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ABSTRACT

View-Dependent Visualization for Analysis of Large Datasets. (December 2011)

Derek Robert Overby, B.S., Texas A&M University;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. John Keyser

Due to the impressive capabilities of human visual processing, interactive visualiza-

tion methods have become essential tools for scientists to explore and analyze large, com-

plex datasets. However, traditional approaches do not account for the increased size or

latency of data retrieval when interacting with these often remote datasets. In this disser-

tation, I discuss two novel design paradigms, based on accepted models of the information

visualization process and graphics hardware pipeline, that are appropriate for interactive

visualization of large remote datasets. In particular, I discuss novel solutions aimed at

improving the performance of interactive visualization systems when working with large

numeric datasets and large terrain (elevation and imagery) datasets by using data reduction

and asynchronous retrieval of view-prioritized data, respectively.

First I present a modified version of the standard information visualization model that

accounts for the challenges presented by interacting with large, remote datasets. I also

provide the details of a software framework implemented using this model and discuss

several different visualization applications developed within this framework.

Next I present a novel technique for leveraging the hardware graphics pipeline to

provide asynchronous, view-prioritized data retrieval to support interactive visualization

of remote terrain data. I provide the results of statistical analysis of performance metrics to

demonstrate the effectiveness of this approach.

Finally I present the details of two novel visualization techniques, and the results of
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evaluating these systems using controlled user studies and expert evaluation. The results

of these qualitative and quantitative evaluation mechanisms demonstrate improved visual

analysis task performance for large numeric datasets.
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CHAPTER I

INTRODUCTION

The visualization and analysis of large, complex datasets is a challenge for many

researchers and scientists. Due to the impressive capabilities of human visual processing,

interactive visualization methods have become essential tools for scientists to explore and

analyze these datasets. However, traditional approaches to implementing visualization

software are often not designed to deal effectively with either the size or latency of data

retrieval when interacting with large (often remote) datasets. And while reference models

for the design of visualization systems do exist, these models do not account for dealing

with large remote datasets that have become prevalent in so many scientific domains. In

this dissertation I will discuss two novel design paradigms, based on accepted models of

the information visualization process and graphics hardware pipeline, that are appropriate

for interactive visualization of large remote datasets. In particular, I discuss novel solutions

aimed at improving the performance of interactive visualization systems when working

with large numeric datasets and large terrain (elevation and imagery) datasets by using data

reduction and asynchronous retrieval of view-prioritized data, respectively. I also present

the details of three visualization applications implemented using the proposed techniques,

and the results of evaluating these applications using controlled user studies, statistical

analysis of performance metrics, and expert evaluation.

A. Problem Statement

In many government, academic, and industrial domains today the task of extracting timely

and relevant information from large datasets poses great challenges to many applications.

The journal model is IEEE Transactions on Visualization and Computer Graphics.
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In the military community large datasets are routinely collected during testing and training

events involving both simulation and sensor data collected over long periods of time, in

addition to large amounts of network data. However many currently used visualization

applications do not account for the need to interact with large, remote datasets. Therefore

novel techniques that improve interaction when working with such datasets are needed.

While traditional methods can provide us the ability to visualize these datasets, the

ability to maintain interactive rates for direct manipulation interactions using standard

visualization methods often decreases as the size of the dataset increases. Also, the

latency of retrieving the data may be unknown and may exhibit a large degree of variation,

depending on the network environment. I this dissertation I explore modifications to

existing visualization models aimed at optimizing visualization implementations when

dealing with two specific classes of large datasets. This exploration is important because

such models are used in the design and development of many modern visualization

systems. I will focus my effort on the exploration of visualization system design within

two distinct contexts that I have encountered in my work: large [several gigabytes (GB)]

numeric datasets (often empirical data collected by electronic sensors) and extremely large

[several terabytes (TB)] terrain imagery datasets, which are often by necessity stored

remotely. Each visualization can usually optimize storage of its required data in a data

structure that is significantly smaller than the source dataset. Therefore in this work

I will discuss a modified design model that will enable multiple complex visualization

techniques to be used by domain experts in the analysis of different types of numeric

data. This approach allows the data reduction process to be specified by the user using an

interactive dataflow model, and multiple interactive visualization techniques to be applied

by efficiently segmenting reduced data. Second, when working with extremely large remote

datasets (as is often the case with high-resolution terrain and imagery data), view-based

prioritization of the retrieval of data is important to optimize both the visual representation
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of the data and the use of limited local memory resources. Therefore I also propose and

explore a technique that allows the modern graphics pipeline (often provided by accelerated

graphics hardware) to easily view-prioritize remote data interactively and asynchronously

load large amounts of terrain imagery.

B. Approach

My discussion of this research is organized into three main branches, corresponding to

Chapters III–V. First, I will discuss a proposed framework for interactive visualization

applications that allows visualization techniques to be applied to large datasets by requiring

a data reduction model to be specified so that visualization algorithms can operate

interactively using minimized blocks of numeric data. I will also describe and discuss how

this proposed framework is implemented in an interactive visual programming environment

that has been used to develop custom interactive visualization applications in a variety of

domains. I will next describe the design of an interactive terrain visualization application

that is optimized by efficiently computing a view-dependent prioritization of remote data.

By loading data asynchronously, interactive exploration is not hindered by dataset size or

latency. Finally, in order to demonstrate the success of practical applications using these

techniques, I present the result of developing two novel interactive visualization techniques

implemented with the proposed visualization framework, as well as user evaluation results

and expert opinion.

1. A Framework for Interactive Visualization Systems

Researchers in the Visual Analytics community have developed custom software applica-

tions for a variety of domains. In this section I will discuss work performed in conjunction

with a U.S. government customer. The goal of this effort was to provide useful visual ana-
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lytics capabilities to several distinct groups of data analysts. I developed a novel adaptation

of the information visualization model that improves the performance and flexibility of cus-

tom interactive visualization applications. I will show how the implementation framework

based on this model, which includes an interactive visual programming environment, was

used to develop several successful visualization applications. I will discuss the design of

our approach, the observed results of experts using our software in several analysis cases,

the development of a user-specified visual analysis requirements, and results of this work

using multiple evaluation methodologies.

2. View-Prioritized Data Retrieval

Many efforts in science and technology have collected and archived massive amounts of

data. While commercial entities have certainly collected vast amounts of imagery via

satellite, certain spatial analysis tasks require much higher-resolution terrain topology

and imagery. Analysis of near-earth RF propagation models is but one example; others

exist within the domains of disaster recovery, military operations planning, and excavation

operations. The introduction of commercially-available sensors that can provide such high-

resolution data for a small area, as well as increased commercial satellite imagery and

terrain resolution for certain areas makes this work particularly relevant. In this work I use

high-resolution terrain data from the National Geospatial-Intelligence Agency (NGA) to

support scientific analysis of various geospatial datasets. I will discuss use of the highest

resolution data openly available to government agencies in the form of Digital Terrain

Elevation Data (DTED) and Controlled Image Base (CIB) satellite imagery.

Previous work in the development of view-dependent visualization methods has

provided a wide variety of level-of-detail mesh simplification algorithms designed to

reduce the overall count of input geometry to the graphics processing pipeline. These

methods have been employed to implement effective interactive visualizations of large 3D
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environments and CAD models containing large numbers of polygons. Prior work has

provided solutions to many challenges to this approach, including silhouette preservation

[44], and imperceptible simplification [46]. However, scientific visualization methods

usually seek to eliminate visual simplification methods whenever possible to ensure the

highest accuracy possible in the visual representation of scientific data. Other recent

methods have provided efficient GPU-based terrain rendering implementations [75, 14];

however, these methods do not account for the use of a remote terrain database that must

be queried at runtime, and require significant pre-processing of data.

I present a new approach that defines a strategy to efficiently allocate and index

segments of video memory for asynchronous retrieval of texture data at full resolution

in order to best support accurate scientific visual analysis. This method allows the

visualization application to efficiently allocate video memory, retrieve the highest-priority

data (defined by the interactive view), and load the data asynchronously while minimizing

the impact to the main rendering thread. I will demonstrate the efficiency of this method

by conducting a statistical analysis of performance metrics collected from the visualization

implementation based on the proposed technique.

3. Applications

I will discuss two interactive visualization applications implemented using the proposed

visualization software framework. The first visualization application is designed to enable

interactive analysis of temporal patterns in spatial sensor activity. The second visualization

application is designed to enable interactive analysis of situational awareness data in a

distributed system. The success of these custom visualization applications also serve to

demonstrate the effectiveness of the proposed visualization framework.
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a. Glyph Visualization for Interactive Analysis of Temporal Data

As distributed sensor networks become more common, methods that enable quick recog-

nition and proficient analysis of pattern irregularities from these sensors will become more

important. This portion of my work aims to improve visual recognition of temporal patterns

within a network of spatial sensors.

This technique can be applied to a wide range of applications, but is inspired by

interaction with colleagues who collect and analyze large datasets produced by networks

of spatial sensors. The primary challenge was to provide a quick and thorough overview of

daily recorded sensor activity with emphasis on highlighting anomalous behavior. During

initial interviews with domain experts, several specific analytical tasks were identified:

users should be able to quickly and accurately identify failure patterns within the sensor

network and investigate the temporal and spatial context of these failures; users should be

able to easily recognize expected patterns such as coordinated movements; users should

be able to identify and investigate the context of spatial reporting anomalies to support

analysis of sensor problems. I will discuss the design and development of the visualization

technique with these user-defined analysis goals in mind. Because it is difficult to compare

the use of this method to existing techniques, I will present evaluation of this work using

a series of small user studies, as well as collecting expert opinion from users within the

application domain.

b. Interactive Analysis of Situational Awareness Data

Situational awareness is made up of the information a person currently has available about

his surroundings and relevant peers [18]. Situational awareness data is often provided using

electronic equipment designed to display real-time data from networks of spatial sensors.

Because this information is usually delivered over a wireless network in a rapid decision-
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making environment, the latency of information delivery over the network can have a direct

effect on human situational awareness and therefore decision-making. To be more specific,

situational awareness data that is inaccurate can have a negative impact on decision-making

involving coordinated activities if, for example, a user’s perception of his peers’ locations

is incorrect.

In working with analysts attempting to evaluate and compare the performance of

various digital systems designed to provide situational awareness (SA) data, I proposed

a set of custom visual metrics to support overview and detailed performance analysis

of the data collected during test exercises. These exercises were designed to test actual

users of the equipment in real-world scenarios involving coordinated activities so that the

accuracy of different individuals’ SA data can be compared and analyzed (e.g., comparison

of team leader vs. team member during convoy). The goal of this work was to compute the

proposed metrics and provide interactive software to analyze the impact of network latency

at specific times relating to decision-making efforts in the exercise.

C. Summary

To summarize the contributions I will present in this work:

• I propose a novel methodology to ensure interactive performance of visualization

systems designed to enable visual analysis of large numeric datasets.

• I propose a novel technique to improve interactive three-dimensional rendering of

high-resolution terrain data designed to support accurate visual analysis of scientific

data.

• I propose a novel visualization technique to improve analysis of temporal patterns

exhibited by a network of spatial sensors.
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• I propose a novel metric and visualization technique to improve performance analysis

of digital situational awareness systems.

All of these contributions focus on improving interactive visual analysis of large

datasets using computational visualization methods. These contributions are necessary to

ensure that new and existing visualization techniques can be effectively applied to large,

remote datasets that are common in many research domains.
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CHAPTER II

BACKGROUND

There are several areas within the broader field of Computer Graphics that I will address

as background work for this dissertation. First, the majority of this work has been

heavily influenced by previous efforts in the distinct but related fields of Information

Visualization and Visual Analytics. I will begin by reviewing seminal and related works

in these areas, with specific focus given to the visualization reference models that have

been contributed by these communities. Second, because part of this work focuses on

specific implementations of interactive visualization applications, I will discuss the major

relevant works contributed from several segments of the broader visualization community

that focus on glyph-based visualization techniques and interactive visualization of temporal

data. This is important because while distinct visualization applications are rarely similar

enough for direct comparison, it is helpful to understand the origins and limitations of

previous approaches that are often combined to create new techniques. Also, I will

discuss some existing visualization applications that are similar in specific aspects to the

approach presented here. I will review major contributions to techniques for optimization of

terrain visualization applications such as level-of-detail (LOD) simplification algorithms.

I will provide a brief overview of the recent evolution of graphics processing unit (GPU)

hardware, which due to its programmability, high degree of parallelism, and optimized

hardware implementations, has enabled the development of many hardware-accelerated

visualization and computational techniques. Finally, I will discuss prior work in defining

and evaluating situational awareness (SA), which is relevant to a specific analytical

technique presented in this work.
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A. Information Visualization

In this section I will discuss relevant prior work in Information Visualization, specifically

the primary reference models and evaluation techniques that have been contributed by

researchers in this community.

1. Reference Models

Abstractions of the information visualization process are often evaluated in terms of the

visualization reference model, originally proposed by Card et al. [8], that classifies human

interactions with visualization systems as one of several classes: data transformations,

visual mappings, or view transformations. This seminal model, depicted in Figure 1,

has been referenced heavily within the information visualization community. The primary

contribution of the information visualization reference model, as it has come to be known,

has been the standardized categorization of novel interaction techniques into these three

major classes. I will appropriately describe the contributions of this work in reference to

this model, with modifications.

Around the same time that the information visualization reference model was pro-

posed, another model that focuses on the multiple states of data throughout the visualiza-

tion and interactive analysis process was presented by Chi [10]. This model has been used

extensively in this community as a taxonomy by which to characterize the state of data

and the transformations applied to data at each state by users of interactive visualization

applications. A simplified depiction of this model, called the data state model, is shown in

Figure 2. The data state model has been used to taxonomize (and therefore provide some

grounds for comparison) of visualization techniques according to the state of data that they

interface with. Both of these visualization reference models have been influential in the

design and development of interactive visualization software.
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Fig. 1. A depiction of the information visualization reference model, originally proposed by
Jock Mackinlay, Stuart Card, and Ben Shneiderman [8]. This model has been widely
referenced in the visualization research, and is often used to aid in the categorization
of visualization techniques as data transformations, visual mapping operations, or
view transformations.

Several notable software toolkits have also contributed practical models of visualiza-

tion components, including the well-know Visualization Toolkit (VTK) [63], and prefuse

(intentionally not capitalized by its authors) [30]. prefuse provides a Java-based library

of popular information visualization techniques such as fish-eye lenses, which are used to

provide user-controlled scaling of two-dimensional information renderings, and hyperbolic

trees, which are used to optimize layout of large hierarchical structures for visual display.

The broader goal of information visualization and visual analytics research is to facilitate

understanding of how interactive software can better enable users of visualization software

to perform complex analytical tasks.

Recent work has explored collaboration impacts the design and implementation of

methods meant to aid in visual analysis of large collections of data. For example,

two applications with obvious need for collaboration are visual analysis of astrophysics

and intelligence data. Work by Heer and Agrawala [29] has sought to formalize
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Fig. 2. A simplified depiction of the data state model, originally proposed by ed Chi [10].
This model is often used to taxonomize visualization techniques by the state of data
that they interface with.

various approaches to this issue and identify numerous important features required to

support collaborative analysis in interactive visualization environments. Evaluation of the

effectiveness of different approaches to support collaborative analysis has seen very little

attention, however.

2. Evaluation of Visualization Techniques

There have been many case studies that demonstrate how particular tools have been

successful in enabling domain experts to more effectively explore and analyze data. One

recent example is the work of Tesone and Goodall, where a coordinated multiple view

(CMV) visualization was applied to analysis activities within the information assurance

(IA) domain [67]. Lam et al discussed the benefits gained by analysts of large collections of

web search activity using their Session Viewer software [38]. Exactly how to quantitatively

measure the contribution of such work is not always clear; and therefore not many

recent studies such as these have included verifiable, experimental results validating their

effectiveness.

Recently, Shneiderman and Plaisant have provided much needed guidance on the way

forward for evaluating the effectiveness of domain-specific visual analytics applications

[65]. They suggest that Multi-dimensional In-depth Long-term Case studies (MILCs) can

be used to evaluate the success of information visualization and visual analytics research by
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qualitatively measuring the success of specific analytic goals self-reported by expert users

over long periods.

The results of these works suggest that reported success of domain experts attempting

specific analytic goals within their own operational environments might provide additional

insight into the utility of a specific approach, compared with traditional task-based user

studies often conducted with students instead of domain experts. Also, self-reported

analytic insights over more generous time periods can be used to more effectively determine

how well domain experts are able to integrate a new technique into an existing analysis

process.

3. Visual Analytics

The recently-emerged field of Visual Analytics is defined as “the science of analytical

reasoning facilitated by interactive visual techniques” [13]. The goals of this research are

enumerated in a seminal publication edited by the late Jim Thomas, among others. Some of

the primary challenges enumerated by this research agenda include supporting the process

of human decision-making by enabling users to “detect the expected and discover the

unexpected” in large, complex datasets composed of heterogeneous and often conflicting

data. Work in this field has become particularly relevant due to the prevalence of situations

in many domains that require human decision-makers to rapidly ingest information from

large collections of data to make critical decisions in emergencies. Researchers in this

field have contributed many novel visual analysis techniques in domains such as computer

security (sometimes referred to as cyber-security) [34] [47] and biological studies [2].
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B. Visualization Techniques

In this section we briefly review related work in glyph visualization techniques and

interactive visual analysis methods focused on interactive display of data for temporal

pattern recognition, as well as existing visualization applications often used by developers

and end-users to perform analytical tasks.

1. Glyph Visualization

Within the fields of scientific and information visualization, there has been significant

exploration of the use of iconic-based representations of information. Often these

visualization techniques seek to simplify visual display of multi-variate data by aggregating

multiple attributes into a glyph representation. For example, a circular glyph can be used

to represent a data element on a map. Obviously the center of the circle is used to represent

the object’s location, but the radius, color, texture, outline, or any other visual attributes

can be used to represent other dimensions of data. An example of this is work by Ribarsky

that explored user-specified glyph generation in the context of multivariate spatial data

[61]. Some of the basic concepts used to map glyph properties to data attributes were

formalized by Post et al. [59]. Based on this, one of the visualization techniques I will

present maps temporal data attributes to the scale and texture of a glyph, while glyph shape

is manipulated to depict temporal aggregations. Ebert et al. have published results on

using procedural generation of glyphs to aid in the analysis of various multivariate datasets,

including document collections and fluid flow [16]. Glyphs have also been applied to

flow visualization, as in an application of glyph-based visualization of turbulence within

incompressible flow by Kirby et al. [36]. Other research has focused on addressing

additional challenges with perception or other domain-specific analysis issues, including

uncertainty [73]. My work builds on these previous efforts by exploring a custom glyph
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designed to facilitate rapid visual inspection of temporal activity patterns exhibited by

spatial sensors.

2. Temporal Visualization

Considerable work has been done examining different visual representations and interac-

tion methods to support visual analysis of temporal data. By temporal data, I mean data

that has a temporal value for each record (where data is, in general, a sequence of records).

Because of the large variety of domains in which custom temporal visualization techniques

have been developed, I will focus on seminal work in this area and interactive temporal

visualization techniques that are similar in application to the work presented in this disser-

tation. Much of this work has focused on developing techniques to support domain-specific

analytical goals. Early work by Plaisant et al. explored using timelines and glyphs to repre-

sent temporal events within a patient’s medical history [58] in order to improve recognition

of specific patterns of past medical events when performing medical diagnosis. More re-

cent work by Wang et al. [71] evaluated a custom glyph-based visualization technique used

to infer causal relationships between events in electronic health records. In the network se-

curity domain, Keim’s CircleView technique was developed to aid in the visual analysis

of large amounts of dynamic temporal data using intuitive circular graphs [35]. Another

method, Spiral, focused on highlighting periodic patterns in temporal data, such as the

seasonal behavior patterns of primates [9]. Weaver et al. employed several visualization

techniques to explore recurring temporal event patterns within hotel visitation records [72].

As the average size of real-world datasets have continued to increase, researchers have

explored various approaches to enhance the capabilities of visual interfaces accordingly.

Research exploring interaction mechanisms for temporal analysis of large molecular

biology datasets using interactive visual queries has been contributed by Hochheiser [31].

Other work examined use of aggregation to facilitate temporal analysis of large collections
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of public safety data [26]. A custom visualization technique presented in this dissertation

makes similar use of aggregation to reduce overplotting when visualizing large amount of

data at various scales. Recent work by Bak et al. proposes the use of growth ring maps

to display temporal and spatial attributes of data to aid in the analysis of a large volume

of mouse movement data during experiments [2]. While this approach was shown to be

quite effective at enabling scientists to track which areas of the experimental setup were

most visited by the mice and behavioral aspects related to a disease could be discerned,

this approach was not directly applicable to my work because the sequence of occurrence

is not indicated using this technique.

Finally, a comparison by Aigner et al. of several common techniques for analyzing

temporal data indicated that event-based visualization techniques could be used to empha-

size relevant information within large datasets [1]. A task-based evaluation of a specific

application, the Spatio-Temporal Visualizer (STV), has been presented by Chung et al.

[11]. This application was designed to allow law enforcement experts to identify crime

patterns within spatial and temporal dimensions of historical data.

The techniques presented here build on the core concepts of temporal visualization to

produce a novel visualization technique for a domain-specific analysis task. The details of

this novel technique are presented in Chapter V.

3. Existing Visualization Systems

There are some existing visualization systems that are available that employ similar

techniques to the work presented here or provide similar capabilities. Although it is not

appropriate to make direct comparison between visualization implementations designed for

different applications, we note that none of the existing systems provided integrated data

caching capabilities necessary for improving interactive visualization performance when

dealing with large datasets.
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• VisIt is a free visualization tool and software development kit (SDK) designed by

Lawrence Livermore National Laboratory for parallel visualization applications of

scientific data [39]. However, while VisIt was designed to handle very large datasets

and provides capabilities for rapidly developing custom visualizations and interfaces,

it is primarily a visualization developer tool, not an end-user tool appropriate for data

analysts.

• LabView is a visualization toolkit that provides a visual programming environment

that does provide end-users the capability to configure interactive visualization

applications using a variety of data processing and visualization functions [51].

• prefuse (the title is intentionally not capitalized) is a Java-based visualization

software development kit that provides several popular interactive information

visualization techniques, such as hyperbolic trees, fish-eye lenses, and force-directed

node graphs [6]. While prefuse does provide interactive visualization techniques that

can be integrated into other visualization applications, it does not provide any data

reduction capabilities.

• The Visualization Toolkit (VTK) is another popular software development kit that

provides many functions that are useful in the creation of interactive visualization

applications [37]. Like prefuse and VisIt, however, VTK does not provide an

end-user interface and is designed primarily to support developers of visualization

software.

• RapidMiner is an open-source end-user interactive visualization tool that provides

interactive data mining capabilities [60]. However while RapidMiner also provides

some visualization capabilities, it does not have the capability to develop and

integrate custom visualization capabilities.
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• KNIME, pronounced [naim], is a data analysis and visualization suite developed at

the University of Konstantz that provides a visual programming environment for end-

users and is integrated with the Java-based data mining package, Weka [68].

• KnowledgeFlow, developed at the University of Leiden in the Netherlands, also

provides a visual interface to the data mining and analysis capabilities provided

by Weka, and provides a few interactive visualization features but does not allow

integration of custom visualization techniques [40].

C. Terrain Rendering

Interactive terrain rendering, which is often a major component of immersive three-

dimensional environments, has seen much attention in the visualization community. Many

approaches to building efficient terrain rendering applications have focused on employing

LOD mesh simplification algorithms due to the fact that, in most cases, terrain geometry

can be represented as a connected mesh of elevation points. In many cases, terrain geometry

is organized in a regular grid structure as a result of the data collection mechanisms used

to sense elevation along the physical surface of the Earth, primarily satellite-based sensors.

Also, terrain databases that store this mesh data are often large if they cover a significant

area or are high-resolution (for the purpose of this work, a terrain mesh consisting of

elevation postings at a 30-meter interval would be considered high-resolution). Therefore,

terrain rendering applications must efficiently retrieve data from a remote database at

runtime. In this section I will review relevant prior work in this area.

Previous work in the development of terrain visualization methods has provided a wide

variety of LOD mesh simplification algorithms designed to simplify the terrain geometry

(i.e., reduce the number of vertices) input to the graphics processing pipeline. These

methods have been employed to implement effective interactive visualizations of large 3D
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environments and CAD models containing large numbers of polygons. Early work by

Lindstrom et al. proposed an algorithm for rendering continuous LOD terrain meshes by

projecting delta values for each potential merge operation on the original mesh into screen

space and comparing to a threshold [41]. Later work by Lindstrom added efficient memory

management approaches and asynchronous refinement [42]. Duchaineau et al. presented

the Real-time Optimally Adapting Meshes (ROAM) approach that introduced incremental

triangle stripping (which optimizes hardware rendering performance) and priority-based

simplification of terrain organized into binary trees [15].

A very similar model was also proposed by Evans et al. that employs right-triangulated

irregular networks to simplify terrain meshes [23]. While both approaches use similar

simplification techniques, the author claims that RTINs are potentially more memory

efficient since they store more triangle data than actual vertex data. There have been several

incremental refinements to these initial approached to rendering large terrain models [57],

but in general the view-dependent progressive mesh (VDPM) approach employed by all

these techniques has become widely accepted. Hugues Hoppe also extended such initial

work by defining geomorphs to introduce temporal continuity when interactively adjusting

mesh level-of-detail (i.e., reducing visible ’popping’ of the mesh) [33].

As the accuracy of spatial sensors have increased over the past decade, more recent

efforts have by necessity focused on quantifying the trade-offs in memory usage and mesh

approximation error [3] and optimizing memory clustering algorithms [4] when using these

existing techniques. As I will discuss later, compared to all these existing techniques the

approach I will present differs in that the goal is to efficiently retrieve the highest resolution

texture data available and render this along a full-resolution mesh surface. Certainly any

of these previous techniques can be integrated with our method to locally simplify the

mesh in order to improve interactive rendering performance; however, due to the drastically

increased performance of modern graphics hardware this may not be necessary.
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Additional prior work has provided solutions to many challenges to the LOD

approach to terrain rendering, including silhouette preservation [44], and imperceptible

simplification [46]. Both of these techniques are aimed at reducing the visible error in a

simplified terrain mesh by measuring and minimizing the unavoidable difference between

a full-resolution mesh and a simplified mesh. Other recent methods have provided efficient

GPU-based terrain rendering implementations [14, 75], however these methods do not

account for the use of a remote terrain database that must be queried at runtime.

D. Graphics Hardware

Recent advances in graphics hardware implementations and the effects of these advances

in performance and functionality on the community’s model of the graphics pipeline are

certainly relevant to this work. This is because I will present a novel approach that

leverages the advantages of the programmable graphics pipeline to efficiently prioritize

the retrieval of high-resolution data from a remote database during interactive rendering.

The implementation of this approach requires an understanding of the architecture and

capabilities of the modern graphics hardware pipeline.

Initially, hardware implementations of the graphics pipeline were fixed-function. That

is, each major component of the traditional graphics pipeline, shown in Figure 3, was

defined statically and could not be altered by developers. However, the introduction

of programmable vertex and fragment processors allowed developers of visualization

applications to begin experimenting with dynamic implementations of these components.

This enabled developers to create interactive hardware-accelerated implementations of

non-traditional surface shading models that previously could only be implemented using

offline rendering applications (such as Renderman). Later, the increased processing power

provided by the stream processing model of many-core GPUs enabled researchers to begin
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Fig. 3. The major traditional components of a fixed-function graphics pipeline. The
programmable components of the pipeline are shown with dashed outlines. The
framebuffer output shown in the figure is what is shown on the user’s monitor.

exploring how traditional and non-traditional rendering techniques could be parallelized

and therefore optimized for such hardware [56]. Effort has certainly been made to leverage

this programmability to increase performance and visual quality of scientific visualization

and volume rendering applications, since scientific datasets often exhibit direct two- or

three-dimensional spatial mappings and are therefore well suited for GPU implementations

[22]. Researchers in the information visualization community [49] have also explored

how the advantages offered by modern graphics hardware can be used to improve the

interactivity of techniques such as parallel coordinates and scatter plots [25], and multi-

value data glyphs [17].

This increased processing power also led to the exploration of general-purpose GPU

(GPGPU) applications, designed to increase the efficiency of non-rendering algorithms

using the stream model [45]. Some have argued that according to Moore’s Law, GPU-

based implementations of parallelizable algorithms have become more cost-effective than

CPU implementations [56].

Several programming languages dedicated to the programmable graphics pipeline

have matured over the past decade. These include Cg from nVidia [48], GLSL [62], and
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Microsoft’s HLSL [53], each of which have similar base capabilities but differ slightly in

syntax and implementation of high-level functions. In addition to these languages, which

are focused on rendering applications, other languages have also been developed to enable

GPGPU applications not designed to produce visual output to the framebuffer but instead

produce numerical results. Most notably these include CUDA from nVidia [52], the Stream

Computing SDK from ATI [5], and Brook from Stanford [7].

E. Situational Awareness

Finally, in this section I will review seminal work in the area of situational awareness, since

prior work in this area is relevant to a particular visual analysis application presented in this

dissertation.

Situational awareness in the context of decision-making operations is defined as “what

information is important for a particular job or goal” [19]. Situational awareness, while a

necessary aspect of any coordinated operation, is difficult to quantify and therefore analyze

for impact on decision-making. Initial contributions by Endsley included a model of

situational awareness consisting of three levels: perception, comprehension, and projection

[18]. For the purpose of this work, we will be primarily focused on the accuracy of data

that is presented to the user during SA Level 1 (perception).

Work by Endsley et al. goes on to define team situational awareness (TSA) [18], as

well as qualitative evaluation mechanisms for such [20]. The study of situational awareness

has roots in these human cognition studies by Endsley et al. [21] in which the visual

attention and resulting situational awareness of air traffic controllers was measured by

questionnaires designed to evaluate the operator’s mental model at specific times during

a defined process—perception, comprehension, and projection [18]. Other research efforts

in visualization applications for improving SA have examined the use of various image
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generation techniques (such as “blobby shading” and use of Delaunay triangulation) to

aggregate complex and cluttered visual features to improve SA [32]. Still other efforts have

focused more on the “theater-wide situational awareness covering a large geographic area

containing many military units” [24], as opposed to this work that focuses on measuring

the accuracy of SA data locally for each participant. A key novel contribution of this work

is a quantitative metric that provides insight into the analysis of SA and therefore decision-

making.

There have also been efforts to provide interactive visualization techniques that

enable situational awareness within various contexts, such as emergency response, network

intrusion detection, and biosurveillance [43]. These techniques often make use of

qualitative SA metrics such as the Situational Awareness Global Assessment Technique

(SAGAT) and the Situational Awareness Rating Technique (SART), both of which rely on

both objective and subjective questionnaires, respectively, designed to evaluate a person’s

comprehension (SA Level 2) and projection (SA Level 3) of various aspects of the situation

at multiple points in a decision-making process [21].
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CHAPTER III

A FRAMEWORK FOR INTERACTIVE VISUALIZATION OF LARGE NUMERIC

DATASETS

Researchers in the Visual Analytics community have developed custom software applica-

tions for a variety of domains in order to support the needs of expert analysts and decision-

makers. In this chapter I will discuss work performed in conjunction with a U.S. govern-

ment customer. The goal of this effort was to provide useful visual analytics capabilities

to several distinct groups of domain experts within this community. This approach allowed

these capabilities to be delivered in a manner that enables the domain experts to learn and

apply the necessary skills in their own environment. I will discuss how we have provided

guided training sessions to introduce domain experts to each analysis case presented here,

including analysis of network performance, anomalous sensor activity, and engagement

results. Through long-term interactions with these experts, we have begun to observe ana-

lysts using skills from prior training sessions to propose new analytic requirements. I will

discuss the design of this approach, the observed results of experts using the software in

several analysis cases, the development of a user-specified visual analysis requirement, and

results of this work using three different evaluation methodologies.

A. Approach

The proposed approach to developing a visualization application to work in a dynamic

environment containing many types of large datasets is based on the existing model of in-

formation visualization initially proposed by Card et al. The existing model, shown earlier

in Figure 1, does distinguish the difference between data transformation operations and

view transformation operations, however it does not account for performance considera-

tions based on the size of the input data for applications involving large datasets.
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Fig. 4. The proposed framework is based on a modification of the existing information
visualization model. In the proposed model, data transformation and reduction op-
erations are configured using one user interface, and interactive view transformation
operations are controlled using another visualization interface. In this model data
processing and visualization techniques can be developed and configured indepen-
dently and reduced data is cached to increase performance when working with large
datasets.

Therefore, I propose a novel modification to the existing model that ensures that

interactive visualization software applications are not overloaded with dense volumes of

data that can significantly impact rendering performance. In the proposed model, shown

in Figure 4, data transformation and reduction operations are configured using one user

interface, and interactive view transformation operations are controlled using another

visualization interface. This allows us to standardize and simplify the user interface for

each of these tasks independently, which can improve the user experience. But more

importantly, in this model data processing and visualization techniques can be developed

and configured independently and data is pre-processed, reduced, and cached to increase

interactive rendering performance when working with large datasets.

Although it is not appropriate to make direct comparison between visualization
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implementations designed for different applications, it is necessary to at least provide

a capabilities-based comparison with other similar systems. In order to conduct this

comparison, it was necessary to first identify the primary system requirements by which

each system is evaluated.

Visual programming environment A visual programming environment is required to

allow users without advanced programming skills to be able to easily create

customized visualization applications.

Multiple visualization techniques Users we spoke with were interested in using multiple

types of visualizations since they were responsible for analysis of multiple data types

(e.g., temporal and spatial data).

Coordinated multiple views Coordinated multiple views are often provided to enable

effective analysis when using multiple visualization techniques.

Custom visualizations The development and integration of custom visualizations enables

complex data to be explored in new ways. This was quite important as several new

visualization capabilities that these users required had already been identified (e.g.,

sensor performance analysis).

Unified visualization interface A unified visualization interface is desirable because this

feature simplifies software training for new users, and trained users can apply existing

skills to new visualization methods.

Data reduction and caching Data reduction is required to ensure that large numeric

datasets do not limit the performance of interactive visualization software. This can

be accomplished by providing numeric aggregation algorithms or other custom data

processing routines.
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Table I. Visualization System Capability Comparison

ProDV prefuse VTK VisIt LabView RapidMiner KMINE KnowledgeFlow

Visual Programming Environment Y N N Y N Y Y Y

Multiple Visualization Methods Y Y Y Y Y Y Y Y

Coordinated Views Y N N Y N N Y N

Custom Visualizations Y Y Y Y Y N Y N

Unified Visualization Interface Y N N N N N N N

Data Reduction Y N N Y N Y Y Y

Data Caching Y N N N N N N N

End-User System Y N N N N Y Y N

Data caching Data caching reduced overall computational cost of working with large

datasets, and also enables other useful features such as collaborative analysis.

End-user system And finally, while many systems provide excellent visual analysis

capabilities, those that are not designed as end-user systems (i.e., systems that do

not require advanced programming skills or detailed Computer Science knowledge)

are difficult for many users to operate.

The results of the capabilities-based comparison are shown in Table I. While most

other systems do provide multiple visualization techniques and some also provide a visual

programming environment, few provide support for coordinating multiple views. Also,

only two of the other systems are for end-users, whereas the rest are primarily tools for

software developers. And most notably, none of the other systems provides mechanisms

for both data reduction and caching, which are necessary when building interactive

visualizations of large datasets. The implementation of the proposed framework, called

Process-Oriented Data Visualization (ProDV), provided all the required features.
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1. User Environment

In work with a government client, the primary goal was to provide interactive visualization

software to support visual analysis. The user’s operating environment consisted of

constantly varying forms of data that required integration and visual analysis for both

anomaly detection and metric evaluation over long periods. While various commercial

packages exist to provide some of the basic visualization capabilities used, the degree

of customization required and the government software certification needs made it more

advantageous to develop a novel visualization environment. In this section I discuss the

approach to delivering flexible visual analytics capabilities to a government customer in a

dynamic environment. In later sections I will discuss more specific analysis cases in detail.

The primary user for this work was a U.S. government organization responsible for

testing and performance evaluation of new equipment and systems based on predefined

requirements. The results of these evaluations are used to support purchasing decisions.

Large-scale testing activities often compare performance of equipment from different

manufacturers. Each test defines specific performance metrics designed to evaluate

the stated requirements. For example, networking equipment might be evaluated for

performance using metrics such as Speed-of-Service (SoS) or Message Completion Rate

(MCR), but depending on the implementation these metrics might be evaluated at the

Application layer for some tests (using software log data) and at the Transport layer for

others (using recorded network traffic data). Spatial and temporal sensors are most often

evaluated in terms of the number of detected failures or anomalies in a given time.

Although analysis requirements are usually specified explicitly before testing begins,

it is common practice in this environment to capture and record all forms of electronic

data available over extended periods of time. Therefore many of the datasets they need to

perform analysis on are large collections of multimodal data. Sanitized versions of these
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datasets have been used for this work, and are typically on the order of several gigabytes. In

some cases, these users are interested in applying these techniques to unsanitized datasets

that may be several hundred gigabytes or more.

2. Requirements

Based on this understanding of the environment, it became clear that any visual analysis

capabilities provided should not only provide all the basic information visualization

interactions (i.e., zoom and filter, details on demand) [64], but also should be easily

customizable by domain experts to account for changing evaluation requirements and input

data format or semantics. In particular, the experts need to be able to define and incorporate

new visualization or analysis tools themselves to address new evaluation criteria, rather

than just use a preselected set of information. Users also need to be able to import data

from a wide variety of different sources (e.g., different types of sensors stored in different

database formats), and combine these sources into a CMV visualization.

3. Framework

We began by defining a framework architecture that defines common objects and the

interfaces between them, which is referred to as the Process-Oriented Data Visualization

(ProDV) framework. In order to be effective in the user’s operational environment,

this framework needed to be based on a simple abstraction that could be represented

visually and easily understood by domain experts. The majority of domain experts were

quite familiar with the equipment domain (e.g., networking), but were not familiar with

computational algorithms or data structures beyond common RDBMS objects. They were

accustomed to using common tabular computation tools such as Microsoft Excel.
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4. Framework Components

The framework components defined in this abstraction are based on an understanding of

the average domain user’s conceptual model of the visualization process. We extracted this

model from early interviews with data analysts and compared the objects/functions most

identified by domain experts with formal reference models that have been defined in the

visualization community. Key insights forming the basis of this abstraction included:

• Users were knowledgeable about the semantics and format of the data.

• Users had an idea of how they would like to visualize data (e.g., using a graph or a

map).

• Users understood that data needed to be processed and had a vague idea of how

that might happen, but did not fully understand any of the specific data structures or

algorithms used.

• Users understood that data might need various transformation operations.

From these basic observations gleaned from experience interviewing a range of

potential users, we arrived at the framework based on this simple abstraction shown in

Figure 5. As shown in the figure, the ProDV framework defines data sources, data

operators, processing modules, cached data and visualizations as the primary objects

in our abstraction of the visualization process. In terms of the visualization reference

model this framework divides the workspaces that transformations are conducted in.

Only data transformations and visual mappings are manipulated while interacting with

framework components, while only view transformations can be manipulated from within

the visualization environment.

Data sources Data sources provide tuple records (records with multiple typed fields) from

a variety of different sources. SQL databases, structured text files, and local database
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Fig. 5. The ProDV framework architecture defines data sources, data operators, processing

modules, cached intermediate data, and visualizations to provide a simple visual
abstraction of the visualization pipeline. The addition of cached intermediate data

allows visualization applications to maintain interactive rates when working with
large datasets.

files (like Microsoft Access) are common examples; however data sources can be

defined from more custom data formats as well. For example, Raster Product Format

(RPF) data, which provides standardized geo-rectified raster data, can also be used

to provide tile data as records.

Data operators Data operators perform common data transformation or simple data

aggregation tasks. Operators can represent simple data casting operations (e.g.,

parsing text as an integer), or be more complex such as a multiplexer or look-up-

table that has an internal data structure.

Processing modules Processing modules encapsulate algorithms that generate reduced

intermediate data structures from input data. Examples include simple numerical
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computations such as summation, statistical analysis, or multi-pass clustering

algorithms. Many of our current processing modules perform and store computations

at multiple resolutions, so that visualization controls can allow users to quickly

change scale for different analysis tasks. Any of these objects can also define any

number of user parameters.

Cached data While the general framework seems intuitive, one explicit design decision I

will mention is the decision to not identify to users the specific details of intermediate

data structures created by processing modules and stored as cached data. We

have chosen to hide the details of visual mappings that exist between those data

structures and the visualizations, since most users interviewed not familiar with the

data structures that would be used (e.g., hash maps, trees, and heaps). Although it is

difficult to evaluate this choice in a controlled experiment, I believe it simplified the

user interface and enabled analysts with a broader range of skills to interact with the

framework. User interface controls were provided for advanced users who did wish

to manipulate visual mappings.

Visualizations A selection of interactive visualizations make up the final component of

the framework. Each visualization defines a unique rendering method designed to

be viewed in a standalone window. Several visualizations can be used to create

coordinated multiple view layouts, as is common in visual analytics applications.

Each visualization must define its own generic routine for building a render cache

containing all the data needed to render the current view. Each visualization can

contribute multiple view mappings that define how its render cache can be assembled

from the data structures created by different processing modules. This architecture

loosens the coupling between the processed data and the rendering algorithms, giving

greater flexibility in the design of each.
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5. Dataflow Interface

In order to simplify user configuration of the framework components, we developed a visual

interface based on a visual programming environment we were familiar with, Eclipse. The

visual interface was implemented using the Eclipse Graphical Editor Framework (GEF) and

allows the user to connect and configure the data access and transformation components of

the system, as shown in Figure 6.

Fig. 6. ProDV Dataflow Editor interface. Example shows two similar data sources (green)
appended and connected to a look-up-table using operators (brown). Two processing
modules (yellow) provide cached data to four different visualizations (blue).

Windows containing user-defined data sources and framework components are shown

on the left. Input and output field names and types are displayed and can be connected

using common drag-and-drop interactions. Simple error messages are provided when the

specified data model is invalid due to type matching errors or invalid or inaccessible data
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source configurations.

Once the user saves a connected group of components, referred to as a product,

it can be launched in a separate window (similar to launching a new application in a

software development environment). While the user can always adjust the data access or

transformation configuration specified in the dataflow editor, any current cached data will

be invalidated by this change since the state of the cached data and the product configuration

are tightly coupled. When changes are made, the user will be prompted to close the current

interactive visualization and any cached data will be cleared and recomputed using the new

configuration.

6. Visualization Interface

Interactive visualizations created using the ProDV framework share a basic set of interac-

tions. In order to promote consistency among interactions defined by our visualizations, we

have defined a standard set of tools based on well-known information-seeking interactions:

Select, Pan, Zoom, and Query. Each visualization can define hover, click, double-click, and

drag mouse interactions using each tool, and only one tool can be used at a time. The Query

tool provides mouse coordinates in screen-space, and any text returned by the visualization

is displayed in a tooltip. Any other user parameters for a visualization can be adjusted in

an auto-generated Properties tab, which shows user-adjustable properties for the current

visualization or any selected object.

7. Implementation Summary

The implementation of the proposed method provided by ProDV meets the seven previ-

ously enumerated requirements for a visualization system designed to handle interaction

with large numeric datasets.
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Visual programming environment The visual interface shown in Figure 6 provides a vi-

sual programming environment that allows users to easily configure the components

of the ProDV framework.

Multiple visualization methods A large collection of common visualization methods are

provided by ProDV, including interactive line and bar charts, a radial axis chart,

node-graph visualizations, and geospatial visualizations.

Coordinated views Visualizations in ProDV are coordinated using linked legend and

timeline controls that enable global selection of data entities and time ranges.

Custom visualizations Custom visualizations can be easily integrated into the ProDV

framework by simply defining the visualization’s cache access mechanisms along

with rendering code.

Unified visualization interface ProDV provides a simplified visualization interface using

set of four tools used modally: select, pan, zoom, and info.

Data reduction Various types of processing modules implement data reduction using

simple numeric aggregation or other computational algorithms.

Data caching Data structures produced by processing or visualization elements can be

cached in memory and saved to disk to improve efficiency and enable collaboration.

End-user system ProDV has been designed to support domain experts without knowledge

of programming concepts or data structures.

B. Case Studies

We have implemented a variety of visual analytics capabilities for domain experts using this

framework. These capabilities included applications for network performance analysis,
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engagement analysis, and sensor performance analysis. In this section I will discuss the

details of each of these analysis categories. For each section I will first discuss the analytic

goals as indicated by domain experts, and then I will discuss our approach and the observed

results. These cases show how the ProDV framework was easily adaptable to various

analysis requirements specified by domain experts.

1. Network Analysis

Many of the tests conducted by these users involved networking equipment in some way.

In most cases, networking metrics such as traffic volume per network protocol, Speed-

of-Service, and Message Completion Rate needed to be analyzed for unexpected patterns

over a large range of time. Since external software packages are available to compute

and display common network performance metrics, we initially focused on providing the

capability to correlate unexpected network anomalies and other user-specified features with

these metrics. Later we implemented internal processing modules to compute MCR, SoS,

and other custom network metrics.

In order to provide these capabilities, data sources from Access, SQL, text, and PCAP

were used. We also used various operators for accessing packet data of various types (TCP,

UDP, ARP, ICMP), parsing date/time and IP address information from text, and filters for

bad or null values. The processing modules used here ranged from summing or averaging

values over time to computing complex network metrics. The interactive visualizations

include a line graph, a stacked bar graph, a parallel coordinate plot, and a radial chart based

on the Radial Traffic Analyzer [34]. When available, we also included an interactive event

timeline to depict both scheduled and unscheduled (via incident reports) events from the

testing plan.

The network analysis capabilities provided using ProDV, shown in Figure 7, demon-

strated effectiveness in two specific cases. First, after initial training using the ProDV
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Fig. 7. An example interactive network analysis application similar to one built by domain
experts using ProDV to validate data collected during a distributed simulation.

components to visualize data from baseline network events (running a common test script),

on-site analysts were able to recognize expected features in the data. In particular, using the

radial chart and line graph the analysts recognized the dominant senders and receivers of

data within various segments of the network. After the training session, analysts were able

to immediately recognize deviations from the expected network profile. In each case the

discrepancies were due to lost or incorrectly processed data, and were able to be quickly

fixed.

In another case, during the initial training with user data, three outliers (out of nearly

100 nodes) were immediately recognized, again using the Radial Traffic Analyzer, since

they intermittently transmitted thousands of times more data than any other nodes on the
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network. It was quickly determined that these nodes were responsible for audio/video

transmission and were able to be filtered out of many subsequent analysis activities.

Fig. 8. Network cluster analysis application built using ProDV. Example shows clusters of
network nodes with high traffic volume between them at the peak of a system stress
test.

The example shown in Figure 8 allowed network analysts to examine the results of a

cluster analysis of network behavior using the rapid graph layout technique described by

Muelder and Ma [50]. This graph layout technique uses a previously published technique

for clustering called “Fast Modularity,” and renders the graph nodes along one of several

space-filling curves [12]. The cluster results highlight groups of network nodes that

have significant traffic between them, and therefore allowed network analysts to verify
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expected results under varying degrees of network load and other varied conditions. The

implementation also provided interactive features to scale node locations along the curve

(allowing users to expand and collapse clusters along the curve) and animation. Because

individual nodes were not guaranteed to be in the same location at any two timesteps,

we introduced a feature to animate the motion of a user-selected set of nodes between

timesteps. This allowed analysts to observe groups of nodes that were expected to cluster

together over an extended period of time. In most cases, the clusters observed were

relatively small (less than 50 nodes), and therefore analysts were able to validate the

expected nodes in these groups without difficulty.

In all three cases we were able to successfully impart these analytic skills to domain

experts, who continued use of ProDV in their analysis activities. One customer has since

integrated ProDV into an internal suite of visualization tools used to validate simulation

results.

2. Engagement Analysis

Several events provided engagement data from simulated kinetic engagements (kinetic

actions are those involving direct force, such as firing weapons). In many cases a realtime

casualty assessment (RTCA) system is used to determine the appropriate result of simulated

engagements based on the attributes of the weapons and armor involved.

In this case we provided multi-dimensional visualization capabilities in the form of

a parallel coordinate plot and a radial chart based on the Radial Traffic Analyzer [34].

Both visualizations depict the weapon type and the shooter and target of each engagement.

The analytic goal in this case was to validate that the recorded engagements support the

overall outcome as reported by the RTCA. However, certain interesting behaviors also

became quite easy to detect using this analysis technique. For example, when simulation

players were colored according to their affiliation (i.e., friendly units blue, hostile players
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red), friendly fire incidents were easily discerned. Also, analysts made use of the parallel

coordinate plot to validate expected simulation configurations. For example, a one-to-one

mapping was usually expected between a single engagement’s ammo and weapon type.

Variations, which were common, clearly indicated a misconfiguration. An example of this

application is shown in Figure 9.

Fig. 9. Example of kinetic engagement analysis using a parallel coordinate plot and a radial
chart. Two friendly-fire incidents are outlined in red in the radial axis chart on the
right.

Based on requirements developed during interactions with domain experts, we also

integrated custom spatial visualization of certain non-kinetic interactions such as message

transmissions. This interactive geospatial visualization provided the capability to view

the location of each transmission. The example in Figure 10 shows the purple player

receiving two messages from other players who are in motion (red/white), and relaying the



41

Fig. 10. Non-kinetic engagement analysis. Example shows successful completion of a
message thread by stationary and moving players. The exact time of the individual
message events can be accessed using a linked timeline.

message to two static players (maroon/blue). This capability is being used to evaluate the

performance of mobile networking equipment for standardized message threads. Message

threads consist of sequences of tactical messages related to a test activity. The messages

should occur in proper order for some final action (e.g., call for fire) to be initiated. In this

example the player successfully relays observation reports from scout players to positioned

artillery players to complete the message thread, and the visualization allows the analyst to

determine that the messages were sequenced correctly.
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Fig. 11. Example of custom temporal pattern analysis visualization showing temporal
activity patterns exhibited by a network of spatial sensors. Each row depicts the
sensor reporting activity for a unique sensor, and each triangle represents a period
of time between reports. Five minute threshold violations are highlighted in red,
and triangles less than three pixels in width are merged to form quadrilaterals. A
coordinated violation is shown by seven of the sensors in the beginning of the time
period shown. The sensors used in this work increase activity when in motion,
therefore in this example the quad areas represent spatial movement. A coordinated
movement involving at least twelve sensors is shown in the middle of the period
depicted, at the same time that five sensors stop reporting unexpectedly.

3. Sensor Performance Analysis

Performance analysis of distributed networks of spatial sensors over extended time periods

was identified by our domain experts as a major concern. Therefore, we developed several

visual analysis methods for both identifying anomalies in and conducting detailed analysis

of sensor performance by leveraging existing capabilities and combining them with new,

custom techniques.
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a. Temporal Anomalies and Pattern Recognition

First, we developed a custom visualization to support analysis of temporal activity patterns

within a network of spatial sensors, shown in Figure 11. This visual analysis technique was

based on user requirements specified during interviews and a software training session.

It allowed data collectors to quickly discern unexpected sensor failures from coordinated

maintenance activities, and explore and analyze expected temporal patterns generated by

coordinated movements within the sensor network. This technique will be discussed in

more detail in Chapter V.

b. Data Collection Analysis

Another interaction with domain experts led to the development of a custom processing

module that computes a defined heuristic in order to evaluate the performance of a sensor

data collection system. The data collection system was designed to capture data using

three redundant storage systems, and analysts needed to know when redundancy was

being sufficiently achieved. The results were visualized in a simple state plot and showed

when each data collection system was operating with full, partial, or no redundancy. This

capability was developed and delivered rapidly, and quickly led to the discovery of specific

bottlenecks in data throughput that caused the results shown in Figure 12.

4. Geospatial Analysis

We worked with domain experts on a variety of geospatial analysis problems dealing with

sensor performance. In most cases we began by focusing on anomaly detection. The

most prevalent anomalies we encountered in geospatial datasets were incorrect or out-

of-sequence locations being reported by spatial sensors in motion. For example, players

observed conducting a convoy route intermittently reported an anomalous location (often
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Fig. 12. Data collection system analysis results shown in an interactive state plot. Color
(green, yellow, red) indicates state of data collection system redundancy (full,
partial, none).

some initial location) along the route. To facilitate a detailed analysis of these anomalies,

we were able to rapidly assemble a new interactive visualization by complementing the

interactive geospatial visualization with existing capabilities that had been previously

introduced for network analysis.

Using the animated geospatial visualization, shown in Figure 13, we were able to iden-

tify a temporal pattern of sensor activity correlated with spatial reporting anomalies.This

temporal pattern helped analysts identify other anomalies using the temporal analysis plot.

It was observed that in most cases the anomalies occurred in areas with heavy foliage.

Therefore this analysis led to the conclusion that loss of wireless network connectivity

caused this type of sensor to generate a series of anomalous reports which exhibited a

visually recognizable failure pattern. This pattern was subsequently used to pinpoint envi-

ronmental conditions (i.e., foliage density) that contributed to these failures.
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Fig. 13. Spatial sensor performance analysis application. The highlighted temporal pattern
(red lines under the second row) was recognized as an indicator of a particular
sensor failure.

5. COP Currency

We have also implemented a custom visual analysis capability defined by our expert users.

They have expressed particular interest in comparison of the Common Operating Picture

(COP) viewed by each player in a simulation exercise. The COP defines the player’s current

perception of the location of all other players in the simulation. From our perspective, the

COP was viewed as the state of each player’s data containing the most recently received

locations for all other players, often called Situational Awareness (SA) data. To this end,

we defined a metric, COP currency (CC), such that for player X:
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CCx =

∑
n
1

1 if
∣∣pi − pperceived by X

∣∣< d

0 otherwise


n

(3.1)

where d is a user-specified threshold distance and n is the number of other players.

Simply put, a player’s CC value is high if all of his current SA data is within tolerance.

Otherwise, the CC value will fall off proportional to the number of players. Current

work is aimed at providing additional mechanisms for computing COP currency according

to pre-defined player hierarchies. That is, analysts wish to constrain the COP currency

computation for unit X to n specific other players (e.g., a squad leader’s COP currency value

is only affected by data from players in his squad). It is straightforward to incorporate new

currency metrics into the system, since each would require only a new processing module,

and no change to the visualization or other modules.

The goal of this analysis is to identify potential correlations between increased

network latency and degraded COP currency. Since wireless players experience varying

network latency under varying terrain conditions as well, we display a graph of the COP

currency metric along with a geospatial visualization that allows the user to display the

COP of any selected player. Only one COP can be displayed at a time, and the display

shows the perceived positions and actual positions. The example in Figure 14 shows a

particularly low point in CC for a particular player. The details of this technique will be

discussed in Chapter V.

C. Evaluation

The success of visual analytics methods has been evaluated by researchers in this

community in a variety of ways. During the course of this work, I have evaluated the

effectiveness of these methods using three different evaluation techniques.
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Fig. 14. COP currency visualization. Circles indicate current player locations, diamonds
indicate locations perceived by selected player’s COP.

First, I have quantitatively evaluated the performance in terms of speed and accuracy

of volunteer participants using specific visualization techniques to analyze data in a

controlled environment. While these evaluation techniques offer some benefit for judging

or comparing individual visualization techniques, they do not provide a basis for evaluating

the entire system. In particular, the pool of participants is limited to non-experts, and the

techniques cannot be evaluated in terms of true workflow.

As an alternative, I introduced simple evaluative techniques within the training

program designed to introduce the customer domain experts to the ProDV software. While

there are challenges to this approach, it does provide data from customers and domain
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experts in a more operational setting, which is arguably more relevant when evaluating a

visual analysis technique.

Finally, I also will present expert opinion extracted from both training sessions

and other domain expert interactions to demonstrate a high level of understanding and

satisfaction with the ProDV framework concept.

1. Individual Visualization Evaluation

We conducted a series of task-based user analysis studies aimed at evaluating the

effectiveness of a custom visualization of temporal sensor patterns (Figure 11) using small

groups of graduate students. The tasks for the user evaluation study were based on detection

of the temporal and spatial anomalies in the context of sensor performance analysis. For

example, users were asked to first temporally locate sensor failures within coordinated

activities, and then determine the location of the sensor prior to the failure.

While the full details of the results of this evaluation method are discussed fully in a

later section, our study indicated decreased time and increased accuracy for both temporal

and spatio-temporal analysis tasks. However, since these results came from non-expert

users, I feel that this evaluation mechanism is not sufficient to evaluate the effectiveness of

the framework as a whole.

2. Expert Training Evaluation

In order to evaluate how well expert data analysts were able to comprehend and interact

with our visualization environment, I designed simplified task-based evaluations that were

added into software training sessions. The training sessions were already being used to

incrementally introduce new users to each of the analysis modes discussed. I added three

similar analysis tasks to the end of each session, and implemented an interface within our

software to record the time spent on each task. The task responses were recorded manually
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by each user on a form. Since the goal was to evaluate how well expert users were able to

successfully assimilate various analytic skills, each session focused on the different analytic

skills required for each task.

The results of the first experimental training session were mixed. First, although

nearly all users completed the tasks at the end of each session, there were significant

problems using the embedded timing interface and therefore only two timing records were

complete from a total of twelve participants. This experience provided a valuable lesson.

In attempting to evaluate user performance in the context of a software training session, it

was necessary to avoid distraction from our primary purpose of providing a step-by-step

introduction to the basics of the software. The incomplete timing records indicated that our

evaluation mechanism was most likely a large distraction in its current form. Based on the

problems observed using the initial embedded interface, I determined that requiring users

to manipulate a simple interface for timing while writing responses on an evaluation form

was too distracting. Because this task was not an integral part of the training experience, the

trainees would often forget or ignore the action during the session. Therefore, I redesigned

the embedded interface to provide the task descriptions and prompt the user for a response

(both the response and the time are recorded automatically). This minimized distraction

while automating the recording process for our next training session.

I recognize the benefits of this method of evaluation since it allowed me to collect

data on multiple expert users simultaneously, which I believe is superior to conducting

additional controlled experiments using graduate students.

3. Expert Opinion

I also collected expert opinions using query forms during several training sessions. These

opinions were given after training sessions that covered all of the previously mentioned

analysis techniques over approximately a six-hour period. The experts indicated that:
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• the analysis capabilities provided were “excellent” and “very mission related.” This

reinforced the experts’ early involvement in the design and development process of

the ProDV framework.

• overall, the software was “very user friendly—mouse [interactions are] familiar.”

This reinforced the interaction constraints (limited toolbar) we adhered to in our

design.

• some of the visual elements of the data flow interface were difficult to read. This issue

was addressed by allowing user modification of line thickness and other attributes.

• they would have liked more time to explore the datasets provided. This reinforced our

use of sanitized real-world datasets provided by the customer, in that these datasets

were sufficient to teach basic concepts, but were not too involved to distract or

confuse students from the goal of the lesson.

D. Collaborative Analysis

The architecture of our framework has allowed us to implement several useful collaborative

analysis features as well. These are divided into annotations and content sharing features.

Annotations provide additional semantic content on any object defined in the framework.

Content sharing features allow users to share any of the framework objects via file export

or directly via local network, including annotations. I will discuss how together shared

content and annotations enabled basic collaborative analysis activities.

1. Annotations

We have made use of annotations in several forms to enable collaborative analysis activities

within the ProDV framework. First, we allow users to add comments to any framework
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components. This allows users to describe conditions for certain data sources, make

comments about existing products, or even describe in detail the justification for a specific

operator’s configuration.

In addition to semantic annotations, we also allow the user to save and annotate a

specific view within the interaction space using a bookmark. A bookmark in the ProDV

framework encapsulates all current view parameters including zoom, color assignment,

filter state, view layout, timeline attributes, and object selections.

2. Content Sharing

By sharing a product and its cached data, another user can easily run an interactive

visualization application created and processed by another user. This allows multiple

analysts to collaborate on the analysis of a large volume of data by creating and sharing

analysis applications for smaller subsets or contexts of data.

In addition, users can share the annotation mechanisms discussed in the previous

section. Sharing of bookmarks and comments allows users to save and share with

remote peers additional semantic information about certain data features. Together,

these features allow an analyst to discover an interesting feature using a combination of

interactive visualizations, bookmark and comment on the feature, and share the interactive

visualization with another analyst who would be able to contribute to the understanding of

the data.

3. Evaluation

Evaluation of these techniques poses a problem for us. Specifically, these features involve

network protocols, which the customer requires meet a stringent certification process. This

limits our ability to automatically record and report user data (as could be done for the

standalone analysis), and slows down the ability to gather feedback from experts. An area
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of ongoing work is determining an effective method to gather such collaborative data under

the certification constraints imposed.

E. Ongoing Work

In this chapter, I have presented an interactive framework that effectively enables domain

experts to customize a variety of visual analysis capabilities in order to perform analytic

tasks in several different domains. There is continuing work with domain experts to

evaluate any long-term benefits of our approach. It is expected that ProDV will continue to

be used for analysis tasks by these users, as well as to support other current research efforts

in human social-cultural behavior (HSCB) modeling and visual analysis applications for

the electro-magnetic spectrum (EMS). To date, ProDV has provided the basis for over $2

million in U.S. government funding for projects focused on research and development of

custom interactive visualization software.
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CHAPTER IV

ASYNCHRONOUS VIEW-DEPENDENT STRATEGY FOR SPATIAL DATA

In this chapter, I will discuss work aimed at improving interactive visualization systems

when working with high-resolution terrain imagery data that must be retrieved at runtime

from a remote database. The technique I have proposed is aimed at enabling visualization

systems designed to operate in such an environment to efficiently prioritize and retrieve the

minimal set of data required to render a visual representation of a spatial environment,

while maintaining interactive rates that allow the application to be useful to complex

analysis tasks.

Many challenging analysis tasks in science and technology require massive amounts

of high-resolution data collected from various sensors. Examples of analysis challenges

requiring such high-resolution terrain topology and imagery include interactive exploration

of near-earth RF propagation models, coordination of disaster recovery efforts, military

operation planning, and excavatory operations. The introduction of commercially-available

sensors that can provide such high-resolution data for a small area, as well as increased

commercial satellite imagery and terrain resolution for certain areas, makes this work

particularly relevant. In order to be useful to analysts performing these interactive analysis

tasks, visualization software applications using this data must retrieve the data efficiently

from a remote database. This work is focused on using high-resolution terrain data from

the National Geospatial-Intelligence Agency (NGA) to support detailed interactive analysis

of various geospatial datasets. I will discuss use of the highest resolution data openly

available to government agencies in the form of Digital Terrain Elevation Data (DTED)

and Controlled Image Base (CIB) satellite imagery. By defining a strategy to efficiently

pre-allocate and index areas of video memory, a visualization system can be optimized to

retrieve texture and elevation data at full resolution in order to best support interactive visual
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analysis. The proposed method allows a visualization application to efficiently allocate

video memory, retrieve the highest-priority data (defined by the interactive view), and load

the data asynchronously, while minimizing the impact on rendering performance.

A. Problem Description

The motivating task for this work is the efficient implementation of an interactive three-

dimensional spatial data visualization environment that utilizes a large remote terrain

database that provides both terrain elevation and imagery at multiple resolutions. The

terrain database cannot be stored locally and therefore retrieving data within the region

of interest will incur an unknown latency. In the case of high-resolution imagery, texture

memory resources are likely insufficient to store all the data referenced by the current

view. This method provides a solution that will load as much terrain data at full resolution

as possible, in a view-prioritized fashion, instead of decreasing the level of terrain detail

in the scene. This method has been used to complement additional visualization layers of

spatial data for visual analysis, such as recorded GPS data for multiple ground-based spatial

sensors visualized as three-dimensional trails. Such an interactive visualization is useful in

analysis tasks such as detailed inspection of the effects of terrain and vegetation on the

performance of mobile ad-hoc networks. During such analysis, the interactive view must

be able to rapidly transition from inspecting small-scale features such as vegetation to large-

scale features of terrain topology and from one location to another. In this chapter I will

demonstrate how this method allows analysts to interactively explore regions of interest at

full resolution within a massive remote dataset. This work can be directly applied to high-

resolution geospatial datasets that are of particular interest to various parts of the scientific

communities, including seismic and electromagnetic spectrum data, to name a few. The

timely visual analysis of these types of data is a tool of growing importance for analysts in
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many domains [13], including the military, disaster recovery, and petroleum industries. The

techniques discussed here can also be adapted and applied to other visualization domains,

such as medical and genomic visualization.

B. Proposed Method

The traditional approach to developing an interactive visualization system using a large

remote database is to pre-load data at various pre-processed levels-of-detail so that

appropriate LOD data structures can be sampled and a simplified representation of the

scene can be rendered. The total geometry count in the scene may vary as the interactive

visualization algorithm adjusts the level-of-detail, affecting the rendering performance

of the system. There are several disadvantages associated with this approach. First,

as the level-of-detail changes, rendering performance will vary as the user navigates

the environment, although there are algorithms designed to minimize this effect by

keeping overall amount of scene geometry stable [46, 15]. Also, preprocessing routines

for generating multiple level-of-detail geometry and texture data can be complex and

computationally expensive. Finally, the simplification algorithms used to simplify this data

will by definition distort the original data. The drawbacks to these simplification methods

are acceptable when rendering objects for visual effect (such as for interactive gaming or

other entertainment purposes) and balanced by increased rendering performance, but may

cause unwanted inaccuracy when rendering data for detailed scientific analysis.

This approach addresses these challenges by leveraging the visualization pipeline to

prioritize data requests in a view-dependent manner, using custom vertex and fragment

programs to sample data indices aligned in pre-allocated texture memory. This enables the

visualization system to maintain a static amount of geometry in the scene (pre-allocated in a

vertex array) and static texture memory allocation to achieve stable rendering performance.
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Fig. 15. The proposed method leverages the architecture of the graphics hardware pipeline
to efficiently view-prioritize data requests by aligning index data into texture
memory and rendering data indices into an off-screen frame buffer object (FBO)
by simply swapping out the fragment program but not swapping texture memory.
The programmable components of the pipeline are shown with dashed outlines.
The framebuffer output shown in the figure is what is shown on the user’s monitor.

A graphic representation of this shown in Figure 15. The proposed indexing method also

enables prioritization of the data indices referenced by the current view using the hardware-

accelerated rasterization pipeline, thereby eliminating the need to compute view priority

on the CPU. In order to maximize performance on current graphics hardware, this method

minimizes the total number of texture elements used concurrently (for which there is a

finite limit on current hardware implementations) and the total number of changes in texture

bindings (which reduce rendering performance).

Because the latency of data retrieval from a massive remote dataset is unknown,

data should be retrieved asynchronously so that the rendering thread is never blocked and

therefore interactive rendering performance is not impacted. Because the priority scores are

output by the graphics pipeline, this technique is flexible enough to handle rapid changes in

view priority at any time, which is essential for supporting exploratory analysis of spatial

datasets. The view-dependent function used to compute priority scores can be defined
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based on pixel count, screen location, and depth.

Because the amount of video memory available varies with every platform, dependent

upon the capabilities of the local graphics hardware, this method is adaptable to make

efficient use of that memory. There is an important distinction between virtual video

memory and addressable video memory. For the purpose of this work, virtual video

memory is defined as the amount of memory that can be allocated by our OpenGL context

at runtime, while addressable video memory is defined as the amount of memory that

can be concurrently bound in OpenGL (and therefore referenced by an active rendering

context). The amount of addressable video memory will always be less than the amount

of virtual memory, and therefore all allocated memory objects are not always available

without paging from main memory. Furthermore any change in use of addressable memory

requires rebinding of texture memory, which introduces additional delay to the rendering

thread. This technique optimizes use of both memory types while minimizing changes

in addressable video memory to maximize rendering performance when managing large

amounts of high-resolution data. View priority scores are used to determine which virtual

memory references will be bound at any given time.

C. Implementation

In this section I will discuss the interactive implementation of the proposed asynchronous,

view-prioritized data retrieval technique. I have developed this implementation using a

Java-based windowing system (SWT), JOGL OpenGL bindings, and GLSL vertex and

fragment programs. This implementation also makes use of custom spatial database

services based on the OpenMap function libraries [66].
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1. RPF/DTED Data Structures

Raster Product Format (RPF) and Digital Terrain Elevation Data (DTED) are standardized

data formats defined by the US Department of Defense [69, 70]. RPF and DTED datasets at

various unclassified resolutions are available to all U.S. government organizations through

the National Geospatial-Intelligence Agency (NGA). This implementation uses OpenMap,

an open-source Java-based project available from BBN [66], to access and query these

datasets. For this work I have provided local and remote custom database services using

the capabilities provided by OpenMap.

a. Raster Product Format

Raster Product Format (RPF) datasets are normally distributed via CD/DVD as collec-

tions of RPF products at multiple resolutions for a given area. Most RPF datasets include

Compressed-Arc Digital Raster Graphics (CADRG) cartographic maps, including topo-

graphic line maps (TLMs). Compressed Image Base (CIB) datasets include monochro-

matic geo-rectified satellite imagery at 5- or 1-meter resolutions. Each dataset contains a

table of contents file that describes the map properties and coverage areas. All RPF data

is composed of 256x256 pixel tiles of 8-bit indexed color, each map set providing its own

color palette (many of these consist of 16 colors or less).

b. Digital Terrain Elevation Data

Digital Terrain Elevation Data (DTED) datasets are composed of individual frames of

elevation data organized in a regular grid covering a full degree of latitude and longitude.

DTED data is classified by level, where a lower level contains a lower resolution (fewer

elevation readings) of data. DTED level 1 is commonly referred to as DTED1, and so on.

Regardless of DTED level, each frame will always contain a full degree of latitude and
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longitude. For the purpose of this work, we mainly consider use of DTED1 and DTED2

data, which provides elevation postings at 3 arc seconds (approximately 100 meter) and 1

arc second (approximately 30 meter) intervals, respectively. Therefore, a DTED2 frame

(3600×3600) is 9 times larger than a DTED1 frame (1200×1200). DTED elevations are

stored as 16-bit signed integer values, which represent the elevation in meters relative to

mean sea level.

c. Retrieval Latency

For the purposes of performance evaluation, I have implemented both local and remote

versions of our OpenMap based query engine. While in most settings the remote

implementation is most practical due to the space requirements to store large collections of

RPF and DTED data, I will evaluate this implementation using both versions to show how

the system performs with varying latency of data retrieval. For general comparison, the

local database is usually on the scale of a few GB, while the remote database is currently

housed on a 2 TB dedicated RAID array and contains several hundred GB of elevation and

imagery data. The remote data service utilizes compression techniques to minimize the

cost of transmitting both RPF and DTED data blocks.

2. Scene Layout

The three-dimensional scene consists of multiple regular grid structures representing

rectangular blocks of terrain data. I define a static triangle loop iteration through a

vertex array of generic vertices, and a vertex program computes the final location of

each vertex based on the vertex id and the desired terrain resolution. The vertex array

defines 1200 × 1200 vertices, according to the size of a DTED1 frame. DTED2 data,

which provides three-fold resolution of DTED1 data in each dimension, can be rendered

by iterating the vertex array nine times while adjusting latitude and longitude offsets. Other
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spatial data may be drawn in addition to the terrain, and elevation values can be easily be

sampled from the texture data during these rendering operations.

3. Texture Memory Objects

Video memory is optimized for storage of rectangular blocks of texture (i.e., color)

information. In this section I will discuss a strategy for constructing indexable memory

blocks in video memory for storing both elevation and raster data.

a. Elevation Data

DTED elevation data can easily be stored in texture blocks with a few simple considera-

tions. First, the 16-bit precision of the data must be preserved. Therefore, I use a 16-bit

monochrome texture array. Some older hardware implementations may not provide this

format, and in this case another scheme such as a two-channel 8-bit format or a 5-5-6 RGB

format can be used. Bit-shifting operations can also be used to decompose and reconstruct

our 16-bit values. This implementation did use a 16-bit mono texture format, however this

impacted the choice of indexing techniques.

The terrain visualization implementation renders a full degree of latitude and longitude

centered around the current viewpoint, and therefore four frames of DTED data are required

in memory at any time, as shown in Figure 16. By allocating a large 16-bit monochrome

texture, each of the four required frames can be stored in a separate quadrant of the texture.

I also maintain a 4×4 matrix that also defines (in row-major form) the lat/lon bounds and

size (1200/3600) of each frame, which is supplied as a matrix input to the vertex program.

The matrix is updated as the viewpoint location changes; new frames are swapped in to

replace unneeded frames.

Newer graphics hardware implementations do provide large texture blocks up to

8096×8096. Allocating a texture of this size allows us to be able to load either a DTED1
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Fig. 16. DTED memory structure. I allocate sufficient memory to store four full frames
of DTED elevation data. If sufficient size texture elements are available, DTED2
resolution can be stored without use of multiple textures. A 4x4 matrix input is
used to define the configuration data required to sample the individual quadrants.
The figure on the left shows the four frames of elevation data neatly juxtaposed.
In practice the frames will be placed in quadrants based on the order required,
resulting in cases more like the figure on the right.

or a DTED2 frame into each quadrant, and using the frame matrix frames of different

resolutions can be stored in different quadrants. Older hardware implementations that only

provide up to 4096x4096 textures should restrict the implementation to using only DTED1

data or use multiple texture objects to store the elevation data. Since current hardware

implementations provide a limited number of concurrently active texture bindings, it is

preferred to use only one texture object for elevation data when possible. Of course there

is a trade-off here since some allocated texture memory certainly goes unused on hardware

platforms that do not provide non-power-of-two texture sizes. In this implementation I

do make use of such texture sizes, available on most contemporary high-end graphics

hardware, and avoid unused allocated memory by using a texture size of 7200× 7200 to

store four frames of DTED2 data.
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b. Raster Data

Since RPF data is color index data provided in power-of-two sized blocks, this data is very

conducive to storage in texture memory. However, in order to reduce the number of active

textures to be bound when rendering, I have combined the smaller 256× 256 tiles into

larger texture blocks, which I refer to as compound tiles (see Figure 17). The total size of

compound tiles can be adjusted, but are usually 2048 or 4096 in practice, allowing 64 or

256 tiles to be compounded, respectively.

A compound tile exists in three distinct states. First, it is realized as metadata only,

meaning that no texture memory is currently assigned for that area. The compound tile

metadata defines the latitude and longitude bounds of the block and is assigned a unique

index. Second, the compound tile can be assigned a currently allocated compound tile,

which is not yet referencable by the rendering context. And finally, an allocated compound

tile containing high view-priority data can be bound (addressable) for rendering. The life

cycle of the compound tiles is determined by tile coverage results from spatial OpenMap

queries. As these results are processed, each new tile is assigned a unique index (tile

indexes and compound tile indexes may overlap). If a new tile is encountered that is not

contained by an existing compound tile, the metadata for that compound tile is defined.

The compound tile will be assigned texture memory (i.e., allocated) and/or bound when

view prioritization dictates. As each frame is rendered, compound tile assignments and

bindings will be determined by view-priority scores, and by the amount of available virtual

and addressable video memory available.

4. Indexing Techniques

In order to determine the view priority of the indexed terrain data interactively, I align and

store tile and compound tile indices within the allocated video memory for both elevation
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Fig. 17. RPF memory structure. Compound tiles are composed of multiple 256× 256 tile
elements. Each tile and compound tile is assigned a unique index.

and imagery data. By embedding the indices of image tiles and their compound parents

into the video memory, the indices can be sampled during rasterization and subsequently

prioritized based screen coverage, location, and view depth.

I implemented two distinct techniques for storing tile indexes alongside the raster and

elevation data structures. Either distinct index textures or mipmap memory can be used

to store the indices. In either case, it is important to consider the size of the indexable

space. For example, 24-bit indexing can provide 224 (approximately 16 million) distinct

indexes, while 32-bit indexing can provide 232 (approximately 4.2 billion) distinct indexes.

For 1-meter imagery CIB datasets, 24-bit indexing is both required and sufficient.

a. Mipmap Indexing

The desired approach to embedding index data into the data structures does not require

a separate texture, since there is a finite limit on the number of textures that can be

concurrently bound (and therefore accessible from the rendering context with no state

change). This limit is usually 32 for most current hardware (although when using large
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textures all 32 still may not be able to be successfully bound). Therefore I map our indices

into the mipmap memory areas of the texture, which are bound along with the main texture

memory [74]. Since the base texture as discussed is an 8-bit per pixel format (for indexed

color), multiple mipmap levels are required to store a 24-bit or 32-bit index, as shown

in Figure 18. In this case I have ensured that highest mipmap level used (smallest size

in texels) still provides an appropriate resolution to represent the index coverage. In this

implementation, I have used 4096×4096 compound texture tiles, and therefore 16×16 or

256 image tiles can be loaded into each compound tile. By using the first 3 mipmap layers,

we can guarantee adequate resolution to store index values because unique indexes can be

specified for each 2n × 2n or 8× 8 block of pixel data where n is the maximum mipmap

level used (n = 3 in this case, and distinct tiles are 256×256). Custom vertex and fragment

programs are used to sample the values at each mipmap level and reconstruct the 24-bit

index value. A careful software implementation can still make use of some mipmap levels

in between the index levels and the base level to increase texture sampling performance.

5. Loading Indexes

I have identified two distinct methods for loading data indices into texture memory, whether

using a separate index texture or using mipmap indexing. The direct method uses the

standard OpenGL texture loading functions [glTexSubImage2D()] to load the indices [74].

This requires an array to be allocated in main memory and populated with appropriate index

values prior to loading, which in turn requires interpolation functions to be executed on the

CPU to determine coverage bounds for each index individually. Alternatively, we can

attach a frame buffer object (FBO) to our texture memory, and render each index directly

into the texture by defining the current color as the index value and simply rendering a

quadrilateral primitive corresponding to the tile or compound tile bounds using standard

direct-mode OpenGL rendering commands [glVertex2D()]. While this approach is simpler
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Fig. 18. A 24-bit index is split into three 8-bit components in order to be stored in multiple
mipmap levels. A custom fragment shader can reconstruct this index by sampling
each level. The highest mipmap level (smallest size in texels) must still provide
adequate resolution to avoid aliasing when sampling indices.

to implement and does not require allocating and pre-populating redundant index values

in main memory, current graphics hardware implementations vary on support for attaching

FBOs to different texture memory formats. As a result the index rendering method may

not be available, depending on the hardware platform support for FBOs using the index

texture format. If FBOs are available for the desired texture format, the implementation

must attach a unique FBO to each mipmap level of the texture, and render each byte of the

index separately.

In this implementation, I have used a non-standard texture format (mono 16bpp) to

store elevation data. None of the current graphics hardware tested during this work allowed

attaching a FBO to a texture of this format. Therefore, I chose to use a separate texture

object to store compound tile indices aligned with elevation data (see Figure 19). I use a

standard 32bpp RGBA texture format that could be rendered into directly by attaching an

FBO. Because of the finite limit on the number of bound texture objects, in most cases it is
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Fig. 19. This separate texture memory object is similar in structure to the elevation texture
object shown in Figure 16. Compound tile indices are rendering directly into each
quadrant of the texture memory using a frame buffer object (FBO).

preferred to embed the index data in the main texture object directly using mipmaps, when

possible.

6. Rendering

In this section I discuss the details of the rendering logic used for this implementation.

First, all required data structures required to store elevation data, compound tile data, and

the vertex array used to define the terrain surface are allocated. Then, after binding the

elevation data and index textures and enabling the custom vertex program, render the scene

normally (using custom or fixed-function lighting) and then enable the custom fragment

program which samples indices for images tiles and compound image tiles (and also exports

latitude and longitude values per fragment). The output of the indexing render pass is

directed to a FBO attached to a 32bpp texture of appropriate size, whose contents are then

read to main memory and processed by the CPU for priority scoring. The pseudocode is
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given below.

Main()

Allocate elevation data texture(s)

Allocate N compound image data textures

Loop

Bind elevation data textures

Enable custom vertex program

Bind M compound image textures based

on priority scores

If shouldProcess()

Enable indexing fragment program

Render scene

Fork:processOut put()

Else

Enable lighting

Render scene

It should be noted that the fragment program for rasterizing tile indices to the

framebuffer must sample several mipmap levels for each bound texture element and then

combine the 8-bit values from each level to reconstruct the index (in this case, three 8-bit

components are combined to produce a 24-bit index). The performance of this approach

will vary on different graphics hardware implementations. The number of concurrent

texture bindings reserved for compound tiles can be reduced to increase performance.
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7. Processing Output

As shown in the pseudocode, a function is executed in order to process the index output.

First, based on the current viewpoint location any unretrieved DTED tiles (the four tiles

surrounding the current viewpoint) must be requested. I define a callback function,

loadElevation(), that will be called as soon as the data is retrieved. Next, we iterate over the

contents of the frame buffer and update four values: the minimum and maximum latitude

and longitude. These values are used to define a bounding box which encloses the current

view. This bounding box will then be used to query the OpenMap-based data service for the

metadata for imagery tiles contained within the specified area. Then the priority scores for

each compound tile index and each tile index referenced by the texel are updated based on

the view priority function. The pixel score values for each index are combined to compute

a total score per index. Pseudocode for this is process is given below.

ProcessOutput()

Request needed elevation frames

Callback:loadElevation()

Compute lat/lon bounds

Compute index priority scores (image tiles and

compound image tiles)

Execute coverage query (based on lat/lon bounds,

returns metadata)

Define indices for new tile metadata

Create new compound tiles metadata and define indices

Render new compound tile indices into elevation index texture

Update compound tile assignments based on priority

Render new tile indices into assigned compound tiles
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Request prioritized list of image tiles

Callback: loadTile()

After computing all index scores, I request the image tile metadata within the

computed latitude and longitude bounds. Any new tiles are assigned a unique index. New

compound tile metadata and indices are defined for any new tiles that are not contained by

an existing compound tile.

8. Prioritization functions

The purpose of the prioritization function is to determine an indexed data element’s

relevance to the current view. Because the input to the priority function is the screen

location of a reference in the framebuffer output, there are two primary attributes with

which to work: depth and screen location. In order to account for screen coverage, I

compute the sum of the depth and location terms for each pixel referencing a particular

index. A generic form of the basic prioritization function is shown in 4.1.

Pd =
n

∑
i
(2−Depthdi)×Location(di) (4.1)

Since depth values are on the range [0,1], I subtract the depth from the scalar value 2.

This ensures that all pixel contributions are counted, but data element references closest to

the near clipping plane are weighted twice as much as those furthest away. Finally, I define

an additional scaling function (Location(di)) that can, for example, increase prioritization

values near the center of the view. I have used a simple location prioritization function

defining an elliptical region (since terrain is often viewed along a horizon) with little

observed difference. However this function could also be used to define clipping areas if

data near the screen boundaries is not desired, or to interactively define regions of interest
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using the mouse pointer.

a. Memory Management

A simple memory strategy is used to manage video memory. First, compound texture

assignments are prioritized to ensure video memory is allocated to the most important areas

of the current view. This assignment simply links a pre-allocated block of video memory

with specific compound tile metadata that defines the latitude and longitude coverage

bounds of the memory assignment. Once a compound tile is assigned allocated memory,

tile indices can be loaded into mipmap memory.

Next, the binding of the allocated compound textures are prioritized since there is a

finite amount of addressable (bindable) video memory (both in terms of bytes and number

of texture units). In my experience with large textures, the bindable byte limit is usually hit

before the number of textures (usually 32). Note that only bound compound textures can

contribute their tile indices to the scene, therefore this set defines the potential data elements

that can be identified in the resulting priority list without modifying texture binding

assignments. This implementation avoids unnecessary changes in these assignments since

the entire terrain geometry is defined by a single generic vertex array that can be rendered

quickly (changes in texture binding are not possible during the rendering of a vertex array).

An example of the visualization application that highlights this texture assignment behavior

is shown in Figure 20.

I maintain a table mapping compound tile metadata to texture allocation IDs. The

top A compound tiles, ranked by priority, will have table mappings to allocated video

memory. Whenever a compound tile allocation is updated, tile indices must be repopulated

into the mipmap memory. I maintain another table that maps compound tiles to bindable

texture locations. Priority scoring ensures that the top B compound tiles are bound (i.e.,

addressable), where B is defined by subtracting the number of texture elements used for
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Fig. 20. In this example the application is currently retrieving the set of viewable imagery
tiles for a cartographic map over the viewable area. The bounds for current
compound tiles are drawn in red and the bounds for individual tiles are drawn in
green.

elevation data and indices (three in this implementation; one for the elevation data, one to

store compound tile indices aligned with this elevation data, and one for the skybox texture)

from the maximum number of texture binding locations. In this case, B = 32−3 = 29. The

implementation of these table mappings ensures that changes in texture allocations and

bindings are minimized.

D. Results

I have tested this implementation using a variety of combinations of elevation and imagery

resolutions. I have used both DTED1 and DTED2 elevation data, and RPF map sets

ranging from 1:25K scale cartographic maps to 1:1m satellite imagery. Also, I have
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tested the performance of the terrain rendering application using both local and remote

data services, where remote data retrieval was conducted over both wired and wireless

network connections. The test system was a Windows 7 laptop with a 3 GHz Intel

Core2 Extreme CPU with 8 GB RAM and a nVidia QuadroFX 3700M graphics card with

1GB dedicated video memory (addressable) and approximately 4GB shared video memory

(virtual). We observed stable rates of around 25 fps when using DTED1 terrain resolution

(approximately 1.4 million vertices) and around 13 fps when using DTED2 (approximately

13 million vertices). I will discuss specific performance results in more detail.

1. Performance

In order to evaluate the effectiveness of this approach, I have collected performance metrics

during several controlled executions of the terrain visualization implementation. In each

case I have varied the latency of data retrieval, the amount of geometry in the scene, or

the resolution of the terrain imagery and I have captured the framerate and texture loadrate

of the application. The evaluation of these results supports my initial hypothesis that use

of asynchronous view-prioritized data retrieval can enable stable rendering performance

regardless of the size or latency of retrieval of a remote dataset.

The metrics recorded during the first experimental evaluation are shown in Figures

21–23 and include the retrieval latency and framerate of the terrain visualization applica-

tion.The retrieval latency is defined as the time in milliseconds for each individual imagery

tile request to be completed. Both values are shown as averages over five-second periods.
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(a)

(b)

Fig. 21. In this experiment I vary the latency of tile retrieval by querying a local database.
Each graph shows five minutes of performance metrics collected from the terrain
visualization application. The tile retrieval latency is shown in red (a) and the
framerate is shown in blue (b). The x-axis of the graph depicts time and the y-axis
depicts the scalar values of the framerate (1/ms) and data retrieval latency (ms).
The break in the top graph indicates a period where no data was retrieved.
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(a)

(b)

Fig. 22. In this experiment I vary the latency of tile retrieval by querying a remote database
accessed via an Ethernet LAN. The tile retrieval latency is shown in red (a) and the
framerate is shown in blue (b).
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(a)

(b)

Fig. 23. In this experiment I vary the latency of tile retrieval by querying a remote databases
accessed via a network with artificial latency. The tile retrieval latency is shown in
red (a) and the framerate is shown in blue (b).
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During this experiment the location, map set, and terrain surface resolution remained

constant. The application was configured to render DTED2 resolution elevation data

(approximately 30 meter elevation postings, 3600 postings per degree) from an area near

Kandahar, Afghanistan using a 1:25K scale topographic line map. In this experiment, the

local dataset consisted of approximately 2 GB of imagery data on a local hard drive, while

the networked datasets were queried via a custom socket application running on a remote

system with over 200 GB of total imagery data.

While we might expect the overall retrieval latency to increase when querying a larger

remote database for imagery tiles, in this experiment I observed that the latency of the

local database was comparable to the latency of the remote database. This is most likely

because the local database must compete with the visualization application itself for local

computational resources while the remote queries are executed by a dedicated database

system. An additional experiment introduced artificial delay with moderate variance (the

artificial delay system was configured to introduce a one-second delay to each transmission

with a 100ms variance). The experimental results are shown in Table II.

Table II. Latency Experiment Results

Latency (ms) Framerate (1/ms) Pearson (%)

Local Disk 418 12.49 -0.158

LAN 854 12.69 0.154

Artificial 1452 13.88 -0.207

Total 1159 13.47 0.343

The table also includes the Pearson product-moment correlation coefficient, r,

computed from the experimental data. The Pearson coefficient is defined on a range [−1,1]

and measures the degree of linear correlation between two observed variables, where a

measure of zero indicates no correlation. For the purposes of this work, I expect to observe
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little or no correlation between the observed variables, and therefore expect to observe r

values whose absolute value is less than 0.3. I computed averages and r values within each

experiment as well as between all experiments (designated by the last row in the table).

The results of this experiment varying latency showed a higher than expected positive

correlation, prompting further experimentation. To this end I conducted two additional

experiments aimed at exploring the nature of this observed correlation. These experiments

were designed to test correlation between the framerate and loadrate (rate at which texture

data is loaded on the GPU), since such a correlation could be responsible for the high r

value observed in the first experiment.

In this next experiment I varied only the amount of geometry used to render the terrain

surface. In this case the application was configured to visualize 1-meter satellite imagery

from Aberdeen Proving Grounds (located near Aberdeen, MD) using both DTED1 and

DTED2 grid resolutions. During the experiment I collected the framerate of the graphics

hardware as well as the loadrate, as shown in Figures 24–25.
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(a)

(b)

Fig. 24. In this experiment I rendered a DTED1 resolution terrain grid (approximately 1.4
million vertices). The framerate is shown in blue (a), and the loadrate is shown in
purple (b).
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(a)

(b)

Fig. 25. In this experiment I rendered a DTED2 resolution terrain grid (approximately 13
million vertices). The framerate is shown in blue (a), and the loadrate is shown in
purple (b). The breaks in the bottom graph indicate periods in which all the data
for the current scene had been retrieved, and therefore no data was loaded.
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Loadrate is defined as the number of bytes of texture data loaded into graphics

hardware memory per time unit. I observed that while the framerate was significantly

lower when rendering DTED2 resolution (approximately 13 million vertices as opposed to

1.4 million for DTED1), there was no significant effect on the loadrate within experiments.

However the results, shown in Table III, demonstrate that between experiments there is

a noticable positive correlation between the framerate and the loadrate. This can be

explained by understanding the operation of the graphics hardware. Since current hardware

implementations do not allow rendering and texture loading operations to be executed in

parallel, an increase in the time spent rendering (i.e., lower framerate) leaves less time

available for texture loading. In this case, the results are acceptable since the outcome

favors rendering performance, which is our goal in this interactive visualization application.

However, when large amounts of texture data saturate the loading routine, the result can

adversely effect the rendering performance. To this end, I have introduced the use of load

throttling to balance the time spent loading texture data with interactive framerates and

tested this approach in a separate experiment.

Table III. Geometry Experiment Results

Framerate (1/ms) Loadrate (kB) Pearson (%)

DTED1 62.67 3107961 -0.018

DTED2 12.40 557056 0.194

Total 38.39 1815403 0.786

In the final experiment I varied the resolution of the terrain imagery data while again

rendering a DTED2 resolution elevation grid located near Kandahar, Afghanistan. The

results of this evaluation are shown in Figures 26–27 and include the framerate and loadrate

when using a 1:25K TLM and 1-meter satellite imagery.
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(a)

(b)

Fig. 26. In this experiment I rendered a 1:25K resolution topographic line map (TLM). The
framerate is shown in blue (a), and the loadrate is shown in purple (b).
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(a)

(b)

Fig. 27. In this experiment I rendered 1:1m resolution satellite imagery. The framerate is
shown in blue (a), and the loadrate is shown in purple (b).
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For comparison, the TLM map set contains several hundred image tiles, while the 1-

meter imagery map set contains several thousand tiles. These results show that the average

framerate and loadrate of the system are not significantly affected by the resolution or

tile count of the remote dataset when using low-resolution data. Initially I did observe

a potential correlation between framerate and loadrate when using high-resolution data.

As discussed, this is because rendering and loading operations are mutually exclusive and

therefore must be executed serially by the graphics hardware. The proposed load throttling

implementation amortizes the cost of loading texture data over a longer period of time,

similar to the “simulation amortization” method introduced by Harris et al. [27] to spread

the computational cost of a fluid simulation used to render interactive cloud formation

on the GPU. The method I have implemented will allow only a specified amount of time

(300ms in my implementation) to be consumed by loading operations every second. As we

can see from the results shown in Table IV, throttling the texture loading for high-resolution

imagery produces the expected low Pearson value by removing the dependency between

framerate and loadrate.

Table IV. Resolution Experiment Results

Loadrate (kB) Framerate (1/ms) Pearson (%)

1:25K TLM 816514 13.11 -0.006

1m Imagery 2127234 14.01 0.637

1m w/ Throttling 1041055 14.58 -0.3678

Total 1471874 13.56 0.597249

Total w/ Throttling 928784 13.84 0.09615

These results indicate that the basic principle of the proposed method that asynchronous

data retrieval enabled by indexing pre-allocated memory coupled with efficient view-prioritization

improves interactive performance when working with large remote datasets is sound. How-
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ever, in order to effectively implement this method on current graphics hardware certain is-

sues must be addressed. Specifically, since current graphics hardware implementations do

not allow rendering operations to be performed in parallel with texture loading operations,

load throttling must be enforced to ensure that data loading operations do not saturate the

graphics pipeline, preventing interactive rendering performance. This is a constraint intro-

duced not by the proposed method, but by limitations of current graphics hardware.

E. Ongoing Work

I am currently testing this application in several data analysis scenarios using domain

experts, including spatial analysis of high-resolution tracking systems involving large

numbers (several hundred) of individual sensors attached to players operating in close

proximity. An example of this application is shown in Figure 28. The goal of this

application is to provide detailed geospatial context to aid in the analysis of wireless

network performance over varying terrain conditions, and therefore small-scale terrain

features are important within the interactive visual analysis environment. I would also

like to explore the impact of large imagery datasets that are updated on-the-fly. This will

require the data service to inform the visualization application when certain tile indices

have updated data so that the texture memory locations can be marked to be updated.
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Fig. 28. Example of our terrain rendering application embedding within a coordinated
multiple view visualization environment. Individual sensors attached to players
operating in close proximity are rendered as colored spheres on top of the terrain,
which is textured with 1m satellite imagery. The density of position updates per
sensor are shown on the left. A legend and timeline are included on the right and
bottom, respectively. The magenta area of the terrain shows where compound tile
memory is currently allocated and bound. The green and blue areas are used to
distinguish different frames of elevation data (stored in separate quadrants of the
allocated texture memory.
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CHAPTER V

APPLICATIONS

In this chapter I will discuss several novel applications developed and delivered to users

using the proposed framework. First, I will discuss a custom glyph-based visualization

developed for a specific group of users responsible for validating large collections of

sensor data. I will discuss the details of this technique, and results of several user studies

and expert opinion. Next I present a custom spatial visualization implemented to enable

analysts to measure the accuracy of situational awareness (SA) data in a wireless network,

as well as expert opinion supporting the advantages of this technique.

A. Glyph Visualization for Temporal Analysis of Spatial Sensor Activity

As distributed sensor networks become more common, methods that enable quick recog-

nition and proficient analysis of pattern irregularities from these sensors will become more

important. This work aims to improve visual recognition of temporal patterns within a net-

work of spatial sensors. I will present a new visualization technique that we have verified

in a real-world analysis application designed to enable analysts to quickly inspect large

collections of data for critical failures.

This work can be applied to other applications, but is inspired by interaction with

colleagues who collect and analyze large datasets produced by networks of spatial sensors.

The goal for these users was to ensure accurate performance of each spatial sensor as well

as complete collection of the data produced by the sensors. The sensors are attached to

players or vehicles participating in a simulation, and are designed to report their location at

a fixed rate when at rest, or more often when the sensor is moved. The challenge for these

users was to provide a quick and thorough overview of daily recorded sensor activity with

emphasis on highlighting anomalous behavior. Anomalies defined by the domain experts
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were primarily temporal (e.g., a sensor failing to report within the expected time), however

our technique enabled the domain experts to detect both spatial and temporal anomalies.

An example of the visualization application is shown in Figure 29.

Fig. 29. Temporal activity patterns exhibited by a network of spatial sensors. Each row
depicts the sensor reporting activity for a unique sensor, and each triangle represents
a period of time between reports. Five minute threshold violations are highlighted
in red, and triangles less than 3 pixels in width are merged to form quadrilaterals.
A coordinated violation is shown by seven of the sensors in the beginning of the
time period shown. The sensors used in this work increase activity when in motion,
therefore in this example the quad areas represent spatial movement. A coordinated
movement involving at least twelve sensors is shown in the middle of the period
depicted, at the same time that five sensors stop reporting unexpectedly.

During interviews with domain experts, we were able to identify several specific

analysis tasks which we sought specifically to optimize. Foremost, users should be able

to quickly and accurately identify failure patterns within the sensor network (i.e., when

expected sensor activity is not present), and investigate the temporal and spatial context

of these failures. Second, users should be able to easily recognize expected patterns

such as coordinated movements and start/end times of reporting periods to validate the
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accuracy and completeness of the sensor data. Finally, users should be able to identify

and investigate the context of spatial reporting anomalies to support analysis of sensor

problems. We designed a visualization method with these user-defined analysis goals in

mind, and likewise the tasks in the user studies are designed to evaluate the effectiveness

of using this information visualization technique when executing these types of analysis

tasks.

In addition to traditional bar charts and line graphs, analysts had been using a row-

based state plot in which time periods (at a preset five-minute resolution) were colored

green or red based on whether or not sensor activity occurred. An example of this technique

implemented within the ProDV software environment is shown in Figure 30.

Fig. 30. Example of existing methods similar in capability to our domain experts’ previous
analysis technique. Line and bar graphs on the right show the total number of
position updates sent by each sensor for each five-minute interval. The chart on the
left shows a row for each sensor, and is colored green for each five-minute period
in which a position update was recorded, and red otherwise.
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While these techniques were sufficient to identify a temporal sensor failure, the

process to produce these static visualizations was prone to error and the resulting static

visualization became cluttered when displaying multiple sensors. Also, temporal pattern

recognition was not easily accomplished using such methods. Our approach was to design

and implement a custom interactive visualization and provide essential visual analysis

features such as rescaling, filtering, and querying for details [64]. I will describe the glyph-

based visualization technique we developed to facilitate analysis of these sensor activity

patterns. I will also discuss evaluation of this technique using user studies and expert

opinion.

1. Proposed Method

While the techniques shown in Figure 30 can display the primary attributes of the data -

the number of reports per time unit and the sensor ID - they do not allow the analyst to

effectively discern changes in temporal sensor activity patterns due to screen clutter and

data aggregation. These methods also do not effectively highlight attributes derived from

the data: the individual temporal anomalies caused by sensor failures and the exact time

they occurred. Sensor failures are defined as a failure to generate a position update within

the expected time. Five minutes was usually the expected value for our users, although in

practice the value is user-specified (depending on the sensor type used).

In the following sections I will discuss the general format of our input data, the detailed

rendering techniques used to create the visualization, and the user interactions provided by

the application to facilitate visual analysis.

a. Input Data

The input data is comprised of an ordered sequence of location reports for a collection of

sensors, and each sensor is assigned a unique identifier. Each sensor report includes its ID,
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a timestamp, and a geospatial coordinate. Records with duplicate IDs and timestamps are

ignored. For our particular data set, times were given in seconds, which was sufficient for

our analysis. The datasets our domain experts were interested in included anywhere from

30 to 100 sensors, although more recent events have included several hundred individual

sensors.

b. Design Rationale

In the design of the visualization method, several considerations led to the final design

discussed here. We chose to use a triangle to represent periods of time between sensor

reports because:

• It allows us to clearly distinguish when the event occurred (with the vertical base of

a triangle).

• In contrast to a single mark, it has volume proportional to the length of time between

reports, and is thus easier to comprehend visually.

• In contrast to a rectangle (which also provides that visual area), the triangle shape

allows one to clearly see the beginning point when juxtaposed with the tip of an

adjacent triangle.

• The shape is very simple, making it much easier to comprehend over a larger region

then more complex glyph shapes that could potentially convey more information

individually.

We also decided to visually aggregate small triangles into rectangles because:

• The limitations in pixel-based display make it difficult to even recognize a triangle

with a width of two pixels, and impossible with one.
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• The rectangle clearly indicates rapid updates in a period of time (“rapid” being

relative to the scale being displayed, of course).

• We can still employ red highlighting to indicate critical features (e.g., failures) within

the rectangle.

c. Rendering Details

The visualization is rendered in rows of equal height, one row for each unique sensor ID. A

horizontally-oriented isosceles triangle is drawn in between each sensor report, where the

horizontal axis references time. A vertical line marks the position of the last sensor report

in each row. If the horizontal length of any triangle, which corresponds to the length of

time between sensor reports, is less than some minimum width escreen at the current zoom

level, then a quadrilateral is formed so that neighboring small triangles can be merged to

form a solid rectangle. The reasoning for this is that a triangle or group of triangles that are

less than escreen will be difficult to discern and will visually approximate a solid rectangle

anyway. We use five pixels as a default for escreen, however since there is variation in pixel

size among displays this value is adjustable. An example of these glyphs is shown in detail

in Figure 31.

The algorithm for drawing each row is as follows:

For each sensor

For each report, compute xi (the exact horizontal

position based on view scale).

If there is no next report, just draw a vertical

line. Otherwise, compute xi+1.
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Fig. 31. Details of our row-based glyph rendering method. The colors of each row are
user-specified.

If xi+1 − xi < escreen, begin a new quad or continue

the current quad. Otherwise, draw the triangle.

Draw threshold violation, if appropriate.

Threshold violations occur whenever a period between sensor reports is longer than

the user-defined threshold (default is five minutes, based on majority of equipment used by

our domain experts). These threshold violations are drawn using at least escreen columns

of red pixels at the appropriate point on the triangle or rectangle. By drawing at least

this many columns of red pixels, we ensure that at any scale threshold violations will be

distinguishable. This is illustrated in Figure 32. If the user does zoom out until such a

triangle is less than escreen pixels wide in the current screen projection, then we assume

the user is not interested in this level of detail and allow the triangle to merge with any
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neighbors (which may or may not be in violation of the threshold). Regardless of scale,

however, any pixel column which contains a threshold violation will always be highlighted

to ensure that violations are always visible.

Fig. 32. Example of the proposed method at different scales. A one hour view of the two
sensors’ activity is shown at the top, a twelve hour view is shown at the bottom.
The one hour view depicts the time period outlined in the twelve hour view.

We render each row of the data using the given algorithm at the current zoom level

and for the currently specified time window, which is by default one day in length. The row

height can also be adjusted by the user to ensure that the graph is readable on the current

display.

In regard to color, we allow the visualization environment to assign what were

essentially unique but random colors chosen from a finite color scheme to the set of sensor

IDs. However, within this visualization we desaturate the assigned sensor color when

drawing the rows to ensure a high contrast with the red threshold violation indicator. The

true assigned color is used to draw the line for each row (visible before the first and after

the last sensor report), and for the sensor ID text drawn in the margin. This allows the

visualization to properly highlight the temporal threshold violations while still preserving
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the aesthetic attributes of each sensor ID, which in our visualization environment are shared

between multiple visualizations. In practice users are encouraged to manually assign

color groups because of the potentially large number of sensors. We did investigate use

of some existing color schemes, such as those proposed by Brewer [28]. However these

schemes were not designed to accommodate large numbers of distinct entities (the largest

ColorBrewer scheme has only 12 distinct colors designated). For evaluation I ensured

that all users were presented the same essentially random color scheme, since I am not

attempting to evaluate the effect of color in this work.

d. Interaction

The interactive environment provides select, pan, zoom, and filter operations as well as

detailed information on demand. Since this is a row-based visualization, we provide

rescaling along the x axis (time). Additionally, the user can set the view to one of several

preset scales: hour, day, or week.

The glyph-based visualization can be (and is, in this implementation) linked to a map

displaying spatial information associated with the sensors. Specifically, for a particular

time, the position of the sensor at its most recent report (or interpolated between reports)

can be shown. The map can also be configured to display a user-specified number of past

positions to define a trail that depicts a sensor’s spatial path.

Row selection is indicated by highlighting and is linked to a common legend. Users

can select multiple rows and selections can be grouped to cause them to be collocated in

the visualization. The interactive map will recenter to focus on the location of a selected

sensor.

The details provided by hovering and clicking the mouse on any part of the

visualization window include the exact times of the neighboring sensor reports, the exact

length of time between sensor reports, and the sensor ID.
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Since the visualization environment provides temporal animation features, we also

included the ability to automatically pan the view during animation. This allows the user

to observe in detail the reporting pattern of a sensor as its position is animated on the map.

Since domain experts had an informed expectation of sensor activity during various spatial

movements, this feature allowed them to quickly identify unexpected behaviors.

2. Implementation

The proposed method was implemented using ProDV, the previously discussed visual

analytics framework for interactive data visualization applications [55]. Visualizations are

implemented using OpenGL, and common controls such as a timeline, legend, and filter

are provided. As discussed, this framework facilitates rapid development of coordinated

multiple view (CMV) type visualizations, which I have taken advantage of in order to

compare the use of combinations of visualization techniques to perform specific analysis

tasks.

a. Input Data Format

Data was provided in text files which were exported after aggregating processed log file

data from each sensor. Each text file contained the data for all sensors for a complete day.

Depending on the amount of activity in a day, each file could contain millions of sensor

reports and be hundreds of megabytes in size. While the input data files did contain more

information than just the time and location of the sensor (e.g., speed or orientation), the

proposed glyph used only the primary temporal and spatial components of each sensor

report.
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3. Evaluation

In addition to iterative and informal evaluations with expert users, which unfortunately did

not afford the opportunity for formal evaluation efforts, I conducted two small user studies

to evaluate the effectiveness of our approach. No incentive was offered for participation

in the 90-minute study, and thus I recruited only a small number of volunteers in the

approved time frame. All participants recruited were Computer Science graduate students

specializing in graphics, all with moderate data analysis experience. First, I recruited

a small group of graduate students to participate in a task-based evaluation of temporal

pattern recognition using this method. This first study focused on use of this technique

strictly for temporal analysis with no reference to spatial components of the data. Critical

analysis tasks were identified by our domain experts and focused on identifying coordinated

sensor failures, coordinated spatial activities, and other feature identification tasks (e.g.,

identify the sensor with the longest period of sustained activity). Next, I asked a group

of volunteers with a broader range of analysis skill to participate in a similar task-based

evaluation focused both on temporal and spatial analysis tasks. Spatial tasks focused on

identifying spatial properties of events distinguished by temporal patterns (e.g., identify

the location of a sensor prior to failure). In both cases I provided a controlled introduction

to the visualization software interface, and allowed the participant to feel comfortable using

the software before any analysis questions were presented.

a. Temporal Analysis

The initial user study employed a within-subjects experiment design and exposed partic-

ipants to three different interactive visualization implementations. Because all three vi-

sualizations were implemented within the same environment, the interaction mechanisms

were the same for each visualization. I focused this study on evaluating the effectiveness of
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this method for temporal analysis tasks. Temporal analysis tasks in this context require the

user to identify a specific time that a temporal pattern occurs. For example, a user might

be asked to identify the time that a failure occurred, or the time that a coordinated spatial

activity began. Therefore, I ensured that participants understood how to recognize both in-

dividual and coordinated activities and sensor failures. These analysis tasks relate directly

to real-world analysis tasks reported by experts in which temporal analysis is required to

determine the local or global nature of a failure (i.e., a failure is local if no other failures

occurred in the same time period).

Participants were asked to answer a series of questions using each visualization

interface on different portions of the sample data. The order of visualizations used by each

user was approximately balanced within the group in order to avoid the impact of learning

effects on the experimental observations. The first visualization method consisted of an

interactive bar graph and line graph depicting the aggregate number of location reports

per period, as well as a state plot depicting red state for periods with no sensor activity

and green state for periods with sensor activity (see Figure 30). The length of the time

period could be varied interactively. This method was similar in capability to applications

previously being used by the analysts. The second visualization method was a simplified

method similar to the proposed method except that some of the primary glyph features

were removed (see Figure 33). The final visualization method was the proposed method as

described here.

During the study, participants were asked to use each of the provided visualization

methods to answer a series of ten analytic questions about the data. Four of the questions

required counting prominent data features, such as counting the number of sensors with

no temporal threshold violations. The remaining six questions required the participant to

locate and identify unique features, such as the largest gap between sensor reports. The

order that the three different visualization methods were presented to each participant, as
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Fig. 33. Example of the simplified version of our method used for evaluative comparison.
Threshold violations and reporting periods are still visible, however the triangular
glyph is omitted.

well as the dataset used for each method was varied. The participants were instructed to

indicate if they felt that the current visualization capabilities provided were not adequate to

answer any given question, but were otherwise encouraged to answer each question to the

best of their ability. We recorded the time and accuracy of each response. Because of the

small number of participants, statistical evaluation of the results is omitted.

b. Spatial and Temporal Analysis

The second user study was designed to evaluate the benefit of this method for both temporal

and spatial analysis tasks. It was focused primarily on detecting two anomalous behaviors

common in spatial sensor systems: a failure to report when expected and reporting an

erroneous location. In this study, I again asked participants to answer a series of ten analytic

questions about a sample dataset, first using an interactive geospatial visualization coupled

with a line graph showing the number of reports per sensor over time, and then using the

geospatial visualization coupled with the proposed method. Both visualizations provided
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views with filtering, and linked selections and timelines, as shown in the figure on p. 106.

Each session asked participants to perform tasks requiring spatial pattern finding, as well as

geospatial referencing based on those findings. The last question of each session required

participants to perform both spatial and temporal analysis (e.g., identify sensors exhibiting

pattern X that were close together). There was an equal distribution of temporal and spatial

tasks in each session.

4. Results

In this section I will present the results of this work using the user evaluation experiments

described above, as well as expert opinion obtained from domain experts using this method

to detect and analyze anomalies in the sensor network.

a. Scoring Method

In order to quantitatively evaluate the effectiveness of this method based on user evaluation

studies, I will first define the scoring mechanisms for comparing time and accuracy between

participants.

Time I recorded the time (in seconds) that each participant took to respond to each

analysis question. I then computed the average response time per question for each

visualization method, and the average response time for each task type (spatial or

temporal).

I did consider whether to include the time scores for inaccurate responses, and

decided that given the small number of participants in this study it was best to

include all response times except those in which the user eventually indicated that

he could not answer the question using the given visualization. Therefore this study

evaluates the amount of time each user required to reach an answer using the current
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visualization technique independent of response accuracy.

Accuracy In order to measure a participant’s response accuracy for each question,

thresholds must be defined for both temporal and spatial tasks. That is, I will define

how close an answer must be to be correct or receive partial credit.

To choose appropriate thresholds for these tasks, I considered that our domain experts

reported that most events occurred over several days, however individual activities within

the events usually spanned only a few hours. For both user studies, I presented participants

with approximately two hours of data for each session. Therefore for temporal tasks, I

regarded responses within one minute of the correct answer to be 100% accurate, while

responses within five minutes received half credit and all other responses received no

credit. The area of the simulation spanned a region of approximately 10 kilometers by

20 kilometers. For spatial tasks, responses within 100 meters received full credit while

responses within 500 meters received half credit. These scoring thresholds were chosen

based on typical analysis requirements indicated by domain experts.

For the final results of both groups, I first computed the accuracy scores for each

participant’s responses. I then computed the average accuracy by task type (spatial or

temporal) for each different visualization technique used. Finally, I computed the average

accuracy for each task type and each visualization method.

b. Experimental Evaluation

Both user studies were conducted using volunteer test participants, primarily graduate

students in computer science. Because of light participation (four students in the first

task, eight in the second), I cannot report useful confidence intervals; however I will

discuss analysis of experimental results based on interpretation of large trends among the

participants. I view these results as an initial indicator of the utility of this method.
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c. Temporal Analysis Study

During the first study, all participants were able to answer every question using the

proposed method, while at least one question was skipped for each of the other methods. As

shown by the results in Table V, participants on average spent approximately 26% less time

using the proposed method to answer the ten questions. Most importantly, I observed that

when using this method, participants achieved noticeably greater accuracy than when using

other techniques. In particular, accuracy in counting events and locating occurrences was

doubled compared to the traditional visualization method and increased by approximately

30% compared to the simplified version of the proposed method.

Table V. Temporal Study Results

Average Time (s) Average Accuracy (%)

Traditional 76 0.38

Simplified 56 0.54

Proposed 56 0.74

d. Spatial and Temporal Analysis Study

For the second evaluation study, after computing average time and accuracy scores for

temporal and spatial tasks, I observed an overall speed improvement of approximately 30%

for temporal tasks and approximately 50% for spatial tasks. Accuracy for temporal tasks

increased by 13%, while accuracy for spatial tasks increased by 10%. These results are

shown in Table VI.

Based on these findings I believe that this method improves both speed and accuracy of

analysts looking for temporal patterns or anomalies within spatial sensor performance data.

In addition, I observed improved performance of spatial analysis tasks, when performed
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Table VI. Spatial/Temporal Study Results

Average Time (s) Average Accuracy (%)

Temporal Spatial Temporal Spatial

Traditional 62 136 0.69 0.74

Proposed 43 75 0.82 0.84

using interactive geospatial visualization complemented by the enhanced temporal pattern

recognition provided by the proposed method.

e. Anomaly Detection

This approach enabled domain expert data analysts to detect several important anomalies

within the sensor network. These can be divided into temporal and spatial/temporal

anomalies. Confidentiality requirements prevent me from publishing examples using actual

data collected by domain experts, however I have used representative datasets similar to the

actual data to demonstrate these anomaly detection tasks.

Temporal Anomalies The primary temporal anomaly we sought to identify was a failure

to report within the expected time for a particular sensor. This was often caused by

a power failure, sensor failure, or loss of sensor connectivity (most were wireless

sensors). Domain experts indicated that it was very important that faulty sensors

were identified quickly to reduce errors in recorded data. Using this method, domain

experts were able to quickly recognize and investigate these anomalies.

By using the proposed technique to analyze several datasets, experts began to

recognize a common synchronized failure pattern of multiple sensors often occurring

at the onset of a planned activity, as shown in Figure 34.After some investigation, it

became clear that many players were in the habit of resetting their sensor systems
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Fig. 34. Example showing an expected coordinated failure due to system maintenance
on the first seven rows compared to erratic failures on the bottom row. This
visualization allowed such faulty sensors to be identified and addressed quickly
and easily.

before large coordinated activities. Subsequently, this failure pattern could be

recognized immediately and therefore experts were able to focus attention on other

anomalies.

Spatial Anomalies with Temporal Patterns Analysts were also able to identify several

spatial anomalies in the sensor reports, meaning that sensors were reporting erro-

neous locations while moving along a route. As it turned out, the sensors being

evaluated exhibited a unique temporal pattern in conjunction with the spatial report-

ing anomalies, and therefore those anomalies were able to be quickly detected using

this technique, as shown in Figure 35.
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Fig. 35. Spatial anomaly (shown by diverging path) and temporal pattern (red marks have
been added to highlight below second row). At this scale the rectangular areas
clearly identify a change in the temporal pattern that accompanied the anomalous
sensor reports. A total of 11 sensor anomalies occurred along the route. Each time
this temporal pattern is observed, the system generates an erroneous position report
at that sensor’s last startup location. The use of our visual technique helped identify
this repeated sensor failure, which turned out to be a design flaw in the sensor.

Based on this, geospatial correlations were recognized, indicating that certain terrain

conditions caused a disruption in sensor connectivity (e.g., proximity to dense

foliage). Therefore, an anomalous pattern that could previously only be detected

by observing animated spatial visualization of sensor reports could now be discerned

quickly over a larger span of time for a group of sensors simultaneously.
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f. Expert Opinion

In addition to evaluation of empirical results of the user study, I also provided a fully-

functional implementation of this visualization method to an expert team of analysts

who were able to use the software to help analyze real datasets similar to the sample

data described in this paper. There were a total of 12 expert evaluators. These

evaluators were extremely familiar with the sensor equipment being monitored, and had

years of experience using the traditional visualization methods to evaluate the equipment

performance. Interviews conducted with the expert users after delivery, a short training

session, and then unassisted use of the software revealed a high level of satisfaction in

allowing the analysts to quickly perform visual inspection of large volumes of incoming

data and rapidly identify and analyze potential anomalies. It should be noted that within

the environment our method was deployed it was known as the Message Frequency

visualization, due to the fact that the domain experts referred to each position report as

a message. In particular, the expert users stated that:

• Our method allowed them to validate collected data in a few hours, a process that

had taken several days using previous techniques.

• Our method provided a concise and accurate summary of a full day’s worth of data

in one image while visually highlighting all important data features.

• Our method provided effective output that could easily be integrated into presentation

media to inform high-level decision makers.

• “We were able to use Message Frequency to estimate amount of data lost, by first

identifying how much data was actually collected.”

• “If we were to have had to calculate manually the times the system had communica-

tion breaks this process would take entirely too long...ProDV’s Message Frequency
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was the work horse that did all the ‘data mining’ for us and presented it in a easy to

read visualization!”

g. Summary

To summarize the results of this work, I have evaluated the use of a novel visualization

technique for temporal and spatial analysis of sensor data by implementing the method in

a real-world analysis application, conducting a small user evaluation study, and reporting

expert opinion from data analysts. While the sample sizes collected during the user study

are not large enough to be conclusive, the collected data did indicate that our method

was an improvement over traditional approaches being used by experts, shown again for

comparison in Figure 36. Also, I will note several limitations with the proposed method.

(a) (b) (c)

Fig. 36. Example of sensor activity patterns in a line graph (a) and our method (c) shown
next to an interactive map (b). For comparison, both (a) and (c) show the same
range of data. Highlighting can be manipulated interactively to compare temporal
patterns using (a), however sensor failures may not be as evident as they are in (c).

First, this technique has been applied to data that has a maximum rate of one event per

second. Although our implementation should accommodate data with much higher rates,
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some of the visual analysis examples we have presented here may not be appropriate

for such applications. Also, I have not attempted to address other common information

visualization concerns at this point such as coloring to support color blind users or visual

scaling for smaller or larger than normal (i.e., desktop) displays.

Fig. 37. Variation in temporal patterns produced by three different types of sensors attached
to the same individual. In this case the first sensor was found to produce an
excessive amount of redundant position data, even when not moving. Although all
sensors were observed to generate position updates within the expected time, the
final sensor type showed longer intermittent delays between updates and therefore
the middle sensor was most appropriate for our users’ task.

5. Future Work and Conclusion

There are several directions open for further work in this area. First, it would be useful to

evaluate other analysis techniques that have been developed with domain experts, including

comparative analysis of the performance of different sensor types attached to the same

player. The goal of this analysis would be to identify which sensor platforms perform better

under certain environmental conditions. For example, in Figure 37 we show a comparison

of temporal sensor activity patterns generated by three different types of sensors all attached

to the same vehicle. As can be seen, the choice of sensor will have a large impact on the
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Fig. 38. Example showing five days of data from 102 sensors of three different types.
Periodic maintenance patterns can be discerned and periods with high failure rates
can be quickly identified. The three groups of different sensor types can be visually
distinguished by their coordinated maintenance periods, and within these groups
faulty sensors that do not match the group pattern can be easily recognized. While
a large amount of data can be summarized in this visualization, at this scale it is
difficult to discern finer details of the individual sensor activity patterns.

volume and accuracy of the sensor data.

It would also be useful to more formally evaluate the effectiveness of the analysis

techniques we have presented at various scales. This will require identification of important

temporal patterns at a larger scale than we have addressed in this user study. An example

of this method applied to activity of over 100 sensors over five days is shown in Figure 38.

I have presented a simple yet effective method for interactive visual analysis of spatial

sensor activity patterns. I have validated the use of this method in a real-world analysis

application, and have presented the results of both expert opinion of the method and user

evaluation studies comparing the analytic task performance of the proposed method to
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traditional techniques. Although the motivating problem and test data are quite specific,

I believe that this work can be easily extended to provide interactive visual analysis of

sensor or other temporal activity in other domains.

B. Situational Awareness

In this section I will discuss the second major domain application using the framework

described previously. In this case the domain experts requested a computation and an

interactive visualization of the results. Multiple commercial systems would be used to

perform coordinated military activities that required a commander or other coordinator to

direct multiple teams to achieve a goal. Each of the systems provided wireless nodes with

advanced tracking and communications functions, and each was configured to record all

of the message traffic that occurred during an exercise. The requested computation would

determine the overall “correctness” of the situational awareness data (SA data) at each node

in the system . I will discuss the details of the algorithm we proposed and implemented,

the interactive visualization of the results, and my evaluation.

Situational awareness is made up of the information a person currently has available

about his surroundings and relevant peers. Situational awareness data is often provided

using electronic equipment designed to display real-time data from networks of spatial

sensors. Because this information is usually delivered over a wireless network in a rapid

decision-making environment, the latency of information delivery over the network could

have a direct effect on human situational awareness and therefore decision-making. To

be more specific, situational awareness data that is inaccurate can have a negative impact

on decision-making involving coordinated activities if, for example, a user’s perception of

his peers’ locations is incorrect. Since in this case the digital equipment is responsible

for providing a large percentage of the visual data a user is assimilating at any one
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time to define his own situational awareness, these analysts desired a means to measure

and compare the performance of different hardware implementations (i.e., from different

vendors)).

In working with analysts attempting to evaluate and compare the performance of

various SA systems, we identified a need for a set of custom visual metrics to support

overview and detailed performance analysis of the data collected during test exercises.

These exercises were designed to test actual users of the equipment in real-world scenarios

involving coordinated activities so that the accuracy of different individuals’ SA data

can be compared and analyzed. For example, analysts would observe and compare the

accuracy of a team leader’s SA data and a team member’s SA data during a convoy (a

group of individuals or vehicles maneuvering along a similar path at the same time).

We implemented software to compute the proposed metrics and provide interactive

visualization to analyze the impact of network latency at specific times relating to decision-

making efforts in the exercise. Using this method, we enabled analysts to quantify

operational success by identifying any system that failed to deliver accurate SA information

to the decision-maker at crucial times.

I will also discuss work with analysts who went on to use this technique in real

data evaluation scenarios. These analysts provided significant input to the data collection

process to ensure sufficient data was collected during the exercises in order to compute the

proposed metrics. While I do not present user evaluation study for this technique I will

present expert user testimony and several detailed analysis examples using these metrics in

a custom interactive visualization environment.

For the purpose of this work, SA data consists of the most recently received position

updates from all other peers (including the time the updates were generated). This type

of data is referred to as SA Level 1 by Endsley [18]. In the analysis of SA data, analysts

often refer to the most current SA data at a given time as the Common Operating Picture
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(COP). The temporal metric was referred to by domain experts as “COP currency,” since

its purpose is to represent the accuracy of any individual’s SA data at a given time. The

proposed metric computation assigns a value on the range [0, 1] to each unique node (where

1 indicates an individual whose SA matches the current COP).

1. Proposed Method

This method focuses on defining metrics, temporal and spatial, that when presented in

a visual framework will highlight failures in system performance. The temporal metric

defines a measurement for each timestep (for each individual system), and the spatial metric

defines a value for each grid location (for each timestep). Visualization of these metrics (in

addition to a glyph-based two-dimensional map layer) was used to support analysis on

each system’s effectiveness to support human SA and decision-making. In this section I

will discuss the proposed temporal and spatial metrics designed to support these analytic

goals.

a. Temporal Metric

The temporal COP currency metric for an individual, X, is defined in (5.1), where n is

the number of peers for X. Basically, this metric computes the percentage of peer locations

accurate within some user-defined distance threshold.

CCx =

∑
n
1

1 if
∣∣pi − pperceived by X

∣∣< d

0 otherwise


n

(5.1)

For a given individual, we calculate the COP currency as the fraction of peers for

which the perceived position is current. A position is considered current if the actual
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position is less than some distance d (five meters in our exercises) from the perceived

position (i.e., the most recent position update received). Analysts requested to see COP

currency values at a 1 second resolution, therefore this implementation computes this

metric for each individual for each one-second period of the exercise period.

In order to compute the proposed temporal metric, both send and receive times of

every SA message for every individual in the exercise are required. Also, for the purpose

of these exercises, the analysts directed us to use the send times of SA messages to define

the current COP. We designed the system, however, to allow a separate source of location

data to be optionally specified to define the “ground truth” COP. The receive times of SA

messages are used to determine the perception of peer locations by any individual since that

perception is defined by the most recently received SA messages by the individual from his

peers.

See Figure 39 for an example of the COP currency metric shown along with a linked

geospatial visualization depicting COP locations for each individual as well as perceived

peer locations for the selected individual (orange).

b. Spatial Metric

In order to capture spatial COP currency failure patterns, we also defined a spatial metric

that accounts for the existence of failures within discrete areas of the exercise location. First

we initialize a two-dimensional grid that covers the geospatial exercise area as defined by

the minimum and maximum positions reported by any unit in the dataset. The dimensions

of the grid can be set manually or set automatically based on desired spatial resolution (for

the exercise areas we observed, a manual setting of 1024 x 1024 for the grid size was used).

For each second in the exercise, as we compute each individual’s COP currency value based

on SA data, we mark the positions of the peer and the individual for each threshold violation

(when distance between local SA and COP is greater than d). We mark the location of the
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Fig. 39. The COP currency temporal metric is shown in this example in the line graph
at the bottom of the coordinated view. COP currency value is low for the orange
individual at the selected time (vertical red line on line graph) since the locations
for a majority of peers is not accurate (highlighted with red lines and diamonds on
map). The dotted red lines on the map depict the difference between COP position
and perceived position of individuals. The common control shown (legend and
filter on right, timeline on bottom) are provided by the visualization environment
we have used, ProDV.

peer as sender violations and the location of the individual as receiver violations since the

peer and individual constitute the sender and receiver of SA data, respectively. Therefore,

our spatial metric at each grid cell in the exercise area will mark each grid location in

which send or receive failures have occurred. The spatial algorithm is aggregated over the

entire exercise and can then be displayed as a colored overlay as shown in Figure 40. This

technique allowed the analysts to observe and investigate any spatial failure patterns of a

particular system.
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Fig. 40. The geospatial display at the top of this coordinated view shows the violation areas
identified by the spatial metric. In this example, areas that contain both send and
receive violations are highlighted in red. A potential negative relationship between
proximity to foliage and COP currency can be observed, although the SA system
being evaluated in this example seems to have high failure rates in some open areas
as well. The vertical white line on the map is a road.

2. Implementation

In this section I will discuss the interactive software implementation of this method that was

delivered to analysts at the conclusion of this work and used for evaluation in a real-world

data analysis setting. This implementation again made use of the existing data processing

and visualization framework, ProDV [55], that included capabilities for reducing and

visualizing SA data produced by the equipment employed during these exercises. The

implementation of the metric computations were encapsulated within a new processing

module that provides data to a geospatial visualization component. We also implemented

a visualization of threshold violations as well as the spatial metric by defining a new layer
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to the existing visualization component. Line graphs and bar charts were used to display

the temporal metric in an interactive graph linked via selection to the map and other visual

controls (timeline, legend, filter).

a. Data Processing

The data processing logic for our implementation consisted of a two-pass algorithm.

Because the raw input data was harvested in batches from the equipment and processed

directly by ProDV after the exercise, there was no guaranteed ordering of the input data.

Therefore the first pass of our algorithm simply sorted SA message send and receive records

into bins (one for each hour of the exercise, in our case). After the first processing pass,

we are left with reduced (only time and position information) and ordered SA data for

each individual. The second pass iterates through the exercise time period (defined by the

minimum and maximum times observed in the first pass) at a one second step size and

computes both temporal and spatial metrics.

Figure 41 depicts the reduced data structure for individual X produced by the first pass

of the data processing algorithm, composed of the series of SA messages sent by X (COPX ),

and the receive times of those messages by each peer (SAY and SAZ). The vertical red line

in the figure illustrates how we iterate in the second pass through the reduced data structure

to compute the temporal and spatial metrics at a one second interval. The temporal metrics

are stored in bins (one per hour) similar to the first pass data, and the spatial data is stored

in a two-dimensional array of integer values.

b. Visualization

The ProDV visualization environment provided basic temporal and spatial visualization

capabilities using line graphs and geospatial displays. In the following sections I will

discuss the temporal and spatial visualization implementations.
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Fig. 41. Data structure for computing COP currency metrics. In this example individual X

sends out six SA messages (shown in first row), which are received by peers Y and Z

with varying latency (shown in bottom two rows). At each timestep (one second),
for each individual we retrieve the COP position (defined by sent SA data from
each individual) and perceived position for each peer (defined by locally received
SA data), and compute the metric value as shown in (5.1).

Temporal Metric Visualization As discussed, the temporal metric value is computed for

each individual at 1 second intervals within the exercise time frame. The value for

each individual is displayed in the interactive line graph as shown in Figure 42.

The interactive graph is linked to legend selection and filter operations. Likewise

selection within the line graph is linked to the map visualization, so that individuals

can be selected for their temporal or spatial attributes, and can then be highlighted in

other visualizations.

Threshold Violation Visualization We implemented a spatial visualization feature to de-

pict COP currency threshold violations. The existing ProDV geospatial visualization

depicted individual locations using circular glyphs that could be augmented with

trails to show the recent path of each individual. Because it would certainly clutter
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Fig. 42. Interactive line graph showing temporal COP currency metric. The blue individual
is selected, prompting the color highlighting shown in the line graph, and the
geospatial view has been automatically centered on the blue individual’s location.
At this time there are multiple peer COP currency violations as shown by the low
COP currency value at the selected time (vertical red line).

the visualization to attempt to display the SA data (perceived peer positions) for all

individuals, we chose to show the additional SA data only for one selected individual

at a time.

As shown in Figure 43, when an entity is selected the perceived locations for his

peers are shown as transparent diamonds connected by transparent dotted lines to

the actual locations designated by circles. If the perceived location is outside of the

defined spatial threshold, the diamond and connecting line will be outlined in red to

highlight the violation.
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Fig. 43. This COP currency visualization example shows a group of individuals moving
along a dirt road (trail points indicate recent spatial history). The selected individual
is not shown, and all peers shown are current except one (light blue), whose
perceived position (red diamond highlight) is greater than 5m from the COP
position.

Spatial Metric Visualization The spatial metric is displayed as a transparent layer on

the geospatial visualization. The two-dimensional array of values are loaded as

a texture in OpenGL and sampled using a custom fragment shader implemented

using GLSL. For example, we can highlight cells red when there are both send

and receive threshold violations and blue or yellow when there are only send or

receive violations, respectively. Examples are shown in Figure 44, in which we

can observe areas where failures were more likely to occur over the course of the

exercise. Alternatively, we can adjust the opacity or color intensity of the highlights
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to indicate the number of violations recorded in the area, however it is well-known

that the human eye is not suited to discern small variations in these visual effects,

which are already plotted over existing spatial data in our visualization. Therefore we

simply allow a violation count threshold to be adjusted interactively so that analysts

can identify areas that experiences higher numbers of violations during the exercise.

(a) (b)

Fig. 44. COP currency spatial metric visualization examples in which areas with both
sender and receiver COP currency threshold violations are highlighted in red. In
(a) we can see that most threshold violations occur within the wooded area, as
opposed to the open area, both heavily trafficked over the course of the exercise.
In (b), we also marked areas with send only or receive only failures with blue and
yellow highlights, respectively. The map in (b) shows a diagonal road alongside an
elongated building, which appears to have had a negative impact on COP currency
of all units in the area.

c. Interaction

The ProDV visualization environment provides select, zoom, pan, and query tools for

each visualization. These basic interaction features provide most capabilities required,

and selection between visualizations and other common controls such as the legend

are automatically synchronized. A timeline control provides the ability to navigate the
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temporal dimension of data, while the map interactions provide intuitive spatial navigation

capabilities. With these existing interactions in place, experts could easily examine the

temporal metric values for a given individual, or for all individuals at a given time.

They could also easily examine the location of individuals in relation to metric values

and identify individuals in close proximity and compare temporal metric values. In the

implementation of this work we did not add any new interaction mechanisms, but we

did link the spatial visualization of threshold violations and perceived peer selection to

the existing selection framework and customized some visual queries used in the spatial

visualization.

3. Analysis

Use of actual exercise data may not be published, so instead I have provided here

synthetically generated data that has similar characteristics to that seen in real exercises.

I will describe three analysis tasks that closely mimic those of actual analysts. The analysis

tasks can be classified as either temporal analysis activities, spatial analysis activities, or

system performance analysis activities.

a. Temporal Analysis

The primary temporal analysis task identified by domain experts was detailed failure

analysis of COP currency threshold violations. When COP currency decreases for

an individual, analysts want to know if other individuals in the exercise experience a

synchronized decrease as well. If so, then there is likely a global system performance

issue that affects SA performance for all individuals (e.g., a network failure). Otherwise it

is likely that there is a local equipment failure for the individual that should be investigated.

Figure 45 shows an example that compares a local failure pattern to a global failure pattern.
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(a) (b)

Fig. 45. In this example we see a local decrease in COP currency (selected brown unit is
highlighted for readability) in (a) in which only one individual system seems to
experience a dramatic failure to maintain accurate SA data. In (b), however, we
observe a decrease in COP currency of several systems during a synchronized time
period. This observation could indicate a network failure or some other external
failure that affects all systems.

b. Spatial Analysis

In addition to temporal analysis of threshold violations, experts were also able to conduct

analysis of spatial failure patterns. First, building on the temporal analysis discussed

previously, when global failures occur the individuals affected by the failure can be selected

and any pattern in the location of the individuals can be quickly seen. For example,

individuals who are in a heavily-wooded area or an area obscured by terrain to are expected

to experience network latency sufficient to reduce COP currency, as shown in Figure 44.

However an individual experiencing reduced COP currency while in in open terrain and

near other units with stable COP currency is likely due to an equipment failure or some

other local anomaly.
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c. System Performance Analysis

Other more complex analysis tasks focus on evaluating the performance of the SA system

in its primary mission to deliver timely and accurate SA data to the user. Two tasks in

particular that were identified by expert users were the evaluation of a group leader’s COP

currency during various scenarios, and the performance of the SA system during convoy

operations.

Group Leader SA During coordinated activities, the accuracy of the SA data provided

to the team leader is critical, and therefore analysts desired to evaluate this directly.

Using the software implementation of the proposed technique, the experts were able

to select the identified team leader by ID in the legend, and using the timeline select

the approximate time of the specific activity to be analyzed. In most cases hard-copy

spreadsheets were used to record event data during exercises. Users could choose to

import this data into a synchronized interactive timeline, or just use the hard copies

(in most cases the hard copies were used). Once the appropriate time is selected the

analyst can quickly identify any unexpected variations in COP currency using the line

graph. By animating the motion of the team members on the map visualization, the

analyst is also able to identify potential geospatial features that impact team leader

COP currency during the coordinated activity.

In the example shown in Figure 46, the group leader assumes a static position as

team members move to an observation point. We can observe different COP currency

profiles for each different member of the group. In this exercise, the group leader’s

COP currency values are quite different from those of the other group members.



123

Fig. 46. In this example we observe a group of five individuals involved in a coordinated
activity. The group leader (brown) remains stationary while the other group
members gather at a designated location. We can see that COP currency values
fluctuate for all group members at different points during the exercise. In this
scenario the group leader did in fact not have accurate SA data at a critical decision
point marked by a vertical red line near the right edge of the line graph.

Convoy The next specific analysis task identified by domain experts was the analysis of

COP currency during high-speed convoy operations. In particular, analysts wanted

to be able to observe variation in COP currency of both moving and non-moving

systems when a group of individuals were involved in a high-speed coordinated

movement. To do this, analysts would perform temporal sweep of the COP currency

values of the individuals involved in the motion activity, since individuals in a

similar location executing a synchronized motion are expected to experience similar

variation in COP currency. We also include the custom glyph visualization previously

developed to aid in the analysis of sensor reporting activity, shown in Figure 47,

in order to aid in the identification of these coordinated periods of movement [54].

Because the sensors used in these exercises exhibit increased reporting activity when

moving, the visualization technique shown allows coordinated periods of motion to
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be quickly identified and enabled quick multiple-selection of individuals linked to

the other visualizations.

Fig. 47. Custom visualization of spatial sensor reporting activity aids in the identification
of sensors in motion. Triangles represent periods of time in between position
update messages. Triangles not visible at the current scale are aggregated into
rectangular regions. Because the sensor activity glyphs are arranged in rows,
coordinated activities of multiple sensors can be quickly identified. In this example,
two coordinated movements are visible: one around 14:00 by at least four sensors,
and another around 16:00 involving several more individuals.

Figure 48 shows a comparison of two different perspectives at the same moment

during a convoy operation involving five individuals. The first figure shows the

perspective of a member of the convoy operation who is in motion. As can be seen in

the line graph and geospatial display, the selected individual’s SA data is inaccurate

for every peer in the convoy group.
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(a)

(b)

Fig. 48. In this example, an observation group is stationed to the left while a group
of four individuals move quickly in a coordinated motion. We can observe the
SA perspective of the light blue individual in (a) and notice that this individual,
participating in the convoy, has a low COP currency value since SA data for all of
his moving peers is inaccurate. In (b) we can see that the SA perspective of the
stationary observer in blue is accurate for three of the moving peers, and likewise
COP currency value is high. This example illustrates the COP currency temporal
metric being used to identify a potential system weakness delivering accurate SA
data during convoy operations.
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Conversely, the perspective of a stationary observer in an open area is shown in the

second figure. Not surprisingly, the SA data for the stationary observer is much more

accurate. This example illustrates the power of our temporal metric for quantitative

evaluation of SA data accuracy in the analysis of the performance of a particular SA

system in varying conditions.

4. Results

The publishable results of this work are comprised of expert opinions as reported by

analysts trained to use this technique implemented using ProDV in real-world analysis

scenarios. As mentioned previously, examples of specific analysis results and system

comparisons were not available for publication, however I believe the generic analysis

examples discussed previously as well as the expert user testimony serve to support the

proposed use of these metrics in an interactive visualization environment to support human

analysis.

After use of this visual analysis software, the expert users reported that:

• “This method allowed evaluators to analyze COP currency visually, and this not only

simplified data analysis but simplified our whole process.”

• “The COP currency visualization allows the analyst to identify critical events and

determine quickly how the system under test was performing.”

• “Post-test review of the visualization gave the analyst the capability to focus on both

good and bad system performance, and link the critical variables that led to that

performance.”

• “Looking at COP currency metrics in a tabular form does not tell the analyst anything

about why those numbers exist; looking at COP currency in a dynamic visualization
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gives operational relevance to the numbers.”

• “I immediately saw the benefits of [this technique] and since the first day of our

classroom instruction at the software lab I have been very interested.”

5. Conclusion

I have proposed a temporal metric to quantify COP currency of individuals in an exercise,

as well as a spatial metric to identify spatial failure patterns. I have discussed how

these metrics have been implemented and delivered to expert analysts in an interactive

visualization environment. The successful use of the proposed methods demonstrate their

effectiveness in improving a human analyst’s ability to quickly and effectively understand

and evaluate the outcome of exercises designed to evaluate the performance of SA systems.
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CHAPTER VI

CONCLUSIONS

A. Statement of Contributions

In this dissertation I have presented novel contributions to the field of computer graphics

and visualization, both in terms of the models used to design interactive visualization

systems for large numeric datasets and the application of design principles such as data

caching and user interaction modes to specific visual analysis challenges. First, I have

introduced a modified model of the information visualization reference model that enables

interactive visualization techniques to be applied to large numeric datasets by first reducing

and caching intermediate data. I have demonstrated the success of several different

interactive visualization applications using a software framework based on this model.

Using this technique, developers of interactive visualization software can design custom

visualization techniques and apply them to very large collections of data. This capability

is important to aid data analysts who are critical components of important decision-making

and scientific discovery processes in the visual analysis of the massive volumes of data that

are available today.

Second, I have presented a technique for efficiently implementing view-prioritized

asynchronous retrieval of high-resolution surface data based on an adaptation of the

graphics hardware pipeline, and I have demonstrated how this technique can be applied

to interactive terrain visualization using high-resolution satellite data. I have shown that

the software implementation developed using this technique is able to provide interactive

rendering performance that is independent of the size of the remote terrain database,

the latency of retrieval of the imagery data, or the resolution of imagery data used.

This technique will enable developers of interactive visualization software to design and
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implement interactive visualizations of datasets whose size and retrieval cost are much

higher than ever before. This is important to researchers and users of visualization software

in many scientific disciplines that require visual exploration of large amounts of data

collected at macro- (astronomical data) or micro- (genomic or particle physics data) scales.

Because many scientists are required to visually analyze these large collections, it is not

practical to provide the full dataset to each user. This technique allows complex 3D

interactive visualization techniques to still be applied to these datasets to aid in this analysis,

regardless of the performance or capabilities of the remote database system.

Lastly, I have demonstrated the successful development and application of novel

visualization techniques designed to aid in two distinct visual analysis tasks. First, I

have presented a novel technique for the visualization of temporal patterns of sensor

activity. This technique was developed using the software framework I have proposed

to ensure interactive performance when working with large datasets, and it enabled real-

world analysts to quickly and accurately perform several important data analysis tasks.

I also presented a novel technique for quantitatively measuring the accuracy of digital

situational awareness data and visualizing this information in temporal and spatial contexts.

This capability has also been applied to very large datasets and has allowed analysts to

inspect the performance of a digital situational awareness system in detail and compare the

performance of different systems in experimental conditions.

B. Future Work

Several directions for future work based on the techniques presented here are worth

exploring. A shortcoming of the work presented here is the statistically significant

evaluation of the advantages the proposed visualization system framework. As discussed

in Chapter III, efforts to collect significant amounts of user data during software training
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sessions proved to be too distracting to most users and therefore not enough user

performance data could be collected. As a future direction for this work it would be helpful

to integrate a near-ubiquitous user evaluation mechanism whereby a user working with an

interactive visualization of a sample dataset during a training session could be automatically

prompted with small timed analysis tasks. This effort would improve and streamline the

performance evaluation of individual visualization techniques, and therefore contribute to

the broader evaluation of the improvement offered by this approach as a whole. Another

limitation of this technique is that it assumes that the data reduction strategy specified

by the user is sufficient to reduce the numeric dataset into manageable block sizes. This

approach works very well with evenly-distributed numeric data, as I have shown in several

examples. However, very dense, unevenly distributed data can pose a challenge that

will require additional considerations to ensure interactive visualization performance is

possible. Possible approaches that might help address this limitation would be dynamic

segmentation of intermediate data or use of reduction methods that recurse adaptively.

The technique presented here for the view-prioritized asynchronous retrieval of remote

data could also be applied to visual analysis of other spatial data (not imagery, e.g., results

of a high-resolution propagation or dispersion simulation) or any object with complex

occlusion and high-resolution surface data. In this case the primary considerations are

the texture formats required to accurately store the geometry and imagery data (e.g.,

32-bit integer vs. 64-bit floating point data) and the number of other texture elements

required by other components of the visualization. Also, the use of mipmap memory areas

for index storage can be improved by computing the maximum mipmap layer (smallest

number of pixels) that can be used and still provide adequate sampling resolution. If the

maximum required level is greater than the number of levels required to store the index,

then intermediate mipmap levels can be populated with actual texture mipmaps, which

can be used to improve rendering quality. Lastly, the current method of sampling data
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indices into an offscreen buffer introduces a noticeable pop when moving quickly within

an interactive 3D environment. I have minimized this effect in the implementation by only

sampling the indices when the user stops interacting (i.e., releases the mouse button or

key), or after a specified delay is reached (five seconds in this case). However, it would

be better to improve this implementation by either pre-rendering a visual frame before

sampling offscreen or adaptively adjusting the view parameters to minimize distortion.

While the current implementation might support the latter alternative, the Java-based

OpenGL implementation I have used for this work does not provide adequate control

over the scheduling of rendering calls, making it difficult to control buffer-swap operations

necessary to ensure smooth visual quality in cases when the data indices need to be sampled

while the user’s 3D viewpoint is being rapidly altered.

For the glyph-based visualization technique for temporal data I have presented, this

work could be improved by executing additional user testing. For this work the user

evaluation study took volunteer participants at least 90 minutes to complete. The length

of the study and the equipment required to conduct and monitor the study made it difficult

to recruit a larger pool of participants. It would be advantageous to design a web-based user

evaluation study that could be conducted using any computer with a standard web browser

and Internet connection. The addition of more participants over the web would increase the

statistical significance of the user performance results presented here. Also the aggregation

technique described (i.e., combining sub-pixel triangles into quadrilateral regions) could be

taken one step further to allow sensor groups to be aggregated. This would be particularly

useful in cases where analysts need to inspect the performance of a group of sensors acting

as a unit (i.e., the system is considered to be performing normally as long as one sensor in

the group is operational).

With respect to the technique I have presented to qualitatively measure and visualize

the accuracy of situational awareness data, there are several directions for future study.
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In particular, some analysts mentioned that it would be useful to interactively designate

outlier data to be removed from the metric computation. The implementation of this method

computes the metric in two passes, only the second pass of the metric computation would

need to be executed again in this case. For this technique it would also be useful to explore

additional visual aggregation of data so that the accuracy of situational awareness data can

be measured and compared between groups of systems. Appropriate spatial filtering tools

can be integrated to allow this technique to be extended to aid in the discovery of spatial

patterns in the performance of different sensor groups, which may be caused by spatial or

environmental effects.
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APPENDIX A

USER STUDY

This appendix includes the questionaire used during the user evaluation study described in

Chapter V.

A. Introduction Script and Data Description

You will first be introduced to general capabilities of the visualization interface. You will be

allowed to explore these functions using an interactive bargraph until you are comfortable

with the interface. You will then be shown 3 different datasets using 3 different interactive

visualization methods. For each visualization method, you will be asked to answer a series

of 10 analytic questions about the data shown. The data shown using each visualization

consists of one day of sample data for a vehicle location system. The system in question is

configured to send location reports for all vehicles at least once every five (5) minutes, or

sooner if the vehicle moves.

You may choose to skip a question if you feel that the capabilities provided by the

given system are inadequate to answer the question. Otherwise, you are encouraged to

answer each question to the best of your ability.

Familiarization using bargraph (on MCS visualization) until user is ready. When

ready, ask user to find the value of HTTP traffic at 14:00 (2:00 pm). Answer is 82170.

The visualization environment provides four primary tools, located at the top left of

the window. You can choose the Select, Pan, Zoom, or Info tool. Only one tool can be

selected at a time. The Select, Pan, and Zoom tools operate on any of the visualizations

as expected. The mouse wheel can also be used to zoom in or out while using other tools.

The info tool provides additional information on the values shown using each visualization.
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Brief information is shown when hovering with the Info tool; more detailed information is

shown when the user clicks on a location within a visualization window.

B. Proposed Visualization Method Description

This visualization method will depict the period of time between each location report

using rows of isosceles triangles (one for each vehicle), where the left edge of the triangle

correspond to the time when the report was sent, and the right tip of the triangle indicates

the time the next report was sent. The triangle’s color will fade quickly to red if the length

of the period exceeds the specified threshold (default is 301 seconds). If the period is

over the threshold, the triangle will show some amount of red regardless of the zoom level.

Depending on the zoom level, if the current triangle’s width is less than 2 pixels, the triangle

will merge with other small triangles surrounding it to form a solid rectangle.

Allow user to explore interaction with the visualization on another day (not the day

he will be answering questions on) until he/she is ready, before beginning questions. Start

timing of each question when participant/moderator finishes reading the question.

C. Simplified Visualization Method Description

This visualization method will depict the period of time between each location report using

a vertical line to indicate the time of each location report per vehicle. The line will be red

if the length of time between the current location report and the last is over the threshold.

Allow user to explore interaction with the visualization on another day (not the day

he will be answering questions on) until he/she is ready, before beginning questions. Start

timing of each question when participant/moderator finishes reading the question.
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D. Line Chart/State Plot Visualization Description

This visualization method uses a traditional plotting method to show the number of position

reports for each vehicle over time. The number of reports have been calculated for 5 minute

increments over the course of the day.

Allow user to explore interaction with the visualization on another day (not the day

he will be answering questions on) until he/she is ready, before beginning questions. Start

timing of each question when participant/moderator finishes reading the question.

E. Questions (to be answered for each of three days)

1. Please count the number of times during the day 4 or more vehicles started moving

together (within 5 minutes of each other).

2. Is there a vehicle whose frequency pattern remained constant for the entire time it

was reporting?

3. How many vehicles had periods with no reports for longer than 20 minutes?

4. Which went over the 5 minute threshold the most, and how many times?

5. How many vehicles experienced no periods between reports over the 5 minute

threshold?

6. Which vehicle experienced the longest period between reports?

7. Which vehicle experienced the longest period of motion?

8. Which vehicle was reporting for the shortest amount of time?

9. Are there any synchronized periods of no reporting (ie 4 or more vehicles stop

reporting [go over 5-minute threshold] at the same time)? If so, when?
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10. Can you find a vehicle with a prolonged irregular pattern (ie pattern has periods of

different length for at least one hour)? If so, which vehicle?
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