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------</td>
<td>--------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Jade</td>
<td>6785.5</td>
<td>GS/PS</td>
<td>Be</td>
</tr>
<tr>
<td>Jade</td>
<td>6795.2</td>
<td>GS/PS</td>
<td>Be</td>
</tr>
<tr>
<td>Jade</td>
<td>6799.9</td>
<td>GS/PS</td>
<td>Br</td>
</tr>
<tr>
<td>Jade</td>
<td>6805.9</td>
<td>GS/PS</td>
<td>Be</td>
</tr>
<tr>
<td>Jade</td>
<td>6811.5</td>
<td>GS/PS</td>
<td>Br</td>
</tr>
<tr>
<td>Jade</td>
<td>6817.9</td>
<td>GS/PS</td>
<td>Ar</td>
</tr>
<tr>
<td>Jade</td>
<td>6822.8</td>
<td>GS/PS</td>
<td>Br</td>
</tr>
<tr>
<td>Jade</td>
<td>6823.8</td>
<td>GS/PS</td>
<td>Be</td>
</tr>
<tr>
<td>Jade</td>
<td>6829.9</td>
<td>GS/PS</td>
<td>Be</td>
</tr>
<tr>
<td>Jade</td>
<td>6843.6</td>
<td>R2</td>
<td>Br</td>
</tr>
<tr>
<td>Jade</td>
<td>6865.5</td>
<td>DEB</td>
<td>Be</td>
</tr>
<tr>
<td>Jade</td>
<td>6869.9</td>
<td>DEB</td>
<td>Be</td>
</tr>
<tr>
<td>Topaz</td>
<td>6707.1</td>
<td>GS/PS</td>
<td>Be</td>
</tr>
<tr>
<td>Topaz</td>
<td>6707.7</td>
<td>GS/PS</td>
<td>Be</td>
</tr>
<tr>
<td>Topaz</td>
<td>6712.9</td>
<td>GS/PS</td>
<td>Be</td>
</tr>
<tr>
<td>Topaz</td>
<td>6713.9</td>
<td>R1</td>
<td>Be</td>
</tr>
<tr>
<td>Topaz</td>
<td>6716.5</td>
<td>R1</td>
<td>Be</td>
</tr>
<tr>
<td>Topaz</td>
<td>6751.7</td>
<td>R1</td>
<td>Be</td>
</tr>
<tr>
<td>Topaz</td>
<td>6752.9</td>
<td>R1</td>
<td>Be</td>
</tr>
<tr>
<td>Topaz</td>
<td>6755.2</td>
<td>R1</td>
<td>Be</td>
</tr>
<tr>
<td>Topaz</td>
<td>6760.2</td>
<td>R1</td>
<td>Be</td>
</tr>
<tr>
<td>Topaz</td>
<td>6820.9</td>
<td>R3</td>
<td>Ar</td>
</tr>
<tr>
<td>Topaz</td>
<td>6828.8</td>
<td>R3</td>
<td>Ar</td>
</tr>
<tr>
<td>Topaz</td>
<td>6832.4</td>
<td>R3</td>
<td>Cr</td>
</tr>
</tbody>
</table>
THIN SECTION DESCRIPTION – EMERALD #1

Sample: Emerald 1 – 6614.3’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Packstone
Grains Present:
- Dominant: Crinoids, Forams
- Common: Fusulinids, Brachiopods
- Present: Phylloid Algae (broken), Bivalves, Bryozoans, Echinoid Spines
Comments: Many grains fragmented

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Moderate

Diagenetic Characteristics

Cementation: Present small blocky calcite and syntaxial overgrowth of crinoids
Recrystallization: Abundant micritization of grains, common neomorphism of micrite
Dissolution: Present dissolution of matrix and cement
Replacement: Present trace amounts of pyrite
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 5%
- Dominant: Partial molds – 85%
- Common: SE Interparticle – 10%
- Present: Intraparticle – 5%
Ahr Genetic Pore Type: Hybrid 1B - Enhanced
Sample: Emerald 1 – 6621.9’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
 - *Dominant:* Crinoids, Forams
 - *Common:* Fusulinids
 - *Present:* Brachiopods, Bivalves, Phylloid Algae (broken), Sponge Spicules
Comments: Phylloid algae and sponge spicules dissolved

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Moderate

Diagenetic Characteristics

Cementation: Present pore filling small blocky calcite and grain replacing large blocky calcite
Recrystallization: Common micritization of grains and neomorphism of micrite
Dissolution: Present grain leaching
Replacement: Common saddle dolomite
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 10%
 - *Dominant:* Moldic – 95%
 - *Common:*
 - *Present:* Intraparticle – 5%
Ahr Genetic Pore Type: **Hybrid 1A** (low end) - **Enhanced**
Sample: Emerald 1 – 6626.4’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
 - Dominant: Phylloid Algae, Crinoids, Forams
 - Common: Brachiopods, Fusulinids, Sponge Spicules
 - Present: Bryozoans, Gastropods, Trilobite Shell, Encrusting Algae
Comments: Many grains are completely dissolved and replaced with calcite, mainly phylloid algae, crinoids, and forams

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Poor

Diagenetic Characteristics

Cementation: Abundant large blocky calcite replacing grains (mainly phylloid algae and crinoids), and small blocky calcite filling pores
Recrystallization: Common micritization of grains
Dissolution: Common grain leaching
Replacement: Present pore filling and grain replacing silica
Mechanical Compaction: Common brittle grain deformation and fractures
Chemical Compaction: Common stylolites
Other: Some dissolution near stylolites, grains near stylolites deformed. Nearly all grains micritized and replaced with blocky calcite.

Porosity

Visual Estimate: 1%
 - Dominant:
 - Common:
 - Present: Fracture
Ahr Genetic Pore Type: Hybrid 1B - Reduced
Sample: Emerald 1 – 6631.8’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Grainstone
Grains Present:
- Dominant: Crinoids, Phylloid Algae (broken)
- Common: Forams, Brachiopods, Gastropods
- Present: Skeletal Hash, Trilobite Spine
Comments:

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Well

Diagenetic Characteristics

Cementation: Abundant pore filling and grain replacing small and large blocky calcite
Recrystallization: Common micritization of grains
Dissolution: Present grain leaching (later filled by calcite)
Replacement: Common silica replacing grains, usually crinoids. Present pyrite at bottom of slide
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 0%
- Dominant:
- Common:
- Present:
Ahr Genetic Pore Type: Hybrid 1B - Reduced
Sample: Emerald 1 – 6637.8’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Packstone/Grainstone
Grains Present:
 - Dominant: Forams, Crinoids
 - Common: Fusulinids, Brachiopods
 - Present: Peloids, Micritic Clasts, Phylloid Algae, Bryozoans
Comments: Top of slide grainstone, bottom of slide packstone. A stylolite separates the two areas.

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Moderate

Diagenetic Characteristics

Cementation: Common small blocky calcite filling pores, present syntaxial overgrowth on crinoids
Recrystallization: Abundant micritization of grains
Dissolution: Present grain and matrix leaching
Replacement: Common pyrite near bottom of slide, present silica replacement of grains, mainly crinoids
Mechanical Compaction: N/A
Chemical Compaction: Present stylolites
Other: Large high amplitude stylolite present

Porosity

Visual Estimate: 5-10 %
 - Dominant: SE Interparticle - 85%
 - Common: Moldic – 10%
 - Present: Intraparticle -5%
Ahr Genetic Pore Type: **Hybrid 1B** (high end) - Enhanced
Sample: Emerald 1 – 6645.9’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Grainstone/Packstone
Grains Present:
 • Dominant: Fusulinids, Forams
 • Common: Phylloid Algae (broken)
 • Present: Brachiopods, Sponge Spicules, Crinoids, Peloids
Comments: Forams heavily micritized, phylloid algae dissolved

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Moderate

Diagenetic Characteristics

Cementation: Abundant pore filling and grain replacing small and large blocky calcite
Recrystallization: Abundant micritization of grains
Dissolution: Present grain and matrix leaching
Replacement: Present grain replacing silica
Mechanical Compaction: Present partially healed fractures
Chemical Compaction: N/A
Other: Cement partially filling molds and fractures

Porosity

Visual Estimate: 2-5%
 • Dominant: Moldic – 85%
 • Common: Vuggy – 10%
 • Present: SE Interparticle – 3% , Fracture – 2%
Ahr Genetic Pore Type: Hybrid 1B - Reduced
Sample: Emerald 1 – 6649.8’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Grainstone
Grains Present:
 • Dominant: Forams, Fusulinids
 • Common: Brachiopods
 • Present: Sponge Spicules, Phylloid Algae (broken), Bivalves, Peloids
Comments: Forams heavily micritized

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Moderate

Diagenetic Characteristics

Cementation: Small and large pore filling blocky calcite: Present top 80% of slide, abundant bottom 20% of slide
Recrystallization: Abundant micritization of grains, common neomorphism of micrite
Dissolution: N/A
Replacement: Present silica replacement of grains
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 1% near bottom of slide, 15-20% for the rest of the slide
 • Dominant: SE Interparticle – 75%
 • Common: SE Intraparticle – 25%
 • Present:
Ahr Genetic Pore Type: Hybrid 1A – Enhanced
Comments: Irregular boundary near bottom of slide separates porous and non porous zones
Sample: Emerald 1 – 6654.6’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Packstone
Grains Present:
- Dominant: Forams, Brachiopods
- Common: Crinoids, Phylloid Algae, Fusulinids
- Present: Bivalves, Sponge Spicules, Peloids
Comments: Similar to Emerald 1 – 6649.8’, Forams heavily micritized

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Poor

Diagenetic Characteristics

Cementation: Abundant small and large blocky calcite filling all pores
Recrystallization: Abundant micritization
Dissolution: N/A
Replacement: N/A
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 0%
- Dominant:
- Common:
- Present:
Ahr Genetic Pore Type: Hybrid 1B - Reduced
Sample: Emerald 1 – 6656.6’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
- Dominant:
- Common:
- Present: Brachiopods, Fusulinids, Forams, Phyllloid Algae (broken), sponge spicules
Comments: Mostly micrite, around 10% grains, prismatic microstructure seen in brachiopods shells

Sedimentary Structures:N/A
Bedding: Mottled Texture
Sorting: Moderate

Diagenetic Characteristics

Cementation: Present small blocky calcite filling pores,
Recrystallization: Common micritization of grains and neomorphism of micrite
Dissolution: N/A
Replacement: N/A
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 5%
- Dominant: Incomplete molds – 75%
- Common: SE Intraparticle – 10%
- Present: Vuggy – 5%
Ahr Genetic Pore Type: Hybrid 1B (high end) - Enhanced
Sample: Emerald 1 – 6668.6’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
- Dominant:
- Common:
- Present: Brachiopods, Bivalves, Crinoids, Phylloid Algae (broken), Forams, Skeletal Hash
Comments: Fragmented grains, mostly micritic matrix

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Poor

Diagenetic Characteristics

Cementation: Present small blocky calcite in pores
Recrystallization: Abundant neomorphism of micrite, present micritization of grains
Dissolution: N/A
Replacement: N/A
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 10-15 %
- Dominant: Vuggy – 80%
- Common: Moldic – 20%
- Present:
Ahr Genetic Pore Type: Hybrid 1B (low end) – Enhanced
Comments: Solution enhanced molds often turning vuggy
Sample: Emerald 1 – 6675.5’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
- **Dominant:** Forams, Bivalves
- **Common:**
- **Present:** Brachiopods, Sponge Spicules, Crinoids, Phylloid Algae, Bryozoans, Peloids
Comments: Mostly micritic matrix, phylloid algae and sponge spicules often dissolved or replaced, Forams heavily micritized

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Moderate

Diagenetic Characteristics

Cementation: Present small amounts of pore filling small blocky calcite
Recrystallization: Abundant micritization of grains, common neomorphism of micrite
Dissolution: Common grain and matrix leaching
Replacement: Common pyrite replacement near stylolite at bottom of slide
Mechanical Compaction: N/A
Chemical Compaction: Present stylolites
Other: High amplitude stylolite present

Porosity

Visual Estimate: 20%
- **Dominant:** SE Vuggy to Cavernous – 75%
- **Common:** Moldic – 23%
- **Present:** Interparticle – 2%
Ahr Genetic Pore Type: Hybrid 1C (high end) - Enhanced
Sample: Emerald 1 – 6676.6’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
- Dominant: Crinoids, Brachiopods
- Common: Fusulinids, Forams
- Present: Coral, Bryozoans, Sponge Spicules
Comments: Mostly fined grained, except large fusulinids and coral. Sponge spicules dissolved

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Moderate

Diagenetic Characteristics

Cementation: Common pore filling small and large blocky calcite
Recrystallization: Abundant neomorphism of micrite, common micritization of grains
Dissolution: Present grain, matrix, and cement leaching
Replacement: N/A
Mechanical Compaction: Brittle grain deformation (broken shells)
Chemical Compaction: Present stylolites
Other: N/A

Porosity

Visual Estimate: 5%
- Dominant: Moldic – 85%
- Common: SE Intercrystalline – 10%
- Present: Intraparticle – 5%
Ahr Genetic Pore Type: Hybrid 1B - Enhanced
Sample: Emerald 1 – 6679.3’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Packstone
Grains Present:
 • Dominant: Brachiopods
 • Common: Corals, Crinoids
 • Present: Forams, Sponge Spicules, Phylloid Algae
Comments: Roughly half micritic matrix and half grains. Shell structure in many grains perserved

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Well

Diagenetic Characteristics

Cementation: Present small amounts of pore filling small blocky calcite
Recrystallization: Present micritization of grains
Dissolution: Present grain and cement leaching
Replacement: N/A
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 5%
 • Dominant: SE Interparticle – 80%
 • Common: Moldic – 10%, SE Intraparticle – 10%
 • Present:
Ahr Genetic Pore Type: Hybrid 1A - Enhanced
Sample: Emerald 1 – 6684.4’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
 - **Dominant:** Forams, Crinoids
 - **Common:** Brachiopods
 - **Present:** Phylloid Algae, Sponge Spicules
Comments: Mostly neomorphosed micrite, phylloid algae and sponge spicules dissolved

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Well

Diagenetic Characteristics

Cementation: Present very small amounts of pore filling small blocky calcite
Recrystallization: Abundant neomorphism of micrite
Dissolution: Abundant grain and matrix leaching
Replacement: N/A
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: Most grains are dissolved

Porosity

Visual Estimate: 15-20%
 - **Dominant:** Vuggy – 75%
 - **Common:** Moldic – 25%
 - **Present:**
Ahr Genetic Pore Type: **Hybrid 1B** (low end) - **Enhanced**
Sample: Emerald 1 – 6694.7’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
 - Dominant:
 - Common:
 - Present: Crinoids, Forams, Phylloid Algae (broken), Sponge Spicules
Comments: Very fine grained, mostly micritic matrix with very few grains, phylloid algae and sponge spicules often dissolved

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Moderate

Diagenetic Characteristics

Cementation: Common small and large blocky calcite filling or partially filling dissolved grains and fractures
Recrystallization: Abundant neomorphism of micrite, common micritization of grains
Dissolution: Present cement leaching
Replacement: N/A
Mechanical Compaction: Common partially healed vertical fractures
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 5%
 - Dominant: Moldic – 75%
 - Common: Vuggy – 24%
 - Present: Fracture – 1%
Ahr Genetic Pore Type: Hybrid 1B – Enhanced
Sample: Emerald 1 – 6699.4’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Grainstone
Grains Present:
 - *Dominant:* Phylloid Algae (broken), Forams
 - *Common:* Fusulinids, Brachiopods, Crinoids
 - *Present:* Peloids
Comments: Forams heavily micritized

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Well

Diagenetic Characteristics

Cementation: Abundant small blocky calcite filling dissolved grains and large blocky calcite filling pores, present syntaxial overgrowth cement on crinoids
Recrystallization: Abundant micritization of grains, present neomorphism of micrite
Dissolution: Present grain and cement leaching
Replacement: N/A
Mechanical Compaction: Common brittle grain deformation
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 5%
 - *Dominant:* SE Interparticle – 85%
 - *Common:* Intercrystalline – 10%
 - *Present:* SE Intramatrix, and Moldic – 5%
Ahr Genetic Pore Type: **Hybrid 1B – Reduced**
Comments: More porosity at top of slide than at bottom
Sample: Emerald 1 – 6700.5’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
- *Dominant:* Forams, Brachiopods
- *Common:* Phylloid Algae, Sponge Spicules
- *Present:* Trilobite Fragments, Bryozoans, Crinoids, Peloids
Comments: Mostly fine grained material aside from large brachiopods, phylloid algae and sponge spicules often dissolved, Forams heavily micritized, prismatic microstructure seen in brachiopods.

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Well, aside from large brachiopods

Diagenetic Characteristics

Cementation: Common small blocky calcite filling dissolved grains, present large blocky calcite filling pores
Recrystallization: Abundant micritization of grains, common neomorphism of micrite
Dissolution: Present grain leaching
Replacement: N/A
Mechanical Compaction: N/A
Chemical Compaction: Present stylolites
Other: Some porosity associated with stylolites

Porosity

Visual Estimate: 3-5 %
- *Dominant:* Moldic – 95%
- *Common:*
 - *Present:* Fracture – 5%
Ahr Genetic Pore Type: **Hybrid 1B - Enhanced**
Sample: Emerald 1 – 6703.6’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
 • Dominant: Phylloid Algae, Forams, Brachiopods
 • Common: Fusulinids, Crinoids, Bivalves, Sponge Spicules, Peloids
 • Present: Comments: Phylloid algae and sponge spicules often dissolved, Forams heavily micritized

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Poor

Diagenetic Characteristics

Cementation: Common small and large blocky calcite filling pores and replacing grains
Recrystallization: Common neomorphism of micrite, present selective micritization of grains
Dissolution: Common grain, matrix, and cement leaching
Replacement: Common pyrite replacing matrix, common saddle dolomite in large pores
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 10%
 • Dominant: Vuggy – 75%
 • Common: Moldic – 25%
 • Present:
Ahr Genetic Pore Type: Hybrid 1B (low end) - Enhanced
Sample: Emerald 1 – 6712.2’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Grainstone
Grains Present:
 - Dominant: Phylloid Algae, Forams
 - Common: Fusulinids, Crinoids, Sponge Spicules, Bivalves
 - Present: Peloids
Comments: Forams heavily micritized

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Moderate

Diagenetic Characteristics

Cementation: Abundant small and large blocky calcite filling dissolved grains and pores, present drusy cement in some larger pores.
Recrystallization: Abundant micritization of grains
Dissolution: N/A
Replacement: N/A
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 0 %
 - Dominant:
 - Common:
 - Present:
Ahr Genetic Pore Type: Hybrid 1B - Reduced
Sample: Emerald 1 – 6717.4’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Grainstone
Grains Present:
- Dominant: Forams
- Common: Bivalves, Fusulinids, Sponge Spicules, Brachiopods, Phylloid Algae (broken), Peloids
- Present: Comments: Fine grained, Forams heavily micritized, phylloid algae and sponge spicules often dissolved

Sedimentary Structures: N/A
Bedding: Irregular bedding, a few layers of larger phylloid algae and fusulinids exist
Sorting: Well

Diagenetic Characteristics

Cementation: Common pore filling small blocky calcite, present large blocky calcite
Recrystallization: Abundant micritization of grains, present neomorphism of micrite
Dissolution: N/A
Replacement: Present saddle dolomite in larger pores
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 5%
- Dominant: SE Interparticle – 80%
- Common: Moldic – 15%
- Present: Intraparticle – 5%

Ahr Genetic Pore Type: Hybrid 1A (low end) – Enhanced
Comments: Porosity mainly located in top half of the slide
Sample: Emerald 1 – 6718.5’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Grainstone/Packstone
Grains Present:
- Dominant: Forams
- Common: Crinoids, Fusulinids, Phylloid Algae (broken), Sponge Spicules
- Present: Peloids
Comments: Fine grained, over 75% of thin section is forams, forams heavily micritized

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Well

Diagenetic Characteristics

Cementation: Abundant small blocky calcite filling pores, present large blocky calcite filling dissolved grains
Recrystallization: Abundant micritization of grains and neomorphism of micrite
Dissolution: N/A
Replacement: N/A
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 1-2%
- Dominant: Intraparticle – 75%
- Common: Interparticle – 25%
- Present:
Ahr Genetic Pore Type: Hybrid 1B - Reduced
Sample: Emerald 1 – 6726.8’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
 - Dominant: Phylloid Algae
 - Common: Crinoids, Brachiopods, Bivalves, Forams
 - Present: Sponge Spicules, Peloids
Comments: Nearly all grains dissolved and replaced with blocky calcite, Forams heavily micritized

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Poor

Diagenetic Characteristics

Cementation: Abundant small and large blocky calcite filling all grains and pores
Recrystallization: Common neomorphism of micrite, present selective micritization of grains
Dissolution: N/A
Replacement: N/A
Mechanical Compaction: Present brittle grain deformation and fractures
Chemical Compaction: Present stylolites
Other: N/A

Porosity

Visual Estimate: < 1%
 - Dominant:
 - Common:
 - Present: Fracture
Ahr Genetic Pore Type: Hybrid 1B - Reduced
Sample: Emerald 1 – 6736.8’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
- Dominant: Phylloid Algae, Fusulinids, Crinoids
- Common: Forams, Bivalves, Brachiopods, Sponge Spicules
- Present: Peloids
Comments: Many grains have been altered, some forams have been heavily micritized

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Poor

Diagenetic Characteristics

Cementation: Common small and large blocky calcite partially filling pores
Recrystallization: Abundant micritization of grains, common neomorphism of micrite
Dissolution: Present grain and matrix leaching
Replacement: Present pore filling saddle dolomite and grain replacing silica and pyrite
Mechanical Compaction: N/A
Chemical Compaction: Common stylolites, present sutured contacts
Other: Some porosity near stylolites

Porosity

Visual Estimate: 15%
- Dominant: Moldic – 70%
- Common: Vuggy – 20%
- Present: SE Interparticle – 10%
Ahr Genetic Pore Type: Hybrid 1A (low end) - Enhanced
Sample: Emerald 1 – 6742.7’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
 • Dominant: Phylloid Algae
 • Common: Forams, Fusulinids, Brachiopods, Crinoids
 • Present: Bivalves, Sponge Spicules, Peloids
Comments: Many forams have been heavily micritized

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Moderate to Poor

Diagenetic Characteristics

Cementation: Present pore filling small blocky calcite that is mostly dissolved
Recrystallization: Abundant micritization of grains and neomorphism of micrite
Dissolution: Abundant grain, matrix, and cement leaching
Replacement: N/A
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 25%
 • Dominant: Vuggy – 75%
 • Common: Moldic – 20%
 • Present: SE Interparticle and SE Intraparticle – 5%
Ahr Genetic Pore Type: Hybrid 1B – Enhanced
Comments: Patches of high porosity present throughout slide
Sample: Emerald 1 – 6758.4’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
- Dominant: Forams, Phylloid Algae
- Common: Brachiopods, Crinoids, Fusulinids, Bivalves, Sponge Spicules
- Present: Peloids
Comments: Forams heavily micritized

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Poor

Diagenetic Characteristics

Cementation: Present small and large blocky calcite partially filling pores and dissolved grains
Recrystallization: Common micritization of grains and neomorphism of micrite
Dissolution: Common grain and matrix leaching, present cement leaching
Replacement: Common saddle dolomite in pores
Mechanical Compaction: Present fractures
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 15%
- Dominant: Moldic – 49%, Vuggy 49%
Common:
- Present: SE Interparticle – 2%
Ahr Genetic Pore Type: Hybrid 1B - Enhanced
THIN SECTION DESCRIPTION – JADE #1

Sample: Jade 1 – 6747.6’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
- *Dominant:* Brachiopods, Peloids, Fusulinids
- *Common:* Phylloid Algae (broken), Crinoids, Sponge Spicules, Forams
- *Present:* Bryozoans
Comments: Many grains are fragmented

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Poor

Diagenetic Characteristics

Cementation: Present small amounts of pore filling and grain replacing small and large blocky calcite
Recrystallization: Abundant micritization of grains, common neomorphism of micrite
Dissolution: N/A
Replacement: Present saddle dolomite and silica replacing grains and filling pores
Mechanical Compaction: Present small fractures
Chemical Compaction: Present small stylolites
Other: N/A

Porosity

Visual Estimate: 5%
- *Dominant:* Moldic – 60%
- *Common:* SE Interparticle – 40%
- *Present:*
Ahr Genetic Pore Type: *Hybrid 1A* (low end) - *Enhanced*
Sample: Jade 1 – 6767.5’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Grainstone at top and bottom of slide, Automicrite in middle
Grains Present:
- Dominant: Peloids
- Common: Brachiopods
- Present: Fusulinids, Forams, Sponge Spicules, Crinoids, Phyllloid Algae
Comments: Well sorted peloidal layers at top and bottom of slide, moderate to poor sorted fossils and matrix in middle

Sedimentary Structures: N/A
Bedding: Parallel at top and bottom of slide
Sorting: Well sorted top and bottom of slide, moderate to poor sorted in middle

Diagenetic Characteristics

Cementation: Common pore filling small and large blocky calcite in well sorted peloidal layer
Recrystallization: Abundant micritization of grains, common neomorphism of micrite
Dissolution: Abundant grain and matrix leaching
Replacement: Present saddle dolomite replacing pore filling calcite
Mechanical Compaction: N/A
Chemical Compaction: Present low amplitude stylolites filled with insoluble carbonate residue
Other: N/A

Porosity

Visual Estimate: 15-20%
- Dominant: SE Interparticle – 80%
- Common: Moldic -10%
- Present: Vuggy and Intraparticle – 5%
Ahr Genetic Pore Type: Hybrid 1A (low end) - Enhanced
Sample: Jade 1 – 6769.3’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Grainstone
Grains Present:
- Dominant: Peloids
- Common: Phylloid Algae, Brachiopods, Forams
- Present: Fusulinids, Sponge Spicules, Encrusting Algae
Comments: Fine grained peloids make up over 75% of the thin section. Forams heavily micritized, sponge spicules and phylloid algae are often dissolved

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Moderate

Diagenetic Characteristics

Cementation: Abundant small blocky calcite filling pores and large blocky calcite replacing grains
Recrystallization: Abundant micritized grains, common neomorphism of micrite
Dissolution: N/A
Replacement: N/A
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 1%
- Dominant: SE Interparticle – 75%
- Common: SE Intraparticle – 25%
- Present:
Ahr Genetic Pore Type: Hybrid 1A - Reduced
Sample: Jade 1 – 6671.9’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
 • Dominant: Phylloid Algae (broken)
 • Common: Crinoids, Sponge Spicules, Forams, Brachiopods
 • Present: Fusulinids, Peloids
Comments: Many grains fragmented, Forams heavily micritized, phylloid algae and sponge spicules often dissolved

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Poor

Diagenetic Characteristics

Cementation: Present small and large blocky calcite partially filled pores
Recrystallization: Abundant micritization of grains and neomorphism of micrite
Dissolution: Abundant grain and matrix leaching
Replacement: Present pore filling saddle dolomite and grain replacing silica
Mechanical Compaction: Common brittle deformation of grains
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 10-15%
 • Dominant: Moldic – 75%
 • Common: Vuggy – 25%
 • Present:
 Ahr Genetic Pore Type: Hybrid 1B (high end) - Enhanced
Sample: Jade 1 – 6784.4’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
 - **Dominant:**
 - **Common:** Brachiopods, Crinoids, Phylloid Algae (broken), Bivalves, Forams
 - **Present:** Fusulinids, Sponge Spicules, Gastropods

Comments: Many grains deformed or broken, phylloid algae and sponge spicules often dissolved

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Moderate

Diagenetic Characteristics

Cementation: Present small blocky calcite in a few pores
Recrystallization: Abundant micritization of grains and neomorphism of micrite
Dissolution: Common grain, matrix, and cement leaching
Replacement: Common pore filling saddle dolomite
Mechanical Compaction: Common brittle grain deformation
Chemical Compaction: Common stylolites
Other: N/A

Porosity

Visual Estimate: 5-10 %
 - **Dominant:** Moldic – 40% , Vuggy 40%
 - **Common:** SE Interparticle – 20%
 - **Present:**

Ahrg Genetic Pore Type: **Hybrid 1B - Enhanced**
Sample: Jade 1 – 6785.5’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Packstone
Grains Present:
- Dominant: Forams, Phyllloid Algae (broken)
- Common: Brachiopods, Bivalves, Sponge Spicules, Crinoids
- Present: Peloids
Comments: Many grains dissolved leaving only a rim of neomorphosed micrite, Forams heavily micritized

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Well

Diagenetic Characteristics

Cementation: Present small and large blocky calcite filling some pores and replacing some grains
Recrystallization: Abundant micritization of grains and neomorphism of micrite
Dissolution: Common grain and matrix leaching
Replacement: Present saddle dolomite filling some pores
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 10-15%
- Dominant: Moldic – 85%
- Common: SE Interparticle – 10%
- Present: Intraparticle – 5%
Ahr Genetic Pore Type: Hybrid 1B (high end) - Enhanced
Sample: Jade 1 – 6795.2’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Packstone/Grainstone
Grains Present:
 - Dominant: Forams
 - Common: Phylloid Algae (broken), Brachiopods, Crinoids, Fusulinids, Bivalves
 - Present: Sponge Spicules, Peloids
Comments: Forams heavily micritized, phylloid algae and sponge spicules often dissolved

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Well sorted at bottom of slide, moderately sorted at top

Diagenetic Characteristics

Cementation: Present pore filling small and large blocky calcite, mainly at the bottom of the slide
Recrystallization: Abundant micritization of grains and neomorphism of micrite
Dissolution: Present matrix and cement leaching
Replacement: Present pore filling saddle dolomite and grain replacing silica
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 5-10%
 - Dominant: SE Interparticle – 80%
 - Common: Moldic – 15%
 - Present: Vuggy – 5%
Ahr Genetic Pore Type: Hybrid 1B (high end) - Enhanced
Sample: Jade 1- 6799.9’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Grainstone
Grains Present:
 - Dominant: Phylloid Algae
 - Common:
 - Present: Forams
Comments: Coarse grained phylloid algae dominated 90% of the slide, possible oil stains present

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Well

Diagenetic Characteristics

Cementation: Abundant pore filling and grain replacing small and large blocky calcite, common drusy cement filing larger pores
Recrystallization: Common micritization of grains
Dissolution: Common cement leaching
Replacement: Present saddle dolomite replacing some large calcite crystals
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 10 %
 - Dominant: Intercrystalline – 80%
 - Common: Moldic – 20%
 - Present:
Ahr Genetic Pore Type: Hybrid 1B (low end) - Reduced
Sample: Jade 1 – 6805.9’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Grainstone, with some areas of Packstone
Grains Present:
 - Dominant: Forams, Phylloid Algae (broken)
 - Common: Crinoids, Brachiopods, Bivalves, Sponge Spicules
 - Present: Peloids
Comments: Forams heavily micritized, phylloid algae is often dissolved

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Moderate

Diagenetic Characteristics

Cementation: Abundant pore filling and grain replacing large and small blocky calcite, common drusy cement filling larger pores
Recrystallization: Abundant micritization of grains, present neomorphism of micrite
Dissolution: Present grain and cement leaching
Replacement: N/A
Mechanical Compaction: N/A
Chemical Compaction: Present stylolites
Other: N/A

Porosity

Visual Estimate: 5%
 - Dominant: SE Interparticle – 75%
 - Common: Moldic – 20%
 - Present: Vuggy – 5%

Ahr Genetic Pore Type: Hybrid 1B (high end) – Enhanced
Comments: Patches of high porosity and patches of no porosity in the thin section
Sample: Jade 1 – 6811.5’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Grainstone
Grains Present:
 - *Dominant:* Forams
 - *Common:* Crinoids, Phylloid Algae (broken), Brachiopods, Bivalves, Sponge Spicules
 - *Present:* Peloids
Comments: More than 80% of the slide is made up for forams, Forams heavily micritized

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Well sorted with patches of moderate sorting

Diagenetic Characteristics

Cementation: Abundant pore filling small blocky calcite, present pore filling large blocky calcite
Recrystallization: Abundant micritization of grains
Dissolution: Present grain leaching
Replacement: N/A
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: < 5%
 - *Dominant:* Moldic – 90%
 - *Common:* SE Interparticle – 10%
 - *Present:*
Ahr Genetic Pore Type: Hybrid 1B (high end) - Reduced
Sample: Jade 1 – 6817.9’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
- **Dominant:** Skeletal Hash
- **Common:**
- **Present:** Brachiopods, Forams, Crinoids, Phylloid Algae (broken), Bivalves, Sponge Spicules
Comments: Mostly composed of very fine broken fragments, Forams heavily micritized, larger phylloid algae has been dissolved and replaced with calcite

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Poor

Diagenetic Characteristics

Cementation: Abundant pore filling large blocky calcite, present pore filling small blocky calcite
Recrystallization: Abundant micritization of grains, present neomorphism of micrite
Dissolution: N/A
Replacement: N/A
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 0 %
- **Dominant:**
- **Common:**
- **Present:**
*Ahr Genetic Pore Type:*** Hybrid 1A (low end) - **Reduced**
Sample: Jade 1 – 6822.8’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Packstone
Grains Present:
- Dominant: Forams, Phylloid Algae
- Common: Crinoids, Brachiopods, Bivalves, Sponge Spicules
- Present: Peloids
Comments: Forams heavily micritized, phylloid algae mostly dissolved and replaced with calcite

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Poor

Diagenetic Characteristics

Cementation: Common small blocky calcite filling pores, and large blocky calcite replacing grains and filling large pores
Recrystallization: Abundant micritization of grains, present neomorphism of micrite
Dissolution: Present grain leaching
Replacement: Present pore filling saddle dolomite and grain replacing silica
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 2-3 %
- Dominant: Moldic – 75%
- Common: SE Interparticle – 20%
- Present: Vuggy – 5%
Ahr Genetic Pore Type: Hybrid 1B - Reduced
Sample: Jade 1 – 6823.8’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite with areas of Grainstone
Grains Present:
 - Dominant: Forams, Phylloid Algae
 - Common: Crinoids, Brachiopods, Bivalves, Sponge Spicules
 - Present: Gastropods, Peloids
Comments: Patches of grainstone surrounded by automicrite, Forams heavily micritized

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Poor

Diagenetic Characteristics

Cementation: Common pore filling small blocky calcite in grainstone areas, common pore filling large blocky calcite throughout
Recrystallization: Abundant micritization of grains, present neomorphism of micrite
Dissolution: Common grain and matrix leaching
Replacement: Common saddle dolomite filling pores
Mechanical Compaction: Present partially healed fractures
Chemical Compaction: Common stylolites
Other: N/A

Porosity

Visual Estimate: 10%
 - Dominant: Moldic – 40%, Vuggy – 40%
 - Common: SE Interparticle – 20%
 - Present:
Ahr Genetic Pore Type: Hybrid 1B - Enhanced
Sample: Jade 1 – 6829.9’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Packstone
Grains Present:
- Dominant: Forams
- Common: Crinoids, Bivalves, Brachiopods, Phylloid Algae
- Present: Sponge Spicules, Bryozoans, Peloids
Comments: Forams heavily micritized, phylloid algae is often dissolved

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Poor

Diagenetic Characteristics

Cementation: Present small and large blocky calcite filling some pores, present syntaxial overgrowth on crinoids
Recrystallization: Abundant micritization of grains, common neomorphism of micrite
Dissolution: Abundant grain and matrix leaching
Replacement: Present pore filling saddle dolomite
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 20 %
- Dominant: Vuggy – 75%
- Common: Moldic – 15%, SE Interparticle – 10%
- Present:
Ahr Genetic Pore Type: Hybrid 1B (low end) - Enhanced
Sample: Jade 1 – 6843.6’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
 - **Dominant:** Forams
 - **Common:** Phyllloid Algae, Brachiopods, Crinoids
 - **Present:** Bivalves, Sponge Spicules, Peloids

Comments: Mostly fine grained, high grain abundance, Forams heavily micritized, phyllloid algae is often dissolved and replaced, prismatic microstructure seen in brachiopods.

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Well

Diagenetic Characteristics

Cementation: Common pore filling small blocky calcite and grain replacing large blocky calcite
Recrystallization: Abundant micritization of grains and neomorphism of micrite
Dissolution: Present grain and matrix leaching
Replacement: Present saddle dolomite is some pores
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 2-3 %
 - **Dominant:** Moldic – 40%, SE Interparticle – 40%
 - **Common:** Vuggy – 20%
 - **Present:**

Ahr Genetic Pore Type: **Hybrid 1B** (high end) - **Reduced**
Sample: Jade 1 – 6865.5’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Packstone
Grains Present:
- Dominant: Forams
- Common: Phylloid Algae, Crinoids, Brachiopods, Sponge Spicules
- Present: Fusulinids, Bivalves, Peloids
Comments: Large phylloid algae, crinoids, and brachiopods. Forams heavily micritized

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Poor

Diagenetic Characteristics

Cementation: Common pore filling large and small blocky calcite
Recrystallization: Abundant micritization of grains, common neomorphism of micrite
Dissolution: Present grain, matrix and cement leaching
Replacement: Common pore filling saddle dolomite, present silica replacement of some grains
Mechanical Compaction: N/A
Chemical Compaction: Common stylolites
Other: N/A

Porosity

Visual Estimate: 5-10 %
- Dominant: Moldic – 40%, Vuggy – 40%
- Common: SE Interparticle – 20%
- Present:
Ahr Genetic Pore Type: Hybrid 1B - Enhanced
Sample: Jade 1 – 6869.9’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Packstone
Grains Present:
- Dominant: Forams
- Common: Crinoids, Brachiopods, Phylloid Algae (broken)
- Present: Bivalves, Sponge Spicules, Peloids
Comments: Large angular clasts present, Forams heavily micritized

Sedimentary Structures: N/A
Bedding: Mottled texture
Sorting: Very poor

Diagenetic Characteristics

Cementation: Abundant small blocky calcite filling pores and large blocky calcite filling large pores and replacing grains (phylloid algae)
Recrystallization: Abundant micritization of grains and neomorphism of micrite
Dissolution: Common cement leaching
Replacement: Abundant saddle dolomite filling pores and replacing grains (nearly half of the slide)
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: Half of the slide replaced with saddle dolomite

Porosity

Visual Estimate: 5 %
- Dominant: SE Interparticle and Intercrystalline – 75%
- Common: Vuggy – 25%
- Present:
Ahr Genetic Pore Type: Hybrid 1B (low end) - Enhanced
THIN SECTION DESCRIPTION – TOPAZ #1

Sample: Topaz 1 – 6701.1’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Grainstone
Grains Present:
- Dominant: Peloids
- Common: Forams, Fusulinids
- Present: Bivalves, Crinoids, Sponge Spicules, Phylloid Algae (broken)
Comments: Crinoids often replaced with saddle dolomite, Forams heavily micritized, mostly fine grained

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Well

Diagenetic Characteristics

Cementation: Abundant pore filling small and large blocky calcite
Recrystallization: Abundant micritization of grains, common neomorphism of micrite
Dissolution: Abundant grain and cement leaching
Replacement: Common saddle dolomite replacement of grains
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 25%
- Dominant: Vuggy – 60%, Moldic – 40%
Common:
- Present:
Ahr Genetic Pore Type: Hybrid 1B - Enhanced
Sample: Topaz 2 – 6707.7’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Grainstone
Grains Present:
- Dominant: Peloids
- Common: Fusulinids, Brachiopods, Forams
- Present: Phylloid Algae (broken), Crinoids, Trilobite Fragments
Comments: Mostly fine grained peloidal grainstone with areas of peloidal/skeletal grainstone, Forams heavily micritized

Sedimentary Structures: N/A
Bedding: Some parallel layering in peloidal grainstone
Sorting: Well

Diagenetic Characteristics

Cementation: Common pore filling small blocky calcite, present pore filling large blocky calcite, present drusy cement in large pores, present poikilotopic cement
Recrystallization: Abundant micritization of grains, common neomorphism of micrite
Dissolution: Abundant grain and cement leaching
Replacement: Present saddle dolomite replacement of some grains
Mechanical Compaction: N/A
Chemical Compaction: Present stylolites
Other: N/A

Porosity

Visual Estimate: 15-20%
- Dominant: Moldic – 60%
- Common: SE Interparticle – 30%, Vuggy – 10%
- Present:
Ahr Genetic Pore Type: Hybrid 1B (high end) - Enhanced
Sample: Topaz 1 – 6712.9’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Packstone
Grains Present:
- *Dominant:* Crinoids, Fusulinids, Brachiopods
- *Common:* Forams, Bivalves
- *Present:* Phylloid Algae (broken), Sponge Spicules
Comments: Crinoid fragments most common, fine to coarse grained

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Moderate to Poor

Diagenetic Characteristics

Cementation: Present syntaxial overgrowth cement on crinoids, present drusy cement filling some large pores
Recrystallization: Abundant micritization of grains, common neomorphism of micrite
Dissolution: Abundant grain, matrix and cement leaching
Replacement: N/A
Mechanical Compaction: Common brittle grain deformation (shells crushed)
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 20-25%
- *Dominant:* Vuggy – 75%
- *Common:* Moldic – 25%
- *Present:*
Ahr Genetic Pore Type: Hybrid 1B - Enhanced
Sample: Topaz 1 – 6713.9’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Packstone
Grains Present:
- Dominant: Crinoids
- Common: Fusulinids, Brachiopods, Phylloid Algae (broken), Forams
- Present: Bivalves, Sponge Spicules

Comments: Dominated by crinoids fragments, abundant micrite, phylloid algae and sponge spicules often dissolved, fine to coarse grained

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Poor

Diagenetic Characteristics

Cementation: Common pore filling large blocky calcite, present pore filling small blocky calcite, present syntaxial overgrowth on crinoids
Recrystallization: Abundant micritization of grains and neomorphism of micrite
Dissolution: Abundant cement, matrix, and grain leaching
Replacement: N/A
Mechanical Compaction: Present brittle grain deformation
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 10-15%
- Dominant: Vuggy – 85%
- Common: Moldic – 15%
- Present:

Ahr Genetic Pore Type: Hybrid 1B - Enhanced
Sample: Topaz 1 – 6716.5’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
 - *Dominant:*
 - *Common:*
 - *Present:* Fusulinids, Brachiopods, Crinoids, Bivalves, Trilobites, Sponge Spicules, Phylloid Algae (broken)
Comments: Mostly micrite, less than 20% grains

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Moderate

Diagenetic Characteristics

Cementation: Present small blocky calcite in a few pores
Recrystallization: Abundant micritization of grains and neomorphism of micrite
Dissolution: Abundant matrix leaching, present grain leaching
Replacement: N/A
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 10-15%
 - *Dominant:* Vuggy – 85%
 - *Common:* Moldic – 15%
 - *Present:*
Ahr Genetic Pore Type: **Hybrid 1B** (low end) - **Enhanced**
Sample: Topaz 1 – 6751.7’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
- Dominant: Phylloid Algae (broken), Peloids
- Common: Forams, Brachiopods, Bivalves, Crinoids, Sponge Spicules
- Present:
Comments: Phylloid algae mostly dissolved, Forams heavily micritized

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Moderate

Diagenetic Characteristics

Cementation: Present small and large blocky calcite partially filling some pores
Recrystallization: Abundant micritization of grains and neomorphism of micrite
Dissolution: Abundant grain and matrix leaching
Replacement: Present silica replacement of some grains
Mechanical Compaction: N/A
Chemical Compaction: Present stylolites near top of slide
Other: N/A

Porosity

Visual Estimate: 25%
- Dominant: Vuggy to Cavernous – 80%
- Common: Moldic – 20%
- Present:
Ahr Genetic Pore Type: Hybrid 1B (low end) - Enhanced
Sample: Topaz 1 – 6752.9’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
- **Dominant:** Forams
- **Common:** Crinoids, Brachiopods, Phylloid Algae (broken)
- **Present:** Fusulinids, Bivalves, Sponge Spicules

Comments: Many grains broken up, mostly micrite, prismatic microstructure seen in brachiopod

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Moderate

Diagenetic Characteristics

Cementation: Present small and large blocky calcite partially filling some pores
Recrystallization: Abundant micritization of grains and neomorphism of micrite
Dissolution: Abundant grain and matrix leaching
Replacement: N/A
Mechanical Compaction: Common brittle grain deformation
Chemical Compaction: Present stylolites
Other: N/A

Porosity

Visual Estimate: 20 %
- **Dominant:** Vuggy to Cavernous – 75%
- **Common:** Moldic – 25%
- **Present:**

Ahr Genetic Pore Type: **Hybrid 1B** (low end) - **Enhanced**
Sample: Topaz 1 – 6755.2’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite with a few areas of Packstone
Grains Present:
 - Dominant: Forams
 - Common: Phylloid Algae (broken), Fusulinids, Brachiopods, Crinoids
 - Present: Bivalves, Sponge Spicules, Peloids
Comments: Forams heavily micritized, phylloid algae and sponge spicules mostly dissolved

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Well

Diagenetic Characteristics

Cementation: Common small blocky calcite in pores, present large blocky calcite in larger pores
Recrystallization: Abundant micritization of grains and neomorphism of micrite
Dissolution: Abundant grain and matrix leaching, common cement leaching
Replacement: N/A
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 10%
 - Dominant: Moldic – 75%
 - Common: SE Interparticle – 25%
 - Present:
Ahr Genetic Pore Type: Hybrid 1B (high end) – Enhanced
Comments: Most of the SE interparticle porosity is in the packstone areas
Sample: Topaz 1 – 6760.2’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
- Dominant: Forams, Sponge Spicules
- Common: Crinoids, Brachiopods, Bivalves
- Present:

Comments: Mostly fine grained sponge spicules and forams, about 80% of slide, many spicules are dissolved

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Well

Diagenetic Characteristics

Cementation: Present small blocky calcite in some pores
Recrystallization: Abundant micritization of grains and neomorphism of micrite
Dissolution: Abundant grain leaching
Replacement: N/A
Mechanical Compaction: N/A
Chemical Compaction: Present stylolites near top of slide
Other: N/A

Porosity

Visual Estimate: 5%
- Dominant: Moldic – 90%
- Common: SE Interparticle – 10%
- Present:

Ahr Genetic Pore Type: Hybrid 1B (high end) - Enhanced
Sample: Topaz 1 – 6820.9’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
 • Dominant: Forams
 • Common: Brachiopods, Fusulinids, Phylloid Algae (broken)
 • Present: Sponge Spicules, Peloids
Comments: Very fine grained foram areas and coarser grained fusilind, brachiopods, and phylloid algae areas. Forams heavily micritized

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Poor

Diagenetic Characteristics

Cementation: Common pore filling small blocky calcite, present pore filling large blocky calcite
Recrystallization: Abundant micritization of grains, common neomorphism of micrite
Dissolution: N/A
Replacement: N/A
Mechanical Compaction: N/A
Chemical Compaction: Present stylolites
Other: N/A

Porosity

Visual Estimate: <1 %
 • Dominant:
 • Common:
 • Present: Fracture
Ahr Genetic Pore Type: Hybrid 1A (low end) - Reduced
Sample: Topaz 11 – 6828.8'

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
- **Dominant:** Forams
- **Common:** Phylloid Algae (whole and broken)
- **Present:** Sponge Spicules, Brachiopods, Peloids

Comments: Less than 15% grains, fine grained forams and larger phylloid algae, Forams heavily micritized

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Well, aside from large phylloid algae

Diagenetic Characteristics

Cementation: Abundant large blocky calcite filling pores and replacing grains, present small blocky calcite filling pores
Recrystallization: Abundant micritization of grains and neomorphism of micrite
Dissolution: N/A
Replacement: N/A
Mechanical Compaction: N/A
Chemical Compaction: N/A
Other: N/A

Porosity

Visual Estimate: 0%
- **Dominant:**
- **Common:**
- **Present:**

Ahr Genetic Pore Type: Hybrid 1A - Reduced
Sample: Topaz 1 – 6832.4’

Depositional Characteristics

Rock Type: Limestone
Dunham/Riding Classification: Automicrite
Grains Present:
- Dominant: Skeletal Hash
- Common: Fusulinids, Brachiopods, Crinoids, Phylloid Algae (broken)
- Present: Bivalves
Comments: Around 50% grains, mostly fine skeletal hash, some large fusilinds

Sedimentary Structures: N/A
Bedding: N/A
Sorting: Poor

Diagenetic Characteristics

Cementation: Present small blocky calcite filling pores
Recrystallization: Abundant micritization of grains, common neomorphism of micrite
Dissolution: N/A
Replacement: Present silica replacement of some grains
Mechanical Compaction: Common brittle grain deformation
Chemical Compaction: Common stylolites
Other: Heavily altered

Porosity

Visual Estimate: < 1 %
- Dominant:
- Common:
- Present: Fracture
Ahr Genetic Pore Type: Hybrid 1C (high end) - Reduced
APPENDIX E

THIN SECTION PHOTOMICROGRAPHS
Figure E.1: Example of H1-Ae porosity. SE Interparticle and SE Intraparticle in Grainstone/Packstone facies. Sample Emerald 1, 6649.8’
Figure E.2: Example of H1-Ar porosity. Small blocky calcite filling all the pores in the Reef 3 facies. Shell structure is well preserved and diagenetic alteration is not very extensive. Sample Topaz 1, 6820.9'}
Figure E.3: Example of H1-Be porosity. Reef 2 facies, thin section dominated by large vugs and some molds. Sample Emerald 1, 6742.7’
Figure E.4: Example of H1-Br porosity. Grainstone/Packstone facies completely cemented with large and small blocky calcite. Sample Emerald 1, 6654.6’
Figure E.5: Example of H1-Ce porosity. Reef 1 facies showing significant alteration. Stylolites present and pyrite abundant in this slide. Vugs and solution enhanced molds provide significant porosity. Sample Emerald 1, 6675.5’
Figure E.6: Example of H1-Cr porosity. Reef 3 facies has been heavily altered. Mechanical and chemical compaction present, many grains fragmented. Abundant micritization of grains and neomorphism of micrite. Sample Topaz 1, 6832.4’
Figure E.7: H1-Br porosity in Grainstone/Packstone facies. Intercrystalline porosity in a phylloid algal grainstone. Small and large blocky calcite have filled almost all of the pores. Sample Jade 1, 6799.9’
Figure E.8: Saddle dolomite replacement of a peloidal packstone in polarized light. Debris facies. Sample Jade 1, 6869.9’
Figure E.9: Moldic porosity of sponge spicules in Reef 1 facies. H1-Be porosity. Sample Topaz 1, 6760.2’
Figure E.10: Silica replacement of crinoid in polarized light in the grainstone/packstone facies. Sample Emerald 1, 6631.8’
APPENDIX F

FACIES DESCRIPTIONS
Facies: Grainstone/Packstone

- **Color:** Tan to dark gray
- **Texture/Bedding:** Mostly indistinct bedding, but parallel layers are present throughout, mainly at the bottom erosional surface
- **Sedimentary Structures:** Present - Stylolites, Dissolution Seams, Calcite Filled Veins, and Geopetal Structures
- **Grain Size and Sorting:** Fine to coarse grained, moderate to well sorted
- **Dunham/Riding Classification:** Grainstone/Packstone, with patches of automicritic reef rock
- **Grains Present:**
 - Dominant: Forams, Phylloid Algae
 - Common: Bivalves, Brachiopods, Crinoids, Fusulinids
 - Present: Bryozoans, Gastropods, Peloids, Sponge Spicules
- **Accessory Minerals:** Present - Pyrite, Silica, and Saddle Dolomite
- **Porosity:**
 - Dominant: SE Interparticle
 - Common: Moldic
 - Present: SE Intercrystalline, SE Intraparticle, Vuggy
- **Comments:**

 Pockets of automicritic reef rock usually around 4 feet thick are present in the Emerald and Jade wells. There are also separate zones of very large fusulinids and phylloid algae. Typically the phylloid algae range from 0.5 mm to 15 mm, and the fusulinids range from 0.5 to 5 mm. The color of the core roughly correlates to grain size. Tan areas are usually fined grained, brown areas are medium to coarse, and grey areas contain large phylloid algae.
Facies: Reef 1

- **Color:** Light brown to dark gray
- **Texture/Bedding:** Mainly heavily mottled texture, but some parallel layers in grainstone/packstone areas
- **Sedimentary Structures:** Common - Calcite Filled Veins and Geopetal Structures; Present - Stylolites, Dissolution Seams
- **Grain Size and Sorting:** Fine to coarse grained, moderate to poor sorting, but some grainstone/packstone areas are well sorted
- **Dunham/Riding Classification:** Mainly automicrite. Areas of grainstone/packstone present
- **Grains Present:**
 - **Dominant:** Phylloid Algae, Brachiopods, Forams
 - **Common:** Crinoids, Fusulinids
 - **Present:** Bryozoans, Gastropods, Micritic Clasts, Peloids, Trilobite fragments
- **Accessory Minerals:** Common - Silica nodules and grain replacing silica; Present – Pyrite, Saddle Dolomite
- **Porosity:**
 - **Dominant:** Vuggy
 - **Common:** Moldic
 - **Present:** SE Interparticle (in Grainstone/Packstone intervals), SE Intraparticle
- **Comments:**

Approximately half of this rock type is micritic, while skeletal grains such as phylloid algae, brachiopods, and forams dominate the remaining half. A few detrital grainstone/packstone areas usually less than 3 feet thick are present in Emerald and Jade wells. These detrital grainstones/packstones often show parallel bedding and erosional truncation. Large silica nodules up to 5 cm are also present.
Facies: Reef 2

- **Color:** Light to dark gray
- **Texture/Bedding:** Mostly indistinct bedding, but some areas are slightly mottled
- **Sedimentary Structures:** Common - Stylolites and Calcite Filled Veins, Present - Dissolution Seams and Geopetal Structures
- **Grain Size and Sorting:** Fine to coarse grained, moderate to poor sorting
- **Dunham/Riding Classification:** Automicrite
- **Grains Present:**
 - Dominant: Forams, Phylloid Algae,
 - Common: Brachiopods, Bivalves, Crinoids, Fusulinids, Sponge Spicules
 - Present: Bryozoans, Gastropods, Peloids
- **Accessory Minerals:** Present - Pyrite
- **Porosity:**
 - Dominant: Moldic
 - Common: Vuggy
 - Present: SE Interparticle, SE Intraparticle
- **Comments:**

Higher mud/grain ratio than Reef 1 facies. Approximately 2/3 of this rock is micritic, with the remaining 1/3 dominated by forams and phylloid algae. Crinoids are more common and larger (5-35 mm) than in Reef 1 facies. Reef 2 also has less visual porosity than Reef 1.
Facies: Reef 3

- **Color:** Light to dark brown
- **Texture/Bedding:** Mottled texture for the top 2/3 of the section, but changes to indistinct bedding for the bottom 1/3 of the section.
- **Sedimentary Structures:** Common - Stylolites, dissolution seams, and calcite filled veins
- **Grain Size and Sorting:** Fine to coarse grained, mainly poor sorting with areas of moderate sorting.
- **Dunham/Riding Classification:** Automicrite
- **Grains Present:**
 - **Dominant:** Forams, Phylloid Algae
 - **Common:** Brachiopods, Crinoids, Fusulinids
 - **Present:** Bivalves, Peloids, Sponge Spicules
- **Accessory Minerals:** Abundant silica replacement
- **Porosity:** No porosity
- **Comments:**

Blue/gray silica is abundant, replacing about 30% of the section and often spanning across the entire width of the core. The section is mostly fine grained, but the phylloid algae, crinoids, and fusulinids are larger than the other grains (up to 20mm, 5mm, and 2mm respectively). This facies is only present at the very bottom of the Topaz #1 well and contains almost no porosity.
Facies: Debris

- **Color:** Gray to dark gray
- **Texture/Bedding:** Indistinct bedding
- **Sedimentary Structures:** Present - Stylolites, Dissolution Seams, and Geopetal structures
- **Grain Size and Sorting:** Mostly large angular intraclasts, poorly sorted
- **Dunham/Riding Classification:** Packstone
- **Grains Present:**
 - **Dominant:** Forams, Phylloid Algae
 - **Common:** Bivalves, Brachiopods, Crinoids, Sponge spicules
 - **Present:** Bryozoans, Gastropods, Fusulinids, Peloids
- **Accessory Minerals:** Abundant Pyrite and Saddle dolomite, Present - Silica
- **Porosity:**
 - **Dominant:** Moldic
 - **Common:** SE Interparticle
 - **Present:**

- **Comments:**

A majority of the section is made of large angular intraclasts (10-40 mm), but micrite is also common. This facies is only present in the Jade #1 core, and is volumetrically insignificant at only 6 feet thick.
APPENDIX G

CROSS SECTIONS
Figure G.1: Base map for Diamond M field. Arrows show which wells were correlated out from the cored wells.
Figure G.2: Structural cross section for Emerald #1 Well
Figure G.3: Structural cross section for Jade #1 Well

- M-01
- L-01
- M-02
- Jade #1
- K-02
- L-03

Subsea Depth (ft)

-4200
-4250
-4300
-4350
-4400
-4450
-4500
-4550
-4600
Figure G.4: Structural cross section for Topaz #1 Well
Figure G.5: Cross section showing depositional facies and good flow unit distribution between cored wells.
APPENDIX H

FIGURES
Figure H.1: Map of West Texas showing the Horseshoe atoll and Diamond M field
Source: Fisher (2005)
Figure H.2: Stratigraphic cross-section of Permian Basin region with black circles indicating the sizes of the oil reservoir. Source: Galloway et al. (1983) in Alnaji (2002)
Figure H.3: Map of the Permian Basin region showing major paleotopographic and tectonic features of late Paleozoic age. Modified from Hanson et al. (1991). Source: Yang and Dorobek (1995a)
Figure H.4: The tectonic development of Tobosa Basin by the end of Mississippian, which originated the Delaware Basin, Central Basin Platform, and Midland Basin. Source: Adams (1965) in Alnaji (2002)
Figure H.5: Evolution of the Permian Basin, from Early Paleozoic to the Late Permian
Figure H.6: Map of Permian Basin during Late Permian time. Source: Ward et al. (1986) in Alnaji (2002)
Figure H.7: Distribution of major units in the Horseshoe atoll. Source: Vest (1970)
Figure H.8: Cross section from C-C' shown in Figure 7 through the thickest part of the Horseshoe atoll. Source: Vest (1970)
Figure H.9: Ahr genetic classification of carbonate porosity. Source: Ahr et al., (2005)
Figure H.10: Humbolt modification of the Ahr porosity classification. Source: Ahr et al. (2011)
Figure H.11: Whole core porosity vs permeability for the Emerald #1 well. R^2 value on a linear trend line is 0.1104
Figure H.12: Whole core porosity vs permeability for the Jade #1 well. R^2 value on a linear trend line is 0.073
Figure H.13: Whole core porosity vs permeability for the Jade #1 well. R^2 value on a linear trend line is 0.3763
Figure H.14: Whole core porosity vs permeability for all of the cored wells. R^2 value on a linear trend line is 0.1217.
Figure H.15: Whole core porosity vs calculated log porosity for the Emerald #1 well. R^2 value on a linear trend line is 0.5041
Figure H.16: Whole core porosity vs calculated log porosity for the Jade #1 well. R² value on a linear trend line is 0.7674
Figure H.17: Whole core porosity vs calculated log porosity for the Topaz #1 well. R^2 value on a linear trend line is 0.3493
Figure H.18: Whole core porosity vs. depth for the Emerald #1 well. R^2 value on a linear trend line is 0.0114
Figure H.19: Whole core permeability vs depth for the Emerald #1 well. R^2 value on a linear trend line is 0.000078
Figure H.20: Whole core porosity vs depth for the Jade #1 well. R^2 value on a linear trend line is 0.0285
Figure H.21: Whole core permeability vs depth for the Jade #1 well. R^2 value on a linear trend line is 0.0026
Figure H.22: Whole core porosity vs depth for the Topaz #1 well. R^2 value on a linear trend line is 0.5657
Figure H.23: Whole core permeability vs depth for the Topaz #1 well. R^2 value on a linear trend line is 0.1801
Figure H.24: Whole core water saturation vs depth for Emerald #1 well. R^2 value on a linear trend line is 0.0011
Figure H.25: Whole core oil saturation vs depth for Emerald #1 well. R^2 value on a linear trend line is 0.02
Figure H.26: Whole core water saturation vs depth for Jade #1 well. R^2 value on a linear trend line is 0.0214
Figure H.27: Whole core oil saturation vs depth for Jade #1 well. R^2 value on a linear trend line is 0.0434
Figure H.28: Whole core water saturation vs depth for Topaz #1 well. R² value on a linear trend line is 0.7245
Figure H.29: Whole core oil saturation vs depth for Topaz #1 well. R^2 value on a linear trend line is 0.2319
Figure H.30: Permeability, Porosity, and Fluid Saturation for Emerald #1 well. Observed lithofacies also noted.
Figure H.31: Permeability, Porosity, and Fluid Saturation for Jade #1 well. Observed lithofacies also noted.
Figure H.32: Permeability, Porosity, and Fluid Saturation for Topaz #1 well. Observed lithofacies also noted. Dark gray areas are where core was absent.
Figure H.33: Genetic pore type abundance by depositional facies. Data points indicate number of thin sections with observed pore types.
Figure H.34: Definition of flow units (poroperm brackets).
Figure H.35: Emerald #1 core analysis porosity and calculated log porosity with 7% cut off. Flow unit brackets and depositional lithofacies also shown.
Figure H.36: Emerald #1 core analysis permeability (Kmax) with 8 md cut off. Flow unit brackets and depositional lithofacies also shown.
Figure H.37: Jade #1 core analysis porosity and calculated log porosity with 7% cut off. Flow unit brackets and depositional lithofacies also shown.
Figure H.38: Jade #1 core analysis permeability (Kmax) with 8 md cut off. Flow unit brackets and depositional lithofacies also shown.
Figure H.39: Topaz #1 core analysis porosity and calculated log porosity with 7% cut off. Flow unit brackets and depositional lithofacies also shown.
Figure H.40: Topaz #1 core analysis permeability (Kmax) with 8 md cut off. Flow unit brackets and depositional lithofacies also shown.
Figure H.41: Distribution of flow units for the depositional facies.
Figure H.42: Core analysis porosity and permeability with pore types.
Figure H.43: Distribution of flow units by genetic pore type in thin sections. H1-C pores omitted since only one instance of each is observed in thin section.
Figure H.44: Genetic pore type distribution for flow units 5-9.
Figure H.45: Flow unit distribution by dominant porosity type.
Figure H.46: Dominant porosity for each genetic pore type.
Name: Travis James Barry
Address: Department of Geology and Geophysics, MS 3115, Texas A&M University, College Station, Texas 77843-3115
Email Address: barr4860@tamu.edu
Education: B.S., Geology, University of Louisiana Lafayette, 2007 M.S., Geology, Texas A&M University, 2011
Professional Experience: Chevron, Midland, TX – Earth Science Intern Schlumberger, Houston, TX – Geomechanics Intern Schlumberger, Houston, TX – Geology Intern Petsec Energy, Lafayette, LA – Geology Intern