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ABSTRACT 

 

Comparison between Model Simulations and Measurements of Hyperspectral Far-

Infrared Radiation from FIRST during the RHUBC-II Campaign. (December 2011) 

Elizabeth Ann Baugher, B.S., Penn State University 

Co-Chairs of Advisory Committee,  Dr. Ping Yang  
        Dr. Kenneth Bowman 

 
 
 

 Surface downward far-infrared (far-IR) spectra were collected from NASA’s Far-

Infrared Spectroscopy of the Troposphere (FIRST) instrument from August to October 

2009 at an altitude of 5.4 km near the summit of Cerro Toco, Chile. This region is 

known for its dry, cold, and dominantly clear atmosphere, which is optimal for studying 

the effects that water vapor and cirrus clouds have on the far-IR. Comparisons with 

Line-By-Line Discrete Ordinates Radiative Transfer model, LBLDIS, show that FIRST 

observes the very fine spectral structure in the far-IR with differences as small as +/- 

0.7% for both clear-sky and cloudy-sky simulations. Clear sky model analysis 

demonstrated the greatest sensitivity to atmospheric conditions is between 300 and 500 

cm-1. The cloudy-sky simulations demonstrated that the far-IR radiation has minimal 

sensitivity to cloud particle effective radius, yet is very sensitive to cloud optical 

thickness at wavenumbers between 400 - 600 cm-1. In fact, cirrus optical thickness found 

to be inferred from the brightness temperature differences at 250 and 559.5 cm-1. 

Aerosols proved to reduce downwelling radiance by half that a clear-sky would emit, but 

had little effect on the total far-IR radiative forcing. Furthermore, these far-IR 
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measurements open a new window to understanding the radiative impacts of various 

atmospheric constituents such as water vapor and clouds, and to understanding and 

modeling the Earth’s climate and energy budget.  
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1. INTRODUCTION: THE IMPORTANCE 

OF RESEARCH 

The spectral region between 15 µm and 100 µm (667 – 100 cm-1) is referred to as 

the far-infrared (far-IR) portion of the spectrum. Far-IR radiation is an important 

component of the radiation budget in the earth-atmosphere system and accounts for 

approximately 50% of the top of atmosphere (TOA) outgoing longwave radiation [e.g., 

Collins and Mlynczak, 2001]. One of the key features in the far-IR spectral range is its 

characterization of transitions between pure rotational and low vibrational energy states. 

The pure rotational band associated with water vapor largely affects this spectral region 

in which it acts as one of the principal greenhouse gases, absorbing a significant fraction 

of the infrared radiation emitted by the atmosphere and the earth’s surface. Due to the 

strength of the water vapor band, the lower atmosphere is essentially opaque in the far-

IR spectrum for ground-based observations, while the upper troposphere and 

stratosphere become partially transparent. These associated complications have caused 

the spectral characteristics and information content of the far-IR region to not be studied 

extensively. The radiative processes in these water vapor absorption bands are critical to 

understanding the radiative balance of the tropopause layer and lower stratosphere. 

Additionally, far-IR radiation can be modulated by the presence of cirrus clouds 

in the upper troposphere. These clouds pose a significant challenge for in situ 

measurements because of their high altitudes and optically thin nature [Liou, 1986].  

____________ 
This thesis follows the style of Journal of Geophysical Research-Atmospheres. 
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Previous studies of cirrus clouds show that they may radiatively cool or heat the upper 

atmosphere in the thermal infrared wavelengths depending on altitude and geometrical 

and microphysical features [Harries et al., 2008]. The single scattering properties of 

cloud particles are determined by the complex index of refraction ( m = mr + imi ), the 

particle size distribution, and the shape of the particles. Figure 1 displays both the real 

and imaginary parts of the refractive index of ice based on the data compiled by Warren 

[1984], showing that ice crystals are strongly absorptive in the far-IR. The minimum in 

the imaginary part of the refractive index is located at 410 cm-1, and corresponds to the 

strongest scattering effect, while, the minimum in the real part of the refractive at 250 

cm-1, corresponds to an area of very low extinction efficiency. These ice properties offer 

the potential to determine the optical properties of cirrus clouds. Most recent studies 

include the scattering database and absorption properties of ice clouds for mid and far 

infrared determined by observation [Yang et al., 2005; Baum et al, 2007].  

The Radiative Heating in Underexplored Bands Campaigns (RHUBC) were 

designed to improve our understanding of radiative processes in the middle and upper 

troposphere and lower stratosphere [Turner and Mlawer, 2010]. The campaigns are part 

of the Atmospheric Radiation Measurement (ARM) program, which, was established by 

the U.S. Department of Energy to improve aspects of climate simulations related to 

atmospheric radiative transfer. In particular, these experiments will help to improve the 

accuracy of line-by-line radiative transfer models by developing better approximations 

of the water vapor continuum absorption in the far-IR and reducing the number of 
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Figure 1: The variation of refractive index of ice in the far-IR region (data from 
 [Warren, 1984]).  
 

 

spectroscopic parameters used to model water vapor absorption in the far-IR. In this 

multi-phase campaign, locations were chosen for their extreme dryness, which enabled 

direct observation of the full spectral development of the far-IR, which is not possible in 

other environments. RHUBC-I ran from February to March 2007 in Barrow Alaska, and 

had successful results [Turner et al., 2010; Delamere et al., 2010]. The usage of 

interferometer AERI [Turner et al., 2003; 2010; Turner, 2005] and spectrometer TAFTS 

[Cox et al., 2010] during this campaign present some of the most promising and recent 

findings. RHUBC-I had three very important contributions which include: (1) the three, 

183-GHz (6.11 cm-1) millimeter radiometers, agreed very well with each other (2) the 

refinement of the 183.3-GHz water vapor line and (3) improvement to the line-by-line 

radiative transfer models in the 16-25 µm (625 – 400 cm-1) band [Turner and Mlawer, 

2010]. 
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As an extension to continue to improve our understanding of the dominant 

radiative processes in the troposphere and stratosphere, the RHUBC-II field experiment 

was run from August to October 2009 at Cerro Toco, Chile. The novel Far-Infrared 

Spectroscopy of the Troposphere (FIRST) instrument developed by NASA [Mlynczak et 

al., 2006], a Michelson interferometer, provides unprecedented measurements of far-IR 

downwelling radiation. The FIRST Fourier Transform Spectrometer (FTS) measures in 

the far-IR portion of the earth’s emission spectrum, offering a unique opportunity to 

study atmospheric radiation and climate, cirrus clouds, and water vapor in the upper 

troposphere. Far-IR measurements are crucial to understanding the Earth’s climate and 

will radically improve our ability to model and predict the future of the Earth’s energy 

budget.   

Finally, in addition to the ice cloud studies, dust particles are also analyzed for 

their effect on the far-IR radiation. Aerosols play an important role in Earth’s climate 

system through both direct and indirect effects on the energy budget and hydrological 

cycle (Zhaokai et al., 2010).  The Earth-atmosphere system has both natural aerosols 

(pollen, bacteria) and anthropogenic sources (products of combustion, smoke, ashes, 

dusts).  Due to the variety of shapes, sizes and forms, the factors that determine how 

aerosol radiative forcing may behave are very hard to understand.  Numerous methods 

have been used in attempt to understand aerosol optical properties and radiative 

influences through model simulations and satellite-derived measurements. However the 

majority of these techniques have only included the visible and infrared regions of the 
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electromagnetic spectrum, leaving the effect of aerosols in the far-infrared (IR) region a 

big uncertainty. 

The main objectives of this work is to (1) compare and validate the FIRST 

measurements and simulations (2) analyze the measurements to understand sensitivity of 

the far-IR spectrum to atmospheric constitutes and properties and (3) explore the 

information content of ice clouds and dust clouds to develop ice cloud retrieving 

algorithms and aerosol properties. Therefore this work is organized in the following 

format: Section 2 presents the data used as well as the FIRST instruments description. 

Section 3 provides an overview of methods and models used to determine simulations. 

Section 4 presents results in order of clear-sky simulations, cloudy-sky simulations, and 

cloud-property sensitivity study simulations. Section 5 discusses findings on aerosols in 

the far-IR and finally, section 6 summarizes the main findings of this work.  
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2. DATA 

2.1 FIRST Instrument  

 The FIRST instrument is designed to cover the spectral region from 10 to 100µm 

and provides a spectral resolution of 0.643 wavenumber (unapodized). Table 1 lists 

some characteristic parameters of the FIRST instrument used.  FIRST incorporates a 

high-throughput (0.47 cm2 steradian) interferometer to adequately fill a 10x10 (100-

element) focal-plane sensor and a single broad bandpass beamsplitter (germanium on 

polypropylene) to pass the entire spectral interval and scan in periods as short as 1.4  

 

 

Table 1: The FIRST Fourier Transform Spectrometer characteristics for far-IR 
measurements. Note: spectral range is for analyzed dataset and resolution is the 
operating resolution. 
 

Characteristic FIRST 
Instrument Type 2-port Plane-Mirror FTS 

Optical Throughput 0.47 cm2 ster 
Spectral Range 80 – 800 cm-1 

Resolution (unapodized) 0.643 cm-1 
Detectors 10 Si bolometers 

Beamsplitter Ge on polypropylene 
Scan time (double-sided 

interferogram) 
8.5 sec 

Sky Integration  6 min. 
Calib. Blackbodies 46 and 12 C 

Period between Calibrations 35 min. 
Lab Calibration Uncertainity < 1K 
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seconds. The FIRST FTS system includes three view ports: one for viewing the 

atmosphere, and two for viewing calibration sources and is displayed in Figure 2. Light 

enters through the scene select motor, reflects through the interferometer cube and 

finally reaches the detector dewar, where measurements are stored.  The scene selection 

mirror rotates depending on the three measuring locations (space view, ground based, or 

flight blackbody) and scans over an optical path of +/- 0.8 cm. A thin polypropylene 

window isolates the scene select mirror from the interferometer dewar. The FIRST 

beamsplitter uses a multi-layer beam splitter with germanium and polypropylene. This 

material is used because it has relatively few absorption features in the measured wave 

spectrum. The FTS and aft optics are cooled to approximately 180K by liquid nitrogen, 

and the detectors are cooled to 4.2K, while the rest of the instrument is at ambient 

temperature.  

Calibrations for FIRST include both radiometric and spectral uncertainties. For 

radiometric corrections, FIRST viewed two different calibration blackbodies; one at 

ambient temperatures ranging from 277 to 285K and one maintained at higher 

temperatures between 310 and 319K. 
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Figure 2: The three optical modules in the FIRST FTS system. 

 

 

The temperatures were stable to a couple degrees over the course of the day and 

were stable to much better than that over the course of an individual calibration scan.  

These warm and cold sources were taken for different configurations and then used to 

correct interferograms for small non-linearity phase offsets. Additionally, spectral 

uncertainties were corrected for off-axis frequency shifts in the scene select mirror and 
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summed multiple detectors for increased precision. Further detailed information on the 

FIRST instrument can be found in Mlynczak et al. [2005, 2006]. 

2.2 FIRST Data 

Surface downwelling far-IR radiation measurements were collected from August 

through October 2009 in Cerro Toco, Chile (23°S, 67.8°W) using the FIRST Fourier 

Transform Spectrometer [Mlynczak et al., 2006] as part of the RHUBC-II campaign 

[Turner and Mlawer, 2010]. Located in the Atacama Desert, the summit of Cerro Toco 

is at 5.4 km above sea level in the Andes Mountains and is known to be one of the driest 

and clearest locations in the world because of the region being in the rain shadow 

between mountain ranges; the walker circulation (air descends); and the cold ocean 

water off the coast (coastal inversion) [Turner and Mlawer, 2010]. The campaign time 

period was chosen to correspond to the lowest precipitable water vapor column amounts 

(PWV) during the year, averaging 0.3 to 1.5 mm. The water vapor abundances at this 

site are similar to those seen in the mid-to-upper troposphere, a rare occurrence at a 

surface-based site.  With these low PWV values, the atmosphere becomes semi-

transparent in the far-IR, which allows for the spectral structure of water vapor 

absorption to be observed.  

In addition to the ground-based downwelling radiation measurements, Vaisala 

RS92 sondes were launched at 1-hour intervals from the Cerro Toco site and recorded 

pressure, temperature, and relative humidity, as a function of altitude. PWV 

measurements were retrieved using a 183-GHz (6.11 cm-1) G-band vapor radiometer, 

which can detect the strong microwave water vapor absorption lines [Turner and 
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Mlawer, 2010] and proved to be accurate in the RHUBC-I experiments. Relative 

humidity values were scaled to the measured PWV to remove sonde biases, which can 

occur in the upper and lower troposphere, as described in Miloshevich et al. [2009]. The 

atmospheric profiles used in these analyses are the RHUBC-II Chile sonde files version 

2.0. 

The FIRST measurements analyzed in this study include five dates from 

September and October 2009 that are representative of both clear and cloudy sky 

conditions. For comparison purposes, days were divided into moist and dry days based 

on measured relative humidity values and PWV. Table 2 lists the dates used in this study 

with respective atmospheric variables. 10 September, 13 September and 5 October, 

represent dry days whereas 1 October and 3 October represent moist days.  The timing 

of both the FIRST measurements and the sonde profiles were matched as closely as 

possible. 

 

Table 2: Summary of dates and time stamps used in this study with respective variables 
and notes on moisture categorization and cloud condition took during experiment. Note  
that type of cloud is not determined. 1 October 2009 at 17:40z is the only date used for 
cloudy-sky simulations. 
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3. METHODS 

3.1 Models 

Line-by-line radiative transfer (LBLRTM) models can be used to analyze the far-

IR hyperspectral characteristics [Clough et al., 1992; 1994; Cageao et al., 2010]. 

LBLRTMv11.7 uses the RHUBC-II radiosonde atmospheric profiles to calculate the 

gaseous optical depths at 40 linearly spaced layers between the minimum and maximum 

altitude by using the line parameter database (aer_v_2.4) to provide atmospheric line 

positions, strengths and shapes [Rothman et al., 2005]. This line parameter database 

includes updates to the carbon dioxide line intensities between 597-2500 cm-1, as well as 

water vapor line shifts and temperature dependencies for lines from 436-2396 cm-1. 

Information on concentrations of other atmospheric gases active in the region of interest 

were based on the standard mid-latitude winter model, which is built into the LBLRTM 

model. The model also incorporates a continuum absorption model (MT_CKDv2.5) for 

the “continuum absorption” of overlapping wings of water vapor absorption features 

[Clough et al. 2005]. The water vapor continuum used includes the most recent updates 

to far-infrared wavenumbers made in version 2.4 by the RHUBC-I results. This water 

vapor continuum model is very important to the accuracy of LBLRTM because of the 

assumed absorption parameters (line shapes, strengths and position) stored in the 

absorption line database. The evaluation of this water vapor continuum model in the far-

IR is a high priority of the RHUBC campaigns.  

As a flexible model that computes radiance for scattering atmospheres and has 

primarily been used in the infrared [Turner et al., 2003; Cox et al., 2010], LBLDIS 
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(v2.1) [Turner, 2005], is a combination of LBLRTM and the Discrete Ordinates 

Radiative Transfer (DISORT) method [Stamnes et al., 1988]. This model can account for 

a vertically inhomogeneous atmosphere consisting of a number of vertical layers 

including cloud layers. It is able to compute the radiance emitted by the atmosphere at 

any altitude, viewing angle, and arbitrary spectral resolution. The model reads the 

LBLRTM calculated optical depths, as well as the atmospheric temperature profiles and 

assigns each cloud layer (if any) the bulk single-scattering properties [Baran et al., 2005; 

Baum et al., 2007] including the single-scattering albedo, phase function and cloud 

optical thickness.  

3.2 Clear-Sky Modeling 

For clear-sky simulations the surface temperatures reported in Table 2 are used 

for the input temperature in the LBLDIS model. Additional inputs into the LBLDIS 

model include wavenumber start and end (100-700 cm-1), resolution (to match the 

FIRST measurements, 0.643 cm-1), zenith angle (180 degrees (downwelling)), solar 

zenith angle (60 degrees), and relative azimuth angle (30 degrees). Angles are subject to 

change based on date and time, however these average angles are representative of a 

typical downwelling measured scene with nadir as the point of view. Furthermore, 

surface spectral emissivity lines can be input; however, findings show that the far-IR has 

a relatively constant surface emissivity across the globe close to one [Seemann et al., 

2008]. The simulated radiance values were convolved with an apodizing von Hann 

function [E.W.Weisstein.“Hanning Function” available from MathWorld--A Wolfram 

Web Resource. (http://mathworld.wolfram.com/HanningFunction.html)] to smooth the 
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instrument sinc function for comparison with the similarly convolved measured spectra 

of the instrument.  

3.3 Cloudy-Sky Modeling 

For cloudy-sky simulations the same above inputs were used with the addition of 

certain cloud parameters such as number of cloud layers, cloud height, reference 

wavenumber, effective radius, and optical thickness. A scattering database of the single-

scattering properties of cloud particles, including the single-scattering albedo, extinction 

coefficient, and phase function, is used to define the optical properties of a cloud. 

Historically, cloud particles have been treated as spheres and the scattering properties of 

these particles can be computed using the Lorentz-Mie theory. However, ice clouds are 

almost exclusively composed of non-spherical ice crystals. In previous work, various ice 

crystal habits, or shapes, have been observed in cirrus clouds, including hexagonal 

columns and plates, bullet rosettes, and aggregates [Heymsfield et al., 2002]. Lee et al. 

[2003] shows that the effect of the sharp edges of pristine ice crystals may not be 

important at far-IR wavelengths because of the strong absorption of ice in this spectral 

region. For the purposes of the effective radius (re) sizes studied in this work, solid 

columns are used to represent the ice crystals, which typically have a mean re = 38.46 

µm [Key, 2002]. In the present study the single-scattering properties of solid hexagonal 

ice columns are taken from a scattering database [Yang et al., 2005] that was developed 

by using a composite method based on the finite-difference time domain (FDTD) 

method and an improved geometrical-optics method (IGOM) [Yang and Liou, 1996a; 

1996b] for nonspherical particles and the Lorentz–Mie theory [Wiscombe, 1980] for 
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equivalent spheres. The single-scattering properties are integrated over a gamma size 

distribution for effective particle sizes ranging from 1 to 1000 µm, for the entire far-IR, 

and infrared regions. These properties were derived with sigma = 0.1, which indicates 

the spread of the gamma function used. It should be noted that the effective radius 

utilized in this work is equal to half the effective particle size and is proportional to the 

ratio of the volume to the projected area of the size distribution of the crystals defined by 

[Foot, 1988; Baum et al. 2005; and references cited therein]: 

 

   re = 

€ 

3
4
Vtot

Atot
                    (1) 

Additionally, the optical thickness defined in this work is calculated using the cloud 

geometrical thickness (z) and the volume extinction coefficient (βext), which changes 

with changing effective radius and can be found in the calculated bulk scattering particle 

database.  

  

€ 

τ = z *
ext

β                           (2) 

The ice particle database thus contains the wavelength range covered, effective radius, 

extinction, scattering and absorption cross section and efficiency, single scattering 

albedo, asymmetry parameter, projected area, volume and the scattering phase function 

at 498 scattering angles from 0° to 180° for solid column crystals.  

Cloud properties were not measured during RHUBC-II. A micro-pulse lidar for 

the purpose of measuring cloud properties was on site but did not function properly 

during the campaign. Therefore, sky condition (clear or cloudy) is noted in Table 2 by 
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using a combination of satellite data from GOES-14, CALIPSO and MODIS-Terra 

Cloud Products. Note that cloud type is not available, but for 1 October 2009, 17z a thin-

cirrus is assumed for the purposes of this study. Unfortunately, the retrieval of cloud 

properties (i.e. optical thickness and effective radius) from cirrus detection (when visible 

optical thicknesses are <0.3) is often skewed in satellite measurements because of the 

inability of the retrieval algorithms to detect the scattering and absorption properties of 

small ice crystals [Meyer et al., 2004; Ackerman et al., 2008]. Following previous 

analysis, [Meyer et al., 2004, Yang et al., 2003, Cox et al., 2010] the optical thickness of 

a cirrus cloud is in reference to its value at a visible wavelength. McFarquhar et al. 

[1999] found that the most frequent combinations of thin cirrus include an ice crystal 

habit distribution with effective diameter De = 24 µm and optical thickness τ ≤ 0.3. On 

the other hand, Baum et al. 2007, found a 100% solid column distribution with De=92 

µm fit slightly thicker cirrus (τ ≥0.4–0.5). Therefore, by using a combination of these 

findings, the following basic thin cirrus assumptions were used to start evaluating cloud 

properties: optical thickness, τ = 0.2 and effective radius, re = 10.0 µm , where re = ½De. 

For simplicity of modeling, cloud height input was obtained from the satellite data and 

for the cloudy simulation on 1 October 2009 at 17:40z, height is equal to 6.13 km. 

3.4 Aerosol Modeling 

In order to study the effects of aerosols in the far-IR region, the optical properties 

of aerosols must be determined.  Due to aerosols nature to be hygroscopic, aerosol 

optical single scattering properties (including extinction, scattering and absorption 

coefficients, single scattering albedo, and asymmetry parameter) are all wavelength 
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dependent and must be calculated for each wavenumber. To simulate aerosols in the far-

IR, a combination of line-by-line radiative transfer model (LBLRTM v11.7), discrete 

ordinates radiative transfer model (DISORTv2.1), Zhaokai derived bulk scattering 

aerosols database, and the FIRST simultaneously acquired far-IR downwelling radiances 

are used (Clough et al., 2005; Stamnes et al., 1988; Zhaokai et. al., 2010; Mlynczak et 

al., 2005). Again, the atmospheric profiles are used in LBLRTM to calculate optical 

depths at 40 different layers from the surface to the top of atmosphere (5.4 km to 17.4 

km). Each optical depth layer is then interpolated from high resolution to moderate 

resolution in order to account for the different spectral ranges in each layer.  Next, the 

exact optical depth calculations are use to build the bulk-scattering database.  Zhaokai et 

al., 2010 provides a user-friendly single scattering database for tri-axial ellipsoidal 

mineral dust aerosols, which can be used to calculate bulk scattering properties based on 

two aspect ratios, complex refractive indices and a size parameter. The database is 

prepared using a look up table for the complex refractive indices of dust taken from 

Levoni et al., (1997).  Because values have not been calculated for wavelengths > 40 

µm, the values at 40 µm are assumed for mr and mi. In these simulations the database 

used was created with mr = 1.9, mi = 0.5 (highly absorptive), a/c = 0.52, b/c = 0.75, and a 

lognormal size distribution.   This database is then used in DISORT to simulate 

downwelling aerosols in the far-IR. For these model simulations, the extinction 

coefficient (visible) is determined from the optical depths and is set to 2.30674.  

Calculations of simulated data are finally interpolated to the FIRST resolution for 

comparison. 
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4. RESULTS 

4.1 Clear-Sky Simulation 

Under clear-sky simulations, the LBLDIS model shows strong agreement with 

the FIRST measurements, follows the general measured trend given by the FIRST 

instrument, and mimics water vapor continuum absorption across the spectrum, as 

demonstrated in Figure 3. Line structure shown in Figure 3 below 500 cm-1 is due mainly 

to the pure rotational structure of water vapor. The spike at band 667cm-1 is due to 

instrument internal CO2 absorption at higher temperature in the optical path. Figure 4 

shows that the peak-to-peak differences between the clear sky simulation and FIRST 

measurements for 10 September 2009 at 15:29 are quite small and do not exceed +/- 0.7 

%, except at the CO2 absorption band. The differences between 600 and 700 cm-1 are due 

to a combination of errors in the models CO2 band absorption parameters and the near 

surface temperature specification, (FIRST trailer was warmer than outside air). This has 

not been corrected for and is an active area of research. The difference calculations for 

each of the other studied dates displayed similar characteristics. 
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Figure 3: FIRST downwelling radiance measurements overlaid with the LBLDIS  model 
 of a clear sky simulation for 10 September 2009 at 15:29z.  
 

 

 

 

 

 

 



 19 

 

Figure 4: Example showing very small differences of the radiance at each wavenumber 
 between the model and measured spectral downwelling radiances.  
 

 

Due to similar difference spectrums for each of the days studied, it is interesting 

to look at the effects that moisture differences may have on these calculations. In order 

to do so, the dates were compared respectively based on dry and moist categorization 

determined by PWV. As mentioned in the data section Table 2, 13 September 2009 is an 

example of a dry date and 3 October 2009 is an example of moist date. Before 

comparison, it is useful to see what the water vapor profiles looked like for each date. 

Figure 5 compares the Cerro Toco water vapor spectrums from each day, with the 

addition of a mid-latitude winter (MLW) profile for reference. Note that water vapor 
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amounts are very dry in the lower troposphere and become even drier once entering the 

upper troposphere (altitude > 12 km). Previous literature has also shown that this region 

in the far-IR is linked to the greatest atmospheric cooling rates in the middle and upper 

troposphere [Clough et al., 1992]. 

 

 

Figure 5: Comparison between MLW water vapor profile and simultaneously acquired 
 Cerro Toco water vapor profiles from the respective dates. 13 September 
 represents a dry day and 3 October represents a moist day. 
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Despite water vapor differences in the lower troposphere between these two 

dates, it should be emphasized than when using the simultaneously acquired water 

vapor, the model still shows very good agreement. Figure 6 displays the spectrum 

between 300-500 cm-1 for both the moist day (3 October 2009) and the dry days (13 

September 2009) model simulation and observed simulation. This region was selected 

because the mean error was the greatest for this spectral region. Figure 7 displays the 

difference spectrum between the clear sky simulation and the observed measurements 

for both the dry and moist cases. The differences are small (+/- 0.7%) and the greatest 

errors for each water vapor case peak at the same wavenumber bands, illustrating the 

models sensitivity to the water vapor differences.  

The differences seen may be more than just atmospheric condition related and 

may also be affected by the water vapor continuum used in the model. The continuum 

used (MT_CKD v 2.4) in this study includes the most recent far-IR water vapor updates 

to bands 410, 477, 497, 533, and 560 cm-1 [Delamere et al., 2010].  
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Figure 6: Comparison between dry day, 13 September, and moist day, 3 October, for 
 a clear sky simulation. Using the simultaneously acquired water vapor profile for 
 both wet and dry days, the model shows very good agreement for this interval.  
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Figure 7:  The differences between the FIRST simultaneously acquired measurements 
 and the clear-sky model simulations for each respective date. Differences are 
 relatively small, with peak differences the same for both the dry and moist case. 

Updates to additional far-IR water vapor bands are imperative for future studies. 
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Updates to additional far-IR water vapor bands are imperative for future studies. In order 

to understand problematic water vapor absorption bands used in the continuum, the total 

differences between the moist and dry day’s differences are calculated to highlight 

particularly strong absorption bands. This “total” difference consists of first calculating 

the differences of the simulation and actual (for each separate water vapor case), in order 

to account for model biases. Then, the total differences of these calculations are 

computed to account for both model sensitivity and water vapor sensitivity. Figure 8a 

displays the moist and dry, clear-sky simulations for comparison. Figure 8b displays the 

total calculated differences between the dry case and the moist case simulations. The 

greatest biases seen in figure 8b are suggestive of bands that may need improvements in 

the future model of the water vapor continuum. Improvements made to the water vapor 

continuum, particularly at these wavenumbers, may be a method toward achieving good 

model agreement [Clough et al., 1992; 2005].  
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Figure 8: a.) Comparison of clear-sky model simulations for both dry and moist cases. 
 b.) Total differences between dry and moist clear-sky simulation highlight bands 
 that may need special consideration and updates in the water vapor continuum. 

a 

b 
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4.2 Cloudy-Sky Simulations 

Although the significant role of ice clouds in the climate system has long been 

recognized [Liou, 1986; Lynch et al., 2002], a complete understanding of this role has 

not yet been achieved. Bulk radiative studies of cirrus clouds show that cirrus clouds 

may radiatively heat or cool the upper atmosphere at infrared wavelengths depending 

upon the height, thickness and microphysical size of the clouds [Fleming et al., 1974; 

Mlynczak et al., 2006]. To understand the effects of cirrus clouds in the far-IR, the cloud 

microphysical properties, effective radius (re) and optical thickness (τ), were varied for 

the cloudy case 1 October 2009 at 17:40z. 

In order to analyze the effects that thin cirrus clouds would have in the far-IR, the 

cloud microphysical properties are input into the LBLDIS model. Model inputs for the 

cloud are as discussed in the methods sections (τ = 0.2, re = 10.0 µm, cloud height = 6.13 

km, solid column ice scattering database). Results show that with these basic thin cirrus 

cloud assumptions, there are some differences particularly in the spectrum at 

wavenumbers greater than 400 cm-1. Figure 9a shows the difference comparison between 

the model simulation with cloud parameters to the FIRST measurements, and the model 

simulation with clear sky properties to the FIRST measurements. It can be observed that 

when there is a thin cirrus cloud present, the model is sensitive to the cloud properties 

particularly between wavenumbers 400-600 cm-1. Figure 9b shows the difference 

between the clear sky and cloudy sky simulation. It is apparent that the cloud properties 

have the greatest effects on the far-IRs larger wavenumbers (>400 cm-1). This is 

coincidently the region of the strongest scattering for ice in the far-IR.  
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Figure 9: a.) Comparison of the differences between the clear sky simulation and the 
 observed measurements and the cloudy sky simulation with the observed 
 measurements. b.) The sum of the clear sky simulation differences and cloudy 
 sky simulation differences. The cloudy sky model simulation is most sensitive at 
 wavenumbers between 400 - 600 cm-1.  
 

a 

b 
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4.2.1 Effective Radius Study 

Since the actual cloud optical thickness and effective radius are not known for 

this cloudy day, it is useful to test other size ranges for these microphysical properties. In 

order to analyze the effect that particle size is having on the model, increments of 

effective radius = 10µm are applied. Results show that by increasing the radius, 

differences between model simulations are very small. Figure 10a shows a comparison 

between re = 10.0 µm and re = 50.0 µm for a cloudy sky simulation on 1 October 2009, 

17z, with the same cloud properties as before. Figure 10b emphasizes that minimal 

differences are seen across the spectrum for increasing effective radii, with slight 

sensitivity at wavenumbers > 400 cm-1. This particular spectral structure mimics 

absorption line features from water vapors rotational structure on the far-IR. Because 

these bands have not been fully studied, it raises the question as to whether the water 

vapor continuum is compensating for the inadequacies in the model with the cloud, or if 

it is really the cloud property effective radius. Delamere et al., 2010 discusses that the 

most recent updates to the far-IR part of the water vapor continuum are in the MT_CKD 

2.4 model, which resulted in significant radiance model improvements between 400 and 

625 cm-1, particularly at wavenumbers 410, 477, 497, 533 and 560 cm-1. Though this 

model proved adamant, the continuum has not had far-IR improvements since 2009, and 

measurements from campaigns such as these can help to distinguish where 

improvements may be needed. 
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Figure 10: a.) Cloudy-sky simulation with basic thin cirrus cloud parameters for  
     different effective radius re = 10.0 µm and re = 50.0 µm. b.) Differences  

    between cloud simulation with re = 10.0 µm and re = 50.0 µm are very small.  
    The downwelling radiance in the far-IR is only slightly sensitive to the      
    particles effective radius at wavenumbers > 400 cm-1.  

b 

a 
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To distinguish if the water vapor continuum is the main culprit to these 

differences, the same analysis was done for the very dry, cloud free date 13 September 

2009, 13:44z, using the same cloud properties described above for both re = 10.0 µm and 

re = 50.0 µm. As previously done in the clear-sky case, first, in order to account for 

model biases, the differences of the simulation and actual must be calculated. Then, the 

total differences of these calculations are computed to account for both model sensitivity 

and water vapor sensitivity. Finally, by taking the differences between the cloud-free 

date and the cloudy date, a total difference plot displays spectral features that can 

highlight where the water vapor continuum is dominant.  Figure 11a displays the total 

differences between the cloud-free cloudy simulations and the cloud-cloudy simulations, 

and is representative of the contribution due to water vapor. A zoomed-in figure 11b 

highlights the same difference peaks as seen in Figure 10b. The greatest deviations are 

indicative of where the continuum is the predominant absorber. Like Delamere et al., 

2010, Figure 10b shows that the five microwindows that may need updates are centered 

at 410, 477, 497, 533, and 560 cm-1. Figure 11b also suggests some continuum 

absorption at 363 and 391 cm-1. Future research should focus on updating the water 

vapor absorption continuum at these specific bands.  
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Figure 11: a.) The total differences between the cloud-free date cloudy simulation 
 differences (13 September 2009 13:44z) and the cloud-cloudy simulation 
 differences (01 October 2009, 17:40z) of different effective radius. b.) Spectral 
 features between 300 and 600 cm-1 indicates bands where the continuum is the 
 predominant absorber. 

 

a 

b 
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4.2.2 Optical Thickness Study 

Next, to analyze the effect of changing optical thicknesses on this cloudy 

scenario, the same method used for evaluating effective size is applied. To be consistent 

all parameters will stay the same (cloud height = 6.13 km, effective radius = 10.0µm and 

solid column scattering database) while optical thickness is varied between 0.1 and 2.0, 

at visible wavelengths. Figure 12a depicts the differences between FIRST downwelling 

radiance measurements and the cloudy-model simulation if the optical thickness was τ = 

2.0 (thick). Model calculations tend to be very sensitive at wavenumbers >380 cm-1 

where the errors become as large as (-) 7.0 %.  Note that errors are large because they 

are not representative of the cloud at this time. Errors bars are only used for spectral 

comparisons. In Figure 12b, when the optical thickness is τ = 1.0, we see slightly less 

error ( (-) 4.0 %) at wavenumbers > 400 cm-1. Finally Figure 12c shows that at very thin 

optical thicknesses (when τ < 0.3), the sensitivity is rather constant across the spectrum, 

with its greatest sensitivity peaks between 500 and 600 cm-1. Peak to peak differences do 

not exceed +/- 0.07 % in radiance, except at the center of the CO2 band at 667 cm-1 

where absorption is large. Thus, optical thickness sensitivity tends to dominate the larger 

far-IR wavenumbers between 400 and 600 cm-1, where scattering effects are greatest. 
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Figure 12: Downwelling radiance differences between FIRST measurements and model 
 under a cloudy-sky simulation with constant cloud parameters, re = 10.0 µm and 
 varying optical thickness values of (a) τ = 2 (b) τ = 1 and (c) τ = 0.2. 
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 In general for both cloud properties, optical thickness and effective radius, the 

model sensitivity up to 400 cm-1 is minimal, and is slightly more sensitive at larger 

wavenumbers > 400 cm-1. Testing different size particles proved the water vapor 

continuum can account for some of the biases in the model simulations and should be 

updated in future work.  

4.3 Using Brightness Temperature Differences to Determine Microphysical Cloud 

Properties 

The prevalence of cirrus clouds is an important influence on climate change. To 

investigate the spectral radiative signature of ice clouds in the far-IR region, 

downwelling brightness temperatures are calculated. As previously discussed, optical 

thickness of clear-sky atmospheres at each layer are computed with the LBL radiative 

transfer model (Clough et al., 1992) and are then passed to LBLDIS (Turner, 2005), 

along with the absorption properties to simulate cloudy sky downwelling radiances. The 

cloud temperature is assumed to be the same as the atmospheric temperature at that level 

and the surface is assumed to be a blackbody (unit emissivity 1). These radiances are 

used in the Planck function to calculate brightness temperature. Figure 13a displays 

brightness temperature calculations for cloudy sky simulations with different optical 

thickness. For optically thin clouds, scattering is strongest between 400-600 cm-1 and the 

amount of downwelling radiation is similar to a clear sky. As the clouds thicken, 

brightness temperatures warm due to the increasing absorptive properties of a thicker 

cloud layer and downwelling radiation increases, shown in Figure 13b. 
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Figure 13: a.) Calculated downwelling brightness temperatures for cloudy sky 
 simulations with varying optical thicknesses and re = 10.0 µm held constant. b.) 
 Downwelling radiance for cloudy sky simulations under the same scenario. 
 Scattering of particles largely influences the far-IR radiation between 400 and 
 600 cm-1 wavenumbers.  

a 

b 
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Yang et al., [2003] showed that optical depth can be inferred independent of 

cirrus particle size by calculating the brightness temperature differences between 250 

and 559.5 wavenumbers (BTD 250-559.5 cm-1). These channels are selected because 

one is located at a strong water vapor absorption band (250 cm-1) and the other is located 

in an atmospheric transparent window (559.5 cm-1). Brightness temperature is known to 

be inversely proportional to optical thickness, and thus allows for the properties of thin 

cirrus to be inferred.  Results show that for a thin cirrus case, the brightness temperature 

difference is very low and close to -45K, whereas a thick cirrus cloud has a brightness 

temperature differences around -5K.  

By using the inverse Planck function to calculate BTD 250-559.5 cm-1 of the 

measured FIRST data for 1 October 2009 17:40z, we find that the optical thickness is no 

greater than 0.023 (or 43K BTD) and a thin cirrus can be assumed. Table 3 displays 

BTD 250-559.5cm-1 for various optical thicknesses, identical to Yang et al., [2003] 

findings. When optical thickness varies from 0.187 to 1.0, brightness temperature 

changes nearly 14K. At larger optical thicknesses, the brightness temperature differences 

saturate because of the strong absorption by ice particles. This implies that for ice clouds 

having small optical thicknesses the optical thickness may be inferred using far-IR data. 
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Table 3: Sensitivity of downwelling BTD 250-559.5cm-1 to various optical thicknesses 
 with re=10.0 µm. BTD 250-559.5 cm-1 shows sensitivity to thin cirrus clouds and 
 can potentially be used to infer optical thickness.  
 
 

τ (tau) BTD 250-559.5cm-1 (K) 

τ =0.187 Thin 43.0 

τ =0.5 36.9 

τ =1.0 28.8 

τ =5.0 Thick 6.3 

 

 

 

4.4 Aerosol Study 

 To begin simulating aerosols in the far-IR, the DISORT model inputs are set for 

optical thickness of the aerosol plume (τ =1), and the layer at which the plume is 

located (layer 3 or 6.8 km (480 mb)). To get a general understanding of what occurs 

with a dust particle plume, Figure 14 displays the FIRST downwelling radiance 

measurements with the aerosol model simulation for the same date at the same 

spectral resolution. The aerosol simulation mimics the same spectral features as the 

FIRST measurements; noticeably the water vapor absorption bands (water vapor 

continuum) and the C02 absorption band at 667 cm-1. The aerosol simulation also 

shows a reduction in downwelling radiance by almost one-half the clear-sky FIRST 

measurement. This follows the hygroscopic property of aerosols and their ability to 

attract and absorb water vapor. 
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Figure 14: Aerosol simulation and FIRST downwelling radiance for 09 September 2009 
       at 15:29z. 
 

 

 However, to really understand the radiative forcing influence the aerosols are 

having on the far-IR, the same simulation must be done for the FIRST data with no 

aerosols in the same DISORT model. Figure 15 presents the difference between the 10 

September 2009 15:29z, non-aerosol simulation and aerosol simulation both calculated 

using the DISORT model. By averaging the radiative forcing (RF) differences across the 

spectrum, the mean RF for this aerosol influence = 0.00235 W/m^2.  To check for 

similarity, the same process was repeated for the date 03 October 2009 17:30z, and the 

mean RF was  = 0.00129 W/m^2. If these dates are classified by moisture content, with 
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10 September 2009 (PWV = 0.5) exemplifying the dry case, and 03 October 2009 (PWV 

= 0.95) acting as the moist case, one can conclude that the aerosols had a greater 

influence on the far-IR spectrum during dry atmospheric conditions. However, the 

aerosol radiative effect may not be a significant contribution to radiative forcing in the 

far-IR.  

 

 

 

Figure 15: Calculated downwelling differences of a non-aerosol simulation and aerosol 
      simulation for 10 September 2009 15:29z. 
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To understanding the differences of the water vapor content, it is worthy to 

compare a moist and dry day simulation for absorption strengths. Figure 16 displays the 

aerosol simulations for each respective case and day. For both the dry and moist aerosol 

cases, the absorption peaks and dips follow the same spectral features.  

 

Figure 16: Dry and moist day comparisons of downwelling radiance for aerosol  
        simulations in the far-IR. 

 
 
 
To highlight possible water vapor continuum model absorption bands, the same 

process used in the cloudy sky simulations is repeated. First, the differences of each 

dates respected actual values (non-aerosol FIRST) and the aerosol simulation are 

calculated. Then the total differences between the dry and moist cases are calculated to 

highlight possible water vapor absorption bands. Figure 17 displays the total differences 
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of the two moisture cases and can be representative of where strong water vapor 

absorption bands may be.   

 

Figure 17: Differences of the dry and moist aerosol simulations can help to  
      highlight where in the spectrum water vapor absorption bands are strong and 
      where they may need future updates in the water vapor continuum. 

 

 

 

It is evident in Figure 17 that some suggested absorption bands are near 360, 410, 

470,490,560 and 600 cm-1, which also match the bands that were presented in the 

cloudy-sky study. These absorption bands suggested may imply where the continuum 

model may need future updates. 
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5. SUMMARY AND CONCLUSIONS 

There is strong agreement between the measured far-IR data set from Cerro Toco 

and the LBLDIS radiative transfer model when matching line shape and spectral 

resolution provided simultaneous sonde measured water vapor profiles. For both clear 

sky and cloudy sky simulations, peak to peak differences are very small and do not 

exceed +/- 0.7%, proving the models’ consistency when used for hyperspectral far-IR 

analysis. These results show that cold, dry atmospheric profiles, such as Cerro Toco, 

tend toward surface radiances that are quite sensitive to model inputs. In particular the 

model is sensitive to moisture inputs at wavenumbers between 300 and 500 cm-1. Using 

simultaneously acquired atmospheric profile variables (pressure, temperature, and 

relative humidity) is strongly recommended when comparing data with models 

calculating downwelling radiance in the far-IR. It is necessary to keep in mind that the 

bias in these analyses can be the combination of three errors: 1) the water vapor 

differences 2) the water vapor continuum model and 3) unknown instrument calibration 

error. 

To distinguish if the water vapor continuum is the main culprit to these 

differences, difference analyses were done for both a dry date and a moist date, and for 

both clear and cloudy sky conditions. The total differences are representative of the 

contribution due to water vapor and the greatest deviations are indicative of where the 

continuum is the predominant absorber. Results highlighted that the five microwindows 

that are primary water vapor absorbers are centered at 410, 477, 497, 533, and 560 cm-1, 

with additional suggestions at 363 and 391 cm-1. These results are consistent with 
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Delamere et al., 2010. Future research should focus on updating the water vapor 

absorption continuum at these specific bands.  

In addition to the clear sky simulations, cloudy sky simulations were also 

analyzed to determine the effects that the cloud microphysical properties, optical 

thickness and effective radius have in the far-IR. The cloud parameter particle effective 

radius has minimal effects on the model across the entire far-IR spectrum and indicated 

the need for more research on the water vapor absorption continuum model between 300 

and 600 cm-1. Conversely, the cloud parameter optical thickness has greater effects on 

the far-IR and tends to dominate at wavenumbers > 400 cm-1, where the scattering 

effects of ice particles are greatest. Cloud parameters such as optical thickness are thus 

sensitive in the region where scattering dominates (> 400 cm-1), while atmospheric 

conditions (moisture profile) are more sensitive in the region where absorption 

dominates (< 400 cm-1).  

Cloud optical thickness also proves to be consistent with previous studies and 

can be predicted from the difference in brightness temperature at wavenumbers 250 and 

559.5 cm-1 [Yang et al., 2003]. These bands are used because one channel is located in a 

strong absorption band and the other is in a region of weak absorption, which is sensitive 

to the presence of ice clouds. The BTD 250 – 559.5 cm-1 proves effective when 

determining optical thickness for optically thin clouds using far-IR data.  

Finally, the hygroscopic properties of aerosols are evident in the spectrum of the 

far-IR. When testing a basic tri-axial ellipsoid dust plume in the model, spectral features 

proved to again follow the pure rotational structure of water vapor.  This spectral 
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structure for a third time highlighted the same primary water vapor absorption bands that 

the clear and cloudy sky analysis proved, reinforcing their importance for continuum 

updates. Additionally, aerosols acted to reduce the amount of downwelling radiation in 

the far-IR and absorbed about half of what would be emitted under a clear-sky. Despite 

this effect, aerosols may not have a significant contribution to the far-IR radiative 

forcing.  

Together, to have the most optimal model for far-IR simulations, all input 

variables must be as accurate as possible. The far-IR is very sensitive to its surrounding 

atmospheric properties and cloud conditions. Developing proper algorithms for both 

cloud scene satellite collection and cloud scene data analysis will help to validate cloud 

data acquisition and lead to better understanding of the radiometric and microphysical 

properties in the far-IR. Future effort towards updating the water vapor absorption 

continuum in the far-IR at strong absorption bands can help to eliminate some of the 

cloud property biases of radiative transfer models in the far-IR. Effort regarding the 

comparison between the observations and simulations under cloudy conditions and 

continuum model updates is currently ongoing.  
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