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ABSTRACT 

 

Measured and Predicted Rotor-Pad Transfer Functions for a Rocker-Pivot Tilting-Pad 

Journal Bearing. (December 2011) 

Jason Christopher Wilkes, B.S., Texas A&M University; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Dara W. Childs 

 

 Many researchers have compared predicted stiffness and damping coefficients 

for tilting-pad journal bearings (TPJBs) to measurements.  Most have found that direct 

damping is consistently overpredicted.  The thrust of this research is to explain the 

difference between measured and predicted stiffness and damping coefficients for 

TPJBs, and to provide some confidence to designers that TPJB dynamic coefficients can 

be accurately predicted. 

 Most analytical models for TPJBs are based on the assumption that explicit 

dependence on pad motion can be eliminated by assuming harmonic rotor motion such 

that the amplitude and phase of pad motions resulting from radial and transverse rotor 

motions are predicted by rotor-pad transfer functions.  In short, these transfer functions 

specify the amplitude and phase of pad motion (angular, radial, translational, etc.) in 

response to an input rotor motion.   

 A new pad perturbation model is developed including the effects of angular, 

radial, and circumferential pad motion and changes in pad clearance due to pad bending 

compliance.  Though all of these pad variables have previously been included in 

different analyses, there are no publications containing perturbations of all four 

variables.  In addition, previous researchers have only perturbed the journal, while both 

the bearing and journal motions are perturbed in the present analysis, and the 

applicability of comparing rotor-perturbed bearing impedance predictions to impedances 

measured on a bearing-perturbed test rig is discussed.  This perturbation model was 
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implemented in a Reynolds-based TPJB code to predict the frequency-dependent bearing 

impedances and rotor-pad transfer functions. 

 Direct measurements of pad motion during test excitation were recorded to 

produce measured transfer functions between rotor and pad motion, and a comparison 

between these measurements and predictions is given.  Motion probes were added to the 

loaded pad (having the static load vector directed through its pivot) of a 5-pad TPJB to 

obtain accurate measurement of pad radial and tangential motion, as well as tilt, yaw, 

and pitch.  Strain gages were attached to the side of the loaded pad to measure static and 

dynamic bending strains, which were then used to determine static and dynamic changes 

in pad curvature (pad clearance). 

 Good agreement was found between the amplitude of the measured and predicted 

transfer functions concerning radial and transverse pad motions throughout the range of 

speeds and loads tested, while pad tilt was moderately underpredicted. 

 For the bearing investigated, radial pad motions resulting from pivot compliance 

were as large as 60% of the radial component of shaft motion when operating at 4400 

rpm under heavily loaded conditions.  Hence, if a dynamic load applied to the shaft 

resulted in a shaft displacement of 25 microns (1 mil), the pad would displace radially 15 

microns (0.6 mils), and the fluid film height would only decrease by 10 microns (0.4 

mils).  The consequence of this pad motion is that fluid film stiffness and damping 

forces produced by relative rotor-pad motions are significantly reduced, resulting in a 

bearing having significantly less direct stiffness and damping than predicted.  A similar 

effect occurs when shaft motions produce significant changes in pad clearance due to 

pad compliance.  For the pad tested here, the measurements show that predicting TPJB 

stiffness and damping coefficients without accounting for pad and pivot compliance will 

produce large errors, and is not advised. 

 Transverse pad motion was predicted and observed.  Based on phase 

measurements, this motion is lightly damped, and appears to be caused by pivot 

deflection instead of slipping.  Despite observing a lightly damped phase change, an 

increase in magnitude at this natural frequency was not observed.   
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 Predicted direct stiffness and damping for unit loads from 0-3200 kPa (0-450 psi) 

fit through 1.5× running speed are within 18% of measurements at 4400 rpm, while 

predictions at 10200 rpm are within 10% of measurements.  This is a significant 

improvement on the accuracy of predictions cited in literature.   

 Comparisons between predictions from the developed bearing model neglecting 

pad, pivot, and pad and pivot flexibility show that predicted direct stiffness and damping 

coefficients for a model having a rigid pad and pivot are overestimated, respectively, by 

202% and 811% at low speeds and large loads, by 176% and 513% at high speeds and 

high loads, and by 51% and 182% at high speeds and light loads.  While the reader is 

likely questioning the degree to which these predictions are overestimated in regard to 

previous comparisons, these predictions are based on measured operating bearing 

clearances, which are 20-30% smaller than the cold bearing clearances that previous 

comparisons were based on. 

 The effect of employing a full bearing model (retaining all of the pad degrees of 

freedom) versus a reduced bearing model (where only journal degrees of freedom are 

retained) in a stability calculation for a realistic rotor-bearing system is assessed.  For the 

bearing tested, the bearing coefficients reduced at the frequency of the unstable 

eigenvalue (subsynchronously reduced) predicted a destabilizing cross-coupled stiffness 

coefficient at the onset of instability within 1% of the full model, while synchronously 

reduced coefficients for the lightly loaded bearing required 25% more destabilizing 

cross-coupled stiffness than the full model to cause system instability.  This 

overestimation of stability is due to an increase in predicted direct damping at the 

synchronous frequency over the subsynchronously reduced value.  This increase in 

direct damping with excitation frequency was also seen in highly loaded test data at 

frequencies below approximately 2×running speed, after which direct damping 

decreased with increasing excitation frequency.  This effect was more pronounced in 

predictions, occurring at all load and speed combinations. 

 The same stability calculation was performed using measured stiffness and 

damping coefficients at synchronous and subsynchronous frequencies at 10200 rpm.  It 
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was found that both the synchronously measured stiffness and damping and predictions 

using the full bearing model were more conservative than the model using 

subsynchronously measured stiffness and damping.  This outcome contrasts with the 

comparison between models using synchronously and subsynchronously reduced 

impedance predictions, which showed the subsynchronously reduced model to be the 

most conservative.  This contrast results from a predicted increase in damping with 

increasing excitation frequency at all speeds and loads, while this increase in damping 

with increasing excitation frequency was only measured at the most heavily loaded 

conditions. 
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CHAPTER I 

INTRODUCTION 

 

OVERVIEW OF THE TILTING PAD JOURNAL BEARING 

 As an elemental component of any rotating machine, bearings have a significant 

influence on rotor- bearing stability, reliability, and performance.  The primary function 

of a bearing is to transmit reaction forces from one body to another while facilitating 

rotation between the two bodies.  This rotation can be facilitated by several means, 

including rolling elements, mechanical contact, magnetic levitation, or fluid film 

lubrication.  Each of these bearing types have strengths and weaknesses, but the current 

work will focus on the tilting-pad journal bearing, a specific type of fluid film bearing 

that is inherently stable, and has thus become a popular selection for commercial 

turbomachinery operating in high-speed, lightly-loaded conditions.   

 As stated, the primary function of a bearing is to support a shaft, or journal, by 

providing reaction forces.  For motion about equilibrium, these bearing reaction force 

components are usually represented by one of the following forms: (1) a stiffness (kij) 

and damping (cij) (KC) model 

 xx xy xx xybx

by yx yy yx yy

k k c cf x x
f k k y c c y

⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫− = +⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎣ ⎦ ⎣ ⎦

⎧ ⎫ , (1) 

where kij, cij can be constant (independent of excitation frequency) or frequency-

dependent stiffness and damping coefficients, and x and y are relative rotor-stator 

motions, or (2) a stiffness, damping, and virtual-mass (mij) (KCM) model 

 xx xy xx xy xx xybx

by yx yy yx yy yx yy

k k c c m mf x x x
f k k y c c y m m y

⎡ ⎤ ⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ ⎫− = + +⎨ ⎬ ⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎩ ⎭ ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦

⎧ ⎫ , (2) 

where kij and cij and mij are typically frequency-independent coefficients.  The terms 

kxx/kyy and cxx/cyy in Eqs. (1) and (2) are commonly referred to as direct stiffness and  
_______________ 
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damping coefficients, and produce reaction forces that “directly” oppose displacement or 

velocity; the terms kxy/kyx and cxy/cyx are commonly referred to as cross-coupled stiffness 

and damping coefficients and provide reaction forces perpendicular to displacement and 

velocity, respectively.  When kxy and kyx have different signs, the cross-coupled stiffness 

coefficients become destabilizing, producing forces that add energy to the shaft’s orbit, 

which can result in large amplitude oil whirl/whip provided the bearing does not have 

enough direct damping to suppress this behavior.  

 Ideal TPJBs are inherently stable because they are composed of multiple pads, or 

shoes, that are free to tilt such that the net moment on each pad is zero at equilibrium; 

this reduces/eliminates the generation of destabilizing forces (destabilizing cross-

coupled stiffness).  Figure 1 shows a schematic of a pad’s reaction force due to a 

displacement of the journal directed at the pad’s pivot.  If the pivot allows the pad to tilt 

freely (providing no reaction moment), then the pad’s reaction force must be collinear 

with the journal’s displacement, resulting in zero cross coupled stiffness. 

  

Fluid Film 
Pressure Profile

Pad

Journal

jy

reactionf

ω

 
Figure 1: Tilting pad reaction force 

 

 Figure 2 shows some of the fundamental parameters that affect the operation of a 

TPJB.  These parameters are defined formally in CHAPTER II, but they are introduced 

here to ensure that the reader is familiar with terms discussed in the literature review. 

 



3 

Bearing

bc

lcβ ctβ

Pad
Pivot Location/Fulcrum, cO

ltβ

ω

Leading Edge Trailing Edge

Journal

jr
br

pr

Center of Pad's Surface Arc, pO

Center of Bearing/Journal, ,b jO O

 
Figure 2: Fundamental parameters of the tilting pad 

 

 Figure 2 shows a journal having a radius rj concentric in a bearing having a 

radius rb with centers prescribed by Oj and Ob, respectively.  The surface of the pad has a 

radius rp about its geometric center Op, and pivots about its fulcrum/pivot point Oc.  βlc 

and βct define the angular extent from the leading edge of the pad to the pivot (leading 

segment of the pad) and from the pivot to the trailing edge of the pad (trailing segment of 

the pad), respectively, and βlt defines the angular extent of the pad.  The location of the 

pivot relative to the leading and trailing edges of the pad is commonly referred to as the 

pad’s offset, and is given by 

 : lc lc

lc ct lt

Offset β β
β β β

= =
+

. (3) 

Typical pad offsets range from 0.5-0.6, where 0.5 represents a centrally pivoted pad. 

 Figure 2 also shows the bearing clearance, cb, defined as the difference between 

bearing and journal radii: 

 b bc r rj= − . (4) 

Though not shown Figure 2, pad clearance is similarly defined as the difference between 

pad and journal radii: 

 p pc r rj= −  (5) 
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The bearing and pad clearance are commonly related by a preload, a nondimensional 

parameter given by 

 1 b

p

cPreload
c

= −  (6) 

Pad preloads are often positive, having typical values from 0-0.5.  A positive preload 

tends to stiffen the bearing when unloaded, and reduces the likelihood of pad flutter, an 

instability that can occur in the unloaded pads in a tilting pad bearing.  

 At the back of each pad is a pivot that enables the pad to tilt, and applies the fluid 

film loads to the bearing housing, or shell.  Figure 3 shows the three basic pivot types: 

rocker-pivot, sliding-pivot (ball-in-socket), and flexure-pivot, each differing in the 

manner in which pad rotation is facilitated.  

 

 
Figure 3: Three basic pivot types 

 

 A rocker-pivot, or “cylindrical” pivot, has a smaller radius than the surface of the 

bearing shell, and thus rocks with pad rotation, presumably rolling-without-slipping.  

The term “cylindrical” here can be misleading, as many rocker-back pivots contain a 

slight curvature in the axial direction.  This feature results in a point contact between the 

pivot and housing that allows the pad to pitch to accommodate angular misalignment.  
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Rocker-pivots are usually retained by a loose fitting pin to prevent the pad from falling 

out during installation. 

 A sliding pivot, “ball-in-socket”, or “spherical pivot,” has a curvature only 

slightly smaller than the surface of the bearing in which it resides, allowing pad tilt 

primarily through relative sliding motion at the contact.  This increase in contact area 

results in reduced contact stresses, but can be problematic if pad rotation is constrained 

by sliding friction.  Ball-in-socket pivots are usually spherical, allowing for significant 

angular misalignment; however, sliding pivots may also be cylindrical in shape, thus the 

note of caution in referring to rocker-back pivots as “cylindrical” pivots. 

 Flexure pivots allow for pad rotation via a flexible web that supports the pad, 

reducing the likelihood of pivot contact fatigue that is possible in other pivot 

configurations.  Although this web provides some angular stiffness to the pad, it is 

usually small in comparison to the stiffness of the fluid film, and nets little destabilizing 

cross-coupled stiffness [1].  Flexure-pivot TPJBs (FPTPJBs) are compact, usually made 

from a single piece with wire electron discharge machining (EDM), which reduces the 

tolerance stackup that can be problematic in other TPJB configurations. 

 Despite their inherent stability, calculating the stiffness and damping of TPJBs 

accurately is essential in predicting the stability or synchronous response of a larger 

system.  Improving and validating the accuracy of these calculations has been a subject 

of interest in hydrodynamic lubrication for some time.  The current work will propose 

several new theoretical and experimental concepts that may bring clarity to some of the 

controversial topics still at large in TPJB literature. 

 

LITERATURE REVIEW 

 Few additions to literature have been as significant as Lund’s 1964 paper 

proposing a method for the calculation of stiffness and damping coefficients of a TPJB 

[2].  Procedurally, Lund solves for static equilibrium, perturbs the pad equation of 

motion, eliminates the system’s explicit dependence on pad motion by assuming 

harmonic rotor motion, and calculates direct and cross-coupled stiffness and damping 
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coefficients for the bearing; these stiffness and damping coefficients are often called 

“reduced,” or “frequency-reduced,” bearing coefficients.  Lund assumes that rotor 

motion is harmonic in the perturbation/reduction frequency Ω, and that running speed ω 

is an appropriate choice for Ω.  This choice of reduction frequency, termed a 

“synchronous reduction,” does not limit Lund’s analysis to the determination of 

synchronous coefficients, and should not be portrayed as such.  This frequency choice 

has been the subject of much discussion over the past few decades.  Though Lund’s 

work has been expanded to include pad and pivot compliance, more complicated fluid 

models, and used in unreduced/full bearing models (a bearing model explicitly 

containing all pad DOFs), the heart of Lund’s analysis, writing equations of motion 

(EOMs) about the perturbed bearing equilibrium, remains the cornerstone of TPJB 

prediction. 

 

Pad and Pivot Flexibility 

 In 1978, Nilsson addressed the influence of pad flexibility on the dynamic 

performance of radial oil films [3].  Pad flexibility refers to the flexibility of the pad 

relative to the pivot, which results in a change in curvature of the surface of the pad.  

Nilsson models the pads in a TPJB as curved beams, deflecting statically and 

dynamically under pressures from the oil film.  He asserts that pad compliance having 

only a small impact on static characteristics can have a dramatic effect on dynamic 

characteristics, especially damping.  Nilsson performs calculations on a pad having a 90° 

arc length supporting a journal with a static eccentricity ratio of 0.9, and concludes that 

damping can be reduced by as much as 40% in comparison to a rigid pad.   

 In 1987, Lund and Pederson [4] expand the work of Nilsson to include 

perturbations of film height due to pivot flexibility and pad flexibility.  Pivot flexibility, 

or pivot compliance, refers to the flexibility of the pad relative to the bearing housing, 

and results from Hertzian contact stiffness in rocker-back and sliding pivots, or from 

stress-induced web deflections in flexure-pivots.  Though the bearing tested in this work 

is a rocker-back TPJB whose pivot flexibility results from contact stiffness, statements 
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concerning pivot stiffness/compliance will be used for the balance of this work to refer 

to compliance of the pad relative to the housing, which applies to all TPJB 

configurations.  Lund and Pederson approximate pad deflections using curved beam 

theory such that fluid film pressures result in a change in pad radius.  They conclude that 

both pad and pivot compliance severely reduce stiffness and damping of the bearing, 

especially the latter.  In addition, Lund and Pederson reflect upon the choice of 

synchronous reduction frequency suggested in Lund’s first work, and state that “In the 

special case of a damped eigenvalue calculation or a rotor stability calculation, the 

frequency term, jΩ

jΩ

, must be replaced by the complex eigenvalue [of the unstable 

mode]: , where λ is the damping exponent.”  Bearing coefficients reduced at 

the frequency of the unstable mode were eventually termed “subsynchronously reduced” 

coefficients, a convention that will be used for the remainder of this work.  In addition, 

‘tilde’ will be used to denote that a variable is complex. 

s λ= +

 The notion that stability calculations should not be performed with 

synchronously reduced coefficients had previously been stated by Parsell et al. [5] in 

1982 and Wilson and Barrett [6] in 1985.  Parsell et al. noted that synchronously reduced 

bearing coefficients tend to be adequate for stability calculation except for the case of 

zero preload and large Sommerfeld numbers.  However, Wilson and Barrett later showed 

significant differences between stability calculations employing full and synchronously 

reduced bearing models for an 8-stage compressor running on preloaded bearings; 

however, Wilson and Barrett did not have pivot flexibility in their model, and it is 

possible that using subsynchronously reduced bearing coefficients would have been 

more appropriate, considering the conclusion reached by Lund and Pederson in 1987.  In 

1988, Barrett et al. [7] retained the full damped eigenvalue s λ j= + Ω  to determine 

system stability and suggested that using synchronously reduced coefficients will tend to 

overestimate stability, especially for a bearing operating at high Sommerfeld numbers 

and low preloads.  These works inspired several papers in the late 1980s and 1990s 

investigating the effects of pad and pivot flexibility on the static and dynamic 

characteristics of TPJBs. 
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 In 1988, Kirk and Reedy [8] presented analytical contact stiffness formulas for 

various pivot types using Hertzian-stress models.  Although this work applies to some 

conventional pivots, contact stiffnesses for many pivot geometries remain to be defined, 

especially for mostly “cylindrical” pivots having a very slight radius of curvature, or 

crowning in the axial direction.  Kirk and Reedy supported Lund and Pederson’s 

conclusions concerning pivot stiffness, namely that it should be included in the 

calculation of bearing coefficients. 

 Brugier and Pascal [9] extended the analysis of Lund and Pederson in 1989 to 

include the effects of pivot flexibility and circumferential and axial pad flexibility on the 

static and dynamic performance of a TPJB.  The hydrodynamic pressures and lubricant 

temperatures are computed with 2-dimensional models on the surface of the pad, and 

thermal and elastic pad and pivot deflections are obtained with a 3-dimensional finite 

element model.  Brugier and Pascal conclude that “irrespective of the load, both pressure 

and temperature induced pad deflections must be taken into account in the calculation of 

dynamic bearing coefficients.   

 Earles et al. [10, 11] performed a similar analysis to Brugier and Pascal in 1990, 

investigating the effects of pad and pivot flexibility on bearing performance.  Pad 

Flexibility was modeled using 2-dimensional finite elements, which allows for greater 

flexibility in modeling non-uniform pad geometries than Lund and Pederson’s curved-

beam approximation.  Synchronously reduced stiffness and damping coefficients from 

the improved FEA pad model compare favorably to coefficients predicted with the 

simpler curved-beam approximation; however, Earles et al. noted that the pad surface 

does not remain circular when under the pressure of the fluid film as approximated by 

Lund and Pederson’s simple model.  Earles et al. predicted the stability of a flexible 

rotor having a destabilizing cross-coupled stiffness at mid-span sitting on two TPJBs 

using full and synchronously reduced models of a TPJB having rigid and compliant 

pivots.  The full bearing model explicitly contained all of the pad degrees of freedom, 

while the reduced model consisted of 2×2 stiffness and damping matrices that resulted 

when the pad degrees of freedom were harmonically reduced from the model.   
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 The TPJBs employed in the analysis had 5 spherically-pivoted pads with 

preloads of 0.4375 and offsets of 0.5.  The stability of the system was assessed by 

comparing the rotor speed at which the system’s eigenvalues became unstable using 

various bearing models.  System stability was reduced with pad and pivot flexibility and 

with the full TPJB pad dynamics in the model; however, as with Wilson and Barrett, 

they did not include pivot flexibility in their synchronously reduced model.  Though this 

analysis showed that it may be important to analyze system stability employing the full 

(unreduced) bearing dynamics, as noted by a 20% decrease in onset speed of instability 

relative to the synchronously reduced model, the reader is not instructed as to when 

employing a full bearing model in the system stability calculation will yield improved 

results over a synchronously reduced model.  In addition, the accuracy of employing a 

model reduced at the frequency of the unstable mode is not discussed.  The current work 

will attempt to address this shortcoming. 

 Kim et al. [12] extended the work of Earles et al. in 1995 to include multiple pad 

deflection modes.  With only a few pad modes, they claim to predict stiffness and 

damping coefficients accurately for the experimental measurements presented by 

Brockwell et al. [13]; however, there is not a discussion on when the inclusion of 

additional pad bending modes in the model is warranted. 

 The notion that employing full or reduced bearing coefficients could have an 

impact on stability prediction was first suggested by Parsell et al. [5] in 1982 and was 

later echoed by Wilson and Barrett [6] in 1985, Lund and Pederson [4] in 1987, Barrett 

et al. [7] in 1988, Earles et al. [10, 11] in 1990, Qiao et al. [14] in 2007, and Dimond et 

al. [15] in 2010, who all concluded that using a reduced bearing model drastically 

overestimates system stability, yet the industrial community still resists this notion.  

What is the impetus for this resistance, and is it justified?   

 Recent publications by Kocur et al. [16], Childs [17], and Childs et al. [18] all 

address this question; unanimously, they conclude that there are significant differences 

in the frequency dependence of measured and predicted data, and that these differences 

have led to a lack of confidence in both measurements and predictions.  It is the author’s 
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position that this lack of confidence must be resolved before the issue of the frequency 

dependence of TPJB dynamic coefficients can be resolved.  The current work will 

attempt to address differences between measured and predicted frequency dependency in 

tilting pad journal bearings and the impact of using different bearing implementations in 

stability calculations.   

 

Experimental Research and Frequency Dependency 

 Historically, bearing coefficients are measured on a floating-bearing test rig, 

where a stationary test-bearing (stator) is supported by a spinning rotor.  The floating-

bearing-test-rig concept was initially developed by Glienicke [19] in 1966, and has since 

become the dominant choice for testing fluid-film bearings; thus, the majority of 

experimental data contained in the literature, and in this work, were measured on 

floating-bearing test rigs. 

 As pad and pivot flexibility effects in TPJBs became more apparent, some 

researchers began to question whether test programs were adequately capturing the 

frequency dependent stiffness and damping coefficients of the TPJB given in Eq. (1).  

Though several excellent papers have presented experimental stiffness and damping 

coefficients for the TPJB, only a few key papers will be discussed.   

 In 1999, Ha and Yang [20] were the first to measure stiffness and damping 

coefficients for a TPJB as a function of excitation frequency.  They reported a very 

slight increase in damping and little or no variation in stiffness with increasing 

excitation-frequency ratio.  These effects were more pronounced at lower speeds and 

higher static loads; however, the following limited range of excitation frequencies was 

used in these tests: (1) excitation frequency ratios in the unloaded direction were 0.5 and 

2.0, while (2) excitation frequency ratios in the loaded direction were 0.6, 0.7, 0.8, and 

0.9.   

 Other researchers [21-26] have shown the frequency dependence of measured 

stiffness data is well approximated by a virtual-mass, initially proposed to fit hydrostatic 

bearing test data by Rouvas and Childs [27], which results in the frequency independent 
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(KCM) model given in Eq. (2) when damping is constant.  This outcome does not imply 

that the parameter identification procedure used by researchers [21-26] cannot show 

frequency dependent stiffness and damping, just that the frequency dependent stiffness 

observed is proportional to Ω2, which is adequately included by the addition of a 

“virtual-mass” term in the bearing reaction force model, and that damping is constant.   

 This virtual-mass captures the frequency dependence of measured stiffness data, 

and should not be mistaken for an added-mass, proposed by Reinhardt and Lund [28] to 

represent the effect of fluid inertia on bearing coefficients.  The virtual-mass terms 

presented are usually relatively small (5-10kg), and typically have a softening effect; 

however, researchers [22, 25 and 26] have shown that virtual-mass terms can have a 

stiffening effect.  Carter and Childs [22] observed this stiffening effect primarily at 

lower speeds, while Kulhanek [25] and Kulhanek and Childs [26] observed this 

stiffening effect at both low and high speeds.  These same researchers have found 

damping to be constant with excitation frequency and static bearing load, while 

Dmochowski [29] shows a small decrease in damping with excitation frequency.  

Despite a large amount of scatter in his data, Dmochowski was the first researcher to 

obtain good agreement between experiments with variable excitation frequency and 

predictions using a model containing radial pivot flexibility for the pad, while 

researchers [21-26] consistently overpredicted damping. 

 Other notable experimental papers include those by Pettinato and De Choudhury 

[30,31] in 1999, who presented comparisons between theory and experiment for 5-pad 

cylindrical-seat and spherical-seat sliding-pivot bearings having similar pivot stiffnesses.  

Theoretical predictions were generated using an isoviscous Reynolds equation model 

and Lund’s pad assembly method with rigid pads and pivots.  They measured higher 

stiffness and damping for the cylindrical-seat bearing than the spherical-seat bearing.  

Stiffness was predicted well for the cylindrical-seat bearing and overpredicted for the 

spherical-seat bearing, while damping was uncharacteristically underpredicted for the 

cylindrical-seat bearing and overpredicted for the spherical-seat bearing. 
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 Al-Ghasem and Childs [32] and Rodriguez [33] compared measured and 

predicted rotordynamic coefficients for a four pad FPTPJB in load-between-pad (LBP) 

and load-on-pad configurations in 2006.  They show good agreement between measured 

and predicted stiffness and damping coefficients throughout a range of speeds and static 

bearing loads for a model neglecting radial pivot flexibility.  This good agreement may 

result from increased radial pivot stiffness in comparison to the Hertzian-contact 

stiffness between the pads and housing in prior works.  These tests include unit loads up 

to 988 kPa (143 psi), while researchers [22, 25, and 26] tested at unit loads up to 3200 

kPa.  This bearing was later retested by Hensley [34] in 2006 at higher unit loads, who 

found that the accuracy of the predictions using a rigid pivot decreased significantly at 

higher static bearing loads. 

 The test rig used by researchers [22, 25, 26, and 32-34] has also been used to test 

pressure dam and two-axial groove journal bearings by Al Jughaiman [35], who obtained 

good agreement between measurements and predictions throughout a range of unit loads 

using the same testing and data reduction techniques.  Thus, there is no reason to suspect 

that the procedure used to test TPJBs is not valid.   

 It should be noted that claims by researchers [12] in 1995, [30,31] in 1999, and 

[29,32,33,35] in 2006 regarding good agreement between measurements and predictions 

do not specify whether cold-bearing or hot-bearing (operating) clearances were used to 

predict bearing coefficients.  Since hot-bearing clearances were not stated in the 

experimental works cited by these researchers, it is likely that cold-bearing clearances 

were used for predictions.  The current work notes significant reductions in bearing 

clearance at operating conditions, which significantly increases the magnitude of 

predicted bearing coefficients when included in the model. 

 

Pad Motion 

 With a few exceptions, experimental measurement of pad motion has typically 

been limited to the observation of pad flutter on unloaded pads.  Pad flutter, initially 

identified by Adams and Payandeh [36], is the self-excited vibration of statically 
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unloaded pads in a TPJB.  This vibration usually occurs at a frequency slightly less than 

0.5 times the journal rotation speed, and can cause fatigue damage of the pad surface 

material.  Pad flutter results from the absence of a stable static-equilibrium position of 

the pad, which can be suppressed by insuring that each pad operates with a positive 

preload. 

 Sabnavis [37] attempted to measure the pad motion of a spherical-seat TPJB, but 

failed to produce meaningful amplitude and phase measurements.  This failure likely 

resulted from an inability to differentiate between pad tilt, radial pad motion, and other 

pad motions that may have been seen by the single proximity probe used to measure the 

motion of the pad. 

 Preliminary results from the current work were recently published by the author 

[38], which showed significant improvements in the ability to measure pad motion in a 

tilting pad journal bearing. 

 

Thrust for This Research 

 Many researchers have compared predicted stiffness and damping coefficients 

for tilting-pad journal bearings to measurements; most have found that direct damping is 

overpredicted, and that the measured impedances are well approximated by frequency 

independent stiffness, damping, and mass (KCM) coefficients, while predictions made as 

early as 1975 suggest that this approach is not suitable [39].  This work aims to resolve 

discrepancies between measured and predicted bearing behavior by investigating, more 

closely, pad dynamics within a TPJB.  

 Most analytical models for TPJBs are based on the assumption that explicit 

dependence on pad degrees of freedom can be eliminated by assuming that rotor motion 

is harmonic such that the amplitude and phase of pad motions are predicted by rotor-pad 

transfer functions.  Direct measurements of pad motion induced by harmonic rotor 

motion are needed to produce measured rotor-pad transfer functions, and a comparison 

between these measurements and predictions is needed to identify model discrepancies. 
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CHAPTER II 

MATHEMATICAL MODEL 

 

TPJB GEOMETRY 

 Figure 4 shows the journal, bearing, and kth pad in the reference state (denoted by 

subscript ‘o’), defined such that the geometric center of the journal (Ojo) and bearing 

(Obo) are located at the origin (Oo) of the inertial X-Y and ηk-ξk coordinate systems, and 

that the line Opo,k-Oco,k, connecting the center of the kth pad’s surface arc to the kth pad’s 

contact point (pivot location), passes through the origin.  For all pivot configurations, Oc 

represents the pad’s fulcrum, though it may be referred to as the contact point for the 

rocker-pivot pad shown in Figure 4.  Variables corresponding to the kth pad are denoted 

by a subscript ‘k’ in the following analysis though this convention is omitted in Figure 4 

for clarity.   
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Figure 4: Schematic of the journal, bearing, and kth pad in the reference state 
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The stationary X-Y coordinate system has unit vectors (i0,j0), and the kth pad’s ηk-

ξk reference coordinate system has unit vectors (ik,jk); vectors in the two coordinate 

systems are related by the direction-cosine matrix Qk according to 

 
( ) ( )
( ) ( )

,

,

cos sin
sin cos

k k k X

Y Yk k k

b b
bb

η

ξ

α α
α α

⎡ ⎤⎧ ⎫ Xb
b

⎧ ⎫ ⎧=⎨ ⎬ ⎨ ⎬ ⎨ ⎬⎢ ⎥− ⎩ ⎭ ⎩ ⎭⎩ ⎭ ⎣ ⎦
kQ ⎫= . (7) 

where , 3 / 2k c kα θ π= −

, / 2p kZ L

 defines the angle from X to ηk about Z and θc,k is the angle from 

X to the kth pad’s contact location.  For the remainder of this work, vectors will be bold-

italic, and matrices will be bold.  The origin of the X-Y-Z coordinate system sits axially 

on the bearing centerline such that the axial extents of the pad are located at 

, where Lp,k is the length of the kth pad. = ±

The journal radius is rj, while the bearing and contact radii of the kth pad are rb,k 

and rc,k, respectively.  Radii rb,k and rc,k are related to the thickness of the kth pad at the 

contact location (tcp,k) by  

 . (8) , ,:c k b k cp kr r t= + ,

r

Using these relations, the bearing clearance for the kth pad describes the minimum film 

thickness at the reference state, which occurs along the line Opo,k-Oo-Oco,k, and is given 

by  

 , ,b k b k jc r= − . (9) 

The surface of the kth pad at the reference state is an arc of radius rpo,k about its center, 

Opo,k, located at 

 ( ) ( ), , , ,po k b k po k b kr r c c= − = −po,k k ke j j

r

, (10) 

where cpo,k is the pad clearance at the reference state given by 

 , ,po k po k jc r= − . (11) 

Pad clearance was included as a pad degree of freedom in Nilsson’s analysis [3] to 

account for pad deflections resulting from moments applied to the pad by the fluid film, 

a practice continued in the current work.  The pad degrees of freedom used in the present 

analysis will be discussed thoroughly in the following two sections. 
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In the reference state, the kth pads center of gravity (CG) with the reference 

contact point (Oco,k) taken as a datum is given by  

 . (12) ,go k go kb bη ξ= +cgo,k k kb i , j

 

RIGID BODY PAD MOTIONS 

 Though facilitating tilt reduces the destabilizing cross-coupled stiffness provided 

by a TPJB, this feature customarily allows for rigid body radial and transverse pad 

motions and changes in pad radius/clearance resulting from fluid film pressures on the 

surface of the pad.   

 Figure 5 illustrates a pad’s rigid body degrees of freedom (DOFs).  The obvious 

DOF is pad tilt, which defines the rotation of the pad about its pivot point or fulcrum.  

The pivot point may be obvious for a rocker-pivot that pivots about its contact point, but 

this location may not be as well defined for sliding or flexure pivots.   
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Figure 5: Rigid body degrees of freedom for a tilting pad 

 

 Two rigid body translations are shown in Figure 5, radial and transverse/ 

circumferential pad motion are defined as motion of the pad’s pivot location (Oc) 

relative to the housing in the pad’s radial (ξk) and transverse (ηk) directions.  These rigid 

body pad motions occur because the forces transmitted to the pad via the fluid film must 

pass through the pivot, which is compliant.  This pivot flexibility, or pivot compliance, 

refers to the flexibility of the pad relative to the bearing housing, and results from 

Hertzian contact stiffness in rocker-back and sliding pivots, or from stress-induced web 
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deflections in flexure-pivots.  Though the bearing tested in this work is a rocker-back 

TPJB whose pivot flexibility results from contact stiffness, statements concerning pivot 

stiffness/compliance will be used for the balance of this work to refer to compliance of 

the pad relative to the housing, which applies to all TPJB configurations. 

 

Pivot Reaction Forces/Moments 

 Before discussing changes in pad clearance, we will classify the reaction 

forces/moments between the pivot and housing resulting from the relative pad-bearing 

motions illustrated in Figure 5.  Figure 6 shows radial (fcξ,k) and transverse (fcη,k) pivot 

reaction forces resulting from relative pad-bearing radial (ξk) and transverse (ηk) 

translations, and a reaction moment (Mcz,k) resulting from pad tilt (φk).  In general, these 

reaction forces/moments may be nonlinear functions of relative pad-bearing translations 

and rotations; thus, they will be defined with zeroth (denoted by a subscript 0) and first 

order (denoted by a subscript 1) components, where the zeroth order component will 

represent the nonlinear reaction forces and moments corresponding to a guessed set of 

relative pad translations/rotations, and the first order components will represent 

linearized reaction forces and moments resulting from perturbations in displacements 

and velocities about the zeroth order state.  When the guessed state results in a condition 

such that the forces and moments applied by fluid film are balanced by the reaction 

forces and moments provided by the pad’s pivot (zero net force components and moment 

applied to the pad), the pad is said to be in equilibrium, and the linearized pivot reaction 

force coefficients resulting from first-order perturbations in displacement and velocity 

can be identified as stiffness and damping coefficients.    
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Figure 6: Pivot reaction forces 

 

 Although several TPJBs are likely to have negligible resistance to pad tilt, 

flexure-pivot TPJBs and some spherical seat bearings may resist pad angular motion; 

thus, reaction moments due to pad tilt will be included in this analysis for completeness.   

The pad reaction moment is 

 ( ) ,
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k k
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M M M M ,
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= + = + +

∂ ∂
  (13) 

where (0, 0, 0,,cz k c k kM )ξ φ  is permitted to be any function of pad radial or angular 

deflection.  At equilibrium, the pivot’s angular stiffness and damping coefficients are 
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= =
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, . (14) 

For sliding pivots,  may represent energy dissipation due to coulomb friction; this 

approach was taken by Wygant et al. 

,cz kc

[40] to model pivot friction in a spherical seat 

bearing. 

 The radial pivot reaction force between the kth pad and bearing is 

 ( ) , ,
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1, 1,0 0

c k c k
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where , in general, may be a nonlinear function of the pad’s radial deflection 

relative to the bearing.  At equilibrium, the last two terms in Eq. (

(0, 0,c k c kf ξ ξ

15) define the radial 

pivot stiffness and damping coefficients as 
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 Although there are analytical formulas used to describe the contact stiffness for 

cylindrical and spherical pivot/housing geometries [8], several TPJBs are “self-

aligning,” having pivots with complex curvatures that are not well modeled with 

analytical forms.  For the rocker-pivot TPJB tested in this work, the load-versus-

deflection curve was predicted numerically using the algorithm presented by Deeg [41] 

which agreed well with the experimentally determined load-versus-deflection curve as 

will be shown in the RESULTS section.  In the bearing code, the load-versus-deflection 

curve was approximated using a fourth order polynomial, which performed adequately.   

 Similarly, the transverse pivot force may be given as   

 ( ) , ,
, 0, 1, 0, 0, 0, 1,

1, 1,0 0

, c k c k
c k c k c k c k c k c k c k c k

c k c k

f f
f f f f η η

η η η η 1,ξ η η
η η

∂ ∂
= + = + +

∂ ∂
η

)

, (17) 

where  yields the transverse pivot force at a guessed state.  The 

inclusion of radial pivot deflection in this equation may be necessary if it is desired to 

approximate coulomb friction at the contact location, which varies with the radial 

contact force.  At equilibrium, the partial derivatives in Eq. (

(0, 0, 0,,c k c k c kf η ξ η

17) yield the transverse 

pivot stiffness and damping coefficients 

 ,
, ,

1, 1,0 0

,c k c k
c k c k

c k c k

f f
k cη

η ηη η
∂ ∂

= =
∂ ∂

,η . (18) 

 The importance of the different contact stiffness and damping terms is likely to 

vary with different pivot designs; however, radial pivot stiffness in particular has been 

cited by many as detrimental to a pad’s ability to transmit damping loads to the bearing 

housing; hence, various authors predict that damping can be significantly reduced due to 

radial pivot flexibility [4,8,11].   
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PAD BENDING DEFLECTIONS 

 The last pad degree of freedom to introduce is pad clearance.  We will begin by 

considering the effect of a pressure distribution (p) on a pad with a uniform cross section 

as shown in Figure 7. 
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β
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pr
,p nr

 
Figure 7: Pressure distribution on a tilting pad 

 

 Since there are no moments on the leading and trailing edges of the pad, , 

the bending moment on the neutral axis of the pad (denoted by a subscript n) at any 

location along the pad is given by 

,pc nM

 , (19) ( )
( ) ( )

( ) ( )
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L
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L
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−⎪

⎪
= ⎨

⎪ −⎪
⎩

∫ ∫

∫ ∫

where rp,n is the radius of the neutral axis of the pad, β is the angle of a circumferential 

coordinate on the pad relative to the pivot, and Z defines an axial position on the pad 

relative to the pad’s mid-plane.   

 When the pad is at static equilibrium, a state requiring that the forces and 

moments applied by fluid film are balanced by the reaction forces and moments 

provided by the pad’s pivot (zero net force components and moment on the pad), the 
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discontinuity in the bending moment on either side of the pivot at  and 0β −= 0β += is 

equal to the reaction moment applied by the pivot.  Specifically,   

 ( ) ( ), 0
pc n cz c nM M M , 0

p

− ++ = . (20) 

This condition is depicted in Figure 8. 
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Figure 8: Balanced bending moments at the pivot location 

 

 Similar to Nilsson, Lund and Pederson [4] suggested that the effect of ( ),pc nM β  

on the pad’s radius of curvature could be approximated by obtaining the average bending 

moment in the pad, and applying it as an end moment on a curved beam to determine the 

resulting change in pad radius.  While this approach limits the deflection of a uniform 

cross-section pad to circular deflections, it permits an analytical perturbation in fluid 

film height due to pad clearance, which is advantageous.  Earles et al. [10, 11] obtained 

results similar to Lund and Pederson using finite-elements to solve for pad deflections; 

this method is computationally expensive, but allows for more complex pad geometries.  

Note that pad clearance was formally defined in Eq. (5) as the difference between the 

radius of the pad and the radius of the journal; thus, for a constant journal radius, 

changes in pad clearance are equivalent to changes in pad radius. 

 Continuing with the assumption that the surface of the pad remains circular when 

deflected, ,pc nM , the average bending moment in the pad, is given by 

 ( ), ,
1 t

p p

l

c n c n
lt

M M d
β

β

β β
β −

= ∫  (21) 

which results in a change in pad radius given by the approximation 
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 ,
2

, , ,

1 1 p p

p p

r c

p n p n c p n p c

M

r r r E I

δ

δ
− =

+
n  (22) 

where 
prδ  is the change in pad radius resulting from the applied pressure field, Ep is the 

elastic modulus of the of the pad, and 
pcI  is the pad’s cross-sectional area moment of 

inertia.  Since uniform changes in pad radius are equivalent to uniform changes in pad 

clearance (provided rj is constant), 
prδ  in Eq. (22) may be exchanged with 

pcδ  to yield 

changes in pad clearance due to an applied pressure profile.  The change in pad radius, 

or pad clearance, resulting from an applied end moment ,pc nM  is shown in Figure 9. 
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Figure 9: Change in pad curvature resulting from applied end moments 

 

 Figure 9 shows an undeflected pad surface arc having a radius rpo at the 

reference state, while the deflected pad surface resulting from the applied end moments 

has a radius rp given by 

 
pp po rr r δ= + , (23) 

where 0pr pr r 1pδ = +  is the sum of changes in pad radius due to zeroth order pressure 

profiles (denoted by a subscript 0) and perturbed pressure profiles (denoted by a 

subscript 1), respectively.  The derivation of zeroth and first order pressure profiles is 

discussed in detail later.  Similarly, pad clearance is given by 
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pp po cc c δ= +  (24) 

where 0pc pc c 1pδ = +  represents the sum of changes in pad clearance resulting from 

zeroth and first order pressure fields, respectively.  Note that substituting rp from Eq. 

(23) and cp from Eq. (24) into Eq. (5) and subtracting Eq. (11) nets 

 
p pc rδ δ= , (25) 

an obvious outcome. 

 Though Eq. (20) is true for equilibrium conditions, dynamic pressure fields may 

require a dynamic pad bending model to account for the inertia of the pad; however this 

approach is not adapted in the current work.   

 Branagan and Barrett [42] used a slightly more general approach than Lund and 

Pederson.  Taking Eq. (22) and writing it in a more general form yields 

 ,
0 1

p

p

p

c n
c p p

sc

M
c c

k
δ = + =

,
 (26) 

where 
psck  represents the pad’s structural bending stiffness (relating average bending 

moments in the pad to changes in pad clearance), and 
pcδ  is again the change in pad 

clearance resulting from the average bending moment in the pad .  In turn, Branagan and 

Barrett analyzed the accuracy of several analytical bending stiffness formulas by 

comparison with finite-element analysis (FEA) predictions, and suggested that the 

following formula by Deutschman et al. [43] is the most accurate: 

 
( ) ( )

( ){ }

2 22
, , ,

, 2

1 2 ln
1 4 1 1 2lnp

k kp k p k p k
sc k

k k k

E L t
k

Θ − − Θ Θk⎡ ⎤⎣ ⎦=
Θ − − Θ − Θ⎡ ⎤⎣ ⎦

, (27) 

where the subscript s implies that this is a structural pad stiffness, 

is the ratio of outer to inner pad radii, and tp is the thickness of the pad.  Assuming that 

the pad has a uniform thickness of 18.16 mm (0.715 in), pad’s in the current work have a 

bending stiffness of 11.0 MN ( 2.47×106 lbf).   

( ), , /k p k p k pr t rΘ = + ,k
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 Although the bending stiffness given in Eq. (27) assumes that the pad cross-

section is uniform, the test bearing has pads with hardened pivot inserts to reduce wear, 

as shown in Figure 10. 

 

Pivot Insert

gap

Pad

 
Figure 10: Illustration of a pad with a pivot insert 

 

  These hardened inserts are not press fitted into the pad, having a small gap on 

each side.  This gap creates a discontinuity/nonlinearity in the pad’s bending stiffness 

with increasing bending moments, and the effect of these bending moments on pad 

clearance is not approximated well with Eq. (26), which uses the average bending 

moment in the pad to calculate changes in pad clearance.  Though the approach by 

Earles et al. [10, 11] is more flexible, it is not likely that this approach could easily be 

adapted to model the pads used in this work, whose structural model would have to vary 

with the bending moment on the pad. 

 The current work proposes a modified version of Eq. (26) given by  

 p

p

p

c
c

sc

M

k
δ =

,
 (28) 

where ( ) ( )1
2p p pc c cM M Mβ −⎡= +⎣ β + ⎤

⎦ is the average of applied fluid-film moments 

(evaluated on the surface of the pad) directly on either side of the pad’s pivot, and 
psck  is 

a stiffness that relates this moment to a change in pad clearance.  (
pcM )β −  and 

(
pcM )β +  are obtained using Eq. (19) after substituting rp for rp,n.  This step eliminates 

the need to account for variations in the pad’s neutral axis at different locations along the 

pad, which may not be practical input for a user friendly bearing code. 
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psck is obtained by the following procedure.  A finite-element model of the pad is 

developed in ANSYS, Abaqus, etc., and a pressure distribution is applied to the surface 

of the pad.  This distribution may be a uniform pressure distribution, or it could be more 

realistic.  Ideally, a pressure profile similar to the pressure profile developed on a tilting 

pad should be used; however, a uniform pressure distribution was used in the current 

work and appears to work well.  Regardless of the pressure distribution chosen, the 

resultant force created by the pressure distribution should pass through the pad’s pivot to 

prevent rigid body rotation (tilt) of the pad.  Next, calculate 
pcM , for the loading applied 

to the pad in the FEA, and determine the deflected pad radius by fitting the deflected 

pad’s surface to a circle, or cylinder, using a least squares regression.  The equivalent 

bending stiffness of the pad can then be obtained using 

 p

p

p

c
sc

c

M
k

δ
=  (29) 

where 
pcδ  is the difference between deflected and undeflected pad radii. 

 

JOURNAL, BEARING, AND PAD IN A GENERAL POSITION 

 Figure 11 illustrates the journal, bearing, and kth pad in a general position.  In this 

analysis, both the journal and bearing are free to translate, each pad is free to rotate (φk), 

and translate radially (ξc,k) and transversely (ηc,k) relative to the housing while 

maintaining continuous contact with the bearing.  Only translations of the bearing in the 

XY plane are included in the present analysis; hence, structural modes of the bearing 

housing are not included in the present model.  Previous researchers writing perturbed 

equations of motion for a TPJB have assumed that the bearing/stator is stationary; the 

applicability of this assumption to floating-bearing test rigs will be examined. 
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Figure 11: Schematic of the journal, bearing, and kth pad in a general position 

 

In a general position, the displacement of the journal (Oj) is 

 , ,j k j kη ξ= +j,k k ke i j , (30) 

and the displacement of the bearing (Ob) is 

 , ,b k b kη ξ= +b,k k ke i j . (31) 

Note that bearing displacements ηb,k and ξb,k in Figure 11 are duplicated from the 

reference state contact location to show the displacement of the pad’s pivot due to 

bearing motion.  Translation of the kth pad’s pivot at the contact point is given by the 

sum of bearing and relative pivot-bearing motion: 

 ( ) ( ), , , ,b k c k b k c kη η ξ ξ= + + +c,k k ke i j . (32) 

For small pad rotations φk, the translation of the center of the pad’s surface arc relative to 

the contact point due to pad tilt is ,cp k kr φ− ki , where  is the distance from , ,cp k cp k p kr t r= + ,
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Oc,k to Op,k.  Using this relation, the total displacement of the center of the pad’s surface 

arc with respect to the inertial ηk-ξk reference coordinate system is 

 ( ) ( ), , , , , , ,b k c k cp k k b k c k p b p k p kr c cη η φ ξ ξ η ξ= + − + + + − = +p,k k k k ke i j i j . (33) 

 

DEVELOPMENT AND PERTURBATION OF REYNOLDS EQUATION IN A 

TPJB 

The following analysis was developed initially by Lund [2] in 1964, Lund and 

Thomsen [44] in 1978, and Lund and Pederson [4] in 1987, except that we will use the 

reference pad oriented ηk-ξk coordinate system instead of the global X-Y system.  For 

most cases, Reynolds equation accurately characterizes the pressures developed in the 

fluid film.  The Reynolds equation results when the Navier Stokes equations for the fluid 

film between two surfaces are simplified for the flow of an inertialess, isoviscous fluid in 

a thin film region.  Under these circumstances, Reynolds equation, the partial differential 

equation governing the pressure of the oil film, is given by  

 [ ] [ ]
3 31:

12 12 2
k k

k
j k j k k

h h hp
r r z z

ω
ψ μ ψ μ ψ

⎧ ⎫ ⎧ ⎫ k k
k

hp
t

∂ ∂∂ ∂ ∂ ∂⎪ ⎪ℜ = + = +⎨ ⎬ ⎨ ⎬∂ ∂ ∂ ∂ ∂⎪ ⎪ ⎩ ⎭⎩ ⎭ ∂

k

, (34) 

where ℜ  is a linear differential operator, kψ θ α= −  is the angle from ηk to a 

circumferential location on the pad, Z is the axial position from the pad’s mid-plane, μ is 

the fluid viscosity, and hk is the fluid film height on the kth pad given by 

 ( ) ( ), cosk k p k k pj kh cψ ψ= − −pj,ke ,ψ , (35) 

where , ,pj k pj kη ξ= + = −pj,k k k j,k p,ke i j e e  is the vector from Op to Oj, and ψpj is the angle 

from ηk to epj,k about the positive Z axis, and , , pp k po k cc c δ= +

:

 represents the sum of 

installed pad clearance and changes in pad clearance due to fluid film pressures.  For 

clarity, the subscripts ‘pj’ will be dropped for the remainder of the analysis when 

referring to journal motion relative to the kth pad, thus k kη ξ= +k ke ipj,k j   
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If we guess an initial state for the system such that a solution satisfying Eq. (34) 

may be found, the fluid film height can be written as the superposition of zeroth 

(guessed) and first (perturbed) order components as 

 ( ) ( ) ( )0, 1,k k k k k kh h hψ ψ= + ψ  (36) 

where 

 ( ) ( )0, , 0, 0,cosk k po k p k k pj kh c cψ = + − −pj0,ke ψ ψ  (37) 

describes the zeroth order (denoted by a subscript 0, not to be confused with the 

reference state) fluid film height on the kth pad, and  

 ( ) ( ) ( ) ( )1, 1, 1, 1, 1,cos sink k p k k k k p k kh c cψ η ψ ξ ψ= + + −  (38) 

describes the first order (denoted by a subscript (1) fluid film height on the kth pad.  Note 

that cp,k is the sum of installed pad clearance cpo,k, and changes in pad clearance due to 

bending moments resulting from the guessed (cp0,k) and perturbed (cp1,k) pressure fields.  

If we assume that η1,k, ξ1,k and cp1,k are sufficiently small, a first order expansion of the 

fluid film pressures may be written as 

 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,1,p pk k k k k k c k p k k k k c k p kkp p p p p c p p p cη ξ η ξη ξ η ξ= + + + + + +  (39) 

where p0,k denotes the fluid film pressure at the zeroth order state, and ‘dot’ refers to 

differentiation with respect to time.  Substituting Eqs. (36) and (39) into Eq. (34) and 

retaining only first order terms, seven differential equations governing the zeroth and 

first order pressure fields result.  These are given by  
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 To solve Eqs. (40), conditions must be specified for the zeroth (p0,k) and first 

(pη1,k, etc.) order pressure fields on the boundary of the pad, that is 

,

0, 1, 1, 1, 1, 1, ,1,

,

, 0
/ 2

p p

k l k

k a k a k k c k k c k k t kk

p k
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Z L

η ξ η ξ

ψ ψ
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⎧ =
⎪= → = = = = = = = =⎨
⎪ = ±⎩

 (41) 

where pa is ambient pressure, ψl,k and ψt,k are the leading and trailing edges of the pad, 

and Z=±½ Lp,k are the sides of the pad.  Utilizing symmetry about the centerline of the 

pad, we may replace the conditions at Z=-½ Lp,k with 

 1, 1,1,1, 1, 1,0,0 0p pc k c kkk k kkk
pp pp p ppp Z: 0

Z Z Z Z Z Z Z Z
η ξ η ξ∂∂ ∂∂ ∂ ∂∂∂

= → = = = = = = = =
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂

 (42) 

 If the pad is oriented such that there is a divergent wedge in the oil film, then it is 

likely that film rupture will occur.  In this case, the boundary of film rupture, ψt, will 

become a function of Z such that oil pressure in the rupture region equals some 

cavitation pressure, and the gradient of the pressure normal to the curve is zero: 

 ( ),, 0 0 :k k k
k cav k t k

k

p p pp p
n Z

ψ ψ
ψ

∂ ∂ ∂
= = → = = =

∂ ∂ ∂
Z . (43) 

where pcav is the cavitation pressure of the fluid.  If this result is applied to our perturbed 

pressure fields, one realizes that requiring the gradient of zeroth order pressure field to 
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be zero on the cavitation boundary necessitates that the perturbed pressure fields are also 

identically zero on the rupture boundary.  Thus, the following conditions apply at 

rupture. 

 ( )
0, 0,

0,
,

1, 1, 1, 1, 1,1,

, 0
:

0
p p
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k k t k
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∂ ∂ =

= = = = = =
. (44) 

Utilizing the boundary conditions given in Eqs. (41-44), the zeroth and first order 

pressure fields given in Eq. (40) may be solved for using finite element or finite 

difference techniques. 

 

Reaction Forces 

 At each step, these pressure fields may be integrated over the surface of the pad 

to yield the reaction force on the pad.  Formally, 
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∫ ∫  (45) 

where fη0,k and fξ0,k are the guessed reaction force components on the journal, and the 

force components arising due to the perturbed pressure fields are 
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Expanding pk by substitution of Eq. (39) into Eq. (45) and collecting like terms, we get 
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to describe the guessed reaction force on the journal, and 
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describes the partial derivatives of the perturbed pressure fields with respect to 

perturbations in displacement and velocity.   

 

Reaction Moments 

 In addition to reaction forces arising from the perturbed pressure fields, we must 

determine the bending moment applied to the pad by the fluid film.  As previously 

stated, we will define the bending moment using ( ) ( )1
2p p pc c cM M Mβ β− +⎡ ⎤= +⎣ ⎦ , the 

average of bending moments resulting from the applied fluid-film pressures (evaluated 

on the surface of the pad) directly on either side of the pad’s pivot, in conjunction with 

the pad’s bending stiffness to determine changes in pad clearance.  This allows us to 

write the applied bending moment using 

 ( )
, ,

1

,

/2

, 0, 1, 0, 0,
0

cos
p k c k

p p p

l k

L

c k c k c k p k k k p k kM M M r p r d d
ψ

ψ

ψ ψ= + = − ∫ ∫ Z  (49) 

where  is the bending moment on the pad due to the zeroth order pressure field, 

and the applied bending moments arising from the perturbed pressure fields are 

0,pc kM
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kk
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c k k k
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M M M M M M
M

c cc c

ηη
ξ ξ

η ξ η ξ

⎧ ⎫⎧ ⎫∂ ∂ ∂ ∂ ∂ ∂⎡ ⎤ ⎡ ⎤⎪ ⎪ ⎪= − −⎢ ⎥ ⎢ ⎥
⎪

⎨ ⎬ ⎨∂ ∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥
⎬

⎪ ⎪ ⎪⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭
⎪

. (50) 

Expanding pk by substitution of Eq. (39) into Eq. (49) and collecting like terms, we get 

 ( )
, ,

,

/2

0, 0, 0, 0,
0

cos
p k c k

p

l k

L

c k p k k k p k kM r p r d
ψ

ψ

ψ ψ= − ∫ ∫ dZ  (51) 

to describe the guessed reaction moments on the journal, and 
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{ } ( )
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,
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∂ ∂ ∂ ∂ ∂ ∂⎧ ⎫⎪ ⎪
⎨ ⎬∂ ∂ ∂ ∂ ∂ ∂⎪ ⎪⎩ ⎭

= ∫ ∫ Z
 (52) 

describes the partial derivatives of the bending moment on the pad with respect to 

perturbations in displacement and velocity.   

 

Stiffness and Damping Coefficients 

When the reaction forces resulting from the zeroth order solution and all other 

non fluid film reaction forces result in zero net force and moment on the shaft, bearing, 

and each pad, we say that our system is at static equilibrium and the stiffness and 

damping coefficients of the oil film due to relative rotor-pad displacements and changes 

in pad clearance are defined by 
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∫ ∫ z

. (53) 

 

TPJB STATIC EQUILIBRIUM 

The resulting forces and moments acting on the bearing, journal, and pads are 

shown in the free-body diagram in Figure 12. 
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Figure 12: Free body diagram of the forces/moments acting on the pad, journal, 

and bearing due to the kth pad and applied bearing and journal loads 
 

 Note that gravity forces (weights) are not included in Figure 12.  In general, these 

forces are significantly smaller than the fluid film and pivot reaction forces, and will not 

be included in the analysis.  Having classified the forces acting within our TPJB system, 

we must formally satisfy requirements for static equilibrium.   To find equilibrium, we 

set all velocities and accelerations to zero and write the force balance for the journal, 

bearing, and each pad in the current (ith) state.  For each pad, we have 

 

0, 0, 0, 0,

0, 0, 0,

0, 0, 0,

0, 0, 0, 0,

0
0
0
0

p p p

zc k cp k k cz k

g k k c k

g k k c k

c k c k sc k p k i

M r f M
F f f
F f f
M M k c

η

η η η

ξ ξ ξ

= = +
= = − +
= = − +
= = −

∑
∑
∑
∑

, (54) 

where the first equation describes the summation of moments about the pad’s pivot, the 

next two equations describe the summation of forces in the pad’s transverse and radial 
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directions, and the last equation describes the equilibrium equation for bending moments 

in the pad.   

 For the journal and bearing, 

 

0, 00,

0, 0, 01 1

0,0, 0

00, 0,1 1
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−⎧ ⎫⎧ ⎫
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∑ ∑

k

k

Q

Q ⎬

, (55) 

where fexj0/feyj0 and fexb0/feyb0 are static force components applied to the journal and 

bearing in the x/y directions, respectively, and Qk is the coordinate transformation from 

the kth pad fixed coordinate frame to the global X-Y coordinate frame given in Eq. (7).   

 Writing Eqs. (54) and (55) in matrix form and employing a Newton Raphson 

scheme yields 

 

1
1 1

1

1

n

n n

n

f f
u u

f f
u u

−∂ ∂⎡ ⎤…⎢ ⎥∂ ∂⎢ ⎥
= ⎢ ⎥

⎢ ⎥∂ ∂
⎢ ⎥∂ ∂⎣ ⎦

i

i

ΔU 0,iF , (56) 

where ΔUi are the corrections needed to reduce the net force on all bodies to zero.  Thus,  

  (57) i+1 i iU = U +ΔU

is iteratively solved until the relative change from state i to i+1 is sufficiently small.  In 

the bearing analyzed in this research, the circumferential position of each pivot was 

constrained to zero transverse movement during the determination of static equilibrium.  

This was done because pivots are restricted circumferentially by loose fitting pins, 

requiring assumptions to be made on the manner in which circumferential loads are 

transmitted through the pivot.  As the author does not want to make assumptions on the 

mechanism supporting the circumferential shear load at each pivot, the transverse 

compliance of the pivot was included in the dynamic analysis, but not in the static 

analysis. 
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STIFFNESS AND DAMPING COEFFICIENTS AT EQUILIBRIUM 

 Figure 13 shows the lateral and angular stiffness and damping coefficients acting 

between the kth pad and bearing housing and the fluid film stiffness and damping 

coefficients between the journal and kth pad for perturbations about the equilibrium 

solution.  Note that the fluid film moment coefficients are not shown in Figure 13; 

however, they are included in the analysis.  
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Figure 13: Schematic of the dynamic forces acting on the kth pad in a TPJB 

 

TPJB PERTURBED EQUATIONS OF MOTION 

 Having formally satisfied equilibrium requirements, let us develop equations of 

motion (EOMs) for our journal, kth pad, and bearing using Newton’s second law in the 

kth pads ηk-ξk reference coordinate system.  This approach means that we will be 

considering the dynamics of only a single pad in the preliminary stages of this 

development to eliminate the complexity arising from multiple coordinate 

transformations, and will discuss the inclusion of multiple pads into the model later.   
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 Lund [2] was the first to perturb the journal and pads and write EOMs from an 

equilibrium state in a TPJB, producing a set of linear differential equations that were 

reduced by harmonic analysis to produce frequency dependent stiffness and damping 

coefficients for a single pad.  Lund then assembled the contributions from each pad 

within the bearing to determine the total stiffness and damping for the bearing.  Though 

this process has been enhanced by others, the fundamental process remains unchanged.  

Notable contributions to the process were the inclusion of pad compliance by Nilsson [3] 

in 1978, the inclusion of pivot compliance by Lund and Pederson [4] in 1987, and the 

inclusion of transverse pad motion by Jeng [1] for FPTPJBs in 1995.  Jeng allows for 

tilt, radial, and circumferential pad motions in his development, but does not explicitly 

state the governing EOMs.  None of the previous approaches perturb the position of the 

journal and bearing, and none of the previous approaches include all four pad degrees of 

freedom included here. 

 From Figures 4 and 11 we may write the displacement of the pad’s CG located in 

the inertial frame, with the reference contact point (Oco,k) taken as a datum, as 

( ) ( )
( ) ( )

( ) ( )

, , , , , , , , , ,

, , , , , , , ,
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, , , , , , , ,
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b b b b
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η ξ ξ η
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= + + − = + + +

= + − = + +

⎡ ⎤= + − − = + +⎣ ⎦ ( ) ( ) 2cos sink k kφ φ φ φ⎡ ⎤−⎣ ⎦
  (58) 

where bηgo,k and bξgo,k describe the distance from the contact location to the pad’s center 

of mass in the pad’s reference state.  If we assume that motions are small such that 

( )sin φ φ  and ( )cos 1φ , Eq. (58) may be linearized as 
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= + − = + +

. (59) 

 Applying Newton’s second law to the pad yields the following perturbed EOMs 

for the kth pad:  
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cgo,k c,kb e ,

, (60) 

where the first equation is the summation of moments about the pivot (affecting pad tilt), 

the next two equations are the summation of forces in the pad’s transverse and radial 

directions, and the last equation is the summation of bending moments (affecting pad 

clearance).  The mass of the pad is mp,k, Ic,k is the pad’s mass moment of inertia about the 

pivot, and mcp,k represents the modal mass associated with changes in pad clearance.  

Though a modal analysis was not performed in the current work to determine mcp,k, it is 

included here for completeness.   

 The second term in the pad tilt equation ( ),p km ×cgo,k c,kb e  is required because 

moments are summed about the contact point which has radial and transverse 

translations given in Eq. (32) and Figure 11 that result from bearing motions and relative 

pad-bearing motions.  This requirement was overlooked by previous researchers who 

included vertical pivot translation in the pad perturbation model.  Overlooking this 

requirement may result in inaccurate coupling of pad tilt and bounce modes, which could 

produce erroneous results, depending on the mass of the pad and the vector .  For 

the bearing investigated, neglecting this term had no discernable impact on predicted 

bearing characteristics.  

cgo,kb

 Proceeding with the sum of reaction forces due to the kth pad on the journal and 

bearing, we have the following perturbed EOMs for the journal,  
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j k j j k k

j k j j k k
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F m f

η

ξ ξ

η
ξ

= =
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, (61)  

where mj represents the journal mass within the bearing, and the following perturbed 

EOMs for the bearing, 
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. (62) 
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Substituting the displacements from Eqs. (30-33), fluid film reaction forces from Eqs. 

(53), and pivot reaction forces from Eqs. (15, 17, and 13) into Eqs. (60-62), and writing 

them in matrix notation, we get 

⎧ ⎫ ⎧ ⎫⎡ ⎤ ⎡ ⎤⎡ ⎤
⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢ ⎥⎢ ⎥ + +⎨ ⎬ ⎨ ⎬⎢ ⎥ ⎢⎢ ⎥ ⎪ ⎪ ⎪ ⎪⎢ ⎥ ⎢⎢ ⎥⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎩ ⎭ ⎩ ⎭

j1,k j1,kjj jj,k jp,k jb,k jj,k jp,k jb,k

pp,k pb,k p1,k pj,k pp,k pb,k p1,k pj,k pp,k pb,k

bb bj,k bp,k bb,k bj,k bp,k bb,kb1,k b1,k

U UM 0 0 C C C K K K
0 M M U C C C U K K K
0 0 M C C C K K KU U

⎧ ⎫ ⎧
⎪ ⎪ ⎪=⎨ ⎬ ⎨⎥
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⎫
⎪
⎬
⎪
⎭
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p1,k p0,k

b1,k b0,k

U F
U F
U F

  (63) 

or more compactly 

  , (64) k 1,k k 1,k k 1,k 0,kM U +C U + K U = F = 0

where the state vector U1,k is given by 
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U
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U

)

 (65) 

and the remaining terms in Eq. (64) are defined explicitly in Appendix A.  In addition, 

Appendix B includes a derivation of the moment resulting from the application of a 

rolling-without-slipping constraint between a rocker-pivot and its housing. 

 

INCORPORATING A BEARING INTO A DYNAMIC SYSTEM 

At this time, we have two options to incorporate the structural model for each 

pad provided by Eqs. (63) into a global system model; we may: (1) include the full, 

unreduced, model provided by Eqs. (63) for each pad into the system model as suggested 

by Earles et al., or (2) assume that all motions can be characterized by vibrations of the 

form ( ) ( ) ( ) (, , ,st j
i i i i i ie e λξ η ξ η ξ η t− + Ω= = , where s λ j= + Ω  is the complex root of the 

assumed solution, and solve for pad motions as a function of rotor and bearing motions 
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to reduce the bearing reaction force model to two rotor and two bearing DOFs as initially 

suggested by Lund [2]. 

 

Full (Unreduced) TPJB Model 

 If one wishes to explicitly include each pad’s DOFs into the system dynamic 

model, a total of 4+4np equations are needed, where np represents the number of pads in 

the bearing.  We will structure the state matrix as follows.  Journal and bearing motions 

will be represented in the global X-Y coordinate frame, and each pad will retain its 

reference ηk-ξk coordinate system.  The first two rows of the state matrix will be 

reserved for journal motions (Uj1={xj1  yj1}T) and the last two rows  will be reserved for 

bearing motions (Ub1={xb1  yb1}T), while the remaining 4np rows will be broken into np 

groups of four, each containing a pad’s DOFs (Up1,k={φ1,k  ηc1,k  ξc1,k  cp1,k }T).  For the 

rotor and bearing, we have 

 . (66) 
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T
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T
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M U + Q C Q U + C U + C Q U

Q K Q U + K U + K Q U = F

M U + Q C Q U + C U + C Q U

+ Q K Q U + K U + K Q U = F

Likewise, for the kth pad, we obtain 

 . (67) 
, 1 pk

+
+ =

pp,k p1,k pb,k k b1 pj,k k j1 pp,k p1,k pb,k k b1

pj,k k j1 pp,k p1,k pb,k k b1

M U M Q U + C Q U + C U + C Q U
K Q U + K U + K Q U = 0 …n

Thus, our system may be written in matrix form as 
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⎪
⎪

 (68) 

and linked to a global system model for imbalance response, stability analysis, or time 

transient simulations. 

 

Reduced TPJB Model 

 To employ the reduced coefficients for each pad into the global system model, 

we use the following method.  First, we assume that all motions can be characterized by 

vibrations of the form ( ) ( ) ( ) (, , , )st j
i i i i i ie e λξ η ξ η ξ η t− + Ω= = , where  is the 

complex root of the assumed solution.  For clarity, complex variables will be denoted 

with a “tilde.”  Making this substitution, we rewrite Eq. 

s λ= + Ωj

(64) for a single pad as  

 , (69) ( )2 0s sk k k 1,kM + C + K U =

where the vector includes journal, pad and bearing motions in the kth pad’s ηk-ξk 

reference coordinate system given by 

1,kU
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 (70) 

where { }1, 1, 
T

j k j kη ξ=j1,kU , { }1, 1, 1, 1,   
T

k c k c k p kcφ η ξ=p1,kU , and { }1, 1, 
T

b k b kη ξ=b1,kU .  Eq. 

(69) can be expanded as   
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2
jj j1,k

2
bb b1,k

M s U
0

M s U

  (71) 

where ij,k ij,k ij,kI = C s + K , and Mjj/Mbb are diagonal journal/bearing mass matrices that 

are defined explicitly in Appendix A.  Expanding the second set of relations in Eq. (71) 

and solving for pad motion ( { }1, 1, 1, 1,   
T

k c k c k p kcφ η ξ=p1,kU ) yields  

  (72) = − − =-1 -1
p1,k pp,k pj,k j1,k pp,k pb,k b1,k pj,k j1,k pb,k b1,kU A A U A A U Γ U +Γ U

where the pad-journal, or pad-rotor, transfer function matrix is 
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and the pad-bearing transfer function matrix is 
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Here, superscripts (η, ξ) indicate that pad motions correspond to ηk,ξk motions of the 

journal/bearing.  Essentially, these transfer functions define the amplitude and phase of 

pad motions due to radial and transverse journal/bearing motions.  For example, 
,

j

c k

ξ
ξΓ  

specifies the ratio of radial pad motion relative to the bearing housing to radial rotor 

motion (i.e. 
,1 1

j

c kc j
ξ
ξξ ξ= Γ ).   

 Consider the impact of the pad-rotor transfer function 
,

j

c k

ξ
ξΓ

0

 on radial rotor 

motions of unit amplitude.  If the pad has a rigid pivot, 
,

j

c k

ξ
ξΓ =  for example, the pad 

may rock back and forth to balance tilting moments, but there will be no radial 
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translation of the pad relative to the bearing housing.  This lack of radial pad motion will 

result in changes in fluid film thickness equal to the magnitude of journal motion, which 

will maximize the impact of fluid film stiffness and damping on the journal.   

 If the pad has a softer pivot stiffness (similar to the bearing tested in this work), 

 for example, this implies that radial rotor motions of unit amplitude will 

produce radial pad motions given by .  Thus, unlike the previous case, 

changes in the fluid film height due to radial rotor motions of unit amplitude will only be 

½ of the amplitude of rotor’s motion.  Since the pivot of the pad likely has very little 

damping, the effective fluid film stiffness and damping between the rotor and ground 

would be significantly reduced.   

,
0.5j

c k

ξ
ξΓ =

,1 1 0.5j

c kc j
ξ
ξξ ξ= Γ =

 If the pad has a very soft pivot, or a very stiff fluid film, resulting in , the 

pad will move with the same amplitude and phase as the journal, resulting in zero 

change in fluid film height; hence, the impact of fluid film stiffness and damping on the 

journal are eliminated by the flexibility of the pivot.   

,
1j

c k

ξ
ξΓ =

 Though these scenarios may be gross exaggerations of the impact of pad-rotor 

transfer functions defined in Eq. (73) and (74), they should serve as a starting point in 

illuminating the impact of the pad-rotor and pad-bearing transfer functions on the 

stiffness and damping of a bearing.  To predict the correct reduced coefficients for a 

TPJB, the relations in Eqs. (73) and (74) must be accurate.  Validating these relations by 

comparison of measured and predicted pad-rotor or pad-bearing transfer functions is a 

primary goal of this research.   

 To obtain reduced stiffness and damping coefficients, p1,kU  is substituted from 

Eq. (72) into the top and bottom set of relations in Eq. (71) to yield  

⎡ ⎤ ⎡ ⎤⎧ ⎫ ⎧ ⎫ ⎧ − ⎫⎪ ⎪ ⎪ ⎪ ⎪
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A + A Γ A + A Γ H HU U M
= =

H HA + A Γ A + A Γ U U M ⎪⎭

s U
s U

(75) 

where the elements of ij,kH  are commonly referred to as impedances or complex 

dynamic stiffnesses.  Though the term impedance technically refers to the ratio of a force 
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to a velocity, it appears to be the preferred choice in hydrodynamic bearing literature, 

and will be used for the remainder of this work.  Thus from Eq. (75), reduced pad 

stiffness and damping coefficients are given by the real and imaginary parts of ij,kH  as   

 ( ) { } ( ) { } ( ) , ,

, , ,

Im
Re , , k k

k k ij k

H H
H H

ηη ηξ

ξη ξξ

⎡ ⎤
Ω = Ω = Ω = ⎢ ⎥

Ω ⎢ ⎥⎣ ⎦

ij,k
ij,k ij,k ij,k ij,k

H
K H C H , (76) 

where the subscripts η, ξ indicate that an impedance acts on motions in the pad-fixed ηk-

ξk frame.  Rotating ij,kH  into the global X-Y coordinate system and summing impedances 

across all pads, we obtain the net bearing impedances for the journal and bearing 

motions as  

 1 1

1 1

p p

p p
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n n

k k

= =

= =
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k jj,k k k jb,k k

jj jb

bj bb T T
k bj,k k k bb,k k

Q H Q Q H QH H
H H

Q H Q Q H Q
 (77) 

The results of this pad-perturbation model are applicable to the reduction of stiffness and 

damping terms for both damped and undamped (harmonic) motions of the rotor or 

bearing given the proper selection of s .  

 

Root Employed in Bearing Reduction 

Historically, coefficients in Eq. (77) are calculated for purely harmonic solutions 

with over a range of frequencies, but some researchers have stated that 

using a damped eigenvalue (

( ,s j λ= Ω = )0

0λ ≠ ) in the calculation of reduced coefficients is more 

appropriate than using a harmonic solution, especially for stability calculations [4].  This 

argument is not justified, however, because 0λ →  at the threshold of instability. 

The frequency range and type of solution employed in the calculation of reduced 

bearing coefficients has been a controversial topic over the past few decades [16-18].  

This work will continue to discuss these issues; however, the author’s position is that the 

choice of solution and method of incorporating a bearing into a system model are 
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irrelevant if the EOMs governing rotor, journal, and pad motion in Eq. (63) are not 

correct.   

 

Selection of Method - Full versus Reduced Bearing Coefficients 

 Adding the full bearing dynamics given in Eq. (68) into the system model 

requires significantly more effort than incorporating a reduced coefficient model.  When 

is this effort justified?  The answer to this question depends on the type of analysis being 

performed. 

 For the prediction of system response to imbalance or pseudorandom harmonic 

excitations, no justification can be made to include the full model; both full and reduced 

coefficients will yield the same result. 

 For the prediction of system stability, the choice to employ a full or reduced 

bearing model is more complicated.  A system becomes unstable if the real part of one of 

its eigenvalues becomes positive.  The need to incorporate a full bearing model into a 

system’s dynamic model arises when vibration modes eliminated during the bearing 

reduction affect the stability of the system. Since the eigenvalues of the pads are 

typically significantly higher in frequency than the unstable mode or critically damped 

[15], most researchers assume that the pad DOFs can be reduced from the model without 

a significant reduction in accuracy.    Consider the following Jeffcott rotor systems 

supported by tilting pad bearings with a destabilizing cross-coupled stiffness applied at 

the mid-span.  “System A” consists of a short shaft having a rigid-body cylindrical mode 

at the lowest natural frequency, while “System B” consists of a long flexible shaft 

having a pinned-pinned mode at the lowest natural frequency.  When using a full bearing 

model to analyze these systems, 2+4np eigenvalues would exist, where the reduced 

system would only contain 2; thus, the system’s eigenvalues for the full and reduced 

bearing models would not be the same.  This statement alone is not justification for 

using the full bearing model to determine stability. 

 Answering this question requires us to ask whether the mode that becomes 

unstable is the same for both full and reduced models.  For “System A,” having large 
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modal amplitudes at the bearing in the fundamental mode, it is likely that the dynamics 

within the bearing would have more impact on the stability of the fundamental mode; 

thus a full bearing model might yield a more accurate stability prediction.  For “System 

B,” having negligible modal amplitudes at the bearing in the fundamental mode, it is 

likely that the dynamics within the bearing would have little or no impact on the stability 

of the bending mode; thus a full model would not likely yield any improvement over the 

reduced model.  For the prediction of system stability, the choice to employ a full or 

reduced bearing model depends on the relative impact of bearing dynamics on the 

dynamics of the overall system, and should be determined on a case by case basis.  The 

effect of using full or reduced bearing models in stability calculations is discussed more 

thoroughly in the RESULTS section.  

 

ROTOR VERSUS BEARING/STATOR PERTURBATION 

During this analysis, transfer functions explicitly defining pad motion as a 

function of rotor and bearing/stator motions were found.  If the pad-rotor and pad-

bearing transfer functions given in Eqs. (73) and (74) differ significantly enough to 

cause differences in predicted bearing impedances for rotor-only or bearing-only 

motions, the predicted bearing impedances will depend on whether the rotor or bearing 

is perturbed; hence, previous comparisons between bearing impedances measured on 

floating bearing test rigs to predictions using a journal perturbed model would not be 

valid.  Differences in these transfer functions result solely from the proper application of 

Newton’s second law in writing the equation of motion for each pad; thus, if the inertia 

of the pads is insignificant, both rotor and bearing perturbations will yield the same 

impedance coefficients.   

How can the issue of rotor-perturbed motion versus bearing-perturbed motion be 

resolved?  There are several options.  The logical starting point is to assume that the 

bearing is fixed, and predict coefficients for rotor perturbed motions.  Next, fix the 

journal and predict coefficients for bearing perturbed motion.  If the coefficients 

predicted for the bearing and journal perturbations are the same, then we may assume 
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that the rotor or stator is fixed during tests, and use measured relative rotor-stator motion 

to generate transfer functions between the rotor/bearing and the pad.   

If the coefficients predicted for the bearing-excited and journal-excited 

perturbations differ, then we must proceed with caution in comparing measured and 

predicted transfer functions.  This would require that both absolute rotor and stator 

motions were known during experiments.  Because relative rotor-stator motion is 

measured accurately by proximity probes during experiments, either absolute (inertial) 

rotor or stator motion would need to be measured.  This could approximated for the 

bearing using 

 , (78) 2−= −Ωb1 b1U A

} where  are the absolute stator/bearing acceleration components 

measured during experiments.  This method might produce accurate stator motions at 

higher excitation frequencies, but quality may be reduced at low frequencies due to 

increased noise in the accelerometer signal at low frequencies.  

{ T
xb ybA A=b1A

 

UTILITY OF PAD-JOURNAL AND PAD-BEARING TRANSFER FUNCTIONS 

 What can be gained by the comparison of pad-journal and pad-bearing transfer 

functions over conventional testing methods?  Answering this question requires that we 

first understand the product of a conventional bearing test.   

 A conventional bearing test produces the real and imaginary parts of  

for a bearing from measured relative rotor-stator motion components, bearing 

acceleration components, and applied external excitation force components over a range 

of frequencies.  The results are frequency-dependent complex impedances that may be 

used to estimate stiffness, damping, or virtual-mass coefficients.  Comparisons between 

measured and predicted stiffness, damping, or virtual-mass coefficients are then made, 

upon which conclusions are drawn concerning the accuracy of the prediction model.  

Historically, this process has led to many questions, and though it has provided many 

xx xyH ,H …
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answers, continuing to test TPJBs in the same manner is not likely to resolve some of the 

questions that still remain.   

 For example, consider a conventional (stiffness, damping, or virtual-mass 

coefficient) comparison between measurements and predictions for a model having a 

rigid pivot where the stiffness is predicted fairly well and the virtual-mass is smaller than 

predicted, but the damping is overpredicted by a factor of 2.  Translating this 

information into useful feedback to determine modeling or experimental shortcomings is 

no more than a guessing game.   

 Now consider comparing measured and predicted 
,

j

c k

ξ
ξΓ  (defining radial pad 

motion due to radial rotor motion) for a model having a rigid pivot.  Upon first 

inspection of the measured and predicted 
,

j

c k

ξ
ξΓ , it would be obvious that radial pad 

translation was observed in tests, while no radial pad motion was predicted.  This would 

imply that pivot flexibility must be included in the model to accurately predict the pad’s 

motion.  Furthermore, consider comparing measured and predicted 
,

j

c k

ξ
ξΓ  for a model 

containing pivot flexibility.  If measured 
,

j

c k

ξ
ξΓ  is significantly larger in magnitude than 

predicted 
,

j

c k

ξ
ξΓ , the pivot stiffness used in the prediction is likely too large, while 

overpredicted radial pad motion might suggest that the pivot stiffness in the model is too 

small.  Thus, comparing measured and predicted rotor-pad transfer functions can provide 

significantly more feedback than a conventional bearing test.   

 Information that can be gained from measured rotor-pad transfer functions 

includes the following:   

(1) 
,

j

c k

ξ
ξΓ  (radial pad motion due to radial rotor motion) can be used to verify pivot 

stiffness. 

(2) 
,

j

c k

ξ
ξΓ  (radial pad motion due to transverse rotor motion) if observed, indicates that 

the transverse position of the rotor has an impact on the radial force applied to 

the pad, which results in cross coupled stiffness.  This observation may indicate 

that the pivot is locked up, preventing the pad from tilting, or that the pad’s 
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contact point translates due to a rolling-without-slipping motion.  Inclusion of the 

latter effect in the model is discussed in Appendix B. 

(3) j

k

η
φΓ  (pad tilt due to transverse rotor motion) can be used to verify that the pivot 

allows the pad to tilt freely to track the motion of the pad; this ensures that the 

bearing is not providing significant cross coupled forces.  j

k

η
φΓ  can also be used to 

identify the location of the pivot point, which may be in question for a sliding 

pivot. 

(4) 
,

j

c k

ξ
ηΓ  and 

,

j

c k

η
ηΓ  (transverse pad motion due to radial and transverse rotor motion) 

could be used to identify whether the back of the pad is slipping at the contact 

point, or translating excessively.  This observation may be pertinent to avoid 

fretting at the contact surface. 

(5) 
,

j

p kc
ξΓ  (changes in pad clearance due to radial rotor motion) can be used to verify 

the structural stiffness of the pad and the pad bending model. 

These uses are discussed on a case-by-case basis in the RESULTS section.  

 In addition to validating the fundamental assumptions on pad motion used in 

predicting TPJB dynamic coefficients, comparing measured and predicted pad-rotor and 

pad-bearing transfer functions may also provide more detail concerning the relative 

importance of pad DOFs and vibration modes on bearing performance, reduce 

dependence on stator force and acceleration measurements, and provide insights into 

frequency dependent pad behavior such as natural frequencies, pad flutter, and pivot 

friction effects. 
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CHAPTER III 

BEARING AND TEST RIG DESCRIPTION 

 

TEST RIG DESCRIPTION 

 A drawing of the test rig is shown in Figure 14.  A thorough description of this 

test rig is given in [21-23,25], and will not be discussed in detail here.  The test rig is a 

floating-bearing test rig modeled after Glienicke [19], in which a bearing mounted in a 

stator (labeled bearing retainer in Figure 14)  floats on an oil film supported by a “rigid 

rotor.”  The bearing, or stator, is excited by means of hydraulic actuators at various 

frequencies while components of applied force, absolute stator acceleration and relative 

rotor-stator motion vectors are recorded.  In addition to dynamic excitations, a static load 

up to 22 kN (5k lbf) can be applied. 

 

 
Figure 14: Drawing of the test rig [25] 
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 Figure 15 shows a picture of the stator with a bearing installed.  This picture 

shows two locations for the proximity probes, one set adjacent to the stinger 

connections, and another set 180° away from the stinger connection.  Previously [21-23, 

32-35], the proximity probes were located 180° from the stinger connections.  Tests 

showed that they did not move with the same amplitude and phase as the stinger during 

the application of dynamic loads due to stator flexibility.  The effect of relative motion 

between the top and bottom was confirmed by the reduction of data simultaneously 

recorded by probes in both locations.  Because most of the dynamic load is carried by 

the statically loaded pad, more accurate impedance coefficients and loaded pad transfer 

functions should be obtained by mounting the proximity probes adjacent to the stingers.  

The current tests were conducted with accelerometers and proximity probes mounted in 

this configuration, as were full bearing tests by Kulhanek [25] and Kulhanek and Childs 

[26].  This change in probe orientation has a notable effect on measured impedances, 

quantified by a 10%-15% decrease in stiffness and a reduction in virtual-mass.   

 

X Y

X-Stin
ge

rY-Stinger

Radial Pad-Stator Probes

Loaded Shaft Rot.Pad

Pad-Stator
Probes

Tangential Pad-Stator Probes

Static Loader

Prev. Pad-Stator
Probe Location

 
Figure 15: Stator and test bearing viewed from the non-drive end 
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TEST BEARING 

 A description of the test bearing configuration is given in Table 1.  A rocker 

pivot similar to the one shown in Figure 4 is used.  Pads are retained by a loose fitting 

pin, which allows the pivot to tilt, slide and bounce. 

 

Table 1: Properties of the bearing at room temp. (24 °C) 
Number of Pads 5 

Loading Configuration Load on pad (LOP) 

Pad Arc Length (βlt) 58.9° 

Rotor Diameter 101.587 mm (3.9995 in) 

Pad Axial Length 55.88 mm (2.200 in) 

Cold Bearing Radial Clearance1 68 μm (2.67 mils) 

Cold Pad Radial Clearance1 120.65 μm (4.75 mils) 

Cold Bearing Preload1 0.44 

Pad Offset 0.50 

Pad Mass (mp) 0.385 kg (0.849 lb) 

Pad Inertia about Oc (Ic,k) 1.807e-4 kg-m2 (0.851 lb-in2) 

Pad C.G (bηgo,bξgo) (0,0.0127) m, (0,0.5) in 

Bearing Lubricant DTE 797, ISO VG-32 

Note 1: The cold bearing clearance describes the dimensions of the bearing at room 

temperature, not at operating conditions.  Measurements of bearing and pad clearance 

during operation are discussed in the RESULTS section.  Oil inlet temperatures and 

other static data can be found in Appendix C.   
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TEST SERIES  

 Testing was performed at the operating conditions prescribed in Table 2.  Data 

were taken at 10-350 Hz, in 10 Hz increments. 

 

Table 2: Operating conditions 
Static Load Speed [rpm], (Flow-rate [L/min] @ 96 °C) 

kPa (psi) 4400, (32) 7300, (32) 10200, (38) 13100 (38) 
0 x x x x 

783 (113.6) x x x x 
1567 (227.2) x x x x 
2350 (340.9) x x x x 
3134 (454.5) x x x x 

 

 

PAD PROBE INSTRUMENTATION 

 The degrees of freedom to be measured on the loaded pad, whose pivot sits 

nominally on the static load line, are shown in Figure 16, and correspond to the 

coordinates given in Figures 5 and 11.  Two additional degrees of freedom shown in 

Figure 16 are measured during tests, but were not included in the model.  Pad yaw (φξc,k) 

is defined as the rotation from the pad reference axis Z0 to the perturbed axis Z1,k about 

the positive ξk -axis, and pad pitch (φηc,k) is defined as the rotation from the pad 

reference axis Z0 to the perturbed axis Z1,k about the positive ηk - axis. 
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Figure 16: Primary pad degrees of freedom 

 

 The orientations of the proximity probes used to measure motion on the loaded 

pad are illustrated in Figure 17.  Each of the five probes (M11-M15) is oriented in the ηk-

ξk plane shown in Figure 16.  Three radial probes (M11-M13) were added in a triangular 

pattern to observe the tilt, bounce, and pitching motion of the pads, while extensions 

were added to the sides of the pad to enable two transverse probes (M14, M15) to measure 

pad slip and yaw motions.   
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Figure 17: Proximity probe orientation on loaded pad 

 

 For the remainder of this work, the subscript k will be omitted when appropriate 

for variables pertaining to the instrumented pad.  The total range of motion seen by the 

pad probes is 0.46 mm (18 mils); thus, small angle assumptions are applied to the 

geometric relations relating probe measurements to pad degrees of freedom as follows.  

The tangential motion of the pad is given by  

 ( )14 15

2c

M M
η

+
=  (79) 

because the centerline of the proximity probes lies on the contact surface.  Their 

configuration was designed so that pad tilt does not affect probe output.  The other 

motion observed by the tangential probes is pad yaw φξc, defined as a rotation about the 

positive ξk axis according to 

 15 14

14,15
c

M M
dξφ −

=  (80) 

where the assumption of small motion is justified by the total possible range of motion 

of the proximity probes.  Because the radial pad probes are oriented at an angle of 22.5° 
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from the ξk axis, special care must be taken in deriving equations for pad tilt (ϕ), radial 

pivot motion (ξc), and pitch (ϕηc).  Radial motion (ξc) is defined as the average of 

vertical motion seen on each side of the pad plus the relative deflection due to a change 

in pad clearance and is 

 ( ) (
11 12

132 cos 22.5 1 cos 22.5
2 pc

M M M
ξ δ

+⎛ ⎞− +⎜ ⎟
⎝ ⎠= ° + )c − °⎡ ⎤⎣ ⎦ . (81) 

Measurement of pad clearance change (
pcδ ) with strain gages will be discussed in detail 

later, but note that changes in pad clearance must be accounted for when measuring 

radial pivot motion at a location other than the pivot. 

 Pad pitch is 

 ( ) (12 11

11,12

sin 22.5 cos 22.5c c
M M

dη ξφ φ
⎡ ⎤−

= − °⎢
⎢ ⎥⎣ ⎦

)°⎥  (82) 

where φξc negates the effect of yaw on the motion seen by M11 and M12; hence, pure yaw 

may produce changes in the measurement M12-M11, but the effect of yaw will be 

nullified using measured yaw defined in Eq. (80).  Lastly, pad tilt is 

 
( )

( ) (
11 12

13

11

2 sin 22.5
2 cos 22.5

2 sin 22.5

c
M MM

r

η
φ

+⎡ ⎤− + °⎢ ⎥⎣= °
°

)⎦  (83) 

where 2r11sin(22.5°) is the distance from probes M11 and M12 to M13 parallel to the ηk 

axis, and 2ηcsin(22.5°) negates the effect of circumferential pivot motion (ηc) on the 

relative vertical motion at M11,12 and M13 similar to the manner in which yaw was 

negated in the measurement of pad pitch.  

  

PAD STRAIN INSTRUMENTATION 

 In addition to measuring pad translations and rotations, strain gages were applied 

to the side of the instrumented pad to measure static and dynamic bending strain as 

shown in Figure 18. 
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Figure 18: Configuration of strain gages applied to the loaded pad 

 

 The distance (δε12) between the strain gages is approximately 7 mm (0.275 in), 

and the strain gages will be connected in series using a Wheatstone bridge configuration 

as shown in Figure 19. 
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Figure 19: Strain gage monitoring circuit 

 

 The voltage output resulting from this measurement configuration is 

 22

1 2 1 2

f
out in

f f

rrv v
r r r r

ε

ε ε

⎛ ⎞
= −⎜⎜ + +⎝ ⎠

⎟⎟  (84) 

where rf1 and rf2 are high precision resistors having very low temperature sensitivity 

coefficients, and rε1 and rε2 are the resistances of strain gages 1 and 2, respectively.  The 

benefit of this configuration is that the output voltage from the circuit is proportional to 

the difference 

 ( )12 1 2 12out ov v kεε ε ε= − = −  (85) 

where kε12 relates the change in strain of gages 1 and 2 to a change in resistance, vo is the 

output voltage at the reference state, and 12 120 121ε ε ε= +  represents the sum of static and 

perturbed strains as measured relative to the differential strain 12oε  at the reference state.  

Eq. (85) can then be calibrated to directly calculate the change in pad curvature arising 

from the differential strain ε12 using 
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12 12p pc ck εδ ε=  (86) 

where kcpε12 will be determined by analyzing the change in pad clearance relative to 

normal strains at the strain gage locations using finite element analysis (FEA).  This 

process will be explained in the RESULTS section. 

 

DATA ANALYSIS 

To measure rotordynamic-coefficients on a floating bearing test rig, we assume 

that the stator, or bearing, can be modeled as a two degree of freedom system governed 

by the following EOMs: 

 , (87) bx bx ex bx

by by ey by

m a f f
m a f f

⎧ ⎫ ⎧ ⎫ ⎧= +⎨ ⎬ ⎨ ⎬ ⎨
⎩ ⎭ ⎩ ⎭ ⎩

⎫
⎬
⎭

where abx and aby are the absolute stator acceleration components, fex and fey are the 

excitation force components, and fbx and fby are the bearing reaction force components in 

the X and Y directions, respectively.  Usage of bearing/stator here physically represents 

the bearing installed in the bearing housing and all attached peripheral components that 

move with the bearing housing.  The effective masses mbx and mby are modal masses 

corresponding to X and Y translations of the stator, and their values are chosen such that 

the curvature of Re{Hxx} and Re{Hyy} is zero for baseline measurements.  Baseline 

measurements are taken when the bearing is dry (having no oil in the bearing), and 

represent the dynamic characteristics of all non fluid film reaction forces.  Ultimately, 

the baseline is subtracted from the dynamic bearing impedances to yield only the 

reaction force components provided by the bearing.   

 Taking the discrete-fourier transform (DFT) of the components in Eqs. (87) 

yields 

 bx bx ex bx

ey byby by

m A F F
F Fm A

⎧ ⎫ ⎧ ⎫ ⎧ ⎫⎪ ⎪ ⎪ ⎪ ⎪= +⎨ ⎬ ⎨ ⎬ ⎨
⎪
⎬

⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎩ ⎭ ⎩ ⎭⎩ ⎭
 (88) 

where bxA  and byA  are the absolute stator acceleration components,  and exF eyF  are the 

excitation force components, and  and bxF byF  are the bearing reaction force components.  
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 Rewriting Eq. (88) with the bearing reaction force components given in Eqs. (1) 

or (2) represented as impedances yields 

 xx xyex bx bx x

yey by by yx yy

H HF m A U
UF m A H H

⎡ ⎤⎧ ⎫ ⎧ ⎫−⎪ ⎪ ⎪= ⎢ ⎥⎨ ⎬ ⎨−
⎪
⎬

⎪ ⎪⎪ ⎪ ⎢ ⎥ ⎩ ⎭⎩ ⎭ ⎣ ⎦
, (89) 

where xU  and are relative rotor-stator motions in the X and Y directions, respectively. 

To solve Eq. 

yU

(89) for the bearing impedances ( ijH ), we apply two independent 

excitations, typically chosen as the orthogonal X, Y pair, which provides us with an 

invertible motion matrix such that the impedances are given by
 

 
1x x y y x y

xx xy ex bx bx ex bx bx x x
x yx x y y
y yey by by ey by byyx yy

H H F m A F m A U U
U UF m A F m AH H

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤− −
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎣ ⎦⎣ ⎦⎣ ⎦

 (90) 

If the real portion of ijH  is quadratic in Ω and the imaginary portion of ijH  is linear, 

then the bearing in question can accurately be described by a KCM model such that  

 2Re( ) , Im( ) , , ,ij ij ij ij ijH k m H c i j x= −Ω = Ω = y  (91) 

where cij and mij are determined by the slope of a linear regression in Ω and Ω 2, 

respectively, and kij is the intercept of the latter. 

 To evaluate the measured pad-rotor/pad-journal transfer functions from the 

recorded pad and relative rotor-stator motions, we use the same technique used to solve 

Eq. (89), independent tests consisting of orthogonal rotor-stator motions.  This yields a 

slightly expanded version of Eqs. (73) and (74), including the additional pad pitch and 

yaw motions.
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where the partition in Eq. (92) separates the previously defined transfer functions that 

were included in the model, and the additional pad pitch and yaw transfer functions.  

Minimal pad pitch and yaw motions were observed during tests, which is to be expected 

since these motions are not heavily excited during experiments.  These transfer functions 

are not discussed in the RESULTS section. 

 During dynamic bearing tests a harmonic waveform is sent to the hydraulic 

shakers, resulting in a harmonic excitation force.  When this single frequency excitation 

force is repeated, the recorded motion can be divided into several sets of independent 

test data to yield multiple impedance measurements.  The repeatability of these 

impedance measurements can then be assessed by the method given by Kulhanek [25], 

and displayed as 95% confidence bounds on bearing impedance plots.  The same method 

was used in this work, and 95% confidence bounds are displayed on impedance plots in 

the RESULTS section.   

 Note that the confidence bounds for the majority of impedance data presented in 

this dissertation are extremely small, which suggests that the impedance measurements 

are highly repeatable.  On average the confidence bounds for rotor-pad transfer-function 

measurements are less than 1% of the measured transfer-function amplitudes; hence, 

they are not displayed on figures due to a very high degree of repeatability. 

 

  

 



60 

CHAPTER IV 

NUMERICAL PREDICTION 

 

 A finite-difference code was developed to solve for the steady-state and dynamic 

characteristics of a TPJB using the Reynolds equation.  Pad and rotor position are 

determined using a Newton-Raphson algorithm that employs the analytically perturbed 

fluid-film stiffness and damping matrices.  The code allows for each pad’s properties to 

be defined irrespective of the other pads characteristics.  This feature includes, but is not 

limited to, bearing clearance, pad clearance, pad thickness, pad length, offset, oil 

viscosity, etc.   

 The code does not include a thermal model to determine bearing fluid 

temperatures and viscosities.  To reduce thermal uncertainties, pad surface temperature 

measurements for each test are used to estimate the circumferential fluid temperature 

profile on a given pad.  This temperature profile is then used to calculate fluid viscosities 

at each node in the finite-difference grid.  Similar measurements showing radial 

variations in pad temperature are used to estimate thermal bow in the pad, affecting a 

change in preload and pad radius.  An option is also available to account for the 

temperature-dependent change in bearing clearance due to the mean temperature rise 

within a given pad.   

 At 10,000 rpm, the circumferential flow Reynolds number ( j br cρω
μ

) is 384; 

hence, laminar flow can be assumed in the numerical model [45]. 

 The code allows for the input of a polynomial load-versus-deflection curve 

whose derivative describes the static nonlinear stiffness of the pivot.  The load-

dependent pivot stiffness is used initially to solve for the static equilibrium of the pad, 

then subsequently in the reduction of dynamic coefficients.  A similar procedure was 

used to describe the nonlinear pad bending stiffness. 
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CHAPTER V 

RESULTS 

 

PLOTTING CONVENTIONS 

 Unless otherwise stated, the following conventions apply to figures in the 

RESULTS section of this dissertation.   

• Measured data will be denoted by markers/symbols, and will be referred to as 

“Meas.” in legends.  These data markers may be connected by straight lines to 

aid in tracking the curves. 

• Predicted data will be represented by solid or dashed lines, and referred to as 

“Pred.” in legends.  Unless otherwise stated, this data is predicted using the 

model discussed in CHAPTER II. 

 

PIVOT STIFFNESS 

 To predict pivot stiffness, Hertzian contact stresses, deflections, etc. were 

evaluated numerically using the algorithm given by Deeg [41].  To apply the algorithm, 

the geometrical and mechanical properties of the pivot and housing must be known.  The 

circumferential and transverse radii of the pivot and housing (about the pad’s Z0,k and ηk 

axes, respectively) were obtained using a coordinate measuring machine (CMM) and are 

given in Table 3 along with the estimated mechanical properties of the pivot and housing 

based on typical bearing materials. 

 

Table 3: Parameters used to determine Hertzian contact stiffness 
 Pivot Housing 

Circumferential Radius2 62.13 mm (2.446 in ) -69.85 mm (-2.750 in ) 
Transverse Radius 1270 mm (50 in ) ∞ 

Elastic Modulus 212 GPa (30.75 Msi) 206 GPa (29.88 Msi) 
Poisson’s Ratio 0.29 0.288 

Note 2: A negative radius implies that the housing contact is concave.   
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 Figure 20 shows a comparison of the measured and predicted load-versus-

deflection curves for the pivot in the radial direction.  These measurements were 

obtained by pressing the rotor into the pad along the pad’s ξk axis with increasing force 

applied by the static loader.   

 

 
Figure 20: Comparison of measured and predicted pivot load versus deflection 
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 During the experiment, two load-versus-deflection curves were obtained: (1) The 

black crosses represent the pivot deflection as seen by the pad-stator probes, while (2) 

the blue crosses represent the pivot deflection as seen by the relative rotor-stator probes 

(which corresponds to the approach taken by Harris and Childs [23]).  The rotor-stator 

load-versus-deflection curve shows the pivot to be significantly softer than the pad-stator 

load-versus-deflection curve.  This observation is logical because the rotor-stator load-

deflection curve includes the compliance of the pivot in series with the compliance of 

the pad, Babbitt, and rotor as suggested by Harris and Childs.  Since only the stiffness of 
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the pad relative to the housing is desired, the stiffer pad-stator load-versus-deflection 

curve will be used in the bearing predictions.  Figure 20 also shows the predicted load-

versus-deflection curve using Hertzian contact theory [41], which agrees very well with 

the stiffer pad-stator load-versus-deflection curve. 

 Figure 21 shows the measured and predicted pivot stiffness versus pivot 

deflection.  The measured stiffness values were calculated by taking the derivative of a 

fifth order polynomial fit of the measured load-versus-deflection curves shown in Figure 

20.  A fifth order polynomial fits the measured load-versus-deflection curves very well, 

and its derivative should accurately represent pivot stiffness.  

 

 
Figure 21: Comparison of measured and predicted pivot stiffness versus deflection 
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 Note that the pivot stiffness measured using the rotor-stator probes is almost half 

the stiffness obtained by the pad-stator probes.  Employing the rotor-stator measured 

pivot stiffness in numerical predictions would greatly underestimate dynamic 
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coefficients.  This raises an interesting question, how should the measured load-versus-

deflection curve be implemented in a bearing code?  Though other options may exist, the 

current work approximates the pivot’s load-versus-deflection curve with a polynomial.  

Since a polynomial is continuous and differentiable, the stiffness is easily determined as 

a function of pivot deflection; however, this approach does require caution in selecting 

the order of polynomial used to approximate the pivot’s load-versus-deflection curve. 

 Figure 22 shows the stiffness determined from a quadratic approximation of the 

measured pad-stator load-versus-deflection curve in comparison to the stiffness 

determined from a higher order approximation. 

 

 
Figure 22: Accuracy of pivot stiffness obtained from a quadratic approximation of 

pivot load-versus-deflection curve  
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 With the exception of small and large pivot deflections, the quadratic does a 

decent job of approximating the measured pivot stiffness; hence, one might suggest that 

better agreement may be obtained using a higher order polynomial.  This is true; 
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however, using a higher order polynomial outside of the range of deflections used to fit 

the polynomial can lead to erroneous results and difficulty in convergence.  Because the 

maximum loads applied to the pad in these experiments is approximately 17 kN, using a 

higher order polynomial to approximate the measured load-versus-deflection curve given 

in Figure 20 is not acceptable.  This said, due to the excellent agreement between 

measured and predicted pivot stiffnesses, a fourth order approximation of the predicted 

Hertzian pivot stiffness for a larger range of loads will be used to approximate the pivot 

load-versus-deflection curve employed in numerical predictions.  This is given by 

 , (93) 21 4 17 3 13 2 87.321 10 -6.653 10 +3.339 10 +1.773 10 -64.44cf ξ δ δ δ δ= × × × ×

where fcξ is in Newtons, and δ is in meters. 

 

BENDING MOMENTS, BENDING STRAIN, AND PAD CLEARANCE 

 Though pictures cannot be shown of the pads used in this work for proprietary 

reasons, Figure 23 is a schematic for a tilting pad having a pivot insert similar to the 

pads tested in this work.  The pivot insert is used to enable adjustment of pad thickness 

and thus bearing clearance, as well as to reduce pivot wear by using harder materials.  

 

Pivot Insert

gap

Pad

Contact

pcM

Region 1
(light/no bending moments)

Region 2
(heavy bending moments)

 
Figure 23: Schematic of a typical tilting pad with pivot insert showing Region 1, 
where the pivot insert is not in compression, and Region 2, where the bending 

moment is large enough to result in contact between the back of the pad and the 
pivot insert 

 

 The pad shown in Figure 23 has a gap between the pivot insert and the inside of 

the slot that it resides in when little or no load is applied.  Though this gap is enlarged 
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for clarity, it is on the order of 12 μm (0.5 mils) for the bearing studied; it greatly affects 

the pad’s ability to resist bending moments, and results in a nonlinear bending stiffness 

for the pad. 

To characterize this nonlinear behavior, the deflection of the pad is divided into 

two distinct regions: Region 1, where the bending moments on the pad are insufficient to 

eliminate the gap between the pivot and the insert, and Region 2, where the pad 

deflection is large enough to cause contact between the pad and the pivot as shown in 

Figure 23.  A pad operating in Region 1 will have a much lower bending stiffness than a 

pad operating in Region 2.  The extents of these regions were determined by a simple 

experiment, whose schematic is shown in Figure 24. 
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Figure 24: Schematic of strain gage verification experiment 

 

The pad was placed on a flat plate, supported on one end by a pinned support and 

the other with a rolling support.  A press was then used to apply a load to the pivot of the 

pad, passing though a load cell to measure the force (and thus the applied bending 

moment), while the pad’s strain gages were used to measure bending strains at the 

middle of the pad.  The results from this experiment may also be used to correlate 

measurements of bending strain to changes in pad clearance by comparison with finite 

element (FE) predictions.  Figure 25 shows the load dependent strain resulting from the 

experiment, as well as linear trends corresponding to deflections in Regions 1 and 2, and 

predictions resulting from finite element (FE) analysis in ANSYS. 
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Figure 25: Differential pad strain versus applied moment 
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Figure 25 shows that there are two distinct linear regions of constant bending 

stiffness, separated by a transition region.  Region 1 consists of a constant bending 

stiffness, fit by the blue line in Figure 25.  As the pad begins to contact the pivot as 

shown in Figure 23, the pad’s bending stiffness is gradually increased by the contact 

forces.  After the pad is fully in contact with the pivot, the contact stiffness becomes 

constant, and the pad deforms linearly with applied bending moment.  The green curve is 

a fit of the pad’s bending stiffness in Region 2.  These results suggest that constant 

bending stiffnesses may be used to model pad flexibility in Regions 1 and 2, provided 

that the correct stiffness is used for the given bending moment applied to the pad.   

The red curve in Figure 25 is a composite of FE results consisting of analysis of a 

pad model in Regions 1 and 2.  Analysis in Region 1 is performed with a model having 

no contact between the pad and pivot at the back of the pad, and analysis in Region 2 is 

performed with a model having contact at the location shown in Figure 23.   
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The top 1.78 mm (0.071 mils) of the pad’s surface is Babbitt, which has 

approximately ¼ the elastic modulus of steel.  The interaction of the pad and Babbitt is 

modeled as a bonded connection, while the interaction between the pad and pivot are 

modeled using a frictionless connection.  Overall, the predicted bending stiffness of the 

pad is roughly 25% larger than the measurements suggest, but behaves very similarly to 

the behavior observed in the experiment.  This overestimation of bending stiffness may 

be due to differences in pad/pivot materials, geometric properties such as thermocouple 

holes, or deficiencies in strain gage mounting and calibration techniques.  It is the 

author’s perspective that the last reason is the most plausible; therefore, a conservative 

approach was taken such that strains measured using Eq. (85) were reduced by 33% 

before calculating changes in pad clearance. 

 Having obtained a FE model that agrees reasonably with measured strains during 

the simple experiment shown in Figure 24, we will apply a uniform pressure (punif) to the 

surface of the pad, then determine the effect of measured pad strain and applied bending 

moments on pad clearance.  A uniform pressure distribution will be used to approximate 

fluid film pressures, and pad clearance will be estimated from numerical results by 

fitting the surface of the deflected pad to a circle, then subtracting the original radius. 

 Figure 26 shows the radial deflection of the pad normalized by the applied 

moment obtained by FEA in Regions 1 and 2 as well as the predicted change in 

clearance for the point load applied in the experiment, cp,exp, and for the uniform pressure 

 that will be used to approximate pad deflections due to moments in numerical 

predictions.  

, unifp pc

Though the pad’s surface does not remain circular for the loading applied in the 

experiment, the application of a uniform pressure resulted in a more circular deflection 

of the pad’s surface.  Despite approximating that the pad’s surface arc remains circular 

when deflected, Earles et al. [10, 11] conclude that differences in predictions assuming 

that the pad’s surface remains circular and predictions using a more accurate FE 

formulation are minor; however, the validity of this assumption for the pads in this work 

could be in question.  The pad’s bending stiffnesses (
psck ) for the uniform pressure and 
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experimental point loads in Regions 1 and 2 are given by the applied moment divided by 

the change in clearance, and the results are displayed in the legend in Figure 26.   

 

 
Figure 26: Predicted pad surface deflection normalized by applied bending moment 

as a function of angular distance from pivot location for structural models in 
Regions 1 and 2 for the different loading conditions 
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cp,exp (Region 1)=2.09×10-6 m, ksc
p

=4.78×105 N.m/m

cp,exp (Region 2)=1.15×10-6 m, ksc
p

=8.69×105 N.m/m

cp,p
unif

 (Region 1)=1.85×10-6 m, ksc
p

=5.39×105 N.m/m

cp,p
unif

 (Region 2)=1.08×10-6 m, ksc
p

=9.23×105 N.m/m

 

In comparison to the analytical pad stiffness given by Deutschman et al. [43] in 

Eq. (27) for a uniform cross section having the full thickness of the pad (including the 

Babbitt layer), the FE stiffness in Region 2 is 5-6 times softer.  This is understandable 

due to the substantial reduction in bending stiffness associated with the pivot insert 

contact flexibility and additionally the top 1.78 mm (0.071 mils) of the pad’s surface is 

Babbitt, which has approximately ¼ the elastic modulus of steel. 

 Table 4 gives the change in pad clearance corresponding to a change in bending 

strain measured at the strain gage locations in Regions 1 and 2 from FEA of the two load 

configurations analyzed. 
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Table 4: Change in clearance relative to a change in bending strain 
Loading kcpε12 (μm/με) 

Experiment (Region 1) 0.2787 
Experiment (Region 2) 0.3397 

Uniform Pressure (Region 1) 0.2560 
Uniform Pressure (Region 2) 0.2782 

 

 The results show that despite the manner that loads are applied to the pad and the 

region that it is operating in, the relationship between predicted strain and predicted 

changes in pad clearance is relatively constant.  Due to the similarity in pad bending 

strain factors due to a uniform fluid pressure in Regions 1 and 2, the mean of the two 

factors in Regions 1 and 2,  

 
12

0.2671 /
pck ε mμ με= , (94) 

will be used to convert measured bending strains into changes in pad clearance. 

 Using the pad bending strain factor given in Eq. (94), we may determine another 

bending stiffness for the pad to use in dynamic bearing predictions by correlating the 

change in predicted bending moment on the pad due to test excitations at low 

frequencies to measured changes in pad clearance recorded during those same test 

excitations.  This may be necessary to account for changes in the pad/pivot fit that may 

occur with the thermal gradients present at the time of a test, and/or the addition of 

thermal moments in conjunction with pressure induced bending moments. 

 Figure 27 shows the pad bending stiffness obtained by applying Eq. (29) to 

determine measured changes in pad clearance during dynamic test excitations and 

dynamic bending moments predicted from simulations of the test cases at various static 

operating conditions.   
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Figure 27: Pad Bending stiffness at various operating conditions as determined 

from measured changes in pad strain and predicted bending moments 
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 Figure 27 shows that the pad’s bending stiffness calculated using this method is 

primarily a function of the static bending moment applied to the pad, which increases 

with increasing static load.  These stiffness values are significantly higher for large static 

bending moments than predicted by FEA and the simple pad experiment, suggesting that 

it may be necessary to account for thermal gradients/thermal bending moments present 

during dynamic tests.  In fact, using the pad bending stiffness obtained with FEA led to 

very poor prediction of bearing characteristics (largely underpredicted).  Thus the 

following bending stiffness (N.m/m) will be used in predictions   

 , (95) 4
0=7.548 10 +9.983 10

p psc ck M× × × 4

where 0pcM  is the static bending moment (N.m) applied to the pad by the fluid film.  

Though this value was larger than obtained during the static experiment, FEA 

predictions show the bending stiffness of a solid pad having the same shape as the pads 

in the test bearing to be several times stiffer than the formulation given in Eq. (95). 
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BEARING CLEARANCE 

 Figure 28 shows pentagonal bearing clearance measurements at taken by slowly 

precessing the stator around the non-rotating shaft with a circular force.  These 

measurements consist of cold bearing clearances, taken at room temperature, as well as a 

few hot bearing clearances, taken at a few of the operating conditions given in Table 2.   

 

 
Figure 28: Pentagonal clearance measurement at a variety of temperatures (as 

determined by the mean of pad surface temperatures at the pivot location) 
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 These clearance measurements are recorded while slowly precessing the stator 

about a non-rotating shaft using a circular force that is just large enough to initiate 

contact between the pads and rotor (to prevent significant pivot deflections).  For a 
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TPJB, this generates a polygon, having np sides corresponding to the number of pads in 

the bearing.    

 Cold bearing clearances are taken when the test rig has not been operated for 

several hours, and the temperature given is the average of each pad’s surface 

temperatures taken during the clearance measurement.  The cold clearance 

measurements should accurately reflect the installed clearances provided by the 

manufacturer, where negligible thermal gradients are present in the system.  The location 

of the pad surface thermocouples is given in Appendix C.     

 Hot bearing clearances are taken immediately (~15 sec) after shutting down the 

test rig after operating at steady state conditions for a given speed and load.  For hot-

clearance measurements, the temperature given consists of the average of pad surface 

temperatures at the pivot location, as determined by a spline fit of the temperatures along 

the surface, recorded at the steady state operating condition immediately prior to 

shutdown.  The difference between using actual operating temperatures versus 

temperatures recorded during the clearance measurement only seconds later is probably 

slight, but the author feels that this procedure will yield a more useful approach to 

researchers who desire to adjust bearing clearance with pad surface temperatures 

measured during operation. 

 The bearing has five pads, corresponding to the number of sides in the clearance 

measurement.  The top side represents the loaded pad, and shaft rotation is clockwise.  

At the center/midpoint of each side, a colored dot represents the pivot location for that 

pad.  Fitting these points to a circle provides a good means of determining the average 

bearing clearance, which is indicated by the dashed line. 

 At room temperature the clearance is fit well by a circle, indicating that the 

installed bearing clearance for each pad is very consistent.  The loaded pad, however, 

has a slightly larger (7 μm (0.28 mil)) bearing clearance, which probably resulted from 

permanent compression of the Babbitt surface during pivot-stiffness measurements.  As 

the bearing gets hotter, the rotor, pads, and bearing expand.  Assuming the bearing bore 

remains constant, a hotter pad will expand more, resulting in a decreased clearance; 
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therefore, the length of that pad’s side of the clearance pentagon measurement will 

increase with respect to its peers.  If the bearing bore expands more on the hotter side, 

however, it would tend to increase that pad’s clearance and decrease the length of that 

pads side of the pentagonal clearance measurement.   

 In addition to these relative changes in clearances among the pads, there is 

significant reduction in the average bearing clearance.  Figure 29 shows the measured 

bearing clearance versus the average of pad surface temperatures at the pivot location.   

 

 
Figure 29: Bearing clearance as a function of the average of pad surface 

temperatures at the pivot location 

20 30 40 50 60 70 80

50

55

60

65

70

R
ad

ia
l C

le
ar

an
ce

 ( μ
m

)

Clearance vs Average Pad Surface Temperature at Pivot 

Average Pad Surface Temperature at the Pivot Location (°C)

 

 

cb(Tref) - αcb(Tavg-Tref), cb(24.4)=68.6, αcb=0.396 [μm/
°C

]

Experimental Measurements

 

 Figure 29 shows that the bearing clearance decreases linearly in proportion to the 

average of pad surface temperatures at the pivot location, abiding by the relation  

 ( ), bb b ref c avg refc c T Tα= − −  (96) 

where cb,ref is the reference bearing clearance at temperature Tref, and αcb, the slope of the 

fit in Figure 29, is similar to a thermal expansion coefficient.  To place some perspective 

on αcb, we will define the relation 

 (,
0.396 / 34.7 mm 1.37in
11.4 /

b

m
c C

T char
mat C

l
μ

μ )
α
α

°

°

= = = , (97) 
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where lT,char is a characteristic thermal length of the system with respect to the mean of 

pad surface temperatures at the pivot locations.   

 This relation is useful because it provides a means of assessing the length of 

material expanding in the test rig (relative to an increase in pad surface temperature at 

the pivot).  In their research, Branagan and Barrett [42] account for reductions in bearing 

clearance by calculating the thermal expansion of the pad using the difference between 

the pad at room temperature and at operating conditions (using the mean of pad 

temperatures at the surface and back of the pad), the pad’s thermal expansion coefficient, 

and the thickness of the pad at the pivot.  For the bearing investigated, employing this 

method results in a clearance reduction coefficient of  

 , (98) 0.17 /
b

m
c

μα °= C

which accounts for only ½ the change in clearance noted in the current work.   

 While it should be noted that the present temperature dependent bearing 

clearance was measured on a floating bearing test rig that may have larger thermal 

gradients than in commercial turbomachinery, it does indicate that previous comparisons 

between measured and predicted bearing coefficients on floating bearing tests rigs 

should be treated with caution if a temperature dependent bearing clearance was not 

included in the prediction model.  It would be interesting to compare the characteristic 

thermal length for this bearing to other bearings tested on the TAMU oil-bearing test rig 

to see if this length is dominated by the test rig, the bearing, or a combination of the two. 

 Finally, note that the clearance measurements shown in Figure 28 seem to shift 

down and to the left with increasing temperature.  This effect probably occurs because 

the proximity probes taking these measurements are expanding more than the housing 

that they are mounted on.  Figure 15 shows the proximity probes extending 

approximately 38.1 mm (1.5 in) toward the shaft from their mounting location, which is 

fastened rigidly to the steel bearing housing at a radius of 17.7 cm (7 in).  A simple 

calculation shows that a 20° temperature difference between the inboard portion of the 

proximity probes and the housing results in a 12 μm (0.45 mil) reduction in the gap 

between the probe and rotor.  This temperature difference seems possible because the 
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proximity probes may be directly hit by hot oil exiting the bearing, while the housing is 

cooled by both inlet oil and the ambient air.  Since the shift in measured rotor positions 

are approximately 10-15 μm (0.39-.59 mil), as will be shown later, this explanation 

seems feasible.  

 This observation could be important because presenting static eccentricity 

measurements without accounting for probe expansion may result in errors in both 

eccentricity magnitude and attitude angle.  The author believes this is the primary reason 

for the number of eccentricity measurements presented in literature with slight, but 

significant, attitude angles [22,23].   

 The effect of probe expansion could be accounted for taking clearance 

measurements at each operating condition, such that rotor eccentricities are measured 

relative to the center of a specific clearance measurement.  This procedure, however, 

would be quite time consuming since a 10-15 minute period is required to reach steady 

state after a shutdown.  Another option would be to use 8 proximity probes, mounted in 

pairs across the shaft.  If the probes on both sides of the shaft expanded equally, they 

would offset one another, resulting in an accurate measurement of journal position.  

Difficulties with this approach may include differences in proximity probe temperatures 

on either side of the shaft, and relative motion of the proximity probes due to housing 

flexibility. 

 This is not the first attempt to measure operating bearing clearances.  Wygant et 

al. [40] used in-rotor motion probes to measure fluid film heights while the shaft was 

rotating.  This approach could yield valuable information on pad clearance and changes 

in bearing clearance due to centrifugal shaft expansion, but mechanical and electrical 

runout on the surface of the pads reduced the clarity of their clearance measurements, 

and did not allow for discussions on the variation of measured clearances with speed and 

temperature.  It should also be noted that radial pad displacement due to pad compliance 

would also have to be accounted for when using this procedure. 
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STATIC DATA 

 Figures 30-34 show measured static results generated by slowly increasing the 

unit load applied to the bearing from 0-3132 kPa (454 psi) while keeping a constant rotor 

speed.  Unit load is defined as the static load per cross-sectional area of the bearing.  Due 

to the density of data points recorded in these tests, static measurements presented here 

are represented as solid curves.  Additional static data such as thermocouple 

temperatures and locations, pressures, and oil flowrates can be found in Appendix C.   

 Figure 30 shows the locus of the bearing relative to a measured hot and cold 

bearing clearance with increasing load for a variety of rotor speeds.  Note that these 

clearance measurements are the boundaries of the bearing when the pads have not 

deflected radially in response to fluid film loads. 

 

 
Figure 30: Measured static eccentricity at various speeds with unit loads in the Y-

direction from 0-3132 kPa 
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 Figure 30 shows that the difference in static eccentricity ratio, the static 

eccentricity divided by the bearing clearance, using the hot and cold bearing clearances 

is considerable.  Comparing measured static eccentricities to predictions based on the 

cold bearing clearance is highly misleading and wrong.   Comparing predicted and 

measured static eccentricity ratios using the cold-bearing clearance might agree well for 

a model with rigid pivots, while comparisons to the hot-bearing clearance reveals that 

the journal actually exceeds the hot-bearing clearance by 11-12 μm for heavily loaded 

operation at low speeds.  This fact alone supports the notion that predicting static 

characteristics for this bearing requires a model containing pivot flexibility.  As 

indicated earlier in discussing the measured hot-bearing clearances, the slight change in 

attitude angle with increasing load could be attributed probe expansion, and does not 

necessarily indicate the presence of cross-coupled stiffness coefficients.  

 Figure 31 shows a comparison between the measured and predicted eccentricities 

versus static load for a range of rotor speeds.  While the relation between static 

eccentricity and load is predicted very well at the lowest speed, Figure 31 suggests that 

the model has slightly less load capacity than the bearing tested at higher speeds.  

Although there are a variety of input parameters that could affect this comparison, the 

author feels that adjusting inputs to more accurately reflect measured quantities is 

counterproductive when trying to assess the accuracy of the applied model. 

 Unless stated otherwise, note that predictions from this point forward are 

generated with the model given in CHAPTER II using the pivot load-versus-deflection 

curve given in Eq. (93), the load dependent pad bending stiffness given in Eq. (95), and 

the temperature dependent bearing clearance given in Eq. (96).  
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Figure 31: Measured and predicted journal eccentricity (along loaded Y axis) 

versus unit load at various operating speeds 
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 Figure 32 shows the radial displacement of the loaded pad versus applied static 

load at different operating speeds.  A radial displacement of ξc=0 denotes that the pivot 

is uncompressed, sitting on the surface of the bearing.  The radial displacement of the 

loaded pad indicates how much radial load is supported by the loaded pad.  As expected, 

the pad’s positive preload results in an increase in centering force with increasing 

rotation speed for lightly loaded operating conditions.  As the static load increases, 

however, the pads adjacent to the loaded pad support less load at lower speeds, requiring 

the loaded pad to bear a larger portion of the static load than observed at higher speeds.   
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Figure 32: Measured radial displacement of the loaded pad versus applied unit load 
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 In light of the 36 μm radial displacement of the loaded pad, the eccentricities 

extending 12 μm outside of the hot bearing clearance as reported in Figures 30 and 31 

seem feasible.  This statement may prompt the following question: How well is static 

eccentricity in the loaded direction predicted with a model having rigid pads and pivots 

that accounts for the reduction in hot bearing clearance at elevated temperatures?   

 Figure 33 shows that static eccentricities predicted using hot bearing clearances 

with rigid pads and pivots is approximately 33% lower than measured static 

eccentricities at large loads.  Compare this error to the 17% error in static eccentricity 

predicted using cold bearing clearances and rigid pads and pivots shown by Hensley 

[34], and it should be apparent that previous comparisons between measurements and 

predictions not accounting for the change in bearing clearance at operating conditions 

need to be taken with caution.     

 

 



81 

 
Figure 33: Measured and predicted journal eccentricity (along loaded Y axis) 

versus unit load at various rotor speeds using a model with rigid pads and pivots 
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 Figure 34 shows measured pad clearance versus unit load at the different 

operating speeds.  Measured pad clearance is the sum of the reference state pad 

clearance shown in Table 1 and measured changes in pad clearance given by Eq. (86), 

differential strain in Eq. (85) reduced by 33%, and 
12pck ε  in Eq. (94).   

 This figure is interesting for a number of reasons.  For the bearing tested, the 

measured pad clearance can be as much as 160% of the installed pad clearance.  This 

increase in pad clearance has a tendency to decrease the frequency dependence of 

predicted dynamic coefficients as stated by Parsell et al. [5], which may provide some 

resolution on the disparity between the measured and predicted frequency dependency of 

TPJB dynamic coefficients.  These results include both structural and thermal changes in 

pad preload; however, predictions using the nonlinear bending stiffness given in Eq. (95) 
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suggest that the majority of the increase in pad clearance can be attributed to structural 

deflections for the bearing tested.  

 

 
Figure 34: Measured loaded-pad clearance versus unit load at various rotor speeds 
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 Figure 35 shows the static tilt angle φ of the loaded pad versus load at different 

operating speeds.  This figure shows that the tilt angle of the loaded pad increases with 

increasing operating speed, and tends to decrease with increasing static load.  There are 

exceptions in the low load and speed range, where the tilt appears to increase with static 

load.  It is possible that this occurs with differential heating of the pads proximity probes 

during static load cases. 
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Figure 35: Measured loaded pad tilt angle versus unit load at various rotor speeds 
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 To generate Figure 35, measured values of φ (defined by Eq. (83)) were 

compensated with an offset such that φ =0 when the pad is located in the reference state 

shown in Figure 4.  This occurs when the line Opo,k-Oco,k, connecting the center of the kth 

pad’s surface arc to the kth pad’s contact location passes through the center of the 

bearing.  Though the offset needed to compensate measured values of φ (to satisfy φ =0 

at the reference state) may change slightly during tests due to changes in thermal 

equilibrium in the bearing, the following method should suffice in determining a 

reasonable offset.   

 During the clearance measurements shown in Figure 28, each pad tilts as the 

rotor traverses its side.  Since pad motions are recorded during clearance measurements, 

tilt of the loaded pad versus transverse rotor motion can be obtained while the rotor 

traverses the top side of the clearance pentagon as shown in Figure 36.  
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Figure 36: Pad tilt angle φ measured while traversing the loaded pad (top side of 

the clearance pentagon) during a clearance measurement 
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 Figure 36 shows that the relationship between pad tilt and transverse rotor 

motion is linear while the rotor traverses the loaded pad, which suggests that the relative 

displacement between Op,k and Oj is constant.  Since this relative displacement is 

constant, the extent that a pad tilts while the rotor transverses its side of the pentagon 

during a clearance measurement can be used to determine the pad tilt angle when the 

rotor is located transversely at the pad’s pivot location (midpoints of each side are 

illustrated with dots in Figure 28).  Thus, the loaded pad’s tilt angle at the midpoint of 

the top segment of the clearance pentagon should correspond to the offset needed to 

compensate pad tilt measurements to represent angles relative to the reference state. 

 The linear relation between pad tilt and transverse rotor motion also yields an 

approximate means to verify Eq. (83) and the accuracy of the loaded pad’s motion 

probes.  Since the relative displacement between Op,k and Oj is constant, the ratio of pad 
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tilt angle to transverse rotor motion should correspond to  in rad/m, where 

rcp,k is the distance from the pivot point Oc to the center of the pad’s surface arc Op 

shown in 

,1/ 14.4cp kr =

Figure 2.  This is in fact very close to 15.2 rad/m, the measured slope of the tilt 

angle versus transverse rotor motion curve shown in Figure 36.  If this comparison is 

accurate, it would amount to a relative error of 6%≈  in the measured tilt angles.   

 Another important measure of bearing performance is power loss.  Figure 37 

shows measured hydraulic power loss versus speed and unit load.  Hydraulic power loss 

is calculated using  

 ,loss oil p oil oilP m c T= Δ , (99) 

where  are the mass flowrate, specific heat, and temperature change 

of the oil from the inlet to the outlet of the bearing, respectively.  

,, ,andoil p oil oilm c TΔ

Figure 37 shows that 

power loss is primarily a function of rotor speed, but increases moderately with static 

bearing load. 

 

 
Figure 37: Estimated hydraulic power loss versus unit load and speed 
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JOURNAL VERSUS BEARING PERTURBED IMPEDANCE COEFFICIENTS  

Figure 38 shows the difference between reduced real and imaginary bearing 

impedances predicted relative to perturbations of the rotor jj,kH  and bearing  given 

in Eq. 

bb,kH

(75).  Figure 38 shows that the impedances predicted for this bearing are not 

heavily dependent on whether they are predicted using journal or bearing perturbations.  

This suggests that the impedances measured on the test rig for the test bearing are 

independent of whether the bearing or rotor is perturbed.   

 

 
Figure 38: Real and imaginary bearing impedances predicted relative to 

perturbations of the journal (jj) and bearing (bb) at 4400 rpm and 3132 kPa unit 
load 
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 Figure 38 shows a slight (almost imperceptible) difference in magnitude of the 

real and imaginary impedances at higher frequencies.  This difference increases with the 

mass of the pads in the bearing as shown in Figure 39, which shows impedances for the 

same bearing having 10× denser (heavier) pads.  Note that at high frequencies, the 

bearing perturbed stiffness tends to be smaller than the journal perturbed stiffness while 

the bearing perturbed damping tends to be larger than the journal perturbed. 

  

 
Figure 39: Real and imaginary bearing impedances predicted relative to 

perturbations of the journal (jj) and bearing (bb) at 4400 rpm and 3132 kPa unit 
load for the test bearing having 10× heavier pads 
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 Figure 40 shows the predicted real and imaginary bearing impedances predicted 

relative to perturbations of the rotor jj,kH  as well as the cross-impedances jb,kH  given in 

Eq. (75) that prescribe forces on the rotor due to a displacements of the bearing.   

 

 
Figure 40: Predicted real and imaginary bearing impedances predicted relative to 

perturbations of the journal (jj) and journal-bearing (jb) at 4400 rpm and 3132 kPa 
(454 psi) unit load 
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 Note that jj,kH  and jb,kH  are equal and opposite in magnitude.  This implies that 

the bearing will not generate forces if both the journal and bearing are displaced the 

same amount (ie. if there is no relative motion between the journal and bearing).  This is 
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an obvious conclusion; however, it is included for the sake of completeness.  Note that 

an additional comparison between journal and bearing reduced impedance predictions at 

10200 rpm and 783 kPa (113 psi) is included in Appendix D. 

 

ROTOR-PAD TRANSFER FUNCTIONS 

 Figure 41 shows measured rotor-pad transfer functions resulting from the 

application of Eq. (92) to dynamic pad measurements at 4400 rpm at a 1566 kPa (227 

psi) unit load.  Note that the legend shows Γφ, Γξc, and Γηc, which correspond to tilt, 

radial, and transverse pad motions, respectively, in both Figure 41 (A) and (B).  

Specifically, Figure 41-(A) shows tilt, radial, and transverse pad motions resulting from 

transverse rotor motion, denoted by Γη in the title, while Figure 41-(B) shows pad tilt, 

radial, and transverse pad motions resulting from radial (on pad) rotor motion, denoted 

by Γξ in the figure title.  The direction of shaft translation is also shown schematically in 

the depiction of transverse and radial rotor motions on the right hand side of Figure 41 

(A) and (B), respectively.  Note that φΓ , 
cξΓ , and 

cηΓ  are complex numbers, despite 

being shown in the figures without a tilde.   

 In Figure 41 and the remaining figures, the pad tilt transfer function
φ

Γ  is φΓ  

normalized by multiplying φΓ  by the distance from the pivot to the leading edge of the 

pad (25.4 mm).  This normalization emphasizes the relative importance of pad tilt ϕ on 

the fluid-film height at the leading/trailing edges of the pad as compared to horizontal 

and vertical pad motions ξc and ηc; hence, normalized pad tilt will be defined 

accordingly ( 0.0254mφ φ= × ). 

 A synopsis of the rotor-pad transfer functions and their implications on dynamic 

bearing characteristics was given in CHAPTER II immediately following the definition 

of the pad-rotor and transfer functions in Eq. (73) and in a discussion under the 

subheading UTILITY OF THE PAD-JOURNAL AND PAD-BEARING TRANSFER 

FUNCTIONS (pg. 46); nonetheless, a brief overview will be given here. 
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 Essentially, the pad-rotor transfer functions define the amplitude and phase of 

pad motions resulting from radial and transverse journal/rotor or bearing motions.  For 

example, 
,

j

c k

ξ
ξΓ

j

 specifies the ratio of radial pad motion relative to the bearing housing to 

radial rotor motion; i.e. relative radial pad-bearing motion resulting from harmonic rotor 

motion ξ  is given by 
,1

j

c kc j
ξ
ξξ ξ= Γ . 

 Figure 41-(A) shows pad-rotor transfer functions relating transverse shaft motion 

to pad tilt, and radial and transverse pivot motions.  These transfer functions provide 

feedback on a pad’s ability to track transverse shaft motion, which can yield valuable 

insights on cross-coupled bearing coefficients; reaction forces orthogonal to rotor 

displacements.   

 Consider the case of low frequency (10 Hz) shaft vibrations of unit magnitude 

along the transverse axis of the loaded pad (i.e. ( )10 1jη Ω = = ).  Figure 41 (A) can be 

used to directly calculate the tilt, and radial and transverse pad motion relative to the 

housing resulting from this perturbed rotor motion.  For example, the magnitude of 

normalized pad tilt φ̂  would be given by ˆ 0.32j
j

η

φ
φ η= Γ ≈ ; thus, transverse pad 

motions of unit magnitude at 10 Hz excite normalized pad tilt motions having a 

magnitude of 0.32.  In general, jη

φ
Γ  provides valuable information on the ability of the 

pad to track transverse rotor motions.  Since the ability of a pad to track the shaft is a key 

feature of the TPJB, jη

φ
Γ  could be used to verify that angular pivot stiffness or angular 

pivot friction are not preventing the pad from tracking the rotor, which may result in the 

generation of destabilizing cross-coupled reaction forces.  This procedure will be 

discussed in a case study later in the RESULTS section. 

 Figure 41-(A) also shows that j

c

η
ξΓ  and j

c

η
ηΓ , the effect of transverse shaft motion 

on radial ( cξ ) and circumferential ( cη ) pad motions is small relative to jη

φ
Γ , the effect of 

transverse shaft motion on normalized pad tilt (φ ).  The magnitude of j

c

η
ξΓ  indicates 

whether or not transverse rotor motion results in significant radial reaction forces, which 
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would produce significant radial displacements of the pad, while the magnitude of  j

c

η
ηΓ  

may indicate whether there is significant slipping at the contact surface.  This could 

result in fretting of the contact surfaces, and ultimately fail the bearing. 

 

 
Figure 41: Properties of the measured transfer function amplitudes of the loaded 
pad due to (A) transverse (ηj) and (B) radial (ξj) rotor motions at 4400 rpm and 

1566 kPa unit load 
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direct stiffness and damping provided by the pad, and a good understanding of these 

transfer functions and how they compare to predictions is vital to correcting modeling 

deficiencies relating to direct damping and stiffness. 

 Consider the case of low frequency (10 Hz) shaft vibrations of unit magnitude 

along the radial axis of the loaded pad (i.e. ( )10 1jξ Ω = = ).  Figure 41 (B) can be used 

to directly calculate the tilt, and radial and transverse pad motion relative to the housing 

resulting from this perturbed rotor motion.  For example, the magnitude of relative radial 

pad-bearing motion cξ  would be given by 0.33j

cc j
ξ
ξξ ξ= Γ ≈ ; thus, a 10 Hz dynamic 

load applied to the shaft resulting in a shaft displacement of 25 microns (1 mil) would 

produce radial pad displacements of 8.3 microns (0.33 mils), and the fluid film height 

would only decrease by 16.7 microns (0.67 mils).  The consequence of this pad motion 

is that fluid film stiffness and damping forces produced by relative rotor-pad motions are 

significantly reduced, resulting in a bearing having significantly less direct stiffness and 

damping than an otherwise equivalent bearing having a rigid pivot.  A similar effect 

occurs when shaft motions produce significant changes in pad clearance due to pad 

compliance.  For the bearing tested here, these pad-rotor transfer function measurements 

will show that predicting TPJB stiffness and damping coefficients without accounting 

for pad and pivot compliance will not result in an accurate prediction of pad motion. 

 

Low Speed (4400 rpm) Rotor-Pad Transfer Functions 

 Figure 42 shows the measured rotor-pad transfer functions of the loaded pad for 

low, medium, and large unit loads at 4400 rpm.   
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Figure 42: Measured transfer function amplitudes of the loaded pad due to (A) 

transverse (ηj) and (B) radial (ξj) rotor motions at 4400 rpm at zero, medium and 
high unit loads 
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 Figure 42-(A) shows that the magnitude of radial ( cξ ) and circumferential ( cη ) 

pad motions due to transverse rotor motions are not significantly affected by static load.  

In each case, j

c

η
ξΓ  and j

c

η
ηΓ  are significantly smaller than jη

φ
Γ , pad tilt induced by 
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transverse rotor motion.  jη

φ
Γ  tends to decrease slightly with static load, which may 

result from the increase in pad clearance with increasing unit load noted in Figure 34.    
jη

φ
Γ

,

 also shows slightly different behavior at zero load than in the loaded cases.  This 

undulating behavior was seen only in the unloaded cases at different speeds, and did not 

occur in any of the loaded tests.  This effect might be attributed to the observation of 

higher-order pad bending modes with the pad proximity probes that were excited by 

transverse rotor motion at light unit loads, where the pad is significantly more flexible.  

This speculation could be investigated by including higher order bending modes in the 

pad’s structural model using the method given by Kim et al. [12].  A recent publication 

by Varela and Santos [46] concludes that the effect of higher order pad bending modes 

are almost negligible in comparison the lowest bending mode; however, the pads in their 

analysis appear to be much stouter than the pads in the current work. 

 Figure 42-(B) shows some very interesting behavior concerning the load and 

frequency dependency of pad motion resulting from radial rotor motion.  Starting with 
j

c k

ξ
ξΓ , specifying the ratio of radial pad motion relative to the bearing housing to radial 

rotor motion, we note the following observations: (1) For the case of zero unit load, the 

magnitude of 
,

j

c k

ξ
ξΓ  increases from approximately 0.1 at low frequencies, to about 0.4 at 

high frequencies.  This observation implies that for low frequency perturbations of the 

unloaded shaft, assuming that the pivot is rigid may yield a satisfactory prediction of 

bearing stiffness and damping coefficients; however, at higher frequencies, Figure 42-

(B) shows that vibrations of the statically unloaded shaft produce radial pad 

displacements having 40% of the magnitude of the radial shaft vibrations.  This radial 

pad motion will result in significantly less relative pad-rotor motion at high frequencies, 

which will ultimately reduce the fluid film reaction forces due to relative motion 

between the rotor and ground.  The other implication of the frequency dependency of 

,

j

c k

ξ
ξΓ  is that the frequency dependency of direct bearing impedances predicted with and 

without pivot flexibility will be different; hence, predictions of direct stiffness for a 
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bearing with rigid pivots may decrease with frequency, while predictions of direct 

stiffness for a bearing with compliant pivots may increase with frequency.  This scenario 

is just an example of what may occur; however, the difference between bearing stiffness 

and damping predictions for models with and without pad and pivot compliance will be 

discussed later in the RESULTS section. 

 Figure 42-(B) also shows that the magnitude of 
,

j

c k

ξ
ξΓ  radial pad motion to radial 

shaft motion increases dramatically with applied unit load.  In contrast to ratios of radial 

pad motion to radial shaft motion of 10%-40% for the unloaded shaft, this ratio increases 

to 50%-60% when the pad is heavily loaded.  This observation suggests that the 

difference between predicted pad motion with rigid versus compliant pivot models will 

worsen with increasing static load on the pad; thus, the importance of using a model with 

pivot compliance to predict reaction force coefficients increases with the load on the 

bearing. 

 Figures 43-45 compare the measured and predicted rotor-pad transfer functions 

for low, medium, and high bearing static loads.  Looking first at the transfer functions 

resulting from shaft motion in the transverse axis of the pad shown in Figures 43-45 (A), 

note the following observations.  Figure 43-(A) shows relatively little radial and 

circumferential motion measured or predicted in comparison to the amount of pad tilt 

accommodating circumferential rotor motion.  The ability of the model to predict the 

tracking behavior (tilting motion) of the pad is quite good; neither the predicted nor 

observed tilt transfer function amplitude changes significantly with load or excitation 

frequency. 

 One valuable piece of information can be obtained from this measurement; 

however, and it relates to the pivot location.  Consider the differential force in the 

transverse direction (fη1) between the rotor and pad given in Eq (46).  If our bearing acts 

as an ideal tilting pad bearing (one that provides no destabilizing cross-coupled forces), 

then fη1 = kηη η1 =0, where η1 is the relative transverse motion between the center of the 

pad’s surface arc and the journal, and kηη is the resulting fluid film stiffness.  Since it 

will not generally be the case that kηη = 0, η1 must be zero (the pad will track the shaft).  
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Thus, subtracting Eq. (33) from Eq. (30), assuming that transverse pad motion is 

negligible, and taking the magnitude yields  

 j b cprη η− = φ  (100) 

where rcp is again the distance from the pivot to the center of the pad’s surface arc; 

therefore, the transfer function between the normalized pad tilt angle and transverse rotor 

motion should be the distance from the pivot to the leading edge of the pad divided by 

the distance from the pivot to the center of the pad.  For the bearing in question, 

 
0.025 0.363

cpr
η
φ

Γ = =  (101) 

which is very close to both the measured and predicted η
φ

Γ  in Figure 43-(A).  While rcp 

would be obvious for the pivot type tested, this simple insight may prove to be more 

useful for a ball-in-socket or cylindrical pivot, in which the actual pad-pivot location 

may be in question. 

 Figures 43-45 (B) show comparisons between the measured and predicted 

transfer functions resulting from shaft motion along the radial (vertical) axis of the pad.  

Figures 43-45 (B) show that at each static load, the model predicts radial pad motion 

amplitudes very accurately throughout the entire frequency range, but fails to reproduce 

the same accuracy in predicting the pad tilt transfer functions, which are increasingly 

under-predicted at larger static loads.  Note that the agreement between the pad tilt 

transfer function measurements and predictions is better when pad flexibility is not 

included in the model [38]; however, neglecting pad flexibility also results in 

overpredicted radial pad transfer functions and direct bearing coefficients. 

 There are small amounts of circumferential (transverse) pad motion measured at 

all unit loads in Figures 43-45 (A) and (B), while the model predicts almost no 

transverse motion.  The nature of this motion will be discussed further in regard to the 

comparison between measured and predicted transfer function phases shown in Figure 

46. 
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Figure 43: Measured and predicted pad-rotor transfer function amplitudes of the 
loaded pad due to (A) transverse (ηj) and (B) radial (ξj) rotor motions at 4400 rpm 

and 0 kPa (0 psi) unit load 
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Figure 44: Measured and predicted pad-rotor transfer function amplitudes of the 
loaded pad due to (A) transverse (ηj) and (B) radial (ξj) rotor motions at 4400 rpm 

and 1566 kPa (227 psi) unit load 
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Figure 45 : Measured and predicted pad-rotor transfer function amplitudes of the 
loaded pad due to (A) transverse (ηj) and (B) radial (ξj) rotor motions at 4400 rpm 

and 3132 kPa (454 psi) unit load 
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 Figure 46 compares the measured and predicted phase of the pad-rotor transfer 

functions at 4400 rpm with a 1566 kPa (227 psi) load.  With the exception of predicted 

radial pad motion due to transverse rotor motion ( j

c

η
ξΓ ) and the transverse pivot transfer 
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functions ( ,j j

c c

η ξ
η ηΓ Γ ) the phases of the transfer functions are predicted quite well.  This 

holds especially true for the prediction of tilting angle and radial motion due to radial 

rotor motion, which had very accurate amplitude predictions as shown in Figure 44.   

 

 
Figure 46: Measured and predicted pad-rotor transfer function amplitudes of the 
loaded pad due to (A) transverse (ηj) and (B) radial (ξj) rotor motions at 4400 rpm 

and 1566 kPa unit load 
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suggests that at low excitation frequencies the pad translates in the same direction as the 

rotor; and then translates in the opposite direction of the rotor at higher frequencies.  The 

sharp change in phase indicates the presence of a lightly damped “pad” vibration mode, 

and suggests that the circumferential motion observed is not due to sliding of the pivot, 

but actually transverse deflections of the support of the pad relative to the surface that it 

sits on.  This compliance could arise from contact (Hertzian) related effects or possibly 

due to motion of the pivot insert relative to the body of the pad.  While these 

observations may suggest that the pivot is rolling-without-slipping on the surface of the 

housing, there is not sufficient evidence to support this conclusion.  It should be noted 

that Figure 44 (A) does not show a predicted nor observed increase in the magnitude of 

c

η
ηΓ  surrounding these phase shifts, but instead 

c

η
ηΓ  appears to approach a magnitude of 

zero at the frequency of these phase shifts.  The reason for this peculiarity is not known 

at this time. 

 Figure 47 shows the measured pad-clearance transfer function for a range of unit 

loads at 4400 rpm.  Figure 47 shows that changes in pad clearance due to transverse 

rotor motions are small, as was the case for radial and transverse pad motions.  Unlike 

the radial pad transfer function, however, the magnitude of the pad-clearance transfer 

function due to radial rotor motion decreases with increasing unit load (except for the 

unloaded test, which has a j

pc
ξΓ  of reduced magnitude).  This trend may result from the 

drastic increase in pad bending stiffness with increasing moment applied to the pad.  

These changes in pad clearance are significant, and suggest that neglecting pad 

flexibility when modeling the subject bearing will not accurately predict the behavior of 

the pads in the bearing.   

 Figure 48 shows a comparison between the measured and predicted pad-

clearance transfer function for heavily loaded operation at 4400 rpm.  Figure 48-(A) 

shows that changes in pad clearance due to transverse rotor motion are predicted to be 

very small, substantiating the previous claim that predicted changes in the radial load on 

the pad are minimal due to transverse rotor motion, despite measurements showing 
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larger, but likely insignificant j

pc
ηΓ  magnitudes.  Figure 48-(B) shows that changes in pad 

clearance due to radial rotor motion are slightly underpredicted, but has similar 

frequency characteristics to the measured values of j

pc
ξΓ . 

 

 
Figure 47: Measured pad-clearance change transfer function amplitudes of the 

loaded pad due to (A) transverse (ηj) and (B) radial (ξj) rotor motions at 4400 rpm 
at various unit loads 
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Figure 48: Measured and predicted pad-clearance change transfer function 

amplitudes of the loaded pad due to (A) transverse (ηj) and (B) radial (ξj) rotor 
motions at 4400 rpm and 3132 kPa (454 psi) unit load 
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 Figure 49 shows a waterfall plot of normalized pad tilt frequency response due to 

input excitation frequencies at 4400 rpm (73 Hz) at 3132 kPa.  The magnitude of the tilt 

response is normalized such that the magnitude of the response at the excitation 

frequency is equal to the magnitude of ˆ ξ
φΓ .  Figure 49 shows that the majority of pad tilt 

occurs at the excitation frequency, despite slight 2× and 3× harmonics of excitation 

frequency, and 1×, 2×, and 3× synchronous frequencies. 
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Figure 49: Waterfall plot of normalized pad tilt response due to test excitations at 

4400 rpm and 3132 kPa unit load 
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High Speed (10200 rpm) Rotor-Pad Transfer Functions 

 Figure 50 shows the measured rotor-pad transfer functions of the loaded pad for 

low, medium, and large unit loads at 10200 rpm.  In contrast to the transfer functions 

measured at 4400 rpm shown in Figure 42, the high speed transfer functions vary less 

with frequency, especially ξ
φΓ .  Figure 50 also shows that the magnitude of ξ

φΓ  increases 

with increasing unit load, while lower speeds showed that pad tilt due to radial rotor 

motion decreased with increasing unit load.  The radial pad transfer function due to 

radial shaft motion 
c

ξ
ξΓ has similar frequency characteristics at both speeds; however, 

c

ξ
ξΓ  varies less with static unit load at the higher speed.  This observation can likely be 

supported by the previous observation from Figure 32 that the radial load supported by 

the loaded pad for light loads increases with increasing speed, while heavily loaded 

operation showed the radial load supported by the loaded pad to decrease with increasing 

rotor speed.  Figure 50 also shows that the magnitude of ξ
φΓ  increases with increasing 

unit load, while lower speeds showed that pad tilt due to radial rotor motion decreased. 
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Figure 50: Measured transfer function amplitudes of the loaded pad due to (A) 

transverse (ηj) and (B) radial (ξj) rotor motions at 10200 rpm at zero, medium and 
high unit loads 
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 Figures 51 and 52 show comparisons between measured and predicted rotor-pad 

transfer functions at light and heavy unit loads at 10200 rpm.  In general, the rotor-pad 

transfer functions are predicted quite well; however, radial pad motion is underpredicted 

 



106 

for the low load case shown in Figure 51-(B), and the model still has a tendency to 

underpredict pad tilt due to radial rotor motion ξ
φΓ  as shown in Figures 51 and 51 (B).  

 

 
Figure 51: Measured and predicted rotor-pad transfer function amplitudes of the 

loaded pad due to (A) transverse (ηj) and (B) radial (ξj) rotor motions at 10200 rpm 
and 783 kPa (113 psi) unit load 
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Figure 52 : Measured and predicted rotor-pad transfer function amplitudes of the 

loaded pad due to (A) transverse (ηj) and (B) radial (ξj) rotor motions at 10200 rpm 
and 3132 kPa (454 psi) unit load 
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REAL AND IMAGINARY PARTS OF BEARING IMPEDANCES 

Low Speed (4400 rpm) Bearing Impedances 

 Figures 53 and 54 show the measured and predicted real and imaginary reduced 

bearing impedances as a function of excitation frequency at 4400 rpm at light (783 kPa) 

and heavy (3134 kPa) unit loads.  Note that impedances ( xxH , xyH …) shown in the 

following figures are complex numbers, despite being represented without a tilde, and 

that the static load is applied in the Y direction.  Measured impedances result from the 

application of Eqs. (88)-(91) to test data, while predictions were generated with the 

model given in CHAPTER II using the pivot load-versus-deflection curve given in Eq. 

(93), the load dependent pad bending stiffness given in Eq. (95), and the temperature 

dependent bearing clearance given in Eq. (96). 

 Figures 53 and 54 show that the model does well in stiffness and damping 

prediction at low and heavy loads out to the running speed of 73 Hz (4400 rpm), but 

deviates moderately in the prediction of frequency-dependent behavior for both the real 

and imaginary parts of Hij after about 1.5× running speed.  These frequency dependent 

differences include an overpredicted falloff in direct damping at higher frequencies and 

an overestimation of direct stiffness with increasing excitation frequency.  If a KCM 

model were applied to the data, this overestimation of direct stiffness with increasing 

excitation frequency could be identified by an increase in the predicted magnitude of 

negative direct virtual-mass coefficients.  The accuracy of the real and imaginary 

impedances for these cases out to 1.5× running speed are summarized in Table 5, which 

shows the relative error in predicted stiffness and damping coefficients through 100 Hz.   

 At 4400 rpm, the direct stiffness coefficients are predicted within 13% for light 

and heavy loads, while direct damping predictions are within 18% at light and heavy 

loads.  At light loads, the coefficients tend to be overpredicted, while predicted 

coefficients at the heavy load are both high and low. 
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Figure 53: (A) Real and (B) imaginary components of measured and predicted 

bearing impedance coefficients at 4400 rpm and 783 kPa (114 psi) unit load 
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Figure 54: (A) Real and (B) imaginary components of measured and predicted 
bearing impedance coefficients at 4400 rpm and 3134 kPa (454 psi) unit load 
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Table 5: Percent relative error in principal stiffness and damping coefficients at 
4400 rpm (fit through 1.5× running speed).  Positive values indicate overpredicted 

coefficients 

Unit Load  
kPa (psi) 

,

,

100 1xx pred

xx meas

k
k

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

,

,

100 1yy pred

yy meas

k
k

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

,

,

100 1xx pred

xx meas

c
c

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ,

,

100 1yy pred

yy meas

c
c

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

783 (114) 8.15 6.77 15.10 18.14 
3134 (454) -13.42 0.95 15.94 -14.10 

 

High Speed (10200 rpm) Bearing Impedances 

 Figures 55 and 56 show a comparison between measured and predicted bearing 

impedances at 10200 rpm (170 Hz) at low and high loads.  In general, the accuracy of 

the bearing predictions are excellent.  There is still a slight deviation in the frequency 

characteristics of the real part of xxH  and yyH  at low loads, but less than was noted for 

the 4400 rpm cases.  Considering the nonlinearity of both the pad and pivot stiffness for 

this bearing, the author feels that the agreement is excellent, and notably better than 

previous comparisons between measured and predicted bearing coefficients. 

 The results of the bearing predictions are summarized in Table 6 which shows 

the relative error in predicted bearing coefficients at 10200 rpm.  In general, predicted 

direct stiffness and damping coefficients in the loaded direction are within 5% of the 

measured values with the exception direct stiffness in the unloaded direction that is 

overpredicted by 10% for the heavily loaded case. 
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Figure 55: (A) Real and (B) imaginary components of measured and predicted 
bearing impedance coefficients at 10200 rpm and 783 kPa (114 psi) unit load 
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Figure 56: (A) Real and (B) imaginary components of measured and predicted 
bearing impedance coefficients at 10200 rpm and 3134 kPa (454 psi) unit load 
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Table 6: Percent relative error in principal stiffness and damping coefficients at 
10200 rpm (fit through 1.5× running speed).  Positive values indicate overpredicted 

coefficients 

Unit Load  
kPa (psi) 

,

,

100 1xx pred

xx meas

k
k

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

,

,

100 1yy pred

yy meas

k
k

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

,

,

100 1xx pred

xx meas

c
c

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ,

,

100 1yy pred

yy meas

c
c

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

783 (114) -3.27 4.59 -0.85 5.41 
3134 (454) -3.61 10.63 -1.42 -2.15 

 

IMPACT OF PAD AND PIVOT FLEXIBILITY ON BEARING IMPEDANCES 

 Figures 57 and 58 illustrate the importance of predicting bearing impedances 

with pad and pivot flexibility for operation at 4400 and 10200 rpm at 3132 kPa unit load, 

and Figure 59 shows similar results at 10200 rpm at 783 kPa unit load.  These figures 

compare real and imaginary impedance measurements to predictions for models with 

and without pad, pivot, or pad and pivot flexibility.  For example, the “Rigidpad,pivot” 

cases represent bearing predictions for a model having a rigid pad and a rigid pivot in 

solving for static equilibrium and perturbing that equilibrium. 

 These results are tabulated in Tables 7 - 9 which clearly reveal the scope of error 

induced in calculations when not including pad and pivot compliance in TPJB 

predictions at both light and heavy loads.  For the bearing tested, predicted principal 

direct stiffness and damping coefficients at heavy unit loads are impacted more by pivot 

flexibility than pad flexibility, while a rigid pad and pivot model yields an 

overestimation of direct stiffness by 202% and damping by 811% in the loaded direction 

at 4400 rpm and an overestimation of direct stiffness by 177% and damping by 513% in 

the loaded direction at 10200 rpm when heavily loaded.  While the reader may be 

questioning the degree to which these predictions are overestimated in regard to previous 

comparisons, keep in mind that these predictions are based on measured operating 

clearances, which are 20-30% smaller than the cold bearing clearances that previous 

comparisons were based on.  It should be noted that the importance of pad flexibility 

will increase with the arc length of the pad; hence, pad flexibility may be more important 

in larger bearings and bearings with fewer pads.   
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 Though stiffness and damping are overpredicted more at heavy loads, Figure 59  

and Table 9 show that not including pad and pivot compliance results in overpredicted 

direct stiffness and damping in the loaded direction by 51% and 182% at light unit loads. 

 

 
Figure 57: (A) Real and (B) imaginary components of principal bearing impedances 
in the loaded direction at 4400 rpm and 3132 kPa unit load showing the importance 

of pad and pivot flexibility 
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Figure 58: (A) Real and (B) imaginary components of principal bearing impedances 

in the loaded direction at 10200 rpm and 3132 kPa unit load showing the 
importance of pad and pivot flexibility 
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Figure 59: (A) Real and (B) imaginary components of principal bearing impedances 
in the loaded direction at 10200 rpm and 783 kPa unit load showing the importance 

of pad and pivot flexibility at light loads 
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Table 7: Percent relative error in principal stiffness and damping coefficients at 
4400 rpm and 3134 kPa for models with and without pivot/pad flexibility (fit 

through 1.5× running speed).  Positive values indicate overpredicted coefficients 

Pad Model Type ,

,

100 1xx pred

xx meas

k
k

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

,

,

100 1yy pred

yy meas

k
k

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

,

,

100 1xx pred

xx meas

c
c

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ,

,

100 1yy pred

yy meas

c
c

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

Flexpad,pivot -13.42 0.95 15.94 -14.10 
Rigidpad,Flexpivot -5.36 35.53 74.30 77.93 
Flexpad, Rigidpivot 13.30 88.88 88.11 136.33 

Rigidpad,pivot 12.24 201.61 201.72 810.78 
 

Table 8: Percent relative error in principal stiffness and damping coefficients at 
10200 rpm and 3134 kPa for models with and without pivot/pad flexibility (fit 

through 1.5× running speed).  Positive values indicate overpredicted coefficients 

Pad Model Type ,

,

100 1xx pred

xx meas

k
k

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

,

,

100 1yy pred

yy meas

k
k

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

,

,

100 1xx pred

xx meas

c
c

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ,

,

100 1yy pred

yy meas

c
c

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

Flexpad,pivot -3.61 10.63 -1.42 -2.15 
Rigidpad,Flexpivot 8.72 41.77 49.00 56.90 
Flexpad, Rigidpivot 66.51 99.84 99.59 140.29 

Rigidpad,pivot 72.79 176.65 266.10 512.99 
 

Table 9: Percent relative error in principal stiffness and damping coefficients at 
10200 rpm and 783 kPa for models with and without pivot/pad flexibility (fit 

through 1.5× running speed).  Positive values indicate overpredicted coefficients 

Pad Model Type ,

,

100 1xx pred

xx meas

k
k

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

,

,

100 1yy pred

yy meas

k
k

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

,

,

100 1xx pred

xx meas

c
c

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

 ,

,

100 1yy pred

yy meas

c
c

−
⎛ ⎞
⎜ ⎟
⎝ ⎠

Flexpad,pivot -3.27 4.59 -0.85 5.41 
Rigidpad,Flexpivot -1.88 8.49 35.37 42.27 
Flexpad, Rigidpivot 58.00 64.34 78.55 88.09 

Rigidpad,pivot 41.28 51.16 172.65 181.93 
 

 In addition to quantifying the error in dynamic impedances fit through running 

speed, note that Figures 57 and 58 show the predicted frequency characteristics of the 

stiffness and damping to be completely different when pad and pivot flexibility are not 
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included.  Consider the implications of performing a stability analysis using reduced 

coefficients predicted by a model without pad and pivot flexibility.  Most discussions 

concerning the proper frequency to use in reducing coefficients focus on the importance 

of obtaining accurate damping values [16-18] (despite having shown here that this is an 

unlikely outcome); however, a substantial reduction in bearing stiffness is noted in 

Figures 57 and 58 with increasing excitation frequency for models without pad and pivot 

flexibility, whereas models including pad and pivot flexibility have an increase in 

dynamic stiffness with excitation frequency.  While bearing damping is arguably a 

dominant factor in determining system stability, bearing stiffness affects the location of 

the damped eigenvalue, as well as the mode shapes that determine how much energy can 

be dissipated by the bearing. 

 

IMPACT OF FULL VERSUS REDUCED BEARING MODELS ON STABILITY 

 Figure 60 shows a schematic of the rotor-bearing system used to demonstrate the 

effect of calculating system stability using full versus reduced bearing models.  The 

system consists of a symmetric rotor supported on either end by TPJBs with a 

destabilizing cross-coupled stiffness applied at the rotor’s midspan.  The radius of the 

shaft at the bearings corresponds to the rotor radius given in Table 1, and the rotor radius 

at midspan and total shaft length were adjusted for each case to place the first critical 

speed of the system at approximately 0.4-0.5 times the running speeds of 4400  and 

10200 rpm, respectively. 

 The rotor was modeled using 8 Euler-Bernoulli finite-elements, and the model 

was validated by comparing free-free natural frequencies against predictions using 

XLTRC2, a validated rotordynamic code.  The bearings were modeled using the code 

used to predict the dynamic stiffness and damping coefficients of the experimental tests 

contained in this dissertation, which has been shown to be fairly accurate.  Both reduced 

and full bearing models were assembled and connected to the rotor, and then stability 

was assessed by increasing the magnitude of the destabilizing cross-coupled stiffness at 

midspan until eigenvalue analysis showed the system to be unstable. 
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Figure 60: Rotor bearing system used to calculate the effect of employing full 

versus reduced bearing models on system instability 
 

 Reduced bearing coefficients were calculated at both the frequency of the 

unstable eigenvalue (subsynchronous) and at rotor speed (synchronous).  The natural 

frequency of the unstable eigenvalue was determined iteratively by reducing coefficients 

at a guessed frequency, calculating stability, then using the frequency of the calculated 

unstable root to reduce coefficients for the next iteration.  The reduction frequency 

converged after only a few iterations to the same value, which was typically very close 

to the natural frequency of the unstable mode predicted with the full bearing model. 

 Tables 10 and 11 show the percent relative error in magnitude of destabilizing 

cross-coupled stiffness required to cause instability with respect to the full bearing 

model using subsynchronously and synchronously reduced bearing coefficients, 

respectively.  Despite showing several unit loads, the unit load of the model shaft on 

each bearing was 1556 kPa (225.6 psi) at 4400 rpm and 781 kPa (113.3 psi) at 10200 

rpm.  The boldface cases in Tables 10 and 11 correspond to scenarios where the weight 

of the shaft matches the unit load used to predict the bearing coefficients. 

 Table 10 shows that the relative error in magnitude of destabilizing cross-coupled 

stiffness required to cause instability using subsynchronously reduced bearing 

coefficients is less than 1.2% for all loads at 4400 and 10200 rpm, while Table 11 shows 

that the relative error in magnitude of destabilizing cross-coupled stiffness required to 

cause instability using synchronously reduced bearing coefficients were as large as 24% 
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and 17% for lightly loaded operation at 4400 rpm and 10200 rpm, respectively.  For unit 

loads corresponding to the example model geometry, employing synchronously reduced 

coefficients overestimated the maximum allowable destabilizing cross-coupled stiffness 

by 7.6% and 16% at 4400 rpm and 10200 rpm, respectively.   

 

Table 10: Percent relative error in destabilizing cross-coupled stiffness required to 
cause the system shown in Figure 60 to become unstable when employing 

subsynchronously reduced coefficients at speeds of 4400 and 10200 rpm at various 
unit loads. Boldface values indicate approximate unit loads matching model shaft 

geometry 
 4400 rpm 10200 rpm 

Unit Load  
kPa (psi) 

,

,

100 1xy red

xy full

K
K

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠

unstable

shaft

ω
ω

 ,

,

100 1xy red

xy full

K
K

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
 unstable

shaft

ω
ω

 

0 1.277 0.422 0.881 0.408 
783 (114) 1.156 0.440 0.716 0.409 
1566 (227) 1.242 0.451 0.868 0.420 
2350 (340) 0.649 0.461 0.935 0.426 
3132 (454) 0.714 0.464 1.198 0.432 

 

Table 11: Percent relative error in destabilizing cross-coupled stiffness required to 
cause the system shown in Figure 60 to become unstable when employing 

synchronously reduced coefficients at speeds of 4400 and 10200 rpm at various unit 
loads. Boldface values indicate approximate unit loads matching model shaft 

geometry 
 4400 rpm 10200 rpm 

Unit Load  
kPa (psi) 

,

,

100 1xy red

xy full

K
K

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠

unstable

shaft

ω
ω

 ,

,

100 1xy red

xy full

K
K

⎛ ⎞
−⎜ ⎟⎜ ⎟

⎝ ⎠
 unstable

shaft

ω
ω

 

0 24.681 0.422 18.731 0.408 
783 (114) 17.341 0.440 16.714 0.409 
1566 (227) 6.832 0.451 12.724 0.420 
2350 (340) 3.247 0.461 7.170 0.426 
3132 (454) 2.857 0.464 2.996 0.432 
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 Figure 61 shows the content in Tables 10 and 11graphically.   Figure 61 shows 

using synchronously reduced coefficients leads to an overestimation of system stability 

when the shaft is lightly loaded, and a moderate overestimation of system stability at 

heavier unit loads. 

 

 
Figure 61: Percent relative error in destabilizing cross-coupled stiffness required to 
cause the system in Figure 60 to become unstable when employing synchronous and 

subsynchronous reductions at 4400 rpm and 10200 rpm at various unit loads 
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 While this example does not cover all possible scenarios, it supports the use of 

asynchronously reduced coefficients for stability calculations, and refutes the notion that 

synchronously reduced bearing coefficients should be used for stability calculation.  The 

reason that the pad modes can be reduced from the model at the frequency of the 

unstable mode is that the pad’s vibration modes are either overdamped, or have a 
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significantly higher damped natural frequency than the unstable mode.  The vibration 

modes and damping ratios of the loaded pad at 10200 rpm (170 Hz) at 783 kPa unit load 

are shown in Table 12.  The eigenvalues of the loaded pad were calculated with the 

journal and bearing fixed. 

 

Table 12: Vibration modes of the loaded pad at 10200 rpm (170 Hz) and 783 kPa 
unit load 

Damped Natural Frequency, ωd (Hz) Damping Ratio, ζ 
0 ∞ 

4565.86 0.027 
2130.38 0.002 
241.94 2.024 

 

 The obvious question is: Why is stability overestimated with a synchronously 

reduced model?  Figure 62 shows the synchronously reduced direct stiffness and 

damping coefficients relative to their subsynchronously reduced counterpart.  

Synchronously reduced stiffness is moderately underestimated at 4400 rpm, and less so 

at 10200, while synchronously reduced damping is moderately overestimated at 4400 

rpm and 10200 rpm.  Both of these effects will tend to increase the effective damping of 

the synchronously reduced model, which will cause the synchronously reduced model to 

be more stable. 
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Figure 62: Relative error in synchronously reduced principal stiffness and damping 
coefficients relative to subsynchronously reduced stiffness and damping coefficients 
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 While it may be possible to account for changes in stiffness with a frequency 

independent KCM model, damping would have to be constant.  Since damping is not 

predicted to be constant using the developed code, a frequency dependent KCM model 

would be required for the bearing tested.  This frequency dependent damping was 

measured as well, as shown in Figure 63 at low speed and high load and Figure 64 at 

high speed and high load.  Both the measured and predicted damping coefficients have 
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similar frequency characteristics, but the predicted damping tends to change more with 

frequency than the measured data.   

 Though the pads in this bearing have pad and pivot flexibility, Figure 63 shows 

the direct damping at 4400 rpm to increase from 0-150 Hz, at which point the damping 

begins to falloff.  This high frequency falloff will not be predicted using a rigid 

pad/pivot model, but the increase in damping with frequency would still exist.  Figure 64 

shows an increase in measured and predicted damping with excitation frequency at 

10200 rpm similar to the low speed case; however, this increase in damping with 

excitation frequency was only measured in the loaded direction, and the falloff 

frequency was predicted to be much higher. 
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Figure 63: Frequency dependent damping coefficients at 4400 rpm and 3132 kPa 
unit load 
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Figure 64: Frequency dependent damping coefficients at 10200 rpm, 3132 kPa unit 

load 
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 This increase in damping with excitation frequency was predicted for most cases; 

however, it was only observed when the bearing was heavily loaded as shown in Figure 

65, which shows measured and predicted damping with excitation frequency at 10200 

rpm when the bearing is lightly loaded. 
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Figure 65: Frequency dependent damping coefficients at 10200 rpm, 783 kPa unit 

load 
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 This discussion leads to additional questions.  How well does the full bearing 

model predict the stability of the system shown in Figure 60, and would measured 

bearing coefficients at the synchronous or subsynchronous frequency yield a more 

conservative estimate of system stability?  Figure 66 shows the magnitude of 

destabilizing cross-coupled stiffness needed to cause the system to become unstable 

using subsynchronously measured bearing impedances, synchronously measured bearing 

impedances, and predictions from a full bearing model.  Note that the subsynchronously 

measured coefficients are the most conservative, followed by the synchronously 

measured coefficients, and then the full bearing prediction.  This observation contrasts 

greatly with the results shown in Figure 61, which showed that using synchronously 

reduced predicted stiffness and damping coefficients were more conservative in 

estimating stability than the subsynchronously reduced coefficients.  
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Figure 66: Magnitude of destabilizing cross-coupled stiffness required to cause the 
system in Figure 60 to become unstable using subsynchronously and synchronously 

measured coefficients and predictions using a full bearing model 
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CHAPTER VI 

SUMMARY AND CONCLUSIONS 

 

 A new bearing perturbation model is proposed allowing for journal and bearing 

motions, as well as pad rotation, pad compliance, and radial and circumferential pivot 

flexibility.  Perturbations of pad radial and tilting degrees of freedom follows from the 

analysis initially provided by Lund [2] in 1964 and Lund and Pederson [4] in 1987, pad 

clearance by Nilsson [3] in 1978, and transverse pad motion by Jeng [1] in 1995; 

however, unlike previous perturbations, the present analysis includes perturbation of all 

four variables and allows for an arbitrary pad center of gravity.  The affect of including 

an arbitrary pad center of gravity is minimal for the bearing tested, but could prove to be 

important for larger tilting pad bearings, where pad inertias are significantly larger. 

 This perturbation model was implemented in a Reynolds-based TPJB finite-

difference code to produce real and imaginary complex dynamic stiffness coefficients 

(impedances) by reducing the pad degrees of freedom from the model.  During the 

reduction procedure, relations for pad motion as a function of rotor motion are 

determined, which results in frequency-dependent rotor-pad and pad-bearing transfer 

functions.  Though many researchers have used the predicted pad motion (pad-rotor 

transfer functions) to obtain reduced bearing coefficients, this work explores the 

possibility of utilizing these transfer functions to obtain a more comprehensive outlook 

on the motion of pads in a TPJB.  Specifically, this notion was exploited by comparing 

the amplitude and phase of these predicted rotor-pad transfer functions to experimentally 

measured rotor-pad transfer functions over a range of speeds and loads. 

 Though previous measurements of pad motion exist, they typically consist of pad 

tilt measurements using only one proximity probe.  At most, these measurements have 

yielded information on pad flutter.  The current work extends greatly on the previous 

capability of pad motion measurements.  The motion of the loaded pad of a five pad 

tilting-pad journal bearing was measured using five proximity probes, while strain gages 

were used to measure changes in the radius of the pad.  These measurements define six 
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independent pad degrees of freedom: radial and circumferential pad motion, tilt, yaw, 

pitch, and pad clearance.  These measurements were then used to determine rotor-pad 

transfer functions, which define the amplitude and phase of pad motions resulting from 

radial and transverse rotor motions.   

 In this work, clearance measurements were taken at a variety of temperature 

conditions by precessing the bearing about the non-rotating shaft with a circular force.  

This approach to measure bearing clearance is specific to this work, and yields a more 

accurate means of determining the bearing clearance at each pad, in comparison with a 

bump test that requires some assumptions to be made on the uniformity of bearing 

clearance.  These clearance measurements show that hot bearing clearances can be as 

much as 30% smaller than the bearing clearance at room temperature (installed bearing 

clearance).   

 The relationship between bearing clearance and operating temperature was 

investigated, and showed that bearing clearances are inversely proportional to the 

average of pad surface temperatures at the pivot location.  This correlation was later used 

to determine a thermal length for the bearing, which relates the temperature-clearance 

relation to the thermal expansion coefficient of the material in the bearing/housing.  The 

current work shows that approximating the reduction in clearance by calculating the 

increase in pad thickness at elevated temperatures accounts for only 50% of the 

measured reduction in clearance, which would result in significantly lower predicted 

stiffness and damping coefficients than would be obtained by using the measured 

bearing clearances given here. 

 From the measured pad motion, static pad radial displacement, tilt angle, and pad 

clearance were presented.  These pad degrees of freedom have not previously been 

measured.  Static measurements show that pivot compliance results in radial pad motions 

as large as 36 μm (1.41 mils), while pad compliance results in pad clearances 60% larger 

than the installed pad clearance at large unit loads.  Static eccentricity measurements 

show that the journal’s locus exceeds the bearing clearance by almost 12 μm (0.5 mils) 
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when heavily loaded.  This outcome is explained by the pivot-contact flexibility, and 

confirms the necessity of utilizing a compliant pivot in the bearing model. 

 Excellent agreement is found between the amplitude of the measured and 

predicted radial pad transfer functions, while tilt is moderately underpredicted.  Note that 

for pads on the test bearing, not thought to have “soft pivots,” radial journal motion at 

high loads produced radial pad motion having 60% of the amplitude of radial shaft 

motion.  The magnitude of the loaded pad’s radial transfer function increases with load 

and excitation frequency.  These measurements show that predicting TPJB 

characteristics without accounting for pad and pivot deflection will not accurately reflect 

the behavior of the pad in the bearing, regardless of the loading applied to the pivot.   

 Transverse pad pivot motion is predicted and observed; however, this motion 

appears to be lightly damped, which suggests that it is caused by transverse compliance 

of the pivot, not slipping.  The author does not assert that the inclusion of a 

circumferential pad degree of freedom has a substantial impact on predicted coefficients 

for the bearing tested, but it may be more influential for a flexure-pivot TPJB.  Relative 

to the bearing tested, this type of pivot would likely see larger transverse pivot forces 

resulting from increased angular pivot stiffness, while the effect of these forces would 

likely produce larger motions due to decreased transverse pivot stiffness. 

 Predicted direct stiffness and damping for unit loads from 0-3200 kPa (0-450 psi) 

fit through 1.5× running speed are within 18% of measurements at 4400 rpm, while 

predictions at 10200 rpm are within 10% of measurements.  This is a significant 

improvement on the accuracy of predictions cited in literature. 

 Why are damping coefficients over-predicted for the majority of test data?  There 

may be a number of contributing factors.  First and foremost may be that most 

comparisons between measured and predicted bearing characteristics do not account for 

the reduction in bearing clearance at operating conditions, shown here to be 30% smaller 

than the cold bearing clearance.  This oversight can lead to a decent prediction of 

stiffness and static eccentricity for models without support flexibility, which may lead to 

 



132 

the assumption that pad and pivot compliance are not needed in the model, while 

damping is consistently overpredicted. 

 Comparisons between predictions from the developed bearing model without 

pad, pivot, and pad and pivot flexibility show that predicted direct stiffness and damping 

coefficients for a model having a rigid pad and pivot are overestimated, respectively, by 

202% and 811% at low speeds and large loads, by 176% and 513% at high speeds and 

high loads, and by 51% and 182% at high speeds and light loads.  While the reader may 

question the degree to which these predictions are overestimated in regard to previous 

comparisons, these predictions are based on measured operating bearing clearances, 

which are 20-30% smaller than the cold bearing clearances that previous comparisons 

were likely based on. 

 A realistic rotor-bearing model was developed to reinvestigate the assertions of 

previous researchers concerning the use of reduced versus full bearing models in 

stability calculations.  In this discussion, reduced implies that the pad degrees of freedom 

have been eliminated from the model using a harmonic reduction, which reduces the 

bearing reaction force to a 2×2 stiffness and damping matrix, and full implies that the 

pad’s degrees of freedom are included explicitly in the system model.   

 Though the author does not wish to discredit previous conclusions by researchers 

[4-7, 10, 11, 14, 15] that employing reduced bearing coefficients in stability calculations 

is erroneous, the author states the following on the subject.  It does not matter what form 

of bearing model (full versus reduced) is used to predict system stability if the 

perturbation model is inaccurate.  If one has an accurate perturbation model, and can 

accurately predict stiffness and damping for a TPJB, employing a full bearing model is 

always the most accurate means of assessing stability.  If one wishes to use a reduced 

bearing reaction force model to predict stability, bearing coefficients should be reduced 

at the frequency of the unstable mode (subsynchronously reduced), which can be 

determined iteratively as shown here.   

 For the case investigated, the destabilizing cross-coupled stiffness coefficients 

required to cause system stability were predicted within 1% using stiffness and damping 
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coefficients reduced at the unstable eigenvalue relative to the magnitude of destabilizing 

cross-coupled stiffness required with the full bearing model.  If coefficients are reduced 

synchronously, however, the magnitude of destabilizing cross-coupled stiffness required 

to cause system instability is overestimated by as much as 24% when compared to the 

full-model prediction.  If the frequency dependency of the bearing coefficients is well 

modeled by a KCM model, this method will also produce an accurate assessment of 

stability.   

 The same stability calculation was performed using measured stiffness and 

damping coefficients at synchronous and subsynchronous frequencies at 10200 rpm.  It 

was found that both the synchronously measured stiffness and damping and predictions 

using the full bearing model were more conservative than the model using 

subsynchronously measured stiffness and damping.  This outcome contrasts with the 

comparison between models using synchronously and subsynchronously reduced 

impedance predictions, which showed the subsynchronously reduced model to be the 

most conservative.  This contrast results from a predicted increase in damping with 

increasing excitation frequency at all speeds and loads, while this increase in damping 

with increasing excitation frequency was only measured at the most heavily loaded 

conditions.  Note that these observations pertain to a bearing that has an extremely 

compliant pad, caused by a loose-fitting hardened pivot insert on the pad installed to 

reduce fretting at the contact surface. 

 At the onset of this work, a question was posed regarding the industrial 

communities resistance in using a full bearing model to predict stability.  Though there 

may be several answers to this question, the author’s position is that differences between 

the measured and predicted frequency dependence of TPJB stiffness and damping 

coefficients have led to a lack of confidence in the ability to accurately predict the 

dynamic characteristics of a TPJB.  With this lack of confidence, it appears that 

researchers have become divided on the responsible course of action in performing 

stability calculations.  The majority of experimental evidence suggests that the lack of 

frequency dependence in measured damping supports one course of action [16-18], 
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while the majority of theoretical papers showing frequency dependent damping supports 

a different course of action [4-7,10,11, etc.].  Though some of these theoretical works 

suggest that a full bearing model is required to assess stability, the current work shows 

that a subsynchronously reduced bearing model predicted stability within 1% of the full 

bearing model.  Hence, stability calculations employing predicted bearing coefficients 

should be performed with full or subsynchronously reduced models, while stability 

calculations performed with measured bearing coefficients should use subsynchronously 

measured bearing impedances or a KCM model when applicable.  The real question that 

should be asked is the following: why is there a difference in the measured and predicted 

frequency dependence of TPJB dynamic coefficients? 

 Rotor-pad transfer functions can be useful in identifying deficiencies in the 

model or test setup, specifically in regard to obtaining more information from an 

experiment than determining bearing stiffness, damping, and mass.  Future research in 

this area may even include a multivariable input-output parameter identification 

technique to directly measure the stiffness and damping of the fluid film on a single pad 

[47].   The transfer of measured and predicted transfer-function deviations into useful 

feedback could yield valuable information on current TPJB modeling deficiencies.   
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NOMENCLATURE 

 

j
biA  

FFT of absolute bearing/stator acceleration (e.g. j
biA  is 

acceleration in the ‘i’ direction, due to an excitation in the ‘j’ 
direction) 

[L/t2] 

ij,kA  
Matrix of fixed impedances including virtual-mass terms 
 ( 2 +ij,k ij,k ij,k ij,kA = M s C s + K ) [F/L] 

Ck Damping matrix for the kth pad  [F.t/L] 
Ep,k Pad modulus of elasticity  
F0,k Vector of forces applied to the journal, pad, and bearing. [F] 

j
eiF  FFT of applied excitation force (e.g. j

eiF  is force in the ‘i’ 
direction, due to an excitation in the ‘j’ direction) 

[F] 

ij,kH  Matrix of reduced impedances or complex dynamic 
stiffnesses [F/L] 

Ic,k Pad mass moment of inertia about Oc,k [M.L2] 

ij,kI  
Matrix of fixed impedances including stiffness and damping 
terms only ( :=ij,k ij,k ij,kI C s + K ) [F/L] 

Kk Stiffness matrix for the kth pad  [F/L] 
Lp,k Axial length of the kth pad [L] 

M11-M15 
Relative stator-pad displacements measured with proximity 
probes 11-15 [L] 

,pc nM  Bending moment at the pad’s neutral axis as a function of the 
circumferential location on the pad [F.L] 

Mcz,k Pivot reaction moment [F.L] 

,pic kM  Average of the applied bending moment due to pressure pi  
about the pad’s neutral axis [F.L] 

,pic kM  Average of the applied bending moment due to pressure pi  at 
the surface of the pad on either side of the pad’s pivot [F.L] 

Mk Mass matrix for the kth pad  [M] 
Oc Pad contact location  
Oj, Ob, Op, Center of the journal, bearing, and pad surface arc  
Oo Origin of the inertial coordinate system  
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Qk 
Direction-cosine matrix relating vectors in inertial 
coordinates to a vector in the kth pad’s reference state 
coordinates 

 

U1,k Vector of journal, bearing, and kth pad displacements in the 
kth pad’s reference state coordinates [L, -] 

j
iU  

FFT of relative rotor-stator motion (e.g. j
iU  is relative rotor-

stator motion in the ‘i’ direction, due to an excitation in the 
‘j’ direction) 

[L] 

Uj1,k, Up1,k, 
Ub1,k 

Journal, pad, and bearing displacement vectors in the kth 
pad’s reference state coordinates [L, -] 

X-Y- Z Inertial coordinate axes  
abx, aby Absolute bearing acceleration component in the x,y direction [L/t2] 

bηgo,k, bξgo,k 
Distance from Oco,k to the kth pad’s CG in the ηk, ξk direction 
at the reference state  [L] 

ccj,k kth pad’s pivot damping in the jth direction [F.t/L] 

cij 
Damping coefficient (e.g. reaction force in the ‘i’ direction 
due to velocity in the ‘j’ direction) [F.t/L] 

 cb Bearing clearance [L] 

 cp Pad clearance ( 0 1 pp po p p po cc c c c c δ= + + = + ) [L] 

 cpo Installed pad clearance [L] 
 cp0 Change in pad clearance due to zeroth order pressure field [L] 
 cp1 Change in pad clearance due to perturbed pressure field [L] 
d11,12 Axial distance between probes 11 and 12 [L] 
d14,15 Axial distance between probes 14 and 15 [L] 
dε12 Radial distance between strain gage 1 and 2 [L] 

ec,k 
Displacement of the kth pad’s pivot at the contact location 
relative to the bearing [L] 

ej, eb, … Displacement of journal, bearing, etc. [L] 

epj,k 
Relative pad-journal displacement (vector from Op to Oj 

: k kη ξ= +pj,k k ke i j ) [L] 

fbx, fby Bearing reaction force component in the x,y direction [F] 
fcη,k Transverse pivot reaction force  
fcξ,k Radial pivot reaction force  
fex, fey Bearing excitation force component in the x,y direction [F] 
fiη,k, fiξ,k Reaction forces in the ηk, ξk directions due to pressure pi [F] 
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hk Fluid film height of the kth pad [L] 
i0, j0 Unit vectors in the X-Y directions  
ik, jk Unit vectors in the kth pad’s reference ηk-ξk directions  
j  Imaginary unit ( 1− )  

kcj,k kth pad’s pivot stiffness in the jth direction [F/L] 

kij 
Stiffness coefficient (e.g. reaction force in the ‘i’ direction 
due to displacement in the ‘j’ direction) [F/L] 

kscp.k kth pad’s structural bending stiffness [F] 

kε12 
Conversion factor from measured voltage to relative strain 
ε12 

[1/V] 

lT,char 
Characteristic thermal length of the system with respect to 
average of pad surface temperatures at the pivot location [L] 

mcp,k Modal mass of the pads first bending mode [M] 

mij 
Mass coefficient (e.g. reaction force in the ‘i’ direction due to 
acceleration in the ‘j’ direction) [M] 

mbx, mby Modal mass of the test rig’s bearing/stator in the X, Y dir. [M] 
mj, mb, mp,k Mass of the journal, bearing, and kth pad [M] 
np Number of pads in bearing  
p0,k, Zeroth order pressure field  [F/L2] 
pa Ambient pressure in the bearing [F/L2] 
pcav Fluid cavitation pressure [F/L2] 
pη1,k, pξ1,k, … First order pressure field due to perturbations η1,k, ξ1,k,… [F/L2] 
r11 Radius of surface on back of pad measured by probe 11 [L] 

rcp,k. 
Distance from kth pad’s pivot point to the center of the kth 
pad’s surface arc [L] 

rf1, rf2, rε1, re2 
Resistance of components (f1, f2, etc.) in the strain gage 
circuit  [V/I] 

rj, rb Radius of the journal, bearing [L] 

 rp Pad radius ( 0 1 pp po p p po rr r r r r δ= + + = + ) [L] 

 rpo Installed pad radius [L] 
 rp0 Change in pad radius due to zeroth order pressure field [L] 
 rp1 Change in pad radius due to perturbed pressure field [L] 
rp,k. Radius of pad’s neutral axis (rp,n = rp + ½ tp) [L] 
rr, rrh Radius of the pad’s rocker, housing mating with the rocker. [L] 
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s  
System eigenvalue or root of an assumed solution 
 ( ) s jλ= + Ω

 

tcp Thickness of the pad at the contact location cp c bt r r= −  [L] 

tp Thickness of the pad [L] 
vin, vout Voltage in/out from the strain gage Wheatstone bridge [V] 

,b b

k ki i
η ξΓ Γ  Transfer function relating the ith pad motion to ηk, ξk bearing 

motions 
[L/L, 
1/L] 

,j j

k ki i
η ξΓ Γ  Transfer function relating the ith pad motion to ηk, ξk journal 

motions 
[L/L, 
1/L] 

1 1
ˆ ˆ,η ξ

φ φΓ Γ  Pad tilt transfer function normalized by the distance from the 
pivot to the leading edge of the pad  

Θk Ratio of outer to inner pad radii ( ) /p p pR t RΘ = +   

Ω Reduction frequency or applied excitation frequency [1/t] 
∂ Partial differential operator  
ψpj,k Angle from ηk to epj,k about the positive Z axis  

αcb 
Thermal expansion coefficient of the shaft/pad/bearing 
assembly [L/T] 

αk 
Angle from the X-axis to the kth pad’s ηk axis 

 , / 2k c kα θ π= +  

αmat 
Thermal expansion coefficient of the shaft/pad/bearing 
assembly [1/T] 

β Angular distance from the kth pad’s pivot to a location on the 
pad  

βlc,k, βct,k 
Angular distance from the kth pad’s leading edge to contact 
location, and from contact to the trailing edge  

βlt Angular extent of the kth pad  
δ Pivot deflection [L] 

pcδ  Change in pad clearance 0 1pc pc cpδ = +  [M] 

prδ  Change in pad radius 0 1pr pr rpδ = +  [M] 

δε12 Distance between center of strain gage 1 and 2 [M] 
ε1, ε2 Strain measured by gage 1, 2  

ε12o, ε120, ε121 
Relative strain between gages 1 and 2 ( 12 1 2ε ε ε= − ) at the 
reference, equilibrium, and perturbed state 
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φk kth pad’s tilt angle about the positive Z-axis  

kφ  Pad tilt normalized by multiplying φk by the distance from 
the pivot to the leading edge of the pad  

φξc,k 
Pad yaw (rotation from the pad reference axis Z0 to the 
perturbed axis Z1,k about the positive ξk -axis)  

φηc,k 
Pad pitch (rotation from the pad reference axis Z0 to the 
perturbed axis Z1,k about the positive ηk axis)  

η g,k, ξg,k Distance from Oco,k to the kth pad’s CG in the ηk, ξk direction [L] 
ηi,, ξi Components of vector ei in the ηk, ξk direction [L] 

ηk-ξk 
kth pad’s reference state radial-circumferential coordinate 
axis   

λ System damping exponent  
μ Fluid viscosity [F.t/M2] 
θc,k Angle from the X-axis to the kth pad’s contact location  
ω Journal rotational speed [1/t] 
ψk Angle from ηk to a circumferential location on the pad,  
ψl,k, ψt,k Angle from ηk to the leading and trailing edges of the pad  
   
Subscript   
0 b0 refers to the zeroth order/guessed component of b   
1 b1 refers to the first order/perturbed component of b  
b Bearing  
c Contact  
ij Permute i,j with rotor coordinates (i = x, y,  j= x, y)  
ij,k Permute i,j with pad coordinates (i = ηk, ξk,  j= ηk, ξk)  
j  Journal  
k bk refers to the kth pad  
o bo refers to the reference state component of b  
   
Superscript   
x, y Measured during x, y excitation of the stator  
ηb,, ξb Corresponds to motions of the bearing in the ηk, ξk direction  
ηj,, ξj Corresponds to motions of the journal in the ηk, ξk direction  
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Formatting   
Bold B is a matrix  
bold-italic b is a vector  
italic b is real-valued  
“tilde” b is complex  
   
Acronyms   
CG Center of Gravity  
DFT Discrete-Fourier Transform  
DOF Degree of Freedom  
EDM Electron Discharge Machining  
EOM Equation of Motion  
FE Finite Element  
FEA Finite Element Analysis  
FP Flexure-Pivot  
FPTPJB Flexure-Pivot Tilting Pad Journal Bearing  
KC Stiffness and Damping Model  
KCM Stiffness, Damping, and Mass Model  
LOP Load On Pad  
TAMU Texas A&M University  
TPJB Tilting-Pad Journal Bearing  
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APPENDIX A 

PERTURBED PAD EQUATIONS OF MOTION 

 

The partitions shown in U1,k and F0,k, denote the portion of each matrix assigned to a 

given submatrix .  Note that partitions not shown in Mk, Ck, and Kk would occur after 

the second and sixth row and column of each matrix, and that the subscript k is neglected 

when referring to Mjj and Mbb, which do not depend on the pad in question.   
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APPENDIX B 

ADDITIONAL CONSIDERATIONS IN A ROCKER-PIVOT TPJB 

 

 For the case of a rocker-pivot TPJB, it may be necessary to account for the effect 

of pad tilt on the actual contact location about which moments are summed in writing the 

static and dynamic equations for pad tilt φ.  In general, this transverse change in contact 

location has the effect of changing the pad’s offset.  Figure 67 shows a schematic 

representing the transverse movement of the contact location, 
cf

η , as the pad tilts.  

Pad atthk

(Tilt) kφ

, , Reference State
cf o kO

, , General
cf kO

ReferenceState

Contact Location

,cf kθ

,cf kη

Pad Tiltedthk
an Angle kφrhr

rr

Contact Location

, , Reference State
cf o kO

Contact Location

,c kf ξ

,c kf ξ  

 

Figure 67: Change in contact location for a rocker-pivot TPJB 
 

 Note that Figure 67 uses Ofc,k to denote the actual contact location (location 

where the pivot’s radial reaction force is applied to the pad), which is different from the 

aforementioned pivot location (Oc,k) shown in Figure 11.  Oc,k denotes the translation of 

the reference state pivot location (contact location) in the inertial frame as given in Eq. 

(32) and is the location about which moments are summed in the pad’s EOMs.  Thus 

changes noted here are consistent with the previous derivation of pad dynamics.   
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 Assuming that pad tilt is small, the effect of changes in ,cf kO  should have a 

second order impact on pad dynamics with one exception; the moment created by the 

radial pivot force 0,c kf ξ  (resulting from the zeroth order pressure field) passing through 

the new contact location ,cf kO .  This moment is given by  

 , 0,c ,cf k c k fM fη ξ kη= − . (103) 

 Assuming that the rocker with radius rr is rolling-without-slipping on the housing 

with radius rrh, the kinematic constraint relating pad tilt (φk) to ,cf kθ , the angle from ,cf o kθ  

to ,cf kθ  about the center of curvature of the housing, is given by   

 ,c

r
f k

rh r

r
r r kθ φ=

−
. (104) 

Note that depending on the bearing design, rrh may not necessarily correspond to the 

contact radius rc shown in Figure 4.  It may be selected to achieve some specific radial 

pivot stiffness, or perhaps an insert may be used in the housing to improve pivot wear.  

From Eq. (104), it can be seen that  

 ( ), ,sin sin
c c

r
f k rh f k rh k

rh r

rr r
r r

η θ
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= = ⎜ −⎝ ⎠
φ ⎟  (105) 

Thus the moment on the pad resulting from the application of a rolling-without-slipping 

constraint between the rocker and housing consists of a zeroth order component given by 
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c

r
,f k c k rh k
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which should be added to the right hand side of the first relation in Eq. (54), and a first 

order component given by 

 ( )1 , 0, , 1,cos
c

r rh
cf k c k f k

rh r

r rM f
r rη ξ kθ φ= −

−
 (107) 

which should be added to the right hand side of the first relation in Eq. (60).  Note that 

the reaction moment resulting from the application of a rolling-without-slipping 

constraint between a rocker-pivot and housing is proportional to the pad’s tilt angle, thus 

it acts similar to the angular pivot stiffness in a flexure-pivot TPJB, which can increase 
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the magnitude of destabilizing cross-coupled stiffness coefficients.  Though the angular 

pivot stiffness resulting from a pivot rolling-without-slipping on a housing is likely 

insignificant for most bearings, Eq. (107) suggests that the magnitude of this stiffness 

increases in proportion to the factor , and inversely proportional to the difference 

.  This implies that rocker-pivot TPJBs having large rocker and housing radii that 

are very similar in magnitude could potentially have large destabilizing cross coupled 

stiffness coefficients.  

r rhr r

rh rr r−
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APPENDIX C 

STEADY STATE DATA  

 

 This appendix contains steady state data recorded during each dynamic test. 

Table 13: Steady state data at 4400 rpm at various unit loads 
Speed rpm 4523.4 4437.8 4407.0 4371.2 4445.7 
Load kPa -1.2 814.3 1583.1 2363.1 3153.0 

Pin kPa 114.7 115.6 116.6 117.7 119.2 
NDE Pout kPa -0.1 -0.1 -0.1 -0.1 -0.1 
DE Pout kPa -0.1 -0.1 -0.1 -0.1 -0.1 

Tin °C 36.5 36.5 36.4 36.3 36.4 
NDE Tout °C 39.9 40.0 40.2 40.1 40.6 
DE Tout °C 37.1 37.6 37.8 38.0 38.2 
Tpad 1 °C 41.1 47.3 51.1 53.6 55.9 
Tpad 2 °C 46.4 55.4 60.5 63.8 67.4 
Tpad 3 °C 49.4 59.7 65.4 69.2 73.1 
Tpad 4 °C 52.8 64.6 71.2 74.8 78.1 
Tpad 5 °C 50.7 58.4 61.3 61.7 62.0 
Tpad 6 °C 43.4 41.9 41.4 41.2 42.0 
Tpad 7 °C 52.6 53.6 54.4 56.0 59.1 
Tpad 8 °C 56.7 58.5 60.1 62.3 66.2 
Tpad 9 °C 55.1 56.9 58.4 60.2 63.4 

Tpad 10 °C 55.2 56.5 57.8 59.5 62.5 
Tpad 11 °C 53.7 46.2 44.2 43.1 43.1 
Tpad 12 °C 43.5 40.2 39.4 38.8 39.1 
Tpad 13 °C 44.0 41.9 41.2 40.6 40.6 
Tpad 14 °C 55.7 49.4 47.7 46.6 46.4 
Tpad 15 °C 43.7 49.2 50.3 51.3 53.2 
Tpad 16 °C 53.8 58.1 60.2 62.4 65.8 
Tpad 17 °C 55.2 59.2 61.7 64.1 67.6 
Tpad 18 °C 52.9 56.0 58.1 59.9 62.7 
Tpad 19 °C 53.0 56.7 58.7 60.7 63.6 

  

 



151 

Table 14: Steady state data at 7300 rpm at various unit loads 
Speed rpm 7157.8 7219.8 7209.4 7241.4 7264.3 
Load kPa -2.6 780.8 1570.3 2363.6 3160.7 

Pin kPa 116.3 117.8 120.7 121.1 122.9 
NDE Pout kPa -0.2 -0.1 -0.2 -0.2 -0.2 
DE Pout kPa -0.2 -0.2 -0.2 -0.2 -0.2 

Tin °C 36.5 36.4 36.5 36.9 37.0 
NDE Tout °C 45.1 45.1 45.5 45.8 45.9 
DE Tout °C 37.4 37.6 39.1 40.1 42.2 
Tpad 1 °C 41.6 47.4 54.4 59.2 62.0 
Tpad 2 °C 49.5 60.6 69.5 75.0 79.3 
Tpad 3 °C 55.0 68.3 77.7 84.2 89.4 
Tpad 4 °C 60.8 76.5 87.3 94.1 98.6 
Tpad 5 °C 57.9 67.3 71.6 72.4 72.1 
Tpad 6 °C 46.1 44.6 43.6 43.2 43.5 
Tpad 7 °C 60.4 62.5 63.2 64.3 66.8 
Tpad 8 °C 67.0 70.8 72.6 74.5 78.1 
Tpad 9 °C 65.3 68.8 70.5 72.6 75.0 

Tpad 10 °C 63.6 66.5 68.0 69.6 71.9 
Tpad 11 °C 62.6 54.7 51.5 50.2 49.4 
Tpad 12 °C 48.0 43.9 42.4 42.2 41.9 
Tpad 13 °C 48.1 46.1 45.1 44.9 44.6 
Tpad 14 °C 63.9 57.5 55.2 54.2 53.5 
Tpad 15 °C 46.6 54.5 56.4 57.7 59.3 
Tpad 16 °C 63.2 68.7 70.9 73.6 77.4 
Tpad 17 °C 66.0 71.2 74.0 77.2 81.3 
Tpad 18 °C 62.6 66.2 68.6 71.4 74.3 
Tpad 19 °C 62.6 67.2 69.5 72.3 75.5 
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Table 15: Steady state data at 10200 rpm at various unit loads 
Speed rpm 10354.8 10227.4 10108.8 10096.1 10213.6 
Load kPa -3.4 762.8 1586.5 2360.6 3155.8 

Pin kPa 156.0 155.7 156.5 157.2 158.3 
NDE Pout kPa -0.2 -0.1 -0.2 -0.2 -0.2 
DE Pout kPa -0.2 -0.2 -0.2 -0.2 -0.2 

Tin °C 36.7 36.7 36.7 36.8 36.7 
NDE Tout °C 44.8 45.8 46.4 46.8 47.2 
DE Tout °C 45.6 43.3 43.6 44.0 44.8 
Tpad 1 °C 42.3 46.6 53.8 59.6 61.2 
Tpad 2 °C 52.6 63.3 74.3 81.2 85.9 
Tpad 3 °C 61.3 74.9 86.3 93.8 100.5 
Tpad 4 °C 69.8 86.4 99.5 107.9 114.5 
Tpad 5 °C 64.6 73.6 78.2 78.7 78.6 
Tpad 6 °C 47.8 47.0 45.8 45.3 45.1 
Tpad 7 °C 68.1 70.3 70.3 71.2 73.4 
Tpad 8 °C 386.8 243.8 231.4 136.8 89.9 
Tpad 9 °C 75.1 77.9 79.2 81.2 83.7 

Tpad 10 °C 71.1 74.3 75.3 76.8 79.0 
Tpad 11 °C 70.9 62.6 57.8 56.1 55.1 
Tpad 12 °C 50.9 46.8 44.8 44.5 44.3 
Tpad 13 °C 52.6 50.2 48.4 47.8 47.8 
Tpad 14 °C 72.4 65.3 61.5 60.0 59.5 
Tpad 15 °C 50.4 58.2 61.4 62.5 64.2 
Tpad 16 °C 73.1 78.4 80.0 82.3 86.3 
Tpad 17 °C 77.8 82.1 84.2 87.3 92.0 
Tpad 18 °C 72.2 74.7 76.4 78.7 81.9 
Tpad 19 °C 71.9 75.4 77.0 79.5 83.4 
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Table 16: Steady state data at 13200 rpm at various unit loads 
Speed rpm 13253.1 13074.2 13342.1 13309.8 13253.8 
Load kPa -3.9 780.8 1565.8 2334.4 3131.9 

Pin kPa 153.2 155.0 155.5 152.8 154.3 
NDE Pout kPa -0.3 -0.3 -0.2 -0.3 -0.3 
DE Pout kPa -0.3 -0.3 -0.2 -0.3 -0.3 

Tin °C 36.6 36.7 36.5 37.0 36.8 
NDE Tout °C 48.8 49.5 50.4 52.3 52.2 
DE Tout °C 48.9 47.9 48.5 49.1 47.9 
Tpad 1 °C 43.0 46.9 52.2 58.4 61.8 
Tpad 2 °C 54.9 64.1 73.9 82.5 88.1 
Tpad 3 °C 65.5 78.0 88.9 98.2 105.9 
Tpad 4 °C 76.1 91.9 105.7 116.0 124.8 
Tpad 5 °C 70.0 79.2 84.4 87.0 87.0 
Tpad 6 °C 51.9 52.8 50.2 49.9 48.7 
Tpad 7 °C 74.7 76.6 77.1 78.7 79.4 
Tpad 8 °C 356.5 213.1 98.6 95.4 97.9 
Tpad 9 °C 83.2 85.0 87.7 90.3 91.6 

Tpad 10 °C 77.5 79.5 81.9 83.8 84.9 
Tpad 11 °C 79.9 71.3 68.1 66.6 64.5 
Tpad 12 °C 56.4 51.7 50.3 51.1 50.1 
Tpad 13 °C 59.7 57.1 56.1 56.2 55.4 
Tpad 14 °C 81.6 74.8 72.2 70.5 68.2 
Tpad 15 °C 56.7 62.9 65.9 68.9 70.2 
Tpad 16 °C 80.5 83.7 86.3 89.5 92.6 
Tpad 17 °C 86.5 89.4 92.5 95.7 100.0 
Tpad 18 °C 79.3 81.1 83.7 86.7 89.7 
Tpad 19 °C 80.0 82.2 85.0 87.7 91.0 
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Table 17: Locations of pad thermocouples 

 Pa
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ot

 

D
ep

th
 fr

om
 S

ur
fa

ce
 

(m
m

)  

Tpad 1 1 -27 3.225 
Tpad 2 1 -9 3.225 
Tpad 3 1 6 3.225 
Tpad 4 1 15 3.225 
Tpad 5 1 27 3.225 
Tpad 6 2 -27 3.225 
Tpad 7 2 6 3.225 
Tpad 8 2 15 3.225 
Tpad 9 2 27 3.225 
Tpad 10 2 17 11.163
Tpad 11 3 -27 3.225 
Tpad 12 3 15 3.225 
Tpad 13 4 -27 3.225 
Tpad 14 4 15 3.225 
Tpad 15 5 -27 3.225 
Tpad 16 5 6 3.225 
Tpad 17 5 15 3.225 
Tpad 18 5 27 3.225 
Tpad 19 5 17 11.163
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Figure 68: Location of pad thermocouples (pad 1 is the loaded pad) 
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APPENDIX D 

JOURNAL VS. BEARING IMPEDANCES AT 10200 rpm, 783 kPa 

 
Figure 69: Real and imaginary bearing impedances predicted relative to 
perturbations of the journal (jj) and bearing (bb) at 10200 rpm 783 kPa 

0 50 100 150 200 250 300 350
-0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 10

8

R
e(

H
ij) (

N
/m

)

A) Real Part of Impedance Coefficients

0 50 100 150 200 250 300 350
-0.5

0

0.5

1

1.5

2

2.5

3

3.5
x 108

Frequency (Hz)

Im
(H

ij) (
N

/m
)

B) Imaginary Part of Impedance Coefficients

 

 

Hxxjj

Hxyjj
Hyxjj

Hyyjj

Hxxbb

Hxybb
Hyxbb

Hyybb

 No Difference in Bearing vs. Journal Perturbed
Impedances at Low Frequencies Ω

Slight Difference in Bearing vs. Journal Perturbed Direct 
and Cross-Coupled Impedances at High Frequencies (Ω)
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