NEW DESIGNS OF RIGID PINCER COMPLEXES WITH PXP LIGANDS AND LATE TRANSITION METALS AND SP³ C-F BOND ACTIVATION WITH SILVLIUM AND ALUMENIUM SPECIES

A Dissertation

by

WEIXING GU

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

December 2011

Major Subject: Chemistry

New Designs of Rigid Pincer Complexes with PXP Ligands and Late Transition Metals and sp³ C-F Bond Activation with Silylium and Alumenium Species

Copyright 2011 Weixing Gu

NEW DESIGNS OF RIGID PINCER COMPLEXES WITH PXP LIGANDS AND LATE TRANSITION METALS AND SP³ C-F BOND ACTIVATION WITH SILVLIUM AND ALUMENIUM SPECIES

A Dissertation

by

WEIXING GU

Submitted to the Office of Graduate Studies of Texas A&M University in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Oleg V. Ozerov
François P. Gabbaï
John A. Gladysz
Perla B. Balbuena
David H. Russell

December 2011

Major Subject: Chemistry

ABSTRACT

New Designs of Rigid Pincer Complexes with PXP Ligands and Late Transition Metals and sp³ C-F Bond Activation with Silylium and Alumenium Species.

(December 2011)

Weixing Gu, B.S., Fudan University

M.S., Brandeis University;

Chair of Advisory Committee: Dr. Oleg V. Ozerov

In this dissertation, catalytic C-F bond activation mediated by alumenium and silylium species, improved methods for the synthesis of highly chlorinated carboranes and dodecaborates, new type of P_2Si = pincer silylene Pt complexes and PBP pincer Rh complexes are presented.

In Chapter II, the design and synthesis of P_2Si and PBP ligand precursors is described. BrC₆H₄PR₂ is shown to be a useful building block for PXP type of ligands with *o*-arylene backbone. RLi reagents displayed high chemoselectivity towards electrophiles, such as Si(OEt)₄ and BX₃ (X = Hal).

In Chapter III, new chlorination methods to synthesize $[HCB_{11}Cl_{11}]^{-}$ and $[B_{12}Cl_{12}]^{2-}$ are presented. $[HCB_{11}Cl_{11}]^{-}$ was obtained via reactions of Cs $[HCB_{11}H_{11}]$ with SbCl₅ or via reactions of Cs $[HCB_{11}H_{11}]$ with Cl₂ in acetic acid and triflic acid. Heating $Cs_2[B_{12}H_{12}]$ in mixtures of SO_2Cl_2 and MeCN led to the isolation of $Cs_2[B_{12}Cl_{12}]$ in high yield.

In Chapter IV, $Et_2Al[HCB_{11}H_5Br_6]$ or $Ph_3C[HCB_{11}H_5Br_6]$ were shown to be robust catalysts for sp³ C-F bond activation with trialkylaluminum as the stoichiometric reagent. Trialkylaluminum compounds were also shown to be able to be used as "clean-up" reagent for the C-F bond activation reactions, which led to ultra high TON for the catalytic reactions.

In Chapter V, a series of (TPB)M complexes (M = Ni, Pd, Pt) were synthesized and characterized by multinuclear NMR spectroscopy and X-ray crystallography. The resulting metal complexes displayed strong dative $M \rightarrow B$ interaction and unusual tetrahedral geometry for four-coordinate 16ē species, due to the cage structure of the ligand.

In Chapter VI, $(PSi^{H}P)PtCl$ was synthesized via the reaction of the ligand precursor and $Pt(COD)Cl_2$, which was used to obtain a series of $(PSi^{H}P)PtX$ complexes(X= I, OTf, Me, Ph, Mes). After hydride abstraction by $Ph_3C[HCB_{11}Cl_{11}]$, the X ligand (X= I, OTf, Me, Ph) migrated from the Pt center to silicon center to give a cationic pincer silyl species. The migration was not observed when mesityl was used as the X ligand, which resulted in the first known pincer complex with central silylene donor.

Our approaches towards PNP pincer boryl Rh complexes were summarized in Chapter VII. (PB^{Ph}P)Rh pivalate complex underwent C-Ph bond activation to yield the pivalate-bridging Rh borane complex.

ACKNOWLEDGEMENTS

First of all I would like to thank my advisor, Dr. Oleg V. Ozerov, for his education, support, patience and encouragement during my Ph.D. study. He is always encouraging and supportive, giving me confidence and has inspired me in my research.

I would like to thank my committee members, Dr. Balbuena, Dr. Gabbaï and Dr. Gladysz, for their time and efforts throughout the course of this research.

I would like to thank Prof. Didier Bourissou for his guidance in the TPB ligand project. I am also very thankful to Professor Bruce Foxman, Dr. Chun-Hsing Chen and Dr. David Herbert for their work on X-ray crystallography.

I would like to thank all members of the Ozerov group, the present and the past, for their friendship and helpful discussions: Dr. Mason Haneline, Dr. Sylvain Gatard, Dr. Chris Douvris, Dr. Deborha Bacciu, Prof. Anthony Fernandez, Dr. C. M. Nagaraja, Dr. Panida Surawatanawong, Dr. Justin Walensky, Dr. Dan Smith, Dr. David Herbert, Dr. Jia Zhou, Dr. Claudia Fafard, Yanjun Zhu, Alyson Christopher, Baofei Pan, Dan Graham, Mayank Puri, Shoshanna Barnett, Laura Gerber, Lauren Gregor, Emily Pelton, Billy McCulloch, Rafael Huacuja, Rodrigo Ramirez, Jillian Davidson, Sam Timpa, Chun-I Lee, Loren Press, Aaron Hollas, Jessica DeMott, Adam Miller, Chrissy Brammell, Chandra Mouli Palit, Chris Pell, Chan Park and Samantha Yruegas.

Lastly and most importantly, I want to thank my parents for everything they have done for me, for their love and care during my whole life. I want to thank my wife, Mingming, for her love and support, and for the happiness she brings to my life.

TABLE OF CONTENTS

		Page
ABSTRAC	СТ	iii
ACKNOW	LEDGEMENTS	v
TABLE OI	F CONTENTS	vi
LIST OF F	'IGURES	viii
LIST OF S	CHEMES	xii
LIST OF T	ABLES	xvii
CHAPTER	2	
Ι	INTRODUCTION	1
	1.1 Phosphine Based Pincer Ligands1.2 C-F Bond Activation1.3 Weakly Coordinating Anions (WCAs)	1 14 26
II	DESIGN AND SYNTHESIS OF PINCER PSiP AND PBP LIGAND PRECURSORS	34
	2.1 Introduction2.2 Results and Discussion2.3 Conclusion2.4 Experimental Details	34 43 48 49
III	CHLORINATION OF CARBORANES AND DODECABORATES	61
	 3.1 Introduction	61 66 75 75

CHAPTER		Page
IV	SP ³ C-F BOND ACTIVATION MEDIATED BY SILVLIUM AND ALUMENIUM SPECIES	107
	4.1 Introduction	107
	4.2 Results and Discussion	109
	4.3 Conclusion	129
	4.4 Experimental Details	130
V	DESIGN AND SYNTHESIS OF TETRADENTATE TPB LIGANDS	5
	AND THEIR METAL COMPLEXES WITH GROUP 10 METALS.	156
	5.1 Introduction	156
	5.2 Results and Discussion	160
	5.3 Conclusion	169
	5.4 Experimental Details	169
VI	SYNTHESIS AND REACTIVITY OF PINCER PSiP LIGANDS	
	AND OF THEIR METAL COMPLEXES WITH Pd AND Pt	174
	6.1 Introduction	174
	6.2 Results and Discussion	185
	6.3 Conclusion	202
	6.4 Experimental Details	202
VII	DESIGN AND SYNTHESIS OF PINCER PBP Rh COMPLEXES	212
	7.1 Introduction	212
	7.2 Results and Discussion	216
	7.3 Conclusion	233
	7.4 Experimental Details	234
X7111	CONCLUSION	242
V 111		243
REFERENC	CES	246
VITA		275

LIST OF FIGURES

Page

Figure 1-1	Left: NCN pincer metal complexes; Right: Shaw's PCP metal complexes.	2
Figure 1-2	General scheme for pincer metal complexes	2
Figure 1-3	Examples of pincer metal complexes.	3
Figure 1-4	Left: Mo carbene complexes for alkene metathesis (Schrock catalyst).	13
Figure 1-5	Representation of the monocarba- <i>closo</i> -dodecaborate (-) [HCB ₁₁ H ₁₁] ⁻ anion, or carborane	29
Figure 1-6	Representation of the dodecaborate(2-) $[B_{12}H_{12}]^{2-}$ dianion	32
Figure 2-1	Examples of pincer PXP metal complexes.	36
Figure 2-2	Carborane based pincer boryl complexes known in the literature	36
Figure 2-3	s/d hybridized orbital.	37
Figure 2-4	Square planar Pt(II) complexes and the Pt-Cl bond length	38
Figure 2-5	ORTEP drawing (50% probability ellipsoids) of 209.	46
Figure 2-6	¹ H NMR spectrum of 206 in C_6D_6 at 23°C measured on a 300 MHz Varian iNova.	51
Figure 2-7	¹ H NMR spectrum of 207 in C_6D_6 at 23°C measured on a 300 MHz Varian iNova.	53
Figure 2-8	¹ H NMR spectrum of 208 in C_6D_6 at 23°C measured on a 400 MHz Varian iNova.	55
Figure 2-9	¹ H NMR spectrum of 209 in C_6D_6 at 23°C measured on a 400 MHz Varian iNova.	56
Figure 2-1	0 ¹ H NMR spectrum of 210 in C_6D_6 at 23°C measured on a 500 MHz Varian iNova.	58

Figure 3-1	Representation of the carborane.	53
Figure 3-2	ORTEP drawing of Cs[HCB ₁₁ Cl ₉ (CF ₃ SO ₃) ₂]	58
Figure 3-3	¹⁹ F NMR spectrum of Cs[HCB ₁₁ Cl ₉ (CF ₃ SO ₃) ₂] product from the reaction with Cl_2 in triflic acid.	78
Figure 3-4	MALDI MS spectrum of Cs[HCB ₁₁ Cl ₉ (CF ₃ SO ₃) ₂]	79
Figure 3-5	MALDI MS spectrum of Cs[HCB ₁₁ Cl ₁₁].	30
Figure 3-6	MALDI MS spectrum of reaction of $Cs[HCB_{11}H_5Cl_6]^*$ with Cl_2 in CCl_3COOH	32
Figure 3-7	MALDI MS spectrum for the reaction with SO ₂ Cl ₂ at ambient without Ar protection for 24 h	33
Figure 3-8	MALDI MS spectrum for the reaction with SO ₂ Cl ₂ at reflux temperature without Ar protection for 24 h	34
Figure 3-9	MALDI MS spectrum for the reaction with SO ₂ Cl ₂ with 2% H ₂ O	36
Figure 3-10	MALDI MS spectrum for the reaction with SO ₂ Cl ₂ under Ar protection at 1 g scale	38
Figure 3-11	$Me_3NH[HCB_{11}Cl_{11}]$ product from the reaction with $SbCl_5$ at 1 g scale.) 3
Figure 3-12	MALDI MS spectrum for the reaction with SbCl ₅ at 5 g scale) 5
Figure 3-13	MALDI MS spectrum for the reaction mixture of $Me_3NH[HCB_{11}Cl_{11}]$ and $Me_3NH[HCB_{11}Cl_{10}OH]$ with hexamethyldisilazane) 6
Figure 3-14	MALDI MS spectrum for the reaction with SbCl ₅ and H ₂ O) 7
Figure 3-15	¹¹ B NMR spectrum for reaction of $Cs_2[B_{12}H_{12}]$ with reflux SO_2Cl_2 for 24 h.) 9
Figure 3-16	11 B NMR spectrum for reaction of [Et ₃ NH] ₂ [B ₁₂ H ₁₂] with reflux SO ₂ Cl ₂ for 24 h 10)0
Figure 3-17	11 B NMR spectrum for reaction of Cs ₂ [B ₁₂ H ₁₂] with reflux SO ₂ Cl ₂ and acetonitrile for 24 h without workup)1

Page

Figure 3-18	8 11 B NMR spectrum for reaction of $Cs_2[B_{12}H_{12}]$ with reflux SO_2Cl_2 and acetonitrile for 24 h after workup.	103
Figure 5-1	Definition of "L", "X" and "Z" ligand.	157
Figure 5-2	Metallaboratrane complexes	157
Figure 5-3	General scheme for boratrane species.	158
Figure 5-4	Phosphinophenyl-borane complexes with $M \rightarrow B$ interactions	159
Figure 5-5	ORTEP drawing (50% probability ellipsoids) of 501.	163
Figure 5-6	ORTEP drawing (50% probability ellipsoids) of 502.	164
Figure 5-7	ORTEP drawing (50% probability ellipsoids) of 503.	165
Figure 5-8	Group 11 metallaboratranes	168
Figure 6-1	General scheme for silylene.	178
Figure 6-2	ORTEP drawing (50% probability ellipsoids) of 601.	187
Figure 6-3	ORTEP drawing (50% probability ellipsoids) of 607.	195
Figure 6-4	Cationic pincer silyl platinum species reported by Turculet group and their ²⁹ Si NMR resonance and Si- <i>Me</i> resonance in ¹ H NMR spectra	198
Figure 6-5	Platinum silylene complexes know in the literature and their ²⁹ Si resonance.	199
Figure 6-6	NMR spectra for 612.	200
Figure 7-1	First structurally characterized metal boryl compound.	212
Figure 7-2	Pincer boryl complexes known in the literature.	214
Figure 7-3	ORTEP drawing (50% probability ellipsoids) of 701.	217
Figure 7-4	ORTEP drawing (50% probability ellipsoids) of 708	222

Figure 7-5 Rh-B bond distance (in Å) of (PBP)Rh complexes in literature	222
Figure 7-6 Rh-B bond distances (in Å) in Rh boryl complexes in literature.	226
Figure 7-7 C-O bond distances (in Å) in carboxylate-bridging binuclear species	226
Figure 7-8 ORTEP drawing (50% probability ellipsoids) of 709	227
Figure 7-9 Van't Hoff Plot for the transformation between 705 and 704	228
Figure 7-10 ORTEP drawing (50% probability ellipsoids) of 710	230
Figure 7-11 Selected ¹ H NMR spectra for the methyl group of the <i>iso</i> -propyl	232
Figure 7-12 Coupling pattern affected by the geometry of bisphosphine complexes.	232
Figure 7-13 Simulation of the coupling pattern of the methyl group of the <i>iso</i> -propyl group	233

Page

LIST OF SCHEMES

		Page
Scheme 1-1	Synthesis of pincer metal complexes via direct cyclometalation	4
Scheme 1-2	Oxidative addition process of NH bond to metal center.	5
Scheme 1-3	Synthesis of pincer metal complexes via oxidative addition of X-R or X-Hal bonds	6
Scheme 1-4	Synthesis of pincer metal complexes via transmetalation	7
Scheme 1-5	Lithiation of PCP ligand precursor	7
Scheme 1-6	General scheme for the transcyclometalation.	8
Scheme 1-7	NH bond activation by (PCP)Ir.	10
Scheme 1-8	Ammonia activation by (PCP)Ir or (PSiP)Ir complexes.	11
Scheme 1-9	PCP-Ir catalyzed alkane dehydrogenation.	12
Scheme 1-10	Principles of alkane metathesis.	13
Scheme 1-11	C-F bond activation mediated by metal complexes.	16
Scheme 1-12	Oxidative addition of sp ² C-F bonds to group 10 metal centers	17
Scheme 1-13	C-F bond activation with the formation of HF, Si-F or M-F bonds	18
Scheme 1-14	Catalytic HDF of aromatic fluorides with Rh complexes.	19
Scheme 1-15	Mechanism for the catalytic HDF of aromatic fluorides with Rh complex	20
Scheme 1-16	Catalytic HDF of aromatic fluorides with Fe complexes	20
Scheme 1-17	NHC-Ru catalyzed HDF of aromatic fluorides	21
Scheme 1-18	Mechanism for the catalytic HDF of aromatic fluorides with Ru complexes.	22
Scheme 1-19	Kumada coupling reactions with fluoroarene.	23

xiii

Scheme 1-20	Pd catalyzed cross-coupling reaction with alkenyl fluorides.	23
Scheme 1-21	Sp ³ C-F bond activation with zirconocene dihydride	24
Scheme 1-22	Radical mechanism for the Zr mediated C-F bond activation	24
Scheme 1-23	C-F bond activation of cyclopropylcarbinyl fluoride with $(Cp^*)_2 Zr H_2$.	25
Scheme 1-24	Sp ³ C-F bond activation by (PCP)Ir complex.	25
Scheme 1-25	Proposed mechanism for the oxidation addition of CH_3F to (PCP)Ir.	26
Scheme 1-26	Quantification of acidity of super acids.	30
Scheme 2-1	Retrosynthetic analysis of target PSiP and PBP ligand precursors	40
Scheme 2-2	Conventional methods to synthesize ligand precursors (A, C, D, E).	41
Scheme 2-3	Various procedures for the synthesis of BrC ₆ H ₄ PR ₂	42
Scheme 2-4	The synthesis of compound 202 and 203.	44
Scheme 2-5	Synthesis of compound 204.	45
Scheme 2-6	Synthesis of compound 205.	47
Scheme 2-7	Attempts to synthesize ligand 2-phosphino-pyrrole.	48
Scheme 3-1	Methods in the literature to synthesize chlorinated carborane	64
Scheme 3-2	Methods in the literature to synthesize chlorinated dodecaborate	65
Scheme 3-3	Chlorination of carborane with Cl ₂ in various acids.	67
Scheme 3-4	Chlorination of unpurified carborane with SO ₂ Cl ₂ from Aldrich	69
Scheme 3-5	Chlorination of carborane with SbCl ₅ .	73
Scheme 3-6	New synthesis of the perchlorinated dodecaborate $[B_{12}Cl_{12}]^2$	74
Scheme 3-7	Synthesis of $[B_{12}Cl_{12}]^{2-}$ from purified reagents.	74

Page

Scheme 4-1	Silylium and alumenium mediated C-F bond activations.	108
Scheme 4-2	AlkDF reactions with benzotrifluorides.	112
Scheme 4-3	Possible routes to generate multiple products in AlkDF reactions with AlEt ₃ .	115
Scheme 4-4	Reactions of 3, 3, 3-trifluoropropylbenzene	119
Scheme 4-5	Possible Friedel-Crafts mechanism for the formation of I	119
Scheme 4-6	Competitive reactions involving Me ₃ Al and Et ₃ SiH	121
Scheme 4-7	AlkDF reactions of 1 with deficiency of R ₃ Al in hexanes	122
Scheme 4-8	AlkDF reactions of 1 in the presence of water	123
Scheme 4-9	AlkDF reactions of 1 with MAO	124
Scheme 4-10	AlkDF reactions with Et ₃ Al without a catalyst.	126
Scheme 4-11	The proposed mechanism of HDF and the reactions with benzotrifluorides under study in this work.	128
Scheme 4-12	19 F NMR calibration: i Bu ₂ AlF (A) vs C ₆ F ₆ (B)	132
Scheme 4-13	Calibration of GC/MS (C ₆ H ₅ CMe ₃ (A) vs C ₆ H ₅ Br (B)).	134
Scheme 5-1	Oxidative cleavage of the M-B bond in Ni and Fe boratrane complexes.	160
Scheme 5-2	Synthesis of iron imide	160
Scheme 5-3	Synthesis of group 10 metal boratranes.	162
Scheme 6-1	PSiP (silyl) and P ₂ Si= (silylene) metal complexes	175
Scheme 6-2	Metal complexes with bi, tri, and tetradentate phosphinosilyl ligands.	175
Scheme 6-3	PSiP ligands with diphenylsilyl backbone.	175
Scheme 6-4	Single bond activation via 14ē metal complexes as intermediates	176

Page

Scheme 6-5	Bond activation mediated by PSiP metal species	177
Scheme 6-6	Base-stabilized metal silylene species	179
Scheme 6-7	Base-free ruthenium silylene species.	179
Scheme 6-8	Synthetic routes to silylene species.	180
Scheme 6-9	Proposed route to access pincer silylene complexes.	181
Scheme 6-10	Cycloaddition reaction with metal silylene complexes	182
Scheme 6-11	Reactions of metal silylene with nucleophiles.	182
Scheme 6-12	Catalytic reactions mediated by metal silylene species	183
Scheme 6-13	Proposed mechanism for the hydrosilylation of alkene catalyzed by Ru silylene complex	185
Scheme 6-14	Synthetic procedure for (PSi ^H P ^{iPr})PtCl (601)	186
Scheme 6-15	Synthesis of (PSiP)PtX compound from for 601.	189
Scheme 6-16	Hydride abstraction reactions of (PSiP)PtX with $Ph_3C[HCB_{11}Cl_{11}]$	197
Scheme 6-17	Synthetic procedure for PSi ^H P ^{iPr} PdCl (612)	201
Scheme 6-18	Synthetic procedure for $PSi^{Cl}P^{iPr}Pt^{+}$ (614) from 612	202
Scheme 7-1	Ir-Cl bond distances (in Å) of (PCP)Ir(H)(Cl)(CO) and (P ^N B ^N P)Ir(H)(Cl)(CO) complexes	214
Scheme 7-2	Reactions catalyzed by (NBN)Rh complexes.	215
Scheme 7-3 E	Potential pathway to pincer boryl compound via activation of 3-Ph bond.	216
Scheme 7-4	Synthesis of 701 from 205 and [Rh(COD)Cl] ₂ .	216
Scheme 7-5	Thermolysis of 701 to obtain 702	218
Scheme 7-6	Synthesis of complexes 703, 705 and 707 from 701	219

		Page
Scheme 7-7	Synthesis of complexes 709 and 710 from 701	229

LIST OF TABLES

Page

Table 3-1	Chlorination reaction of Cs[HCB ₁₁ H ₁₁] by SO ₂ Cl ₂ with various additives.	71
Table 4-1	Summary of AlkDF reactions initiated at ambient temperature with Al/F ratio of 1.	111
Table 4-2	Main organic products for the defluorination reactions.	113
Table 4-3	AlkDF reactions of 1 with deficiency of R ₃ Al in hexanes.	122
Table 4-4	AlkDF reactions of 1 with MAO without catalyst in toluene	125
Table 4-5	AlkDF reactions with Et ₃ Al carried out without catalyst	127
Table 4-6	HDF results (Ar-CF ₃ \rightarrow Ar-CH ₃)	128
Table 4-7	¹⁹ F NMR calibration: ⁱ Bu ₂ AlF (1 M in hexanes) vs C_6F_6	132
Table 4-8	Calibration of GC/MS (C ₆ H ₅ CMe ₃ vs C ₆ H ₅ Br).	133
Table 5-1	Structural data for the group 10 metal boratranes.	166
Table 5-2	Spectroscopic features for the group 10 metal boratranes.	168
Table 5-3	Structural data for the group 11 metal boratranes	.169
Table 6-1	Selected NMR data for the neutral (PSiP)PtX species in C ₆ D ₆	190
Table 6-2	Selected ¹ H NMR data for the neutral (PSiP)PtX species in C ₆ D ₆	191
Table 6-3	Selected ¹ H NMR data for the (PSiP)PtX with R species in C ₆ D ₆	192
Table 6-4	Selected NMR data for $(PSi^{Me}P^{Cy})PtX$ species reported by Turculet group in C_6D_6	192
Table 6-5	Selected NMR data for <i>trans</i> -(PCy ₃) ₂ PtHX species reported by Stahl Labinger and Bercaw in CD ₂ Cl ₂	193
Table 6-6	Selected NMR data for the cationic (PSiP)PtX species in C ₆ H ₅ F	199
Table 7-1	Selected NMR data for the (PB ^{Ph} P)Rh carboxylate species in CDCl ³	220

Table 7-2	Selected ¹ H NMR data for the (PB ^{Ph} P)Rh carboxylate species in CDCl ₃	220
Table 7-3	Selected NMR data for the (PBP)Rh(Ph) carboxylate species in CDCl ₃	224
Table 7-4	Selected ¹ H NMR data for the (PBP)Rh(Ph) carboxylate species in CDCl ₃	224
Table 7-5	Selected ¹ H NMR and ¹³ C{ ¹ H} NMR data for the (PBP)Rh(Ph) carboxylate species in CDCl ₃	225

CHAPTER I

INTRODUCTION

1.1 Phosphine Based Pincer Ligands

1.1.1 General Introduction for Phosphine Based Pincer Ligands

The study of pincer ligands and their metal complexes has attracted increasing interest since Shaw's early work on PCP metal complexes in 1970s.¹ The term "pincer" was used in 1989 by van Koten² to describe tridentate "NCN" (Figure 1-1) metal complexes. Nowadays, the term "pincer ligands" normally represents tridentate ligand sets which usually favor meridional coordination (Figure 1-2). Neutral flanking arms, such as phosphine, amine or sulfur, as well as neutral or anionic central donors are normally employed to construct pincer ligands.³ Some of the advantages the pincer ligands feature including high thermostability, high tunability at several key positions, compatibility with both early and late transition metals.⁴ Pincer ligands and their metal complexes have been the subject of intense study in recent years, due to their potential to support unusual chemical transformations at the transition metal centers.⁵ Pincer metal complexes have been used in strong bond activation, such as C-C, ⁶ C-O, ⁷ C-N⁸ bonds, as well as small molecule activation, such as NH₃, ⁹ CO₂, ¹⁰ H₂O, ¹¹ CH₄.¹²

This dissertation follows the style of Journal of American Chemical Society.

Figure 1-1. Left: NCN pincer metal complexes; Right: Shaw's PCP metal complexes.

$$E = N, P, S, O$$

$$ML_n \qquad X = C, Si, B, N, P$$

Figure 1-2. General scheme for pincer metal complexes.

Among the various pincer ligands, PXP type of pincer ligands which incorporate two flanking phosphine arms and one central "X" donor have attracted the greatest interest in the past two decades due to their applicability towards various transition metals and many catalytic applications. For example, PNP ligand sets, which feature "soft" phosphine ligands and a "hard" amido donor have been shown to be suitable for both early and late transition metals.^{4,5a-c} The incorporation of the phosphine arms also provides a useful ³¹P NMR spectroscopic probe, which makes it convenient to monitor the transformations of metal complexes by solution or solid state ³¹P NMR spectroscopy. Besides the original aryl-based PCP frameworks (**A**),¹³ other novel backbones have alkyl¹⁴ (**B**), amido¹⁵ (**C**,**D**), boryl¹⁶ (**H**), silyl¹⁷ (**I**), phosphido¹⁸ (**E**) units to provide heterodonor functionality (Figure 1-3). Neutral PXP ligands have also been studied in the past several years, including carbene¹⁹ (**G**)

or pyridine²⁰ (\mathbf{F}) based ligand frameworks. Some of the neutral ligands display noninnocent reactivity that involves a reversible transformation from neutral to monoanionic species.^{5d}

Figure 1-3. Examples of pincer metal complexes.

1.1.2 Synthesis of Cyclometalated Phosphine-Based Pincer Complexes

1.1.2.1 Direct Cyclometalation

Cyclometalation is a type of reaction in which metallacylcle is formed as the product. In order to access pincer ligation, two metallacycles will be formed. Direct cyclometalation is to directly obtain pincer metal complexes from ligand precursors and metal precursors without the change of the oxidation state of the metal center. It is a very attractive method for the formation of pincer metal complexes, since it requires no

prefunctionalization of the pincer ligand to achieve regioselective metalation. Shaw developed the early examples for direct cyclometalation in which C-H bond of PCP ligand precursors was activated to form the PCP metal complexes with Group 9 and Group 10 metals (Scheme 1-1).¹ Recently, direct N-H²¹ and Si-H^{17a,17c} bond activation have been reported with Ru, Ni, Pd and Pt precursors for the formation of pincer metal complexes in the presence of base (Scheme 1-1). Et₃N or 2,6-lutidine are often used as the base to abstract the HX byproducts which are formed in the activation process.

Scheme 1-1. Synthesis of pincer metal complexes via direct cyclometalation.

1.1.2.2 Oxidative Addition

Oxidative addition is a type of reaction in which A-B bond is added to the metal center to from an M-A bond and an M-B bond.²² During the reaction, the oxidation state, electron count and coordination number of the metal all increase by two units. Pincer metal complexes could be synthesized by oxidative addition of X-R (R = Me, H) or X-Hal (X = C, N, B) bonds of ligand precursors to the low valent metal precursors. The flanking phosphine or amine arms may coordinate with the metal center first to facilitate the oxidative addition process (Scheme 1-2). Van Koten and coworkers reported the synthesis of (NCN)Ni complexes via oxidative addition of the C-Br bond to Ni(0) precursors in 1984.²³ Recently, several pincer rhodium and iridium complexes have been reported via corresponding N-H, N-Me or B-H bond oxidative addition.^{16,24}

Scheme 1-2. Oxidative addition process of NH bond to metal center.

Scheme 1-3. Synthesis of pincer metal complexes via oxidative addition of X-R or X-Hal bonds.

1.1.2.3 Transmetalation

Transmetalation (TM) is a type of reaction in which two metals exchange ligand sets.²² Pincer metal complexes could be obtained via TM reaction of metal halides or pseudo-halides with lithium or magnesium derivatives of the ligand precursors (Scheme 1-4).²⁵ However, TM could be problematic for ligands with reactive protons. For example, TM could not be used to obtain (PCP) metal complexes, since lithium reagents tend to attack the more reactive benzylic protons (Scheme 1-5).²⁶ Ozerov and coworkers reported the synthesis of [(PNP)Ag]₂ via the reaction of (PNP)H with Ag₂O or AgOAc/KO^tBu. [(PNP)Ag]₂ was stable towards air and moisture (Scheme 1-4).

[(PNP)Ag]₂ was shown to be a viable transmetalation reagent for the synthesis of PNP pincer complexes with group 10 metals.²⁷

Scheme 1-4. Synthesis of pincer metal complexes via transmetalation.

Scheme 1-5. Lithiation of PCP ligand precursor.

1.1.2.4 Transcyclometalation (TCM)

Transcyclometalation (TCM) is a novel method developed recently for the formation of pincer metal complexes.²⁸ TCM could be described as the replacement of one cyclometalated ligand with another one without the formation of detectable amount

of purely inorganic salts by dissociation (Scheme 1-6). It was initially investigated with bidentate coordinating ligands.²⁹ Recently, (PCP)PtCl was successfully obtained via TCM of (NCN)PtCl and (PCP)H. The reaction is likely driven by the formation of stronger phosphine-metal bonds.³⁰

Scheme 1-6. General scheme for the transcyclometalation.

1.1.3 Applications of Phosphine-Based Pincer Complexes

1.1.3.1 High Tunability of Pincer Complexes

One advantage of pincer metal complexes is the high tunability of electronic and steric properties at several key positions, which may alter the reactivity of the resulting metal complexes. In this section, we present several examples illustrating how the variation of the central donor in pincer iridium complexes affected the outcome of the reactions with NH₃.⁹

Ammonia or amine activation by metal complexes via N-H bond oxidative addition is a rare type of reaction in the literature, since amines tend to function as "L" ligands.³¹ Meanwhile, utilization of ammonia to produce more complicated molecules would be highly rewarding, as catalytic addition of ammonia to olefin and the coupling of ammonia to arene are considered among the ten greatest current challenges for catalytic transformations.³² Pincer metal complexes have shown some success in the activation of ammonia recently.⁹

Reaction of (PCP)IrH₂ with norbornene or *tert*-butylethylene generated reactive though unobserved $14\bar{e}$ (PCP)Ir species (**101**).³³ **101** readily performed C-H bond oxidative addition to form corresponding alkyl and aryl hydride species. The Goldman and Hartwig groups found that aniline underwent N-H bond oxidative addition with **101**, to give (PCP)IrH(NHPh) (**102**).^{9a} However, the reaction with NH₃ gave only the simple coordination product (PCP)Ir(NH₃) (**104**). Independent synthesis of (PCP)IrH(NH₂) (**103**) revealed that it converted to **104** in 10 min at room temperature (Scheme 1-7), which indicates **103** is less stable compared to **104** at room temperature.^{9a}

Scheme 1-7. NH bond activation by (PCP)Ir.

In theory, the thermodynamics of oxidative addition tend to be favored more with electron rich metal centers. Hence, (PC₅P)Ir(propene) (**105**) with a more strongly σ -donating alkyl donor was prepared by the Goldman and Hartwig group (Scheme 1-8). **105** was found to successfully activate NH₃ to give the amido hydride complex (PCP)IrH(NH₂) (**106**), which was the first example of N-H activation of ammonia to form an isolable, terminal, late metal L_nM(H)(NH₂) complex.^{9b} Later, Turculet reported that (PSiP)Ir (**107**) with a strongly σ -donating central silyl donor also reacted with ammonia to form (PSiP)IrH(NH₂) (**109**) via N-H bond oxidative addition.^{9c} The reactions of NH₃ with **101**, **105** and **107** demonstrate the high tunability of pincer metal complexes. By modifying the electron properties of central donor, the resulting pincer Ir complexes displayed dramatic reactivity difference towards NH₃.

Scheme 1-8. Ammonia activation by (PCP)Ir or (PSiP)Ir complexes.

1.1.3.2 High Thermostability of Pincer Complexes

High thermostability is another major advantage of pincer metal complexes which makes them potentially suitable as catalysts for reactions under high temperature. Here, we present one example in which PCP iridium complexes are used as catalyst for alkane dehydrogenation.³⁴

Olefins are one of the most versatile and important feedstock for chemical industry. However, their availability in natures is very limited compared to alkanes. Hence, alkane dehydrogenation to produce corresponding alkenes becomes a very important process in chemical industry. Heterogeneous catalysis under high temperature (500-900 \mathbb{C}) is widely used in industry for alkane dehydrogenation, but their applications have been limited to the production of ethylene and styrene due to low selectivity of the heterogeneous catalysis.³⁵

Scheme 1-9. PCP-Ir catalyzed alkane dehydrogenation.

On the other hand, homogeneous catalysts have been shown to perform at relatively mild conditions with higher chemo- and regioselectivity.³⁶ In 1979, Crabtree reported the first soluble metal complexes $[IrH_2(coe)_2(PPh_3)_2]^+$ which performed stoichiometric alkane dehydrogenation under mild conditions.³⁷ Many homogeneous catalysts have been developed for alkane dehydrogenation in the past 30 years, by far the performance of (PCP)Ir (**110**) and (P^oC^oP)Ir complexes (Scheme 1-7) are superior in terms of turnover numbers achieved (TON), thermostability and reaction scope.³⁸ Scheme 1-9 depicts the mechanism of Ir catalyzed alkane dehydrogenation in the presence of an H₂ acceptor.³⁹ Insertion of *tert*-butyl ethylene (TBE), followed by reductive elimination of alkane gives access to the reactive 14ē (PCP)Ir species (**112**), which undergoes alkane C-H bond OA. Subsequent β -hydrogen elimination gives the desired alkene product.

Scheme 1-10. Principles of alkane metathesis.

By combining alkane dehydrogenation and alkene metathesis methods, the groups of Goldman and Brookhart developed the so-called "alkane metathesis" process in which longer alkane chains were made from smaller alkanes (Scheme 1-10).^{34d} The catalyst tandem was composed of **110** and the Schrock metathesis catalyst⁴⁰ (**111**) shown in Figure 1-4. The Ir complex is employed to catalyze the alkane dehydrogenation and alkene hydrogenation process, while the Mo complex is used to catalyze the alkene metathesis reactions. Since longer chain alkenes and ethylene are the intermediates for this reaction, no external H₂ acceptor is used in this tandem catalysis. 125 equivalents of *n*-hexane (relative to Ir) were converted to a range of C₂-C₁₅ *n*-alkanes at 125 °C in 24 h. The TON of the reaction was limited by the decomposition of **111** at reaction temperature, normally between 100-150 \mathbb{C} .⁴⁰ Upon addition of **111**, alkane metathesis was reinitiated which demonstrated the high thermostability of complex **110**.

Figure 1-4. Left: Mo carbene complexes for alkene metathesis (Schrock catalyst).

1.2 C-F Bond Activation

1.2.1 General Introduction of C-F bond Activation

Fluoroorganic compounds play an integral role in everyday life due to their special chemical, biological and mechanical properties.⁴¹ As present, about 30% of agrochemicals and 20% of pharmaceuticals contain fluorine, including drugs such as Lipitor, Advair and Crestor.⁴² Polyfluorinated polymers, such as Teflon, have been widely used in coating and lubricant industry owning to their inertness and "non-stick" properties.⁴³ Perfluoroalkanes, because of their combined effects of hydrophobicity and oleophobicity, are used as the medium for "fluorous" catalysis.⁴⁴ Furthermore, the nonnatural isotope ¹⁸F is the most commonly used positron-emitting isotope for molecular positron emission tomography (PET) imaging in oncology.⁴⁵

Despite their great usefulness, there is an increasing environmental concern regarding fluoroorganic compounds.⁴⁶ Freons, or chlorofluorocarbons (CFCs), are well known to be destructive towards the ozone layer.^{46a-c} Hydrofluorocarbons (HFC), which are commonly used as CFCs replacement as refrigerants are well-documented "super-greenhouse" gases.^{46d-e} Perfluoroalkanes (PFC), common byproducts in aluminum and semiconductor industry, are also considered to be "super-greenhouse" gases.

Activation of C-F bond remains a fundamental challenge to chemists, especially with regard to accomplishing it in a catalytic fashion and under mild conditions.⁴⁷ The reasons for the challenge of C-F bond activation are the following.⁴⁸ 1) Fluorine is the most electronegative element, which forms exceptionally strong C-F bonds. The C-F bond is highly polarized with the electron density substantially on fluorine. Therefore

the strength of C-F bond can be attributed to significant electrostatic attraction between $F^{\delta-}$ and $C^{\delta+}$ rather than the classical electron sharing of a covalent bond. This also explains why C-F bonds in CF₄ are much stronger than C-F bond in monofluorides, since the fluorines in CF₄ are attracted towards a more positive carbon center. 2) The size of fluorine atom is intermediate in size between hydrogen and oxygen but closer to oxygen. Thus, fluorinated alkanes especially perfluoroalkanes are bulkier and their C-F bonds more sterically protected than alkanes and their C-H bonds. 3) Compared to other strong single bonds, such as Si-F bonds in SiF₄, carbon could not increase its coordination number. Whereas, silicon atom in SiF₄ could increase its coordination number from four to five or six which makes it much more reactive. 4) Fluorine is a poor donor as the three lone pairs of fluorine are held tightly to the fluorine center due to its high electronegativity. Moreover, the electrostatic stabilization of C-F bond is sufficiently strong to resist polarization towards free fluoride. Hence fluorides appear as poor leaving groups in organic chemistry.

1.2.2 C-F Bond Activation Mediated by Transition Metal Complexes

The chemical and intellectual challenge of C-F bond activation made it an interesting field that attracted attention from chemists for many years. Most of the previous C-F bond activation process relied on the reductive cleavage of C-F bond, either by oxidative addition to the metal center or by one electron transfer.⁴⁸ Most of the transition metal catalyzed C-F activation processes focused on late transition metals, especially platinum group metals,^{48e} since early transition metals often formed exceptionally strong bonds with fluorine which make it hard to finish the catalytic cycle.

Fundamental intermolecular C-F bond activation processes mediated by metal complexes could be classified into three categories:^{48f} i) Oxidative addition of C-F bonds; ii) nucleophilic attack on the fluorocarbon; iii) defluorination of the fluorocarbon (Scheme 1-11).

Scheme 1-11. C-F bond activation mediated by metal complexes.

Eisenstein and coworkers carried out theoretical studies with DFT for aryl-H and aryl-F oxidative addition to $16\bar{e}$ Rh(I) species [CpRh(PH₃)].⁴⁹ It was found that aryl-F oxidative addition was actually thermodynamically preferred. However, the activation energy of C-F bond oxidative addition was considerably higher than that for C-H oxidative addition. Hence, in practice the inertness of C-F bond towards oxidative addition has a kinetic origin. Su and Chu performed theoretical studies on the C-F bond oxidative addition to d⁸ 14 \bar{e} [MX(PH₃)₂] (M = Rh, Ir; X = Cl, H, CH₃) species.⁵⁰ Several interesting conclusions were drawn from their studies. First, all oxidative addition

reaction were found to be exothermic. Second, it was found that the better π -donor the X ligand was, the smaller the activation energy was. Hence, the activation barrier for C-F bond oxidative addition was calculated to increase in the order [MCl(PH₃)] < [MH(PH₃)] ~ [MCH₃(PH₃)] (M = Rh, Ir). Third, oxidative addition with third row metal was thermodynamically more favorable than that with second row metals. Moreover, the activation barrier of oxidative addition with third row metals was also smaller. Fourth, it was found to be unlikely that radical intermediates were involved in the oxidative addition process.

1.2.2.1 Stoichiometric sp² C-F Bond Activation

In practice, stoichiometric sp² C-F bond oxidative addition was commonly observed with group 10 metals.⁵¹ The effective metal precursors for C-F bond activation have proven to be different from the typical metal precursors for C-H bond activation. Scheme 1-12 showed two examples in which hexafluorobenzene and pentafluoropyridine were activated by Ni(0) and Pt(0) species, respectively.

Scheme 1-12. Oxidative addition of sp^2 C-F bonds to group 10 metal centers.

With the formation HF, Si-F, it becomes possible to design potential catalytic system with corresponding H_2 or silanes as stoichiometric reagents. Ru dihydride species were reported to perform activation of C-F bonds from electronically different fluoroarenes (Scheme 1-13).⁵² Sp² C-F bonds were activated by Rh silyl species with the formation of fluorosilanes.⁵³

Scheme 1-13. C-F bond activation with the formation of HF, Si-F or M-F bonds.

1.2.2.2 Catalytic sp² C-F Bond Activation

With the impressive progress on the stoichiometric activation of C-F bond by transition metal complexes, the number of examples of catalytic conversion of C-F bond has been increasing. The most common reaction to catalytically activate C-F bond is hydrodefluorination (HDF) reaction, in which R-F bonds are replace by R-H bonds. In 1994, Milstein and coworkers reported catalytic HDF of aromatic C-F bonds mediated by $C_6F_5Rh(PMe_3)_3$ (Scheme 1-14).⁵³ High regioselectivity was observed for this

reaction, as in the case of C_6F_5H , only fluorine at the *para* position was activated. Originally, (EtO)₃SiH was employed as the stoichiometric reagent for the HDF process with TON around 30.⁵³ Later, HDF process was accomplished with H₂ and base as the stoichiometric reagent and TON reached as high as 114.⁵⁴

Scheme 1-14. Catalytic HDF of aromatic fluorides with Rh complexes.

Scheme 1-15 depicted the mechanism for the HDF reactions mediated by Rh complexes. Milstein and coworkers proposed the C-F bond activation step was accomplished via electron transfer from the complex to the substrate and the generation of $C_6F_6^-$, followed by F⁻ attack on silicon rather than concerted C-F bond oxidative addition to the metal center. The result that HDF of C_6F_6 was much easier than HDF of C_6F_5H is consistent with their proposed mechanism, since C_6F_6 has a greater electron affinity compared with C_6F_5H .⁵³

Scheme 1-15. Mechanism for the catalytic HDF of aromatic fluorides with Rh complex.

Holland and coworkers reported a Fe complex catalyzed HDF of perfluoroarenes in the presence of Et₃SiH as the reductant (Scheme 1-16).⁵⁵ However, the role of the β diketiminate Fe(II) complex as well as the mechanism for this reaction are unclear. There is no evidence of C-F bond activation for the reactions without added silane.

Scheme 1-16. Catalytic HDF of aromatic fluorides with Fe complexes.

More recently, Whittlesey and coworkers reported a Ru carbene complex catalyzed HDF of perfluorotoluene with Et₃SiH as the reductant (Scheme 1-17).⁵⁶ The HDF process showed high chemoselectivity with only sp² C-F bonds being activated, though low regioselectivity with C-F bond activation observed at *ortho, meta* and *para* positions.

Scheme 1-17. NHC-Ru catalyzed HDF of aromatic fluorides.

In the absence of Et₃SiH, stoichiometric C-F bond activation was observed to give Ru(II) fluoride as the product (**112**, Scheme 1-18). Hence, the mechanism was proposed in Scheme 1-19 in which C-F bond activation was accomplished via oxidative addition to the metal center.⁵⁶ The proposed mechanism is consistent with the observed low regioselectivity. As nucleophilic substitution or electron transfer mechanism would favor activation of the C-F bond which is *para* to an electron-withdrawing group.^{48f}

Scheme 1-18. Mechanism for the catalytic HDF of aromatic fluorides with Ru complexes.

One of the potential uses of metal catalyzed C-F bond activation process is to use fluoroorganic compounds as substrates for cross-coupling reactions.⁵⁷ Although aryl iodides and aryl bromides are the most commonly used substrates for cross coupling reactions, there are several recent reports about using aryl fluoride as the coupling substrates.⁵⁸ Herrmann and coworkers reported the nickel carbene complex catalyzed Kumada reaction with fluoroarenes as the substrates (Scheme 1-19).^{58a} C-F bond oxidative addition to the metal center occurs first, followed by the transmetalation due to the strong affinity of fluorine with magnesium. Finally, reductive elimination gives the desired cross-coupling products. Later, similar chemistry has been accomplished with bidentate phosphine ligands, such as dppe and dppp.^{58b}

Scheme 1-19. Kumada coupling reactions with fluoroarene.

Alkenyl fluorides are employed as the substrates for Pd catalyzed coupling reactions.^{58b,58f,58g} Selective activation of C-F bonds was observed in the cross-coupling reaction of *gem*-difluoroalkene to form Z-fluoroalkene as the product (Scheme 1-20).^{58b}

Scheme 1-20. Pd catalyzed cross-coupling reaction with alkenyl fluorides.

1.2.2.3 Sp³ C-F Bond Activation

Activation of sp³ C-F bonds is rare in the literature. One reason is that fluorine prefers to bond to sp³ rather than sp² hybridized carbon atoms, since fluorine could pull electrons from sp³ carbon to its 2p orbital.^{48g} One example of stoichiometric sp³ C-F bond activation was reported by Jones and coworkers (Scheme 1-21). $(Cp^*)_2ZrH_2$

reacted with primary, secondary or tertiary monofluorides in the presence of H_2 .⁵⁹ H_2 was employed here to prevent the loss of H_2 from the dihydride and the subsequent formation of the unreactive Zr dimer. Unlike common metal mediated C-F bond activation processes, radical mechanism was proposed here for this Zr mediated transformation (Scheme 1-22).⁵⁹ The radical mechanism was confirmed by the reaction with cyclopropylcarbinyl fluoride in which (Cp^{*})₂Zr(n-Bu)H was formed, presumably via a radical ring opening process (Scheme 1-23).

Scheme 1-21. Sp³ C-F bond activation with zirconocene dihydride.

 $(Cp^*)_2ZrH_2 + AlkyI-F \xrightarrow{H_2} (Cp^*)_2ZrHF + AlkyI-H$ AlkyI = OctyI, cyclohexyI, adamantyI

Scheme 1-22. Radical mechanism for the Zr mediated C-F bond activation.

$(Cp^*)_2 ZrH_2 + InH \bullet \longrightarrow$	(Cp [*]) ₂ Zr ^{III} H + In-H	Initiation
(Cp [*])₂Zr ^{III} H + AlkyI-F ──►	(Cp [*]) ₂ ZrHF + Alkyl•	Propagation
(Cp [*])₂ZrH₂ + AlkyI• ──►	∙ (Cp [*]) ₂ Zr ^{III} H + Alkyl-H	Propagation

Scheme 1-23. C-F bond activation of cyclopropylcarbinyl fluoride with (Cp^{*})₂ZrH₂.

Sp³ C-F bond activation by (PCP)Ir (**113**) complexes were reported by Goldman and coworkers recently.⁶⁰ CH₃F and FCH₂Ar were found to react with **113** to give the C-F bond oxidative addition products at relatively mild conditions (Scheme 1-24). DFT calculation suggests **113** first reacts with CH₃F to give the kinetically favored C-H bond activation product (**114**), then undergoes α -fluorine migration and hydride migration to give the thermodynamically favored C-F bond activation product (**116**) (Scheme 1-25).

Scheme 1-24. Sp³ C-F bond activation by (PCP)Ir complex.

1.3 Weakly Coordinating Anions (WCAs)

1.3.1 General Introduction for WCAs

It is now widely recognized that the once so-called "non-coordinating anions", such as SO_3CF_3 , BF_4 , CIO_4 , $[MF_6]^-$ (M = P, As, Sb) are actually capable of coordination with almost all transition metals under many circumstances.⁶¹ Based on structural and spectroscopic data, Rosenthal reported in 1973 "these non coordinating anions are found to be coordinated where water is excluded".⁶² Hence, as Strauss stated in his review in 1993, it would be more meaningful as well as more precise to use the relative term "weakly coordinating anion".^{61a}

Weakly coordinating anions (WCAs) have attracted increasing attention in the past decade due to their use in both fundamental and applied chemistry.^{61,63} They have been widely used in electrochemistry,⁶⁴ ionic liquids,⁶⁵ lithium-ion batteries,⁶⁶ extraction of Ln^{III} anions,⁶⁷ photoacid generators⁶⁸ and Li⁺, Ag⁺ catalyzed organic reactions.⁶⁹ Highly electrophilic main group and organometallic compounds are often employed as the catalyst for many catalytic transformations, such as group 14 metallocene catalyzed offin polymerization⁷⁰ and silylium catalyzed C-F bond activation.⁷¹ Utilization of

robust and stable WCAs is crucial for the longevity and reactivity for these catalytic transformations.^{71d-f}

Several standards should be met for an anion to be considered a WCA.^{61a} The anion should have a low overall charge and high charge delocalization. Most of the WCAs in the literature are of -1 charge.⁶¹ The charge should be delocalized over the anion, which means no atom should carry a high concentration of charge. Ideally, WCAs would only have very weakly basic sites on the periphery of the anion. High thermal and kinetic stability would also be crucial properties for WCAs. For example, $[MF_6]^-$ (M = P, As, Sb) are less coordinating than SO₃CF₃⁻ and ClO₄⁻, mainly because $[MF_6]^-$ do not have accessible oxygen groups on their periphery.⁷² However the $[MF_6]^-$ type of compounds are less desirable candidates for WCAs, since they were reported to decompose under strong Lewis acidic conditions to release fluorides.⁷³ Resistance towards oxidation is also required for WCAs, since most electrophilic species are strong oxidants as well.

1.3.2 Tetraphenylborates (BPh₄) and Related Anions

Tetraphenylborate anions (BPh₄⁻) adopt tetrahedral geometry and the negative charge is delocalized over the four phenyl rings. Although it is prone to chemical and electrochemical oxidation and the phenyl groups are relatively strong coordinating,⁷⁴ BPh₄⁻ has been used as the counterion for soluble Ziegler-Natta catalyst of group 14 metallocene species $M(Cp)_2R^+$ (M = Ti, Hf, Zr).⁷⁵

In order to increase the stability towards oxidation and reduce coordinating ability, the phenyl groups in the borate species are replaced by perfluorinated phenyl groups (C_6F_5) or trifluoromethyl-substituted phenyl groups $(3,5-C_6H_3(CF_3)_2)$ to make the socalled "BARF" anions $[B(C_6F_5)_4]^{-76}$ or $[B(C_6H_3(CF_3)_2)]^{-77}$ The incorporation of fluorine atoms decreases the amount of negative charge on the *ipso* carbon which reduces the tendency of B-C bond cleavage.^{61a} Hence, in practice, BARF anions exhibit much better stability compared to BPh₄⁻ under highly electrophilic conditions. Besides the conventional $[B(C_6F_5)_4]^-$ or $[B(C_6H_3(CF_3)_2)]^-$ anions, other BARF anions have been reported with modification of $-C_6F_5$ groups at *para* position with $-CF_3$,⁷⁸ $-Si(^iPr)_3$,⁷⁹ -SiMe₂^tBu⁷⁹ or $-C_6F_4\{C(F)(C_6F_5)_2\}^{80}$ groups. The modified BARF anions show much better solubility in non-polar solvent. The trifluoromethyl groups in $[B(C_6H_3(CF_3)_2)]^$ anions have been replaced with longer R_f chains, such as n-C₆F₁₃,⁸¹ n-C₄F₉⁸² or C₃F₇,⁸² which makes the corresponding catalysts compatible with fluorous biphasic recycling techniques. Nowadays, BARF anions are arguably the most commonly used WCAs for homogeneous catalysis, as they possess low coordinating ability, good solubility in nonpolar solvents and are readily available from commercial suppliers.^{63a}

Recently, tetraarylaluminates $[Al(C_6F_5)_4]^{-}$ and tetraarylgallates $[Ga(C_6F_5)_4]^{-}$ have been synthesized as the further modification of BARF anions.⁸³ Although aluminates and gallates are shown to be less stable than their borates analogs, they have already been used as counterions for the cationic species that catalyze polymerization reactions.⁸⁴

1.3.3 Boron Cluster Based Anions (HCB₁₁H₁₁, B₁₂H₁₂²⁻)

The monocarba-*closo*-dodecaborane anion $[CB_{11}H_{12}]^{-}$ (Figure 1-5), often referred to as carborane anion, has received growing attention as a promising weakly coordinating anion (WCA) type recently.⁶³ Carboranes display 3-dimensional

aromaticity which largely contributes to their matchless stability. ⁸⁵ Differential scanning calorimetry revealed nothing remarkable for carbornae up to 300 \mathbb{C} .⁸⁶ The 3-dimensional aromaticity of polyhedral boranes was systematically reviewed by King in 2001.⁸⁵

Figure 1-5. Representation of the monocarba-*closo*-dodecaborate(-) $[HCB_{11}H_{11}]^{-1}$ anion, or carborane (dots at vertices 2-12 represent boron atoms; each vertice is capped with a hydrogen atom).

The B-H bonds in carborane are hydridic, therefore similar to aromatics, electrophilic substitution occurs with the B-H bonds, which normally takes place at 12 position first, followed by the substitutions at 7-11 position. Fluorination,⁸⁷ chlorination, ⁸⁸ bromination,⁸⁸ iodination,⁸⁸ hydroxylation, ⁸⁹ methylation ⁹⁰ and trifluoromethylation⁹¹ have been reported with parent carborane.

On the other side of carborane, the C-H bond is somewhat acidic. It was shown to be deprotonated by *n*-BuLi,⁹² or even NaOH in some cases.⁹³ Subsequent addition of electrophiles, such as alkyl iodide, yielded alkyl substituted carboranes [R-CB₁₁H₁₁].⁹⁴ The extra electron density donated from alkyl group makes the carborane cage more electron rich which accelerates the electrophilic substitution.⁸⁸

The superior stability, least nucleophilicity and very weak coordinating ability

makes carborane and their deravitives an excellent choice as the counterion for many electrophilic species.^{63d} Methyl carborane Me⁺[HCB₁₁Me₅Br₆] was isolated and used to methylate benzene to produce toluenium species.⁹⁵ The methyl reagents were also shown to abstract hydride from hydrocarbon to form correponding carbocation, which resulted in the isolation of *t*-butyl and vinyl cation species.⁹⁶ Trityl species were isolated with various carborane derivatives, which were used to isolate the first "free" silylium compound.⁹⁷ H[HCB₁₁Cl₁₁] is the strongest known Brønsted acid which is stable to sublimation at 200 \mathbb{C} .⁹⁸

In order to quantify the coordinating ability of WCAs and the acidity of the corresponding "super-acids", Fărcașiu and Ghenciu developed the method in which strong acid was used to protonated enone.⁹⁹ The acidity of the super acid is measured based on the difference of chemical shift ($\Delta\delta$) of C_a and C_b in ¹³C NMR (Scheme 1-26). The results showed carborane acids to be much stronger than FSO₃H and CF₃SO₃H.⁹⁸

Scheme 1-26. Quantification of acidity of super acids.

Although BARF anions ($[B(C_6F_5)_4]^-$ or $[B(C_6H_3(CF_3)_2)]^-$) have arguably similar basicity and nucleophilicity compared to halogenated carboranes, their stability is

much worse, especially under highly electrophilic conditions.^{63d,97} Dialkylaluminum (R_2Al^+) cation was successfully isolated with halogenated carboranes,¹⁰⁰ on the other hand the degradation of BARF anions was reported to be initiated by R_2Al^+ .^{83b} In the silylium and alumenium catalyzed C-F bond activation process, it was reported the reactions with halogenated carborane anions could reach turnover number (TON) up to 10000.^{71d,f} While the reactions with [B(C₆F₅)₄]⁻, TON was limited to less than 100 due to the decomposition of the anion.^{71a-b, 101}

Despite their great advantages, carborane anions are still in the process of making a transition formulated by Reed in 1998 as being "from exotica to specialty chemicals".^{63a} The lengthy and time consuming synthesis of carborane anions as well as their high cost from commercial suppliers prevents their wide applications. In contrast, *closo*-dodecaborates $[B_{12}H_{12}]^{2-}$ (Figure 1-6) and their halogenated derivatives $[B_{12}X_{12}]^2$ (X = Hal) which show similar stability and basicity to carboranes, are relatively easier and cheaper to synthesize.¹⁰² Knapp reported a one step synthesis of $[B_{12}H_{12}]^{2}$ from NaBH₄ in 2009 which make it an easily accessible chemical.^{102d} H₂[B₁₂Cl₁₂] showed comparable acidity to carborane acids as $[C_6H_7]_2[B_{12}Cl_{12}]$ and $[C_6H_7][HCB_{11}X_{11}]$ all showed very similar v(CH₂) frequencies of the most acidic CH_2 group at the protonated sp³ carbon atom.^{102c} Highly electrophilic species such as Me⁺, ^{102a} SiEt₃⁺, ^{102b-c} and Et₂E⁺ (E = Al, Ga, In)¹⁰³ have been isolated with $[B_{12}Cl_{12}]^2$. We recently reported silvlium mediated HDF reactions with $[B_{12}Cl_{12}]^{2}$ as the couterion which showed comparable reactivity to that with halogenated carboranes as the counterion.¹⁰⁴ Hence, $[B_{12}X_{12}]^{2-}$ anions are a

promising class of WCA despite their relatively low solubility compared to carborane anions.^{102,104}

Figure 1-6. Representation of the dodecaborate(2-) $[B_{12}H_{12}]^{2-}$ dianion (dots at vertices 2-12 represent boron atoms; each vertice is capped with a hydrogen atom).

1.3.4 Other Weakly Coordinating Anions (OTeF₅⁻, anionic aluminoxanes, etc.)

Pentafluoroxotellurate, teflate, has a distorted octehydral structure.¹⁰⁵ One of the notable application of teflate anion is the isolation of $Kr(OTeF_5)_2$ which is one of the few krypton compounds and the first with Kr-O bond.¹⁰⁶ Bound telfate, such as $[B(OTeF_5)_4]^-$ or $[M(OTeF_5)_6]^-$ (M = Sb, As, Bi, Nb) recently became a interesting choice for WCAs.¹⁰⁷ The -1 charge of the bound teflate is delocalized over 20-30 fluorine atoms. It was reported that the borate $[B(OTeF_5)_4]^-$ was less stable than arsenate $[As(OTeF_5)_6]^-$ or antimonate $[Sb(OTeF_5)_6]^-$ species, as the borate species tend to lose $OTeF_5^-$ under high electrophilic conditions.^{107a} Nevertheless, the borate, arsenate and antimonate species have all been reported to stablize electrophilic $[AsX_4]^+$, $[SbX_4]^+$ and $[CX_3]^+$ (X = Cl or Br) species.¹⁰⁸

Methylaluminoxanes (MAO) are commonly used as cocatalyst for Ziegler-Natta polymerization, since MAO is employed to activate Cp_2MX_2 to access the active catalyst $[(Cp)_2MX]^+[X(Al(Me)(\mu-O))_n]^{-.70a}$ Up to now, little is known about the

poorly defined oligomer structure of MAO as well as the anionic $[X(Al(Me)(\mu-O))_n]^$ species. However, model studies showed $[(Cp)_2MX]^+[X(Al(Me)(\mu-O))_n]^-$ to be the active species in Ziegler-Natta polymerization.^{75a}

 $[A1{OC(CF_3)}_4]^-$ is a new stable and weakly coordinating anion. Lithium salt of $[A1{OC(CF_3)}_4]^-$ could be easily prepared from commercially available starting materials on a hundred gram scale.¹⁰⁹ While the aluminate anions are generally unstable towards hydrolysis, $[A1{OC(CF_3)}_4]^-$ is stable in nitric acid due to the shielding effect of the oxygen atoms by the steric bulky $C(CF_3)_3$ groups.¹⁰⁹ Studies of the solid state structure of silver salts of several WCAs suggest that $[A1{OC(CF_3)}_3]_4]^-$ displays similar weakly coordinating ability as $[HCB_{11}H_5Cl_6]^-$. In practice, $[A1{OC(CF_3)}_3]_4]^-$ has been used as the counterion for cationic polymerization^{61b} and alumenium mediated hydrodefluorination.¹⁰¹ In both cases $[A1{OC(CF_3)}_3]_4]^-$ showed similar reactivity to $[B(C_6F_5)_4]^-$ anion. However, $[A1{OC(CF_3)}_3]_4]^-$ displayed much worse longevity compared to carborane anions in the alumenium mediated hydrodefluorination reactions.¹⁰¹

DESIGN AND SYNTHESIS OF PINCER PSiP AND PBP LIGAND PRECURSORS

CHAPTER II

2.1 Introduction

2.1.1 Pincer Ligands with Boron or Silicon as Central Element

Pincer ligands and their metal complexes have been the subject of intense study in recent years,^{4,5} due to their potentials to support unusual chemical transformations on the transition metal centers. In contrast to the extensive work on PCP^{5a,5b}(**A**, **B**, **C**) and PNP^{5c,5d}(**D**, **E**, **F**) pincer complexes, only a limited amount of work has been reported on pincer ligands using Si or B as the central element (Figure 2-1). We are especially interested in the PXP ligands wherein *o*-arylene units link the central donor and phosphine arms (**E**, **G**, **H**, **J**), since they have stronger perference for meridional geometry for the resulting metal complexes. Furthermore, the lack of reactive proton or other sensitive functional groups make their metal complexes more stable and resistant towards oxdiation.¹¹⁰ For example, the benzylic hydrogen in **A** is shown to be deprotonated by lithium reagent,²⁶ while the silicon backbone of **F** leads to high sensitivity to OH and other O-containing groups.¹¹¹ Stobart and coworkers reported a series of metal complexes with bi-, tri- and tetradentate phosphinosilyl ligands.¹¹² The PSiP ligand (**G**) was reported by Turculet group in 2007, ^{9c,17a-e} they also reported the resulting metal complexes in C-H and N-H activation process. Iwasawa^{17f-g} and coworkers recently reported the use of (PSiP)PdOTf as the catalyst for dehydrogenative borylation as well as hydrocarboxylation of allenes with CO₂. However, there has been no report of a tridentate P₂Si= ligand (**H**). It is thus appealing to us to obtain the P₂Si= (Silylene) metal complexes to compare with the well-known carbene analogs.¹¹³ The PBP (boryl) ligand (**I**) was first reported by Nozaki group in 2009.¹⁶ Pincer boryl ligands (**L**, SeBSe and SBS) supported by *m*carborane were recently reported by the Mirkin group (Figure 2-2).¹¹⁴ Nakamura reported the use of similar pincer boryl complexes **M** as the catalyst for asymmetric reduction of α , β -unsaturated esters and asymmetric reductive aldol reaction of *tert*butyl acrylate and benzaldehyde.¹¹⁵

Figure 2-1. Examples of pincer PXP metal complexes.

Figure 2-2. Carborane based pincer boryl complexes known in the literature. (Each dot on the cage represents one BH group)

2.1.2 Trans Influence and Trans Effect

Trans influence is the ground-state phenomenon of weakening the bond to a *trans*ligand.²² Generally, ligands with strong σ -donating characteristics exhibit strong *trans* influence, such as hydride, silyl, alkyl, boryl, etc. Ligands that form strong multiple bonds to metal center also show strong *trans* influence. As shown in Figure 2-3, the two ligands that are *trans* to each other on one metal center are essentially using the same set of s/d hybridized orbital for bonding.²² Hence, the stronger one ligand is bound to the metal center, the higher energy orbital it will be for the other ligand to bind. *Trans* effect, on the other hand, is a kinetic effect of facilitating substitution *trans* to the ligand.

Figure 2-3. s/d hybridized orbital.

One way to elucidate the *trans* influence of a certain ligand is to measure the bond length of the ligand *trans* to it. A series of P₂PtClX (X = B, C, N) complexes are shown in Figure 2-4 as well as their corresponding Pt-Cl bond length.¹¹⁶ The Pt-Cl bond length is the shortest when it is *trans* to an amido group and the longest when it is *trans* to a boryl group, which is consistent with boryl being the stronger σ -donating group. In the examples we discussed in Section 1.1.3.1, ammonia

underwent oxidative addition with (PC₅P)Ir and (PSiP)Ir complexes which featured strong *trans* influence alkyl or silyl group. On the other hand, (PCP)Ir complex which featured moderate *trans* influence aryl group, reacted with ammonia to form ammonia coordination product. Hence, we expect PBP metal complexes (**J**), which feature a strong σ -donor and *trans* labilizing boryl group, will promote the formation of coordinatively unsaturated complexes, which often shows enhanced reactivity.⁵

Figure 2-4. Square planar Pt(II) complexes and the Pt-Cl bond length.

2.1.3 Synthesis of BrC₆H₄PR₂ and its Use as a Building Block for Polydentate Ligands

We set to obtain pincer complexes **H**, **J** and **K** (Scheme 2-1). These ligand sets may not only be viewed as a new membe of "pincer toolbox" for organometallic chemist but also bring new reactivity to the resulting boryl and silylene species. Complexes **J** might be synthesized through oxidative addition of B-H or B-Hal bond of ligand precursors **201** and **202** to transition metal center. B-Hal bond oxidative addition has been intensely studied with group 10 metals, especially platinum,¹¹⁷ while B-H bond oxidative addition has been reported with Ir.¹⁶ We expect to obtain

complexes H via two separate Si-H bond activation process. Complex 203 is expected to obtain via one Si-H bond activation reaction of 204 with metal halides in the presence of base, similar to the reaction reported with the PSi(H)(Me)P ligand.^{17a} The second Si-H bond activation is expected to be accomplished via hydride abstraction with trityl salts, which is a well known method to access metal silvlene complexes.¹¹⁸ Similar to the phenyl ring, a pyrrole ring is a rigid, planar aromatic system. The P₂C= ligand (C) have been reported with pyrrole as the linkage.¹⁹ Here, we propose to synthesize pincer boryl complex K with pyrrole linkers. Here the ligand set is linked through N-pyrrole rather than 2-pyrrole in complex C. Complexes C could be obtained via B-H bond oxidative addition of 205 to metal center. 205 might be synthesized via N-B bond coupling reaction^{16a} of BH₃ and 2phosphinoprrole, which might be obtained via reaction of lithiated pyrrole ring and ClPⁱPr₂. Proposed complexes **J** and **K** not only eliminate the potentially reactive methylene protons in reported PBP complexes I, but also mimic the rigid backbone set our group reported before in complexes C and E, which would be easier in the future to evaluate the electronic effect of boryl central donor in complexes J and K.

Scheme 2-1. Retrosynthetic analysis of target PSiP and PBP ligand precursors.

The key to obtain our proposed ligand precursors **202** and **204** is to form the corresponding C-Si and C-B bonds. Conventional benzene based PCP ligand ¹¹⁹ precursors (**A**) or pyridine based PNP ligand¹²⁰ precursors (**D**) were synthesized from corresponding resorcinol or 2,6-lutidine. The frameworks of diarylamine based PNP ligands ¹²¹ (**E**) or dipyrromethane based PCP ligands^{19a} (**C**) were made via C-N Buchwald-Hartwig coupling reactions or Lewis acid catalyzed condensation reactions between formaldehyde and pyrrole, respectively (Scheme 2-2). However, all these methods are not suitable to synthesize our proposed ligand precursor **202** and **204**. On the other hand, the reactions of R-Li with various electrophiles were proven to be a

reliable and versatile method to form C-X bonds (X = B, Si, P).¹²² The R-Li reagents could be easily obtained via lithium halogen exchange of R-Br and BuLi. Hence, the retrosynthetic analysis of target PBP and PSiP ligands led to *o*-bromophenylphosphine as the viable starting material (Scheme 2-2).

Scheme 2-2. Conventional methods to synthesize ligand precursors (A, C, D, E).

As shown in Scheme 2-3, several methods for the synthesis of $BrC_6H_4PR_2$ have been presented in the literature.¹²³ In method **I**, *o*-bromophenyl-di-*iso*-propylphosphine was synthesized by mono-lithiation of *o*-dibromobenzene followed by addition of chlorodi-*iso*-propylphosphine.^{123b} This is arguably the most efficient and straightforward

way to synthesize BrC₆H₄PR₂ type of compounds. However, it suffered from inconsistent reproducibility ¹²⁴ and small reaction scope. Only the synthesis of BrC₆H₄PR₂ has been reported by this method. Bromophenyldiphenylphosphine was obtained through Pd catalyzed C-P coupling reaction from o-bromoiodobenzene and diphenylphosphine (Method II).^{123d} Nevertheless, this method has only been used to synthesize the diaryl-substituted bromophenylphosphine, probably because dialkylphosphines are generally more expensive and more difficult to handle compared corresponding chlorodialkylphosphine. Method III avoided the use of to dialkylphosphine reagents, but it was a two step synthesis which normally means longer workup procedure and lesser overall yield.^{123a, 123c}

Scheme 2-3. Various procedures for the synthesis of BrC₆H₄PR₂.

2.2 Results and Discussion

2.2.1 Design and Synthesis of PSi(H₂)P^{iPr}

Following the literature procedure shown in Scheme 2-3 method I, obromophenyldi-*iso*-propylphosphine (**206**) was obtained in good yield, normally above 80%.^{123b} However, the yield was very low (<20%) in our hands if the temperature was not well controlled to be below -100 °C throughout the reaction time. 0-Lithiobromobenzene, the key intermediate in this reaction, was shown to decompose to form benzyne at -90 °C with a half-life time around 30 min.¹²⁵ The reaction worked best in 1:1 mixture of diethyl ether and THF solution. Low yield (around 10%) was obtained when pure diethyl ether or THF was used as solvent, presumably because diethyl ether (-116 °C) and THF (-108 °C) both have m.p. close to -110 °C, which would possibly decrease the reaction efficiency under the reaction conditions. o-Lithiation of dibromobenzene, followed by reaction with di-tert-butyl-chlorophosphine did not proceed to yield o-bromophenyldi-*tert*-butylphosphine, presumably because chloroditert-butylphosphine is a worse electrophile compared to chlorodi-iso-propylphosphine. More donating solvents such as DME and TMEDA have been tested for this reaction, however no successful production of bromophenyldi-tert-butylphosphine has been accomplished.

As depicted in Scheme 2-5, bis-2-phosphinophenylsilane (207) was synthesized from 206 via a multi-step synthetic method without purification of the intermediates. Lithiation of 206, followed by addition of tetraethoxysilane and, subsequently, lithium aluminum hydride, yielded 207 in 79% yield after workup. Less than 5% mono-2-

phosphinophenylsilane was often observed after the reaction which could be removed by vacuum distillation. Fortunately, **207** freezes at around 5 °C. Therefore, the undesired mono-substituted byproduct could also be removed by recrystallization from n-pentane at -35 °C. **207** displayed a singlet at 2.5 ppm in its ³¹P{¹H} NMR spectrum and a triplet of triplets at -39.6 ppm in its ²⁹Si NMR spectrum. Its ¹H NMR spectrum featured one resonance for the 2 H on the silicon center with coupling to both silicon and phosphorus. All these characteristics of NMR spectra are consistent with our structural assignment for **207**. When lithiated **206** was treated with SiCl₄ instead of Si(OEt)₄, multiple products, such as mono-, bis- and tris-substituted silanes were observed(Scheme 2-4).^{122b}

Scheme 2-4. The synthesis of compound 207 and 208.

Bis(2-(di-*iso*-propylphosphino)phenyl)-dimethylsilane (**208**) was synthesized via reaction of lithiated **206** and SiCl₂Me₂. Since exhaustive arylation of dichlorodimethylsilane was targeted here, the selectivity was not an issue. **208** was

isolated in 98% yield after workup following the procedure described in Scheme 2-4. **208** displayed similar spectroscopic data to **207**, with one singlet at 1.5 ppm in its ${}^{31}P{}^{1}H$ NMR spectrum and one triplet for the Si-*Me* group at 5.4 ppm in the ${}^{13}C{}^{1}H$ NMR spectrum. The details of the chemistry of **207**, **208** and group 10 metals are discussed in Chapter IV.

2.2.2 Efforts towards PBP Ligand

Encouraged by the synthesis of the PSiP ligand precursors, we set to explore the similar chemistry to synthesize the PBP ligand precursors. Chloro-bis-2-phosphino-phenylborane **202** was expected to be obtained via reaction of BX_3 and 2 equivalents of lithiated **206**, similarly to the reaction of SiX₄ and lithiated **206**. Although B-C bond formation was observed for the reaction with B-X and R-Li, we were not able to obtain the desired **202** by controlling the reaction stoichiometry. Indeed, we found the

reactions between the lithium salt of **206** and BX₃ (X = halogen) showed superb selectivity. Tris-2-phosphinophenyl borane (**209**) was isolated as the only product through reactions with lithiated **206** and various BX₃ reagents (Scheme 2-5). The solid state structure¹²⁶ of **209** revealed that one phosphorus was bound to the boron center, while the other two were relatively far away (Figure 2-5). Only one resonance at 5.3 ppm was found in solution ³¹P{¹H} NMR spectrum at room temperature which indicated all three phosphorus were equivalent to each other. During the progress of this project, Bourissou and coworkers communicated the same ligand in 2007.¹²⁷ The details of the chemistry of **209** with group 10 metals are discussed in Chapter V.

Figure 2-5. ORTEP¹²⁸ drawing (50% probability ellipsoids) of **209.** Omitted for clarity: H atoms. Selected distance (Å) and angles (deg) follow: B1-P2, 2.137 (2); B1-C1, 1.621 (3); B1-C7: 1.650 (3); B1-C13, 1.632 (3).

Since the reactions with boron trihalides only yielded tris-2-phosphinophenylborane, we decided to synthesize phenyl-bis-2-phosphinophenylborane (**210**) as our ligand presursor to access pincer boryl metal complexes. **210** was previously reported by Bourissou group via reaction of lithiated **206** and ClBPh₂ (Scheme 2-6).¹²⁹ We expect to obtain our target pincer boryl complexes via oxidative addition of B-Ph bond to the transition metal center. The details of chemistry between **210** and Rh are presented in Chapter VII.

Scheme 2-6. Synthesis of compound 210.

In the PBP ligand synthesized by the Nozaki group,¹⁶ the chelating diamino substitutes were shown to stabilize the electrophilic main-group elements. Hence we set to synthesize pyrrole based PBP ligand **205**. The synthetic route was summarized in Scheme 2-7. Although we were able to selectively brominate pyrrole at the 2-position,¹³⁰ 2-bromopyrrole was not stable at room temperature. Subsequent protection of pyrrole by Boc group ($-CO_2^{t}Bu$) allowed us to isolate compound **211** in high yield. However, lithiation of compound **211** followed by addition of ClPⁱPr₂ only yielded the **212** after protic workup, which indicated that the lithium salt of the Boc-protected pyrrole is not nucleophilic enough to react with ClPⁱPr₂ to yield the desired 2-phosphino-

pyrrole product. It might be worth trying more electron-donating protecting group in the future, which might make the lithiated **211** type of compounds more reactive towards ClP^iPr_2 .

2.3 Conclusion

In conclusion, $BrC_6H_4P^iPr_2$ was synthesized in high yield via a one step procedure from commercial available chemicals, which was later shown to react with various electrophiles after lithiation. Efforts have been made towards the synthesis of $BrC_6H_4P^tBu_2$. However due to the low electrophilicity of ClP^tBu_2 , it showed no reaction with *o*-BrLiC₆H₄ under tested conditions. Lithiated **206** displayed different chemo selectivity in the reactions with Si-OEt bonds and Si-Cl bonds. Ligand **207** was isolated as a pure product via reaction of lithiated **206** and SiOEt₄ by controlling the reaction stoichiometry. On the other hand, no chemo selectivity was observed for the reaction between Si-Cl and R-Li, as mono-, bis- and tris-substituted silanes were observed as the products. The reaction between B-Cl and R-Li showed great chemo selectivity, as **TPB** compound was obtained as the only product.

2.4 Experimental Details

General considerations. Unless specified otherwise, all reactions and manipulations were carried out under an argon atmosphere using glovebox or Schlenk line techniques. Dry, oxygen–free solvents were employed. Toluene, pentane, diethyl ether, THF and C_6D_6 were dried over NaK / Ph₂CO / 18-crown-6, distilled and stored over molecular sieves in an Ar-filled glove box. Pyrrole, σ -dibromobenzene, phenyldichloroborane, Si(OEt)₄ and 2,6-lutidine were fractionally distilled prior to use. Chlorodi-iso-propylphosphine and chlorodi-tert-butylphosphine were purchased from Dalchem and used as received. All other chemicals were used as received from commercial vendors unless otherwise noted.

Physical methods. NMR spectra were recorded on a Varian iNova 300 spectrometer (¹H NMR, 299.9 MHz, ¹³C NMR, 75.4 MHz, ³¹P NMR, 121.4 MHz), a Varian iNova 400 spectrometer (¹H NMR, 400.0 MHz, ¹³C NMR, 100.5 MHz, ³¹P NMR, 161.9 MHz ²⁹Si NMR, 79.4 MHz, ¹¹B NMR, 120.4 MHz) and a Varian iNova 500 spectrometer (¹³C NMR, 125.7 MHz, ¹¹B NMR, 160.5 MHz) in noted solvents. Chemical shifts were given in δ (ppm). ²⁹Si NMR spectra were referenced externally with SiMe₄ at δ 0. ¹¹B NMR spectra were referenced externally with SiMe₄ at δ 0. ¹¹B NMR spectra were referenced externally with BF₃ etherate at δ 0. ¹¹H NMR and ¹³C NMR

spectra were referenced using the solvent signals. Elemental analyses were performed by CALI, Inc. (Parsippany, NJ). The solid state structure of **209** was solved by Prof. Bruce M. Foxman and Dr. Chun-Hsing Chen.

Synthesis of 2-di-iso-propylphosphinophenyl bromide (Compound 206). To a solution of dibromobenzene (10.9 g, 46.2 mmol) in diethyl ether (80 mL) and THF (80 mL) was slowly added a solution of *n*-BuLi (18.5 mL, 2.5 M in hexanes, 46.2 mmol) at -110 °C. The mixture was stirred at same temperature for 45 min. White percipitates were observed during the time. Chlorodi-iso-propylphosphine (8.3 mL, 43.9 mmol) was then slowly added into the mixtures at -110 °C, which slowly became a deep purple suspension. The mixtures were stirred at same temperture for another 30 min before it was warmed up to room temperature. After removal of all volatiles, the residue was dissolved in 100 mL of pentane and stirred with 10 g of silical gel for 1 h at room temperature. After passed through Celite, all volatiles were removed under vacuum to yield 11.7 g (97%) of clear oil as crude product. The colorless oil is pure by ${}^{31}P{}^{1}H$ NMR and good for further reactions. The crude product could be further purified by vacuum distillation if necessary. ${}^{31}P{}^{1}H$ NMR $(121.4 \text{ MHz}, C_6D_6)$: $\delta 8.5$ (s). ¹H NMR (299.9 MHz, C_6D_6): $\delta 7.45$ (dd, J_{H-H} = 7 Hz, $J_{H-H} = 2$ Hz, 1H, Ar-H), 7.10 (dt, $J_{H-H} = 7$ Hz, $J_{H-H} = 2$ Hz, 1, Ar-H), 6.91 (td, $J_{H-H} = 7$ Hz, $J_{H-H} = 2$ Hz, 1H, Ar-H), 6.70 (td, $J_{H-H} = 7$ Hz, $J_{P-H} = 2$ Hz, 1H, Ar-H), 1.88 (m, 2H, CHMe₂), 1.10 (dd, $J_{P-H} = 14$ Hz, $J_{H-H} = 7$ Hz, 6H, CHMe₂), 0.86 (dd, $J_{P-H} = 14$ Hz, $J_{H-H} = 7$ Hz, 6H, CHMe₂). (Figure 2-6)

Figure 2-6. ¹H NMR spectrum of **206** in C_6D_6 at 23°C measured on a 300 MHz Varian iNova. (Trace amount of silicon grease)

Synthesis of (PSiP)H₂ (Compound 207). To a cold solution of 206 (4.85 g, 17.77 mmol) in diethyl ether (100 mL) was slowly added a solution of *n*-BuLi (7.8 mL, 2.5 M in hexanes, 19.50 mmol). The reaction mixtures were stirred at room temperature for 2 h. Then it was cooleded to -30 °C and slowly added to a cold solution of Si(OEt)₄ (1.68 g, 8.01 mmol) in diethyl ether (25 mL). The reaction mixtures were stirred at room temperature for 12 h before a solution of LiAlH₄ (14.8 mL, 2.4 M in THF, 35.54 mmol) was slowly added. The resulting pale yellow suspension was

stirred at room temperature for 6 h. After removal of all volatiles, the residue was redisolved in 100 mL pentane and stirred with silica gel for 1 h. The reaction mixtures were passed through a short plug of Celite. (Caution: The solid wastes here were transfered to a Schlenk flask and quenched by acetone under Ar.) After removal of all volatiles, a pale yellow oil was obtained which was mixed with 1 mL pentane and stayed at -30 °C overnight. 2.6 g of white solid was obtained as final product which was washed with 1 mL of cold pentane three times. (The final product was stored in the freezer) Yield: 2.6 g (79%). ${}^{31}P{}^{1}H{}$ NMR (121.4 MHz, C_6D_6): δ 2.5 (s). ¹H NMR (299.9 MHz, C_6D_6): δ 7.86 (dt, $J_{H-H} = 7$ Hz, $J_{P-H} = 2$ Hz, 2H, Ar-H), 7.33 (dt, $J_{H-H} = 7$ Hz, $J_{P-H} = 2$ Hz, 2H, Ar-H), 7.17-7.11 (m, 4H, Ar-H), 5.89 (t, $J_{P-H} = 9$ Hz, $J_{Si-H} = 204$ Hz, 2H, Si-H), 1.92 (m, 4H, CHMe₂), 1.06 (dd, $J_{P-H} =$ 14 Hz, $J_{H-H} = 7$ Hz, 12H, CHMe₂), 0.85 (dd, $J_{P-H} = 14$ Hz, $J_{H-H} = 7$ Hz, 12H, CHMe₂). (Figure 2-7) ${}^{13}C{}^{1}H$ NMR (125.7 MHz, C₆D₆): δ 144.4 (d, J_{P-C} = 15 Hz), 144.1 (dd, $J_{P-C} = 46 \text{ Hz}, J_{P-C} = 4 \text{ Hz}$, 138.9 (dd, $J_{P-C} = 15 \text{ Hz}, J_{P-C} = 3 \text{ Hz}$), 131.8 (d, $J_{P-C} = 3 \text{ Hz}$), 129.3 (s), 128.3 (m), 25.1 (d, $J_{P-C} = 14$ Hz, CHMe₂), 20.3 (d, $J_{P-C} = 18$ Hz, CHMe₂), 20.0 (d, $J_{P-C} = 11$ Hz, CHMe₂). ²⁹Si NMR (79.4 MHz, C₆D₆): δ -39.6 (tt, $J_{Si-H} = 204$ Hz, $J_{Si-P} = 22$ Hz).

Figure 2-7. ¹H NMR spectrum of **207** in C_6D_6 at 23°C measured on a 300 MHz Varian iNova.

Synthesis of (PSiP)Me₂ (Compound 208). To a cold solution of 206 (2.17 g, 7.96 mmol) in diethyl ether (50 mL) was slowly added a solution of *n*-BuLi (2.6 mL, 2.5 M in hexanes, 6.5 mmol). The reaction mixtures were stirred at room temperature for 2 h. Then it was cooleded to -30 \mathbb{C} and slowly added to a cold solution of SiCl₂Me₂ (0.38 mL, 3.18 mmol) in diethyl ether (25 mL). The resulting pale yellow
suspension was stirred at room temperature for 6 h. After removal of all volatiles, the residue was redisolved in 50 mL pentane and passed through a short plug of Celite and silica gel. After removal of all volatiles, the crude products were rerystallized from pentane at -30 \mathbb{C} to yield white crystals as final products. Yield: 1.1 g (78%). ³¹P{¹H} NMR (161.9 MHz, C₆D₆): δ 1.6 (s). ¹H NMR (400.0 MHz, C₆D₆): δ 7.85 (br, 2H, Ar-*H*), 7.37 (br, 2H, Ar-*H*), 7.13 (m, 4H, Ar-*H*), 1.81 (m, 4H, C*H*Me₂), 1.10 (m, 6H, Si*Me*₂), 1.06 (dd, J_{P-H} = 14 Hz, J_{H-H} = 7 Hz, 12H, CH*Me*₂), 0.81 (dd, J_{P-H} = 14 Hz, J_{H-H} = 7 Hz, 12H, CH*Me*₂), 1.32.1(s), 128.4 (s), 126.5 (m), 26.1 (d, J_{P-C} = 20 Hz, CHMe₂), 21.2 (d, J_{P-C} = 14 Hz, CHMe₂), 5.4 (t, J_{P-C} = 12 Hz, Si*Me*₂).

Figure 2-8. ¹H NMR spectrum of **208** in C_6D_6 at 23°C measured on a 400 MHz Varian iNova. (Trace amount of n-pentane)

Synthesis of $(C_6H_4P^{iPr2})_{3B}$ (TPB) (Compound 209). To a cold solution of 206 (0.75 g, 2.74 mmol) in toluene (5 mL) was slowly added a solution of *n*-BuLi (1.2 mL, 2.4 M in hexanes, 2.88 mmol). The reaction mixtures were stirred at room temperature for 2 h. Then it was cooleded to -30 \mathbb{C} and BCl₃ (0.91 mL, 1M in heptane, 0.91 mmol) was slowly added in to the mixture. The reaction mixtures were stirred at room temperature for 2 h. The resulting pale yellow suspension was passed through a short plug of Celite. After removal of all volatiles, a pale yellow powder

was recrystallized from toluene at -30 \mathbb{C} to yield 0.42 g (79%) of white crystals as the final product. ³¹P{¹H} NMR (161.9 MHz, C₆D₆): δ 5.3 (s). ¹H NMR (400.0 MHz, C₆D₆): δ 8.15 (br, 3H, Ar-*H*), 7.33 (d, J_{H-H} = 7 Hz, 3H, Ar-*H*), 7.22 (t, J_{H-H} = 7 Hz, 3H, Ar-*H*), 7.14(m, 3H, Ar-*H*), 1.97 (m, 6H, C*H*Me₂), 1.06 (m, 18H, CH*Me*₂), 0.85 (m, 18H, CH*Me*₂). (Figure 2-9)

Figure 2-9. ¹H NMR spectrum of **209** in C_6D_6 at 23°C measured on a 400 MHz Varian iNova.

Reaction of 206 with 1 eq. BCl₃. To a cold solution of **206** (0.29 g, 1.1 mmol) in toluene (3 mL) was slowly added a solution of *n*-BuLi (0.47 mL, 2.4 M in hexanes, 1.2 mmol). The reaction mixtures were stirred at room temperature for 2 h. Then it was cooleded to -30 \mathbb{C} and BCl₃ (1.1 mL, 1M in heptane, 1.1 mmol) was slowly added in to the mixture. The reaction mixtures were stirred at room temperature for 2 h. The resulting pale yellow suspension was passed through a short plug of Celite. After removal of all volatiles, the pale yellow powder was recrystallized from toluene at -30 \mathbb{C} to yield 0.15 g (71%) of white crystals as final product. ³¹P{¹H} NMR (161.9 MHz, C₆D₆): δ 5.3 (s). ¹H NMR (400.0 MHz, C₆D₆): δ 8.15 (br, 3H, Ar-*H*), 7.33 (d, J_{H-H} = 7 Hz, 3H, Ar-*H*), 7.22 (t, J_{H-H} = 7 Hz, 3H, Ar-*H*), 7.14(m, 3H, Ar-*H*), 1.97 (m, 6H, C*H*Me₂), 1.06 (m, 18H, CH*Me*₂), 0.85 (m, 18H, CH*Me*₂).

Synthesis of $P^{iPr}B^{Ph}P$ (Compound 210). To a cold solution of 206 (1.27 g, 4.65 mmol) in diethylether (10 mL) was slowly added a solution of *n*-BuLi (1.9 mL, 2.5 M in hexanes, 4.75 mmol). The reaction mixtures were stirred at room temperature for 2 h. Then it was cooleded to -30 € and PhBCl₂ (0.30 mL, 2.33 mmol) was slowly added in to the mixture. The reaction mixtures were stirred at room temperature for 2 h. The resulting orange/red suspension was passed through a short plug of Celite. After removal of all volatiles, the pale orange filtrate was concentrated to 10 mL and left at -30 € for recrystallization. Yield 0.85 g (77%). ³¹P {¹H} NMR (121.4 MHz, C₆D₆): δ 8.1 (s). ¹H NMR (500.0 MHz, C₆D₆): δ 7.68 (d, J_{H-H} = 7 Hz, 2H, Ar-*H*), 7.44 (t, J_{H-H} = 7 Hz, 2H, Ar-*H*), 7.32 (m, 2H, Ar-*H*), 7.20(t, J_{H-H} = 7 Hz, 2H, Ar-*H*), 7.10-7.14 (m, 5H, Ar-*H*), 1.91 (m, 4H, C*H*Me₂), 0.95 (dd, J_P.

H = 14 Hz, J{H-H} = 7 Hz, 12H, CH*Me*₂), 0.76 (dd, J_{P-H} = 14 Hz, J_{H-H} = 7 Hz, 12H, CH*Me*₂) (Figure 2-10). ¹¹B{¹H} NMR (120.4 MHz, C₆D₆): δ -4.8 (br).

Figure 2-10. ¹H NMR spectrum of **210** in C_6D_6 at 23°C measured on a 500 MHz Varian iNova. (Trace amount of toluene, ether and n-pentane)

Synthesis of N-tert-butyl-carbomate-2-bromo-pyrrole (Compound 211). To a solution of pyrrole (1 mL, 14.4 mmol) in THF (20 mL) was slowly added N-Bromosuccinimide (2.56 g, 14.4 mmol) at -78 \mathbb{C} . The resulting light-green solution

was stirred at same temperature for 2 h. After it was warmed up to room temperature, Et₃N (0.8 mL, 5.8 mmol), 4-dimethylaminopyridine (0.26 g, 0.15 mmol) and di-*tert*butyl dicarbonate (3.8 g, `17.3 mmol) were added into the light green solution. The mixtures were stirred at room temperature for 2 h. After removal of all volatiles, the crude compound was purified by a column of alumina with hexanes as eluent. After removal of all solvent, white powders were obtained as the final product. Yield: 1.7 g (51%). ¹H NMR (299.9 MHz, CDCl₃): δ 7.32 (dd, J_{H-H} = 4 Hz, J_{H-H} = 2 Hz, 1H, C₄H₃N), 6.31 (dd, J_{H-H} = 4 Hz, J_{H-H} = 2 Hz, 1H, C₄H₃N), 6.16 (t, J_{H-H} = 4 Hz, 1H, C₄H₃N), CH*Me*₂), 1.62 (s, 9H, C*Me*₃). GC/MS: 246.

Attempted reaction to synthesize 2-di-*tert*-butylphosphinophenyl bromide. To a solution of dibromobenzene (0.84 g, 3.6 mmol) in diethyl ether (10 mL) and THF (10 mL) was slowly added a solution of *n*-BuLi (1.4 mL, 2.5 M in hexanes, 3.6 mmol) at -110 \mathbb{C} . The mixtures were stirred at same temperature for 45 min. White precipitates were observed during the time. Chlorodi-*tert*-butylphosphine (0.6 mL, 3.2 mmol) was then slowly added into the mixtures at -110 \mathbb{C} , which slowly became a deep purple suspension. The mixtures were stirred at same temperature for another 30 min before it was warmed up to room temperature. 50 µL of water was added to quench the reaction. After removal of all volatiles, the residue was dissolved in 20 mL of pentane and passed through Celite and silica gel. After removal of all volatiles, the residue was observed in ¹H and ³¹P{¹H} NMR study. No desire product was observed in ¹H and ³¹P{¹H} NMR spectra. Bromobenzene, chlorodi-*tert*-butylphosphine and bromodi-*tert*-butylphosphine were the major species in these NMR spectra. Other solvent

combinations have been tried with DME, TMEDA, none of them yielded desire products.

Attempted reaction to synthesize N-*tert*-butyl-carbomate-2-phosphino-pyrrole. To a solution of N-tert-butyl-carbomate-2-phosphanyl-pyrrole (1.7 g, 6.9 mmol) in THF (80 mL) was slowly added *n*-BuLi (3.1mL, 2.5 M in hexanes, 7.7 mmol) at -78 \mathbb{C} . The resulting yellow solution was stirred at same temperature for 1 h. Chlorodi-*iso*propylphosphine (1.1 mL, 6.9 mmol) was then slowly added into the mixtures at -78 \mathbb{C} . The mixtures were stirred at -78 \mathbb{C} for 1 h and then warmed up to room temperature. After removal of all volatiles, the residue was dissolved in 20 mL of pentane and passed through Celite and silica gel. After removal of all volatiles, the residue was redissolved in C₆D₆ for ¹H and ³¹P{¹H} NMR study. No desire product was observed in ¹H and ³¹P{¹H} NMR spectra. N-*tert*-butyl-carbomate-pyrrole, chlorodi-*iso*-propylphosphine and bromodi-*iso*-propylphosphine were the major species in these NMR spectra.

CHAPTER III CHLORINATION OF CARBORANES AND DODECABORATES*

3.1 Introduction

3.1.1 Chlorinated Carboranes and Dodecaborates

Since Knoth first prepared carborane anion in 1967,¹³¹ more than 300 carborane derivatives have been reported.⁶³ Among these, the highly halogenated derivatives are the least nucleophilic and the most robust ones, partly because the delocalized negative charge could be further screened by a layer of halogen substituents.^{63a} As a result of decreasing polarizability of the halides, the basicity of halogenated carborane anions decreases in the order I > Br > Cl > F.^{63d} However, the synthesis of polyfluorinated carboranes requires the use of F₂, which involves non-trivial setup and training that makes it less accessible to most chemists.^{63a}

Hence, highly chlorinated carboranes have become promising candidates for use as counterions for many highly electrophilic species.^{63d}

^{*} reprinted in part from *Chem. Commun.*, 46, Gu, W.; McCulloch, B. J.; Reibenspies, J. H.; Ozerov, O. V. "Improved Methods for the Halogenation of the [HCB₁₁ H₁₁]– Anion", 2820, reproduced by permission of The Royal Society of Chemistry (RSC) and from *Inorg. Chem.*, 50, Gu, W.; Ozerov, O. V. "Exhaustive Chlorination of $[B_{12}H_{12}]^{2-}$ without Chlorine Gas and the Use of $[B_{12}Cl_{12}]^{2-}$ as Supporting Anion in Catalytic Hydrodefluorination of Aliphatic C-F Bonds", 2726, copyright 2011 American Chemical Society.

H[HCB₁₁Cl₁₁] is the strongest known Bronsted acid which is stable to sublimation at 200 \mathbb{C} .⁹⁸ Vinyl¹³², *t*-butyl,⁹⁶ and fullerene¹³³ cations have all been isolated with chlorinated carboranes. Carborane anions have allowed for the solution chemistry of silylium (R₃Si⁺)¹³⁴ cations and alumenium (R₂Al⁺)¹⁰⁰ cations and even for the isolation of a discrete silylium cation in the solid state.^{97,135} On the other hand, although BARF anions ([B(C₆F₅)₄]⁻ or [B(C₆H₃(CF₃)₂)]⁻) have arguably similar basicity and nucleophilicity compared to halogenated carboranes,^{63d} their stability is much worse, especially under highly electrophilic conditions. The decomposition of perfluorinated tetraphenylborates are reported to be initiated by hard electrophiles, such as alumenium.^{83b}

Despite their great advantages, carborane anions are still in the process of making a transition formulated by Reed in 1998 as being "from exotica to specialty chemicals".^{63a} In comparison, cesium dodecaborate $Cs_2[B_{12}H_{12}]$ could be easily obtained from commercial available materials.^{102d} Recent reports have shown prechlorinated dodecaborate $[B_{12}Cl_{12}]^{2-}$ to be a promising candidate as weakly coordianting anion (WCA) despite its relatively low solubility in common organic solvents.¹⁰² The higher "-2" charge on $[B_{12}Cl_{12}]^{2-}$ dianion makes them an unconventional class of weakly coordinating anions. $Me_2B_{12}Cl_{12}$ was reported by Knapp^{102a} and coworkers; it was shown to be a strong methylating agent. The Reed and Knapp groups reported the synthesis of $[Et_3Si]_2[B_{12}Cl_{12}]$ which was used to prepare the diprotic superacid $H_2[B_{12}Cl_{12}]$.^{102b,102c} $[B_{12}Cl_{12}]^{2-}$ showed comparable basicity to $[HCB_{11}Cl_{11}]^{-}$ as $[C_6H_7]_2[B_{12}Cl_{12}]$ and $[C_6H_7][HCB_{11}X_{11}]$ both showed very

similar $v(CH_2)$ frequencies of the most acidic CH_2 group at the protonated sp³ carbon atom.^{102c}

3.1.2 Chlorination of Carboranes and Dodecaborates

Figure 3-1. Representation of the carborane. (dots at vertices 2-12 represent boron atoms; each vertice is capped with a hydrogen atom).

Chlorination of carboranes has been accomplished using elemental chlorine (or ICl).^{63a} Aromaticity of the carborane cage has been studied based on their energies, geometries, magnetic properties and NICS (nucleus-independent chemical shift) method.¹³⁶ Therefore, the halogenation of carboranes has been mechanistically likened to classical electrophilic aromatic substitution.¹³⁷ All of the examples of halogenation of carboranes in the literature show the substitution proceeds first at the "*para*" position, then at the "*meta*" belt, and finally at the "*ortho*" belt (Figure 3-1). Hexachlorination of carborane can be performed selectively (Scheme 3-1).¹³⁸ However, successful execution of the hexachlorination syntheses requires real-time monitoring of the reaction by ¹¹B NMR for hours or days, while deviations from the scale and conditions of the optimized procedure often result in loss of selectivity and

overchlorination. Undecachlorination takes place with ICl in triflic acid after several days at >200 °C (Scheme 3-1).^{88,98} This is a consistently reproducible synthesis, but it requires a \$3000 pressure- and reagent-resistant reactor for a 2 g batch capacity, and a rather lengthy and complicated workup. $[1-Me-CB_{11}Cl_{11}]^-$ is synthesized from methylated carborane anion $[1-Me-CB_{11}H_{11}]^-$ with chlorine gas in glacial acetic acid,⁸⁸ but this method requires the presence of the methyl group which limits the further functionalization of vertex-carbon position. We are interested in developing methods for chlorination that ideally a) are reproducible and insensitive to minor variations in conditions, i.e., "foolproof"; b) are scalable; c) do not require monitoring of the course of the reaction; d) do not involve elemental halogens, especially Cl_2 gas; e) proceed under atmospheric pressure and without specialty apparatus; f) use inexpensive reagents.

Scheme 3-1. Methods in the literature to synthesize chlorinated carborane.

We focused our attention on element chlorides that are known to be oxidizing/chlorinating agents and zero in on SO₂Cl₂ and SbCl₅. These reagents are

inexpensive,¹³⁹ of relatively low toxicity, and are liquids that possess volatility that allows for a respectable reflux temperature but relative ease of removal of the excess of reagent under vacuum. Although SO₂Cl₂ and SbCl₅ are aggressive reagents, they can be handled in the laboratory under standard safety precautions. SO₂Cl₂ has the added advantage of presumably generating only gaseous by-products (SO₂ and HCl). Both SO₂Cl₂¹⁴⁰ and SbCl₅¹⁴¹ have been used for chlorination in organic synthesis, including aromatic chlorination. SbF₅ was also reported to react with *o*-(di)carborane [1,2-C₂B₁₀H₁₂] to give partially fluorinated products.¹⁴²

Similarly to the case of carborane, elemental chlorine has normally been used as the chlorinating agent for the syntheses of various polychlorinated dodecaborates (Scheme 3-2). $[B_{12}H_6Cl_6]^{2-}$ was synthesized via reaction of $[H_3O]_2[B_{12}H_{12}]$ with chlorine in water at 0 \mathbb{C} .¹⁴³ Muetterties reported the synthesis of $[B_{12}Cl_{12}]^{2-}$ by reacting $[B_{12}H_{12}]^{2-}$ with excess chlorine in an autoclave.¹⁴⁴ Knapp later reported an improved method^{102d} which avoided the use of the high pressure autoclave by passing chlorine gas through the aqueous solution of $Na_2B_{12}H_{12}$ at 100 \mathbb{C} for 40 h. Encouraged by our results with the chlorination of $[HCB_{11}H_{11}]^{-}$ by SO₂Cl₂, we set to explore the synthesis of $[B_{12}Cl_{12}]^{2-}$ with SO₂Cl₂ as the chlorination reagent.

Scheme 3-2. Methods in the literature to synthesize chlorinated dodecaborate.

$$Cs_{2}[B_{12}H_{12}] \xrightarrow{Cl_{2} / Autoclave} Cs_{2}[B_{12}Cl_{12}] \xrightarrow{Cl_{2} / H_{2}O} Cs_{2}[B_{12}Cl_{12}]$$

$$Na_{2}[B_{12}H_{12}] \xrightarrow{Cl_{2} / H_{2}O} Na_{2}[B_{12}Cl_{12}] \xrightarrow{Cl_{2} / H_{2}O} Na_{2}[B_{12}Cl_{12}]$$

3.2 Results and Discussion

3.2.1 Chlorination of Carborane Anions

3.2.1.1 Chlorination of $Cs[CB_{11}H_{12}]$ with Cl_2

We first examined chlorination of the parent carborane with chlorine gas to obtain one clean partially or fully chlorinated carborane. Based on the previous reports, ^{63a} chlorination of parent carborane with Cl₂ displayed some chemo-selectivity between chlorinations at 7-12 positions and chlorinations at 2-6 positions. Therefore, it appear reasonable to us to develop chlorination method which would give clean $[HCB_{11}Cl_{11}]^{-1}$ or [HCB₁₁H₅Cl₆]⁻ products. Chlorination of parent carborane with Cl₂ in acetic acid has been tested by the Xie group for up to one month,⁸⁸ which only resulted a mixture of nona-, deca-, and undeca-chlorinatedcarborane anions. Hence, we focused our efforts on the reactions with stronger acid as the solvent, since it is recognized that high acidic conditions would accelerate the halogenation reactions of carborane.^{63a} Performing the reaction in triflic acid at 140 °C in the presence of continuous Cl₂ gas flow for 50 h surprisingly yielded a single clean product with monoisotopic mass at 752. We assigned the identity of the product to be $[HCB_{11}Cl_9(CF_3SO_3)_2]^-$ based on the observed isotope pattern which was later confirmed by X-ray crystallography¹⁴⁵ and multinuclear NMR spectroscopy. Triflate groups were only observed at para position and meta ring based on the solid state structure we obtained (Figure 3-2). Hence, pure Cs[HCB₁₁Cl₁₁] was obtained by performing the chlorination of Cs[CB₁₁H₁₂] with Cl₂ first in acetic acid for 8h and then in triflic acid for 24h. By doing the chlorination in acetic acid first, the 7-12 positions of parent carborane would be chlorinated first which essentially prevent it from

being reacted with triflic acid to give triflyloxylated carboranes. Similar chlorination reactions of $Cs[HCB_{11}H_{11}]$ with Cl_2 were also tested with other acids as the solvent, such as HCl, H₂SO₄, H₃PO₄, CCl₂HCOOH and CCl₃COOH. However, none of these reactions gave the desired [HCB₁₁Cl₁₁]⁻ or [HCB₁₁H₅Cl₆]⁻ products (Scheme 3-3).

Scheme 3-3. Chlorination of carborane with Cl_2 in various acids. (*: here the $CsHCB_{11}H_5Cl_6$ is actually a mixture of $CsHCB_{11}H_6Cl_5$, $CsHCB_{11}H_5Cl_6$ and $CsHCB_{11}H_4Cl_7$ which is obtained from the reaction of $CsHCB_{11}H_{11}$ with Cl_2 in acetic acid).

Figure 3-2. ORTEP¹²⁸ drawing (50% probability ellipsoids) of $Cs[HCB_{11}Cl_9(CF_3SO_3)_2]$. Disorder of the triflate groups is omitted for clarity.

3.2.1.2 Chlorination of $Cs[CB_{11}H_{12}]$ with SO_2Cl_2

Treatment of $Cs[CB_{11}H_{12}]$ with SO_2Cl_2 at room temperature for 24 h led to a mixture of penta-, hexa-, hepta-, octa- and nonachlorinatedcarborane anions. (Scheme 3-4). Substantial gas evolution was observed as the presumed gaseous byproducts, such as SO_2 and HCl were evolved. Stirring $Cs[CB_{11}H_{12}]$ in refluxing SO_2Cl_2 for 1 d led to a mixture of octa-, nona-, deca-, and undecachlorinated-carborane anions. Unfortunately, there was no significant difference between the mixtures obtained after 1 d and after 5 d, which indicated that $[CB_{11}H_{12}]^-$ might not

be fully converted to $[HCB_{11}Cl_{11}]^{-}$ in reluxing SO₂Cl₂. Strong Lewis acids, such as AlCl₃, have been used to accelerate or catalyze chlorination reactions by SO₂Cl₂ in organic synthesis.¹⁴⁶ Howerver, adding AlCl₃ or TiCl₄ into the SO₂Cl₂ solution of Cs[CB₁₁H₁₂], followed by reflux for 3 d gave almost the same mixture as that obtained from the reaction in refluxing SO₂Cl₂ without additives. We suspect adventitious water might be the reason for the retardation of the chlorination reactions, since all reactions were performed without Ar protection. Indeed, intentional addition of water (2% equiv. molar vs SO₂Cl₂, 3.4 equiv. molar vs carborane) to the reaction mixture at the start of the reaction after 1 d of reflux.

Scheme 3-4. Chlorination of unpurified carborane with SO₂Cl₂ from Aldrich.

In contrast, reflux Cs[HCB₁₁H₁₁] in SO₂Cl₂ under dry argon for 24 h led to complete conversion to Cs[HCB₁₁Cl₁₁] (MS evidence), which was isolated upon recrystallization from water. We were able to obtain 84-87% yields of Cs[HCB₁₁Cl₁₁] starting with Cs[HCB₁₁H₁₁] and it was characterized by ¹H, ¹¹B, ¹³C{¹H} NMR and elemental analysis.

It later came to our notice that the outcome of the reaction of $Cs[HCB_{11}H_{11}]$ with SO_2Cl_2 depended on the batch of $Cs[HCB_{11}H_{11}]$ we used. In our hands, reactions of recrystallized Cs[HCB₁₁H₁₁], partially chlorinated carboranes or recent batch of Cs[HCB₁₁H₁₁] from Katchem with SO₂Cl₂ never gave pure [HCB₁₁Cl₁₁]⁻ products, suggesting the chlorination reactions might be accelerated or catalyzed by impurities in the unpurified $Cs[HCB_{11}H_{11}]$. Since amines and borane amine adducts are common immpurities in the synthesis of Cs[HCB₁₁H₁₁],^{63a} we tested these kinds of compounds as additives for the chlorination reactions with SO₂Cl₂. Although in some of reactions with additives, acceleration of the chlorination reactions was observed, none of these reactions yielded pure $[HCB_{11}Cl_{11}]^{-1}$ products (Table 3-1). It was also noticed that the complete chlorination reactions only occurred when undistilled SO_2Cl_2 from Aldrich (cat. # 320528-1L) was used. Incomplete chlorination was observed when SO₂Cl₂ from Acros (cat. # 169450100) or distilled SO_2Cl_2 was used, suggesting small impurities in the SO_2Cl_2 from Aldrich may accelerate this reaction as well. However, we do not understand the effect of different SO₂Cl₂ batches on the chlorination reactions at this moment. It is unlikely that these reactions are catalyzed by trace amount of transition metals left in the SO₂Cl₂. ICP-MS studies of Fe, Ni, Zn, Cu, Ti, Mn, Co on SO₂Cl₂ from different vendors show no major difference in the content of Ni, Zn, Cu, Ti, Mn, Co, while SO₂Cl₂ from Acros was found to contain more Fe, not less. Light is necessary for the successful chlorination reaction as well, since the chlorination reactions with unpurified carborane and SO₂Cl₂ from Aldrich in the absence of light did not go to

complete chlorination.

Table 3-1. Chlorination reaction of $Cs[HCB_{11}H_{11}]$ by SO_2Cl_2 with various additives. (Here $[HCB_{11}Cl_{11}]^-$ is labelled as Cl11; $[HCB_{11}HCl_{10}]^-$ as Cl10; $[HCB_{11}H_2Cl_9]^-$ as Cl9; $[HCB_{11}H_3Cl_8]^-$ as Cl8; $[HCB_{11}H_4Cl_7]^-$ as Cl7; $[HCB_{11}H_5Cl_6]^-$ as Cl6; $[HCB_{11}H_6Cl_5]^-$ as Cl5; $[HCB_{11}H_7Cl_4]^-$ as Cl4)

Carborane	SO2Cl2	additives	Conditions	Results
Recrystallized	Aldrich undistilled	none	24 h, 80 C	Cl6-Cl10, major product Cl8
Recrystallized	Aldrich undistilled	1% Et ₃ N	24 h, 80 C	Cl8-Cl11, major product Cl10
Recrystallized	Aldrich undistilled	1% Et ₂ NH	24 h, 80 C	Cl5-Cl9, major product Cl7
Recrystallized	Aldrich undistilled	1% Ph ₂ NH	24 h, 80 C	Cl4-Cl5, major product Cl4
Recrystallized	Aldrich undistilled	1% iPr ₂ NH	24 h, 80 C	Cl5-Cl9, major product Cl7
Recrystallized	Aldrich undistilled	10% Et ₃ N	24 h, 80 C	Cl5-Cl9, major product Cl7
Recrystallized	Aldrich undistilled	1% BH ₃ Me ₂ NH	24 h, 80 C	Cl7-Cl11, major product Cl9
Recrystallized	Aldrich undistilled	Saturated with HCl gas	24 h, 80 C	Cl8-Cl11, major product Cl10
Recrystallized	Aldrich undistilled	1% Na[MeCB ₁₁ Cl ₁₁]	24 h, 80 C	Cl6-Cl10, major product Cl8
Me ₃ NH[HCB ₁₁ H ₁₁]	Aldrich undistilled	none	24 h, 80 C	Cl4-Cl6, major product Cl5

3.2.1.3 Chlorination of Cs[CB₁₁H₁₂] with SbCl₅

Direct reaction (Scheme 3-5) of 1 g Cs[HCB₁₁H₁₁] with refluxing neat SbCl₅ led to a clean formation of $[HCB_{11}Cl_{11}]^{-}$ in 7 d¹⁴⁷ (negative-ion MALDI-MS evidence) [*Caution: violent reaction ensues upon addition of SbCl₅ to Cs[HCB₁₁H₁₁]*]. After workup, the carborane anion was isolated as a Me₃NH⁺ salt in 81% yield. While we have not been able to obtain fully satisfactory elemental analysis data, the NMR data are consistent with those previously reported. MS analysis also showed essentially only the expected [HCB₁₁Cl₁₁]⁻ isotope pattern. Notably, using refluxing SbCl₅, we are able to convert partially chlorinated carboranes from previous studies to $[HCB_{11}Cl_{11}]^{-}$ (MS evidence). The workup in this procedure is complicated by the presence of Sb byproducts of low volatility (presumably, SbCl₃), however, they are successfully removed as elemental analysis of the isolated product showed Sb levels below detection limit of 0.17%. Repeats of this procedure on a 5-10 g scale occasionally led to the detection (by MS) of an impurity. We assign the impurity to be $[HCB_{11}Cl_{10}(OH)]^{-1}$ based on the observed isotope pattern and on that refluxing of a mixture containing this impurity with (Me₃Si)₂NH resulted in the observation of a new MS pattern consistent with $[HCB_{11}Cl_{10}(OSiMe_3)]^{-}$ (Scheme 3-5). The reason for the formation of the hydroxylation product is most likely adventitious water, as the fraction of this impurity increased dramatically when 5 equivalents of water was added at the beginning of the reaction. $[HCB_{11}Cl_{10}(OH)]^{-}$ can no longer be detected by MS if an isolated mixture is additionally refluxed with SbCl₅ or SO₂Cl₂. Notably, the reaction with purified SbCl₅ and purified parent carborane still yielded only [HCB₁₁Cl₁₁]⁻ product after heating at reflux temperature for 7 d.

Scheme 3-5. Chlorination of carborane with SbCl₅.

3.2.2 Chlorination of Dodecaborate Dianion

Direct reaction of 100 mg $Cs_2[B_{12}H_{12}]$ with refluxing neat SO₂Cl₂ for 24 h only led to a mixture of various partially chlorinated $[B_{12}H_{12-x}Cl_x]^{2-}$ based on ¹¹B NMR analysis. The incomplete chlorination of $Cs_2[B_{12}H_{12}]$ by neat SO₂Cl₂ is likely owing to the low solubility of $Cs_2[B_{12}H_{12}]$ in neat SO₂Cl₂, since a white suspension was observed throughout the reaction. Converting $Cs_2[B_{12}H_{12}]$ to $(Et_3NH)_2[B_{12}H_{12}]$ did not dramatically improve the solubility in SO₂Cl₂, and the reaction with $[Et_3NH]_2[B_{12}H_{12}]$ in neat SO₂Cl₂ did not lead to complete chlorination either. We noted that acetonitrile, in which $Cs_2[B_{12}H_{12}]$ is more soluble, was successfully used as the solvent for the fluorination of $K_2[B_{12}H_{12}]$ with F_2 .¹⁴⁸ Refluxing $Cs_2[B_{12}H_{12}]$ in a 1:1 mixture of SO₂Cl₂ and acetonitrile for 24 h¹⁴⁹ led to complete conversion to $Cs_2[B_{12}Cl_{12}]$ (Scheme 3-6), which was isolated upon recrystallization from water. We are able to obtain 75-82% yields of $Cs_2[B_{12}Cl_{12}]$ starting with 0.1 or 1 and 5 g of $Cs_2[B_{12}H_{12}]$ and it was characterized by ¹H, ¹¹B NMR, ESI-MS, infrared spectroscopy and elemental analysis. Scheme 3-6. New synthesis of the perchlorinated dodecaborate $[B_{12}Cl_{12}]^{2-}$.

$$Cs_{2}[B_{12}H_{12}] \xrightarrow{SO_{2}Cl_{2} / MeCN} Cs_{2}[B_{12}Cl_{12}]$$
reflux / 24 h

In order to rule out the possibility that the chlorination of $[B_{12}H_{12}]^{2-}$ might also be catalyzed by some impurities in the starting materials, chlorination of $Cs_2[B_{12}H_{12}]$ was performed with recrystallized $Cs_2[B_{12}H_{12}]$, distilled acetonitrile, and distilled SO_2Cl_2 and with protection from light. All of these variations led to complete or almost complete conversion to the $[B_{12}Cl_{12}]^{2-}$ product after 24 h at reflux temperature (Scheme 3-7).

Scheme 3-7. Synthesis of $[B_{12}Cl_{12}]^{2-}$ from purified reagents.

$$\begin{array}{c} Cs_{2}[B_{12}H_{12}] & \xrightarrow{SO_{2}Cl_{2} (Acros) / MeCN} \\ \hline Cs_{2}[B_{12}H_{12}] & \xrightarrow{SO_{2}Cl_{2} (distiled) / MeCN (distilled)} \\ \hline Cs_{2}[B_{12}H_{12}] & \xrightarrow{SO_{2}Cl_{2} (distiled) / MeCN (distilled)} \\ \hline cs_{2}[B_{12}H_{12}] & \xrightarrow{SO_{2}Cl_{2} (distiled) / MeCN (distilled)} \\ \hline cs_{2}[B_{12}H_{12}] & \xrightarrow{SO_{2}Cl_{2} (distiled) / MeCN (distilled)} \\ \hline reflux / 24 h / in the absence of light & Cs_{2}[B_{12}Cl_{12}] \\ \hline cs_{2}[B_{12}H_{12}] & \xrightarrow{SO_{2}Cl_{2} (distiled) / MeCN (distilled)} \\ \hline reflux / 24 h / under Ar & Cs_{2}[B_{12}Cl_{12}] \end{array}$$

3.3 Conclusion

In conclusion, we report two new, straightforward methods for the synthesis of valuable $[HCB_{11}CI_{11}]^{-}$ with either CI_2 or SbCl₅ as chlorination reagents. We obtained $[HCB_{11}CI_{11}]^{-}$ product with SO₂Cl₂ as chlorination reagents and an unindentified catalyst. Amines, borane amine adducts and dry HCl have been tested as additives for the chlorination reactions with SO₂Cl₂. Although some of them shifted the reaction towards more chlorinated products, none of them gave pure $[HCB_{11}CI_{11}]^{-}$ products. On the other hand, we were able to obtain useful $[B_{12}CI_{12}]^{2-}$ from $[B_{12}H_{12}]^{2-}$ with SO₂Cl₂ as the chlorination reagent and acetonitrile as cosolvent. While the involved synthesis or the relatively high cost of the requisite parent anion $[HCB_{11}H_{11}]^{-}$ remain an issue, the syntheses we report here make the subsequent chlorination expedient, economical, and readily available to chemists at large without the need for specialized training or equipment.

3.4 Experimental Details

General considerations. $Cs[HCB_{11}H_{11}]$ was purchased from Katchem spol. s r.o. and used as received unless otherwise noted. $Cs_2[B_{12}H_{12}]$ was purchased from Strem Chemical Inc. (55-1800) and used as received unless otherwise noted. SbCl₅ was purchased from Aldrich and fractionally distilled before use. SO_2Cl_2 was purchased from Aldrich (320528-1L) or Acros (169450010) and used as received unless otherwise noted. All other chemicals were purchased from either Aldrich, Alfa Aesar or Acros and used as received unless otherwise noted. **Physical methods.** NMR spectra were recorded on a Varian iNova 300 spectrometer (¹H NMR, 299.9 MHz) or a Varian iNova 400 spectrometer (¹¹B NMR, 128.2 MHz, ¹⁹F NMR, 376.3 MHz) in noted solvents. Chemical shifts are given in δ (ppm). ¹¹B NMR spectra were referenced externally with BF₃ etherate at δ 0. ¹⁹F NMR spectra were referenced externally with neat CF₃COOH at δ -78.5. MS characterizations of carborane and dodecaborate dianions were performed either by Texas A&M University Laboratory for Biological Mass Spectrometry (LBMS) or by Brandeis University Mass. Spec. Facility (BUMS). Elemental analyses were performed by CALI, Inc. (Parsippany, NJ). FT-IR spectra were collected using a Bruker ALPHA-P FT-IR Spectrometer with a diamond ATR. The solid state structure of Cs[HCB₁₁Cl₉(O₃SCF₃)₂]was solved by Prof. Bruce M. Foxman.

Notes on the labeling on the MS spectra. In our spectra, $[HCB_{11}Cl_{11}]^{-1}$ is labelled as Cl11; $[HCB_{11}HCl_{10}]^{-1}$ as Cl10; $[HCB_{11}H_2Cl_9]^{-1}$ as Cl9; $[HCB_{11}H_3Cl_8]^{-1}$ as Cl8; $[HCB_{11}H_4Cl_7]^{-1}$ as Cl7; $[HCB_{11}H_5Cl_6]^{-1}$ as Cl6; $[HCB_{11}H_6Cl_5]^{-1}$ as Cl5; $[HCB_{11}H_7Cl_4]^{-1}$ as Cl4; $[HCB_{11}H_8Cl_3]^{-1}$ as Cl3; $[HCB_{11}H_9Cl_2]^{-1}$ as Cl2; $[HCB_{11}Cl_{10}OH]^{-1}$ as Cl10OH; $[HCB_{11}Cl_{10}OSiMe_3]^{-1}$ as Cl10OSiMe_3; $[HCB_{11}Cl_9(O_3SCF_3)_2]^{-1}$ as Cl9(O_3SCF_3)_2; [ClCB_{11}Cl_{11}]^{-1} as Cl12.

Reaction of Cs[HCB₁₁H₁₁] with Cl₂ in triflic acid. To a 50 mL three-neck flask with teflon magnetic stir bar was added Cs[HCB₁₁H₁₁] (0.45 g, 1.63 mmol) and triflic acid (8 mL). The flask was equipped with water-cooled condenser and hose adapter connected via tygon tubing to an inverted filter funnel submerged in a solution of sodium hydroxide and sodium sulfite. Chlorine gas was delivered to the reaction flask from a lecture bottle of chlorine gas with a Monel valve through tygon tubing and a bubbler with concentrated HCl solution. The third neck was equipped with a glass stopper. Chlorine gas was slowly added into the flask and the reaction mixture was heated to 160 °C for 50 h. The flow of chlorine gas was ceased and reaction mixture was allowed to cool down to room temperature after the reaction was finished. All volatiles were removed under vacuum and the resulting white powder was washed with hexanes then dried under vacuum for 3 h. The products were dissolved in CH₃CN for ¹⁹F NMR study and MS characterization. The product was confirmed to be Cs[HCB₁₁Cl₉(CF₃SO₃)₂] by ¹⁹ F NMR spectroscopy (Figure 3-3), X-Ray crystallography (Figure 3-2) and mass spectroscopy (Figure 3-4).

Figure 3-3. ¹⁹F NMR spectrum of Cs[HCB₁₁Cl₉(CF₃SO₃)₂] product from the reaction with Cl₂ in triflic acid. (The signal at -79.3 is the residual triflic acid)

Figure 3-4. MALDI MS spectrum of $Cs[HCB_{11}Cl_9(CF_3SO_3)_2]$. (Top: from 100-1500; Bottom: from 700-800).

Synthesis of $Cs[HCB_{11}Cl_{11}]$ with Cl_2 . The reaction setup is the same as the one we use for the reaction of Cs [HCB_{11}H_{11}] with Cl_2 in triflic acid. To a 100 mL three-neck flask with teflon magnetic stir bar was added Cs[HCB_{11}H_{11}] (2.9 g, 10.5 mmol) and acetic acid (30 mL). Chlorine gas was slowly added into the flask and the reaction mixture was heated to reflux for 6 h. After removal of all volatiles, the resulting pale yellow powder was recrystallized from water with 3.2 g CsCl. The white crystals were dried under vacuum for 4 h at 80 \mathbb{C} . Yield: 3.3 g (90%). Mass spectroscopy revealed the product was a mixture of **Cl5** (10%), **Cl6** (80%) and **Cl7** (10%).

To a 25 mL three-neck flask with Teflon magnetic stir bar was added partially chlorination carboranes from the previous reaction (0.27 g, 0.56 mmol) and triflic acid (5 mL). Chlorine gas was slowly added into the flask and the reaction mixture was heated to reflux for 24 h. After removal of all volatiles, the products were recrystallized from hot water. Yield: 243 mg (69%). The product was confirmed to be pure Cs[HCB₁₁Cl₁₁] by ¹H NMR, ¹¹B NMR and mass spectroscopy (Figure 3-5).

Figure 3-5. MALDI MS spectrum of Cs[HCB₁₁Cl₁₁].

Reaction of Cs[HCB₁₁H₅Cl₆]^{*} with Cl₂ in CCl₃COOH*: Cs[HCB₁₁H₅Cl₆] used here is from the previous reaction of parent carborane with Cl₂ in acetic acid. It is indeed a mixture of Cl5, **Cl6** and **Cl7**. The reaction setup is the same as the one we use for the reaction of Cs [HCB₁₁H₁₁] with Cl₂ in triflic acid. To a 50 mL three-neck flask with teflon magnetic stir bar was added Cs[HCB₁₁H₅Cl₆]^{*} (0.21 g, 0.44 mmol) and CCl₃COOH (10 g). Chlorine gas was slowly added into the flask and the reaction mixture was heated to 180 \mathbb{C} for 24 h. After the reaction, the reactions mixture was dissolved in 5% aq. NaOH. The solution was then concentrated to about 10 mL. After Treatment of the resultant solution with 0.1 g of Me₃NHCl (1.1 mmol) caused formation of a white precipitate. This solid was filtered off, washed with distilled water and dried under vacuum to give 0.30 g of trimethylammonium salts of carborane. MALDI MS (Figure 3-6) revealed the carborane anion here is a mixture of [HCB₁₁Cl₁₁]⁻ and [ClCB₁₁Cl₁₁]⁻.

Figure 3-6. MALDI MS spectrum of reaction of $Cs[HCB_{11}H_5Cl_6]^*$ with Cl_2 in CCl_3COOH .

Reaction of $Cs[HCB_{11}H_{11}]$ with SO_2Cl_2 at ambient temperature without Ar protection. A solution of $Cs[HCB_{11}H_{11}]$ (120 mg, 0.43 mmol) in SO_2Cl_2 (8.0 mL, 100 mmol) in a Schlenk flask was stirred at room temperature for 24 h. Aliquot were taken after 1, 2, 3, 4, 5, 6, 8, and 24 h and analyzed by MALDI MS (Figure 3-7) which indicated mixtures of partially chlorinated carboranes up to Cl10 after 24h with the major products as Cl6, Cl7 and Cl8.

Figure 3-7. MALDI MS spectrum for the reaction with SO₂Cl₂ at ambient temperature without Ar protection for 24 h.

Reaction of $Cs[HCB_{11}H_{11}]$ with SO_2Cl_2 at reflux temperature without Ar protection. A solution of $Cs[HCB_{11}H_{11}]$ (1.03 g, 3.71 mmol) in SO_2Cl_2 (50 mL, 620 mmol) in a Schlenk flask was heated to reflux. After 1 h, formation of white precipitate was observed and an additional 50 mL (620 mmol) of SO_2Cl_2 was added. The mixture was allowed to stir at reflux temperature for 5 d. An aliquot was taken every day and analyzed by MALDI MS (Figure 3-8). After 5 days, removal of the volatiles gave a white solid. MALDI MS analysis indicated that this solid is a mixture of Cl8, Cl9, Cl10 and Cl11.

Figure 3-8. MALDI MS spectrum for the reaction with SO₂Cl₂ at reflux temperature without Ar protection for 24 h. (Top: after 1 d; Bottom: after 5d)

Reactions of Cs[HCB₁₁H₁₁] with SO₂Cl₂ and AlCl₃ without Ar protection. A solution of Cs[HCB₁₁H₁₁] (90 mg, 0.32 mmol) in SO₂Cl₂ (5.0 mL, 62 mmol) with added AlCl₃ (0.60 g, 4.5 mmol) in a Schlenk flask was heated to reflux for 3 d. Removal of the volatiles gave a white solid. MS spectra showed the product is a mixture of predominantly Cl9 and Cl10.

Reactions of Cs[HCB₁₁H₁₁] with SO₂Cl₂ and TiCl₄ without Ar protection. A solution of Cs[HCB₁₁H₁₁] (100 mg, 0.36 mmol) in SO₂Cl₂ (5.0 mL, 62 mmol) with added TiCl₄ (3.0 mL, 27 mmol) in a Schlenk flask was heated to reflux for 3 d. Removal of the volatiles gave a white solid which was analyzed by MALDI MS which shows no isotope pattern for carborane cages.

Reactions of Cs[HCB₁₁H₁₁] with SO₂Cl₂ with added H₂O versus a control without added H₂O. A pair of reactions were set up in the following way: RX1: 100 mg (0.36 mmol) of Cs[HCB₁₁H₁₁] was mixed with 22 μ L (1.22 mmol) of H₂O and 5.0 mL (62 mmol) of SO₂Cl₂ in a Schlenk flask and heated to reflux; RX2: 100 mg (0.36 mmol) of Cs[HCB₁₁H₁₁] was mixed with 5.0 mL (62 mmol) SO₂Cl₂ in a Schlenk flask and heated to reflux. After 1 h, an additional 5.0 mL (62 mmol) of SO₂Cl₂ was added to each reaction. The mixture was allowed to stir at reflux temperature for 24 h. Removal of the volatiles gave in each case a white solid which were analyzed by MALDI MS (Fig. 3-9) which revealed a lower chlorination level in the reaction with added water.

Figure 3-9. MALDI MS spectrum for the reaction with SO_2Cl_2 with 2% H₂O. (Top) MALDI MS spectrum for the reaction with SO_2Cl_2 without H₂O. (Bottom)

Synthesis of Cs[HCB₁₁Cl₁₁] with SO₂Cl₂ under Ar (1 g scale). A solution of Cs[HCB₁₁H₁₁] (1.03 g, 3.71 mmol) in SO₂Cl₂ (50 mL, 620 mmol) in a Schlenk flask was heated to reflux at 80 [°] under Ar protection. After 1 h, formation of white precipitate was observed and an additional 50 mL (620 mmol) of SO₂Cl₂ was added. The mixture was allowed to stir at reflux temperature for another 24 h. Removal of the volatiles gave a white solid which was recrystallized from water to give pure Cs[HCB₁₁Cl₁₁]. Yield: 2.05 g (85%). ¹¹B NMR (128.2 MHz, aceotne): δ -1.7 (s, 1B), -9.0 (s, 5B), -12.1 (s, 5B). ¹H NMR (299.9 MHz, acetonitrile-*d*₃): δ 4.07 (s). Elemental Analysis Calculated (Found) for CsHCB₁₁Cl₁₁ : H, 0.15% (0.30%); C, 1.83% (1.87%); B, 18.16% (17.97%); Cl, 59.55% (59.39%). Negative-ion MALDI MS, *m/z* (isotopic abundance): calculated for HCB₁₁Cl₁₁ 520 (84.7), 521 (96.7), 522 (100), 523 (93.8), 524 (80.3); found 519.7 (80.6), 520.7 (93.2), 521.7 (100), 522.7 (88.2), 523.7 (77.3) (Fig. 3-10).

Figure 3-10. MALDI MS spectrum for the reaction with SO_2Cl_2 under Ar protection at 1 g scale.

Reactions of recrystallized Cs[HCB₁₁H₁₁] with SO₂Cl₂. The parent carborane used in this reaction was recrystallized from hot water and dried under vacuum at 80 $^{\circ}$ for 12 h. A solution of Cs[HCB₁₁H₁₁] (95 mg, 0.36 mmol) in SO₂Cl₂ (5 mL, 62 mmol) in a Schlenk flask was heated to reflux at 80 $^{\circ}$ under Ar protection. After 1 h, formation of white precipitate was observed and an additional 5 mL (62 mmol) of SO₂Cl₂ was added. The mixture was allowed to stir at reflux temperature for another 24 h under Ar. Removal of the volatiles gave a white solid. MALDI MS revealed the white powder was a mixture of partially chlorinated carboranes from Cl6 to Cl10 with the major products as Cl8.

Reactions of recrystallized $Cs[HCB_{11}H_{11}]$ with Et_3N in SO_2Cl_2 . The parent

carborane used in this reaction was recrystallized from hot water and dried under vacuum at 80 \mathbb{C} for 12 h. A solution of Cs[HCB₁₁H₁₁] (100 mg, 0.37 mmol) in SO₂Cl₂ (5 mL, 62 mmol) with 0.5 µL of Et₃N (3.6 µmol) in a Schlenk flask was heated to reflux at 80 \mathbb{C} under Ar protection. After 1 h, formation of white precipitate was observed and an additional 5 mL (62 mmol) of SO₂Cl₂ was added. The mixture was allowed to stir at reflux temperature for another 24 h under Ar. Removal of the volatiles gave a white solid. MALDI MS revealed the white powder was a mixture of partially chlorinated carboranes from Cl8 to Cl11 with the major products as Cl10.

Reactions of recrystallized Cs[HCB₁₁H₁₁] in the presence of dry HCl. The parent carborane used in this reaction was recrystallized from hot water and dried under vacuum at 80 \mathbb{C} for 12 h. Cs[HCB₁₁H₁₁] (100 mg, 0.37 mmol) was mixed with SO₂Cl₂ (5 mL, 62 mmol) in a Schlenk flask under Argon. Agron then was removed from the Schlenk flask through "Freeze-Pump-Thaw". Dry HCl was then delivered to the reaction flask from a lecture bottle of chlorine gas with a Monel valve through tygon tubing for 15 min. The reaction mixture was then heated to reflux under Ar. After 1 h, formation of white precipitate was observed and an additional 5 mL (62 mmol) of SO₂Cl₂ was added. The mixture was allowed to stir at reflux temperature for another 24 h under Ar. Removal of the volatiles gave a white solid. MALDI MS revealed the white powder was a mixture of partially chlorinated carboranes from Cl8 to Cl11 with the major products as Cl10.

Reactions of Cs[HCB₁₁H₁₁] with SO₂Cl₂ in the absence of light. The reaction flask
and condenser were wrapped with Al foil throughout the reaction time. A solution of $Cs[HCB_{11}H_{11}]$ (100 mg, 0.37 mmol) in SO_2Cl_2 (5 mL, 62 mmol) in a Schlenk flask was heated to reflux at 80 °C under Ar protection. After 1 h, an additional 5 mL (62 mmol) of SO_2Cl_2 was added. The mixture was allowed to stir at reflux temperature for another 24 h under Ar. Removal of the volatiles gave a white solid. MALDI MS revealed the white powder was a mixture of partially chlorinated carboranes from **Cl7** to **Cl11** with the major products as **Cl9**.

Reactions of recrystallized Cs[HCB₁₁**H**₁₁] with 1% Na[MeCB₁₁Cl₁₁] in SO₂Cl₂. The parent carborane used in this reaction was recrystallized from hot water and dried under vacuum at 80 \mathbb{C} for 12 h. A solution of Cs[HCB₁₁H₁₁] (100 mg, 0.37 mmol) in SO₂Cl₂ (5 mL, 62 mmol) with Na[MeCB₁₁Cl₁₁] (2 mg, 3.6 µmol) in a Schlenk flask was heated to reflux at 80 \mathbb{C} under Ar protection. After 1 h, formation of white precipitate was observed and an additional 5 mL (62 mmol) of SO₂Cl₂ was added. The mixture was allowed to stir at reflux temperature for another 24 h under Ar. Removal of the volatiles gave a white solid. MALDI MS revealed the white powder was a mixture of partially chlorinated carboranes from Cl6 to Cl10 with the major products as Cl11.

Synthesis of Me₃NH[HCB₁₁H₁₁]. To a solution of Cs[HCB₁₁H₁₁] (672 mg, 2.43 mmol) in 5 mL H₂O was added 1 mL of 10% HCl aqueous solution at 50 \mathbb{C} . The solution was then cooled to room temperature before Me₃NHCl (500 mg, 5.24 mmol) was added. The resulting white suspension was stirred at room temperature for 1 hour. White powder was collected on a "F frit, washed with 1 mL of water three

times and dried under vacuum at 80 \mathbb{C} overnight. Yield: 450 mg (91%). ¹¹B NMR (128.2 MHz, aceotne): δ -1.7 (s, 1B), -9.0 (s, 5B), -12.1 (s, 5B). ¹H NMR (500.0 MHz, acetonitrile- d_3): δ 2.79 (s, 9H, NMe), 2.36 (br s, 1H, CH), 1.05-2.08 (br, 11H, BH).

Reactions of Me₃NH[HCB₁₁H₁₁] with SO₂Cl₂. The Me₃NH[HCB₁₁H₁₁] used in this reaction was dried under vacuum at 80 \mathbb{C} for 12 h before use. A solution of Cs[HCB₁₁H₁₁] (100 mg, 0.37 mmol) in SO₂Cl₂ (5 mL, 62 mmol) in a Schlenk flask was heated to reflux at 80 \mathbb{C} under Ar protection. After 1 h, formation of white precipitate was observed and an additional 5 mL (62 mmol) of SO₂Cl₂ was added. The mixture was allowed to stir at reflux temperature for another 24 h under Ar. Removal of the volatiles gave a white solid. MALDI MS revealed the white powder was a mixture of partially chlorinated carboranes from Cl4 to Cl6 with the major products as Cl5.

Reactions of Cs[HCB₁₁H₁₁] with distilled SO₂Cl₂. SO₂Cl₂ used in this reaction was purchased from Aldrich and fractionally distilled before use. Starting with 100 mL SO₂Cl₂, the middle 50% fraction (50 mL) was collected and used in the reaction. A solution of Cs[HCB₁₁H₁₁] (100 mg, 0.37 mmol) in SO₂Cl₂ (5 mL, 62 mmol) in a Schlenk flask was heated to reflux at 80 \mathbb{C} under Ar protection. After 1 h, formation of white precipitate was observed and an additional 5 mL (62 mmol) of SO₂Cl₂ was added. The mixture was allowed to stir at reflux temperature for another 24 h under Ar. Removal of the volatiles gave a white solid. MALDI MS revealed the white powder was a mixture of partially chlorinated carboranes from **Cl7** to **Cl11** with the major products as Cl9.

Synthesis of Me₃NH[HCB₁₁Cl₁₁] with SbCl₅ (1 g scale). A solution of Cs[HCB₁₁H₁₁] (1.05 g, 3.8 mmol) in SbCl₅ (10 mL, 79 mmol) in a Schlenk flask was heated to reflux at 140 C for 3 d. After removal of most of the volatiles, the residue was dissolved in 10% aq. NaOH, passed through Celite and then neutralized by dilute HCl solution. Treatment of the resultant solution with 0.5 g of Me₃NHCl (5.2 mmol) caused formation of a white precipitate. This solid was filtered off, washed with distilled water and dried under vacuum to give Me₃NH[HCB₁₁Cl₁₁]. (Figure 3-11) Yield: 1.8 g (81%). ¹¹B NMR (128.2 MHz, aceotne): δ -1.7 (s, 1B), -9.1 (s, 5B), -12.2 (s, 5B). ¹H NMR (299.9 MHz, acetonitrile-*d*₃): δ 2.71 (s, 9H, *Me*₃N), 4.07 (s, 1H, cage C-H). Me₃NH[HCB₁₁Cl₁₁] was recrystallized from acetone before it was sent for elemntal analyses. Less than 0.0167% of Sb was detected by elemental analysis.

Figure 3-11. Me₃NH[HCB₁₁Cl₁₁] product from the reaction with SbCl₅ at 1 g scale. (Top: MALDI-MS; Bottom: ¹¹B NMR in acetone)

Reaction of mixtures of partially chlorinated carborane anions with SbCl₅. A solution of CsHCB₁₁H_xCl_{11-x} (130 mg, 0.23 mmol, $x= 0\sim 6$, avg. ≈ 2.5 by MS; this

material was obtained from a reaction of parent carborane with SO₂Cl₂ without Ar protection) in SbCl₅ (0.8 mL, 6.3 mmol) in a Schlenk flask was heated to reflux at 140 \mathbb{C} for 1 d. After removal of most of the volatiles, the residue was dissolved in 10% aq. NaOH, passed through Celite and then neutralized by dilute HCl solution. Treatment of the resultant solution with 0.1 g of Me₃NHCl (1.1 mmol) caused formation of a white precipitate. This solid was filtered off, washed with distilled water and dried under vacuum to give 125 mg (86%) of Me₃NH[HCB₁₁Cl₁₁]. **Reaction of Cs[HCB₁₁H₁₁] with SbCl₅ (5 g scale):** A solution of Cs[HCB₁₁H₁₁] (5.09 g, 18.4 mmol) in SbCl₅ (50 mL, 395 mmol) in a Schlenk flask was heated to reflux at 140 \mathbb{C} for 1 d. After removal of most of the volatiles, the residue was dissolved in 10% aq. NaOH, passed through Celite and then neutralized by dilute HCl solution. Treatment of the resultant solution with 3 g of Me₃NHCl (31 mmol) caused formation of a white precipitate. This solid was filtered off, washed with distilled water and dried under vacuum to give 8.9 g (82%) of Me₃NH[HCB₁₁Cl₁₁]. MALDI MS analysis showed two sets of carborane isotopic patterns (Figure 3-12). One set around 522 corresponds to the HCB₁₁Cl₁₁ anion (Cl11); another set around 503 corresponds to the HCB₁₁Cl₁₀OH anion (Cl10OH).

Figure 3-12. MALDI MS spectrum for the reaction with SbCl₅ at 5 g scale.

Reaction of a mixture of Me₃NH[HCB₁₁Cl₁₁] and Me₃NH[HCB₁₁Cl₁₀OH] with hexamethyldisilazane. A CH₂Cl₂ solution of a mixture of Me₃NH[HCB₁₁Cl₁₁] and Me₃NH[HCB₁₁Cl₁₀OH] (110 mg, est. 0.22 mmol; obtained from a reaction of Cs[HCB₁₁H₁₁] with SbCl₅ as described above) was treated with hexamethyldisilazane (500 μ L, 2.4 mmol) and heated to reflux in a Schlenk flask for 24 h. Removal of the volatiles gave a white solid which was analyzed by MALDI MS. MS spectra (Figure 3-13) showed three sets of signals with the carborane isotopic pattern. The set around 522 corresponds to the HCB₁₁Cl₁₁ anion (Cl11); the set around 487 corresponds to the HCB₁₁Cl₁₀OH anion (Cl10); and a new set around 575 corresponds to the HCB₁₁Cl₁₀OSiMe₃ anion (Cl10OSiMe₃).

Figure 3-13. MALDI MS spectrum for the reaction mixture of $Me_3NH[HCB_{11}Cl_{11}]$ and $Me_3NH[HCB_{11}Cl_{10}OH]$ with hexamethyldisilazane.

Reaction of Cs[HCB₁₁H₁₁] with SbCl₅ with added H₂O. A solution of Cs[HCB₁₁H₁₁] (100 g, 0.36 mmol) in SbCl₅ (1 mL, 8 mmol) with added H₂O (30 μ L, 1.7 mmol) in a Schlenk flask was heated to reflux at 140 \mathbb{C} for 1 d. After removal of the volatiles, the residue was dissolved in 10% aq. NaOH, passed through Celite and then neutralized by dilute HCl solution. Treatment of the resultant solution with 0.1 g of Me₃NHCl (1.1 mmol) caused formation of a white precipitate. This solid was filtered off, washed with distilled water and dried under vacuum to give 150 mg of a solid. MALDI MS (Figure 3-14) analysis showed two sets of carborane isotopic patterns. One set around 522 corresponds to the HCB₁₁Cl₁₁ anion (Cl11); another set

around 503 corresponds to the HCB₁₁Cl₁₀OH anion (Cl10OH).

Figure 3-14. MALDI MS spectrum for the reaction with SbCl₅ and H₂O.

Reaction of mixture of Me₃NH[HCB₁₁Cl₁₁] and Me₃NH[HCB₁₁Cl₁₀OH] with SO₂Cl₂. A solution of a mixture of Me₃NH[HCB₁₁Cl₁₁] and Me₃NH[HCB₁₁Cl₁₀OH] (220 mg, est. 0.44 mmol; obtained from a reaction of Cs[HCB₁₁H₁₁] with SbCl₅ as described above) in SO₂Cl₂ (1.0 mL, 12.4 mmol) was heated to reflux at 80 \mathbb{C} in a Schlenk flask for 24 h. Removal of the volatiles gave a white solid (220 mg) which

was analyzed by MALDI MS. MS spectra showed only one set of signals with a carborane pattern around 522 which corresponds to the $HCB_{11}Cl_{11}$ anion (Cl11).

Reaction of mixture of Me₃NH[HCB₁₁Cl₁₁] and Me₃NH[HCB₁₁Cl₁₀OH] with SbCl₅. A solution of a mixture of Me₃NH[HCB₁₁Cl₁₁] and Me₃NH[HCB₁₁Cl₁₀OH] (207 mg, est. 0.41 mmol; obtained from a reaction of Cs[HCB₁₁H₁₁] with SbCl₅ as described above) in SbCl₅ (0.5 mL, 4 mmol) was heated to reflux at 140 \mathbb{C} in a Schlenk flask for 24 h. After removal of the volatiles, the residue was dissolved in 10% aq. NaOH, passed through Celite and then neutralized by dilute HCl solution. Treatment of the resultant solution with 0.1 g of Me₃NHCl (1.1 mmol) caused formation of a white precipitate. This solid was filtered off, washed with distilled water and dried under vacuum to give 175 mg of a solid. MALDI MS analysis showed only one set of signals with a carborane pattern around 522 which corresponds to the HCB₁₁Cl₁₁ anion (Cl11).

Reaction of Cs₂[B₁₂H₁₂] with SO₂Cl₂: A suspension of Cs₂[B₁₂H₁₂] (180 mg, 0.44 mmol) in SO₂Cl₂ (10 mL, 124 mmol) in a Schlenk flask was heated to reflux for 24 h. Removal of all volatiles gave a white solid which was redissolved in water for ¹¹B NMR study. ¹¹B NMR (128.2 MHz, aceotne): δ -7.8 (m), -15.2 (d), -17.8 (m). (Figure 3-15) SO₂Cl₂ used in this reaction was purchased from Aldrich and used as received. Cs₂[B₁₂H₁₂] used in this reaction was purchased from Strem and used as received.

[Et₃NH]₂[B₁₂H₁₂]. To a white suspension of Cs₂[B₁₂H₁₂] (170 mg, 0.42 mmol) in 15 mL water was added 0.5 mL hydrochloric acid and Et₃N (0.6 mL, 4.3 mmol). The mixture was stirred at room temperature for 1 h. The white percipiate was collected on a medium frit, washed with water and then dried under vacuum at 100 ℃ overnight. Yield: 130 mg (91%). ¹H NMR (299.9 MHz, d₆-acetone): 3.05 (m, NCH₂CH₃, 6H), 1.14 (t, J_{H-H}= 7.2 Hz, NCH₂CH₃, 9H). ¹¹B NMR (128.2 MHz, d₆-acetone): δ -14.7 (d, J_{B-H}= 130 Hz).

Reaction of [Et_3NH]_2[B_{12}H_{12}] with SO₂Cl₂: A suspension of [Et_3NH]_2[B_{12}H_{12}] (120 mg, 0.35 mmol) in SO₂Cl₂ (8 mL, 99 mmol) in a Schlenk flask was heated to reflux for 24 h. Removal of all volatiles gave a white solid which was redissolved in water

for ¹¹B NMR study. ¹¹B NMR (128.2 MHz, aceotne): δ -11.8 (m), -17.8 (m) (Figure 3-16). SO₂Cl₂ used in this reaction was purchased from Aldrich and used as received.

Figure 3-16. ¹¹B NMR spectrum for reaction of $[Et_3NH]_2[B_{12}H_{12}]$ with reflux SO₂Cl₂ for 24 h.

Reaction of $Cs_2[B_{12}H_{12}]$ **with SO₂Cl₂ and MeCN (1 g scale):** SO₂Cl₂ used in this reaction was purchased from Aldrich and used as received. MeCN was purchased from VWR and used as received. $Cs_2[B_{12}H_{12}]$ used in this reaction was purchased from Strem and used as received. To a suspension of $Cs_2[B_{12}H_{12}]$ (1.00 g, 2.45 mmol) in acetonitrile (30 mL) in a Schlenk flask was slowly added SO₂Cl₂ (30 mL, 370

mmol). The mixture soon became a clear solution and was heated to reflux for 24 h. Removal of all volatiles gave a white solid which was redissolved in CD₃CN for NMR study (Fig. 3-17). ¹H NMR (299.9 MHz, d₃-acetonitrile): 5.90 (t, $J_{N-H} = 54$ Hz). ¹¹B NMR (128.2 MHz, d³-acetonitrile): δ -12.7 (s).

Figure 3-17. ¹¹B NMR spectrum for reaction of $Cs_2[B_{12}H_{12}]$ with reflux SO_2Cl_2 and acetonitrile for 24 h without workup. (Top: ¹¹B NMR in CD₃CN; Bottom: ¹H NMR in CD₃CN)

Figure 3-17. Continued

We surmised that the 1:1:1 triplet observed in the ¹H NMR belonged to NH_4^+ , likely from the degradation of acetonitrile. The following steps assured removal of this impurity. The white solids obtained above were treated with 0.2 mL of 10% NaOH aqueous solution and then recrystallized from hot water with 1.5 g CsCl (8.9 mmol) to give Cs₂[B₁₂Cl₁₂]. Yield: 1.64 g (82%). ¹¹B NMR (128.2 MHz, H₂O): δ -12.1 (s). IR (cm⁻¹): v= 1030 (vs), 534 (vs). (Figure 3-18) Elem. An. Found. (Calculated) for Cs2B12Cl12: Cl, 50.91 (51.82); B, 15.51 (15.80)%.

Figure 3-18. ¹¹B NMR spectrum for reaction of $Cs_2[B_{12}H_{12}]$ with reflux SO_2Cl_2 and acetonitrile for 24 h after workup. (Top: ESI-MS spectrum; Bottom: ¹¹B NMR in CD₃CN)

Reaction of $Cs_2[B_{12}H_{12}]$ with SO₂Cl₂ and MeCN (100 mg scale): To a suspension of $Cs_2[B_{12}H_{12}]$ (155 mg, 0.38 mmol) in acetonitrile (5 mL) in a Schlenk flask was slowly added SO₂Cl₂ (5 mL, 62 mmol). The mixture soon became a clear solution and was heated to reflux for 8 h. Removal of all volatiles gave a white solid which was treated with 0.05 mL of 10 % NaOH aqueous solution and then recrystallized from hot water with 0.3 g CsCl (1.8 mmol) to give $Cs_2[B_{12}Cl_{12}]$. Yield: 240 mg (78%). ¹¹B NMR (128.2 MHz, H₂O): δ -12.1 (s). SO₂Cl₂ used in this reaction was purchased from Aldrich and used as received. MeCN was purchased from VWR and used as received. $Cs_2[B_{12}H_{12}]$ used in this reaction was purchased from Strem and used as received.

Reaction of $Cs_2[B_{12}H_{12}]$ with SO_2Cl_2 (Acros) and MeCN: SO_2Cl_2 used in reaction was purchased from Acros. To a suspension of $Cs_2[B_{12}H_{12}]$ (97 mg, 0.24 mmol) in acetonitrile (3 mL) in a Schlenk flask was slowly added SO_2Cl_2 (3 mL, 37 mmol). The mixture soon became a clear solution and was heated to reflux for 8 h. Removal of all volatiles gave a white solid which was redissolved in water for ¹¹B NMR study. ¹¹B NMR (128.2 MHz, H₂O): δ -12.1 (s). SO_2Cl_2 used in this reaction was purchased from Acros and used as received. MeCN was purchased from VWR and used as received. $Cs_2[B_{12}H_{12}]$ used in this reaction was purchased from Strem and used as received.

Reaction of $Cs_2[B_{12}H_{12}]$ (recrystallized) with purified SO_2Cl_2 and MeCN in the absence of light: This reaction is protected from light. All of the flask and condenser were wrapped with aluminum foil during the reaction. $Cs_2[B_{12}H_{12}]$ used in this

reaction was recrsystallized from hot water and dried under vacuum at 80 \C for 8 h before use. MeCN used in this reaction was dried with CaH₂ and distilled under Ar and stored over molecular sieves in an Ar-filled glovebox. SO₂Cl₂ used in this reaction was purchased from Arcos and fractionally distilled before use. Starting with 100 mL SO₂Cl₂, the middle 50% (50 mL) was used in the reaction. To a suspension of Cs₂[B₁₂H₁₂] (102 mg, 0.25 mmol) in acetonitrile (3 mL) in a Schlenk flask was slowly added SO₂Cl₂ (3 mL, 37 mmol). The mixture was heated to reflux. After 8 h, an aliquot was taken from the reation mixture. Removal of all volatiles gave a white solid which was redissolved in water for ¹¹B NMR study. ¹¹B NMR (128 MHz, H₂O): δ -12.1 (s).

Reaction of Cs₂[B₁₂H₁₂] (recrystallized) with purified SO₂Cl₂ and MeCN under Ar: This reaction is performed under Ar. Cs₂[B₁₂H₁₂] used in this reaction was recrsystallized from hot water and dried under vacuum at 80 \mathbb{C} for 8 h before use. MeCN was dried with CaH₂ and distilled under Ar and stored over molecular sieves in an Ar-filled glovebox. SO₂Cl₂ used in this reaction was purchased from Arcos and fractionally distilled before use. Starting with 100 mL SO₂Cl₂, the middle 50% fraction (50 mL) was collected and used in the reaction. To a suspension of Cs₂[B₁₂H₁₂] (102 mg, 0.25 mmol) in acetonitrile (3 mL) in a Schlenk flask was slowly added SO₂Cl₂ (3 mL, 37 mmol) under Ar. The mixture was heated to reflux. After 8 h, an aliquot was taken from the reation mixture. Removal of all volatiles gave a white solid which was redissolved in water for ¹¹B NMR study. After 24 h, all volatiles was removed under vacuum to give a white solid which was redissolved in water for ¹¹B NMR study. ¹¹B NMR (128.2 MHz, H_2O): δ -12.1 (s).

CHAPTER IV

Sp³ C-F BOND ACTIVATION MEDIATED BY SILYLIUM AND ALUMENIUM SPECIES*

4.1 Introduction

As presented in Chapter I, fluoroorganic compounds play an integral role in everyday life due to their special chemical, biological and mechanical properties. In the meantime, activation of C-F bonds under mild conditions remains as a great challenge. Early work on C-F bond activation mainly focused on redox chemistry mediated by transition metal complexes.¹⁵⁰ In 2005, Ozerov and coworkers reported an approach for hydrodefluorination of aliphatic C-F bonds in which the key step is a non-redox process of fluoride abstraction by highly electrophilic silylium species.^{71a} The work was inspired by some early reports by Krause and Lampe in which they observed Si-H/C-F redistribution by mass spectroscopy while studying the reaction between SiH₃⁺ and CF₄ in the gas phase.¹⁵¹ Later, the Reed,^{71b} Mueller^{71c} and Siegel¹⁵² groups reported similar C-F bond activation with silylium reagents paired with weakly coordinating anions.

^{*} reprinted in part from *J. Am. Chem. Soc.*, 131, Gu, W.; Haneline, M. R.; Douvris, C.; Ozerov, O. V. "Carbon–Carbon Coupling of $C(sp^3)$ –F Bonds Using Alumenium Catalysis", 11203, copyright 2009 American Chemical Society and from *Inorg. Chem.*, 50, Gu, W.; Ozerov, O. V. "Exhaustive Chlorination of $[B_{12}H_{12}]^{2^-}$ without Chlorine Gas and the Use of $[B_{12}Cl_{12}]^{2^-}$ as Supporting Anion in Catalytic Hydrodefluorination of Aliphatic C-F Bonds", 2726, copyright 2011 American Chemical Society.

Scheme 4-1. Silylium and alumenium mediated C-F bond activations.

Recently, the reactivity and longevity of these silylium mediated C-F bond activations have been greatly improved by using halogenated carboranes as counterions.^{71d,71f} Here we report a related "alkylative defluorination" (AlkDF) process mediated by R_2Al^+ equivalents (in place of R_3Si^+) paired with a carborane anion (Scheme 4-1). We expect the high polarity of the Al-C bonds would lead to facile and catalytic conversion of C-F to C-C, which is rare in the literature.

Several recent reports relevant to the use of aluminum compounds in C-F activation need to be highlighted. Akiyama ¹⁵³ et al. have recently detailed activation of benzotrifluorides by the mixtures of NbCl₅ and LiAlH₄. However, it is not clear whether Al plays any role besides reducing Nb to a reactive state. Terao¹⁵⁴ and coworkers demonstrated that trialkylaluminums (without any added catalyst) could convert C-F bonds in primary fluorides or benzotrifluorides into C-C bonds. As our investigations demonstrate (*vide infra*), this reaction is largely limited to monofluoroalkanes.

Rosenthal and Krossing¹⁰¹ used ⁱBu₂AlH as the source of H for hydrodefluorination (**HDF**) catalyzed by trityl salts of B(C₆F₅)₄⁻, Al(C₆F₅)₄⁻ or Al(OC(CF₃)₃)₄⁻. Just as in the case of Si-based HDF with B(C₆F₅)₄⁻,^{71a,71b} these anions failed to sustain the catalysis for more than a few dozen turnovers. The groups of Sen and Reed¹⁰⁰ reported the preparation of Et₂Al[HCB₁₁H₅Br₆] (**A**), a species with an alumenium (R₂Al⁺) cation-like reactivity.

4.2 Results and Discussion

4.2.1 Alumenium Mediated Sp³ C-F Bond Activation

In our hands, AlkDF reactions were performed with $Et_2Al[HCB_{11}H_5Br_6]$ (**A**), Ph₃C[HCB₁₁H₅Br₆] (**B**) or Ph₃C[B(C₆F₅)₄] (**C**) as (pre-)catalysts and substrates with sp³ C-F bonds The results for catalytic AlkDF reactions are summarized in Table 4-1, Scheme 4-2 and Table 4-2. Given that **A** was originally prepared by Reed and his coworkers via reaction of **B** with Et_3Al ,¹⁰⁰ it appears sound to assume that **B** and **C** are swiftly converted to the corresponding $Et_2Al[Anion]$ by the excess of Et_3Al in our catalytic reactions. In the idealized form, we may refer to R_2Al^+ and R_3C^+ cations here. However, it is unlikely that true free cations exist in our catalytic reaction mixtures, especially in the less polar solvents. Except perhaps the more stabilized carbocations, the cations under study undoubtedly exist as adducts with the anion, solvent, one of the reactants or products. Nonetheless, considering the weakly coordinating nature of the hexabromocarborane anion or of the solvents employed here, it appears reasonable to treat these species in solution as close synthons of the requisite cations.

4.2.1.1 Reactions with Benzotrifluorides

We first examined the AlkDF reactivity with p-FC₆H₄CF₃ (**1**, Scheme 4-3). Due to the presence of the aromatic C-F moiety, it is easy to track both the substrate and the products by ¹⁹F NMR. Similar to the results that were reported in the Si-mediated HDF chemistry, we saw no evidence of activation of the aromatic C-F bonds.^{71a,71d} We used C₆F₆ as the internal integration standard for ¹⁹F NMR.

No	Sub.	R ₃ Al	Cat.	Cat.% ^a	Solvent	% C-F ^b	% Al-F ^b	TON ^c
1	1	Me ₃ Al	Α	0.33%	Hexanes	41(100)%	38(95)%	123
2	1	Et ₃ Al	Α	0.33%	Hexanes	93%	87%	280
3	1	ⁱ Bu ₃ Al	Α	0.33%	Hexanes	100%	89%	300
4	1	ⁱ Bu ₂ AlH	Α	0.33%	Hexanes	96%	72%	290
5	1 ^d	Et ₃ Al	A ^e	0.01%	Hexanes	98%	93%	9800
6	1	Et ₃ Al	Α	0.33%	$C_6H_4Cl_2$	100% ^f	98%	300
7	1	Et ₃ Al	B	0.33%	Hexanes	21(90)%	18(82)%	63
8	1	Et ₃ Al	С	0.33%	Hexanes	16(50)%	13(45)%	48
9	1	Et ₃ Al	B	0.33%	$C_6H_4Cl_2$	100% ^f	88%	300
10	1	Et ₃ Al	С	0.33%	C ₆ H ₄ Cl ₂	100% ^f	86%	300
11	2	Et ₃ Al	Α	0.33%	Hexanes	90%	85%	270
12	3	Et ₃ Al	Α	0.33%	Hexanes	25(93)%	21(89)%	75
13	1	Et ₃ Al	A ^e	0.33%	Hexanes	100% ^f	94%	300
14	2	Et ₃ Al	A ^e	0.33%	Hexanes	100% ^f	98%	300
15	3	Et ₃ Al	A ^e	0.33%	Hexanes	100% ^f	92%	300
16	2	Me ₃ Al	Α	0.33%	Hexanes	35(94)% ^g	30(64)%	110
17	4 ^h	Et ₃ Al	Α	2.00%	$C_6H_4Cl_2$	23(100)%	NA	13
18	4 ^h	Me ₃ Al	A ^e	2.00%	Hexanes	66(100)%	49(84)%	33
19	4 ^h	Me ₃ Al	A ^e	0.33%	Hexanes	6(50)%	6(39)%	19
20	5 ⁱ	Et ₃ Al	Α	0.33%	$C_6H_4Cl_2$	51(92)%	50(90)%	150
21	5 ⁱ	Me ₃ Al	A ^e	0.33%	Hexanes	39(82)%	37(80)%	120
22	6	Et ₃ Al	Α	0.25%	$C_6H_4Cl_2$	100% ^f	95%	400
23 ^j	1	Me ₃ Al/Et ₃ SiH	В	0.33%	Hexanes	100%	90%	300

Table 4-1. Summary of AlkDF reactions initiated at ambient temperature with Al/F ratio of 1.

^a Catalyst loading, vs the number of C-F bonds; ^b Conversion after 3 h (after 24 h in parentheses) based on disappearance of C-F bonds or appearance of Al-F bonds, by ¹⁹F NMR; ^c Turnover number after 3 h; ^d Reaction was carried out in a glass vial with stirring; ^e Catalyst introduced as a solution in *o*-C₆H₄Cl₂; ^f Reaction complete in <10 min; ^g 94% conversion after 36 h; ^h Reactions were carried out at 85 \mathbb{C} ; ⁱ Reactions were carried out at 50 \mathbb{C} .

Scheme 4-2. AlkDF reactions with benzotrifluorides.

No	substrate	aluminum reagents	Products
1	1	Me ₃ Al	<i>p</i> -FC ₆ H ₄ CMe ₃
2	1	Et ₃ Al	<i>p</i> -FC ₆ H ₄ CEt ₃ , <i>p</i> -FC ₆ H ₄ CHEt ₂ , <i>p</i> -FC ₆ H ₄ CH ₂ CH ₂ CH ₃
3	1	ⁱ Bu ₃ Al	<i>p</i> -FC ₆ H ₄ -CHC ₈ H ₁₈ , <i>p</i> -FC ₆ H ₄ -CC ₁₂ H ₂₇
4	1	ⁱ Bu ₂ AlH	<i>p</i> -FC ₆ H ₄ CH ₃ , <i>p</i> -FC ₆ H ₄ CH ₂ C ₄ H ₉
5	1	Et ₃ Al	<i>p</i> -FC ₆ H ₄ CEt ₃ , <i>p</i> -FC ₆ H ₄ CHEt ₂ , <i>p</i> -FC ₆ H ₄ CH ₂ CH ₂ CH ₃
6	1	Et ₃ Al	<i>p</i> -FC ₆ H ₄ CEt ₃ , <i>p</i> -FC ₆ H ₄ CHEt ₂ , <i>p</i> -FC ₆ H ₄ CH ₂ CH ₂ CH ₃
7	1	Et ₃ Al	<i>p</i> -FC ₆ H ₄ CEt ₃ , <i>p</i> -FC ₆ H ₄ CHEt ₂ , <i>p</i> -FC ₆ H ₄ CH ₂ CH ₂ CH ₃
8	1	Et ₃ Al	<i>p</i> -FC ₆ H ₄ CEt ₃ , <i>p</i> -FC ₆ H ₄ CHEt ₂ , <i>p</i> -FC ₆ H ₄ CH ₂ CH ₂ CH ₃
9	1	Et ₃ Al	<i>p</i> -FC ₆ H ₄ CEt ₃ , <i>p</i> -FC ₆ H ₄ CHEt ₂ , <i>p</i> -FC ₆ H ₄ CH ₂ CH ₂ CH ₃
10	1	Et ₃ Al	<i>p</i> -FC ₆ H ₄ CEt ₃ , <i>p</i> -FC ₆ H ₄ CHEt ₂ , <i>p</i> -FC ₆ H ₄ CH ₂ CH ₂ CH ₃
11	2	Et ₃ Al	$C_6H_5CEt_{3,}C_6H_5CHEt_2, C_6H_5CH_2CH_2CH_3$
12	3	Et ₃ Al	<i>p</i> -ClC ₆ H ₄ CEt ₃ , <i>p</i> -ClC ₆ H ₄ CHEt ₂ , <i>p</i> -ClC ₆ H ₄ CH ₂ H ₂ CH ₃
13	1	Et ₃ Al	<i>p</i> -FC ₆ H ₄ CEt ₃ , <i>p</i> -FC ₆ H ₄ CHEt ₂ , <i>p</i> -FC ₆ H ₄ CH ₂ CH ₂ CH ₃
14	2	Et ₃ Al	C ₆ H ₅ CEt ₃ , C ₆ H ₅ CHEt ₂ , C ₆ H ₅ CH ₂ CH ₂ CH ₃
15	3	Et ₃ Al	<i>p</i> -ClC ₆ H ₄ CEt ₃ , <i>p</i> -ClC ₆ H ₄ CHEt ₂ , <i>p</i> -ClC ₆ H ₄ CH ₂ CH ₂ CH ₃
16	2	Me ₃ Al	C ₆ H ₅ CMe ₃
17	4	Et ₃ Al	C ₆ F ₅ CEt ₃ , C ₆ F ₅ CHEt ₂ , C ₆ F ₅ CH ₂ CH ₂ CH ₃ ,
18	4	Me ₃ Al	$C_6F_5CMe_3$
19	4	Me ₃ Al	C ₆ F ₅ CMe ₃
20	5	Et ₃ Al	III, IV and V in Scheme 4-5
21	5	Me ₃ Al	I, II in Scheme 4-5
22	6	AlEt ₃	VI, VII in Scheme 4-11
23	1	Me ₃ Al/Et ₃ SiH	<i>p</i> -FC ₆ H ₄ -CH ₃ , <i>p</i> -FC ₆ H ₄ -CH ₂ Me, <i>p</i> -FC ₆ H ₄ -CHMe ₂

Table 4-2. Main organic products for the defluorination reactions.

Entries 1-4 of table 4-1 summarized the results for the reactions catalyzed by **A** (0.33% catalyst loading) in hexanes with various aluminum reagents. Although the reactions with Me₃Al were relatively slow, all reactions went to completion within 3-24 h with TON up to 300. The reactions worked well with lower catalyst loading as well. In one illustrative reaction (entry 5), we observed nearly 10^4 turnovers at 98% conversion in the catalyzed reaction of **1** with Et₃Al. Only the reactions with Me₃Al gave one clean product, where all sp³ C-F bonds were replaced by C-Me bonds. On the other hand, for the reactions with Et₃Al, ⁱBu₃Al or ⁱBu₂AlH, competitive reactions were observed between alkyl abstraction and β -hydride abstraction. Thus, multiple products were observed for entries 2-4 (Table 4-2). Release of the corresponding olefin were also observed in these reactions. Notably, the β -hydride abstraction from trialkylaluminum reagents was consistent with literature reports. In fact, catalyst **A** was synthesized via β -hydride abstraction from Et₃Al with **B**.¹⁰⁰

Benzotrifluorides with differently substituted aryl rings were also tested with our AlkDF reactions. As we expected, benzotrifluorides with electronically similar aryl rings (substrate 2 and 3) showed similar reactivity as substrate 1. On the other hand, activation of the much more challenging substrate 4 required higher catalyst loading, longer reaction time and higher reaction temperature.

It is tempting to analyze why, in which cases, and by how much the transfer of hydride is favored over the transfer of the alkyl. However, the consideration of the system in full is daunting. Scheme 4-3 depicts four possible products for the defluorination reactions (only three observed). Yet, there are consecutively six carbocations, each of which can abstract an alkyl or a hydride from the aluminum compound. Furthermore, trialkylaluminum compounds in solution exist in equilibrium with their dimers. It is conceivable that both dimers and monomers can be donors of alkyl or hydride. As the reaction proceeds, alkyl groups on Al are replaced with fluorides. That introduces even more possibilities for structures of aluminum compounds that may exist in solution: the dimers (or even higher oligomers) may or may

not contain fluorides and fluorides or alkyls may be bridging. Little is known about structures of organoaluminum fluorides in solution; there is evidence in support of tetramers for Me₂AlF and Et₂AlF.¹⁵⁵ Even though it is likely that only some of the plausible Al compounds are capable of alkyl/hydride transfer,¹⁵⁶ the number of potential scenarios is difficult to digest. We suspect sterics plays a role in whether the carbocations prefer H abstraction or alkyl abstraction. On the one hand, the reactions between Et₃Al and benzotrifluorides do not produce ArCH₃. On the other hand, in the synthesis of the catalyst **A** itself, Ph₃C⁺ cation (a very sterically encumbered cation) was reported to react with Et₃Al exclusively via abstraction of β -hydride and release of ethylene.¹⁰⁰ This is consistent with the preference for alkyl abstraction favored for larger carbocations.

C-F activation appears to proceed faster in more polar solvents. A reaction that gives 93% conversion in 1 h in hexanes is complete in 10 min or less in *o*-dichlorobenzene (entries 2, 6). We also found that introduction of the catalyst as a solution in $C_6H_4Cl_2$ (instead of a pure solid) to hexanes solutions led to a significant increase in rate. The reasons behind the solvent acceleration may be twofold. One, a more polar solvent may simply allow more of the catalyst to be dissolved or at least to be dissolved more rapidly. Two, a more polar solvent may lower the energy of the presumably polar transition state.

We found it possible to use **B** as (pre-)catalyst in place of isolated **A** in reactions with Et_3Al . The apparent rates of conversion were similar (cf. entries 7 and 9). The

results here are not surprising since **A** was reported before via reaction of **B** and Et₃Al. However, the reaction between **B** and Me₃Al was much slower and we did not use **B** as a (pre-)catalyst in reactions with Me₃Al. In our Si-based HDF work,^{71a,71d} we demonstrated that $[B(C_6F_5)_4]^-$ can support some of the reactive cations involved, however, is ultimately destroyed during the course of the reaction. Rosenthal and Crossing recently reported HDF catalysis of primary alkyl fluorides and of $C_6H_5CF_3$ (**2**) using ⁱBu₂AlH and **C** as a (pre-)catalyst, but their results were limited to 20 turnovers or less.¹⁰¹ In our hands, **C** gave better results in reactions of **1** with Et₃Al. In $C_6H_4Cl_{2}$, it supported a 300 TON reaction to completion. The advantage of **C** is that it is a commercially available reagent. However, in contrast to an analogous reaction with **A** (entry 2), in hexanes **C** supported a reaction only to a maximum of 50% conversion (entry 8). It is reasonable to posit that a carborane anion is superior to $[B(C_6F_5)_4]^-$ in the Al-based AlkDF for the same reasons as in the Si-based HDF chemistry, although $[B(C_6F_5)_4]^-$ appears to more long-lived in the Al process.

4.2.1.2 Reactions with Non-benzylic C-F Bonds

Since the carbocation is more stable with an electronically average aryl group as substituent than with an alkyl group, it is safe to assume C-F bond activation should be easier at benzylic position if the rate-limiting step is fluoride abstraction and generation of carbocation. To extend the substrate scope, we tested several reactions with sp³ C-F bonds at non-benzylic position. Rapid and complete conversion of C-F bonds in gemdifluorocyclopentane was observed with **A** as catalyst and Et₃Al as stoichiometric reagents (Entry 22). Cyclopentane (33%) and ethylcyclopentane (67%) are the only products identified in this process.

On the other hand, the reactions with 3,3,3-trifluoropropylbenzene are much more complicated. Two products (I and II in Scheme 4-4) are obtained in 68:32 ratio when AlMe₃ is utilized as stoichiometric reagent. In Scheme 4-5 we proposed the possible Friedel-Crafts mechanism for the formation of indane derivatives I. The key step in the pathway is the intramolecular attack of a carbocation on the phenyl ring to yield the cyclization product. It echoes our proposal for the Friedel-Crafts pathways in the Sibased reactions.^{71d} Terao and his coworkers also reported similar intramolecular Friedel-Crafts reaction in their non-catalytic C-F bond activation reactions.^{154b} In Scheme 4-5, for the sake of argument, the intramolecular attack is shown to occur after the first C-F bond activation. We do not have enough evidence to determine whether the intramolecular attack occurs after the first, second or third C-F bond activation. When Et₃Al is used as stoichiometric reagent, more complicated products are observed since the carbocation intermediates participate in the competitive reactions between hydride abstractions, ethyl abstractions or cyclization reactions. The reaction rate of C-F activation of substrate 5 is much slower compared to similar reactions with 1-3, which is consistent with our assumption that a carbocation with an aryl substituent group is more stable than a carbocation with an alkyl substituent group. The most challenging substrate that activated in the Si-catalyzed HDF, nonafluorohexane was (perfluorobutylethane), ^{71d} did not react with Et_3Al and catalyst **A** at all.

Scheme 4-4. Reactions of 3, 3, 3-trifluoropropylbenzene.

Scheme 4-5. Possible Friedel-Crafts mechanism for the formation of I.

4.2.1.3 Competitive Reactions Between Et₃SiH and AlMe₃ Reagents

In order to test the reactivity difference between silvlium and alumenium catalysis, we set up a competitive reaction with 1 equivalent of substrate 1, 3 equivalents of Et_3SiH , 3 equivalents of AlMe₃ and 0.01 equivalent of catalyst **B** in hexanes (Entry 23). 4-fluoro-benzotrifluoride was completely consumed in 24 h and gave a mixture of three products (F-C₆H₄-CH₃, F-C₆H₄-CH₂Me, F-C₆H₄-CHMe₂) in a 28%, 57%, 14% ratio (Scheme 4-6). Thus, 71% of the C-F bonds were converted to C-H bonds and 29% of the C-F bonds were converted to C-C bonds. Mixing Et₃SiH and Me₃Al with or without catalyst **B** resulted in no change in the ¹H NMR spectrum after 24 h, indicating that there was no alkyl/hydride exchange between the Si and Al starting materials. However, only Al-F bonds (and no Si-F bonds) were observed upon the completion of the reaction, indicating that ligand exchange between Si and Al that involves fluoride can indeed occur. Because of this, although the hydrides transferred to C ultimately come from Si, we cannot ascertain whether all hydrides are transferred to C directly from Si. It is possible that hydrides are first transferred from Si to Al and only then to C. On the other hand, from the lack of *ethyl* transfer to C we can infer that alkyl transfer from Si to Al is negligible. Although the kinetic details remain obscured, this experiment shows that the hydride from Et₃SiH can be competitive with the Me from Me₃Al in replacing the F in C-F. The selectivity for a specific combination of hydride/alkyl transfer is low.

Scheme 4-6. Competitive reactions involving Me₃Al and Et₃SiH.

4.2.1.4 Efficiency of Utilization of the Trialkylaluminum Reagents

In our experiments, we typically used the same number of moles for the R₃Al reagent as the number of moles of C-F bonds to be consumed (1:1 Al:F ratio and 3:1 R:F ratio). If only one alkyl (or hydride) group from each R₃Al can be transferred to the carbon of the C-F substrate, this is an equimolar ratio. We set out to test how many R groups can indeed participate. We performed several experiments (Table 4-3) in which we used one equiv of R₃Al per molecule of **1**; in other words, one third of the usual amount so that the Al:F ratio is 1:3 and the R:F ratio is consequently 1:1. If only one R group from each R₃Al were to be transferred, 33% C-F conversion would be observed. The actual C-F conversions ranged from 37% to 47%, corresponding to 1.1 to 1.4 R groups from each R₃Al getting transferred (Scheme 4-7). Another corroborating datapoint (entry 5, Table 4-3) is the reaction with 3 equiv of ⁱBu₂AlF per molecule of **1**. In this case, the conversion was 42%, or, in other words, 0.14 of ⁱBu groups from each ⁱBu group from ⁱBu₃Al, the results are roughly equivalent.

Scheme 4-7. AlkDF reactions of 1 with deficiency of R_3Al in hexanes.

Table 4-3. AlkDF reactions of **1** with deficiency of R_3Al in hexanes.

No	Cat.% ^a	Al reagent	% C-F ^b
A1	0.33%	1 equivalent Me ₃ Al	37%
A2	0.33%	1 equivalent Et ₃ Al	43%
A3	0.33%	1 equivalent ⁱ Bu ₃ Al	47%
A4	0.33%	1 equivalent ⁱ Bu ₂ AlH	38%
A5	0.33%	3 equivalent ⁱ Bu ₂ AlF	42%

^a $Et_2Al[HCB_{11}H_5Br_6]$ (**A**) was used as catalyst, catalyst loading was calculated vs the number of C-F bonds; ^b Terminal conversion.

4.2.1.5 Trialkylaluminum Reagents Function as "Clean-up" Agent

Unlike trialkylsilanes, trialkylaluminums can serve as "clean-up" agents in the reaction mixture. In an illustrative experiment (Scheme 4-8), a mixture containing Et₃Al and **1** (4:1 Al:F ratio) was first treated with water (0.2 equivalent per F). Despite this, subsequent addition of catalyst **A** (0.01 equivalent per F, $1/20^{\text{th}}$ the amount of water) initiated a 300-turnover reaction that proceeded with 100% conversion. In the presence of excess Et₃Al, water is converted to aluminoxanes, which are ostensibly not detrimental to the C-F activation. It was demonstrated before that organoaluminum reagents could be used as "clean-up" agents in olefin polymerization reactions.^{70a,157}

Scheme 4-8. AlkDF reactions of 1 in the presence of water.

4.2.1.6 Reactions with MAO

Encouraged by the results that AlkDF reactions proceed successfully in the presence of aluminoxanes, we started to consider methylaluminoxane (MAO or (MeAlO)_n) as the reagent for AlkDF reactions. We found that commercial MAO (10% wt. in toluene) can effect C-F activation of **1**, even without any added alumenium catalyst (Table 4-4, Scheme 4-9). Multiple equivalents of Al per **1** are required for complete conversion, presumably because of the "Me-poor" nature of MAO compared to Me₃Al. MAO is an ill-defined mixture of oligomers that possesses high Lewis acidity.^{70a,157} It is often used in olefin polymerization catalysis as an activator that alkylates the metal halide precursor and abstracts an anionic ligand.^{70a,157} The resultant highly electrophilic cationic olefin polymerization catalyst ¹⁵⁸ is not unlike a silylium or alumenium cation in its requirements towards a compatible anion. Since the "[MAO+X]-" anion is adequate to support electrophilic olefin polymerization catalysts, the reactivity observed with MAO here is thus not surprising.

Scheme 4-9. AlkDF reactions of 1 with MAO.

No	Aluminum reagent	% C-F conversion ^a
B1	3 equivalent MAO	34%
B2	5.25 equivalent MAO	70%
B3	10 equivalent MAO	98%

Table 4-4. AlkDF reactions of **1** with MAO without catalyst in toluene. (^a Terminal conversion, reached after 3 h.)

4.2.1.7 Uncatalyzed Reactions with Et₃Al

Terao¹⁵⁴ et al. previously demonstrated that trialkylaluminum reagents can alkylate C-F bonds in primary alkyl fluorides without catalyst. We tested 1-fluorodecane (**7**) and **1** in uncatalyzed AlkDF reactions with Et₃Al (Table 4-5, Scheme 4-10). The reactions are much slower than with an alumenium catalyst and the reactions with **1** in hexanes at RT essentially do not proceed. Both substrates undergo defluorination faster in *o*- $C_6H_4Cl_2$. We also carried out an uncatalyzed reaction with substrate **6**. It is not only much slower, but also results in a qualitatively different outcome, producing 24% of 1-fluorocyclopentene as one of the products. The latter is an apparent product of formal HF loss¹⁵⁹ and is *not* observed in the defluorination of **6** with a catalyst. Notably, the $C(sp^2)$ -F moiety in 1-fluorocyclopentene does not undergo further defluorination.

Scheme 4-10. AlkDF reactions with Et_3Al without a catalyst.

No	Substrate	Solvent	C-F conv. ^a	Al-F conv. ^b
C1	7	Hexanes	41% (100%)	35% (93%)
C2	7	$C_6H_4Cl_2$	100%	92%
C3	1	Hexanes	0% (1%)	0% (0%)
C4	1	C ₆ H ₄ Cl ₂	2% (55%)	0% (44%)

Table 4-5 AlkDF reactions with Et₃Al carried out without catalyst.

^a Conversion after 3 h (after 24 h in parentheses) based on the disappearance of substrate C-F by ¹⁹F NMR; ^b Conversion after 3 h (after 24 h in parentheses) based on the appearance of Al-F by ¹⁹F NMR.

4.2.2 Silylium Mediated Sp³ C-F Bond Activation with [B₁₂Cl₁₂]²⁻ as Counterion

Using literature cation exchange procedures,^{102c,102d} we obtained [Ph₃C]₂[B₁₂Cl₁₂]. We have previously used trityl salts of [B(C₆F₅)₄]⁻ and of halogenated carboranes as pre-catalysts for the hydrodefluorination (HDF) of aliphatic C-F bonds with Et₃SiH. The proposed HDF mechanism and the reactions under study in this work are outlined in Scheme 4-11 and Table 4-6. The trityl salts are convenient to store and are readily converted to triethylsilylium by reaction with excess triethylsilane in the reaction mixture.

No	Substrate	T (°C)	Time (h)	Cat mol % ^a	Si-F Conv. % ^b	C-F Conv. %	TON ^c
D1	1	22	0.5	0.049	87	>97	2040
D2	4	22	24	0.053	1	6	110
D3	4	50	24	0.052	82	96	1850
D4	4	80	1	0.052	90	>97	1920

Table 4-6. HDF results (Ar-CF₃ \rightarrow Ar-CH₃).

^a $[Ph_3C]_2[B_{12}Cl_{12}]$ was used as the catalyst in these reactions. Catalyst loading was calculated based on the moles of $[B_{12}Cl_{12}]^{2^-}$ vs the moles of C-F bonds; ^b Conversion based on disappearance of C-F bonds or appearance of Si-F bonds by ¹⁹F NMR; ^c Turnover number was calculated based on conversion of C-F bonds.

Scheme 4-11. The proposed mechanism of HDF and the reactions with benzotrifluorides under study in this work.

In all reactions, *o*-dichlorobenzene was used as solvent. Et₃SiF and Et₂SiF₂ were observed as the Si-F products. Along with the Ar-CH₃ HDF products, Friedel-Crafts products were also observed by ¹⁹F NMR, as with other catalysts.^{71d} The HDF reactions of *p*-FC₆H₄CF₃ worked well using [Ph₃C]₂[B₁₂Cl₁₂] as (pre-)catalyst at 22 °C, with full consumption of the sp³ C-F bonds, no conversion of the sp² C-F bond and TON¹⁶⁰ of ca. 2000. To further evaluate the competence of $[B_{12}Cl_{12}]^{2-}$, we performed HDF reactions

with the more challenging substrate $C_6F_5CF_3$ (D4, Table 4-6). At 22 °C, the reaction is fairly slow with consumption of only 6% of the C-F bonds in 24 h. However, the HDF reaction accelerated dramatically at elevated temperature. Complete or near-complete consumption of all sp³ C-F bonds with TON of ca. 2000 was achieved within 24 h at 50 °C and within 1 h at 80 °C. The poor reactivity at room temperature may largely reflect the much lower solubility of $[Ph_3C]_2[B_{12}Cl_{12}]$ compared with carborane analogs. Nonetheless, these results illustrate that $[B_{12}Cl_{12}]^{2-}$ can be used as a WCA in HDF catalysis which sustains thousands of turnovers, similar to the results we reported with halogenated carboranes as supporting anions.^{71d}

4.3 Conclusion

In summary, we have established that alumenium cation equivalent Et₂Al[HCB₁₁H₅Br₆] functions as an efficient and long-lived catalyst for Lewis acid $C(sp^3)$ -F bond activation with trialkylaluminums as stoichiometric reagents. The catalytic reactions showed superb longevity and turnover numbers of up to 10000 have been achieved. Conversion of C-F bonds only to C-Me bonds was accomplished when Me₃Al was used as the stoichiometric reagent. On the other hand, utilization of Et₃Al, ¹Bu₃Al or ¹Bu₂AlH results in the competitive replacement of C-F bonds either with C-Alkyl or C-H bonds. Moreover we demonstrate that alumenium mediated C-F bond activation process is tolerant of small quantities of water because trialkylaluminum compounds can act as "clean-up" agents in situ. It is also shown that $[B_{12}Cl_{12}]^{2}$ can be used as a weakly coordinating anion for the C-F bond activation mediated by electrophlic silvlium species. The $[B_{12}Cl_{12}]^{2}$ based catalysis showed longevity comparable to carborane-based catalysis in the HDF reactions.

4.4 Experimental Details

General considerations. Unless specified otherwise, all reactions were carried out under an argon atmosphere using glovebox or Schlenk line techniques. C_6F_6 , C_6F_5Br , all the fluorinated substrates, and all the haloarene solvents were purchased from Oakwood products Inc. or Synquest lab Inc., dried with CaH₂ and distilled under Ar or vacuum transferred and stored over molecular sieves in an Ar-filled glovebox. All other chemicals were purchased from either Aldrich, Alfa Aesar or Acros and used as received unless otherwise noted. $Ph_3C[HCB_{11}Cl_{11}]^{98}$ and $[Ph_3C]_2[B_{12}Cl_{12}]^{102c}$ were synthesized from $Cs[HCB_{11}Cl_{11}]$ and $Cs_2[B_{12}Cl_{12}]$, respectively using literature cation exchange procedures. $Et_2Al[HCB_{11}Cl_{11}]^{100}$ was prepared using literature procedures.

NMR spectra were recorded on a Varian iNova 300 spectrometer (¹H NMR, 299.9 MHz, ¹⁹F NMR, 282.2 MHz) or a Varian iNova 400 spectrometer (¹H NMR, 400.0 MHz, ¹¹B NMR, 128.5 MHz, ¹⁹F NMR, 376.3 MHz) in noted solvents. Chemical shifts are given in δ (ppm). ¹¹B NMR spectra were referenced externally with BF₃ etherate at δ 0. ¹⁹F NMR spectra were referenced externally with neat CF₃COOH at δ -78.5. Et₃SiF and Et₂SiF₂ were identified by ¹⁹F NMR (in *o*-dichlorobenzene) at δ -176.2 and -144.5, respectively. ¹H NMR spectra were referenced using the solvent signals.

Caution: In certain cases, C-F activation reactions may proceed very rapidly, selfaccelerating and releasing dangerous amounts of heat. In addition, these reactions may generate hydrogen and possibly even other gases. Great care and preliminary testing of safety conditions are necessary for performing reactions in closed vessels.

Determination of the Al-F products. The reactions described herein produce Al byproducts. These are primarily of the stoichiometry R_2AlF . It is likely that the mixture contains a mixture of various dimers and possibly oligomers $R_{3-x}AlF_x$. These mixtures give rise to one or more broad resonances in the ¹⁹F NMR spectra in the –145...-160 ppm range. The spectra obtained in our reactions bear close resemblance to the ¹⁹F NMR spectrum of commercial ⁱBu₂AlF (Aldrich).

Calibration of ¹⁹F NMR. The disappearance of the C-F bonds and the appearance of Al-F bonds were measured vs. the C₆F₆ internal standard. In each experiment, the initial (0% conversion or 100% starting material) intensity of the signal of the starting material vs the intensity of the C₆F₆ signal was recorded *before* the addition of the catalyst. As with any NMR integration-based method, errors on the order of 5-10% should be assumed. The relationship between the intensity of the C₆F₆ appears to be essentially the same within errors of measurement. In order to quantify the relationship between the integration values and concentrations involving Al-F bonds, we performed a calibration using commercial ⁱBu₂AlF and C₆F₆. It demonstrated that the ¹⁹F NMR intensity of 1 mole of C₆F₆ is equal to the ¹⁹F NMR intensity of 4.2 mol of Al-F bonds under the parameters of our ¹⁹F NMR experiments (acq. time = 1.4 s, delay between scans = 2.0 s) (See table 4-7 & Scheme 4-12).

Volume	Moles	Valuma	Moles	Integral ratio	Molar ratio
ⁱ Bu ₂ AlF	ⁱ Bu ₂ AlF	Volume $C_6F_6 (\mu L)$	C_6F_6	ⁱ Bu ₂ AlF /	ⁱ Bu ₂ AlF /
(mL)	(mmol)		(mmol)	C_6F_6	C_6F_6
0.40	0.40	5.0	0.043	2.1	9.2
0.60	0.60	5.0	0.043	3.4	13.9
0.80	0.80	5.0	0.043	4.4	18.5
1.00	1.00	5.0	0.043	5.4	23.1

Table 4-7. ¹⁹F NMR calibration: ${}^{i}Bu_2AlF$ (1 M in hexanes) vs C₆F₆.

Scheme 4-12. ¹⁹F NMR calibration: ${}^{i}Bu_2AlF(A)$ vs C₆F₆(B).

Calibration of GC/MS. C_6H_5Br was used as internal standard for GC experiment to measure the yield of products for the HDF reactions. Here five solutions containing $C_6H_5CMe_3$ and C_6H_5Br in different ratios were prepared and analyzed by GC/MS. Integration of the corresponding peaks in the resulting chromatogram gave the coefficient as 1.029 (Integral (A/B) versus Moles (A/B), see Table 4-8 and Scheme 4-13).

	Vol	Molos	Vol	Molos	Integral	Molar
	V 01.		V 01.	Moles	ratio	ratio
($C_6H_5CMe_3$	$C_6H_5CMe_3$	C_6H_5Br	C_6H_5Br	C ₆ H ₅ CMe ₃ /	C ₆ H ₅ CMe ₃ /
	(µL)	(µmol)	(µL)	(µmol)	C.H.Br	C.H.Br
					C6115D1	C6115D1
	0.50	3.23	1.00	9.53	0.353	0.339
	1.00	6.46	1.00	9.53	0.680	0.678
	1.50	9.69	1.00	9.53	0.986	1.02
	2.00	12.9	1.00	9.53	1.31	1.36
	2.50	16.2	1.00	9.53	1.64	1.69

Table 4-8. Calibration of GC/MS (C₆H₅CMe₃ vs C₆H₅Br).

Scheme 4-13. Calibration of GC/MS (C₆H₅CMe₃ (A) vs C₆H₅Br (B)).

Entry 1: 40 μL (315 μmol) Substrate **1** was mixed with 475 μL (950 μmol) trimethylaluminum (2 M in hexanes), 5.0 μL (43 μmol) C₆F₆, 2.2 mg (3.2 μmol) Et₂Al[HCB₁₁H₅Br₆] in a J. Young tube. A colorless solution was formed with a small amount of precipitate. The mixtures were allowed to stay at room temperature for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (p-FC₆H₄-CF₃), -110.1 (p-FC₆H₄-CF₃)). Yield (based on ¹⁹F NMR, after 24 h): *p*-FC₆H₄CMe₃ 94%. ¹⁹F NMR (376.3 MHz, hexanes): δ -120.7 (*F*-C₆H₄-CMe₃), -165.2 (C₆F₆). GC/MS: (F-C₆H₄-CMe₃; M/Z⁺ 152).

Entry 2: 40 μ L (315 μ mol) Substrate **1** was mixed with 130 μ L (950 μ mol) triethylaluminum, 5.0 μ L (43 μ mol) C₆F₆, 2.2 mg (3.2 μ mol) Et₂Al[HCB₁₁H₅Br₆] in a J. Young tube. A colorless solution was formed with a small amount of precipitate. The mixtures were allowed to stay at room temperature for 24 h. The reactions were

monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (p-FC₆H₄-CF₃), - 110.1 (p-FC₆H₄-CF₃)). Yield (based on ¹⁹F NMR, after 24 h): F-C₆H₄-CH₂CH₂CH₃ 18%, F-C₆H₄-CHEt₂ 61%, F-C₆H₄-CEt₃ 15%. ¹⁹F NMR (376.3 MHz, hexanes): δ -119.8 (*F*-C₆H₄-CHEt₂), -120.2 (*F*-C₆H₄-CEt₃), -120.8 (*F*-C₆H₄-CH₂CH₂CH₃), -165.2 (C₆F₆). GC/MS: (F-C₆H₄-CH₂CH₂CH₃; M/Z⁺ 138), (F-C₆H₄-CHEt₂; M/Z⁺ 166), (F-C₆H₄-CEt₃; M/Z⁺ 194).

Identification and quantification of products in the reaction of Et₃Al and p- $FC_6H_4CF_3$ (1) by ¹H NMR (analogous to entry 2). 40 µL (315 µmol) Substrate 1 was mixed with 130 µL (950 µmol) Et₃Al, 5.0 µL (43 µmol) C₆F₆, 2.2 mg (3.2 µmol) Et₂Al[HCB₁₁H₅Br₆] in 0.5 mL of C₆D₁₂ in a J. Young tube. A colorless solution was formed. A small amount of precipitate was observed. The mixture was allowed to stay at room temperature for 24 h. The reaction was monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (*p*-FC₆H₄-CF₃), -110.1 (*p*-FC₆H₄-CF₃)). After hydrolyzing the organoaluminum compounds, the mixture was dissolved in CDCl₃ for further analysis. Yield (based on ¹⁹F NMR, after 24 h): F-C₆H₄-CH₂CH₂CH₃18%, F-C₆H₄-CHEt₂ 62% and F-C₆H₄-CEt₃ 13%. GC/MS: (F-C₆H₄-CH₂CH₂CH₃; M/Z⁺ 138), (F-C₆H₄-CHEt₂; M/Z⁺ 166), (F-C₆H₄-CEt₃; M/Z⁺ 194). ¹⁹F NMR (376.3 MHz, CDCl₃): δ -119.8 (F-C₆H₄-CHEt₂), -120.2 (F-C₆H₄-CEt₃), -120.8 (F-C₆H₄-CH₂CH₂CH₃), -165.2 (C₆*F*₆). ¹H NMR (400.0 MHz, CDCl₃): 0.66 (t, ³J_{H-H}=7.2 Hz, F-C₆H₄-C(CH₂CH₃)₃), 0.77 (t, ${}^{3}J_{H-H}=7.2$ Hz, F-C₆H₄-CH(CH₂CH₃)₂), 0.94 (t, ${}^{3}J_{H-H}=7.2$ Hz, F-C₆H₄-

CH₂CH₂CH₃), 1.47-1.75 (m, F-C₆H₄-C(CH₂CH₃)₃), F-C₆H₄-CH(CH₂CH₃)₂), F-C₆H₄-CH₂CH₂CH₃), 2.30 (m, F-C₆H₄-CH(CH₂CH₃)₂), 2.57 (t, ${}^{3}J_{H-H}$ =7.6 Hz, F-C₆H₄-CH₂CH₂CH₃), 6.93-7.13 (m, F-C₆H₄-C(CH₂CH₃)₃), F-C₆H₄-CH(CH₂CH₃)₂), F-C₆H₄-CH₂CH₂CH₃).

Entry 3: 40 μL (315 μmol) Substrate **1** was mixed with 950 μL (950 μmol) of 'Bu₃Al (1M in hexanes), 5.0 μL (43 μmol) C₆F₆, 2.2 mg (3.2 μmol) Et₂Al[HCB₁₁H₅Br₆] in a J. Young tube. A colorless solution was formed with a small amount of precipitate. The mixtures were allowed to stay at room temperature for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (p-FC₆H₄-CF₃), -110.1 (p-FC₆H₄-CF₃)). The ratio of products in GC/MS is F-C₆H₄-CHC₈H₁₈ 55% and F-C₆H₄-CC₁₂H₂₇ 45%. ¹⁹F NMR (376.3 MHz, hexanes): δ -119.7, -119.8, -120.1, -120.3 (*F*-C₆H₄-R), -165.2 (C₆F₆). GC/MS: (F-C₆H₄-CHC₈H₁₈; M/Z⁺ 222), (F-C₆H₄-CC₁₂H₂₇; M/Z⁺ 278).

Entry 4: 40 μL (315 μmol) Substrate **1** was mixed with 820 μL (950 μmol) of ⁱBu₂AlH (1.16M in hexanes), 5.0 μL (43 μmol) C₆F₆, 2.2 mg (3.2 μmol) Et₂Al[HCB₁₁H₅Br₆] in a J. Young tube. A colorless solution was formed with a small amount of precipitate. The mixtures were allowed to stay at room temperature for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (p-FC₆H₄-CF₃), - 110.1 (p-FC₆H₄-CF₃)). Yield (based on ¹⁹F NMR, after 24 h): F-C₆H₄-CH₃ 58%, F-C₆H₄-CH₂C₄H₉ 32%. ¹⁹F NMR (376.3 MHz, hexanes): δ -120.3 (*F*-C₆H₄-CH₂C₄H₉), -

120.6 (*F*-C₆H₄-CH₃), -165.2 (C₆F₆). GC/MS: (F-C₆H₄-CH₃; M/Z⁺ 110), (F-C₆H₄-CH₂C₄H₉; M/Z⁺ 166).

Entry 5: 120 μL (945 μmol) *p*-C₆H₄CF₃ was mixed with 390 μL (2852 μmol) of triethylaluminum, 15.0 μL (129 μmol) C₆F₆ 21 μL of a Et₂Al[HCB₁₁H₅Br₆] stock solution which was made by dissolving 10 mg of Et₂Al[HCB₁₁H₅Br₆] in 1 mL of *o*-dichlorobenzene (0.21 mg, 0.29 μmol) in 1.5 mL hexanes in a 10 mL glass vial. A clear solution was formed. The mixture was stirred at room temperature for 24 h. The reaction was monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (*p*F-C₆H₄-CF₃), -110.1 (*p*F-C₆H₄-CF₃)). Yield (based on ¹⁹F NMR, after 24 h): F-C₆H₄-CH₂CH₂CH₃ 19%, F-C₆H₄-CHEt₂ 66%, F-C₆H₄-CEt₃ 13%. ¹⁹F NMR (376.3 MHz, hexanes): δ -119.8 (*F*-C₆H₄-CHEt₂), -120.2 (*F*-C₆H₄-CEt₃), -120.8 (*F*-C₆H₄-CH₄-CH₂CH₂CH₃), -165.2 (C₆F₆). GC/MS: (F-C₆H₄-CH₂CH₂CH₃; M/Z⁺ 138), (F-C₆H₄-CH₄-CHEt₂; M/Z⁺ 166), (F-C₆H₄-CEt₃; M/Z⁺ 194).

Entry 6: 40 μL (315 μmol) Substrate **1** was with 130 μL (950 μmol) triethylaluminum, 5.0 μL (43 μmol) C₆F₆, 5.0 μL (43 μmol) C₆F₆, 2.2 mg (3.2 μmol) Et₂Al[HCB₁₁H₅Br₆] in a J. Young tube. A colorless solution was formed. Dramatic elevation of temperature was observed at the beginning of the reaction. The mixtures were allowed to stay at room temperature for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (p-FC₆H₄-CF₃), -110.1 (p-FC₆H₄-CF₃)). Yield (based on ¹⁹F NMR, after 24h): *F*-C₆H₄-CH₂-C₆H₃Cl₂ 10%, *F*-C₆H₄-CH₂CH₂CH₃ 8%, *F*-C₆H₄- CHEt₂ 46%, *F*-C₆H₄-CEt₃ 30%. ¹⁹F NMR (376.3 MHz, *o*-C₆H₄Cl₂): δ -119.6 (might be *F*-C₆H₄-CH₂-C₆H₃Cl₂), -119.8 (*F*-C₆H₄-CHEt₂), -120.2 (*F*-C₆H₄-CEt₃), -120.8 (*F*-C₆H₄-CH₂CH₂CH₃), -165.2 (C₆*F*₆). GC/MS: (F-C₆H₄-CH₂CH₂CH₃; M/Z⁺ 138), (F-C₆H₄-CHEt₂; M/Z⁺ 166), (F-C₆H₄-CEt₃; M/Z⁺ 194).

Entry 7: 40 μL (315 μmol) Substrate **1** was mixed with 130 μL (950 μmol) triethylaluminum, 5.0 μL (43 μmol) C₆F₆, 2.7 mg (3.2 μmol) of Ph₃C[HCB₁₁H₅Br₆] in a J. Young tube. A colorless solution was formed with a small amount of precipitate. The mixtures were allowed to stay at room temperature for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (p-FC₆H₄-CF₃), - 110.1 (p-FC₆H₄-CF₃)). Yield (based on ¹⁹F NMR, after 24 h): F-C₆H₄-CH₂CH₂CH₃ 15%, F-C₆H₄-CHEt₂ 52%, F-C₆H₄-CEt₃ 11%. ¹⁹F NMR (376.3 MHz, hexanes): δ -65.3 (p-FC₆H₄-CEt₃), -120.8 (*F*-C₆H₄-CH₂CH₂CH₃), -1165.2 (C₆F₆). GC/MS: (F-C₆H₄-CF₃; M/Z⁺ 164), (F-C₆H₄-CH₂CH₂CH₃; M/Z⁺ 138), (F-C₆H₄-CHEt₂; M/Z⁺ 166), (F-C₆H₄-CEt₃; M/Z⁺ 194).

Entry 8: 40 µL (315 µmol) Substrate **1** was mixed with 130 µL (950 µmol) triethylaluminum, 5.0 µL (43 µmol) C_6F_6 , 2.9 mg (3.2 µmol) of $Ph_3C[B(C_6F_5)_4]$ in a J. Young tube. A colorless solution was formed. The mixtures were allowed to stay at room temperature for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (p-FC₆H₄-CF₃), -110.1 (p-FC₆H₄-CF₃)). Yield (based on ¹⁹F NMR, after 24 h): F-C₆H₄-CH₂CH₂CH₃ 8%, F-C₆H₄-CHEt₂ 28%, F-C₆H₄-CEt₃

6%. ¹⁹F NMR (376.3 MHz, hexanes): δ -65.3 (p-FC₆H₄-CF₃), -110.1 (p-FC₆H₄-CF₃), -119.8 (*F*-C₆H₄-CHEt₂), -120.2 (*F*-C₆H₄-CEt₃), -120.8 (*F*-C₆H₄-CH₂CH₂CH₂CH₃), -165.2 (C₆F₆). GC/MS: (F-C₆H₄-CF₃; M/Z⁺ 164), (F-C₆H₄-CH₂CH₂CH₂CH₃; M/Z⁺ 138), (F-C₆H₄-CHEt₂; M/Z⁺ 166), (F-C₆H₄-CEt₃; M/Z⁺ 194).

Entry 9: 40 μL (315 μmol) Substrate **1** was with 130 μL (950 μmol) triethylaluminum, 5.0 μL (43 μmol) C₆F₆, 5.0 μL (43 μmol) C₆F₆, 2.7 mg (3.2 μmol) of Ph₃C[HCB₁₁H₅Br₆] in a J. Young tube. A colorless solution was formed. Dramatic elevation of temperature was observed at the beginning of the reaction. The mixtures were allowed to stay at room temperature for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (p-FC₆H₄-CF₃), -110.1 (p-FC₆H₄-CF₃)). Yield (based on ¹⁹F NMR, after 24h): *F*-C₆H₄-CH₂CH₂CH₃ 8%, *F*-C₆H₄-CHEt₂ 51%, *F*-C₆H₄-CEt₃ 32%. ¹⁹F NMR (376.3 MHz, *o*-C₆H₄Cl₂): δ -119.8 (*F*-C₆H₄-CHEt₂), -120.2 (*F*-C₆H₄-CEt₃), -120.8 (*F*-C₆H₄-CH₂CH₂CH₃), -165.2 (C₆F₆). GC/MS: (F-C₆H₄-CH₂CH₂CH₃; M/Z⁺ 138), (F-C₆H₄-CHEt₂; M/Z⁺ 166), (F-C₆H₄-CEt₃; M/Z⁺ 194).

Entry 10: 40 µL (315 µmol) Substrate 1 was with 130 µL (950 µmol) triethylaluminum, 5.0 µL (43 µmol) C₆F₆, 5.0 µL (43 µmol) C₆F₆, 2.9 mg (3.2 µmol) of Ph₃C[B(C₆F₅)₄] in a J. Young tube. A colorless solution was formed. The mixtures were allowed to stay at room temperature for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (p-FC₆H₄-CF₃), -110.1 (p-FC₆H₄-CF₃)). Yield (based on ¹⁹F NMR, after 24h): *F*-C₆H₄-CH₂CH₂CH₃ 8%, *F*-C₆H₄-CHEt₂ 48%, *F*-C₆H₄-CEt₃ 29%. ¹⁹F NMR (376.3 MHz, *o*-C₆H₄Cl₂): δ -119.8 (*F*-C₆H₄-CHEt₂), -120.2 (*F*-C₆H₄-CEt₃), -120.8 (*F*-C₆H₄-CH₂CH₂CH₃), -165.2 (C₆F₆). GC/MS: (F-C₆H₄-CH₂CH₂CH₂CH₃; M/Z⁺ 138), (F-C₆H₄-CHEt₂; M/Z⁺ 166), (F-C₆H₄-CEt₃; M/Z⁺ 194).

Entry 11: 40 μL Substrate (326 μmol) was mixed with 135 μL (987 μmol) triethylaluminum, 5.0 μL (43 μmol) C₆F₆ and 2.3mg (3.3 μmol) Et₂Al[HCB₁₁H₅Br₆] in 0.5 mL hexanes in a J. Young tube. A colorless solution with a small amount of precipitate was formed. Elevation of temperature was observed. The mixtures were allowed to stay at room temperature for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -66.1 (C₆H₅-CF₃)). The ratio of products in GC/MS is C₆H₅-CH₂CH₂CH₃16%, C₆H₅-CHEt₂ 66% and C₆H₅-CEt₃ 18%. ¹⁹F NMR (376.3 MHz, hexanes): δ -165.2 (C₆F₆). GC/MS: (C₆H₅-CH₂CH₂CH₃; M/Z⁺ 120), (C₆H₅-CHEt₂; M/Z⁺ 148), (C₆H₅-CEt₃; M/Z⁺ 176).

Entry 12: 40 μL Substrate (300 μmol) was mixed with 125 μL (914 μmol) of triethylaluminum, 5.0 μL (43 μmol) C_6F_6 and 2.1 mg (3.0 μmol) $Et_2Al[HCB_{11}H_5Br_6]$ in 0.5 mL hexanes in a J. Young tube. A colorless solution with a small amount of precipitate was formed. The mixtures were allowed to stay at room temperature for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -66.0 (Cl-C₆H₄-CF₃). The ratio of products in GC/MS is Cl-C₆H₄-CH₂CH₂CH₃7%, Cl-C₆H₄-CHEt₂ 71 % and Cl-C₆H₄-CEt₃ 21%. ¹⁹F NMR (376.3 MHz, hexanes): δ -165.2

(C₆*F*₆). GC/MS: (Cl-C₆H₄-CH₂CH₂CH₂CH₃; M/Z⁺ 154, 156), (Cl-C₆H₄-CHEt₂; M/Z⁺ 182, 184), (Cl-C₆H₄-CEt₃; M/Z⁺ 210, 212).

Entry 13: 40 μL of (315 μmol) substrate **1** was mixed with 130 μL (950 μmol) of triethylaluminum, 5.0 μL (43 μmol) C₆F₆, 66 μL of Et₂Al[HCB₁₁H₅Br₆] solution (predissolved in *o*-dichlorobenzene 1 mg/30 μL, 3.2 μmol) in a J. Young tube. A colorless solution was formed. Dramatic elevation of temperature was observed. The mixtures were allowed to stay at room temperature for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (*p*F-C₆H₄-CF₃), -110.1 (*p*F-C₆H₄-CF₃). Yield (based on ¹⁹F NMR, after 24 h): F-C₆H₄-CH₂CH₂CH₃13%, F-C₆H₄-CHEt₂77% and F-C₆H₄-CEt₃7%. ¹⁹F NMR (376.3 MHz, hexanes): δ -119.8 (*F*-C₆H₄-CHEt₂), -120.2 (*F*-C₆H₄-CEt₃), -120.8 (*F*-C₆H₄-CH₂CH₂CH₃), -165.2 (C₆F₆). GC/MS: (F-C₆H₄-CH₂CH₂CH₃; M/Z⁺ 138), (F-C₆H₄-CHEt₂; M/Z⁺ 166), (F-C₆H₄-CEt₃; M/Z⁺ 194).

Entry 14: 40 μL of (326 μmol) substrate **2** was mixed with 135 μL (987 μmol) of triethylaluminum, 5.0 μL (43 μmol) C₆F₆, 70 μL of Et₂Al[HCB₁₁H₅Br₆] solution (predissolved in *o*-dichlorobenzene 1 mg/30 μL, 3.3 μmol) in a J. Young tube. A colorless solution was formed. Dramatic elevation of temperature was observed. The mixtures were allowed to stay at room temperature for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -66.1 (C₆H₅-CF₃)). The ratio of products in GC/MS is C₆H₅-CH₂CH₂CH₂CH₃14%, C₆H₅-CHEt₂ 71% and C₆H₅-

CEt₃ 15%. ¹⁹F NMR (376.3 MHz, hexanes): δ -165.2 (C₆*F*₆). GC/MS: (C₆H₅-CH₂CH₂CH₃; M/Z⁺ 120), (C₆H₅-CHEt₂; M/Z⁺ 148), (C₆H₅-CEt₃; M/Z⁺ 176).

Entry 15: 40 μL of (300 μmol) substrate **3** was mixed with 125 μL (914 μmol) of triethylaluminum, 5.0 μL (43 μmol) C₆F₆, 62 μL of Et₂Al[HCB₁₁H₅Br₆] solution (predissolved in *o*-dichlorobenzene 1 mg/30 μL, 3 μmol) in a J. Young tube. A colorless solution was formed. The mixtures were allowed to stay at room temperature for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -66.0 (Cl-C₆H₄-CF₃)). The ratio of products in GC/MS is Cl-C₆H₄-CH₂CH₂CH₃ 13%, Cl-C₆H₄-CHEt₂ 68% and Cl-C₆H₄-CEt₃ 19%. ¹⁹F NMR (376.3 MHz, hexanes): δ -165.2 (C₆F₆). GC/MS: (Cl-C₆H₄-CH₂CH₂CH₂CH₃; M/Z⁺ 154, 156), (Cl-C₆H₄-CHEt₂; M/Z⁺ 182, 184), (Cl-C₆H₄-CEt₃; M/Z⁺ 210, 212).

Entry 16: Five solutions containing C₆H₅CMe₃ and C₆H₅Br in different ratios were prepared and analyzed by GC/MS. Integration of the corresponding peaks in the resulting chromatogram gave the coefficient as 1.029 (See detail in SI). The reaction (entry 17) was set up using 40 μ L (326 μ mol) of substrate **2** with 2.3 mg (3.3 μ mol) Et₂Al[HCB₁₁H₅Br₆], 5.0 μ L (43 μ mol) C₆F₆ and 490 μ L AlMe₃ (980 μ mol, 2 M in hexanes) in 0.5 mL hexanes. After 36 h, ¹⁹F NMR indicated that 94% of C-F was converted. 60 μ L (572 μ mol) bromobenzene was added into the reaction mixture, the mixture was filtered through Celite, diluted by hexanes and analyzed by GC/MS. Integration of the resulting chromatogram gave a ratio of 0.48:1.00 corresponding to the

formation of 283 ($0.48 \times 1.029 \times 572$) µmol C₆H₅CMe₃. Yield: 87%. ¹⁹F NMR (376.3 MHz, hexanes): δ -147.8 ((CH₃)₂AlF), -165.2 (C₆F₆). GC/MS: (C₆H₅-CMe₃; M/Z⁺ 134).

Entry 17: 40 μL (280 μmol) Substrate **4** was mixed with 115 μL (840 μmol) AlEt₃, 5.0 μL (43 μmol) C₆F₆, 11.8 mg (16.8 μmol) of Et₂Al[HCB₁₁H₅Br₆] in a J. Young tube. A clear solution was formed. The mixture was heated at 85 C for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -58.9 (C₆F₅-CCF₃), -142.4 (C₆F₅-CCF₃), -149.8 (C₆F₅-CCF₃), -162.4 (C₆F₅-CCF₃)). The ratio of products in GC/MS is C₆F₅-CH₂CH₂CH₂CH₃ 31%, C₆F₅-CHEt₂ 61% and C₆F₅-CEt₃ 8%. GC/MS: (C₆F₅-CH₂CH₂CH₃; M/Z⁺ 210), (C₆F₅-CHEt₂; M/Z⁺ 238), (C₆F₅-CEt₃; M/Z⁺ 266).

Entry 18: 40 μL (280 μmol) Substrate **4** was mixed with 420 μL (840 μmol) of AlMe₃ (2 M in hexanes), 5.0 μL (43 μmol) C₆F₆, 360 μL (16.8 μmol) Et₂Al[HCB₁₁H₅Br₆] solution (1 mg/30 μL *o*-dichlorobenzene), a J. Young tube. A clear solution was formed. The mixture was heated at 85 ℂ for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -58.9 (C₆F₅-CCF₃), -142.4 (C₆F₅-CCF₃), -149.8 (C₆F₅-CCF₃), -162.4 (C₆F₅-CCF₃)). Yield (based on ¹⁹F NMR, after 24 h): C₆F₅-CMe₃ 84%. ¹⁹F NMR (376.3 MHz, hexanes): δ -140.7 (C₆F₅-CMe₃), -161.6 (C₆F₅-CMe₃), -165.2 (C₆F₆), -166.1 (C₆F₅-CMe₃). GC/MS: (C₆F₅-CMe₃; M/Z⁺ 224).

Entry 19: 40 μ L (280 μ mol) Substrate 4 was mixed with 420 μ L (840 μ mol) of AlMe₃ (2 M in hexanes), 5.0 μ L (43 μ mol) C₆F₆, 60 μ L (2.8 μ mol) Et₂Al[HCB₁₁H₅Br₆] solution

(1 mg/30 µL *o*-dichlorobenzene), a J. Young tube. A clear solution was formed. The mixture was heated at 85 \mathbb{C} for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -58.9 (C₆F₅-CCF₃), -142.4 (C₆F₅-CCF₃), -149.8 (C₆F₅-CCF₃), -162.4 (C₆F₅-CCF₃)). Yield (based on ¹⁹F NMR, after 24 h): C₆F₅-CMe₃ 38%. ¹⁹F NMR (376.3 MHz, hexanes): δ -58.9 (C₆F₅-CCF₃), -162.4 (C₆F₅-CCF₃), -142.4 (C₆F₅-CCF₃), -162.4 (C₆F₅-CCF₃), -149.8 (C₆F₅-CCF₃), -162.4 (C₆F₅-CCF₃), -142.4 (C₆F₅-CCF₃), -162.4 (C₆F₅-CCF₃), -149.8 (C₆F₅-CCF₃), -161.6 (C₆F₅-CCF₃), -140.7 (C₆F₅-CCF₃), -142.4 (C₆F₅-CCF₃), -149.8 (C₆F₅-CCF₃), -161.6 (C₆F₅-CCF₃), -162.4 (C₆F₅-CCF₃), -165.2 (C₆F₆), -166.1 (C₆F₅-CCF₃). GC/MS: (C₆F₅-CMe₃; M/Z⁺ 224).

Entry 20: 40 μL (260 μmol) Substrate **5** was mixed with 110 μL (804 μmol) AlEt₃, C₆F₆ 1.8 mg (2.6 μmol) of Et₂Al[HCB₁₁H₅Br₆] in a J. Young tube. A clear solution was formed. The mixture was heated at 50 °C for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -70.2 (C₆H₅CH₂CH₂CF₃). The ratio of products in GC/MS is C₆H₄-C₅H₁₀ 34%, C₆H₄-C₇H₁₄ 30% and C₆H₅-C₇H₁₅ 36%. ¹⁹F NMR (376 MHz, *o*-C₆H₄Cl₂): δ -70.2 (C₆H₅-CH₂CH₂CF₃), -165.2 (C₆F₆). GC/MS: (C₆H₅-CH₂CH₂CF₃; M/Z⁺ 174), (C₆H₄-C₅H₁₀; M/Z⁺ 146, possible structure Scheme 4-5 **IV**), (C₆H₄-C₇H₁₄; M/Z⁺ 174, possible structure Scheme 4-5 **V**), (C₆H₅-C₇H₁₅; M/Z⁺ 176, possible structure Scheme 4-5 **III**).

Entry 21: 40 μ L (260 μ mol) Substrate **5** was mixed with 390 μ L (780 μ mol) AlMe₃ (2 M in hexanes), 5.0 μ L (43 μ mol) C₆F₆, 54 μ L of Et₂Al[HCB₁₁H₅Br₆] solution (predissolved in *o*-dichlorobenzene 1 mg/30 μ L, 2.6 μ mol) in a J. Young tube. A clear

solution was formed. The mixture was heated at 50 \C for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -70.2 (C₆H₅CH₂CH₂CF₃). The ratio of products in GC/MS is C₆H₄-C₅H₁₀ 68% and C₆H₅-C₆H₁₃ 32%. ¹⁹F NMR (376.3 MHz, hexanes): δ -70.2 (C₆H₅-CH₂CH₂CF₃), -165.2 (C₆F₆). GC/MS: (C₆H₅-CH₂CH₂CF₃; M/Z⁺ 174), (C₆H₄-C₅H₁₀; M/Z⁺ 146, possible structure Scheme 4-5 **I**), (C₆H₅-C₆H₁₃; M/Z⁺ 162, possible structure Scheme 4-5 **II**).

Entry 22: 40 μL (450 μmol) Substrate **6** was mixed with 125 μL (914 μmol) AlEt₃, 5.0 μL (43 μmol) C₆F₆, 1.6 mg (2.3 μmol Et₂Al[HCB₁₁H₅Br₆], in *o*-C₆H₄Cl₂ in a J. Young tube. An orange color solution formed. Dramatic elevation of temperature was observed. The mixture was allowed to stay at room temperature for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrate δ -94.8 (CF₂C₄H₈). The ratio of products in GC/MS is Cyclopentane 33% and Ethylcyclopentane 67%. ¹⁹F NMR (376.3 MHz, *o*-C₆H₄Cl₂: -165.2 (C₆F₆). GC/MS: (Cyclopentane; M/Z⁺ 70), (Ethylcyclopentane; M/Z⁺ 98). GC/MS sample was dissolved in *o*-dichlorobenzene, no solvent delay.

Entry 23: 40 μ L (315 μ mol) of **1** was mixed with 90 μ L (940 μ mol) Me₃Al and 150 μ L (940 μ mol) Et₃SiH, 5.0 μ L (43 μ mol) C₆F₆, 2.7 mg (3.2 μ mol) Ph₃C[HCB₁₁H₅Br₆] in 0.4 ml hexanes in a J. Young tube. A colorless solution was formed with little amount of precipitate. The mixtures were allowed to stay at room temperature for 24h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR

resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (*p*F-C₆H₄-CF₃), -110.1 (*p*F-C₆H₄-CF₃)). The ratio of products in GC/MS is F-C₆H₄-CH₃ 28%, F-C₆H₄-CH₂Me 57% and F-C₆H₄-CHMe₂ 14%. ¹⁹F NMR (376.3 MHz, hexanes): δ -120.0 (*F*-C₆H₄-CHMe₂) -120.2 (*F*-C₆H₄-CH₂Me), -120.6 (*F*-C₆H₄-CH₃), -165.2 (C₆F₆). Yield (based on ¹⁹F NMR, after 24 h): F-C₆H₄-CH₃ 24%, F-C₆H₄-CH₂Me 49%, F-C₆H₄-CHMe₂ 13%. GC/MS: (F-C₆H₄-CH₃; M/Z⁺ 110), (F-C₆H₄-CH₂Me; M/Z⁺ 124), (F-C₆H₄-CHMe₂; M/Z⁺ 138).

Reaction of 6 with AlEt₃ without catalyst: 40 μ L (450 μ mol) Substrate 6 was mixed with 155 μ L (900 μ mol) AlEt₃, 5.0 μ L (43 μ mol) C₆F₆ in 0.3 mL C₆D₁₂ in a J. Young tube. An orange color solution formed. The mixture was allowed to stay at room temperature for 24 h. The reaction was monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrate (δ -94.8 (CF₂C₄H₈). Yield (based on ¹⁹F NMR, after 24 h): 1fluoro-cyclopentene 24%. ¹⁹F NMR (376.3 MHz, C₆D₁₂: -124.3 (1-fluoro-cyclopentene), -165.2 (C₆F₆).

Entry A1: 40 μL (315 μmol) Substrate **1** was mixed with 160 μL (320 μmol) Me₃Al (2 M in hexanes), 5.0 μL (43 μmol) C₆F₆, 2.2 mg (3.2 μmol) Et₂Al[HCB₁₁H₅Br₆] in hexanes in a J. Young tube. A colorless solution was formed. A small amount of precipitate was observed. The mixtures were allowed to stay at room temperature for 5 d. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of C-F bond was

reached after 3 d. Yield (based on ¹⁹F NMR, after 3 days): p-FC₆H₄CMe₃ 30%. ¹⁹F NMR (376.3 MHz, hexanes): δ -65.3 (pF-C₆H₄-CF₃), -110.1 (pF-C₆H₄-CF₃), -120.7 (F-C₆H₄-CMe₃), -165.2 (C₆F₆). GC/MS: (F-C₆H₄-CMe₃; M/Z⁺ 152, (F-C₆H₄-CF₃; M/Z⁺ 164).

Entry A2: 40 μL (315 μmol) Substrate **1** was mixed with 45 μL (329 μmol) Et₃Al, 5.0 μL (43 μmol) C₆F₆, 2.2 mg (3.2 μmol) Et₂Al[HCB₁₁H₅Br₆] in hexanes in a J. Young tube. A colorless solution was formed. A small amount of precipitate was observed. The mixtures were allowed to stay at room temperature for 5 d. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (*p*F-C₆H₄-CF₃), -110.1 (*pF*-C₆H₄-CF₃)). Maximum conversion of C-F bond was reached after 3 d. Yield (based on ¹⁹F NMR, after 3 days): F-C₆H₄-CH₂CH₂CH₃ 4%, F-C₆H₄-CHEt₂ 18%, F-C₆H₄-CEt₃ 6%. ¹⁹F NMR (376.3 MHz, hexanes): δ -65.3 (*p*F-C₆H₄-CEt₃), -110.1 (*pF*-C₆H₄-CF₃), -119.8 (*F*-C₆H₄-CHEt₂), -120.2 (*F*-C₆H₄-CEt₃), -120.8 (*F*-C₆H₄-CH₄-CH₂CH₂CH₃), -165.2 (C₆F₆). GC/MS: (*F*-C₆H₄-CH₂CH₂CH₃; M/Z⁺ 138), (*F*-C₆H₄-CHEt₂); M/Z⁺ 166), (*F*-C₆H₄-CEt₃; M/Z⁺ 194), (*F*-C₆H₄-CF₃; M/Z⁺ 164).

Entry A3: 40 μ L (315 μ mol) Substrate **1** was mixed with 315 μ L (315 μ mol) ¹Bu₃Al (1M in hexanes), 5.0 μ L (43 μ mol) C₆F₆, 2.2 mg (3.2 μ mol) Et₂Al[HCB₁₁H₅Br₆] in hexanes in a J. Young tube. A colorless solution was formed. A small amount of precipitate was observed. The mixtures were allowed to stay at room temperature for 5 d. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ

-65.3 ($pF-C_6H_4-CF_3$), -110.1 ($pF-C_6H_4-CF_3$)). Maximum conversion of C-F bonds was reached after 3 d. The ratio of products in GC/MS is $F-C_6H_4-CF_3$ 54%, $F-C_6H_4-CF_8H_{18}$ 25% and $F-C_6H_4-CC_{12}H_{27}$ 20%. ¹⁹F NMR (376.3 MHz, hexanes): δ -65.3 ($pF-C_6H_4-CF_3$), -110.1 ($pF-C_6H_4-CF_3$), -119.7, -119.8, -120.1, -120.3 ($F-C_6H_4-R$), -165.2 (C_6F_6). GC/MS: ($F-C_6H_4-CHC_8H_{18}$; M/Z⁺ 222), ($F-C_6H_4-CC_{12}H_{27}$; M/Z⁺ 278), ($F-C_6H_4-CF_3$; M/Z⁺ 164).

Entry A4: 40 μL (315 μmol) Substrate **1** was mixed with 275 μL (319 μmol) ^{*i*}Bu₂AlH (1.16M in hexanes), 5.0 μL (43 μmol) C₆F₆, 2.2 mg (3.2 μmol) Et₂Al[HCB₁₁H₅Br₆] in hexanes in a J. Young tube. A colorless solution was formed. A small amount of precipitate was observed. The mixtures were allowed to stay at room temperature for 5 d. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (*p*F-C₆H₄-CF₃), -110.1 (*p*F-C₆H₄-CF₃)). Maximum conversion of C-F bond was reached after 3 d. Yield (based on ¹⁹F NMR, after 3 days): F-C₆H₄-CH₃ 20%, F-C₆H₄-CH₂C₄H₉ 13%. ¹⁹F NMR (376.3 MHz, hexanes): δ -65.3 (*p*F-C₆H₄-CF₃), -110.1 (*p*F-C₆H₄-CH₃), -120.3 (*F*-C₆H₄-CH₂C₄H₉), -120.6 (*F*-C₆H₄-CH₃), -165.2 (C₆F₆). GC/MS: (F-C₆H₄-CH₃; M/Z⁺ 110), (F-C₆H₄-CH₂C₄H₉; M/Z⁺ 166), (F-C₆H₄-CF₃; M/Z⁺ 164).

Entry A5: 40 μ L (315 μ mol) Substrate **1** was mixed with 950 μ L (950 μ mol, 1 M in hexanes) *i*Bu₂AlF, 5.0 μ L (43 μ mol) C₆F₆, 2.2 mg (3.15 μ mol) Et₂Al[HCB₁₁H₅Br₆] in hexanes in a J. Young tube. A colorless solution was formed. A small amount of precipitate was observed. The mixture was allowed to stay at room temperature for 5 d. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR

resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (*p*F-C₆H₄-CF₃), -110.1 (*p*F-C₆H₄-CF₃)). Maximum conversion of C-F bond was reached after 3 d. The ratio of products in GC/MS is F-C₆H₄-CF₃ 57%, F-C₆H₄-CH₂C₄H₉ 15%, F-C₆H₄-CH₂C₄H₉ (isomer) 14% and F-C₆H₄-CHC₈H₁₈ 14%. ¹⁹F NMR (376.3 MHz, hexane): δ -65.3 (*p*F-C₆H₄-CF₃), -110.1 (*p*F-C₆H₄-CF₃), -119.7, -119.8, -120.3 (*F*-C₆H₄-CH₂C₄H₉), -165.2 (C₆F₆). GC/MS: (F-C₆H₄-CH₂C₄H₉; M/Z⁺ 166), (F-C₆H₄-CH₂C₄H₉ (isomer); M/Z⁺ 166), (F-C₆H₄-CHC₈H₁₈; M/Z⁺ 222), (F-C₆H₄-CF₃; M/Z⁺ 164).

Entry B1: 20 μL (157 μmol) Substrate **1** was mixed with 470 μL (470 μmol) methylaluminoxane (1M in Toluene), 5.0 μL (43 μmol) C₆F₆ in a J. Young tube. A colorless solution was formed. The mixtures were allowed to stay at room temperature for 3 days or until no changes could be observed by ¹⁹F NMR. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (*p*F-C₆H₄-CF₃), -110.1 (*p*F-C₆H₄-CF₃)). ¹⁹F NMR (376.3 MHz, toluene): δ -65.3 (*p*F-C₆H₄-CF₃), -110.1 (*p*F-C₆H₄-CF₃), -120.7 (*F*-C₆H₄-CMe₃), -165.2 (C₆F₆). GC/MS: (F-C₆H₄-CMe₃; M/Z⁺ 152).

Entry B2: 20 μ L (157 μ mol) Substrate **1** was mixed with 820 μ L (820 μ mol) methylaluminoxane (1M in Toluene), 5.0 μ L (43 μ mol) C₆F₆ in a J. Young tube. A colorless solution was formed. The mixtures were allowed to stay at room temperature for 3 days or until no changes could be observed by ¹⁹F NMR. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and

decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (*p*F-C₆H₄-C*F*₃), -110.1 (*pF*-C₆H₄-CF₃)). ¹⁹F NMR (376.3 MHz, toluene): δ -65.3 (*p*F-C₆H₄-C*F*₃), -110.1 (*pF*-C₆H₄-CF₃), -120.7 (*F*-C₆H₄-CMe₃), -165.2 (C₆*F*₆). GC/MS: (F-C₆H₄-CMe₃; M/Z⁺ 152).

Entry B3: 20 μL (157 μmol) Substrate **1** was mixed with 1570 μL (1570 μmol) methylaluminoxane (1M in Toluene), 5.0 μL (43 μmol) C₆F₆ in a J. Young tube. A colorless solution was formed. The mixtures were allowed to stay at room temperature for 3 days or until no changes could be observed by ¹⁹F NMR. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (*p*F-C₆H₄-CF₃), -110.1 (*p*F-C₆H₄-CF₃)). ¹⁹F NMR (376.3 MHz, toluene): δ -120.7 (*F*-C₆H₄-CMe₃), -165.2 (C₆F₆). GC/MS: (F-C₆H₄-CMe₃; M/Z⁺ 152).

Entry C1: 40 μL of ${}^{n}C_{10}H_{21}F$ (200 μmol) was mixed with 28 (200 μmol) triethylaluminum, 5.0 μL (43 μmol) C₆F₆ in hexanes in a J. Young tube. A colorless solution was formed with small amount of precipitate. The mixtures were allowed to stay at room temperature for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -220.6 *F*-(CH₂)₉CH₃). GC/MS: (CH₃(CH₂)₁₀CH₃; M/Z⁺ 170).

Entry C2: 40 μ L of **7** (200 μ mol) was mixed with 28 (200 μ mol) triethylaluminum, 5.0 μ L (43 μ mol) C₆F₆ in C₆H₄Cl₂ in a J. Young tube. A colorless solution was formed. The mixtures were allowed to stay at room temperature for 24 h. The reactions were

monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -220.6 *F*-(CH₂)₉CH₃). GC/MS: (CH₃(CH₂)₁₀CH₃; M/Z⁺ 170).

Entry C3: 40 μ L of 1 (200 μ mol) was mixed with 130 μ L (950 μ mol) triethylaluminum, 5.0 μ L (43 μ mol) C₆F₆ in hexanes in a J. Young tube. A colorless solution was formed with small amount of precipitate. The mixtures were allowed to stay at room temperature for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (*p*F-C₆H₄-CF₃), -110.1 (*p*F-C₆H₄-CF₃)). No product was detected by ¹⁹F NMR or GC/MS.

Entry C4: 40 μL of **1** (200 μmol) was mixed with 130 μL (950 μmol) triethylaluminum, 5.0 μL (43 μmol) C₆F₆ in C₆H₄Cl₂ in a J. Young tube. A colorless solution was formed. The mixtures were allowed to stay at room temperature for 24 h. The reactions were monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Al-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -65.3 (*p*F-C₆H₄-CF₃), -110.1 (*p*F-C₆H₄-CF₃)). Yield (based on ¹⁹F NMR, after 24h): F-C₆H₄-CH₂CH₂CH₃ 3%, F-C₆H₄-CHEt₂ 12%, F-C₆H₄-CEt₃ 30%. ¹⁹F NMR (376.3 MHz, *o*-C₆H₄Cl₂): δ -119.8 (*F*-C₆H₄-CHEt₂), -120.2 (*F*-C₆H₄-CEt₃), -120.8 (*F*-C₆H₄-CH₂CH₂CH₃), -165.2 (C₆F₆). GC/MS: (F-C₆H₄-CH₂CH₂CH₃; M/Z⁺ 138), (F-C₆H₄-CHEt₂; M/Z⁺ 166), (F-C₆H₄-CEt₃; M/Z⁺ 194).

Reaction in 'wet' solvent. 1 μ L H₂O (56 μ mol) was added to 40 μ L 4-fluorobenzotrifluoride (315 μ mol), 170 μ L triethylaluminum (1243 μ mol) and

hexafluorobenzene (5.0 µL, 43 µmol) in 0.5 ml hexanes in a Schlenk flask under a flow of argon. Et₂Al[HCB₁₁H₅Br₆] (2.2 mg, 3.2 µmol) was added to the mixture, after it was stirred at room temperature for 6 h. ¹⁹F NMR spectra were recorded every hour to monitor the reaction. 100% conversion of C-F was reached in 6 h. Yield (based on ¹⁹F NMR, after 24h): F-C₆H₄-CH₂CH₂CH₃ 20%, F-C₆H₄-CHEt₂ 58%, F-C₆H₄-CEt₃ 15%. ¹⁹F NMR (376 MHz, hexanes): δ -119.8 (*F*-C₆H₄-CHEt₂), -120.2 (*F*-C₆H₄-CEt₃), -120.8 (*F*-C₆H₄-CH₂CH₂CH₃), -165.2 (C₆F₆). ¹⁹F NMR (376.3 MHz, hexanes): δ -119.8 (*F*-C₆H₄-CHEt₂), -120.2 (*F*-C₆H₄-CEt₃), -120.8 (*F*-C₆H₄-CH₂CH₂CH₃), -165.2 (C₆F₆). GC/MS: (F-C₆H₄-CH₂CH₂CH₃; M/Z⁺ 138), (F-C₆H₄-CHEt₂; M/Z⁺ 166), (F-C₆H₄-CEt₃; M/Z⁺ 194).

Ag₂[B₁₂Cl₁₂]. Cs₂[B₁₂Cl₁₂] (1.04 g, 1.26 mmol) and AgNO₃ (0.86 g, 5.06 mmol) were dissolved in 25 mL of water, then CH₃CN (5 drops) was added dropwise into the solution, forming some white precipitates. The white solids were collected on a medium frit and washed by 2 ml of water 3 times. The products were then put in a schlenk flask and dried under vaccum at 80 \mathbb{C} for 6 hours. Yield: 0.89 g (91%).

[**Ph**₃**C**]₂[**B**₁₂**Cl**₁₂]. In an Ar-filled glove box, Ag₂[B₁₂Cl₁₂] (0.89 g, 1.15 mmol) and Ph₃CCl (350 mg, 1.26 mmol) were mixed in 20 mL of CH₃CN, forming a orange red solution with white precipitates. The mixture was stirred at room temperature for 1 hour before it was filtered through a medium frit. Removal of the volatiles gave a orange yellow solid which was then washed with 5 ml of toluene once and 5 ml of pentane three times. The products were recrystallized from CH₃CN/n-pentane solution at -30 ℂ . Yield: 0.97 g. (81%). ¹¹B NMR (128.5 MHz, CD₃CN): δ -12.7 (s).

Entry D1: 500 μL (3.9 mmol) C₆H₅CF₃, 2.0 mL (12.5 mmol) triethylsilane, 50 μL (430 μmol) C₆F₆ and 3 ml *o*-dichlorobenzene was added to a glass vial equipped with a stir bar. 6.0 mg (5.7 μmol) [Ph₃C]₂[B₁₂Cl₁₂] was slowly added to the solution. The mixture was stirred at room temperature for 30 min. After 30 min, Bu₄NBH₄ was added to stop the reaction. 0.5 ml of the mixture was transfer to a J. Young tube and analyzed by ¹⁹F NMR. ¹⁹F NMR (282.2 MHz, ODCB): δ -119.3 (m, p-*F*C₆H₄-CH₃),), -144.5 (br, Et₂Si*F*₂), -163.2 (s, C₆*F*₆), -176.1 (br, Et₃Si*F*). Other unidentified peaks appeared at -117.8, -119.3, -124.2 (presumably Friedel-Crafts products).

Entry D2: 500 μL (3.5 mmol) C₆F₅CF₃, 2.0 mL (12.5 mmol) triethylsilane, 250 μL (511 μmol) C₆F₅Br and 3 ml *o*-dichlorobenzene was added to a glass vial equipped with a stir bar. 5.9 mg (5.6 μmol) [Ph₃C]₂[B₁₂Cl₁₂] was slowly added to the solution. A colorless solution was formed with a small amount of precipitate. The mixture was allowed to stir at room temperature for 24 h. The reaction was monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Si-F and decrease in the intensity of ¹⁹F NMR resonance of F-substrates (δ -57.4 (C₆F₅-CF₃), -140.8, -147.8, -160.5 (C₆F₅-CF₃). ¹⁹F NMR (282.2 MHz, ODCB): δ -57.4 (m, C₆F₅-CF₃), -133.5 (m, C₆F₅-CF₃), -140.8 (m, C₆F₅-CF₃), -147.8 (m, C₆F₅-CF₃), -157.4 (m, C₆F₅-CH₃), -144.5 (br, Et₂SiF₂), -147.8 (m, C₆F₅-CF₃), -155.6 (m, C₆F₅-CH₃), -176.1 (br, Et₃SiF). Other unidentified peaks appeared at -142.7, -157.3, -163.4 (presumably Friedel-Crafts products).

Entry D3: 500 μL (3.5 mmol) C₆F₅CF₃, 2.0 mL (12.5 mmol) triethylsilane, 250 μL (511 μmol) C₆F₅Br and 3 ml *o*-dichlorobenzene were added to a sealed flask equipped with a stir bar. 5.7 mg (5.5 μmol) [Ph₃C]₂[B₁₂Cl₁₂] was slowly added to the solution. A colorless solution was formed with a small amount of precipitate. The mixture was allowed to stir at 50 C for 24 h. The reaction was monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Si-F and decrease in the intensity of ¹⁹F NMR resonance of Si-F and decrease in the intensity of ¹⁹F NMR resonance of Si-57.4 (C₆F₅-CF₃), -140.8, -147.8, -160.5 (C₆F₅-CF₃). ¹⁹F NMR (282.2 MHz, ODCB): δ -57.4 (m, C₆F₅-CF₃), -133.5 (m, C₆F₅Br), -140.8 (m, C₆F₅-CF₃), -144.2 (m, C₆F₅-CH₃), -144.5 (br, Et₂SiF₂), -147.8 (m, C₆F₅-CF₃), -155.6 (m, C₆F₅-CH₃), -176.1 (br, Et₃SiF). Other unidentified peaks appeared at -142.7, -157.3, -163.4 (presumably Friedel-Crafts products).

Entry D4: 500 μL (3.5 mmol) C₆F₅CF₃, 2.0 mL (12.5 mmol) triethylsilane, 250 μL (511 μmol) C₆F₅Br and 3 ml *o*-dichlorobenzene were added to a sealed flask equipped with a stir bar. 5.7 mg (5.5 μmol) [Ph₃C]₂[B₁₂Cl₁₂] was slowly added to the solution. A colorless solution was formed with a small amount of precipitate. The mixture was allowed to stir at 80 \mbox{C} for 24 h. The reaction was monitored by detecting the increase in the intensity of ¹⁹F NMR resonance of Si-F and decrease in the intensity of ¹⁹F NMR resonance of Si-F and decrease in the intensity of ¹⁹F NMR (282.2 MHz, ODCB): δ -57.4 (m, C₆F₅-CF₃), -140.8, -147.8, -160.5 (C₆F₅-CF₃). ¹⁹F NMR (282.2 MHz, ODCB): δ -57.4 (m, C₆F₅-CF₃), -144.5 (br,

Et₂Si F_2), -147.8 (m, C₆ F_5 -CF₃), -155.6 (m, C₆ F_5 Br), -157.4 (m, C₆ F_5 -CH₃), -160.5 (m, C₆ F_5 -CF₃), -161.4 (m, C₆ F_5 Br), -163.0 (m, C₆ F_5 -CH₃), -176.1 (br, Et₃SiF). Other unidentified peaks appeared at -142.7, -157.3, -163.4 (presumably Friedel-Crafts products).

DESIGN AND SYNTHESIS OF TETRADENTATE TPB LIGANDS AND THEIR METAL COMPLEXES WITH GROUP 10 METALS

CHAPTER V

5.1 Introduction

Three ways could be used to analyze a $2\bar{e}$ bond between a metal and a ligand (Figure 5-1). If the $2\bar{e}$ metal-ligand bond is broken by giving the $2\bar{e}$ to the ligand and the resultant ligand species is a stable neutral species, than the ligand is considered as "L" type ligand. If it is an anion, it is considered as "X" type ligand. If the two electrons are given to the metal center and the resultant ligand species remains as neutral species, it is considered as "Z" type ligand.²² Unlike the well documented X and L type ligands, Z-type ligands which function as σ -acceptor are relatively less developed since transition metals are usually more electropositive than the ligands.¹⁶¹

^{*} reprinted in part from *Angew. Chem., Int. Ed.*, 47, Bontemps, S.; Bouhadir, G.; Gu, W.; Mercy, M.; Chen, C.-H.; Foxman, B. M.; Maron, L.; Ozerov, O. V.; Bourissou D. "Metallaboratranes Derived from a Triphosphanyl-Borane: Intrinsic C₃ Symmetry Supported by a Z-Type Ligand ", 1481, copyright 2008 German Chemical Society and from *J. Am. Chem. Soc.*, 130, Sircoglou, M.; Bontemps, S.; Bouhadir, G.; Saffon, N.; Miqueu, K.; Gu, W.; Mercy, M.; Chen, C.-H.; Foxman, B.; Maron, L.; Ozerov, O. V.; Bourissou, D. "Group 10 and 11 Metal Boratranes (Ni, Pd, Pt, CuCl, AgCl, AuCl and Au⁺) Derived from a Triphosphine–Borane", 16729, copyright 2008 American Chemical Society.

Significant progress has been made in the past decade,¹⁶² especially with boranes as the Z-ligand.¹⁶³ Early work on the metal borane chemistry focused on halo- and arylborane complexes, in which the M \rightarrow B interaction was studied by infrared and NMR spectroscopy.¹⁶⁴ The ¹¹B NMR resonances tend to shift upfield when the coordination number at boron increases.¹⁶⁵

Figure 5-1. Definition of "L", "X" and "Z" ligand.

Figure 5-2. Metallaboratrane complexes.

Strong $M \rightarrow B$ interactions are often observed when transition metals are coordinated with ambiphilic ligands which contain both donor and acceptor coordination sites. In

1999, the first structural confirmation of $M \rightarrow B$ interactions¹⁶⁶ was reported in a ruthenium borane complex (**A**) (Figure 5-2) supported by three thione donor groups in a framework which is now commonly referred to as metallaboratrane, due to their structural similarity the more familiar boratrane cages (Figure 5-3).¹⁶⁷ Since then, many examples have been published in the metallaboratrane area with sulfur¹⁶⁸ (**B**), phosphorus^{129,169} (**C**) or nitrogen¹⁷⁰ (**D**) as side arms and with metals from group 8,^{168b-d} 9,^{129,169b,170,171} 10^{169a,b} and 11,^{169a}

Figure 5-3. General scheme for boratrane species.

Recently, Bourissou and coworkers have demonstrated the $M \rightarrow B$ interactions with a series of ambiphilic ligands containing both phosphine and borane functional groups.^{129,169} Bisphosphinophenyl-borane **BPB** (Figure 5-4) afforded 16ē square pyramidal complexes with d⁸ metals,¹⁷² in which the two phosphine arms were trans^{169b} (**E**) or cis^{129,173} (**F**) to each other and the lewis acidic boron center occupied the axial position. 16ē square planar complexes^{169c} (**G**) were observed with BPB ligand and d¹⁰ metals,¹⁷¹ the BPB ligand here adopted a meridional geometry. The formation of Tshape complexes^{169a} (**H**) from the related monophosphinophenyl-borane MPB illustrated the possibility for $M \rightarrow B$ interactions to occur in 14ē complexes, even when supported by a single donor buttress.

Figure 5-4. Phosphinophenyl-borane complexes with $M \rightarrow B$ interactions.

With the synthesis of stable metallaboratrane complexes, it became possible to explore their reactivity. Oxidative cleavage of metal boron bonds have been reported on Fe and Ni compounds (Scheme 5-1).^{168c,d} Moderate and strong oxidants, such as XeF₂, CHBr₃ or [PhC(O)O]₂ were employed to oxidatively cleave Fe-B or Ni-B bonds to form corresponding haloborate metal halides. In all cases, the more electron-withdrawing halogens prefer to bind with boron center. Peters and coworkers recently reported the synthesis of Fe imide from the iron boratrane complex via redox chemistry with a metallaboratrane complex (Scheme 5-2).¹⁷⁴

Scheme 5-1. Oxidative cleavage of the M-B bond in Ni and Fe boratrane complexes.

Scheme 5-2. Synthesis of iron imide.

5.2 Results and Discussion

5.2.1 Synthesis and Characterization of Group 10 Metal Boratranes with Triphosphino-borane (TPB) Ligand.

We are interested in the synthesis of a series of (TPB)M complexes(M = Ni, Pd, Pt), so that we could evaluate the effect of cage structure on the metal borane interactions. The nickel boratrane **501** was readily obtained by reaction of **209** with $[Ni(cod)_2]$ at 80 °C in toluene for 6 h (Scheme 5-3). After removal of the volatiles and washing with pentane, complex **501** was isolated in 82% yield. The unique signal observed at 35.0 ppm in the ³¹P NMR spectrum and two distinctive sets of resonances for *iso*-propyl groups in the ¹H NMR spectrum of **501** are consistent with symmetric coordination of the three phosphorus atoms and C₃ symmetry of the molecule in solution. The high-field ¹¹B NMR chemical shift at 15.9 ppm strongly suggests the presence of a dative Ni \rightarrow B interaction. ¹⁷⁵ The related palladium boratrane **502** was isolated in 80% yield via reaction of **209** with Pd(P^tBu₃)₂ at room temperature for 6 h. Thermolysis of sterically hindered Pt(P^tBu₃)₂ with **209** in toluene at 100°C for 7 days led to the formation of **503** which was isolated as a red powder in 72% yield. The spectroscopic data of **502** and **503** displayed high similarity to that of **501** with ¹¹B NMR chemical shift at 27.3 and 15.9 ppm respectively, which indicates strong metal \rightarrow B interaction. The spectroscopic features of **501**, **502** and **503** were summarized in Table 5-2.

Scheme 5-3. Synthesis of group 10 metal boratranes.

X-ray quality crystals of **501**, **502**¹⁷⁶ and **503**¹⁷⁷ were obtained from the corresponding toluene/pentane solution at -35 °C (Figures 5-5, 5-6 and 5-7). The overall structure of **501**, **502** and **503** are consistent with their observed NMR data, with the metal center adopting a trigonal pyramidal geometry and only slightly deviating from the basal plane formed by the three phosphorus atoms. The structural features of **501**, **502** and **503** were summarized in the table of p. 167.

Figure 5-5. ORTEP¹²⁸ drawing (50% probability ellipsoids) of **501.** Omitted for clarity: H atoms and toluene molecule.

Selected distance (Å) and angles (deg) follow: Ni1-B1, 2.168(2); Ni1-P1, 2.2043(7); Ni1-P2: 2.1944(5); Ni1-P3. 2.1977(5); B1-Cl2, 1.613(3); B1-C24, 1.616(2); B1-C36, 1.618(2); P1-Ni1-B1, 87.96(5); P2-Ni1-B1, 86.85(5); P3-Ni1-B1, 87.17(5); P1-Ni1-P2, 119.53(3); P1-Ni1-P3, 119.90(3); P2-Ni1-P3, 119.93(3); Ni1-B1-C12, 104.8(1); Ni1-B1-C24, 106.1(1); Ni1-B1-C36, 106.0(1); Ni1-P1-C7, 102.42(5); Ni1-P2-C19, 103.49(5); Ni1-P3-C31, 103.05(5).

Figure 5-6. ORTEP¹²⁸ drawing (50% probability ellipsoids) of **502.** Omitted for clarity: H atoms.

Selected distance (Å) and angles (deg) follow: Pd1-B1, 2.254(2); Pd1-P1, 2.3470(5); Pd1-P2: 2.3527(4); Pd1-P3. 2.3459(6); B1-C6, 1.621(4); B1-C12, 1.624(2); B1-C18, 1.626(3); P1-Pd1-B1, 85.63(5); P2-Pd1-B1, 84.78(5); P3-Pd1-B1, 84.82(5); P1-Pd1-P2, 117.42(2); P1-Pd1-P3, 120.28(2); P2-Pd1-P3, 120.11(2); Pd1-B1-C6, 104.3(1); Pd1-B1-C12, 104.4(1); Pd1-B1-C18, 104.8(1); Pd1-P1-C1, 100.21(6); Pd1-P2-C7, 99.87(6); Pd1-P3-C13, 100.44(6).

Figure 5-7. ORTEP¹²⁸ drawing (50% probability ellipsoids) of **503.** Omitted for clarity: H atoms and toluene molecule.

Selected distance (Å) and angles (deg) follow: Pt1-B1, 2.223(4); Pt1-P1, 2.300(1); Pt1-P2: 2.294(1); Pt1-P3. 2.294(1); B1-Cl, 1.618(6); B1-C7, 1.625(6); B1-Cl3, 1.625(5); P1-Pt1-B1, 86.0(1); P2-Pt1-B1, 85.6(1); P3-Pt1-B1, 85.6(1); P1-Pt1-P2, 119.82(4); P1-Pt1-P3, 118.92(4); P2-Pt1-P3, 119.62(4); Pt1-B1-C1, 106.1(2); Pt1-B1-C7, 106.4(2); Pt1-B1-C13, 106.7(2); Pt1-P1-C2, 102.8(1); Pt1-P2-C8, 102.7(1); Pt1-P3-C14, 103.0(1).

5.2.2 Comparison of TPB Group 10 Metal Complexes

M-B distances are one reflection of the strength of $M \rightarrow B$ interaction, however M-B distances are largely dependent on the sizes of the metals as well. In order to take into account the different sizes of the metals involved, these MB distances were compared with the sum of covalent atomic radii, which have been recently revisited by S. Alvarez and coworkers.¹⁷⁸ Accordingly, the ratio $r = d(M-B) / \Sigma(R_{cov})$ only slightly exceeds 1 for all complexes (Table 5-1), which suggests rather strong $M \rightarrow B$ dative interaction in our group 10 metallaboratranes. However, in these cases the MB bond length cannot be considered a reliable parameter to compare the magnitude of these $M \rightarrow B$ interactions due to the existence of the cage structure.

	501	502	503
M-B bond length (Å)	2.168(2)	2.254(2)	2.223(4)
r ^a	1.04	1.01	1.01
ΣB_{lpha}	339.1°	341.8°	336.7°
torsion angle q	26.2°.	28.3°.	24.3°.
$D_1^{b}(Å)$	0.102	0.202	0.171
$D_2^{c}(Å)$	0.435	0.407	0.458

Table 5-1. Structural data for the group 10 metal boratranes.

^a: $r = d(M-B) / \Sigma(R_{cov})$; ^b: D₁ represents the distance between metal center and the plane formed by three phosphorus atoms; ^b: D₂ represents the distance between boron center and the plane formed by three *ipso* carbons.

The pyramidalization of the boron environment was employed to estimate the degree of $M\rightarrow B$ interaction independently of the size of the metal. In all of the metal boratranes **501-503**, the geometry around boron strongly deviates from planarity, with ΣB_{α} ranging from 336 to 342° and the distance from boron center to the plane formed by three *ipso*-Carbons (D₂) ranging from 0.407-0.458 Å. The slight decrease of ΣB_{α} from Pd (341.8°), to Ni (339.1°), and Pt (336.7°) is consistent with the increase of the D₂ from Pd (0.407 Å), to Ni (0.435 Å), and Pt (0.458 Å). The structure information indicates the strength of M \rightarrow B interaction increases in the order of Pd, Ni and Pt.¹⁷⁹

The ¹¹B NMR chemical shift can also be considered an interesting spectroscopic probe for the interaction of boranes with Lewis bases. Generally speaking, relatively high field ¹¹B chemical shift (20-50 ppm) represents higher degree of shielding for the boron center, which is a result from the stronger M \rightarrow B interaction. The ¹¹B chemical shifts of our group 10 metallaboratranes fall in the range from 15 ppm to 28 ppm (Table 5-2), which are rather high filed compared to metallaboratranes known in the literatures.^{169,173} The spectroscopic data further supports the presence of strong M \rightarrow B interactions in the group 10 metal boratranes. In addition, the slightly higher ¹¹B NMR chemical shift obtained for the Pd complex **3** (27.3 ppm compared with 18.2 ppm for the Pt complex **4**, and with 15.9 ppm for the Ni complex **2**) suggests that the Pd \rightarrow B interaction would be somewhat weaker than Pt \rightarrow B and Ni \rightarrow B interactions.

	501	502	503
³¹ P (δ, ppm)	35	41.3	79.4
¹¹ B (δ, ppm)	15.9	27.3	15.9

Table 5-2. Spectroscopic features for the group 10 metal boratranes.

All of the metallaboratranes we obtained adopt trigonal pyramidal geometry, which is fairly unusual for four coordinated group 10 metal complexes. One early example of such geometry was reported by Pierpont with their (PPh₃)₃Pt(SO₂) complex.¹⁸⁰ In their case, the platinum center is 0.33 Å away from the plane formed by three phosphorus atoms, which is much longer than the platinum to plane distance at 0.171 Å in **503**. Therefore, our metallaboratranes adopt a structure closer to a standard trigonal pyramidal geometry which is forced by the rigid cage structure.

Figure 5-8. Group 11 metallaboratranes.

Compared to the isoelectronic group 11 metallaboratranes with the same ligand set (Figure 5-8),¹⁸¹ group 10 metallaboratranes display stronger $M \rightarrow B$ interactions than the group 11 analogs based on structural information (Table 5-3). The variation is rather pronounced for the Ni/Cu and Pd/Ag, but much less significant for the Pt/Au.

	504	505	506
M-B bond length	2.508(2)	2.540(2)	2.318(8)
r ^a	1.16	1.11	1.05
ΣB_{lpha}	347.0°	347.4°	339.3°
torsion angle q	29.4°	29.8°	27.0°

 Table 5-3.
 Structural data for the group 11 metal boratranes.

^a: $r = d(M-B) / \Sigma(R_{cov})$

5.3 Conclusion

In summary, a series of group 10 metal boratranes was synthesized and spectroscopically and structurally characterized with the aim of extending further the scope of $M \rightarrow B$ interactions. **TPB** ligand was shown to form robust boratrane complexes which exhibited $M \rightarrow B$ interaction. All metal boratrane species were found to adopt a trigonal pyramidal geometry with only a marginal deviation from the basal plane formed by the three phosphorus atoms which was likely largely imposed by the cage structure of TPB. Pt was shown to form stronger $M \rightarrow B$ interactions than their lighter analogs. Compared to the isoelectronic group 11 metallaboratranes, stronger $M \rightarrow B$ interactions were found with the metals with lower oxidation state.

5.4 Experimental Details

General considerations. Unless specified otherwise, all reactions and manipulations were carried out under an argon atmosphere using glove box or Schlenk line techniques. Dry, oxygen–free solvents were employed. Toluene, Pentane, diethyl ether, THF and

 C_6D_6 were dried over NaK–/Ph₂CO–/18-crown-6, distilled and stored over molecular sieves in an Ar-filled glove box. Ni(COD)₂, Pd(PBu^t₃)₂ and Pt(PBu^t₃)₂ were purchase from Strem and used as received. Synthesis of ligand **204** was described in Chapter II. All other chemicals were used as received from commercial vendors unless otherwise noted.

Physical Methods. NMR spectra were recorded on a Varian iNova 400 spectrometer (¹H NMR, 400.0 MHz, ¹³C NMR, 100.5 MHz, ³¹P NMR, 161.9 MHz) and a Varian iNova 500 spectrometer (¹¹B NMR, 160.5 MHz) in noted solvents. Chemical shifts are given in δ (ppm). ¹¹B NMR spectra were referenced externally with BF₃ etherate at δ 0. ³¹P NMR spectra were referenced externally with 85% phosphoric acid at δ 0. ¹H NMR and ¹³C NMR spectra were referenced using the solvent signals. Elemental analyses were performed by CALI, Inc. (Parsippany, NJ). UV-vis spectra of complexes **501**, **502**, **503** were collected by Bourissou group. The solid state structure of **502** and **503** were solved by Prof. Bruce M. Foxman and Dr. Chun-Hsing Chen.

Synthesis of (TPB)Ni (501). To a solution of $Ni(COD)_2$ (54.7 mg, 0.20 mmol) in toluene (2 mL) was added TPB (117 mg, 0.20 mmol) at room temperature. After subsequent stirring for 6 hours at 80°C, volatiles were removed and the residue was

washed with 3 times 2 mL of cold n-pentane. Dark blue powder of (TPB)Ni (106.5 mg, 82%) was obtained from a saturated toluene solution at -35 °C. X-ray quality crystals were obtained by recrystallization from a toluene/pentane mixed solution at -35°C. ${}^{31}P{}^{1}H{}$ NMR (161.8 MHz, 296 K, C₆D₆): δ 35.0. ${}^{11}B{}^{1}H{}$ NMR (160.5 MHz, 298 K, C₆D₆): δ 15.9. ${}^{13}C{}^{1}H{}$ NMR (100.5 MHz, 296 K, C₆D₆): δ 164.3 (br, C₁), 140.2 (m, aromatic-C), 129.7 (m, aromatic-C), 127.9(s, aromatic-C), 127.6(s, aromatic-C), 124.6(s, aromatic-C), 29.7 (br, CHCH₃), 27.3 (br, CHCH₃), 25.8 (br, CHCH₃), 19.9 (br, CHCH₃), 19.4 (br, 2CHCH₃). ${}^{1}H$ NMR (399.8 MHz, 296 K, C₆D₆): δ 7.48 (br, 3H; aromatic-H), 7.28 (br, 3H; aromatic-H), 7.04 (br, 6H; aromatic-H), 2.66 (br, 3H, CHCH₃), 2.28 (br, 3H, CHCH₃), 1.39 (br, 9H, CHCH₃), 1.29 (br, 9H, CHCH₃), 1.05 (br, 9H, CHCH₃), 0.34 (br, 9H, CHCH₃).

Synthesis of (TPB)Pd (502). To a solution of $Pd(PBu_{3}^{t})_{2}$ (53.8 mg, 0.106 mmol) in toluene (2 mL) was added TPB (68.3 mg, 0.116 mmol) at room temperature. After subsequent stirring for 6 hours at room temperature, volatiles were removed and the residue was washed with 3 times 2 mL of cold n-pentane. Red powder of (TPB)Pd (58.5 mg, 80%) was obtained from a saturated toluene solution at -35°C. X-ray quality crystals were obtained by recrystallization from a toluene/pentane mixed solution at -35°C. $^{31}P\{^{1}H\}$ NMR (161.8 MHz, 296 K, C₆D₆): δ 41.3. $^{11}B\{^{1}H\}$ NMR (160.5 MHz, 298 K,

C₆D₆): δ 27.3. ¹³C{¹H} NMR (100.5 MHz, 296 K, C₆D₆): δ 167.2 (br, C₁), 138.5 (m, aromatic-C), 133.2 (m, aromatic-C), 129.1(s, aromatic-C), 125.0(s, aromatic-C), 28.6(br, *C*HCH₃), 27.9 (br, *C*HCH₃), 24.0 (br, *C*H*C*H₃), 20.2 (br, *C*H*C*H₃), 19.9 (br, *C*H*C*H₃), 19.0 (br, *C*H*C*H₃), 24.0 (br, *C*H*C*H₃), 20.2 (br, *C*H*C*H₃), 19.9 (br, *C*H*C*H₃), 19.0 (br, *C*H*C*H₃); ¹H NMR (399.8 MHz, 296 K, C₆D₆): δ 7.35 (m, 6H; aromatic-H), 7.05 (m, 6H; aromatic-H), 2.44 (br, 3H, *C*H*C*H₃), 2.17 (br, 3H, *C*H*C*H₃), 1.43 (br, 9H, *C*H*C*H₃), 1.31 (br, 9H, *C*H*C*H₃), 0.78 (br, 9H, *C*H*C*H₃), 0.55 (br, 9H, *C*H*C*H₃). (One carbon resonance in aromatic range might be overlapped with the solvent peak.)

Synthesis of (TPB)Pt (503). To a solution of Pt(Bu^t₃)₂ (51.5 mg, 0.086 mmol) in toluene (5 mL) was added TPB **1** (55 mg, 0.094 mmol) at room temperature. After subsequent stirring for 7 days at 100 °C, volatiles were removed and the residue was washed with 3x2 mL of cold n-pentane. Red powder of (TPB)Pt **3** (48 mg, 72%) were obtained from a saturated toluene solution at -35 °C. Red crystals of **3** were obtained from a toluene/pentane mixed solution at -35 °C. Red crystals of **3** were obtained from a toluene/pentane mixed solution at -35 °C. $^{31}P{^{1}H}$ NMR (161.8 MHz, 296 K, C₆D₆): δ 79.4 ($^{1}J_{P-Pt}$ =3578Hz). $^{11}B{^{1}H}$ NMR (160.5 MHz, 298 K, C₆D₆): δ 18.2. $^{13}C{^{1}H}$ NMR (100.5 MHz, 296 K, C₆D₆): δ 164.8 (br, C₁), 138.9 (m, aromatic-C), 130.0 (m, aromatic-C), 124.1 (s, aromatic-C), 34.1 (br, CHCH₃), 29.4 (br, CHCH₃), 23.4 (br, CHCH₃), 20.4 (br, CHCH₃), 19.3 (br, CHCH₃), 18.9 (br, CHCH₃). ^{1}H NMR (399.8 MHz, 296 K, C₆C, MHz, 296 K, CHCH₃), 18.9 (br, CHCH₃).

C₆D₆): δ 7.52 (d, 3H, ³J_{H-H} = 7.6 Hz; H₆), 7.43 (br, 3H; H₃), 7.05 (m, 6H; H₄ and H₅), 2.65 (br, 6H, CHCH₃), 1.38 (br, 18H, CHCH₃), 0.96 (br, 9H, CHCH₃), 0.34 (br, 9H, CHCH₃).

CHAPTER VI

SYNTHESIS AND REACTIVITY OF PINCER PSiP LIGANDS AND OF THEIR METAL COMPLEXES WITH Pd AND Pt

6.1 Introduction

6.1.1 Pincer Ligands with Silicon as the Central Donor Atom

Phosphine based "PCP" ligand have been the subject of intense study for the past thirty years, due to their superb stoichiometric and catalytic reactivity.^{4,5} On the other hand, only a few examples have been reported with the PSiP type of ligand, which contains flanking phosphine arms and a central silyl donor (Scheme 6-1). Stobart and coworkers pioneered the area of polydentate silyl ligands with a series of late transition metal complexes with bi, tri, and tetradentate phosphinosilyl ligands (Scheme 6-2).¹¹² A tetradentate SiP₃ ligand was reported by the Peters group (**D**, Scheme 6-2), which was used to form unusual Ru(I) and Os(I) complexes.¹⁸² In 2007 Turculet and coworkers reported a pincer "PSiP" ligand with a rigid diphenylsilyl framework (Scheme 6-3).^{17a} Access to different substituents on the silicon center and phosphine arms on these "PSiP" ligands provides tunability on both electronic and steric properties of the resulting metal complexes,^{17,124} which have already been used as the catalyst in some catalytic transformations, such as dehydrogenative borylation and hydrocarboxylation of allenes with CO₂.^{17fig}

Scheme 6-1. PSiP (silyl) and P₂Si= (silylene) metal complexes.

Scheme 6-2. Metal complexes with bi, tri, and tetradentate phosphinosilyl ligands.

Scheme 6-3. PSiP ligands with diphenylsilyl backbone.

In theory, incorporation of strongly σ -donating and *trans*-labilizing silyl ligand may promote the formation of coordinatively unsaturated complexes which were often proposed as the reactive intermediates for (PCP)Ir and (PNP)Rh (for PCP and PNP ligand framework, see scheme 1-1 A and **D**) mediated oxidative addition reactions (Scheme 6-4).^{33,183} These assumptions have recently been materialized by reports of C-H and N-H bond oxidative addition reactions by (PSiP)Ir complexes via unsaturated 14ē intermediates (Scheme 6-5).^{9c,17b}

Scheme 6-5. Bond activation mediated by PSiP metal species.

Unlike the pincer silvl species, pincer metal complexes featuring a silvlene donor in the pincer remain unknown (Scheme 6-1). The silvlene ligand in pincer complexes will feature σ -donor and π -acceptor property as well as strong Lewis acidity on silicon center.¹¹⁸

6.1.2 Metal Silylene Species

Carbene ligands are one of the most versatile and fruitful ligands in organometallic chemistry.¹¹³ The importance of metal carbene compounds was highlighted by the 2005 Nobel Prize in chemistry for their use in olefin metathesis reactions.¹⁸⁴ Motivated by the close analogy of carbon and silicon,¹⁸⁵ metal silylene compounds have been targeted since the 1960s.¹¹⁸ Free silylenes are electron-deficient species, with only six electrons in the outer shell of silicon (Figure 6-1). Therefore, silylenes are highly electrophilic in their reactions, especially when they have electron withdrawing substituents.¹⁸⁶

Compared to carbene species, silylenes display higher Lewis acidity in reactions, for two key reasons: i) Silicon is more electropositive¹⁸⁷ (1.8 vs 2.5 for carbon), which localizes the partial positive charge on the silicon center in the R₂Si= species; ii) The size of silicon is significantly larger than that of carbon,¹⁸⁸ which makes its tendency toward higher coordination numbers much greater. Due to the high reactivity of the highly Lewis acidic silylene center, not until 1987 had the first so-called base-stabilized silylene compound been reported (Scheme 6-6).¹⁸⁹ Since then, base-stabilized silylene compounds have been prepared with many transition metals.¹⁹⁰ Most of these compounds possess relatively downfield ²⁹Si NMR resonances between 90-150 ppm.¹¹⁸

Figure 6-1. General scheme for silylene.

Scheme 6-6. Base-stabilized metal silylene species.

Significant progress in metal silylene chemistry came in 1990¹⁹¹ when a base-free silylene compound was isolated with Ru (Scheme 6-7). In the ruthenium case, the thiolate group was employed to stabilize the cationic silylene species, which could donate electron to the empty p orbital on Si. Typical base-free metal silylene compounds possess a three-coordinate silicon center and their ²⁹Si NMR resonances are found at a characteristic downfield chemical shift, between 200-370 ppm.¹¹⁸

Scheme 6-7. Base-free ruthenium silylene species.

i,•••∎S^pTol Mea

Scheme 6-8. Synthetic routes to silylene species.

Hydride abstration from hydrosilyl complex

Ligation of free silylene to metal complex

alpha-Hydrogen migration

Typical synthetic routes to base-free metal silylene species are shown in Scheme 6- 8^{118} Hydride abstraction, α -hydrogen migration or anionic substituent abstraction have been used to prepared metal silylene complexes with metals from group 8, 9 and 10. These approaches result in cationic (usually more electrophilic) silylene complexes. Therefore, weakly coordinating anions, such as BARF anions, are often used as the counterion for these silylene species.¹⁹²

Scheme 6-9. Proposed route to access pincer silylene complexes.

6.1.3 Reactivity of Silylene Complexes

Although some reactivities of metal silylene species show similarity to the corresponding metal carbene species, silylenes also display some unique reactivity due to the Lewis acidity at silicon center.¹⁹³ Cycloaddition reaction with unsaturated substrates, a common reaction for carbene species, is rare in the literature for silylene species.¹⁰ One of the few examples of such reaction is a "2+2" cycloaddition reaction of cationic ruthenium silylene species with isocyanate (Scheme 6-10).¹⁹⁴ Interestingly, the same compound does not undergo "2+2" cycloaddition with ethylene. Mechanistic studies showed that the cycloaddition reaction with isocyanate was initiated by the coordination of isocyanate to the Lewis acidic silicon center via the lone pair of nitrogen, followed by the electron rich Ru(II) center adding to the CO group to form the metallacycle. The strong Lewis acidity of the silylene species also led to their reactions with various nucleophiles, such as water, alcohol and polar unsaturated compounds (Scheme 6-11).^{192a,195}

Scheme 6-10. Cycloaddition reaction with metal silylene complexes.

Scheme 6-11. Reactions of metal silvlene with nucleophiles.

In contrast to the carbene complexes, only a few examples can be found in the literature about catalytic reactions mediated by metal silylene species. Most of these reactions center on the transfer of SiMe₂ group¹⁹⁶ as well as hydrosilylation of alkenes¹⁹⁷ and ketones.¹⁹⁸ An example of silylene-catalyzed SiMe₂ group transfer is shown in Scheme 6-12. Double SiMe₂ group transfer was accomplished with a Pd silylene compound as the catalyst. The first SiMe₂ group transfer was accomplished via 4+1

cycloaddition. The second SiMe₂ group transfer was accomplished by a sequence of oxidative addition of allylic C-H bond to Pd silylene, 1,2-migration and reductive elimination.^{196d} Although Pd silylene species was not observed in this reaction, mechanistic study suggested it to be the active catalyst in this transformation.^{196d}

Scheme 6-12. Catalytic reactions mediated by metal silylene species.

Hydrosilylation of alkenes or ketones is another type of catalytic transformation mediated by metal silylene species. As depicted in Scheme 6-12 hydrosilylation of alkene is catalyzed by either Ru silylene or Ir silylene species. Only primary silanes could be used as the silane in this reaction and only anti-Markovnikov products were obtained.^{197a} Tilley and coworkers therefore proposed the following mechanism for this catalysis (Scheme 6-13) which featured double Si-H activation to form the silylene specie, direct insertion of alkene into the Si-H, 1,2-migration of the hydride and sequential reductive elimination.^{197b} The key Si-C bond formation step was proposed to occur via a concerted addition process similar to B-C bond formation step in hydroboration of alkene.¹⁹⁹ Hydrosilylation of ketones with secondary silanes was reported to be catalyzed by a bis-carbene Rh(I) compound (Scheme 6-12). Although the Rh silylene compound was not isolated, experimental evidence was provided for the formation of the silylene intermediate.¹⁹⁸ The key step in this catalysis was the coordination of carbonyl to the electron deficient silylene silicon center.

Scheme 6-13. Proposed mechanism for the hydrosilylation of alkene catalyzed by Ru silylene complex.

In this chapter, we decided to use hydride abstraction by $[Ph_3C][HCB_{11}Cl_{11}]$ to access a pincer P₂Si= metal complex with a silylene central donor (Scheme 6-9). Ph₃C⁺ was shown previously to be able to abstract hydride from silanes⁹⁷ and $[HCB_{11}Cl_{11}]^-$ was shown in Chapter II to be a robust weakly coordinating anion partner for highly electrophilic cationic species.⁶³

6.2 Results and Discussion

6.2.1 Synthesis of (PSiP)PtCl

 $(PSi^{H}P^{iPr})PtCl$ (601) was synthesized in 85% isolated yield via reaction of 207 with $Pt(COD)Cl_2$ in the presence of 2,6-lutidine (Scheme 6-14). Low reaction yield was observed when Et_3N was used as the base for this reaction, likely due to the decomposition to Pt metal. Notably, the key to reaching a high yield for this reaction

was the order of adding ligand **207** and base to the solution of metal precursors. If **207** was added before 2,6-lutidine, **602** was observed as the other product, presumably due to the reaction of HCl and the Si-H bond.²⁰⁰ HCl was likely released from the of **207** and Pt(COD)Cl₂. **601** was characterized by multi-nuclear NMR spectroscopy, X-ray crystallography and elemental analysis. The ${}^{1}J_{Pt-P}$ at 2888 Hz is typical for *trans* phosphine ligands in cyclometalated Pt(II) complexes.²⁰¹ Virtual coupling for the isopropyl groups was observed in ${}^{1}H$ NMR spectra which indicated that the two phosphine groups were *trans* to each other.²³ Therefore the whole molecule adopts the square planar geometry common for d⁸ 16-electron metal complexes. Two different methine and four different methyl resonances were observed for the isopropyl groups on the phosphines, which indicated the molecule adopts C_s symmetry in solution.

Scheme 6-14. Synthetic procedure for (PSi^HP^{iPr})PtCl (601).

Crystals of **601** suitable for single-crystal X-ray diffraction were obtained by slow diffusion of pentane to a saturated toluene solution. The solid-state structure²⁰² of **601** is shown in Figure 6-2. The square planar geometry with C_s symmetry of **601** is consistent with the NMR data we observed. The sum of the bond angles of C1-Si-Pt, C7-Si-Pt and C1-Si-C7 is 330.7°, indicating the silicon center adopts a tetrahedral geometry. The Pt-Cl bond length at 2.452(2) Å and the Pt-Si bond length at 2.276(2) Å for **601** are similar to those in (PSi^{OH}P^{iPr})PtCl¹²⁴ (2.47 Å for Pt-Cl, 2.277 Å for Pt-Si, (**E**)PtCl in Scheme 6-3) and (PSi^{Me}P^{Ph})PtCl^{17c} (2.44 Å for Pt-Cl, 2.278 Å for Pt-Si, (**F**)PtCl in Scheme 6-3).

Figure 6-2. ORTEP¹²⁸ drawing (50% probability ellipsoids) of **601.** Omitted for clarity: H atoms. Selected distance (Å) and angles (deg) follow: Pt1-Si1, 2.276 (2); Pt1-P1, 2.297 (2); Pt1-P2: 2.296 (2); Pt1-Cl1, 2.452 (2); P1-Pt1-Si1, 84.41 (4); P2-Pt1-Si1, 84.05 (4); P1-Pt1-P2, 162.41 (4); C1-Si1-Pt1, 107.8 (1); C1-Si1-C7, 114.8

(2); C7-Si1-Pt1, 108.1 (1); Cl1-Pt1-Si1, 177.13 (4); Cl1-Pt-P2, 98.69 (4); Cl1-Pt-P1, 93.11 (4).

6.2.2 Synthesis of (PSiP)PtX

Scheme 6-14 depicts the methods we used to synthesize a series of (PSiP)PtX complexes from **601**. Pure (PSi^HP^{iPr})PtI (**603**) was obtained via direct reaction with **601** and 10 equiv of iodotrimethylsilane (Me₃SiI). Smaller amounts (as low as 3 equiv) of Me₃SiI could be used to obtain clean **603**, if multiple cycles of addition of Me₃SiI and removal of volatiles were applied. **603** was isolated as a white powder in 61% yield after recrystallization from pentane at -35 \mathbb{C} . (PSi^HP^{iPr})PtOTf (**604**) was synthesized via direct reaction with **601** and 10 equiv of Me₃SiOTf. **604** was isolated as a white powder in 71% yield after workup.

Scheme 6-15. Synthesis of (PSiP)PtX compound from for 601.

Complexes **605**, **606** and **607** were obtained via reactions of **601** with corresponding lithium reagents or Grignard Reagents. Metathesis of **601** with MeLi at room temperature for 1 h cleanly yielded (PSi^HP^{iPr})PtMe (**605**). **605** was isolated as a white solid with 71% yield after recrystallization from pentane at -35 °C. **606** was obtained as a white powder with 73% isolated yield via similar reaction of **601** with PhLi. The synthesis of (PSi^HP^{iPr})PtMes **607** was first attempted via reaction of **601** with mesityl

lithium (MesLi), but this approach did not yield the desired product. **607** was then successfully isolated in 71% yield via reaction of **601** and MesMgBr at 80 °C overnight.

No.	${}^{31}P{}^{1}H{}({}^{1}J_{Pt-P})$	$^{29}{ m Si}(^{1}{ m J}_{ m Si-H}, ^{1}{ m J}_{ m Pt-Si})$	$^{195}Pt\{^{1}H\}$	¹⁹ F
601	68.1 (2888 Hz)	11.7 (182 Hz, 1192 Hz)	-5031	N/A
603	67.9 (2846 Hz)	19.6 (184 Hz, 1160 Hz)	-5285	N/A
604	72.9 (2941 Hz)	-1.5 (193 Hz, 1373 Hz)	-5057	77.7
605	67.1 (2863 Hz)	43.1 (166 Hz, 660 Hz)	-4936	N/A
606	64.9 (2848 Hz)	34.5 (167 Hz, 632 Hz)	-5025	N/A
607	63.0 (2860 Hz)	34.3 (170 Hz, 608 Hz)	-4910	N/A

Table 6-1. Selected NMR data for the neutral (PSiP)PtX species in C_6D_6 , δ ppm.

All of the neutral complexes **601** and **603-607** were characterized by ¹H, ³¹P, ¹³C, ¹⁹⁵Pt and ¹⁹F (where applicable) NMR (Tables 6-1, 6-2, 6-3). **601** and **603-607** each possess one singlet with Pt satellites in the ³¹P{¹H} NMR spectra, one doublet with Pt satellites in the ²⁹Si NMR spectra, one triplet with P coupling in the ¹⁹⁵Pt{¹H} NMR spectra (Table 6-1). ¹H NMR spectra of these compounds show two different isopropyl groups on the phosphine arms on the NMR timescale (Table 6-2). All the spectroscopic features of these neutral compounds in solution indicate they adopt a Cs symmetric square-planar geometry with the X ligand *trans* to the silicon center.

No.	SiH ($^{2}J_{Pt-H}$)	CH _{Ar}	CH _{iPr}	CMe _{iPr}
601	5.74 (39)	8.05(d), 7.31(m), 7.21(t), 7.11(t)	3.39(m), 2.46(m)	1.41(m), 1.10(m), 0.93(m)
603	5.73 (41)	8.03(d), 7.35(m), 7.21(t), 7.09(t)	3.51(m), 2.66(m)	1.49(m), 1.27(m), 1.02(m), 0.93(m)
604	5.53 (60)	7.87(d), 7.20-7.09(m)	3.05- 2.80(m)	1.47(m), 1.22(m), 0.96-0.81(m)
605	6.36 (21)	8.27(d), 7.42(m), 7.25(t), 7.14(t)	2.95(m), 2.46(m)	1.18(m), 0.99(m)
606	6.47 (20)	8.26(d), 7.44(t), 7.34(m), 7.25(t)	2.88(m), 2.40(m)	1.08(m), 0.99(m), 0.88(m)
607	6.38 (23)	8.23(d), 7.28-7.22(m), 7.15-7.07(m)	3.51(m), 2.66(m)	1.49(m), 1.27(m), 1.02(m), 0.93(m)

Table 6-2. Selected ¹H NMR data for the neutral (PSiP)PtX species in C_6D_6 , δ ppm. (only the PSi^HP ligand resonance shown, coupling constant in Hz)

The ¹H NMR data unambiguously establish the presence of the Pt-Me functionality in **605**, the Pt-Ph functionality in **606** and Pt-Mes functionality in **607** (Table 6-3). The Pt-*Me* group in **605** was observed at 1.32 as a triplet with J_{P-H} of 5 Hz in its ¹H NMR spectrum and at -3.7 as a triplet with J_{P-C} of 8 Hz and ¹J_{Pt-C} of 505 Hz in its ¹³C{¹H} NMR spectrum. Three distinctive methyl resonances of the mesityl groups were observed in the ¹H NMR spectrum and the ¹³C{¹H} NMR spectrum of **607**, suggesting the C_s symmetry of the molecule and the mesityl group being perpendicular to the PSiPPt plane It also indicates the rotation of aryl group along the Pt-C_{*ipso*} bond is inhibited on the NMR time scale due to the steric crowding around the Pt center. Notably, only two sets of proton resonances for the phenyl group were observed for **606**, indicating the free rotation of the phenyl group along the Pt-C_{*ipso*} bond on the NMR time scale. The differences of aryl groups in the ¹H NMR spectra of **606** and **607** highlighted the steric bulkiness of mesityl group compared to phenyl group.

Table 6-3. Selected ¹H NMR data for the (PSiP)PtX with R species in C_6D_6 , δ ppm. (only Pt-*R* group resonance shown, coupling constant in Hz)

No.	Pt-R	
605	$1.32(t, J_{P-H}=5)$	
606	7.88(d, $J_{P-H} = 7$, $J_{Pt-H} = 40$), 7.14(m)	
607 7.28-7.22(m), 2.76(s), 2.49(s), 2.40(s)		

Table 6-4. Selected NMR data for (PSi^{Me}P^{Cy})PtX species reported by Turculet group in C₆D₆, δ ppm.

No.	${}^{31}P{}^{1}H{}({}^{1}J_{Pt-P})$	$^{29}\mathrm{Si}(^{1}\mathrm{J}_{\mathrm{Pt-Si}})$
(G)PtCl	59.4 (2984 Hz)	32.3 (1183 Hz)
(G)PtOTf	65.9 (3055 Hz)	18.8 (1381 Hz)
(G)PtMe	57.9 (2938 Hz)	63.9 (696 Hz)
(G)PtPh	56.2 (2921 Hz)	59.7 (646 Hz)

Complex	$Pt-H({}^{1}J_{Pt-H}, {}^{2}J_{P-H})$
trans-(PCy ₃) ₂ Pt(Cl)(H)	-18.86 (1300, 12)
trans-(PCy ₃) ₂ Pt(Br)(H)	-17.58 (1356, 12)
trans-(PCy ₃) ₂ Pt(I)(H)	-14.65 (1390, 11)
trans-(PCy ₃) ₂ Pt(OTf)(H)	-27.6 (1585, 14)
trans-(PCy ₃) ₂ Pt(Me)(H)	-6.47 (660, 17)
trans-(PCy ₃) ₂ Pt(Ph)(H)	-8.01 (595, 17)
trans-(PCy ₃) ₂ Pt(H)(H)	-3.97 (796, 17)
trans-(PCy ₃) ₂ Pt(SiH ₃)(H)	-0.97 (760, 11)

Table 6-5. Selected NMR data for *trans*-(PCy₃)₂PtHX species reported by Stahl Labinger and Bercaw in CD₂Cl₂, δ ppm. (only Pt-*H* group resonance shown, coupling constant in Hz)

Since a series of neutral (PSiP)PtX compounds were obtained, it is interesting to make an assessment of the effect of the X ligand on the spectroscopic properties of the molecule (Table 6-1). Although the ³¹P{¹H} and ¹⁹⁵Pt{¹H} NMR data are very similar for these neutral silvl species, they could be easily separated into two groups. With weak *trans* influence groups as the X ligand, such as halide or pseudo-halide, the ¹J_{Pt-Si} is fairly large which indicates strong Pt-Si interactions.²⁰³ On the other hand, the strong *trans* influence groups such as methyl and aryl decrease the Pt-Si interaction which results in a much smaller ¹J_{Pt-Si}. Strong trans-influence ligands also result in the more downfield shift for Si-*H* resonance and smaller J_{Pt-H} and decreasing δ of Si-*H* in ¹H NMR

with decreasing *trans* influence of X ligand in (PSiP)PtX compounds was found in Table 6-1 and Table 6-2. Turculet^{17c} reported a similar trend of increasing ¹J_{Pt-Si} and decreasing δ in ²⁹Si NMR with decreasing *trans* influence of X ligand in their (PSi^{Me}P^{Cy})PtX complexes ([**G**]PtX, Scheme 6-3, Table 6-4). Similar trend has also been reported by Stahl, Labinger and Bercaw²⁰⁴ (Table 6-5). They found in a series of *trans*-(PCy₃)₂PtHX complexes, stronger *trans* influence group as X ligand resulted in more downfield chemical shift for the hydride on Pt as well as smaller ¹J_{Pt-H}.

Crystals suitable for single-crystal X-ray diffraction²⁰² for **607** were obtained by slow diffusion of pentane into a saturated toluene solution (Figure 6-3). **607** adopts a square planar geometry with C_s symmetry in solid state, which is consistent with the NMR data. The sum of the bond angles of C1-Si-Pt, C7-Si-Pt and C1-Si-C7 is around 335.1°, indicating the silicon center adopts a tetrahedral geometry. The Pt-Si bond distance of **607** is 2.3123(9) Å, which is slightly shorter than the Pt-Si bond distance of **601** at 2.276(2) Å. The slightly longer Pt-Si bond distance in **607** is likely the result of the aryl group being a stronger trans-influence ligand. As expected from the NMR data, the mesityl group is perpendicular to the PSiPPt plane with the average P-Pt-C_{Mes}-C_{Mes} torsion angle about 90°.

Figure 6-3. ORTEP¹²⁸ drawing (50% probability ellipsoids) of **607.** Omitted for clarity: H atoms. Selected distance (Å) and angles (deg) follow: Pt1-Si1, 2.3123 (9); Pt1-P1, 2.2845 (7); Pt1-P2: 2.2876 (7); Pt1-C13, 2.154 (3); P1-Pt1-Si1, 83.66 (3); P2-Pt1-Si1, 83.20 (3); P1-Pt1-P2, 156.52 (3); C1-Si1-Pt1, 108.6 (1); C1-Si1-C7, 116.1 (1); C7-Si1-Pt1, 110.4(1); C13-Pt1-Si1, 168.02 (8); C13-Pt-P2, 99.48 (8); C13-Pt-P1, 97.40 (8).

6.2.3 Hydride Abstraction of (PSiP)PtX

 $Ph_3C[HCB_{11}Cl_{11}]$ was used to abstract the hydride from **601** in fluorobenzene (Scheme 6-16). Successful hydride abstraction by the trityl salt was illustrated by the the loss of the Si-H resonance and the appreance of the Ph₃C-H resonance in the 1 H NMR spectrum. One singlet (with ¹⁹⁵Pt satellites) in the ³¹P{¹H} NMR spectrum and one triplet in the ¹⁹⁵Pt{¹H} NMR spectrum with J_{Pt-P} of 2957 Hz indicateed the formation of only one new metal complex which was likely a Pt(II) complex²⁰¹ with two phosphine arms trans to each other. However, the relatively high-field ²⁹Si NMR resonance at 32.7 was consistent with the product being a silvl species. We therefore proposed **608** to be the product for this reaction. It is likely that after the hydride abstraction, the chloride undergoes an inter- or intramolecular migration from Pt to Si due to the high lewis acidity of the silvlene group. Halogen abstraction reactions by silvlene groups have been previously reported by the Tilley group.²⁰⁵ In their osmium silvlene complex the readily oxidized (electron-rich) osmium center with a Lewis-acidic silvlene ligand promotes the cleavage of the carbon-halogen bond. However, the reaction was reported to proceed via radical abstraction mechansim, which is unlikely for our chloride migration reaction.

Scheme 6-16. Hydride abstraction reactions of (PSiP)PtX with Ph₃C[HCB₁₁Cl₁₁].

Hydride abstraction reactions by $Ph_3C[HCB_{11}Cl_{11}]$ have been tested with **603** and **605** (Scheme 6-16), which yielded the corresponding silyl products **609** and **610** with ²⁹Si resonance at 50.1 and 20.7 ppm, respectively. The Si-*Me* group of **610** was found at 0.48 ppm with no observable coupling to phosphorus or platinum which is consisten with the methyl group being bound to Si instead of Pt. Similar (PSiP)Pt(II) cationic species have been reported by the Turculet group (Figure 6-1) and displayed
²⁹Si NMR resonances between 26-32 ppm and the Si-*Me* ¹H NMR resonances between 0.19-0.36 ppm (Figure 6-4).^{17c}

Figure 6-4. Cationic pincer silyl platinum species reported by Turculet group and their ²⁹Si NMR resonance and Si-*Me* resonance in ¹H NMR spectra.

611 was obtained as a silyl complex with ²⁹Si resonance at 33.0 ppm via reaction of **606** with $Ph_3C[HCB_{11}Cl_{11}]$ (Scheme 6-16). We noticed that all the cationic silyl species **608**, **609**, **610** and **611** appeared colorless in the C₆H₅F solution. However, in the reaction of **606** with $Ph_3C[HCB_{11}Cl_{11}]$, a deep red solution was initially observed. We were not able to isolate or spectroscopically characterize the intermediate, since the color quickly disappeared in 30 min and the only metal complex we isolated was **611**.

The reaction between **607** and $Ph_3C[HCB_{11}Cl_{11}]$ yielded a deep red product (**612**) which was stable in solution at room temperature (Scheme 6-16). Although the ³¹P{¹H}, ²⁹Si and ¹⁹⁵Pt{¹H} NMR spectra were all broad for **612** at room temperature, well resolved spectra were obtained at -30 °C (Figure 6-6). The signature resonance at 323.2 ppm in the ²⁹Si NMR spectrum is consistent with **612** being a silylene complex, as all known base-free platinum silylene species display resonances between 300-400 ppm in

their ²⁹Si NMR spectra (Figure 6-5).^{192b,192e,206} The ¹J_{Pt-Si} for **612** is 896 Hz, which is much greater than that in **611** (606 Hz), indicating a stronger Pt-Si interaction. The ¹J_{Pt-P} in **612** is 2526 Hz which is significantly smaller than that of all the PSiPPt species we have obtained (Table 6-6). The smaller ¹J_{Pt-P} may be an indication of lower electron density at the platinum center, owing to the d_{π} - p_{π} donation from the platinum center to the electron-poor :SiR₂ group. All spectroscopic data point to that we have obtained the (P₂Si=)Pt complex with silylene as the central donor.

Figure 6-5. Platinum silylene complexes know in the literature and their ²⁹Si resonance.

No.	$^{31}P\{^{1}H\}(^{1}J_{Pt-P})$	²⁹ Si(¹ J _{Si-Pt})	195 Pt{ 1 H}
608	71.5 (2957 Hz)	32.7 (1599 Hz)	-4985
609	69.3 (2837 Hz)	50.1	
610	81.8 (2960 Hz)	20.7	
611	71.0 (2942 Hz)	33.0	
612	69.2 (2526 Hz)	323.2 (896 Hz)	-5050

Table 6-6. Selected NMR data for the cationic (PSiP)PtX species in C_6H_5F . (Coupling constant in Hz)

Figure 6-6. NMR spectra for **612.** (Top: ${}^{31}P{}^{1}H$ } NMR; Middle: ${}^{195}Pt{}^{1}H$ } NMR; Bottom: ${}^{29}Si$ NMR)

6.2.4 Synthesis and Reactivity of (PSiP)PdCl

The synthesis of (PSiP)PdCl (**613**) is described in Scheme 6-17. Unlike the Pt case, although 2,6-lutidine was added before **207**, (PSi^{Cl}P^{iPr})PdCl (**614**) was always observed as a byproduct in this reaction. **614** was removed from **613** by recrystallization from a toluene/pentane solution at -30 °C. The ¹H, ³¹P{¹H} and ²⁹Si NMR spectra of **613** are consistent with the formation of C_s symmetric square-planar complex with Cl *trans* to Si center.

Scheme 6-17. Synthetic procedure for PSi^HP^{iPr}PdCl (613).

Hydride abstraction reaction (Scheme 6-18) with Ph₃C[HCB₁₁Cl₁₁] was performed with **613** which yielded one single compound (**615**) with a ²⁹Si NMR resonance around 56 ppm. Hence, **615** is likely a silyl complex. Reactions of **613** with Me₃SiI, MeLi or PhLi have been explored with the goal of access to the corresponding (PSi^HP^{iPr})PdI, (PSi^HP^{iPr})PdMe or (PSi^HP^{iPr})PdPh products. However, none of these reactions proceeded to give clean products.

Scheme 6-18. Synthetic procedure for $PSi^{Cl}P^{iPr}Pt^+$ (615) from 613.

6.3 Conclusion

In this chapter, (PSi^HP^{iPr})PtCl was synthesized from Pt(COD)Cl₂ and PSi(H₂)P ligand via Si-H bond activation in the presence of base. Direct X ligand exchange methods yielded a series of (PSi^HP^{iPr})PtX (X=I, OTf, Me, Ph, Mes) compounds from (PSi^HP^{iPr})PtCl. Ph₃C[HCB₁₁Cl₁₁] was shown to be able to used to abstract the hydride from the silicon center on these (PSi^HP^{iPr})PtX compounds. The resulting platinum silylene complexes displayed silylium character, which was exemplified by the X ligand abstraction with Cl, I, Me and Ph. However, the mesityl group was resistant towards abstraction by silylene center, which is probably attributed to the steric bulkiness of mesityl group. Hence, a pincer metal silylene species was observed after the hydride abstraction which was the first reported PSiP metal species with a central silylene donor.

6.4 Experimental Details

General considerations. Unless specified otherwise, all reactions and manipulations were carried out under an argon atmosphere using glovebox or Schlenk line techniques. Dry, oxygen–free solvents were employed. Toluene, n-pentane, diethyl ether and C_6D_6

were dried over NaK/Ph₂CO/18-crown-6, distilled and stored over molecular sieves in an Ar-filled glove box. Fluorobenzene and C_6D_5Br were dried over CaH₂, distilled and stored over molecular sieves in an Ar-filled glove box. Si(OEt)₄ and 2,6-lutidine were fractionally distilled prior to use. Ph₃C[HCB₁₁Cl₁₁],⁹⁸ Pt[COD]Cl₂ ²⁰⁷ and Pd[COD]Cl₂²⁰⁷ were prepared according to published procedures. PSi(H₂)P was prepared according to methods described in Chapter II. All other chemicals were used as received from commercial vendors unless otherwise noted.

Physical Methods. NMR spectra were recorded on a Varian iNova 300 spectrometer (¹H NMR, 299.9 MHz, ¹³C NMR, 75.4 MHz, ³¹P NMR, 121.4 MHz), a Varian iNova 400 spectrometer (¹H NMR, 400.0 MHz, ¹³C NMR, 100.5 MHz, ³¹P NMR, 161.9 MHz ²⁹Si NMR, 79.4 MHz, ¹⁹⁵Pt NMR, 85.9 MHz) and a Varian iNova 500 spectrometer (¹H NMR, 400.0 MHz, ¹³C NMR, 125.7 MHz, ³¹P NMR, 202.4 MHz) in noted solvents. Chemical shifts are given in δ (ppm). ²⁹Si NMR spectra were referenced externally with SiMe₄ at δ 0. ³¹P{¹H} NMR spectra were referenced externally with 85% phosphoric acid at δ 0. ¹H NMR and ¹³C{¹H} NMR spectra were referenced using the solvent signals. Elemental analyses were performed by CALI, Inc. (Parsippany, NJ). The solid state structures of **601** and **607** were solved by Dr. David E. Herbert.

(**PSiP**)**PtCl** (**601**). To a solution of $Pt(COD)Cl_2$ (1.80 g, 4.76 mmol) and 2,6-lutidine (0.56 mL, 4.81 mmol) in toluene (30 mL) was added a solution of **207** (1.94 g, 4.67 mmol) in 10 mL toluene. The resulting white suspension was stirred at room temperature for 3 h, then the reaction mixtures were filtered through a short plug of Celite. After removal of all volatiles, the crude products were purified by recrystallization from toluene/pentane solution at -30 °C. X-ray quality crystals were obtained by slow diffusion of pentane to a saturated toluene solution of 601. Yield: 2.6 g (85%). ${}^{31}P{}^{1}H{}$ NMR (121.4 MHz, C₆D₆): δ 68.1 (s, J_{Pt-P} = 2887 Hz). ${}^{1}H{}$ NMR (299.9 MHz, C_6D_6): δ 8.05 (d, $J_{H-H} = 7$ Hz, 2H, Ar-H), 7.31 (m, 2H, Ar-H), 7.21 (t, $J_{H-H} = 7$ Hz, 2H, Ar-H), 7.11 (t, $J_{H-H} = 7$ Hz, 2H, Ar-H), 5.74 (s, $J_{Pt-H} = 39$ Hz, $J_{Si-H} = 182$ Hz, 1H, Si-H), 3.39 (m, 2H, CHMe₂), 2.46 (m, 2H, CHMe₂), 1.41 (m, 12H, CHMe₂), 1.10 (dvt, $J_{P-H} = 7$ Hz, $J_{H-H} = 7$ Hz, 6H, CHMe₂), 0.93 (dvt, $J_{P-H} = 7$ Hz, $J_{H-H} = 7$ Hz, 6H, CHMe₂). ¹³C{¹H} NMR (100.5 MHz, C₆D₆): δ 151.4 (t, $J_{P-C} =$ 21 Hz), 141.6 (t, J_{P-C} = 26 Hz), 134.1 (m), 131.1 (br m, J_{Pt-C} = 44 Hz), 130.7 (br m), 128.9 (t, $J_{P-C} = 4 Hz$), 27.7 (vt, $J_{P-C} = 14 Hz$, CHMe₂), 25.9 (vt, $J_{P-C} = 14 Hz$, CHMe₂), 19.2 (vt, $J_{P-C} = 2$ Hz, CHMe₂), 19.0 (br m, $J_{Pt-C} = 20$ Hz, CHMe₂), 18.6 (br, CHMe₂), 18.2 (br m, $J_{Pt-C} = 22$ Hz, CHMe₂). ¹⁹⁵Pt{¹H} NMR (85.9 MHz, C₆D₆): δ -5051.4 (t, $J_{Pt-P} = 2885 \text{ Hz}$). ²⁹Si NMR (79.4 MHz, C₆D₆): δ 11.7 (d, $J_{Si-H} = 180 \text{ Hz}$, $J_{Pt-Si} = 1192$ Hz). Elem. An. Found (Calculated) for C₂₄H₃₇ClP₂PtSi: C, 44.64 (44.61); H, 5.82 (5.77)%.

(**PSiP)PtI** (603). To a solution of 601 (53 mg, 0.08 mmol) in 2 mL toluene (30 mL) was added iodotrimethylsilane (17.5 μ L, 0.12 mmol). The reaction mixtures were stirred at room temperature for 1 h before all volatiles were removed under vacuum. The residue was redissolved in 2 mL toluene, mixed with second portion of iodotrimethylsilane (17.5 μ L, 0.12 mmol) and stirred at room temperature for 1 h. After removal of all volatiles, the crude products were recrystallized from toluene/pentane solution at -30 \mathbb{C} and dried under vacuum. Yield: 36 mg (61%).

³¹P{¹H} NMR (121.4 MHz, C₆D₆): δ 67.9 (s, J_{Pt-P} = 2846 Hz). ¹H NMR (299.9 MHz, C₆D₆): δ 8.03 (d, J_{H-H} = 7 Hz, 2H, Ar-*H*), 7.35 (m, 2H, Ar-*H*), 7.21 (dt, J_{H-H} = 7 Hz, J_{P-H} = 1 Hz, 2H, Ar-*H*), 7.09 (t, J_{H-H} = 7 Hz, 2H, Ar-*H*), 5.73 (s, J_{Pt-H} = 41 Hz, J_{Si-H} = 184 Hz, 1H, Si-*H*), 3.51 (m, 2H, C*H*Me₂), 2.66 (m, 2H, C*H*Me₂), 1.49 (dvt, J_{P-H} = 7 Hz, J_{H-H} = 7 Hz, 6H, CH*Me*₂), 1.27 (dvt, J_{P-H} = 7 Hz, J_{H-H} = 7 Hz, 6H, CH*Me*₂), 1.02 (dvt, J_{P-H} = 7 Hz, J_{H-H} = 7 Hz, 6H, CH*Me*₂), 0.93 (dvt, J_{P-H} = 7 Hz, J_{H-H} = 7 Hz, 6H, CH*Me*₂), 1.02 (dvt, J_{P-H} = 7 Hz, J_{H-H} = 7 Hz, 6H, CH*Me*₂), 0.93 (dvt, J_{P-H} = 7 Hz, J_{H-H} = 7 Hz, 6H, CH*Me*₂), 1.02 (dvt, J_{P-H} = 7 Hz, J_{H-H} = 7 Hz, 6H, CH*Me*₂), 0.93 (dvt, J_{P-C} = 21 Hz), 141.6 (t, J_{P-C} = 25 Hz), 133.9 (m), 131.3 (br m, J_{Pt-C} = 43 Hz), 130.6 (br m), 129.0 (t, J_{P-C} = 4 Hz), 28.6 (vt, J_{P-C} = 14 Hz, CHMe₂), 28.2 (vt, J_{P-C} = 14 Hz, CHMe₂), 20.2 (m, CH*Me*₂), 19.0 (m, CH*Me*₂), 18.8 (br, CH*Me*₂), 18.4 (m, J_{Pt-C} = 24 Hz, CH*Me*₂). ¹⁹⁵Pt{¹H} NMR (85.9 MHz, C₆D₆): δ -5284.9 (t, J_{Pt-P} = 2845 Hz). ²⁹Si NMR (79.4 MHz, C₆D₆): δ 19.6 (d, J_{Si-H} = 183 Hz, J_{Pt-Si} = 1160 Hz).

(**PSiHP)PtOTf** (**Compound 604**). To a solution of **601** (27 mg, 0.04 mmol) in 0.5 mL C₆D₆ was slowly added trimethylsilyl triflate (75 μ L, 0.41 mmol). The reaction mixtures were stayed at room temperature for 1 h. After all volatiles were removed under vacuum, another portion of C₆D₆ (0.5 mL) and Me₃SiOTf (75 μ L) was added into the mixtures. The mixtures were stayed at room temperature for 1 h. After removal of all volatiles, the crude products were washed with cold pentane and dried under vacuum at 80 \mathbb{C} for 3 h. Yield: 22 mg (71%). ³¹P{¹H} NMR (121.4 MHz, C₆D₆): δ 72.9 (s, J_{Pt-P}= 2941 Hz). ¹H NMR (299.9 MHz, C₆D₆): δ 7.87 (d, J_{H-H} = 7 Hz, 2H, Ar-*H*), 7.20-7.09 (m, 6H, Ar-*H*), 5.53 (s, J_{Pt-H} = 60 Hz, J_{Si-H} = 193 Hz, 1H, Si-*H*), 3.05-2.80 (m, 4H, C*H*Me₂), 1.47 (dvt, J_{P-H} = 7 Hz, J_{H-H} = 7 Hz, 6H, CH*Me*₂), 1.22 (dvt, J_{P-H} = 7 Hz, J_{H-H} = 7

Hz, 6H, CH*Me*₂), 0.96-0.81 (m, 12H, CH*Me*₂). ¹⁹F NMR (282.2 MHz, C₆D₆): δ -77.7 (s). ¹⁹⁵Pt{¹H} NMR (85.9 MHz, C₆D₆): δ -5056.6 (t, $J_{Pt-P} = 2941$ Hz). ²⁹Si NMR (79.4 MHz, C₆D₆): δ -1.5 (d, $J_{Si-H} = 193$ Hz, $J_{Pt-Si} = 1373$ Hz).

(PSiHP)PtMe (Compound 605). To a solution of 601 (76 mg, 0.12 mmol) in 2 mL toluene was slowly added MeLi (80 µL, 1.6 M in diethyl ether, 0.13 mmol). The reaction mixtures were stirred at room temperature for 1 h and then filtered through a short plug of Celite. After removal of all volatiles, the crude products were recrystallized from toluene/pentane solution at -30 °C and dried under vaccuum. Yield: 52 mg (71%). ${}^{31}P{}^{1}H{}$ NMR (121.4 MHz, C₆D₆): δ 67.1 (s, J_{Pt-P} = 2863 Hz). ¹H NMR (299.9 MHz, C₆D₆): δ 8.27 (d, J_{H-H} = 7 Hz, 2H, Ar-*H*), 7.42 (m, 2H, Ar-*H*), 7.25 (t, $J_{H-H} = 7$ Hz, 2H, Ar-H), 7.14 (t, $J_{H-H} = 7$ Hz, 2H, Ar-H), 6.36 (s, $J_{Pt-H} = 21$ Hz, $J_{Si-H} = 166 \text{ Hz}, 1\text{H}, Si-H), 2.95 \text{ (m, 2H, CHMe_2)}, 2.46 \text{ (m, 2H, CHMe_2)}, 1.32 \text{ (t, } J_{P-H} =$ 5 Hz, 3H, PtMe), 1.18 (m, 12H, CHMe₂), 0.99 (m, 12H, CHMe₂). ¹³C{¹H} NMR $(100.5 \text{ MHz}, C_6D_6)$: δ 154.8 (t, J_{P-C} = 21 Hz), 144.8 (t, J_{P-C} = 26 Hz), 135.0 (t, J_{P-C} = 10 Hz), 130.8 (br m, $J_{Pt-C} = 30$ Hz), 129.8 (br m), 128.1 (br m), 28.2 (vt, $J_{P-C} = 14$ Hz, $CHMe_2$), 25.7 (vt, $J_{P-C} = 14$ Hz, $CHMe_2$), 19.6 (m, $CHMe_2$), 19.2 (m, $CHMe_2$), 18.4 (m, CHMe₂), 18.3 (m, CHMe₂), -3.7 (t, $J_{P-C} = 8$ Hz, $J_{Pt-C} = 505$ Hz, PtMe). ¹⁹⁵Pt{¹H} NMR (85.9 MHz, C₆D₆): δ -4935.5 (t, J_{Pt-P} = 2862 Hz). ²⁹Si NMR (79.4 MHz, C₆D₆): δ 43.1 (d, J_{Si-H} = 166 Hz, J_{Pt-Si} = 660 Hz).

(**PSiHP)PtPh** (**Compound 606**). To a solution of **601** (102 mg, 0.16 mmol) in 2 mL toluene was slowly added PhLi (90 μ L, 1.8 M in dibutyl ether, 0.16 mmol). The reaction mixtures were stirred at room temperature for 3 h and then filtered through a

short plug of Celite. After removal of all volatiles, the crude products were recrystallized from toluene/pentane solution at -30 °C and dried under vaccuum at 80 \mathbb{C} for 12 h. Yield: 80 mg (73%). ³¹P{¹H} NMR (121.4MHz, C₆D₆): δ 64.9 (s, J_{Pt-P} = 2848 Hz). ¹H NMR (299.9 MHz, C_6D_6): δ 8.26 (d, $J_{H-H} = 7$ Hz, 2H, Ar-H), 7.88 (d, $J_{H-H} = 7 Hz$, $J_{Pt-H} = 40 Hz$, 2H, Ar-H), 7.44 (t, $J_{H-H} = 7 Hz$, 2H, Ar-H), 7.34 (m, 2H, Ar-H), 7.25 (t, $J_{H-H} = 7$ Hz, 2H, Ar-H), 7.14 (m, 3H, Ar-H), 6.47 (s, $J_{Pt-H} = 20$ Hz, J_{Si} - $_{\rm H}$ = 167 Hz, 1H, Si-H), 2.88 (m, 2H, CHMe₂), 2.40 (m, 2H, CHMe₂), 1.08 (dvt, J_{P-H} = 7 Hz, J_{H-H} = 7 Hz, 6H, CHMe₂), 0.99 (m, 12H, CHMe₂), 0.88 (dvt, J_{P-H} = 7 Hz, J_{H-H} = 7 Hz, 6H, CHMe₂). ¹³C{¹H} NMR (100.5 MHz, C₆D₆): δ 174.6 (t, J_{P-C} = 10 Hz, J_{Pt-C} = 690 Hz, PtPh), 154.3 (t, J_{P-C} = 21 Hz), 143.8 (t, J_{P-C} = 26 Hz), 141.1 (br m), 134.8 (br m, $J_{Pt-C} = 150$ Hz, PtPh), 131.0 (m), 130.1 (m), 129.9 (m), 122.2 (m, PtPh), 122.0 (m, PtPh), 28.0 (vt, $J_{P-C} = 14$ Hz, CHMe₂), 24.3 (m, CHMe₂), 19.2 (m, CHMe₂), 18.8 (m, CHMe₂), 18.0 (m, CHMe₂), 17.6 (m, CHMe₂). 195 Pt{¹H} NMR (85.9 MHz, C_6D_6): δ -5024.6 (t, J_{Pt-P} = 2846 Hz). ²⁹Si NMR (79.4 MHz, C_6D_6): δ 34.5 (d, J_{Si-H} = $166 \text{ Hz}, J_{\text{Pt-Si}} = 632 \text{ Hz}$).

(**PSiHP)PtMesityl** (**Compound 607**). To a solution of **601** (200 mg, 0.30 mmol) in 5 mL toluene was slowly added 2- mesitylmagnesium bromide (300 μ L, 1.0 M in diethyl ether, 0.30 mmol). The reaction mixtures were stirred at 80 \mathbb{C} for 12 h and then filtered through a short plug of Celite and silica gel. After removal of all volatiles, the crude products were recrystallized from toluene/pentane solution at -30 \mathbb{C} and dried under vaccuum at 80 \mathbb{C} for 12 h. Yield: 155 mg (71%). X-ray quality crystals were obtained by slow diffusion of pentane to a saturated toluene solution of

607. ³¹P{¹H} NMR (121.4 MHz, C₆D₆): δ 63.0 (s, J_{Pt-P} = 2861 Hz). ¹H NMR (299.9 MHz, C₆D₆): δ 8.23 (d, J_{H-H} = 7 Hz, 2H, Ar-*H*), 7.28-7.22 (m, 4H, Ar-*H*), 7.15-7.07 (m, 4H, Ar-*H*), 6.37 (s, J_{Pt-H} = 22 Hz, J_{Si-H} = 168 Hz, 1H, Si-*H*), 2.76 (s, 3H, Ar-*Me*), 2.74 (m, 2H, C*H*Me₂), 2.49 (s, 3H, Ar-*Me*), 2.45 (m, 2H, C*H*Me₂), 2.40 (s, 3H, Ar-*Me*), 1.11-0.93 (m, 18H, CH*Me*₂), 0.80 (dvt, J_{P-H} = 7 Hz, J_{H-H} = 7 Hz, 6H, CH*Me*₂). ¹³C{¹H} NMR (125.7 MHz, C₆D₆): δ 163.7 (m, Pt-*Ar*), 153.2 (t, J_{P-C} = 20 Hz), 145.3 (m), 144.9 (s, J_{Pt-C} = 26 Hz), 143.6 (t, J_{P-C} = 26 Hz, J_{Pt-C} = 26 Hz), 134.7 (t, J_{P-C} = 10 Hz), 131.7 (s), 130.7 (s, J_{Pt-C} = 30 Hz), 130.0 (s), 128.3 (m), 29.1 (m, Ar-*Me*), 29.0 (m, Ar-*Me*), 26.2 (m, J_{Pt-C} = 54 Hz, CHMe₂), 24.1 (m, J_{P-C} = 16 Hz, CHMe₂), 21.3 (s, Ar-*Me*), 19.0 (m, CH*Me*₂). ¹⁹⁵Pt{¹H} NMR (85.9 MHz, C₆D₆): δ -4910.1 (t, J_{Pt-P} = 2846 Hz). ²⁹Si NMR (79.4 MHz, C₆D₆): δ 36.1 (d, J_{Si-H} = 170 Hz, J_{Pt-Si} = 608 Hz). Elem. An. Found (Calculated) for C₃₀H₄₈P₂PtSi: C, 54.38 (54.31); H, 6.68 (6.63)%.

(**PSi^{Cl}P)Pt[HCB₁₁Cl₁₁] (608)**. To a solution of **601** (67 mg, 0.10 mmol) in 0.5 mL fluorobenzene was slowly added Ph₃C[HCB₁₁Cl₁₁] (78 mg, 0.10 mmol). The resulting yellow solution was stayed at room temperature for 1 h and then filtered through a short plug of Celite. After removal of all volatiles, the crude pale yellow products were washed with pentane three times and dried under vacuum for 30 m. Yield: 95 mg (79 %). ³¹P{¹H} NMR (121.4 MHz, 295 K, C₆H₅F): δ 71.5 (s, J_{Pt-P} = 2957 Hz). ¹⁹⁵Pt{¹H} NMR (85.9 MHz, 295 K, C₆H₅F): δ -4985 (t, J_{Pt-P} = 2960Hz). ²⁹Si NMR (79.4 MHz, 295 K, C₆H₅F): δ 32.7 (s, J_{Pt-Si} = 1599 Hz).

(**PSi^IP)Pt[HCB₁₁Cl₁₁]** (609). To a solution of 603 (20 mg, 0.027 mmol) in 0.3 mL fluorobenzene was slowly added Ph₃C[HCB₁₁Cl₁₁] (21 mg, 0.027 mmol). The resulting yellow solution was stayed at room temperature for 1 h. ${}^{31}P{}^{1}H$ NMR (121.4 MHz, 295 K, C₆H₅F): δ 69.3 (s, J_{Pt-P} = 2837 Hz). 29 Si NMR (79.4 MHz, 295 K, C₆H₅F): δ 50.1 (s).

(**PSi^{Me}P)Pt[HCB₁₁Cl₁₁] (610**). To a solution of **605** (45 mg, 0.074 mmol) in 0.5 mL fluorobenzene was slowly added Ph₃C[HCB₁₁Cl₁₁] (56 mg, 0.704 mmol). The resulting yellow solution was stayed at room temperature for 2 h and then filtered through a short plug of Celite. After removal of all volatiles, the crude yellow products were washed with pentane three times and dried under vacuum 3 h. Yield: 76 mg (74%). ³¹P{¹H} NMR (121.4 MHz, 295 K, C₆H₅F): δ 81.8 (s, J_{Pt-P} = 2960 Hz). ²⁹Si NMR (79.4 MHz, 295 K, C₆H₅F): δ 20.7 (s).

(PSi^{Ph}P)Pt[HCB₁₁Cl₁₁] (611). To a solution of 606 (45 mg, 0.065 mmol) in 0.5 mL fluorobenzene was slowly added Ph₃C[HCB₁₁Cl₁₁] (50 mg, 0.065 mmol). The resulting deep red solution was stayed at room temperature for 2 h. ³¹P{¹H} NMR (121.4 MHz, 295 K, C₆H₅F): δ 65.5 (s, J_{Pt-P} = 2828 Hz), 71.0 (s, J_{Pt-P} = 2942 Hz). During the time, the deep red solution slowly became a pale yellow solution. ³¹P{¹H} NMR (121.4 MHz, 243 K, C₆H₅F): δ 71.0 (s, J_{Pt-P} = 2942 Hz). ²⁹Si NMR (79.4 MHz, 295 K, C₆H₅F): δ 30.0 (s).

(**PSiP**)**PtMesityl[HCB₁₁Cl₁₁] (612**). To a solution of **607** (115 mg, 0.16 mmol) in 0.5 mL fluorobenzene was slowly added $Ph_3C[HCB_{11}Cl_{11}]$ (120 mg, 0.16 mmol). The resulting deep red solution was stayed at room temperature for 2 h and then filtered

through a short plug of Celite. After removal of all volatiles, the crude deep red products were washed with pentane three times and dried under vacuum 3 h. Yield: 145 mg (74%). ${}^{31}P{}^{1}H{}$ NMR (161.9 MHz, 243 K, C₆H₅F): δ 69.2 (s, J_{Pt-P} = 2526 Hz). ${}^{195}Pt{}^{1}H{}$ NMR (85.9 MHz, 243 K, C₆H₅F): δ -5050 (t, J_{Pt-P} = 2526 Hz). ${}^{29}Si$ NMR (79.4 MHz, 243 K, C₆H₅F): δ 323.2 (s, J_{Pt-Si} = 896 Hz).

(**PSiP)PdCl** (**613**). To a solution of Pd(COD)Cl₂ (136 mg, 0.48 mmol) and 2,6lutidine (0.28 mL, 2.4 mmol) in toluene (5 mL) was added a solution of **207** (200 mg, 0.48 mmol) in 10 mL toluene. The resulting white suspension was stirred at room temperature for 3 h, then the reaction mixtures were filtered through a short plug of Celite. After removal of all volatiles, the crude products were purified by recrystallization from toluene/pentane solution at -30 \mathbb{C} . Yield: 180 mg (64%). ³¹P{¹H} NMR (121.4 MHz, C₆D₆): δ 66.2 (s). ¹H NMR (299.9 MHz, C₆D₆): δ 7.97 (d, J_{H-H} = 7 Hz, 2H, Ar-*H*), 7.08-7.27 (m, 6H, Ar-*H*), 6.11 (s, J_{Si-H} = 182 Hz, 1H, Si-*H*), 3.08 (m, 2H, C*H*Me₂), 2.11 (m, 2H, C*H*Me₂), 1.42 (m, 12H, CH*Me*₂), 1.04 (dvt, J_{P-H} = 7 Hz, J_{H-H} = 7 Hz, 6H, CH*Me*₂), 0.93 (dvt, J_{P-H} = 7 Hz, J_{H-H} = 7 Hz, 6H, CH*Me*₂). ²⁹Si NMR (79.4 MHz, C₆D₆): δ 29.4 (d, J_{Si-H} = 186 Hz).

(PSi^{Cl}P)Pd[HCB₁₁Cl₁₁] (615). To a solution of 613 (88 mg, 0.17 mmol) in 0.5 mL fluorobenzene was slowly added Ph₃C[HCB₁₁Cl₁₁] (110 mg, 0.15 mmol). The resulting orange solution was stayed at room temperature for 1 h and then filtered through a short plug of Celite. After removal of all volatiles, the crude pale yellow products were washed with pentane three times and dried under vacuum 3 h. ${}^{31}P{}^{1}H$ NMR (121.4 MHz, 295 K, C₆D₅Br): δ 66.8 (s). 29 Si NMR (79.4 MHz, 295 K, C₆D₅Br): δ 55.7 (s).

Attempted preparation of (PSiP)PdI. Similar procedure as in the synthesis of 603 was applied in an attempt to make (PSiP)PdI. Treatment of 613 (40 mg, 0.07 mmol) with Me₃SiI (15 μ L, 0.11 mmol) afforded mutiple products.

Attempted preparation of (PSiP)PdMe. Similar procedure as in the synthesis of 605 was applied in an attempt to make (PSiP)PdMe. Treatment of 613 (93 mg, 0.17 mmol) with MeLi (104 μ L, 1.6 M in diethyl ether, 0.17 mmol) afforded mutiple products based on ³¹P{¹H} NMR spectra.

Attempted preparation of (PSiHP)PdPh. Similar procedure as in the synthesis of 606 was applied in an attempt to make (PSiHP)PdPh. Treatment of 613 (100 mg, 0.18 mmol) with PhLi (100 μ L, 1.8 M in dibutyl ether, 0.18 mmol) afforded two products based on ³¹P NMR spectra.

CHAPTER VII DESIGN AND SYNTHESIS OF PINCER PBP Rh COMPLEXES

7.1 Introduction

7.1.1 Metal Boryl Complexes

"Boryl" refers to an sp²-hybridized BX₂ species.^{163c} Boryls are very strong σ donors, and therefore are ligands of very strong *trans* influence.²⁰⁸ Their effects have been studied theoretically²⁰⁹ and experimentally.²¹⁰ Unlike organolithium or Grignard reagents, stable source of BX₂⁻ hardly exists due to the coordinating unsaturation of the boron atom as well as the large difference of electronegativities between boron and lithium (2.04 vs 0.96).²¹¹ Hence, compared to the corresponding metal alkyl species, metal boryl complexes are far less common in the literature. Of the existing metal boryl compounds, the two X atoms on the boron are normally good π -donors, such as oxygen, nitrogen or halogen.^{163c}

Figure 7-1. First structurally characterized metal boryl compound.

The first structurally characterized metal boryl species (Figure 7-1) with two-centertwo-electron metal-boron σ -bond was published in 1990.²¹² Most early examples of metal boryl compounds were limited to mid-transition metals.²¹³ There has been a recent surge in the studies of metal boryl compounds with group 10 metals, since they are often regarded as key intermediates in the catalytic diboration and borylation reactions.²¹⁴

7.1.2 Pincer Boryl Ligands

Although metal boryl species have been widely used in catalytic borylation reactions, in these cases the boryl ligands functioned as "active ligands".^{163c} It would be interesting to develop pincer boryl ligands, which could take advantage of the strong *trans*-labilizing effect of the boryl group to promote the formation of coordinatively unsaturated metal complexes. The first pincer ligand with central monoanionic boryl unit was reported by the Nozaki group in 2009¹⁶ (**A**, Figure 7-2), in which the chelating diamino substituents were used to stabilize the electron-deficient boryl unit.¹⁶ The slightly longer Ir-Cl bond length in (P^NB^NP)Ir(H)(Cl)(CO) compared to that in similar (PCP)Ir(H)(Cl)(CO) species revealed the stronger σ -donor ability of P^NB^NP ligand than that of PCP.^{16a}

Figure 7-2. Pincer boryl complexes known in the literature. (Each dot on the cage represents one BH group)

Scheme 7-1. Ir-Cl bond distances (in Å) of (PCP)Ir(H)(Cl)(CO) and $(P^NB^NP)Ir(H)(Cl)(CO)$ complexes.

Later, Mirkin and coworkers developed carborane-based tridentate ligands with a central boryl unit (**B**, Figure 5-2).¹¹⁴ The bis(selenophenyl)carborane (SeBSe) and bis(thiophenylether)carborane (SBS) have been employed to make Pd complexes via B-H bond activation. However, the boryl unit here is not a classical sp² hybridized BX₂ species, the electrons of the boron atoms are delocalized throughout the boron cluster cage, which contributes to the stability of these boron cluster based pincer complexes. Recently, Nakamura and coworkers developed carborane-based NBN chiral ligands (**C**, Figure 5-2) and their metal complexes with Pd, Ni and Rh.¹¹⁵ The (NBN)Rh complexes

were shown to be an effective catalyst for asymmetric reduction of α,β -unsaturated esters and asymmetric reductive aldol reaction of *tert*-butyl acrylate and benzaldehyde with diethoxymethylsilane as the reductant (Scheme 7-2).

Scheme 7-2. Reactions catalyzed by (NBN)Rh complexes.

We decided to obtain **702** type of pincer boryl complexes which not only eliminate the potentially reactive methylene protons in reported $P^N B^N P$ complexes, but also mimic the rigid backbone set our group reported before in PNP and PSiP complexes, which would be easier in the future to evaluate the electronic effect of boryl central donor in pincer boryl complexes. We expected to obtain **702** via activation of B-Ph of **701**, which is a known compound reported by Bourissou group.¹²⁹ We reasoned **701** might dissociate at elevated temperature to its monomer species which would open a *cis* empty site for potential oxidative addition of B-Ph bond (Scheme 7-3).²²

Scheme 7-3. Potential pathway to pincer boryl compound via activation of B-Ph bond.

7.2 Results and Discussion

7.2.1 Bisphosphino-borane (PB^{Ph}P) Ligand and its Complexes with Rh

Synthesis of the PB^{Ph}P ligand **210** was described in Chapter II. **701** $[(PB^{Ph}P)RhCl]_2$ was readily obtained via the method developed by Bourissou and coworkers (Scheme 7-4).¹²⁹ After workup, **701** was isolated as yellow powder with 95% yield which displayed spectroscopic features consistent with the literature report with two isomers observed in ¹H and ³¹P{¹H} NMR spectrum. X-ray²¹⁵ quality crystals of one of the isomers of **701** were obtained by slow diffusion of *n*-pentane into a saturated CHCl₃ solution of **701** at room temperature (Figure 7-3). The structure for the isomer we obtained for **701** was consistent with the structure Bourissou reported in 2006.¹²⁹

Scheme 7-4. Synthesis of 701 from 210 and [Rh(COD)Cl]₂.

Figure 7-3. ORTEP¹²⁸ drawing (50% probability ellipsoids) of **701.** Omitted for clarity: H atoms and *iso*-propyl groups on the phosphorus atoms. Selected distance (Å) and angles (deg) follow: Rh1-B1, 2.303 (3); Rh1-P1, 2.2509 (9); Rh1-P2: 2.2637 (9); Rh1-Cl1. 2.4316 (6); Rh1-Cl2, 2.4380 (6); Cl1-Rh1-Cl2, 77.97 (2); P1-Rh1-P2, 98.38 (3); Cl1-Rh1-P1, 172.27 (3); Cl2-Rh1-P2, 166.46 (3); P1-Rh1-B1, 81.68 (8); P2-Rh1-B1, 80.26 (8); Cl1-Rh1-B1, 102.57 (8); Cl2-Rh1-B1, 105.08 (8).

Thermolysis of **701** at 170 \mathbb{C} in *o*-dichlorobenzene (ODCB) for 7 d gave one metal complex **703** (Scheme 7-5), which was characterized by multinuclear NMR spectroscopy after workup. **703** displayed one doublet in the ³¹P{¹H} NMR spectrum at 45.1 ppm with a much smaller ¹J_{Rh-P} at 106 Hz compared to that of **701**, which is consistent with a Rh complex with lower electron density on the Rh center.^{183b} The ¹H and ¹³C{¹H} NMR spectra indicated the loss of the phenyl group which was originally on the boron center. One methine and two methyl resonances were observed for the *iso*propyl groups, suggesting C_{2v} symmetry for **703**. Based on the spectroscopic data, **703** was proposed to be (PBP)RhCl₂. However, no structural evidence has yet been obtained for **703**. We suspect that **703** was formed by a series sequence of B-Ph oxidative addition, reductive elimination of PhCl, C-Cl oxidative addition of ODCB, and then β chloride elimination.

Scheme 7-5. Thermolysis of 701 to obtain 703.

7.2.2 PB^{Ph}PRhX Complexes

Although thermolysis of **701** produced boryl compound **703** (spectroscopic evidence), the reaction was not clean since a brownish powder was collected as the product and multiple organic byproducts was observed in the aromatic region in the ¹H NMR spectra. Given the fact that the reaction was heated at such a high temperature for extended period of time, it is quite possible that some decomposition reactions might occur. We therefore decided to synthesize PB^{Ph}PRhX compounds with more donating

Scheme 7-6. Synthesis of complexes 704, 706 and 708 from 701.

A series of (PB^{Ph}P)Rh carboxylate complexes (**704**, **706** and **708**) were obtained via reaction of **701** and corresponding sodium carboxylate in 72%-79% yield (Scheme 7-6).²¹⁶ Complexes **704**, **706** and **708** were characterized by ¹H, ³¹P, ¹³C, and ¹⁹F (where applicable) NMR (Tables 7-1, 7-2). All of them possess one doublet with ¹J_{Rh-P} around 170 Hz in the ³¹P{¹H} NMR spectra. ¹H NMR spectra of these compounds show two different isopropyl groups on the phosphine arms on the NMR timescale (Table 7-2). All the spectroscopic features of Rh carboxylate complexes in solution indicate they adopt C_s symmetry. The signals of **704** and **706** in ¹¹B{¹H} NMR spectra are very weak. Nevertheless, satisfied ¹¹B{¹H} NMR spectrum was collected for **708** which displayed a

broad signal at 20.0 ppm. The relatively upfield chemical shift suggests the boron center being four coordinated,^{163c} which means the phenyl group is likely to be bound to the boron. Moreover, C_{ipso} of phenyl group in **704** and **708** displayed broad signals in ¹³C{¹H} NMR spectra which is probably owing to the quadrupolar effect of boron atom. Notably, only two sets of the proton resonances for the phenyl group were observed for **704**, **706** and **708**, indicating the free rotation of the phenyl group along the B-C_{*ipso*} bond on the NMR time scale.

Table 7-1. Selected NMR data for the (PB^{Ph}P)Rh carboxylate species in CDCl₃, δ ppm. (coupling constant in Hz)

No.	³¹ P{ ¹ H} (¹ JRh-P)	RhO(O)CR	RhO(O)CR
704	74.8 (168)	¹ H: 1.52 (s, 3H)	¹³ C{ ¹ H}:190.4
706	78.5 (176)	¹⁹ F: 76.8(s)	not obtained
708	75.5 (168)	¹ H: 0.83 (s, 9H)	¹³ C{ ¹ H}:197.4

Table 7-2. Selected ¹H NMR data for the (PB^{Ph}P)Rh carboxylate species in CDCl₃, δ ppm. (only the PB^{Ph}P ligand resonance shown, coupling constant in Hz)

No.	aromatic region	aliphatic region
704	7.76 (m, 2H), 7.71 (d, 2H), 7.22 (m, 2H), 7.18-7.13 (m, 5H), 7.00 (t, 2H)	2.49 (m, 2H), 1.88 (m, 2H), 1.36 (m, 12H), 1.18 (dvt, 6H), 0.78 (dvt, 6H)
706	7.56-7.50 (m, 4H), 7.36 (m, 2H), 7.19 (t, 2H, 7.15-7.05 (m, 5H),)	2.56 (m, 2H), 2.09 (m, 2H), 1.43 (m, 12H), 1.31 (m, 6H), 1.01 (m, 6H)
708	7.46 (d, 2H), 7.34 (t, 2H), 7.28 (d, 2H), 7.21 (t, 2H), 7.08 (m, 3H), 7.02 (t, 2H)	2.55 (m, 2H), 2.05 (m, 2H), 1.41 (dvt, 12H), 1.27 (dvt, 6H), 0.99 (dvt, 6H)

X-ray quality crystals of **708** were obtained by slow diffusion of *n*-pentane to a saturated CHCl₃ solution of **708** (Figure 7-4). The solid state structure²¹⁵ of **708** is consistent with its spectroscopic data. The rhodium center adopts a square pyramidal geometry and only slightly deviates from the basal plane formed by the 2 phosphorus atoms and 2 oxygen atoms (0.071 Å in **708**). The pivalate functions as a κ^2 -ligand, while the PBP moiety adopts a facial geometry. The boron atom occupies the axial position with Rh-B distance at 2.28 Å. Compared to (PB^{Ph}P)Rh complexes in the literature,^{129,137,169b} the Rh-B distance in **708** is similar to that in compounds **A**, **B** and **D**, indicating a strong Rh \rightarrow B interaction (Figure 7-5). While in compounds **C** and **E**, the Rh-B bond distance are much longer due to the coordination of CO which results in a weaker Rh \rightarrow B interaction. Although we have not obtained solid state structures for **704** and **706**, the high similarity in spectroscopic data strong suggests **708**, **706** and **704** to display similar structures.

Figure 7-4. ORTEP¹²⁸ drawing (50% probability ellipsoids) of **708.** Omitted for clarity: H atoms and *iso*-propyl groups on phosphorus atoms. Selected distance (Å) and angles (deg) follow: Rh1-B1, 2.281 (5); Rh1-P1, 2.213 (1); Rh1-P2: 2.223 (1); Rh1-O1. 2.174 (2); Rh1-O2, 2.155 (3); B1-C2, 1.619 (6); B1-C8, 1.615 (5); B1-C25, 1.598 (5); O1-Rh1-O2, 60.8 (1); P1-Rh1-P2, 99.82 (4); O1-Rh1-P2, 157.42 (8); O2-Rh1-P1, 162.47 (7); P1-Rh1-B1, 82.7 (1); P2-Rh1-B1, 82.2 (1); O1-Rh1-B1, 107.2 (1); O2-Rh1-B1, 101.6 (1); C2-B1-C8, 109.3 (3); C2-B1-C25, 117.0 (3); C8-B1-C25, 116.1 (3); C2-B1-Rh1, 108.1 (2); C8-B1-Rh1, 103.1 (3); C25-B1-Rh1, 101.6 (2); C2-B1-Rh1-P1, 21.4 (2); C8-B1-Rh1-P2, 36.1 (2).

Figure 7-5. Rh-B bond distance (in Å) of (PBP)Rh complexes in literature.

704 slowly isomerized to **705** in CDCl₃ at room temperature (Scheme 7-5). The transformation appeared to reach equilibrium in CDCl₃ at room temperature in 12 h, with approximately 3 to 1 ratio of **705** to **704**. The equilibrium favored **705** at higher temperature with approximately 5 to 1 ratio of **705** to **704** at 50 \mathbb{C} , however the ratio returned to 3:1 once the mixture was cooled down to room temperature which confirmed this was indeed a equilibrium system. The same isomerization was much faster for **706**. In fact, **706** was observed to isomerize to **707** in C₆H₃F. Therefore **706** was always obtained as a mixture of **706** and **707**, since C₆H₃F was used as the solvent for the synthesis of **706**. **708**, on the other hand isomerized much more slowly to **709**. The equilibrium was reached at room temperature after 3 days, or at 60 \mathbb{C} in 12 hours with approximately 20:1 ratio of **709** versus **708** at room temperature.

The spectroscopic data of **705**, **707** and **709** was summarized in table 7-3, table 7-4 and table 7-5. All of them possess one doublet with ${}^{1}J_{Rh-P}$ around 140 Hz in the ${}^{31}P{}^{1}H$ } NMR spectra. The smaller ${}^{1}J_{Rh-P}$ compared to those of **704**, **706** and **708** suggests less electron density on the Rh center of **705**, **707** and **709**, which might be a result of oxidative addition of B-Ph bond.^{183b 1}H NMR spectra of these compounds showed two different *iso*-propyl groups on the phosphine arms on the NMR timescale (Table 7-2), which indicates C_s symmetry for complexes **705**, **707** and **709** in solution. The C_{*ipso*} of the phenyl group appeared as doublet of triplets in ${}^{13}C{}^{1}H$ NMR spectrum with a large J_{Rh-C}, which unambiguously revealed Ph group has transferred to the metal center. Five sets of proton resonances for the phenyl group were observed for **705**, **707** and **709**, indicating the rotation of the phenyl group along the Rh-C_{*ipso*} bond has been inhibited on the NMR time scale due to the steric crowding around Rh center. The relatively upfield chemical shift of **709** at 18.2 ppm in ¹¹B{¹H} NMR spectrum suggests the boron center being four coordinated.^{163c}

Table 7-3. Selected NMR data for the (PBP)Rh(Ph) carboxylate species in CDCl₃, δ ppm. (coupling constant in Hz)

No.	³¹ P{ ¹ H} (¹ JRh-P)	RhO(O)CR	RhO(O)CR
705	48.6 (140)	¹ H: 1.88 (s, 3H)	¹³ C{ ¹ H} 177.2
707	51.3 (133)	¹⁹ F: 75.5(s)	not obtained
709	48.2 (142)	¹ H: 0.88 (s, 9H)	¹³ C{ ¹ H} 184.2

Table 7-4. Selected ¹H NMR data for the (PBP)Rh(Ph) carboxylate species in CDCl₃, δ ppm. (only the PBP ligand resonance shown, coupling constant in Hz)

No.	aromatic region	aliphatic region
705	8.23 (d, 2H), 7.41 (t, 2H), 7.36- 7.31 (m, 2H), 7.28 (t, 2H),	2.45 (m, 2H), 1.93 (m, 2H), 1.23-1.36 (m, 18H), 0.08 (dvt, 6H)
707	8.03 (d, 2H), 7.54 (m, 2H), 7.42 (br, 2H), 7.29 (m, 2H)	2.35 (m, 2H), 2.18 (m, 2H), 1.18 (dvt, 12H), 0.94 (dvt, 6H), 0.40 (dvt, 6H)
709	8.11 (d, 2H), 7.37 (t, 2H), 7.31- 7.29 (m, 2H), 7.19 (t, 2H),	2.31 (m, 2H), 1.96 (m, 2H), 1.39 (dvt, 6H),1.24 (dvt, 6H), 1.14 (dvt, 6H), 0.14 (dvt, 6H)

No.	¹ H NMR	¹³ C{ ¹ H} NMR, only C _{ipso}
705	7.67 (d, 1H), 6.78 (t, 1H), 6.47 (t, 1H), 6.17 (t, 1H), 5.92 (d, 1H),	151.6 (dvt, ${}^{1}J_{Rh-C} = 22$, ${}^{1}J_{Rh-C} = 12$)
707	7.58 (br, 1H), 6.87 (br, 1H), 6.60 (t, 1H), 6.36 (br, 1H), 5.77 (br, 1H),	Not obtained
709	7.64 (d, 1H), 6.77 (t, 1H), 6.46 (t, 1H), 6.18 (t, 1H), 5.81 (d, 1H),	$152.5 (dvt, {}^{1}J_{Rh-C} = 34, {}^{1}J_{Rh-C} = 12)$

Table 7-5. Selected ¹H NMR and ¹³C{¹H} NMR data for the (PBP)Rh(Ph) carboxylate species in CDCl₃, δ ppm. (only phenyl group resonance shown, coupling constant in Hz)

X-ray quality crystals of **709** were obtained from slow diffusion of *n*-pentane to a saturated CHCl₃ solution of **709** (Figure 7-8). The solid state structure²¹⁵ we obtained is consistent with its spectroscopic data. Rhodium center adopts a square pyramidal geometry and only slightly deviated from the basal plane formed by the 2 phosphorus atoms, one oxygen atom and one carbon atom (0.118 Å in **709**). The PBP moiety adopts a meridional geometry with the boron atom occupying the axial position with Rh-B distance at 2.14 Å. The Rh-B bond distance is significantly shorter than that of other (PBP)Rh species with a Rh \rightarrow B interaction (Figure 7-6). ^{129,137,169b} The Rh-B bond distance is also considerably longer than that of Rh boryl complexes in the literature (Figure 7-6).²¹⁷ The carboxylate group is bridging between Rh-B bond. The two C-O bond distances of the carboxylate group are similar to each other (1.29 Å versus 1.24 Å). Carboxylate bridge has been previously studied with binuclear transition metal complexes, which displayed similar C-O bond length compared to the C-O bond length

in **709** (Figure 7-7).²¹⁸ Based on the solid state structure and upfield chemical shift ${}^{11}B{}^{1}H$ spectra, we assigned **709** as a carboxylate-substituted borane Rh complex.

Figure 7-6. Rh-B bond distances (in Å) in Rh boryl complexes in literature.

Figure 7-7. C-O bond distances (in Å) in carboxylate-bridging binuclear species.

Figure 7-8. ORTEP¹²⁸ drawing (50% probability ellipsoids) of **709.** Omitted for clarity: H atoms and *iso*-propyl groups on phosphine arms. Selected distance (Å) and angles (deg) follow: Rh1-B1, 2.141 (5); Rh1-P1, 2.316 (1); Rh1-P2: 2.323 (1); Rh1-O2. 2.190 (2); Rh1-C30, 2.011 (3); B1-C2, 1.614 (6); B1-C8, 1.612 (5); B1-O1, 1.549 (5); C25-O1, 1.296 (3); C25-O2, 1.241 (4); O1-C25-O2, 122.0 (3); O1-Rh1-C30, 178.0 (1); P1-Rh1-P2, 166.16 (3); P1-Rh1-B1, 85.6 (1); P2-Rh1-B1, 82.1 (1); O2-Rh1-B1, 78.8 (1); C30-Rh1-B1, 103.1 (1); C2-B1-C8, 118.7 (3); C2-B1-O1, 105.2 (3); C8-B1-O1, 106.6 (3); C2-B1-Rh1, 112.3 (1); C8-B1-Rh1, 109.3 (3); O1-B1-Rh1, 103.4 (2); C2-B1-Rh1-P1, 5.7 (2); C8-B1-Rh1-P2, 34.0 (2); O1-B1-Rh1-O2, 15.0 (2).

NMR spectra have been collected at different temperatures to investigate the thermodynamics for the isomerization between **704** and **705**. **704/705** were picked as the model to study the intramolecular B-Ph bond activation process, since the equilibrium between **704** and **705** was reached in relatively short amount of time

which made it easy to monitor by NMR spectroscopy. The equilibrium was reached and monitored by ¹H NMR spectroscopy at 5 different temperatures between 26 \mathbb{C} and 58 \mathbb{C} . The ratio of **705** and **704** was determined by their intergrations in the ¹H NMR spectra. The van't Hoff analysis of the experimental data (Figure 7-9) led to the determination of $\Delta H^{\circ} = 8.9 \pm 1.2$ KJ/mol and $\Delta S^{\circ} = 37.6 \pm 3.6$ J·mol⁻¹K⁻¹ for the transformation from **704** to **705**.²¹⁹

Figure 7-9. Van't Hoff Plot for the transformation between 705 and 704.

In the (PB^{Ph}P)Rh pivalate species, **708** isomerized to form a pivalate-bridging Rh borane complex. We reasoned the acac group would disfavor the bridging with B-Rh bond due to geometric constraint. (PB^{Ph}P)Rh(acac) was synthesized (**710**) via reaction of **701** and Na(acac) at room temperature for 3 h. After workup, **710** was isolated as yellow powder with 79% yield (Scheme 7-7). One doublet was observed at 68.4 ppm

 $({}^{1}J_{Rh-P} = 168 \text{ Hz})$ in the ${}^{31}P\{{}^{1}H\}$ NMR spectrum and two distinctive sets of resonances for *iso*-propyl groups in ${}^{1}H$ spectrum of **710** are consistent with symmetric coordination of the two phosphorus atoms. One methyl resonance was observed for the acac group suggesting the symmetric η^{2} coordination of acac and C_s symmetry of the molecule in solution.

Scheme 7-7. Synthesis of complexes 710 and 711 from 701.

X-ray quality crystals of **710** were obtained by slow diffusion of *n*-pentane into a saturated fluorobenzene solution of **710** at room temperature (Figure 7-10). The solid state structure²¹⁵ we obtained is consistent with the spectroscopic data for **710**. The Rh center adopted a square pyramidal geometry and only slightly deviated from the basal plane formed by the 2 phosphorus atoms and two oxygen atoms. (0.019 Å in **710**). PBP moiety adopted facial geometry with boron occupying the axial position. The B-Rh bond distance is 2.27 Å which is very close to that of **708** and **701**. No B-Ph bond activation was observed at 60 \mathbb{C} in CDCl₃ for several days.

Figure 7-10. ORTEP¹²⁸ drawing (50% probability ellipsoids) of **710.** Omitted for clarity: H atoms and *iso*-propyl groups on phosphine arms. Selected distance (Å) and angles (deg) follow: Rh1-B1, 2.271 (2); Rh1-P1, 2.2394 (6); Rh1-P2: 2.2535 (6); Rh1-O1. 2.067 (1); Rh1-O2, 2.075 (1); B1-C1, 1.597 (3); B1-C7, 1.616 (3); B1-C14, 1.614 (2); O1-Rh1-O2, 87.83 (5); P1-Rh1-P2, 98.73 (2); O1-Rh1-P1, 176.51 (4); O2-Rh1-P2, 172.14 (4); P1-Rh1-B1, 83.74 (5); P2-Rh1-B1, 80.06 (5); O1-Rh1-B1, 96.49 (6); O2-Rh1-B1, 103.37 (6); C1-B1-C7, 113.5 (2); C1-B1-C14, 116.5 (2); C7-B1-C14, 112.4 (1); C1-B1-Rh1, 101.0 (1); C7-B1-Rh1, 108.2 (1); C14-B1-Rh1, 103.8 (1); C7-B1-Rh1-P1, 21.1(1); C14-B1-Rh1-P2, 40.6(1). 0.019 Å of the plane.

One interesting aspect from the NMR data for **704**, **706**, **708** and **710** is that the ¹H NMR spectra display virtual coupling with both ³¹P nuclei. It exhibits most obviously for the methyl groups of *iso*-propyl groups on the phosphine arms, which appeared as doublet of triplets. This is unexpected because in the solid state structures of **708** and **710** the P-Rh-P angle is only ca. 98-100° (Figure 7-11). Virtual coupling requires two

equivalent phosphines with a large P-P coupling constant, which is normally achieved only when the phosphines are approximately *trans* to each other (Figure 7-12). ^{22,220} It was thus of interest to us to find out the P-P coupling constant in 704, 706, 708 and 710 to further understand the observed apparent virtual coupling. Obviously, we are not able to observe the P-P coupling in 704, 706, 708 and 710, since the two phosphine groups are equivalent to each other on the NMR time scale. Therefore, we set to synthesize (PB^{Ph}P)Rh(acac) type of complex with different R groups. (PB^{Ph}P)Rh(bzac) 711 was obtained via reaction of **701** and Na(bzac) at room temperature for 3 h. After workup, 711 was isolated as yellow powder with 69% yield (Scheme 7-7). Two sets of doublet of doublets were observed at 71.1 ppm (dd, $J_{Rh-P} = 164$ Hz, $J_{P-P} = 39$ Hz) and 66.8 ppm (dd, $J_{Rh-P} = 164$ Hz, $J_{P-P} = 39$ Hz) in the ${}^{31}P{}^{1}H{}$ NMR spectrum. Four distinctive sets of resonances for *iso*-propyl groups observed in ¹H NMR spectrum of **711** are consistent with C₁ symmetry of the molecule. The fairly small P-P coupling constant at 39 Hz is rather unusually for the observation of virtual coupling. Nevertheless, simulation of ¹H NMR spectrum for 704 on Mestrec resulted close to observed spectrum when P-P coupling constant was set at 60 Hz (Figure 7-13).

Figure 7-11. Selected ¹H NMR spectra for the methyl group of the *iso*-propyl.

Figure 7-12. Coupling pattern affected by the geometry of bisphosphine complexes.

Figure 7-13. Simulation of the coupling pattern of the methyl group of the *iso*-propyl group. ABXX' system was used and the spectroscopic information was set as the following: spectrometer frequency 500 MHz, line width 2.5 Hz. A (methine), 2.5 ppm; B (methyl), 1.2 ppm; X (P1), 180.0 ppm; X' (P2), 180.0 ppm; $J_{A-B} = 7$ Hz; $J_{A-X} = 12$ Hz, J_{A-X} was set at 0 for simplicity. $J_{X-X'}$ was varied between 40 to 200 Hz.

7.3 Conclusion

In summary, a series of (PBP)RhX complexes were synthesized via salt metathesis reaction with (PBP)RhCl dimer and characterized by multi-nuclei NMR spectroscopy,
elemental analysis and X-ray crystallography. (PBP)Rh acetate, trifluoroacetate, pivalate and acetylacetonate species all showed strong $Rh \rightarrow B$ interaction. While the (PBP)Rh acetylacetonate specie was stable at room temperature in solution, the carboxylate species underwent reversible intramolecular B-Ph bond activation process. Preliminary studies for the thermodynamics of this transformation revealed that in the (PBP)Rh acetate species, the ΔH° for the isomerization of 704 is around 8.9 ± 1.2 KJ/mol and the ΔS° or the same transformation is around 37.6 ± 3.6 J·mol⁻¹K⁻¹. A carboxylate-bridging Rh borane was observed after the phenyl migration. Therefore, we conclude carboxylate species is not suitable to be used as the X lihgand to obtain (PBP)Rh(X)(Ph) complex with three coordinated boryl unit via B-Ph bond activation of (PB^{Ph}P)Rh(X) species. Thermolysis of 701 gave access to (PBP)RhCl₂ (spectroscopic evidence). However the reaction is not clean which make it an undesirable method to access pincer boryl compounds as potential starting material for further study. One interesting observation from our research is that, although in **711** we only observed P-P coupling constant around 40 Hz for the two *cis* phosphines, we observed virtual coupling for the *iso*-propyl group for **704**, **706**, **708** and **710** despite the two phosphine groups being *cis* to each other.

7.4 Experimental Details

General considerations. Unless specified otherwise, all reactions and manipulations were carried out under an argon atmosphere using glove box or Schlenk line techniques. Dry, oxygen–free solvents were employed. Toluene, Pentane, diethyl ether, THF and

C₆D₆ were dried over NaK/Ph₂CO/18-crown-6, distilled and stored over molecular sieves in an Ar-filled glove box. CH₂Cl₂, CDCl₃, CD₂Cl₂, *o*-dichlorobenzene were dried over CaH₂, distilled and stored over molecular sieves in an Ar-filled glove box. [Rh(COD)Cl]₂²²¹ and [Ir(COD)Cl]₂²²² were prepared via literature procedures. Synthesis of ligand **210** were described in Chapter II. All other chemicals were used as received from commercial vendors unless otherwise noted.

Physical Methods. NMR spectra were recorded on a Varian iNova 300 spectrometer (¹H NMR, 299.9 MHz, ¹³C NMR, 75.4 MHz, ³¹P NMR, 121.4 MHz), a Varian iNova 400 spectrometer (¹H NMR, 400.0 MHz, ¹³C NMR, 100.5 MHz, ³¹P NMR, 161.9 MHz ¹¹B NMR, 120.4 MHz) and a Varian iNova 500 spectrometer (¹H NMR, 500.0 MHz, ¹³C NMR, 125.7 MHz, ³¹P NMR, 202.4 MHz, ¹⁹F NMR, 469.9 MHz) in noted solvents. Chemical shifts are given in δ (ppm). ¹¹B NMR spectra were referenced externally with BF₃ etherate at δ 0. ³¹P NMR spectra were referenced externally with 85% phosphoric acid at δ 0. ¹H NMR and ¹³C NMR spectra were referenced using the solvent signals. Elemental analyses were performed by CALI, Inc. (Parsippany, NJ). Solid state structures of **701**, **708**, **709** and **710** were solved by Dr. David E. Herbert.

(**PB**^{Ph}**P**)**RhCl (701).** To a cold solution of **210** (1.54 g, 3.24 mmol) in CH₂Cl₂ (6 mL) was added [Rh(COD)Cl]₂ (800 mg, 1.62 mmol). The resulting orange solution was stirred at room temperature for 3 h, yellow compounds was slowly percipitated from the solution though the time. The yellow powder was collected on a "M" frit, washed with CH₂Cl₂ and dried under vacuum for 3h. Yield: 1.90 g (95%). Two isomers were observed in ³¹P, ¹H NMR spectra. Isomer 1: ³¹P{¹H} NMR (121.4)

MHz, CDCl₃): δ 50.4 (d, J_{Rh-P} = 126 Hz). ¹H NMR (500.0 MHz, CDCl₃): δ 8.07 (m, 2H, Ar-*H*), 7.60 (m, 2H, Ar-*H*), 7.52 (m, 4H, Ar-*H*), 6.68 (m, 2H, Ar-*H*), 6.60 (m, 3H, Ar-*H*), 3.09 (m, 2H, C*H*Me₂), 2.39 (m, 2H, C*H*Me₂), 1.31 (m, 6H, CH*Me*₂), 1.10 (m, 6H, CH*Me*₂), 0.89 (m, 6H, CH*Me*₂), 0.34 (m, 6H, CH*Me*₂). Isomer 2: ³¹P{¹H} NMR (121.4 MHz, CDCl₃): δ 88.8 (d, J_{Rh-P} = 194 Hz). ¹H NMR (500.0 MHz, CDCl₃): δ 7.91 (br, 2H, Ar-*H*), 7.59 (br, 6H, Ar-*H*), 7.08 (br, 2H, Ar-*H*), 6.96 (m, 3H, Ar-*H*), 2.48 (br, 2H, C*H*Me₂), 2.07 (br, 2H, C*H*Me₂), 1.49 (br, 12H, CH*Me*₂), 1.24 (br, 6H, CH*Me*₂), 0.88 (br, 6H, CH*Me*₂).

(**PB**^{Ph}**P**)**RhCl₂ (703).** A solution of **701** (18 mg, 0.015 mmol) in ODCB (0.5 mL) was heated to 170 € in a J-Young tube for 7 days. After passed through a short plug of Celite and removal of all volatiles, brownish powder was obtained as the product. ³¹P {¹H}NMR (121.4 MHz, CDCl₃): δ 45.1 (d, J_{Rh-P} = 106 Hz). ¹H NMR (500.0 MHz, CDCl₃): δ 7.88 (m, 2H, Ar-*H*), 7.76 (m, 2H, Ar-*H*), 7.52 (m, 2H, Ar-*H*), 7.46 (m, 2H, Ar-*H*), 2.88 (br, 4H, C*H*Me₂), 1.38 (m, 12H, CH*Me*₂), 1.29 (m, 12H, CH*Me*₂). ¹³C {¹H} NMR (125.6 MHz, CDCl₃): δ 170.1 (br), 135.7 (s), 131.5 (s), 131.4 (t, J_{P-C} = 10 Hz), 131.0 (s), 130.1(s), 24.8 (t, J_{P-C} = 13 Hz, CHMe₂), 20.8 (s, CH*Me*₂), 20.3 (s, CH*Me*₂).

(**PB**^{Ph}**P**)**RhOAc** (704). To a solution of 701 (50 mg, 0.041 mmol) in C_6H_5F (4 mL) was added potassium acetate (40 mg, 0.41 mmol). The resulting yellow suspension was stirred at room temperature overnight, then the reaction mixtures were filtered through a short plug of Celite. After removal of all volatiles, the crude products were washed with cold pentane 3 times and dried under vacuum for 3h. Yield: 52 mg

(79%). ³¹P{¹H} NMR (121.4 MHz, C₆D₆): δ 74.8 (d, J_{Rh-P} = 168 Hz). ¹H NMR (500.0 MHz, C₆D₆): δ 7.76 (m, 2H, Ar-*H*), 7.71 (d, J_{H-H} = 8 Hz, 2H, Ar-*H*), 7.22 (m, 2H, Ar-*H*), 7.13-7.18 (m, 5H, Ar-*H*), 7.00 (t, J_{H-H} = 8 Hz, 2H, Ar-*H*), 2.49 (m, 2H, C*H*Me₂), 1.88 (m, 2H, C*H*Me₂), 1.52 (s, 3H, C*Me*(acetate)), 1.36 (m, 12H, CH*Me*₂), 1.18 (dvt, J_{H-H} = 7 Hz, J_{P-H} = 7 Hz, 6H, CH*Me*₂), 0.78 (dvt, J_{H-H} = 7 Hz, J_{P-H} = 7 Hz, 6H, CH*Me*₂). ¹³C{¹H} NMR (125.6 MHz, CDCl₃): δ 190.4 (s, *C*=O (acetate)), 168.1 (m), 154.9 (m), 136.7 (s), 136.3 (s), 132.0 (t, J_{P-C} = 10 Hz), 128.9 (s), 127.9 (s), 126.4 (s), 126.0 (s), 124.1 (t, J_{P-C} = 4 Hz), 27.5 (t, J_{P-C} = 13 Hz, CHMe₂), 27.1 (t, J_{P-C} = 13 Hz, CHMe₂), 25.0 (s, C*Me*(acetate)), 22.4 (s, CH*Me*₂), 20.1 (s, C*Me*(acac)), 20.0 (s, CH*Me*₂), 19.6 (s, CH*Me*₂). Elem. An. Found (Calculated) for C₃₂H₄₄BO₂P₂Rh: C, 60.40 (60.38); H, 6.97 (6.91)%.

(**PBP**)**Rh**(**Ph**)**OAc** (**705**). Compound **704** was dissolved in CDCl₃ and slowly converted to compound **705** at room temperature. After 12 h, the equilibrium was established between compound **704** and compound **705** with 1:3 ratio. ³¹P{¹H} NMR (121.4 MHz, CDCl₃): δ 48.6 (d, J_{Rh-P} = 140 Hz). ¹H NMR (500.0 MHz, CDCl₃): δ 8.23 (d, J_{H-H} = 8 Hz, 2H, Ar-*H*), 7.67 (d, J_{H-H} = 7 Hz, 1H, Ar-*H*), 7.41 (t, J_{H-H} = 8 Hz, 2H, Ar-*H*), 7.31-7.36 (m, 2H, Ar-*H*), 7.28 (t, J_{H-H} = 8 Hz, 2H, Ar-*H*), 6.78 (t, J_{H-H} = 7 Hz, 1H, Ar-*H*), 6.47 (t, J_{H-H} = 7 Hz, 1H, Ar-*H*), 6.17 (t, J_{H-H} = 7 Hz, 1H, Ar-*H*), 5.92 (d, J_{H-H} = 7 Hz, 1H, Ar-*H*), 2.45 (m, 2H, C*H*Me₂), 1.93 (m, 2H, C*H*Me₂), 1.88 (s, 3H, C*Me*(acetate)), 1.23-1.36 (m, 18H, CH*Me*₂), 0.08 (dvt, J_{H-H} = 7 Hz, J_{P-H} = 7 Hz, 6H, CH*Me*₂). ¹³C{¹H}</sup> NMR (125.6 MHz, CDCl₃): δ 177.2 (s, *C*=O (acetate)), 161.3 (m), 151.6 (dvt, J_{Rh-C} = 22 Hz, J_{P-C} = 12 Hz), 140.5 (s), 137.7 (dvt, J_{Rh-C} = 3 Hz, J_{P-C} = 20

Hz), 132.9 (d, $J_{Rh-C} = 2$ Hz), 131.9 (t, $J_{P-C} = 10$ Hz), 130.8 (s), 128.3 (s), 125.5 (s), 125.2 (s), 124.0 (s), 120.2 (s), 27.3 (t, $J_{P-C} = 9$ Hz, CHMe₂), 22.0 (t, $J_{P-C} = 11$ Hz, CHMe₂), 21.4 (s, CMe(acetate)), 21.0 (t, $J_{P-C} = 3$ Hz, CHMe₂), 19.2 (s, $J_{P-C} = 3$ Hz, CMe(acac)), 18.4 (s, CHMe₂), 17.7 (s, CHMe₂).

(**PB**^{Ph}**P**)**Rh**(**O**(**O**)**CCF**₃) (706). To a solution of **701** (107 mg, 0.087 mmol) in C₆H₅F (10 mL) was added potassium trifluorocetate (130 mg, 0.86 mmol). The resulting yellow suspension was stirred at room temperature for 3 h, then the reaction mixtures were filtered through a short plug of Celite. After removal of all volatiles, the crude products were washed with cold pentane 3 times and dried under vacuum for 3 h. **706** was found to quickly convert to **707** in C₆H₃F, the equilibrium was established between compound **706** and compound **707** with 1:2 ratio. Therefore, the yellow powder we isolated is a mixture of **706** and **707**. Yield: 87 mg (72%). ³¹P{¹H} NMR (121.4 MHz, CDCl₃): δ 78.5 (d, J_{Rh-P} = 176 Hz). ¹⁹F NMR (469.9 MHz, CDCl₃): δ 76.8 (s). ¹H NMR (500.0 MHz, CDCl₃): δ 7.56-7.50 (m, 4H, Ar-*H*), 7.36 (m, 2H, Ar-*H*), 7.19 (t, J_{H-H} = 8 Hz, 2H, Ar-*H*), 7.05-7.15 (m, 5H, Ar-*H*), 2.56 (m, 2H, C*H*Me₂), 2.09 (m, 2H, C*H*Me₂), 1.43 (m, 12H, CH*Me*₂), 1.31 (m, 6H, CH*Me*₂), 1.01 (m, 6H, CH*Me*₂).

(**PBP**)**Rh**(**Ph**)(**O**(**O**)**CCF**₃) (707).³¹P{¹H} NMR (121.4 MHz, CDCl₃): δ 51.3 (d, J_{Rh-P} = 133 Hz). ¹⁹F NMR (469.9 MHz, CDCl₃): δ 75.5 (s). ¹H NMR (500.0 MHz, CDCl₃): δ 8.03 (d, J_{H-H} = 8 Hz, 2H, Ar-*H*), 7.58 (br, 1H, Ar-*H*), 7.54 (m, 2H, Ar-*H*), 7.42 (br, 2H, Ar-*H*), 7.29 (m, J_{H-H} = 8 Hz, 2H, Ar-*H*), 6.87 (br, 1H, Ar-*H*), 6.60 (t, J_{H-H} = 7 Hz, 1H, Ar-*H*), 6.36 (br, 1H, Ar-*H*), 5.77 (br, 1H, Ar-*H*), 2.35 (m, 2H, C*H*Me₂), 2.18 (m,

2H, CHMe₂), 1.18 (dvt, $J_{H-H} = 7$ Hz, $J_{P-H} = 7$ Hz, 6H, CHMe₂), 0.94 (dvt, $J_{H-H} = 7$ Hz, $J_{P-H} = 7$ Hz, 12H, CHMe₂), 0.40 (dvt, $J_{H-H} = 7$ Hz, $J_{P-H} = 7$ Hz, 6H, CHMe₂).

(**PB**^{Ph}**P**)**Rh**(**O**(**O**)**C**^t**Bu**) (708). To a solution of 701 (93 mg, 0.15 mmol) in C₆H₅F (10 mL) was added potassium pivalate (105 mg, 0.75 mmol). The resulting yellow suspension was stirred at room temperature overnight, then the reaction mixtures were filtered through a short plug of Celite. After removal of all volatiles, the crude products were washed with cold pentane 3 times and dried under vacuum for 3 h. Yield: 78 mg (76%). X-ray quality crystals were obtained by slow diffusion of pentane to a saturated fluorobenzene solution of **708**. ³¹P{¹H} NMR (121.4 MHz, CDCl₃): δ 75.5 (d, J_{Rh-P} = 168 Hz). ¹H NMR (500.0 MHz, CDCl₃): δ 7.46 (d, J_{H-H} = 8 Hz, 2H, Ar-*H*), 7.34 (t, J_{H-H} = 8 Hz, 2H, Ar-*H*), 7.28 (d, J_{H-H} = 8 Hz, 2H, Ar-*H*), 7.21 (t, J_{H-H} = 8 Hz, 2H, Ar-H), 7.08 (m, 3H, Ar-H), 7.02 (t, J_{H-H} = 8 Hz, 2H, Ar-H), 2.55 (m, 2H, CHMe₂), 2.05 (m, 2H, CHMe₂), 1.41 (dvt, $J_{H-H} = 7$ Hz, $J_{P-H} = 7$ Hz, 12H, CHMe₂), 1.27 (dvt, J_{H-H} = 7 Hz, J_{P-H} = 7 Hz, 6H, CHMe₂), 0.99 (dvt, J_{H-H} = 7 Hz, J_P. $_{\rm H}$ = 7 Hz, 6H, CHMe₂), 0.83 (s, 9H, CMe₃). ¹³C{¹H} NMR (125.6 MHz, CDCl₃): δ 197.4 (s, C=O (pivalate)), 168.7 (m), 155.3 (m), 136.8 (s), 136.5 (s), 132.0 (t, $J_{P-C} =$ 10 Hz), 128.7 (s), 127.7 (s), 126.2 (s), 125.4 (s), 124.0 (t, $J_{P-C} = 4$ Hz), 39.8 (s, *C*Me₃), 27.4 (t, $J_{P-C} = 13$ Hz, *C*HMe₂), 27.2 (t, $J_{P-C} = 13$ Hz, *C*HMe₂), 26.6 (s, *CMe*₃), 22.3 (s, CHMe₂), 20.0 (s, CHMe₂), 19.8 (s, CHMe₂), 19.3 (s, CHMe₂). ¹¹B{¹H} NMR (120.4 MHz, CDCl₃): δ 20.0 (br). Elem. An. Found (Calculated) for C₃₅H₅₀BO₂P₂Rh: C, 61.96 (61.73); H, 7.43 (7.44)%.

(PBP)Rh(Ph)(O(O)C^tBu) (709). Compound 708 was dissolved in CDCl₃ and

converted to compound 709 at 50 °C. After 12 h, the equilibrium was established between compound 708 and compound 709 with 1 : 20 ratio. X-ray quality crystals were obtained by slow diffusion of pentane to a saturated fluorobenzene solution of **709**. ³¹P{¹H} NMR (121.4 MHz, CDCl₃): δ 48.2 (d, J_{Rh-P} = 142 Hz). ¹H NMR (500.0 MHz, CDCl₃): δ 8.11 (d, J_{H-H} = 8 Hz, 2H, Ar-*H*), 7.64 (d, J_{H-H} = 7 Hz, 1H, Ar-*H*), 7.37 (t, J_{H-H} = 8 Hz, 2H, Ar-H), 7.29-7.31 (m, 2H, Ar-H), 7.19 (t, J_{H-H} = 8 Hz, 2H, Ar-*H*), 6.77 (t, $J_{H-H} = 7$ Hz, 1H, Ar-*H*), 6.46 (t, $J_{H-H} = 7$ Hz, 1H, Ar-*H*), 6.18 (t, $J_{H-H} = 7$ 7 Hz, 1H, Ar-H), 5.81 (d, J_{H-H} = 7 Hz, 1H, Ar-H), 2.31 (m, 2H, CHMe₂), 1.96 (m, 2H, CHMe₂), 1.39 (dvt, $J_{H-H} = 7$ Hz, $J_{P-H} = 7$ Hz, 6H, CHMe₂), 1.24 (dvt, $J_{H-H} = 7$ Hz, $J_{P-H} = 7$ Hz, 6H, CHMe₂), 1.14 (dvt, $J_{H-H} = 7$ Hz, $J_{P-H} = 7$ Hz, 6H, CHMe₂), 0.88 (s, 9H, CMe₃), 0.14 (dvt, $J_{H-H} = 7$ Hz, $J_{P-H} = 7$ Hz, 6H, CHMe₂). ¹³C{¹H} NMR (125.6 MHz, CDCl₃): δ 184.2 (s, C=O (pivalate)), 161.3 (m), 152.5 (dvt, J_{Rh-C} = 34 Hz, J_P. $_{C}$ = 12 Hz), 140.3 (s), 137.8 (dvt, J_{Rh-C} = 3 Hz, J_{P-C} = 20 Hz), 132.7 (d, J_{Rh-C} = 2 Hz), 131.8 (t, $J_{P-C} = 10 \text{ Hz}$), 130.5 (s), 128.0 (s), 125.4 (s), 124.9 (s), 124.0 (s), 120.1 (s), 38.0 (s, CMe₃), 26.9 (s, CMe₃), 26.3 (t, $J_{P-C} = 9$ Hz, CHMe₂), 21.3 (t, $J_{P-C} = 4$ Hz, CHMe₂), 21.2 (s, CHMe₂), 19.5 (br, CHMe₂), 18.5 (s, CHMe₂), 17.4 (s, CHMe₂). ¹¹B{¹H} NMR (120.4 MHz, CDCl₃): δ 18.2 (br).

 $(\mathbf{PB}^{\mathbf{Ph}}\mathbf{P})\mathbf{Rh}(\mathbf{acac})$ (710). To a solution of 701 (60 mg, 0.049 mmol) in C₆H₅F (5 mL) was added sodium acetylacetonate (60 mg, 0.49 mmol). The resulting yellow suspension was stirred at room temperature for 3 h, then the reaction mixtures were filtered through a short plug of Celite. After removal of all volatiles, the crude products were purified by recrystallization from C₆H₅F solution at -30 \mathbb{C} . X-ray

quality crystals were obtained by slow diffusion of pentane to a saturated fluorobenzene solution of **710**. Yield: 52 mg (79%). ³¹P{¹H} NMR (121.4 MHz, CDCl₃): δ 68.4 (d, J_{Rh-P} = 168 Hz). ¹H NMR (500.0 MHz, CDCl₃): δ 7.47 (br, 2H, Ar-*H*), 7.26 (t, J_{H-H} = 7 Hz, 2H, Ar-*H*), 7.11 (t, J_{H-H} = 7 Hz, 2H, Ar-*H*), 7.03 (t, J_{H-H} = 7 Hz, 2H, Ar-*H*), 6.94 (m, 3H, Ar-*H*), 6.88 (m, 2H, Ar-*H*), 5.14 (s, 1H, C-*H*(acac)), 2.78 (m, 2H, C*H*Me₂), 1.90 (m, 2H, C*H*Me₂), 1.50 (s, 6H, C*Me*(acac)), 1.42 (m, 18H, CH*Me*₂), 1.14 (m, 6H, CH*Me*₂). ¹³C{¹H} NMR (125.6 MHz, CDCl₃): δ 183.9 (s, *C*=O (acac)), 168.7 (m), 154.8 (m), 139.5 (d, J_{Pt-C} = 48 Hz), 135.5 (s), 131.5 (m), 128.8 (s), 128.0 (s), 125.1 (s), 124.2 (s), 123.4 (s), 100.0 (s, *C*-H (acac)), 27.4 (m, CHMe₂), 20.9 (br, CH*Me*₂), 20.7 (br m, J_{Pt-C} = 22 Hz, CH*Me*₂). Elem. An. Found (Calculated) for C₃₅H₄₈BO₂P₂Rh: C, 62.08 (62.15); H, 7.09 (7.15)%.

(**PB**^{Ph}**P**)**Rh**(**benzoylacetonate**) (711). To a solution of 701 (25 mg, 0.02 mmol) in C_6H_3F (2 mL) was added sodium benzoylacetonate (25 mg, 0.136 mmol). The resulting yellow suspension was stirred at room temperature for 3 h, then the reaction mixtures were filtered through a short plug of Celite. After removal of all volatiles, the crude products were purified by recrystallization from C_6H_3F solution at -30 \mathbb{C} . Yield: 20 mg (68%). ³¹P{¹H} NMR (121.4 MHz, CDCl₃): δ 71.1 (dd, J_{Rh-P} = 164 Hz, J_{P-P} = 39 Hz), 66.8 (dd, J_{Rh-P} = 164 Hz, J_{P-P} = 39 Hz), 66.8 (dd, J_{Rh-P} = 164 Hz, J_{P-P} = 39 Hz). ¹H NMR (500.0 MHz, CDCl₃): δ 7.65 (t, J_{H-H} = 7 Hz, 1H, Ar-*H*), 7.56 (t, J_{H-H} = 7 Hz, 1H, Ar-*H*), 7.42 (m, 1H, Ar-*H*), 7.31 (t, J_{H-H} = 7 Hz, 1H, Ar-*H*), 7.23-7.13 (m, 5H, Ar-*H*), 7.11-6.99 (m, 5H, Ar-*H*), 6.91 (m, 1H, Ar-*H*), 6.87 (br, 1H, Ar-*H*), 6.75 (br, 1H, Ar-*H*), 5.77 (s, 1H, C-

H(acac)), 2.92 (m, 1H, C*H*Me₂), 2.78 (m, 1H, C*H*Me₂), 2.22 (br, 2H, C*H*Me₂), 1.76 (dd, J_{P-H} = 14 Hz, J_{P-H} = 7 Hz, 3H, CH*Me*₂), 1.66 (br, 3H, CH*Me*₂), 1.55 (dd, J_{P-H} = 14 Hz, J_{P-H} = 7 Hz, 3H, CH*Me*₂), 1.50 (s, 3H, C*Me*), 1.44 (m, 6H, CH*Me*₂), 1.35 (dd, J_{P-H} = 14 Hz, J_{P-H} = 7 Hz, 3H, CH*Me*₂), 1.12 (dd, J_{P-H} = 14 Hz, J_{P-H} = 7 Hz, 3H, CH*Me*₂), 0.77 (m, 3H, CH*Me*₂).

CHAPTER VIII CONCLUSION

In conclusion, we report two new, straightforward methods for the synthesis of valuable $[HCB_{11}Cl_{11}]^{-}$ with either Cl_2 or SbCl₅ as chlorination reagents. We obtained $[HCB_{11}Cl_{11}]^{-}$ product with SO₂Cl₂ as chlorination reagents and an unindentified catalyst. Amines, borane amine adducts and dry HCl have been tested as additives for the chlorination reactions with SO₂Cl₂. Although some of them shifted the reaction towards more chlorinated products, none of them gave pure $[HCB_{11}Cl_{11}]^{-}$ products. On the other hand, we were able to obtain useful $[B_{12}Cl_{12}]^{2-}$ from $[B_{12}H_{12}]^{2-}$ with SO₂Cl₂ as the chlorination reagent and acetonitrile as cosolvent. While the involved synthesis or the relatively high cost of the requisite parent anion $[HCB_{11}H_{11}]^{-}$ remain an issue, the syntheses we report here make the subsequent chlorination expedient, economical, and readily available to chemists at large without the need for specialized training or equipment.

We have established that alumenium cation equivalent $Et_2Al[HCB_{11}H_5Br_6]$ functions as an efficient and long-lived catalyst for Lewis acid $C(sp^3)$ -F bond activation with trialkylaluminums as stoichiometric reagents. The catalytic reactions showed superb longevity and turnover numbers of up to 10000 have been achieved. Conversion of C-F bonds only to C-Me bonds was accomplished when Me₃Al was used as the stoichiometric reagent. On the other hand, utilization of Et₃Al, ⁱBu₃Al or ⁱBu₂AlH results in the competitive replacement of C-F bonds either with C-Alkyl or C-H bonds. Moreover we demonstrate that alumenium mediated C-F bond activation process is tolerant of small quantities of water because trialkylaluminum compounds can act as "clean-up" agents in situ. It is also shown that $[B_{12}Cl_{12}]^{2-}$ can be used as a weakly coordinating anion for the C-F bond activation mediated by electrophlic silylium species. The $[B_{12}Cl_{12}]^{2-}$ based catalysis showed longevity comparable to carborane-based catalysis in the HDF reactions.

A series of group 10 metal boratranes was synthesized and spectroscopically and structurally characterized with the aim of extending further the scope of $M\rightarrow B$ interactions. **TPB** ligand was shown to form robust boratrane complexes which exhibited $M\rightarrow B$ interaction. All metal boratrane species were found to adopt a trigonal pyramidal geometry with only a marginal deviation from the basal plane formed by the three phosphorus atoms which was likely largely imposed by the cage structure of TPB. Pt was shown to form stronger $M\rightarrow B$ interactions than their lighter analogs. Compared to the isoelectronic group 11 metallaboratranes, stronger $M\rightarrow B$ interactions were found with the metals with lower oxidation state.

(PSi^HP^{iPr})PtCl was synthesized from Pt(COD)Cl₂ and PSi(H₂)P ligand via Si-H bond activation in the presence of base. Direct X ligand exchange methods yielded a series of (PSi^HP^{iPr})PtX (X=I, OTf, Me, Ph, Mes) compounds from (PSi^HP^{iPr})PtCl. Ph₃C[HCB₁₁Cl₁₁] was shown to be able to used to abstract the hydride from the silicon center on these (PSi^HP^{iPr})PtX compounds. The resulting platinum silylene complexes displayed silylium character, which was exemplified by the X ligand abstraction with Cl, I, Me and Ph. However, the mesityl group was resistant towards abstraction by silylene center, which is probably attributed to the steric bulkiness of mesityl group. Hence, a pincer metal silylene species was observed after the hydride abstraction which was the first reported PSiP metal species with a central silylene donor.

A series of (PBP)RhX complexes were synthesized via salt metathesis reaction with (PBP)RhCl dimer and characterized by multi-nuclei NMR spectroscopy, elemental analysis and X-ray crystallography. (PBP)Rh acetate, trifluoroacetate, pivalate and acetylacetonate species all showed strong $Rh \rightarrow B$ interaction. While the (PBP)Rh acetylacetonate specie was stable at room temperature in solution, the carboxylate species underwent reversible intramolecular B-Ph bond activation process. Preliminary studies for the thermodynamics of this transformation revealed that in the (PBP)Rh acetate species, the ΔH° for the isomerization of **704** is around 8.9 ± 1.2 KJ/mol and the ΔS° or the same transformation is around 37.6 ± 3.6 J·mol⁻¹K⁻¹. A carboxylatebridging Rh borane was observed after the phenyl migration. Therefore, we conclude carboxylate species is not suitable to be used as the X linear to obtain (PBP)Rh(X)(Ph)complex with three coordinated boryl unit via B-Ph bond activation of (PB^{Ph}P)Rh(X) Thermolysis of 701 gave access to (PBP)RhCl₂ (spectroscopic evidence). species. However the reaction is not clean which make it an undesirable method to access pincer boryl compounds as potential starting material for further study. One interesting observation from our research is that, although in 711 we only observed P-P coupling constant around 40 Hz for the two cis phosphines, we observed virtual coupling for the iso-propyl group for 704, 706, 708 and 710 despite the two phosphine groups being cis to each other.

REFERENCES

1. Moulton, C. J.; Shaw, B. L. J. Chem. Soc. Dalton Trans. 1976, 1020.

2. van Koten, G. Pure Appl. Chem. 1989, 61, 1681.

3. a) Deuschel-Cornioley, C.; Ward, T.; von Zelewsky, A. *Helv. Chim. Acta* **1988**, *71*, 130. b) Cave, G. W. V.; Fanizzi, F. P.; Deeth, R. J.; Errington, W.; Rourke, J. P. *Organometallics* **2000**, *19*, 1355. c) Lu, W.; Chan, C. W.; Cheung, K.-K.; Che, C.-M. *Organometallics* **2001**, *20*, 2477; d) Peris, E.; Loch, J. A.; Mata, J.; Crabtree, R. H. *Chem. Commun.* **2001**, 201.

4. Morales-Morales, D.; Jensen, C. M., *The Chemistry of Pincer Compounds*, Elsevier, Amsterdam, **2007**.

5. (a) Albrecht, K.; van Koten, G. Angew. Chem. Int. Ed. 2001, 40, 3750. (b) van der Boom, M. E.; Milstein, D. Chem. Rev. 2003, 103, 1759. (c) Liang, L. C. Coord. Chem. Rev. 2006, 250, 1152. (d) Gunanathan, C; Milstein, D. Acc. Chem. Res. 2011, 44, 588.

6. (a) Sundermann, A.; Uzan, O.; Martin, J. M. L. Organometallics 2001, 20, 1783. (b)
Cohen, R.; van der Boom, M. E.; Shimon, L. J. W.; Rozenberg, H.; Milstein, D. J. Am.
Chem. Soc. 2000, 122, 7723. (c) Sundermann, A.; Uzan, D.; Milstein, D. J. Am. Chem.
Soc. 2000, 122, 7095. (d) Rybtchinski, B.; Oevers, S.; Montag, M.; Vigalok, A.;
Rozenberg, H.; Martin, J. M. L.; Milstein, D. J. Am. Chem. Soc. 2001, 123, 9064.

7. (a) van der Boom, M. E.; Liou, S.-Y.; Ben-David, Y.; Vigalok, A.; Milstein, D. Angew. Chem., Int. Ed. Engl. 1997, 36, 625. (b) Gandelman, M.; Milstein, D. Chem. Commun. 2000, 1603.

8. van der Boom, M. E.; Liou, S.-Y.; Ben-David, Y.; Shimon, L. J. W.; Milstein, D. J. *Am. Chem. Soc.* **1998**, *120*, 6531.

9. (a) Kanzelberger, M.; Zhang, X.; Emge, T. J.; Goldman, A. S.; Zhao, J.; Incarvito,
C.; Hartwig, J. F. J. Am. Chem. Soc. 2003, 125, 13644. (b) Zhao, J.; Goldman, A. S.;
Hartwig, J. F. Science 2005, 307, 1080. (c) Morgan E.; MacLean D. F.; McDonald R.;
Turculet L. J. Am. Chem. Soc. 2009, 131, 14234.

10. (a) Vigalok, A.; Ben-David, Y.; Milstein, D. Organometallics 1996, 15, 1839. (b)
Kaska, W. C.; Nemeh, S.; Shirazi, A.; Potuznik, S. Organometallics 1988, 7, 13. (c)
McLoughlin, M. A.; Keder, N. L.; Harrison, W. T. A.; Flesher, R. J.; Mayer, H. A.;
Kaska, W. C. Inorg. Chem. 1999, 38, 3223. (d) Steffey, B. D.; Miedaner, A.;
Maciejewski-Farmer, M. L.; Bernatlis, P. R.; Herring, A. M.; Allured, V. S.; Carperos,
V.; DuBois, D. L. Organometallics 1994, 13, 4844. (e) Jessop, P. G.; Ikariya, T.; Noyori,
R. Chem. Rev. 1995, 95, 259.

11. Jensen, C. M.; Trogler, W. C. J. Am. Chem. Soc. 1986, 108, 723.

12. Young, K. J. H.; Oxgaard, J.; Ess, D. H.; Meier, S. K.; Stewart, T.; Goddard, III,W. A.; Periana, R. A. *Chem. Commun.* 2009, 3270.

13. (a) van der Zeijden, A. H.; van Koten, G.; Luijk, R.; Vrieze, K.; Slob, C.;
Krabbendam, H.; Spek, A. L. *Inorg. Chem.* **1988**, *27*, 1014. (b) Albrecht, M.; James, S.
L.; Veldman, N.; Spek, A. L.; van Koten, G. *Can. J. Chem.* **2001**, *79*, 709. (c) Dupont,
J.; Beydoun, N.; Pfeffer, M. J. Chem. Soc. Dalton Trans. **1989**, *9*, 1715. Bedford, R. B.;
Draper, S. M.; Noelle, S. P.; Welch, S. L. New. J. Chem. **2000**, *24*, 745.

14. Al-Salem, N. A.; Empsall, H. D.; Markham, R.; Shaw, B. L.; Weeks, B. J. Chem. Soc. Dalton Trans. **1979**, 1972.

15. (a) Fryzuk, M. D.; Macneil, P. A.; Rettig, S. J. Organometallics 1982, 1, 918. (b)

Fan, L.; Foxman, B. M.; Ozerov, O. V. Organometallics 2004, 23, 326-328. (c) Liang, L.

C.; Lin, J. M.; Hung, C. H. Organometallics 2003, 22, 3007-3009.

16. (a) Segawa Y.; Yamashita M.; Nozaki K. J. Am. Chem. Soc. 2009, 131, 26. (b)
Segawa Y.; Yamashita M.; Nozaki K. Organometallics 2009, 28, 6234.

17. (a) MacInnis, M. C.; MacLean, D. F.; Lundgren, R. J.; McDonald, R.; Turculet, L. Organometallics 2007, 26, 6522. (b) MacLean D. F.; McDonald R.; Ferguson M. J.;
Caddell A. J.; Turculet L. Chem. Commun. 2008, 41, 5146. (c) Mitton, S. J.; McDonald,
R.; Turculet, L. Organometallics 2009, 28, 5122. (d) Mitton, S. J.; McDonald, R.;
Turculet, L. Angew. Chem. Int. Ed. 2009, 48, 8568. (e) MacInnis, M. C.; McDonald, R.;
Ferguson, M. J.; Tobisch, S.; Turculet, L. J. Am. Chem. Soc. 2011, in press. (f) Takaya,
J.; Kirai, N.; Iwasawa, N. J. Am. Chem. Soc. 2011, 133, 12980. (g) Takaya, J.; Iwasawa,
N. J. Am. Chem. Soc. 2008, 130, 15254.

18. Mankad, N. P.; Rivard, E.; Harkins, S. B.; Peters, J. C.; J. Am. Chem. Soc. 2005, 127, 16032.

19. (a) Weng, W.; Parkin, S.; Ozerov, O. V. Organometallics 2006, 25, 5345. (b)

Weng, W.; Chen, C.-H.; Foxman, B. M.; Ozerov, O. V. Organometallics 2007, 26, 3315.
20. (a) Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. J. Am. Chem. Soc. 2005, 127, 10840. (b) Ben-Ari, E.; Leitus, G.; Shimon, L. J.W.; Milstein, D. J. Am. Chem. Soc.

2006, *128*, 15390. (c) Zhang, J.; Leitus, G.; Ben-David, Y.; Milstein, D. Angew. Chem., Int. Ed. **2006**, *45*, 1113.

21. Ozerov, O. V.; Guo, C.; Fan, L.; Foxman, B. M. Organometallics 2004, 23, 5573.

22. Crabtree, R. H. *The Organometallic Chemistry of Transition Metals 4th Ed.* Wiley-VCH: Weinheim, Germany, 2007.

23. Grove, D. M.; van Koten, G.; Ubbels, H. J. C.; Zoet, R.; Spek, A L. Organometallics 1983, 3, 1003.

24. (a) Steenwinkel, P.; Gossage, R. A.; van Koten, G. *Chem. Eur. J.* 1998, *4*, 759. (b)
Ryabov, A. D. *Chem. Rev.* 1990, *90*, 403. (c) Ozerov, O. V.; Guo, C.; Papkov, V. A.;
Foxman, B. M. *J. Am. Chem. Soc.* 2004, *126*, 4792-4793.

25. (a) Grove, D. M.; van Koten, G.; Louwen, J. N.; Notltes, J. G.; Spek, A.; Ubbels,
H. J. J. Am. Chem. Soc. 1982, 104, 6609. (b) Koller, J.; Sarkar, S.; Abboud, K. A.; Veige,
A. S. Organometallics 2007, 26, 5438. (c) Gerber, L. C. H.; Watson, L. A.; Parkin, S.;
Weng, W.; Foxman, B. M.; Ozerov, O. V. Organometallics 2007, 26, 4866. (d) Weng,
W.; Yang, L.; Foxman, B. M.; Ozerov, O. V. Organometallics 23, 23, 4700. (e) Harkins,
S. B.; Peters, J. C. J. Am. Chem. Soc. 2004, 126, 2855. (f) Brammell, C. M.; Pelton, E.
J.; Chen, C.-H.; Yakovenko, A. A.; Weng, W.; Foxman, B. M.; and Ozerov, O. V. J.
Organomet. Chem. 2011, in press.

26. Pape, A; Lutz, M.; Müller, G. Angew. Chem., Int. Ed. 1994, 33, 2281.

27. (a) Garrison, J. C.; Youngs, W. J. *Chem. Rev* **2005**, *105*, 3978. (b) DeMott, J. C.; Basuli, F.; Kilgore, U. J.; Foxman, B. M.; Huffman, J. C.; Ozerov, O. V., Mindiola, D. J. *Inorg. Chem.* **2007**, *46*, 6271-6276.

28. (a) Dani, M.; Albrecht, M.; van Klink, G. P. M.; van Koten, G. *Organometallics*2000, 19, 4468. (b) Albrecht, M.; Dani, P.; Lutz, M.; Spek, A. L.; van Koten, G. J. Am. *Chem. Soc.* 2000, 122, 11822. (c) Albrecht, M.; James, S. L.; Veldman, N.; Spek, A. L.; van Koten, G. *Can. J. Chem.* 2001, 79, 709.

29. Dupont, J.; Beydoun, N.; Pfeffer, M. J. Chem. Soc. Dalton Trans. 1989, 1715.

30 Maassarani, F.; Davidson, M. F.; Wehman-Ooyevaar, I. C. M.; Grove, D. M.; van Koten, M. A.; Smeets, W. J. J.; Spek, A. L.; van Koten, G. *Inorg. Chim. Acta* **1995**, *235*, 327.

31. (a) Roundhill, D. M. Chem. Rev. 1992, 92, 1. (b) Casalnuovo, A. L.; Calabrese, J.
C.; Milstein, D. J. Am. Chem. Soc. 1988, 110, 6738. (c) Cowan, R. L.; Trogler, W. C. J.
Am. Chem. Soc. 1989, 111, 4750.

32. Two reactions of ammonia are among the top 10 challenges for catalysis listed in this article: Haggin, J. *Chem. Eng. News.* **1993**, *71*, 23.

33. Kanzelberger, M.; Singh, B.; Czerw, M.; Krogh-Jespersen, K.; Goldman, A. S. J. *Am. Chem. Soc.* **2000**, *122*, 11017.

34. (a) Gupta, M.; Hagen, C.; Flesher, R. J.; Kaska, W. C.; Jensen, C. M. *Chem. Commun.* 1996, 2083. (b) Gupta, M.; Hagen, C.; Kaska, W. C.; Cramer, R. E.; Jensen, C.
M. *J. Am. Chem. Soc.* 1997, *119*, 840. (c) Xu, W.; Rosini, G. P.; Gupta, M.; Jensen, C.

M.; Kaska, W. C.; Krogh-Jespersen, K.; Goldman, A. S. *Chem. Commun.* 1997, 2273. (d)
Goldman, A. S.; Roy, A. H.; Huang, Z.; Ahuja, R.; Schinski, W.; Brookhart, M. *Science* 2006, *312*, 257. (e) Choi, J.; MacArthur, A. M. R.; Brookhart, M.; Goldman, A. S. *Chem. Rev.* 2011, *111*, 1761.

35. (a) Weckhuysen, B. M.; Schoonheydt, R. A. *Catal. Today* 1999, *51*, 223. (b)
O'Connor, R. P.; Klein, E. J.; Henning, D.; Schmidt, L. D. *Appl. Catal.*, A 2003, 238, 29.
(c) Olsbye, U.; Virnovskaia, A.; Prytz, O.; Tinnemans, S. J.; Weckhuysen, B. M. *Catal. Lett.* 2005, *103*, 143. (d) Adlhart, C.; Uggerud, E. *Chem. Eur. J.* 2007, *13*, 6883. (e)
Jackson, S. D.; Stair, P. C.; Gladden, L. F.; McGregor, *J. Met. Oxide Catal.* 2009, *2*, 595.

36. (a) Baudry, D.; Ephritikhine, M.; Felkin, H.; Holmes-Smith, R. J. Chem. Soc., Chem. Commun. 1983, 788. (b) Felkin, H.; Fillebeen-Khan, T.; Gault, Y.; Holmes-Smith, R.; Zakrzewski, J. Tetrahedron Lett. 1984, 25, 1279. (c) Felkin, H.; Fillebeen-Khan, T.; Holmes-Smith, R.; Lin, Y. Tetrahedron Lett. 1985, 26, 1999. (d) Burk, M. J.; Crabtree, R. H.; Parnell, C. P.; Uriarte, R. J. Organometallics 1984, 3, 816. (e) Burk, M. J.; Crabtree, R. H.; McGrath, D. V. J. Chem. Soc., Chem. Commun. 1985, 1829. (f) Burk, M. J.; Crabtree, R. H. J. Am. Chem. Soc. 1987, 109, 8025.

37. Crabtree, R. H.; Mihelcic, J. M.; Quirk, J. M. J. Am. Chem. Soc. 1979, 101, 7738.
38. Jensen, C. M. Chem. Commun. 1999, 2443.

 Renkema, K. B.; Kissin, Y. V.; Goldman, A. S. J. Am. Chem. Soc. 2003, 125, 7770. 40. (a) Schrock R. R.; Murdzek J. S.; Bazan G. C.; Robbins, J.; Dimare, M.; O'Regen, M. J. Am. Chem. Soc. 1990, 112, 3875. (b) Schrock, R. R. Chem. Commun. 2005, 2773.

41. (a) Hiyama, T. Organofluorine Compounds Chemistry and Applications, Springer, New York, **2000**. (b) Smart, B. E. in: Banks, R. E.; Smart, B. E.; Tatlow, J. C. (Eds.), Organofluorine Chemistry: Principles and Commercial Applications, Plenum Press, New York, **1994**, p. 57 (Chapter III).

42. (a) Műller, K.; Faeh, C.; Diederich, F. Science 2007, 317, 1881. (b) Purser, S.;
Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320. (c) Jeschke,
P. ChemBioChem 2004, 5, 570.

43. Hung, M. H.; Farnham, W. B.; Feiring, A. E.; Rozen, S.; in *Fluoropolymers: Synthesis* Vol. 1 (eds Hougham, G., Cassidy, P. E., Johns, K. & Davidson, T.) 51–66 (Plenum,1999).

44. (a) Wende, M.; Meier, R.; Gladysz, J. A. J. Am. Chem. Soc. 2001, 123, 11490. (b)
Gladysz, J. A.; Curran, D. P. Tetrahedron 2002, 58, 3823. (c) Barthel-Rosa, L. P.;
Gladysz, J. A. Coord. Chem. Rev. 1999, 190-192, 587. (d) Gladysz, J. A. Science 1994,
266, 55. (e) Horvath, I. T. Acc. Chem. Res. 1998, 31, 641. (f) Horvath, I. T.; Rabai, J.
Science 1994, 266, 72.

45. Ametamey, S. M.; Honer, M.; Schubiger, P. A. Chem. Rev. 2008, 108, 1501.

46. (a) Molina, M. J.; Rowland, F. S. Nature **1974**, 249, 810. (b) Rowland, F. S.; Molina, M. J. Rev. Geophys. Space Phys. **1975**, 13, 1. (c) Rowland, F. S. Environ. Sci. Technol. 1991, 25, 622. (d) Victor, D. G.; MacDonald, G. J. Climatic Change 1999, 42,
633. (e) Roehl, C. M.; Boglu, D.; Bruehl, C.; Moortgat, G. K. Geophysical Research
Letters 1995, 22, 815. (f) Timms, P. L. J. Chem. Soc., Dalton Trans. 1999, 815.

47. Hudlicky, M. *Chemistry of Organic Fluorine Compounds*; Prentice-Hall: New York, **1992**; p. 175.

48. (a) Kiplinger, J. L.; Richmond, T. G.; Osterberg, C. E. Chem. Rev. 1994, 94, 373.
(b) Burdeniuc, J.; Jedlicka, B.; Crabtree, R. H. Chem. Ber. 1997, 130, 145. (c) Richmond, T. G. In Topics in Organometallic Chemistry; Murai, S., Ed.; Springer: New York, 1999; Vol. 3, p 243. (d) Reinhold, M.; McGrady, J. E.; Perutz, R. N. J. Am. Chem. Soc. 2004, 126, 5268. (e) Torrens, H. Coord. Chem. Rev. 2005, 249, 1957. (f) Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119. (f) Braun T.; Perutz, R. N. in Comprehensive Organometallic Chemistry III, Eds Crabtree R. H.; Mingos, D, M, P. Elsevier, Oxford, 2007. (g) O'Hagan, D. Chem Soc. Rev. 2008, 37, 308.

49. Bosque, R.; Clot, E.; Fantacci, S.; Maseras, F.; Eisenstein, O.; Perutz, R. N.; Renkema, K. B.; Caulton, K. G. J. Am. Chem. Soc. 1998, 120, 12634.
50. Su, M. D.; Chu, S. Y. J. Am. Chem. Soc. 1997, 119, 10178.
51. (a) Fahey, D. R.; Mahan, J. E. J. Am. Chem. Soc. 1977, 99, 2501. (b) Cronin, L.;

Higgitt, C. L.; Karch, R.; Perutz, R. N. Organometallics 1997, 16, 4920.
52. Whittlesey, M. K.;, R. N.; Moore, M. H. Chem. Commun. 1996, 787.
53. Aizenberg, M.; Milstein, D. Science 1994, 265, 359.

54. Aizenberg, M.; Milstein, D. J. Am. Chem. Soc. 1995, 117, 8674.

55. Vela, J.; Smith, J. M.; Yu, Y.; Ketterer, N. A.; Flaschenriem, C. J.; Lachicotte, R.

- J.; Holland, P. L. J. Am. Chem. Soc. 2005, 127, 7857.
 - 56. Reade, S. P.; Mahon, M. F.; Whittlesey, M. K. J. Am. Chem. Soc. 2009, 131, 1874.
 57. Amii, H.; Uneyama, K. Chem. Rev. 2009, 109, 2119.
 - 58. (a) Böhm, V. P. W.; Gstttmayr, C. W. K.; Weskamp, T.; Herrmann, W. A. Angew.

Chem. Int. Ed. 2001, 40, 3387. (b) Saeki, T.; Takashima, Y.; Tamao, K. Synlett 2005,

1771. (c) Inada, K.; Miyaura, N. Tetrahedron 2000, 56, 8657. (d) Zhou, J.; Fu, G. C J.

Am. Chem. Soc. 2004, 126, 1340. (e) Schaub, T.; Backes, M.; Radius, U. J. Am. Chem.

Soc. 2006, 128, 15964. (f) Widdowson, D. A.; Wilhelm, R. Chem. Commun. 1999, 2211.

(g) Wilhelm, R.; Widdowson, D. A. J. Chem. Soc., Perkin Trans. 1 2000, 3808. (h)

Cahoez, G.; Lepifre, F.; Ramiandrasoa, P. Synthesis 1999, 2138. (i) Guo, H.; Kong, F.;

Kanno, K.; He, J.; Nakajima, K.; Takahashi, T. Organometallics 2006, 25, 2045. (j)

Yamada, S.; Takahashi, T.; Konno, T.; Ishihara, T. Chem. Commun. 2007, 3679.

59. (a) Kraft, B. M.; Lachicotte, R. J.; Jones, W. D. J. Am. Chem. Soc. 2000, 122,

8559. (b) Kraft, B. M.; Lachicotte, R. J.; Jones, W. D. J. Am. Chem. Soc. 2001, 123, 10973.

60. Choi, J.; Wang, D. Y.; Kundu, S.; Choliy, Y.; Emge, T. J.; Krogh-Jespersen, K.;
 Goldman, A. S. *Science*, **2011**, *332*, 1545.

61. (a) Strauss, S. H. Chem. Rev. **1993**, 93, 927. (b) Krossing, I.; Raabe, I. Angew. Chem. Int. Ed. **2004**, 43, 2066.

62. Rosenthal, M. R. J. Chem. Edu. 1973, 50, 331.

63. (a) Reed, C. A. Acc. Chem. Res. 1998, 31,133. (b) Reed, C. A. Chem. Commun.
2005, 1669. (c) Krossing, I.; Reisinger, A. Coord. Chem. Rev. 2006, 250, 2771. (d) Körbe, S.; Schreiber, P. J.; Michl, J. Chem. Rev. 2006, 106, 5208. (d) Reed, C. A. Acc. Chem. Res. 2010, 43, 121.

64. (a) LeSuer, R. J.; Geiger, W. E. Angew. Chem. Int. Ed. 2000, 39, 248. (b) Barriere,

F.; Camire, N.; Geiger, W. E.; Mueller-Westerhoff, U. T.; Sanders, R. J. Am. Chem. Soc.

2002, 124, 7262. (c) Camire, N.; Nafady, A.; Geiger, W. E.; J. Am. Chem. Soc. 2002,

124, 7260. (d) Camire, N.; Mueller-Westerhoff, U. T.; Geiger, W. E. J. Organomet.

Chem. 2001, 637–639, 823. (e) Gassman, P. G.; Deck, P. A. Organometallics 1994, 13,

1934; (f) Hill, M. G.; Lamanna, W. M.; Mann, K. R. Inorg. Chem. 1991, 30, 4687. (g)

Gassman, P. G.; Sowa, Jr. J. R.; Hill, M. G.; Mann, K. R. *Organometallics* **1995**, *14*, 4879. (h) Pospisil, L.; King, B. T.; Michl, J. *Electrochim. Acta* **1998**, *44*, 103.

65. (a) Wasserscheid, P.; Keim, W. Angew. Chem. Int. Ed. 2000, 39, 3772. (b)
Holbrey, J. D. Clean Prod. Processes 1999, 1, 2071. (c) Welton, T. Chem. Rev. 1999, 99,
2071. (d) Wasserscheid, P. Chem. Unserer Zeit 2003, 37, 52. (e) Bösmann, A.; Francio,
G.; Janssen, E.; Leitner, W.; Wasserscheid, P. Angew. Chem. Int. Ed. 2001, 40, 2697. (f)
Larsen, A. S.; Holbrey, J. D.; Tham, F. S.; Reed, C. A. J. Am. Chem. Soc. 2000, 122,
7264.

66. Kita, F.; Sakata, H.; Sinomoto, S.; Kawakami, A.; Kamizori, H.; Sonoda, T.; Nagashima, H.; Nie, J.; Pavlenko, N. V.; Yagupolskii, Y. *J. Power Sources* **2000**, *90*, 27.

67. Suzuki, H.; Naganawa, H.; Tachimori, S. Phys. Chem. Chem. Phys. 2003, 5, 726.

68. (a) Castellanos, F.; Fouassier, J. P.; Priou, C.; Cavezzan, J. J. Appl. Poly. Sci.

1996, *60*, 705. (b) Ren, K.; Mejiritski, A.; Malpert, J. H.; Grinevich, O.; Gu, H.; Neckers, D. C. *Tetrahedron Lett.* **2000**, *41*, 8669. (c) Li, H.; Ren, K.; Zhang, W.; Malpert, J. H.; Neckers, D. C. *Macromolecules* **2001**, *34*, 4161. (d) Gu, H.; Ren, K.; Mejiritski, A.; Grinevich, O.; Malpert, J. H.; Neckers, D. C. *J. Org. Chem.* **2001**, *66*, 4161. (e) Ren, K.; Malpert, J. H.; Li, H.; Gu, H.; Neckers, D. C. *Macromolecules* **2002**, *35*, 1632.

69. (a) Moss, S.; King, B. T.; de Meijere, A.; Kozushkov, S. I.; Eaton, P. E.; Michl, J. Org. Lett. 2001, 3, 2001. (b) Fujiki, K.; Ikeda, S.; Kobayashi, H.; Mori, A.; Nagira, A.; Nie, J.; Sonoda, T.; Yagupolskii, Y. Chem. Lett. 2000, 66. (c) Kloster, G. M.; Dubaz, W. J.; Grieco, P. A.; Shriver, D. F.; Strauss, S. H. Inorg. Chim. Acta 1997, 263, 195. (d) Grieco, P. A.; DuBay, W. J.; Todd, L. J. Tetrahedron Lett. 1996, 37, 8707. (e) DuBay, W. J.; Grieco, P. A.; Todd, L. J. J. Org. Chem. 1994, 59, 6898.

70 (a) Chen, E. Y.-X.; Marks, T. J. Chem. Rev. 2000, 100, 1391. (b) Ittel, S. D.; Johnson, L. K.; Brookhart, M. Chem. Rev. 2000, 100, 1169. (c) Britovsek, G. J. P.; Gibson, V. C.; Wass, D. F. Angew. Chem. Int. Ed. 1999, 38, 429. (d) Mecking, S. Coord. Chem. Rev. 2000, 203, 305.

71. (a) Scott, V. J.; Çelenligil-Çetin, R.; Ozerov, O. V. J. Am. Chem. Soc. 2005, 127,
2852. (b) Panisch, R.; Bolte, M.; Mueller, T. J. Am. Chem. Soc. 2006, 128, 9676. (c)
Douvris, C.; Stoyanov, E. S.; Tham, F. S.; Reed, C. A. Chem. Commun. 2007, 1145. (d)

Douvris, C.; Ozerov, O. V. Science 2008, 328, 1188. (e) Gu, W.; Haneline, M. R.;
Douvris, C.; Ozerov, O. V. J. Am. Chem. Soc. 2009, 131, 11203. (f) Douvris, C.;
Nagaraja, C. M.; Chen, C.-H.; Foxman, B. M.; Ozerov, O. V. J. Am. Chem. Soc. 2010, 132, 4946

72. (a) Hill, M. G.; Lamanna, W. M.; Mann, K. R. *Inorg. Chem.* 1991, *30*, 4687. (b)
Bond, A. M.; Ellis, S. R.; Hollenkamp, A. F. *J. Am. Chem. Soc.* 1988, *110*, 5293.(c)
Appel, M.; Schloter, K.; Heidrich, J.; Beck, W. *J. Organomet. Chem.* 1987, *322*, 77. (d)
Rhodes, M. R.; Mann, K. R. *Znorg. Chem.* 1984, *23*, 2053.

73. (a) Winter, C. H.; Zhou, X.-X.; Heeg, M. J. *Inorg. Chem.* 1992, *31*, 1808. (b)
Gorrell, I. B.; Parkin, G. *Inorg. Chem.* 1990, *29*, 2452. (c) Klapdtke, T.; Gowik, P. *Monatsh. Chem.* 1989, *120*, 711. (d) Bochmann, M.; Wilson, L. M.; Hursthouse, M. B.;
Short, R. L. *Organometallics* 1987, *6*, 2556. (e) Jordan, R. F.; Dasher, W. E.; Echols, S.
F. J. Am. Chem. Soc. 1986, *108*, 1718. (f) Reedijk, J. *Comments Inorg. Chem.* 1982, *1*, 379.

74. (a) Seppelt, K. Angew. Chem. Int. Ed. **1993**, *32*, 1025. (b) Bochmann, M. Angew. Chem. Int. Ed. **1992**, *104*, 1181.

75. (a) Jordan, R. F. Adv. Organomet. Chem. 1991, 32, 325. (b) Horton, A. D.; Frijns,
J. H. G. Angew. Chem. Int. Ed. 1991, 30, 1152. (c) Bochmann, M.; Jaggar, A. J.;
Nicholls, J. C. Angew. Chem., Int. Ed. 1990, 29, 780. (d) Hlatky, G. G.; Turner, H. W.;
Eckman, R. R. J. Am. Chem. Soc. 1989, 111, 2728. (e) Taube, R.; Krukowka, L. J.
Organomet. Chem. 1988, 347, C9. (f) Turner, H. W. European Patent Appl. 277,004

(assigned to Exxon), 1988. (g) Lin, Z.; Le Marechall, J.-F.; Sabat, M.; Marks, T. J. J. Am. Chem. Soc. 1987, 109, 4127. (h) Jordan, R. F.; Bajgur, C. S.; Willett, R.; Scott, B. J. Am. Chem. Soc. 1986, 108, 7410.

76. Nishida, H.; Takada, N.; Yoshimura, M.; Sonoda, T.; Kobayashi, H. *Bull. Chem. Soc. Jpn.* **1984**, *57*, 2600.

77. Massey, A. G.; Park, A. J. J. Organomet. Chem. 1964, 2, 245.

78. Kaul, F. A. R.; Puchta, G. T.; Schneider, H.; Grosche, M.; Mihalios, D.;

Herrmann, D. A. J. Organomet. Chem. 2001, 621, 177.

79. (a) Jia, L.; Jang, X.; Stern, C. L.; Marks, T. J. Organometallics 1997, 16, 842. (b)

Jia, L.; Yang, X.; Ishihara, A.; Marks, T. J. Organometallics 1995, 14, 3135.

80. Rodriguez, G.; Brant, P. Organometallics 2001, 20, 2417.

81. van den Broeke, J.; Deelman, B.-J.; van Koten, G. *Tetrahedron Lett.* 2001, 42, 8085.

82. Fujiki, K.; Ichikawa, J.; Kobayashi, H.; Sonoda, A.; Sonoda, T. J. Fluorine Chem.2000, 102, 293.

83. (a) Biagini, P.; Luigli, G.; Abis, L.; Andeussi P. (Enichem), US Patent 5602269,

1997. (b) Bochmann, M.; Sarsfield, M. J. Organometallics 1998, 17, 5908.

84. (a) Ren, K.; Mejiritski, A.; Malpert, J. H.; Neckers, D. C. Tetrahedron Lett. 2000,

41, 8669. (b Ren, K.; Malpert, J. H.; Li, H.; Gu, H.; Neckers, D. C. *Macromolecules* 2002, 35, 1632.

85. King, R. B. Chem Rev. 2001, 101, 1119.

86. Romerosa, A. M. Thermochim. Acta 1993, 217, 123.

87. Ivanov, S. V.; Rockwell, J. J.; Polyakov, O. G.; Gaudinski, C. M.; Anderson, O.

P.; Solntsev, K. A.; Strauss, S. H. J. Am. Chem. Soc. 1998, 120, 4224.

88. Xie, Z.; Tsang, C.; Sze, E. T.; Yang, Q.; Chan, D. T. W.; Mak, T. C. W. *Inorg. Chem.* **1998**, *37*, 6444.

89. Peymann, T.; Herzog, A.; Knobler, C. B.; Hawthorne, M. F. Angew. Chem., Int. Ed. 1999, 38, 1061.

90. King, B. T.; Janousěk, Z.; Grüner, B.; Trammell, M.; Noll, B. C.; Michl, J. J. Am. Chem. Soc. **1996**, *118*, 3313.

91. Fete, M. G. Ph.D. Dissertation, University of Colorado, Boulder, CO, 2006.

92. Knoth, W. H. Inorg. Chem. 1971, 10, 598.

93. It was found in our group that [HCB₁₁Cl₁₁]⁻ could be deprotonated by NaOH or KO^tBu.

94. Xie, Z.; Tsang, C.; Xue, F.; Mak, T. C. W. J. Organomet. Chem. 1999, 577, 197.
95. Stasko D.; Reed, C. A. J. Am. Chem. Soc. 2002, 124, 1148.
96. Kato, T.; Reed, C. A. Angew. Chem., Int. Ed. 2004, 43, 2908.
97. (a) Reed, C. A. Acc. Chem. Res. 1998, 31, 325. (b) Kim, K.-C.; Reed, C. A.;

Elliott, D. W.; Mueller, L. J.; Tham, F.; Lin, L.; Lambert, J. B. Science 2002, 297, 825.
98. Juhasz, M.; Hofmann, S.; Stoyanov, E.; Kim K.; Reed, C. A. Angew. Chem. Int.
Ed. 2004, 43, 5352.

99. Fărcașiu, D.; Ghenciu, A. J. Am. Chem. Soc. 1993, 115, 10901.

100. Kim, K.-C.; Reed, C. A.; Long, G. S.; Sen, A. J. Am. Chem. Soc. 2002, 124, 7662.

101. Klahn, M.; Fischer, C.; Spannenberg, A.; Rosenthal, U.; Krossing, I. *Tet. Lett.*2007, 48, 8900.

102. (a) Bolli, C.; Derendorf, J.; Keβler, M.; Knapp, C.; Scherer, H.; Schulz, C.;
Warneke, J. *Angew. Chem. Int. Ed.* 2010, *49*, 3536. (b) Kessler, M.; Knapp, C.; Sagawe,
V.; Scherer, H.; Uzun, R. *Inorg. Chem.* 2010, *49*, 5223. (c) Avelar, A.; Tham, F. S.;
Reed, C. A. *Angew. Chem. Int. Ed.* 2009, *48*, 3491. (d) Geis, V.; Guttsche, K.; Knapp,
C.; Scherer, H.; Uzun, R. *Dalton Trans.* 2009, 2687.

103. Keβler, M.; Knapp, C.; Zogaj, A. Organometallics 2011, 30, 3786.

104. Gu, W.; Ozerov, O. V. Inorg. Chem. 2011, 50, 2726.

105. Miller, P. K.; Abney, K. D.; Rappé, A. K.; Anderson, O. P; Strauss, S. H. *Inorg. Chem.* **1988**, *28*, 2255.

106. Sanders, J. C. P.; Schrobilgen, G. J. J. Chem. Soc. Chem. Commun. 1989, 1, 1576.

107. (a) Van Seggan, D. M.; Hurtburt, P. K.; Noirot, M. D.; Anderson, O. P. Strauss,
S. H. *Inorg. Chem.* 1992, *31*, 1423. (b) Mercier, H. P. A.; Saunders, J. C. P.;
Schrobilgen, G. T. *J. Am. Chem. Soc.* 1994, *116*, 2921. (c) Van Seggen, D. M.; Hurlburt,
P. K.; Anderson, O. P.; Strauss, S. H. *Inorg. Chem.* 1995, *34*, 3453. (d) Cameron, T. S.;
Krossing, I.; Passmore, J. *Inorg. Chem.* 2001, *40*, 2001. (e) Moock, K.; Seppelt, K. Z. *Anorg. Allg. Chem.* 1988, *561*, 132.

108. (a) Gerken, M.; Kolb, P.; Wegner, A.; Mercier, H. P. A.; Borrmann, H.; Dixon,

D. A.; Schrobilgen, . J. *Inorg. Chem.* **2000**, *39*, 2813. (b) Casteel, Jr. W. J.; Kolb, P.; LeBlond, N.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **1996**, *35*, 929.

109. Krossing, I. Chem. Eur. J. 2001, 7, 490.

110. Ren, P.; Vechorkin, O.; Csok, Z.; Salihu, I.; Scopelliti, R.; Hu, X. *Dalton Trans.***2011**, *40*, 8906.

111. (a) Fryzuk, M. D.; MacNeil, P. A. J. Am. Chem. Soc. 1984, 106, 6993. (b)
Ozerov, O. V.; Gerard, H. F.; Watson, L. A.; Huffman, J. C.; Caulton, K. G. Inorg.
Chem. 2002, 41, 5615.

112. (a) Auburn, M. J.; Stobart, S. R. *Inorg. Chem.* 1985, 24, 318. (b) Joslin, F. L.;
Stobart, S. R. J. Chem. Soc., *Chem. Commun.* 1989, 504. (c) Auburn, M. J.; Holmes-Smith, R. D.; Stobart, S. R.; Bakshi, P. K.; Cameron, T. S. *Organometallics* 1996, 15, 3032. (d) Gossage, R. A.; McLennan, G. D.; Stobart, S. R. *Inorg. Chem.* 1996, 35, 1729.
(e) Brost, R. D.; Bruce, G. C.; Joslin, F. L.; Stobart, S. R. *Organometallics* 1997, 16, 5669. (f) Zhou, X.; Stobart, S. R. *Organometallics* 2001, 20, 1898.

113. (a) Trnka, T. M.; Grubbs, R. H. Acc. Chem. Soc. 2001, 34, 18. (b) Herrmann, W.
A. Angew. Chem. Int. Ed. 2002, 41, 1290. (c) Hahn, F. E.; Jahnke, M. C. Angew. Chem.
Int. Ed. 2008, 47, 3122. (d) Peris, E.; Grubbs, R. H. Coord. Chem. Rev. 2004, 248, 2239.
(e) Crudden, C. M.; Allen, D. P. Coord. Chem. Rev. 2004, 248, 2247.

114. Spokoyny, A. M.; Reuter, M. G.; Stern, C. L.; Ratner, M. A.; Seideman, T., Mirkin, C. A. J. Am. Chem. Soc. 2009, 131, 9482.

115. El-Zaria, M. E.; Arii, H.; Nakamura, H.; Inorg. Chem. 2011, 50, 4149

116. (a) Charmant, J. P. H.; Cheng, F.; Norman, N. C; Pringle, P. G. *Dalton Trans.* 2007, 114. (b) Liang, L.-C.; Lin, J.-M.; Lee, W.-Y. *Chem. Commun* 2005, 2462. (c) Hu,

J.; Xu, H.; Nguyen, M.-H.; Yip, J. H. K. Inorg. Chem. 2009, 48, 9684.

117. (a) Braunschweig, H.; Radacki, K.; Rais, D.; Uttinger, K. Angew. Chem., Int. Ed.
2006, 45, 162. (b) Braunschweig, H.; Green, H.; Radacki, K.; Uttinger, K. Dalton Trans.
2008, 3531.

118. Waterman, R.; Hayes, P. G.; Tilley, T. D. Acc. Chem. Res. 2007, 40, 712.

119. Morales-Morales, D.; Grause, C.; Kasaoka, K.; Redón, R.; Cramer, R. E.; Jensen, C. M. *Inorg. Chim. Acta.* **2000**, *300*, 958.

120. Kawatsura, M.; Hartwig, J. F. Organometallics 2001, 20, 1960.

121. (a) Liang, L. -C.; Lin, J. -M.; Hung, C. -H. Organometallics 2003, 22, 3007. (b)

Winter, A. M.; Eichele, K.; Mack, H. -G.; Potuznik, S.; Mayer, H. A.; Kaska, W. C. J. *Organomet. Chem.* **2003**, 682, 149. (c) Fan, L.; Foxman, B. M.; Ozerov, O. V. Organometallics **2004**, 23, 326.

122. (a) Katz, H. E. J. Am. Chem. Soc., **1985**, 107, 1421. (b) Tour, J. M.; John, J. A.; Stephens, E. B. Organomet. Chem. **1992**, 429, 301. (c) Hinke, A.; Kuchen, W. Chem. Ber. **1983**, 116, 3003.

123. (a) Talay, R.; Rehder, D. Zeit. f. Natur., B: Anorg. Chemie. **1981**, *36*, 451. (b) Tamm, M.; Dreßel, B.; Baum, K.; Lügger, T.; Pape, T. J. Organomet. Chem. **2003**, 677,

(c) Chiswell, B.; Venanzi, L. M. J. Chem. Soc. (A) 1966, 417. (d) Tunney, S. E.;
 Stille, J. K. J. Org. Chem. 1987, 52, 748.

124. Korshin, E. E.; Leitus, G.; Shimon, L. J. W.; Konstantinovski, L.; Milstein, D. Inorg. Chem. 2008, 47, 7177.

125. Chen, L. S.; Chen, G. J. J. Organomet. Chem. 1980, 193, 283.

126. The solid state structure of **209** was solved by Prof. Bruce M. Foxman and Dr. Chun-Hsing Chen.

127. Bontemps, S.; Bouhadir, G.; Dyer, P. W.; Miqueu, K.; Bourissou, D. Inorg. Chem. 2007, 46, 5149.

128 . (a) Persistence of Vision Ray Tracer (POV-Ray), available at http://www.Povray.org/ (b) Ortep-3 for Windows: Farugia, L. J. J. Appl. Crystallogr. **1997**, *30*, 56.

129. Bontemps, S.; Gornitzka, H.; Bouhadir, G.; Miqueu, K.; Bourissou, D. Angew. Chem. Int. Ed. 2006, 45, 1611.

130. Zhang, Y.; Shibatomi, K.; Yamamoto, S. Synlett. 2005, 18, 2837.

131. (a) Knoth, W. H. J. Am. Chem. Soc. **1967**, 89, 1274. (b) Knoth, W. H. Inorg. Chem. **1971**, 10, 598.

132. Mueller, T.; Juhasz, M.; Reed, C. A. Angew. Chem., Int. Ed. 2004, 43, 1543.

133. Bolskar, R. D.; Mathur R. S.; Reed, C. A. J. Am. Chem. Soc. 1996, 118, 13093.

134. (a) Mueller, T. Adv. Organomet. Chem. 2005, 53, 155. (b) Kueppers, T.; Bernhardt, E.; Eujen, R.; Willner, H.; Lehmann, C. W. Angew. Chem. Int. Ed. 2007, 46, 6346.

135. (a) Reed, C. A.; Xie, Z.; Bau, R.; Benesi, A. Science 1993, 262, 402.

136. Schleyer, P.; Najafian, K. Inorg. Chem. 1998, 37, 3454.

137. (a) Plešek, J.; Plzák, Z.; Stuchlík, J.; Heřmánek, S. *Collect. Czech. Chem. Commun.* 1981, 46, 1748. (b) Jelínek, T.; Plešek, J.; Mareš, F.; Heřmánek, S.; Štíbr, B. *Polyhedron* 1987, 6, 1981.

138. Jelínek, T.; Plešek, J.; Heřmánek, S.; Štíbr, B. Collect. Czech. Chem. Commun. 1986, 51, 819.

139. Approximate prices from the Aldrich catalog are \$0.20/g for SbCl5 and \$0.06/g for SO2Cl2 vs. \$1/g for CF3SO3H and \$0.6/g for ICl.

140. For use of SO2Cl2 in chlorination: (a) Silberrad, O. J. Chem. Soc. **1921**, 119, 2029. (b) Silberrad, O.; Silberrad, C. A.; Parke, B. J. Chem. Soc. **1925**, 127, 1724.

141. For use of SbCl5 in chlorination (a) Müller, H. J. Chem. Soc. 1862, 15, 41. (b)

Kovacic, P.; Sparks, A. K. J. Am. Chem. Soc. 1960, 82, 5740.

142. Lebedev V. N.; Zakharkin, L. I. Izu. Akad. Nauk SSSR, Ser. Khim., 1986, 1, 253.

143. Sivaev, I. B.; Bregadze, V. I.; Sjöberg, S. Collect. Czech. Chem. Commun. 2002, 67, 679.

144. Knoth, W. H.; Miller, H. C.; Sauer, J. C.; Chia, Y. T.; Muetterties, E. L. Inorg. Chem. 1964, 3, 159.

145. The solid state structure of Cs[HCB₁₁Cl₉(O₃SCF₃)₂]was solved by Prof. Bruce M. Foxman.

146. Ballester, M.; Molinet, C.; Castaner, J. J. Am. Chem. Soc. 1960, 82, 4254.

147. In our hands, sometimes we got complete chlorination with SbCl5 in as low as 3 days.

148. Peryshkov, D. V.; Popov, A. A.; Strauss, S. H. J. Am. Chem. Soc. 2009, 131, 18393 and references within.

149. In our hands, sometimes we got complete chlorination with SO2Cl2 and MeCN in as low as 8 hours.

150. T. Braun, R. N. Perutz, in *Comprehensive Organometallic Chemistry III*, R. H. Crabtree, D. M. P. Mingos, Eds. (Elsevier, Oxford, 2006).

151. Krause, J. R.; Lampe, F. W. J. Phys. Chem. 1977, 81, 281.

152. (a) Duttwyler, S.; Douvris, C.; Fackler, N. L.; Tham, F. S.; Reed, C. A.; Baldridge, K. K.; Siegel, J. S. Angew. Chem. Int. Ed. 2010, 49, 7519. (b) Allemann, O.;

Duttwyler, S.; Romanato, P.; Baldridge, K. K.; Siegel, J. S. Science 2011, 332, 574.

153. (a) Fuchibe, K.; Akiyama, T. J. Am. Chem. Soc. 2006, 128, 1434. (b) Fuchibe,
K.; Mitomi, K.; Suzuki, R.; Akiyama, T. Chem. Asian J. 2008, 3, 261.

154. (a) Terao, J.; Begum, S. A.; Shinohara, Y.; Tomita, M.; Naitoh, Y.; Kambe, N. *Chem. Commun.* **2007**, 855. (b) Terao, J.; Nakamura, M.; Kambe, N. *Chem. Commun.* **2009**, 855.

155. (a) Gundersen, G.; Haugen, T.; Haaland, A. J. Organomet. Chem. 1973, 54, 77.

(b) Laubengayer, A. W.; Lengnick, G. F. Inorg. Chem. 1966, 5, 5037.

156. (a) Gundersen, G.; Haugen, T.; Haaland, A. J. Organomet. Chem. 1973, 54, 77.

(b) Laubengayer, A. W.; Lengnick, G. F. Inorg. Chem. 1966, 5, 5037.

157. Zurek, E.; Ziegler, T. Prog. Polym. Sci. 2004, 29, 107.

158. Bochmann, M. J. Chem. Soc., Dalton Trans. 1996, 255.

159. Strobach, D. R.; Boswell, G. A. J. Org. Chem. 1971, 36, 818.

160. We calculate TON based on the amount of the [B12Cl12]2- counterion. It is not clear whether both cations associated with it can be catalytically engaged simultaneously at all times. If they are, then our TON values should be divided by two.

161. (a) King, R. B. Adv. Chem. Ser. **1967**, 62, 203. (b) Green, M. L. H. J. Organomet. Chem. **1995**, 500, 127.

162. (a) Kubas, G. J. Acc. Chem. Res. 1994, 27, 183. (a) Burlitch, J. M.; Leonowicz,
M. E.; Petersen, R. B.; Hughes, R. E. Inorg. Chem. 1979, 18, 1097. (b) Golden, J. T.;
Peterson, T. H.; Holland, P. L.; Bergman, R. G.; Andersen, R. A. J. Am. Chem. Soc.
1998, 120, 223. (c) Braunschweig, H.; Gruss, K.; Radacki, K. Angew. Chem., Int. Ed.
2007, 46, 7782. (d) Braunschweig, H.; Gruss, K.; Radacki, K. Inorg. Chem. 2008, 47, 8595.

163. (a) Braunschweig, H.; Kollann, C.; Rais, D. Angew. Chem., Int. Ed. 2006, 45,

5254. (b) Fontaine, F.-G.; Boudreau, J.; Thibault, M.-H. Eur. J. Inorg. Chem. 2008, 5439.

(c) Braunschweig, H.; Dewhurst, R. D.; Schneider. A. Chem. Rev. 2010, 110, 3924.

164. Gilbert, K. B.; Boocock, S. K.; Shore, S. G. In *Comprehensive Organometallic Chemistry*; Abel, E. W., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon: Oxford, 1982; Vol. 6, p 880.

165. Burlitch, J. M.; Burk, J. H.; Leonowicz, M. E.; Hughes, R. E. Inorg. Chem. 1979, 18, 1702.

166. Hill, A. F.; Owen, G. R.; White, A. J. P.; Williams, D. J. Angew. Chem., Int. Ed. 1999, 38, 2759.

167. Brown, H. C.; Fletcher, E. A. J. Am. Chem. Soc. 1951, 73, 2808.

168. (a) Trofimenko, S. Scorpionates: *The Coordination Chemistry of Poly-*(*pyrazolyl*)*borate Ligands*; Imperial College Press: London, 1999. (b) Foreman, M. R. St.-J.; Hill, A. F.; White, A. J. P.; Williams, D. J. *Organometallics* **2004**, *23*, 913. (c) Figueroa, J. S.; Melnick, J. G.; Parkin, G. *Inorg. Chem.* **2006**, *45*, 7056. (d) Crossley, I. R.; Foreman, M. R. St.-J.; Hill, A. F.; Owen, G. R.; White, A. J. P.; Williams, D. J.; Willis, A. C. *Organometallics* **2008**, *27*, 381.

169. (a) Bontemps, S.; Bouhadir, G.; Miqueu, K.; Bourissou, D. J. Am. Chem. Soc.

2006, 128, 12056. (b) Bontemps, S.; Sircoglou, M.; Bouhadir, G.; Puschmann, H.;

Howard, J. A. K.; Dyer, P. W.; Miqueu, K.; Bourissou, D. Chem.-Eur. J. 2008, 14, 731.

(c) Sircoglou, M.; Bontemps, S.; Mercy, M.; Saffron, N.; Takahashi, M.; Bouhadir, G.;

Maron, L.; Bourissou, D. Angew. Chem. Int. Ed. 2007, 46, 8583.

170. (a) Tsoureas, N.; Haddow, M. F.; Hamilton, A.; Owen, G. R. Chem. Commun. 2009, 2538. (b) Tsoureas, N.; Bevis, T.; Butts, C. P.; Hamilton, A.; Owen, G. R. *Organometallics* 2009, 28, 5222.

171. (a) Crossley, I. R.; Hill, A. F.; Willis, A. C. *Organometallics* **2005**, *24*, 1062. (b) Crossley, I. R.; Hill, A. F.; Willis, A. C. *Organometallics* **2007**, *26*, 3891.

172. We understand it is debatable whether to treat borane ligand as neutral ligand or dianionic ligand when counting the oxidation state of the transition metal. Here, for the sake of argument, we treat it as neutral ligand.

173. Conifer, C. M.; Law, D. J.; Sunley, G. J.; White, A. J. P.; Britovsek, G. J. P. *Organometallics* **2011**, *30*, 4066.

174. Moret, M.-E.; Peters, J. C. Angew. Chem. Int. Ed. 2011, 50, 2063.

175. Transition metal complexes of phosphino-boranes featuring $M \rightarrow B$ interactions typically display 11B NMR chemical shifts from 18 to 55 ppm.^{162c, 169}

176. The solid state structure of **502** was solved by Prof. Bruce M. Foxman and Dr. Chun-Hsing Chen.

177. The solid state structure of **503** was solved by Prof. Bruce M. Foxman and Dr. Chun-Hsing Chen.

178. Cordero, B.; Gómez, V.; Pletro-Prats, A. E.; Revés, M.; Echeverría, J.;

Cremades, E.; Barragán, F.; Alvarez, S. Dalton Trans. 2008, 2832.

179. The order is consistent with the results from theoretical studies performed by Bourissou, Maron and coworkers. Sircoglou, M.; Bontemps, S.; Bouhadir, G.; Saffon, N.; Miqueu, K.; Gu, W.; Mercy, M.; Chen, C.-H.; Foxman, B.; Maron, L.; Ozerov, O. V.; Bourissou, D. J. Am. Chem. Soc. **2008**, *130*, 16729.

180. Linsky, J. P.; Pierpont, C. G. Inorg. Chem. 1973, 12, 2962.

181. Group 11 metallaboratranes were synthesized and characterized by Bourissou and coworkers. Sircoglou, M.; Bontemps, S.; Bouhadir, G.; Saffon, N.; Miqueu, K.; Gu, W.; Mercy, M.; Chen, C.-H.; Foxman, B.; Maron, L.; Ozerov, O. V.; Bourissou, D. J. Am. Chem. Soc. 2008, 130, 16729.

182. (a) Tsay, C.; Mankad, N. P.; Peters, J. C. J. Am. Chem. Soc. 2010, 132, 13975.

(b) Takaoka, A.; Gerber, L. C. H.; Peters, J. C. Angew. Chem. Int. Ed. 2010, 49, 4088.

183. (a) Kanzelberger, M.; Zhang, X.; Emge, T. J.; Goldman, A. S.; Zhao, J.; Incarvito, C.; Hartwig, J. F. *J. Am. Chem. Soc.* **2003**, *125*, 13644. (b) Gatard, S.; Çelenligil-Çetin, R.; Guo, C.; Foxman, B. M.; Ozerov, O. V. *J. Am. Chem. Soc.* **2006**, *128*, 2808. (c) Unpublished results from Zhu, Y. and Ozerov, O. V.

184. The Nobel Prize in Chemistry 2005 was awarded jointly to Yves Chauvin, Robert H. Grubbs and Richard R. Schrock "for the development of the metathesis method in organic synthesis".

185. (a) Schrock, R. R. Chem. Rev. 2002, 102, 145. (b) Grubbs, R. H.; Trnka, T. M.;
Sanford, M. S. Curr. Methods Inorg. Chem. 2003, 3, 187.
186. Olah, J.; De Proft, F.; Veszprémi, T.; Geerlings, P. J. Phys. Chem. A 2005, 109, 1608.

187. Lauvergnat, D.; Hiberty, P. C.; Danovich, D.; Shaik, S. J. Phys. Chem. 1996, 100, 5715.

188. Sheldrick, W. S. In the Chemistry of Organic Silicon Compounds Part I; Patai,

S., Rappoport, Z., Eds.; Wiley-Interscience: New York, 1989.

189. (a) Zybill, C.; Müller, G. Angew. Chem., Int. Ed. Engl. 1987, 26, 669. (b) Straus,

D. A.; Tilley, T. D. J. Am. Chem. Soc. 1987, 109, 5872.

190. (a) Ueno, K.; Tobita, H.; Shimoi, M.; Ogino, H. J. Am. Chem. Soc. 1988, 110,

4092; (b) Tobita, H.; Ueno, K.; Shimoi, M.; Ogino, H. J. Am. Chem. Soc. 1990, 112,

3415. (c) Ueno, K.; Masuko, A.; Ogino, H. Organometallics, 1998, 18, 2694. (d)

Okazaki, M.; Tobita, H.; Ogino, H. Chem. Lett., 1997, 437. (e) Koshikawa, H.; Ueno, K.;

Tobita, H.; Ogino, H. Eighty-First Annual Meeting of the Chemical Society of Japan,

Tokyo, 2002, 3B4-31. (f) Ueno, K.; Ito, S.; Endo, K.; Tobita, H.; Inomata, S.; Ogino, H.

Organometallics, 1994, 13, 3309. (g) Tobita, H.; Sato, T.; Okazaki, M.; Ogino, H. J.

Organomet. Chem., 2000, 611, 314. (h) Ghadwal, R. S.; Azhakar, R.; Pröpper, K.;

Holstein, J. J.; Dittrich, B.; Roesky, H. W. Inorg. Chem. 2011, 50, 8502.

191. Straus, D. A.; Grumbine, S. D.; Tilley, T. D. J. Am. Chem. Soc. 1990, 112, 7801.

192. (a) Straus, D. A.; Zhang, C.; Quimbita, G. E.; Grumbine, S. D.; Heyn, R. H.;

Tilley, T. D.; Rheingold, A. L.; Geib, S. J. J. Am. Chem. Soc. 1990, 112, 2673. (b)

Grumbine, S. D; Tilley, T. D. J. Am. Chem. Soc. 1993, 115, 7884. (c) Grumbine, S. D;

Tilley, T. D.; Arnold, F. P.; Rheinglod, A. L. J. Am. Chem. Soc. 1994, 116, 5495. (d)

Mitchell, G. P.; Tilley, T. D. J. Am. Chem. Soc. 1998, 120, 7635. (e) Mitchell, G. P.;

Tilley, T. D. Angew. Chem. Int. Ed. 1998, 37, 2524.

193. (a) Okazaki, M.; Tobita, H.; Ogino, H. Dalton Trans. 2003, 493.

194. Mitchell, G. P.; Tilley, T. D. J. Am. Chem. Soc. 1997, 119, 11236.

195. (a) Zhang, C.; Grumbine, S. D.; Tilley, T. D. Polyhedron, 1991, 10, 1173. (b)

Petri, S. H. A.; Eikenberg, D.; Neumann, B.; Stammler D.-G.; Jutzi, P. *Organometallics* **1999**, *18*, 2615.

196 (a) Gilman, H.; Steve, G.; Atwell, W. H. J. Am. Chem. Soc. **1964**, 86, 1596. (b) Halevi, E. A.; West, R. J. Organomet. Chem. **1982**, 240, 129. (c) Tilley, T. D. In The Chemistry of Organic Silicon Compounds; Patai, S., Rappoport, Z., Eds.; Wiley: New York, 1989. (d) Ohmura, T.; Masuda, K.; Takase, I.; Suginome, M. J. Am. Chem. Soc. **2009**, 131, 16624. (e) Masuda, K.; Ohmura, T.; Suginome, M. Organometallics **2011**, 30, 1322.

197. (a) Glaser, P. B.; Tilley, T. D. J. Am. Chem. Soc. 2003, 125, 13640. (b) Brunner,
H. Angew. Chem., Int. Ed. 2004, 43, 2749. (c) Calimano, E.; Tilley, T. D. J. Am. Chem.
Soc. 2008, 130, 9226. (d) Calimano, E.; Tilley, T. D. J. Am. Chem. Soc. 2009, 131,
11161. (e) Calimano, E.; Tilley, T. D. Organometallics 2010, 29, 1680. (f) Rankin, M.
A.; Maclean, D. F.; Schatte, G.; McDonald, R.; Stradiotto, M. J. Am. Chem. Soc. 2007,
129, 15855.

198. Gigler, P.; Bechlars, B.; Herrmann, W. A.; Kühn, F. E. J. Am. Chem. Soc. 2011, 133, 1589.

199. (a) Brown, H. C. Boranes in Organic Chemistry; Cornell University Press:
Ithaca, NY, 1972. (b) Brown, H. C.; Chandrasekharan, J.; Nelson, D. J. J. Am. Chem.
Soc. 1984, 106, 3768. (c) Jones, P. R. J. Org. Chem. 1972, 37, 1886. (d) Hommes, N. J.
R. E. H.; Schleyer, P. R. J. Org. Chem. 1991, 56, 4074.
200. Haas, A.; Süllentrup, R.; Krüger, C. Z. Anorg. allg. Chem. 1993, 619, 819.
201. Pregosin, P. S.; Kunz, R. W. 31P and 13C NMR of Transition Metal Phosphine

Complexes Springer-Verlag, Berlin, 1979, P97.

202. The solid state structures of 601 and 607 were solved by Dr. David E. Herbert.

203. Latif, L. A. J. Chem. Res., Synop. 1995, 6, 264.

204. Stahl, S. S.; Labinger, J. A.; Bercaw, J. E. Inorg. Chem. 1998, 37, 2422.

205. Wanandi, P. W.; Glaser, P. B.; Tilley, T. D. J. Am. Chem. Soc. 2000, 122, 972.

206. (a) Feldman, J. D.; Mitchell, G. P.; Nolte, J.; Tilley, T. D. Can. J. Chem. 2003,

81, 1127. (b) Watanabe, C.; Inagawa, Y.; Iwamoto, T.; Kira, M. *Dalton Trans.* 2010, *39*, 9413.

207. Drew, D.; Doyle, J. R. Inorg. Synth. 1990, 28 348.

208. (a) Musaev, D. G.; Morokuma, K. J. Phys. Chem. 1996, 100, 6509. (b)

Dickinson, A. A.; Willock, D. J.; Calder, R. J.; Aldridge, S. Organometallics 2002, 21,

1146. (c) Cundari, T. R.; Zhao, Y. Inorg. Chim. Acta 2003, 345, 70. (d) Lam, K. C.;

Lam, W. H.; Lin, Z.; Marder, T. B.; Norman, N. C. Inorg. Chem. 2004, 43, 2541.

209. a) Braunschweig, H.; Radacki, K.; Uttinger, K. Chem. Eur. J. 2008, 14, 7858.

210. (a) Zhu, J.; Lin, Z.; Marder, T. B. Inorg. Chem. 2005, 44, 9384. (b) Lam, K. C.;

Lam, W. H.; Lin, Z.; Marder, T. B.; Norman, N. C. Inorg. Chem. 2004, 43, 2541.

211. (a) Segawa, Y.; Suzuki, Y.; Yamashita, M.; Nozaki, K. J. Am. Chem. Soc. 2008,

130, 16069. (b) Yamashita, M.; Suzuki, Y. Segawa, Y.; Nozaki, K. J. Am. Chem. Soc.

2007, 129, 9570. (c) Segawa, Y.; Yamashita, M.; Nozaki, K. Science 2006, 314, 113.

212. (a) Baker, R. T.; Ovenall, D. W.; Calabrese, J. C.; Westcott, S. A.; Taylor, N. J.;

Williams, I. D.; Marder, T. B. J. Am. Chem. Soc. **1990**, 112, 9399. (c) Knorr, J. R.; Merola, J. S. Organometallics **1990**, 9, 3008.

213. (a) Irvine, G. J.; Lesley, M. J. G.; Marder, T. B.; Norman, N. C.; Rice, C. R.; Robins, E. G.; Roper, W. R.; Whittell, G. R.; Wright, L. J. *Chem. Rev.* 1998, 98, 2685.
(b) Braunschweig, H. *Angew. Chem., Int. Ed.* 1998, *37*, 1786. (c) Braunschweig, H.; Colling, M. *Coord. Chem. Rev.* 2001, *223*, 1. (d) Aldridge, S.; Coombs, D. L. *Coord. Chem. Rev.* 2004, *248*, 535. (e) Braunschweig, H.; Whittell, G. *Chem.-Eur. J.* 2005, *11*, 6128.

214. (a) Marder, T. B.; Norman, N. C. *Top. Catal.* 1998, *5*, 63. (b) Männig, D.; Nöth,
H. *Angew. Chem.*, *Int. Ed.* 1985, *24*, 878.

215. Solid state structures of **701**, **708**, **709** and **710** were solved by Dr. David E. Herbert.

216. Since **706** actually isomerized to make **707** in fluorobenzene, the yield here was calculated based on the weight of the mixtures of **706** and **707**.

217. (a) Dai, C.; Stringer, G.; Marder, T. B.; Scott, A. J.; Clegg, W.; Norman, N. C. *Inorg. Chem.* **1997**, *36*, 272. (b) Hartwig, J. F.; Cook, K. S.; Hapke, M.; Incarvito, C. D.;
Fan, Y.; Webster, C. E.; Hall, M. B. *J. Am. Chem. Soc.* **2005**, *127*, 2538. (c) Souza, F. E. S.; Nguyen, P.; Marder, T. B.; Scott, A. J.; Clegg, W. *Inorg. Chim. Acta.* **2005**, *358*, 2001.

218. (a) Van Niekerk, J. N.; Schoening, F. R. L. Acta. Cryst. 1953, 6, 227. (b)
Bratton, W. K.; Cotton, F. A. J. Am. Chem. Soc. 1964, 87, 921. (c) Bennett, M. J.;
Bratton, W. K.; Cotton, F. A.; Robinson, W. R. Inorg. Chem. 1968, 7, 1570. (d) Cotton,
F. A.; DeBoer, B. G.; Laprade, M. D.; Ripal, J. R.; Ucko, D. A. Acta. Cryst. 1971, B27, 1664.

219. ESD values were calculated using LINEST function in Microsoft Excel. The reported uncertainty here is two times the results calculated by LINEST function in Microsoft Excel.

220 Maguire, J. A.; Petrillo, A.; Goldman, A. S. J. Am. Chem. Soc. 1992, 114, 9492.
221. Giordano, G.; Crabtree, R. H. Inorg. Synth. 1979, 19, 218.

222. Crabtree, R. H.; Morris, G. E. J. Organomet. Chem. 1977, 135, 395.

VITA

Name:	Weixing Gu
Address:	Department of Chemistry, Northwestern University 2145 Sheridan Rd., Evanston, IL 60208
Email Address:	weixinggu1982@gmail.com
Education:	B.S., Polymer Science and Engineering, Fudan University, 2004 M.S., Chemistry, Brandeis University, 2008 Ph.D., Chemistry, Texas A&M University, 2011