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ABSTRACT

Hardware Accelerator for MIMO Wireless Systems. (December 2011)

Pankaj Bhagawat, B.S., National Insitute of Technology, Tiruchirapally, India;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Gwan Choi

Ever increasing demand for higher data rates and better Quality of Service (QoS)

for a growing number of users requires new transceiver algorithms and architectures

to better exploit the available spectrum and to efficiently counter the impairments of

the radio channel.

Multiple-Input Multiple-Output (MIMO) communication systems employ mul-

tiple antennas at both transmitter and at the receiver to meet the requirements of

next-generation wireless systems. It is a promising technology to provide increased

data rates while not involving an equivalent increase in the spectral requirements.

However, practical implementation of MIMO detectors poses a significant challenge

and has been consistently identified as the major bottleneck for realizing the full

potential that multiple antenna systems promise. Furthermore, in order to make

judicious use of the available bandwidth, the baseband units have to dynamically

adapt to different modes (modulation schemes, code rates etc) of operations. Flexi-

bility and high throughput requirements often place conflicting demands on the Very

Large Scale Integration (VLSI) system designer. The major focus of this disserta-

tion is to present efficient VLSI architectures for configurable MIMO detectors that

can serve as accelerators to enable the realization of next generation wireless devices

feasible. Both, hard output and soft output detector architectures are considered.
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CHAPTER I

INTRODUCTION

Wireless communication has become one of the most important technological achieve-

ments of humankind in recent years. Not surprisingly, it has led to huge commercial

opportunities for a large number of entrepreneurs. The main reasons for this commer-

cial success is the advent of low cost end-user equipments, worldwide standardization

of the technology and affordable services. With the increasing usage of portable com-

puters and mobile phones capable of supporting multimedia content, wireless services

have attracted lot of attention.

Due to increasing popularity of multimedia applications the demand for high

data rates and better Quality of Service (QoS)is also increasing rapidly. This has

led to evolution of wireless standards that can support high data rates. In fact the

demand for data rates have been almost doubling every 18 months [1]. Unfortunately,

the data rates over a wireless communication channel are limited by the capacity of

channel. Further exacerbating the situation is the fact that even this capacity is

mostly unachievable owing to a variety of channel impairments. One way to increase

the data rate is by increasing the bandwidth of the wireless channel. However, this

approach is impractical because spectrum is scarce resource. Hence, meeting the

demand for higher data rates and better QoS requires new technologies algorithms

and techniques to make judicious use of the the available spectrum.

The journal model is IEEE Transactions on VLSI Systems.
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A. Approaches to Achieve High Data Rates and Better QoS

Important signal processing techniques developed in recent history that has enabled

us to achieve higher data rates with good QoS include:

• Multiple Antenna Systems.

• Transmitter Side Precoding.

• Strong Forward Error Control (FEC) Codes.

Multiple Antenna Systems : A Multiple-input multiple-output (MIMO) communi-

cation system [2] uses multiple antennas at the transmitter as well as at the receiver to

support the high data rate requirements of next-generation wireless systems. MIMO

technology is a promising approach for providing increased data rates without re-

quiring an equivalent increase in the bandwidth requirements. Fig. 1 [3] shows block

Fig. 1. Wireless Transceiver

diagram of a wireless transceiver for MIMO system. The technique achieves better
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data rates and QoS by using three types of gains, namely, array gain, diversity gain,

and multiplexing gain[2].

1. Array gain basically means that the receiver side is able to pick up a larger part

of the transmitted power. This leads to increased range of the communication

system.

2. Diversity gain refers to the improved QoS due to the fact that the receiver

gets multiple copies of the same data. This is an effective technique to counter

fading.

3. Multiplexing gain is achieved because the transmitter sends independent data

streams over the same channel at the same time. This leads to a linear increase

in the data rates.

A trade off between these three gains is possible. For instance, space-time codes usu-

ally does well to achieve more diversity. Whereas, beamforming technique is good for

exploiting array gain. On the other hand spatial multiplexing (SM) uses all available

antennas to possibly achieve the highest data rates that can be supported by the

channel. For this reason SM based MIMO systems have emerged as a very important

scheme to improve the data rates. SM achieves higher data rate by sending indepen-

dent data from each transmit antenna using same frequency band. For example, in

Fig. 2 the system sends two data symbols s1 and s2 at the same time and on the

same frequency band. The result is that the system can now support two data sym-

bols instead of just one (unlike a Single Input Single Output(SISO) system). Hence,

SM-MIMO boosts the data rate proportionately with the number of antennas. How-

ever, on the receiver side each antenna sees a weighted superposition (or interference)

of all the transmitted symbols. For example Rx1 sees s1h11 + s2h21 and Rx2 sees
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Fig. 2. SM Based MIMO System

s1h12 + s2h22, where the terms h11, h12 etc are the channel gains (assumed to be

known by the receiver) that distort the transmitted symbols. This interference needs

to be removed at the receiver to maintain the data fidelity.

Transmitter Side Precoding : The removal or cancellation of the interference can

be done at transmitter as well. This scenario can occur, for example, in a broad-

cast channel where a single base station intends to communicate with multiple users

Fig. 3. Each user ends up receiving not only its own data, but also sees the data

symbols intended for other users as unknown interference. This interference, if left as

is can cause a significant degradation in the system capacity. However, this interfer-

ence can be removed by precanceling it at the transmitter. One way to precancel the

interference is by using Dirty Paper Precoding (DPC) scheme [4]. Besides broadcast

channels, DPC finds applications in numerous other situations; inter-symbol inter-

ference (ISI) channels, cooperative networks, and digital watermarking to name a

few.
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Fig. 3. Multi User Scenario in a Broadcast Channel

Low Density Parity Check (LDPC) Codes : LDPC codes [5] are known to achieve

information rates very close to the capacity of the channel when iteratively decoded.

Other competing FEC codes such as Turbo codes [6] are also know to be performing

close to the capacity. However, the decoders for LDPC codes have arithmetic com-

putation requirements that are an order of magnitude less than Turbo decoders for

similar bit-error rate (BER) performance. Algorithms for decoding LDPC codes also

have the advantage of being inherently parallel. In principle, this permits the use

of multiple parallel processing elements to increase the throughput of the decoder.

For these reasons the LDPC codes are increasingly finding applications in upcoming

wireless standards.

B. Hardware Implementation Perspective

Fig. 4 depicts how the complexity of algorithms vs. processing power will likely

evolve with newer generation of wireless standards. To further improve usage of the



6

Fig. 4. Algorithmic Complexity Vs. Available Processing Power [7]

spectrum the transmitter at the basestation the changes the transmission modes (e.g.

modulation schemes, number of antennas, code rates) on the fly. This entails that

the baseband hardware must be flexible enough to support runtime configuration.

The general purpose processors allow the designers maximum flexibility with

lowest efficiency (in terms of throughput/area and power consumption). Whereas the

ASICs offer most efficient solutions but is not flexible. DSPs, Application Specific

Instruction Processors (ASIP) and FPGA offer a mix of efficiency and flexibility

Fig. 5.

Because of increased availability of silicon area it is now economical to build a

network of function specific processors that can work in unison on a same chip. Het-
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Fig. 5. Architectural Flexibility Vs. Hardware Efficiency [8]

erogeneous MultiProcessor System on Chip (MPSoC), which have multiple function

hardware accelerators governed by a central processor, is becoming popular approach

for realizing future wireless systems. One possible MPSoC for baseband processing

is depicted in Fig. 6. Because a wide range of functional units can be integrated on

a single chip it is now possible to realize a highly flexible solution which is far more

efficient than DSP or ASIPs. This approach also leads to improved productivity of

engineers as the design process is more decentralized [9].

In a large system on chip power considerations are important not just because of

battery life concerns but also due to concerns about the chip reliability. Smaller tran-

sistors leads to higher density and the circuit can be run at higher speeds. Although

smaller transistors consume lesser power, the increased density and speed leads to

higher thermal density which can cause the chip to fail. Another important design
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Fig. 6. Heterogeneous MultiProcessor System Approach

criteria from a power perspective is the energy efficiency (J/bit) of the design. The

energy efficiency is important for the battery life of devices, whereas, the thermal

distribution of the chip is critical for faultless functioning of the chip.

C. Motivation and Contributions

The implementation complexity of the detector for MIMO systems has been consis-

tently identified as the major bottleneck for realizing the full potential that multiple

antenna systems promise. For this reason this dissertation deals with VLSI architec-

tures for MIMO detectors.

Implementation Challenges for MIMO Detectors: The practical implementation

of MIMO systems is constrained by the high complexity of the detection algorithms

at the receiver. This is primarily due to the need for complex arithmetic and the
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complicated data flow requirements of the underlying algorithms. The MIMO detec-

tors can be broadly classified into two classes: 1) Linear detectors, and 2) Non-linear

detectors. Linear detectors take a suboptimal approach in demapping the received

symbols. They can be implemented in a systolic like manner with constant through-

put and good scalability w.r.t. the antenna size and modulation scheme. The de-

tection algorithms in this domain are highly suitable for practical implementation

and will likely meet the exacting throughput requirements of next generation wireless

systems. Linear detectors, however, suffer from poor BER performance which makes

them unattractive from wireless system designer’s point of view. On the other hand

non-linear detectors have complicated data-flow, variable throughput, and unfavor-

able scalability. They, however, provide close to optimal BER performance and are

hence more suitable from algorithmic point of view. The need for close to optimal

BER performance and flexibility requirements of the future wireless standards makes

the detector design even more challenging. This is because flexibility and throughput

often place conflicting demands on the designer. The contributions of this dissertation

are as follows:

Architectural evaluation of hard decision detector: We consider three different

architectures for MIMO detectors. Three architectures considered are: 1) Sequential

2) Staggered and 3) Parallel. We present detailed hardware architectures and their

ASIC implementation. We compare the architectural figures of merit of Sequential

and Staggered architectures under two situations, first, when the detection process

(carried out in multi-core setup) has variable runtime and second when a fixed runtime

budget is enforced via scheduling. We show that enforcing/scheduling runtime budget

per block of data causes deterioration in the efficiency of the architectures. The

staggered architecture achieves significantly higher throughput than the sequential

one, and half the throughput of the parallel approach (using an area of much less
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than half of the parallel implementation). Part of this work can be found in [10].

Runtime configurable hard detector: We developed a flexible architecture capable

of configuring itself to process QPSK, 16-QAM, and 64-QAM modulation schemes.

This architecture is further modified to support variable number of antennas, i.e., for

2x2, 3x3, and 4x4 MIMO systems. The architecture has a systolic like flow with ex-

cellent scalability. The degree of pipelining can be changed with little redesign effort.

Another important feature of the architecture is that it does not incur any latency for

configuring itself. Moreover, for a given operating mode its throughput is completely

predictable. These qualities makes it much easier to integrate in a wireless MPSoC.

Additionally, the detector provides close to optimal Maximum Likelihood(ML) solu-

tion leading to close to the best attainable BER [11].

We also present a constraint aware architecture space exploration for the 802.11n

standard [12]. We carry out extensive architectural space exploration to address the

issues of power consumption, area for the configurable detectors. Ultimately, we come

up with two designs that target low area and low power respectively while meeting

the demands of the baseband time constraints.

Runtime configurable soft decision detector: Soft decision basically means that

the detector provides the FEC decoder(like LDPC) with the confidence of its deci-

sions. This leads to significant improvement in the BER performance of the whole

system. The process of getting soft decisions is even more complicated than get-

ting hard decisions. We present a configurable detector architecture for in a high

order(4x4) MIMO wireless system. It is a customized architecture that provides soft

values with systolic-like data and control flow. The detector is able to switch be-

tween three different modulation schemes (QPSK, 16-QAM, and 64-QAM) without

any configuration latency. Multiple detector cores can be stacked to achieve very high

throughput. We also derive a lower complexity algorithm soft decision algorithm. We
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then present a systolic like for this algorithm. A Single detector core achieves constant

throughput of 215Mbps (even for a 64QAM 4x4 MIMO system).

D. Organization of Thesis

The organization of the dissertation is as follows:

Chapter II provides background on the MIMO based wireless systems. We ex-

plain how various MIMO techniques achieve higher data rates and better QoS. We

also describe basic algorithms used for detection in a MIMO system. We describe

the system model that will used in this work. In Chapter III we present compara-

tive study of three architectures and their ASIC implementation results. First half

of the chapter provides description of the architectures and second half is devoted

to their evaluation in practical scenarios. Chapter IV deals with the configurable

MIMO detector with close to optimal error rate performance. We present the de-

tailed architecture and its FPGA and ASIC implementation results. This chapter is

concluded by considering a design case study for detectors in a 802.11n WLAN system

that require on the fly configuration. Chapter V deals with systolic like architectures

for soft output MIMO detection. We present a detector that can be configured to

support three different modulation schemes. In this chapter we present a lower com-

plexity algorithm and corresponding architecture for soft detection. Finally, Chapter

VI concludes the dissertation.
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CHAPTER II

BACKGROUND

This chapter begins with providing a broad perspective of a MIMO wireless system.

We explain various techniques available to extract better diversity and maintain QoS.

We also explain the MIMO system model that is under consideration and introduces

the notations that will be used. A brief description of the fundamental algorithmic

choices for MIMO detection is also provided. System and hardware design consider-

ations are discussed.

A. MIMO Wireless Systems: An Overview

The increased number of antennas in a MIMO wireless system leads to increased

spatial diversity. Diversity basically means that independent versions of signals are

transmitted so that the probability of all of them being corrupt is reduced. Spatial

diversity means that these multiple copies of signals are transmitted from elements

in space i.e. by using multiple antennas.

Techniques such as Maximum Ratio Combining [13] or Space-Time-Block-Coding

[13] allows for using multiple antennas at either the transmit or the receive side. In the

beginning the aforementioned techniques provided only receive or transmit diversity.

These methods successfully achieved diversity gain by providing multiple copies of

same data leading to improved BER. Diversity gain is quantified as a ratio of the

SNR with diversity to SNR without diversity. This is reflected as the slope of the

BER curve in a log-scale. It has been shown that the the maximum diversity gain is

N, if N independent copies (using N antennas) of a given signal are transmitted [14].

These techniques basically use diversity to combat the effects of fading.

However, using multiple antennas at the receive and transmit allows us to ob-



13

tain spatial multiplexing gain . Spatial multiplexing gain means that if M transmit

antennas and N receive antennas are used, recovery of min(M,N) different signals is

possible. Important implication of this is that higher data rates can be achieved with-

out requiring additional bandwidth. A comparison of some schemes at the algorithmic

level can be found in [15] and [9]. We reproduce it in Fig. 7.

Fig. 7. Performance of Basic MIMO Techniques, [15], [9]

B. MIMO System Model

In this section we start by explaining the MIMO-OFDM model. Orthogonal Fre-

quency Division Multiplexing (OFDM) technique is used in wideband communication

systems to combat the multipath (which leads to frequency selective channel) fading.

Wideband MIMO systems Fig. 8 can be considered equivalent to a set of narrowband

MIMO systems Fig. 9 if OFDM is also used. This equivalence simplifies the analysis

of the system and make it easier to design receivers.
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Fig. 8. Wideband MIMO (OFDM) System

Hence, we will consider a simple narrowband system model as the basis for the

discussions in this work. In the system under consideration, as shown in Fig. 9,

the term MT and MR denotes the number of transmit antennas and the number

of receive antennas respectively. In this work we will assume MR=MT=4 unless

otherwise specified.

MIMO Channel: The equivalent baseband model of the MIMO wireless chan-

nel can be expressed as the following relation.

y = Hs + n (2.1)

where y=[y1, y2, ..., yMR
]T is a MR × 1 received vector, s=[s1, s2, ..., sMT

]T is MT × 1

transmitted vector and will be referred to as a MIMO symbol in the sequel, n is MR×1

zero mean complex Gaussian noise vector, and H is a MR×MT -dimensional complex

matrix. The (i, j)th element, hij, of the matrix H denotes the complex channel gain

from the jth transmit antenna to the ith receive antenna. For the simulations in this
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Fig. 9. Equivalent Narrowband MIMO System

work, an i.i.d. Rayleigh fading channel model is assumed. Hence, the entries of H

are chosen independently as zero mean complex Gaussian random variables.

• Transmitter: Each entry si (i = 1, 2, ..MT ) in the MIMO symbol s, is drawn

from a set Ω of cardinality η. In general the members of the set Ω are complex

numbers with their real and imaginary parts of the form {−√η + (2k − 1)}

where k=1,2,...
√
η. This scheme is called as a η-ary Quadrature Amplitude

Modulation (QAM) and si are called QAM symbols. The QAM symbols are

generated by mapping(using look-up table, for instance) a group (of size log2 η)

of binary bits onto a symbol(a complex number) from Ω.

• Receiver: The received signal vector y is picked up by the MR antennas at
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the receiver. The objective of the MIMO detector is to estimate ŝ of s based

on the the observation of y along with the knowledge of H. The knowledge of

H can be obtained by using some training (e.g. using pilot symbols).

C. Important Available Algorithms

In this section important algorithms that are available for MIMO detection are de-

scribed.

1. Linear Detection

Linear detectors attempt to find the solution by multiplying the inverted channel ma-

trix H with the received vector y. More specifically, the estimate ŝ of the transmitted

vector s is computed by:

ŝ = Gy (2.2)

where G is an equalization matrix. However, equation (2.2) provides the uncon-

strained estimate. This basically means that the result of equation (2.2) is a complex

number and not a QAM symbol(QAM symbols are constrained to a limited set of

constellation points). To get to the constrained solution the detector carries out a

slicing operation. In slicing operation, the detector compares the real and imaginary

parts of ŝ from equation (2.2) with the appropriate thresholds to find out the closest

QAM symbol.

The complexity of this algorithm is dominated by computation of the equalization

matrix. In packet based systems, where data is transmitted in packets (consisting of

several MIMO symbols) that experience constant H. This means that the equalization

matrix needs to be computed only once per packet. This not a big problem if packet

size is large. However, if the packet size is small then the overall complexity will
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increase as the receiver has to invert the matrix more often. The detection of all the

MIMO symbols in a packet can then use same estimation matrix and the detector

only has to carry out the slicing operation (which relatively simple operation).

There are two important algorithms in this class of detection scheme: Zero Forc-

ing (ZF), and Minimum Mean Squared Error (MMSE). Basically both these algo-

rithms make use of channel matrix inversion and vector multiplication with the re-

ceived vector y. The ZF detector uses the pseudo-inverse of H given by:

G = (HH)−1HH (2.3)

where HH , is the hermitian of the matrix H. The corresponding ZF estimate ŝZF of

the transmitted vector s is then given by:

ˆsZF = (HH)−1HHy = s + ñZF (2.4)

The effective channel matrix H̃ is now an identity matrix I. This means that the

interference from the other streams is completely eliminated as desired. However, the

major disadvantage of this algorithm is that the term ñZF leads to noise enhancement.

In case of MMSE detection the estimator matrix G is mathematically expressed

as:

G = (HH +N0I)
−1HH (2.5)

This algorithm essentially tries to minimize the error E‖sZF − s‖2. This algo-

rithm tries to strike a balance between interference and noise enhancement. The

problem with this algorithm is that accurate estimate of N0 is needed.

These detectors are low complexity and their VLSI architectures have highly

regular data and control flow. This makes it very attractive in terms of meeting the

throughput and power consumption requirements.However, both algorithms suffer
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from poor BER because of noise enhancements and remaining interference. Moreover,

the process of channel inversion is prone to numerical errors. Therefore, the results

from these detectors are found to be severely sub-optimal BER performance and is

unable to exploit the full potential of a MIMO wireless system.

2. Successive Interference Cancellation

SIC is a recursive algorithm which provides a BER performance that is between

the linear detectors and optimal detectors. The complexity of SIC detectors is also

increased in comparison to linear detectors, but is far less than the brute force optimal

detector. SIC detector proceeds in serial fashion by first detecting a symbol then

subtracting an estimate of the detected symbol’s contribution to the received vector.

Thus once a symbol is detected it is considered as interference for other symbols and

is canceled out.

For mathematical description of SIC, consider the model given by equation (2.1).

The algorithm first initializes y1 = y and defines H i = [hi, hi+1, ...hMT
], where ele-

ments hi denotes the ith column of the matrix H. The estimation matrix for H i

is denoted by G(i). Beginning with i = 1, SIC goes through following steps until

i = MT :

x̂i = G
(i)
i y

(i) (2.6)

ŝi = Q(x̂i) (2.7)

y(i+1) = y(i) − ŝihi (2.8)

where Q(.) is the slicing function. The vectors G
(i)
i are called nulling vectors and are

simply the ith row of the corresponding estimator matrix G. The estimator matrix

G can be one of the two as described earlier. This leads to ZF-SIC or MMSE-SIC

depending on which estimator matrix is chosen.
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SIC algorithms do not completely exploit the available diversity in the system.

Moreover, they suffer from error propagation problems. This happens when an error

is made in detecting the first symbol. Due to recursive nature of the algorithm, this

error in decision is propagated to other symbols in the vector. Though better than

the linear detectors, this algorithm is still sub-optimal with increased implementation

complexity and increased power consumption.

3. Maximum Likelihood Detection

It has been shown that the optimal maximum likelihood (ML) estimate ŝml of s is

given by equation (2.9):

ŝml = arg min
s∈ΩMT

‖y−Hs‖2 (2.9)

Basically the above equation means that the optimal estimate ŝ of the transmitted

vector ŝ is the one that minimizes the euclidean distance between the received vector

y and the transformed transmitted vector Hs. Straightforward way to solve (2.9)

is by computing the distances for all possible combinations of Hs and declaring the

combination that gives minimum distance as the estimate ŝ.

An important advantage of this algorithm is that there is no matrix inversion

involved. The absence of matrix inversion greatly aids the hardware implementation

of the algorithm. Major disadvantage of this algorithm is that the search space

grows very quickly with the modulation scheme (i.e. η), and the number of transmit

antennas (MT ). If η-ary modulation scheme is used in a MT ×MR MIMO system the

total possible combinations for s is ηMT . This search space quickly becomes too large

to be processed in real-time in today’s computing technologies.
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4. Sphere Decoding

This is also algorithmically optimal detection method. It constraints the search space

for transmitted symbol vector. This algorithm has shown promise at being able

to handle strong algorithmic requirements (BER Performance) with reduced design

complexity and power requirements. One way to efficiently search for ŝml is to evaluate

only a small subset of all the possible vectors. This can be achieved by noting that

H can be triangularized using QR decomposition: H = QR, where, R is an upper

triangular matrix, and QH is the Hermitian of a unitary matrix Q. Hence, the cost

function given by equation (2.9) can now be rewritten as [16],

ŝ = ‖y−Hs‖2 = ‖ŷ−Rs‖2, and ŷ = QHy (2.10)

Equation 5.3 can be further expanded as shown in equations (5.4),(5.5),and (5.6).

di(s
(i)) = di+1(s(i+1)) + |ei(s(i))|2 (2.11)

|ei(s(i))|2 = |ci+1(s(i+1))−Rii.si|2 (2.12)

ci+1(s(i+1)) = ŷi −
MT∑

j=i+1

Rij.sj (2.13)

The quantity |ei(s(i))|2 will be called the Incremental Euclidean Distance (IED), and

the term di(s
(i)) will be called Partial Euclidean Distance (PED) for i > 1, and

Euclidean Distance (ED) for i = 1. The fact that R is upper-triangular ensures that

each term on LHS of equations (5.4),(5.5),and (5.6) depends only on the current level

i, and the history of the path to reach that level(note that in equations (5.6), the

index j runs from i + 1 to MT ). Because the PED’s depend only on s(i+1), they

can be associated with corresponding nodes in a η-ary tree with MT levels. The

computation of the terms d1(s(1)) can then be interpreted as a traversal of the tree

from the root(i = MT ) to the leaf (i = 1)corresponding to s. The estimate can now
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be obtained by searching the leaf with the smallest ED and returning the path from

the top level to that leaf as ŝml. The complexity of this tree search can be greatly

reduced by noting that IEDs are always positive, and hence if the PED of a node

exceeds a predefined threshold (called radius) the subtree rooted at that node can be

excluded from further search. This approach is commonly known as sphere decoding

[16].
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CHAPTER III

VLSI ARCHITECTURES FOR MIMO DETECTION:A COMPARATIVE

ANALYSIS

In this chapter we present ASIC implementations of three different architectures for

MIMO detectors. Three architectures considered are: 1) Sequential 2) Staggered

and 3) Parallel. We also compare the architectural figures of merit of sequential and

staggered architectures under two situations, first, when the detection process (carried

out in multi-core setup) has variable runtime and second when a fixed runtime budget

is enforced per block of data. We show that enforcing/scheduling runtime budget

per block of data causes deterioration in the efficiency of the architectures. The

parallel architecture provides the highest throughput, albeit at a much higher cost.

The sequential architecture provides the lowest throughput at the lowest cost. The

throughput and the cost of staggered design lies in between parallel and sequential

architectures.

Although low complexity algorithms such as VBLAST [17] are suitable for hard-

ware implementation they suffer from significant degradation in their error rate per-

formance. A family of algorithms under active consideration relies on a tree based

search that is more complex but provide excellent BER. Two of the most notable

approaches in this family are the Sphere Decoding (SD) algorithm [18], which is a

Depth First Search (DFS) based algorithm, and the K-best algorithm which is a

Breadth First Search (BFS) based algorithm [19]. Authors in [20] provide two ASIC

implementations of the SD algorithm. Implementation of K-best algorithm has been

reported in [21]. The SD implementation in [20] takes a sequential approach, whereas

in [19],[21] the authors take a highly parallel approach to MIMO detection. Both

approaches have their merits and demerits. For instance, being serial in nature the
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implementation of the SD algorithm requires smaller silicon area than the K-best al-

gorithm, but has highly variable throughput. Hence, it is difficult to integrate it into

the overall communication system. On the other hand, the K-best algorithm provides

a fixed throughput while utilizing a much higher silicon area due to extensive sorting

operations [21]. In general, the tree based algorithms offer a good trade-off between

performance and complexity [22]. A low complexity algorithm has been reported in

[23]. This algorithm, called the Fixed-Throughput Sphere Decoder (FSD), relies on

a special ordering of the columns of the channel matrix, which results in a signifi-

cantly reduced search space. Further simplification is proposed in [24], that simplifies

the complexity associated with the column ordering, this algorithm has been names

Conditionally Ordered Successive Interference Cancellation (COSIC). The resulting

implementation has a very simple data path and is able to achieve close to Maximum

Likelihood (ML) solution. The authors in [23] have presented an implementation of

fully parallel architecture (BFS based) to implement the algorithm, which provides

very high and fixed throughput. However, a fully parallel approach consumes large

area and incurs many redundant computations. A sequential architecture [24], in

conjunction with radius reduction technique reduces redundant computations and

consumes less silicon real estate, but has lower throughput than the parallel scheme.

In [20], ASIC implementations of different architectures have been compared.

A. MIMO Detection

1. Model for Spatial Multiplexing

For convenience we will reproduce the information from chapter II. The baseband

system model for a MIMO system with MT transmit and MR receive antennas can
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be given by equation (3.1) [25].

y = Hs + n (3.1)

where y=[y1, y2, ..., yMR
]T is a MR × 1 received vector, s=[s1, s2, ..., sMT

]T is MT × 1

transmitted vector (will be referred to as a MIMO symbol in the sequel), n is MR× 1

zero mean complex Gaussian noise vector, and H is a MR×MT -dimensional complex

matrix. The (i, j)th element, hij, of the matrix H denotes the complex channel gain

from the jth transmit antenna to the ith receive antenna.

Each entry si (i = 1, 2, ..MT ) in the MIMO symbol s, is drawn from a set Ω of

cardinality η. In general the members of the set Ω are complex numbers with their

real and imaginary parts of the form {−√η + (2k − 1)} where k=1,2,...
√
η. This

scheme is called as a η-ary Quadrature Amplitude Modulation (QAM) and si are

called QAM symbols. The QAM symbols are generated by mapping a group (of size

log2 η) of binary bits onto a symbol(a complex number) from the set Ω.

The objective of the MIMO detector is to estimate ŝ of s based on the the

observation of y along with the knowledge of H. It has been shown that the optimal

or the ML estimate ŝml of s is given by equation (3.2) [25]:

ŝml = arg min
s∈ΩMT

‖y−Hs‖2 (3.2)

A straightforward way to compute ŝml is to evaluate equation (3.2) for all possible

s and pick the one that minimizes R.H.S of equation (3.2). This exhaustive search

approach is impractical even for moderately sized MIMO systems. For a 4x4 16-QAM

MIMO system this approach would require evaluating 164 combinations of s before

a decision on ŝml can be made.
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a. Sphere Decoding

One way to efficiently search for ŝml is to evaluate only a small subset of all the

possible vectors. The sphere decoder achieves this by searching for the potential

candidates for ŝml within a sphere of radius r. This can be mathematically expressed

as:

‖y−Hs‖2 ≤ r (3.3)

The Sphere Decoding (SD) algorithm works by transforming the original problem

as a tree search, wherein any branch of the tree with a path metric greater than a

predefined threshold (or radius r) is pruned. This helps in reducing the search space

greatly. The SD algorithm tends to have exponential complexity at low SNRs and

polynomial complexity at higher SNRs [26], [27]. This algorithm, however, does

provide the optimal (ML) estimate ŝ of s.

The hardware architecture and its implementation for SD has been studied ex-

tensively in [16]. One of the major problems with SD is that it takes highly variable

amount of time to converge to a solution. This attribute is undesirable in practical

situation, as it makes the integration of the detector hardware very difficult in an

overall system. Several algorithms have been proposed to reduce (or completely get

rid) of this variability. Popular among them include K-Best, FSD/COSIC. These

algorithms, however, do not provide the exact ML solution. But as shown in afore-

mentioned references, their BER performance is very close to the optimal. This makes

them very attractive vis-a-vis hardware implementation.

b. K-Best and FSD/COSIC Algorithms

K-Best differs from sphere decoder algorithm in that it retains a fixed number(K) of

branches (or nodes) at each level of the tree. The path with least cumulative metric



26

at the leaf level is declared as the estimate ŝ. This non-recursive nature of K-best has

important implications for its hardware implementation. Major advantage of K-best

is its constant throughput and ease of designing pipelined architecture (owing to its

non-recursive nature). However, this algorithm tends hit error floor as SNR increases

[28]. This loss can be partially recovered by increasing the value of K for higher SNRs.

Also, K-best involves sorting requiring large amount of data flow which is generally

very power hungry. Some sort free versions of K-best algorithms have been proposed

recently [29],[30].

The FSD algorithm obviates the need for sorting. It is shown in [31] that this

algorithm also achieves full diversity. Moreover, its Bit Error Rate (BER) performance

is very close to the ML performance. The COSIC algorithm differs from FSD only

in its preprocessing stage. Empirical studies suggest that COSIC algorithm also

performs close to ML, and performs well in higher SNR regimes as well (unlike K-best

algorithm). Moreover, FSD/COSIC both can provide fixed throughput depending on

how the hardware architecture is designed. FSD/COSIC offers more avenues for

pipelining and parallelism than SD or even K-best. Hence, we choose to use COSIC

algorithm for our detector.

B. Hardware Architectures

In this section we begin by reviewing the mathematics of the MIMO detection prob-

lem. This is followed by a brief review of FSD/COSIC algorithm, and then we present

the sequential, fully serial, and parallel architectures to implement it. Equation (3.2)

can be simplified by triangularizing H using QR decomposition: H = QR, where,

R is an upper triangular matrix, and QH is the Hermitian of a unitary matrix Q.

Hence, the cost function given by equation (3.2) can now be rewritten as shown in
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(3.4) [22],

ŝ = ‖y−Hs‖2 = ‖ŷ−Rs‖2, and ŷ = QHy (3.4)

Equation (3.4) can be further expanded as shown in (3.5)-(3.7).

di(s
(i)) = di+1(s(i+1)) + |ei(s(i))|2 (3.5)

|ei(s(i))|2 = |ci+1(s(i+1))−Rii.si|2 (3.6)

ci+1(s(i+1)) = ŷi −
MT∑

j=i+1

Rij.sj (3.7)

The quantity di(s
(i)) is called the cumulative metric. The quantity |ei(s(i))|2 is

called the incremental metric. The vector s(i) = [si, si+1, ..., sMT
] in equation (3.5)-

(3.7) denotes a partial vector symbol candidate. Term di(s
(i)) will be called Partial

Euclidean Distance (PD) for i > 1, and Euclidean Distance (D) for i = 1. Because

the PD’s depend only on s(i+1), they can be associated with corresponding nodes in

a η-ary tree with MT levels. Alternatively, the computation of the terms di(s
(i)) can

be interpreted as a traversal of the tree from the root to the leaf corresponding to

s, where (i = 1) corresponds to leaf nodes. The estimate can now be obtained by

searching the leaf with smallest D and returning the path from the top level (i = MT )

to that leaf as s. The PD’s and D’s in equation (3.5) are equivalently referred to as the

node’s metric in the sequel. To reduce the search space aggressive pruning of the tree

is needed. Sphere decoding does this by pruning a branch of the tree whenever the PD

of a node on the branch exceeds a certain limit (radius r). Appropriately setting the

radius r restricts the number of nodes visited in the search, since di(s
(i)) in equation

(3.5) is monotonically increasing. Hence any node that has a PD more than r need

not be considered any further. This is called the Sphere Criterion or SC [20]. This

effectively prunes the whole sub-tree rooted at that node, thus greatly reducing the

search space. Fixing the value of r is in general difficult. If r is too small then we
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may have to restart the decoder as no point may be found. Similarly if r is too large

the decoder may visit a very large number of nodes leading to excessive latency. To

counter this problem a scheme known as radius reduction [25] is used, wherein the

initial value of r is set to infinity, and is updated whenever the D of a newly evaluated

leaf is less than the current value of the radius. This scheme works best if the nodes

are processed in an ascending order of their PD’s (i.e. the most promising candidates

are processed first). This scheme is called Schnorr-Euchner (SE) ordering [20].

1. FSD/COSIC Algorithm

The FSD algorithm is essentially based on reordering the columns of the H matrix

such that the tree search is simplified [22]. The idea is to evaluate all candidate

QAM symbols for the stream with lowest SNR and only the best child of parents

for subsequent levels. The reason for this is that the weakest stream has largest

probability of error and because all candidates are considered this error probability

does not influence the decision later. For subsequent levels, this algorithm follows

strongest stream first philosophy to achieve best possible BER performance. On a

tree this translates to computing PD’s for all nodes at the top level, but only the

best child (child with least PD/D) is considered for lower levels. For a 4x4 system

with 16 QAM, this entails computing PD’s/D’s for a maximum of 16x4=64 nodes,

significantly reducing the search space. Fig. 10 shows the tree structure for FSD

(thick lines) for the case of 3x3 with 4 QAM modulation. Each circle represents a

computation of the equations from equation (3.5)-(3.7). As mentioned, earlier all

nodes at level i=3 are evaluated and only the best child is considered for levels i=2

and i=1.

Here we use COSIC algorithm to demonstrate the performance of architectures.
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Fig. 10. Simplified Tree Structure for Detection

2. Parallel, Sequential and Staggered Detector Architectures

In this section we describe different architectures with that can be used to implement

COSIC. In Fig. 11 we show the serial, sequential [24] and fully parallel [23] archi-

tectural dataflow. The numbers next to the nodes indicates the clock cycle in which

that node was processed.

a. Sequential Data Flow

The sequential architecture consists of two units. The first unit is capable of com-

puting the top level (i = 4) PD’s in ascending order and perform radius check (check

for SC violation). The second unit concurrently computes PD’s/D’s for i = 1, 2, 3

(second unit is idle for the first clock cycle) and performs radius check. PD’s/D’s
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are computed using a Metric Computation Unit(MCU). The sequential architecture

makes use of the radius reduction scheme and node pruning. The nodes labeled

4,7,...can potentially update the radius value. Note that in sequential scheme the

radius update may happen every 3 cycles (after first 4 cycles). The major drawback

of this architecture is that it provides a highly variable throughput. The latency for

detecting one vector symbol is dependent on the channel conditions and noise level.

Fig. 11. Dataflow for Architectures
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b. Parallel Data Flow

In parallel architecture, all η nodes at every level are evaluated in parallel using η

units. Each unit is capable of computing PD’s/D’s, but does not perform a radius

check. After reaching level i = 1, a compare/select logic picks the path with least D,

and declares it as ŝ. This scheme has a fixed throughput because it takes 4 cycles

to compute the estimate ŝ irrespective of channel conditions and noise level. The

parallel architecture does not do any node pruning, however, it incurs redundant

computations leading to higher energy consumption.

c. Staggered Data Flow

The staggered architecture has a schedule that is staggered in time. One copy of

MCU is deployed at each level. The staggered computation is explained as follows.

In the first cycle a node is evaluated at level 4 (labeled 1 in the Fig. 11). In second

cycle a node at level 4 and level 3 are evaluated (labeled 2 in the Fig. 11). From the

4th cycle onwards one node (subject to SC) from each level is evaluated (resulting in

a potential radius update at every cycle). This approach is a hybrid between the fully

serial and the fully parallel architecture, in that it initiates a new breadth and depth

search every cycle (Fig. 11). It does not deliver a fixed throughput in contrast to the

fully parallel implementation of the COSIC algorithm, but has variability which is

much less than serial and sequential architecture due to per cycle radius update. Like

sequential architecture, the staggered architecture too follows the radius reduction

technique with pruning, thus reducing redundant computations in comparison to the

parallel architecture. Also, after the first four cycles, potentially a new leaf node is

reached which leads to faster radius reduction. This results in reduced variability of

runtime.
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3. Architecture and Implementation Details

In this subsection, we describe the architecture and implementation of details for stag-

gered architecture. Details for sequential and parallel architectures can be deduced

easily from this.

Fig. 12 shows high level architecture for the staggered decoding scheme. It has

four units MCU4 through MCU1 operating in a pipeline. The task of MCU4 is to

generate QAM symbols (s4) and their metric in ascending order (using the enumera-

tion scheme in Fig. 13) and to perform the radius check. The outputs of MCU4 are:

SC4 (a ’1’ indicates an SC violation at i = 4), s4 , the QAM symbol currently under

consideration, and d4(s(4)) , the PD associated with s4.

Fig. 12. High Level Architecture for Staggered Sphere Decoding

MCU3, MCU2, and MCU1 differ from MCU4 in that they do not enumerate

the QAM symbols. Instead they find the best child of the input node, compute the

associated PD (or D), and perform the radius check (MCU1 does not perform a radius
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check, since it is implicitly done in the “Radius update” block).

4. Metric Computation Unit

Each node in Fig. 12 represents a Metric Computation Unit (MCU) that computes

metrics di(s
(i)) using equations (3.5)-(3.7). For i = 4, 3, 2, 1, the equations equations

(3.5)-(3.7) can be expanded as follows:

d4(s(4)) = |y4 −R44.s4|2 (3.8)

d3(s(3)) = d4(s(4)) + |y3 −R34.s4 −R33.s3|2 (3.9)

d2(s(2)) = d3(s(3)) + |y2 −R24.s4 −R23.s3 −R22.s2|2 (3.10)

d1(s(1)) = d2(s(2)) + |y1 −R14.s4 −R13.s3 −R12.s2 −R11.s1|2 (3.11)

Fig. 13. Enumeration Scheme for 16-QAM

Notice that the number of computations required in equations (3.8)-(3.11) de-

pendent on the level i of the tree. The largest number of computations are required at



34

i = 1 i.e. at the leaf nodes equation (3.11). Fig. 14 shows an MCU which can handle

computations at i = 1. Note that for, the parallel,and sequential architectures the

same MCU is used to compute metrics for different values of i. This can be achieved

by adapting the MCU to perform the computations of equations (3.10),(3.9) and

(3.8). For the sequential architecture, however, the MCU has to be adapt between

levels i = 1, 2, 3 only, since at the i = 1 level we have a dedicated unit to compute

PD’s.

Fig. 14. Architecture for MCU1

It is clear from equations (3.8)-(3.11), that the adaptation can be carried out

simply by input reassignment and by setting some of the operands to zero. In the
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sequel we will refer to MCU configured for a level i as MCUi. Physically the MCU

is the same; it is merely reconfigured to operate at different levels i. When the MCU

is configured to evaluate nodes at level i > 1 many adders remain idle during the

computation. The terms in equations (3.8)-(3.11) involving multiplications of the

form Rij.si can be computed using shift and add operation. This is possible because

the real and imaginary parts of si can only take values for example {-3,-1, 1, 3} for

16-QAM.

5. Enumeration

To process the children nodes of a node in ascending order of their PD’s, the distances

of ci+1 from the scaled (by Rii ) QAM points need to be ordered. A straightforward

way to do this is to directly compute all distances and sort them. However, this

approach is not efficient as only one node from the top level is needed at a time.

A more efficient way to achieve this is through direct enumeration of QAM sym-

bols based on the location of ci+1 in the constellation. Many enumeration techniques

exist in literature. In [25] the author proposes a method based on dividing the constel-

lation into concentric circles [25]-[20]. Recently a new technique has been proposed

in [24],[33]. The basic idea is to divide the constellation (Fig. 13) in a number of

columns (four in case of 16-QAM). The order of points in these columns is already

known given the location of ci+1. For the example shown in the Fig. 13, the order is

shown on the left hand side of the constellation diagram. This order is identical for

every column. Also notice that only one element in SF and MF will change at a time.

For instance, in the SF at time t = 1 is 2, 6, 10, 14. Since the minimum distance

symbol is ’10’, the SF is updated at t = 2 to 2, 6, 9, 14.The set of best QAM symbols

(or simply symbol) from every column will be called a Symbol Frontier or SF. The

SF can at most have 4 elements in it. Using symbols in the SF their PD’s can be
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computed using equations (3.8)-(3.11). The set of PD’s of the elements in the SF will

be called Metric Frontier or MF. The best symbol (closest to ci+1) out of all 16 sym-

bols can now be found by picking the symbol associated with the minimum element

in the MF. Note that the SF and hence MF keep changing with time. Note that only

the location of the imaginary part of ci+1 is required to compute the order of symbols

in each column. Symmetry of the QAM constellation can be exploited to reduce the

number of decisions we have to make in order to locate ci+1 in the constellation. For

instance if ci+1 was in the third quadrant of the constellation, we can ignore the signs

of its real and imaginary part to get c′i+1. The SF can be computed for c′i+1. To get

back the SF associated with the original ci+1 we simply change the signs of real and

imaginary parts of the SF elements. This way we only need to compare the imaginary

part of ci+1 with Rii, and 2.Rii. Also note that for i = 4, ci+1 = ŷ4.

6. Simplified Norm Computation

The MCU as shown in Fig. 14 has a block labeled “Norm”. The Euclidean norm or

l2 norm involves a squaring operation which requires multipliers. Multipliers are in

general expensive in terms of hardware cost. In [20] it has been shown that the use

of simplified norms leads to significant reduction in hardware cost with some BER

degradation. The Euclidean norm in equation (3.5) can be replaced with l1 or l∞ norm

to simplify the implementation of equations (3.5)-(3.7). The l1 norm approximation

is given by:

di(s
(i)) = di+1(s(i+1)) + |Re{ei(s(i))}|+ |Im{ei(s(i))}| (3.12)

and the l∞ norm approximation is given by:

di(s
(i)) = max(di+1(s(i+1)), |Re{ei(s(i))}|, |Im{ei(s(i))}|) (3.13)
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where Re and Im denotes real and imaginary parts. The use of l1 norm is of

particular interest as it causes the BER to degrade only by about 0.4dB [20]. The

use of l∞ norm on the other hand causes about 1.4 dB loss [20]. Both these norms

have almost the same hardware complexity [20]; however the algorithm takes much

longer to converge when the l1 norm is used [20],[22]. In the rest of this chapter, we

will use the l1 norm due to its better BER.

7. Architecture of MCU4

Fig. 15 shows the detailed structure of MCU4. As mentioned earlier, MCU4 outputs

symbols and associated PD’s in their ascending order. To this end it follows the

enumeration strategy outlined earlier. Recall that knowing the location of ci+1 in the

constellation tells us the order of the QAM points in each column. Once the location

of ci+1 is known, the SF is computed using a bank of PCk blocks (k=1,2,3,4). A bank

of Partial Distance Units (PDUs) operates on the SF to compute MF. A PDU block

computes the distance of ci+1 from a scaled QAM symbol. The compare select logic

picks the best symbol based on the minimum PD. Fig. 16 shows details of the PCk

block. It consists of a combinational logic block (F), which outputs the imaginary

parts of the QAM symbols in signed magnitude format. It has four outputs of three

bits each. These outputs correspond to the unique pattern of imaginary parts of

the four symbols in a column depending on location of ci+1 in the constellation.

These imaginary parts are finally concatenated with the real part (notice that in

each column the symbols have identical real parts). The counter labeled cntrk, is a

3 bit counter whose two LSBs select the best available symbol in column k. Note

that we need a three bit counter in order to identify the exhaustion of a column.

Since the column has only 4 symbols in it, a value of 4 (counter starts from value

’000’) indicates that all the symbols in that column have been exhausted. Hence,
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Fig. 15. Details of MCU4

whenever counter value is 4 a signal fck is generated. This signal alerts the PDU to

saturate its output. This essentially excludes symbols from that column from further

consideration. The outputs of a PCk block (a frontier symbol from kth column FSk

and a control signal fck,) are fed to a PDU. The PDU computes the associated PD

of the FSk. The compare/select logic block along with the demultiplexer identifies

which frontier symbol needs to be replaced. Fig. 17 shows details of a PDU. The PDU

at the top level differs with the one shown in Fig. 17 in that there is no di+1(s(i+1))

input, since d5(s(5)) = 0. Also, for PDUs at levels i < 4 there is no fck input, and no

multiplexer M2. This difference is indicated in Fig. 17 by means of dotted lines.
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Fig. 16. Details of PCk k=1,2,3,4

Fig. 18. Details of MCUk k=1,2,3,4

8. Architecture of MCU3,MCU2,MCU1

The top level architecture of MCU3 through MCU1 is shown in Fig. 18. MCU3

through MCU1 differ from MCU4 in that they don’t have to explicitly enumerate

QAM symbols in sorted order; all that is needed to be done by MCU3-MCU1 is to

find the best child. Finding best child essentially means “quantizing” ci+1 (Fig. 13)
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Fig. 17. Details of the PDU

to the nearest QAM symbol. Fig. 19 shows the details of the “Quantize” block.

Fig. 19. Details of the Quantize Block

Let yi = αi + jβi, si = ai + jbi, Rij = uij + jvij, and ci+1 = xi + jzi. Substituting

these expressions in equation (3.8) and after some algebraic manipulations equation



41

(3.8) can be written as (for i=1,2,3):

xi = αi +
MT−i∑
k=1

[(−ui,i+k)(ai+k) + (vi,i+k)(bi+k)] (3.14)

zi = βi +
MT−i∑
k=1

[(−ui,i+k)(bi+k) + (−vi,i+k)(ai+k)] (3.15)

Note that for i = 4 xi = αi, and yi = βi. Since ci+1 is also a complex number we

need to quantize it along both the real and imaginary dimensions. For this purpose

we use the X-block (for the real part) and the Z-block (for the imaginary part).

These blocks compute xi and zi using equations (3.14),(3.15). Note that here we

have exploited the symmetry of the QAM constellation. First we find the magnitude

of real and imaginary parts of ci+1, so that the new c′i+1 = |xi| + j.|yi| is now in the

first quadrant. Using the sign bits xs and zs along with the location of the c′i+1 we

can find the location of ci+1. This function is carried out by F’ block which is a very

simple combinational block which directly outputs the QAM symbol (indicated by ai

and bi in the Fig. 19 in signed magnitude format. Fig. 20 shows more details of the X

block. The X-block carries out computations according to equation (3.14). Product

terms in equation (3.14) are implemented using shift and add function (shown by the

dotted boxes). The multi-operand additions are performed by an arithmetic Sum of

Products (SOP) block [40]. The Z-block is structurally similar to the X-block with

inputs reassigned, as can be seen from equation (3.15).

Sequential architecture implementation: Recall that this architecture has two

MCU’s. The first MCU computes the PD’s of children of the root node in their

ascending order. The second MCU serially evaluates nodes at levels i = 3, 2, 1. Both

the units are capable of carrying out a radius check. The MCU at the top level

stops evaluating nodes whenever the SC is violated. The second MCU continues
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Fig. 20. Details of the X-block

until all the nodes evaluated by the first unit are processed. Notice that the top

level MCU is exactly same as that in the staggered architecture. The second MCU

has to be reconfigured according to the level of the node it is computing. Fully

serial architecture implementation: In this architecture there is only one MCU that

is shared between all the levels of the tree. Notice that the first four cycles are

spent to compute the SF/MF. Hence, the first node at the top level is available for

computation only at the 5th clock cycle. Notice that in this scheme the unit has to

be reconfigured for i = 4, 3, 2, 1.

Fully parallel architecture implementation: In this architecture, there are 16

MCU’s operating concurrently. These MCU’s evaluate all 16 nodes at a given level

in a single cycle. In this architecture the MCU’s also have to be reconfigured for

i = 4, 3, 2, 1. The difference between the MCU’s in the parallel and the staggered
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Fig. 21. BER for Suboptimal Norms and Finite Bit Precision

architectures is that in the parallel architecture, the enumeration is not carried out.

The quantization operation (of ci+1), however, is still needed for levels i = 1, 2, 3 in

the parallel architecture.

C. Discussion

In this section we present the implementation results and analyze the architectures

in situations that occur in real-life baseband systems. We start by noting that both

sequential and staggered architectures have variable throughputs, something which

is undesirable in practical systems. On the other hand, parallel architecture provide

constant throughput at a much higher cost per unit area.
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The implementation of the aforementioned architectures was done using a cus-

tomized Compare/Select and Comparator blocks and standard cell based design in

100 nm technology [34]. The customized Compare/Select block was simulated in

SPICE3 [35] to obtain its delay and power. The customized Comparator block is

implemented as designed in [39]. Hence the area, delay and power of the comparator

as reported in [39] (for a 100 nm technology) are used as such. For the standard cell

based design, the delay was computed from a sensitizable timing analysis tool (Sense)

[36] and the power was computed using a script written in the SIS [37] logic synthesis

environment. This script computes the re-convergence adjusted signal probability,

which in turn is used to compute the dynamic power consumption of the design. For

both designs, the active area was computed and used to estimate the area of the

architectures discussed above. We chose wordlengths of elements of coefficients as

11bits for 16-QAM and 12bits for 64-QAM. The fixed point vs floating point BER is

compared in Fig. 21.

1. Building Blocks

Compare Select Circuit: The Compare/Select block uses the Longest Prefix Matching

(LPM) circuit designed in [38]. The logic behind the Compare/Select block is illus-

trated in Fig. 22 with an example. Consider the problem of finding the maximum

among three 4 bit operands as shown in part (a) of Fig. 22. The LPM looks each

column of bits at a time (starting from the MSB) and eliminates the operand that

has a ’0’ in that column, if anyone of the other bits is a ’1’. Hence in part (b) of

Fig. 22 operand ’0101’ is eliminated. Hence, only the first two operands contend.

Since both these operands have the same bit in column 2 (part (a) of Fig. 22), the

LPM looks for the next column. In column 3, the second operand has a ’0’ and hence

gets eliminated. Thus the LPM declares the first operand as the largest value.
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Fig. 22. Compare Select Operation

Sum-of-Product(SOP): The remainder of the design is standard cell based, im-

plemented in 100 nm technology. The multi-operand addition is done using a Sum-

of-Product (SOP) design [40]. The SOP is better than a tree of adders, since it has

a single carry chain. The SOP block consists of 3 steps - Partial Product generation,

Partial Product reduction using half and full adders and a single final 2 operand

binary adder. The final adder is implemented using a fast Kogge-Stone adder [41].

2. Detection in Multicore Setup:

Due to the ever increasing throughput requirements placed on the baseband processor

multiple detector cores will have to be used to support it. This arrangement is shown

in (Fig. 23) where we employ m cores for detection. The aim is to analyze the area

efficiency (throughput/area) as we increase m. The exact value of L changes with

different standards, for example, 802.11n has 64 tones, LTE has 512 tones.
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Fig. 23. Multicore Detection for MIMO-OFDM Systems

Fig. 24. Throughput/Area Efficiency for Sequential Arch
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Some other standards (such as DVB) have number of tones running into several

thousand. As a representative number we choose L=500 and study the architectural

efficiency as m=1,2,4,5,10.Fig. 24 shows the behavior of the sequential architecture

as m increases. The figure essentially shows the area efficiency (throughput/area) for

16/64 QAM. The numbers close to the plotted points indicates the throughput/core.

We see that the of the area efficiency drops by ≈ 13.6% for 16-QAM as m goes

from 1 to 10 (the throughput/core drops from 275.62Mbps to 238.05Mbps). In case

of 64-QAM the drop is higher at ≈ 23%which can be explained by the fact that

higher modulation schemes has larger search space and higher runtime variability.

Similar behavior is observed for staggered architecture (Fig. 25). The area efficiency

for 16-QAM drops by ≈ 12.5% (the throughput/cores drops to 362.93Mbps from

414.75Mbps). For 64-QAM the corresponding drop is ≈ 22.8%.

Fig. 25. Throughput/Area Efficiency for Staggered Arch
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Block Early Termination (BET): The variable throughput is a major problem as

far as practical systems are concerned. To alleviate this problem, the authors of [22]

have proposed a scheme called Block Early Termination or BET. Using this scheme,

a runtime constraint is established for a block of vector symbols. The runtime is

decided by dynamically allocating a limited number of cycles to processing a vector

symbol. A scheduling algorithm is used to distribute the available run time over the

vector symbols in the block. The strategy allocates a maximum runtime equivalent

of clkmax(n) to the nth vector symbol in a block according to

clkmax(n) = Nmaxclkave −
n−1∑
i=1

clk(i)− (Nmax − n)MT (3.16)

where clk(i) denotes the actual number of clock cycles used up for the ith vector

symbol. The idea behind equation (3.16) is that a vector symbol is allowed to use up

all of the remaining run time within the block up to a safety margin of (Nmax−n)MT

visited nodes, which allows to find at least the zero-forcing decision feedback solution

for the remaining vector symbols [22].

For BET Nmax = 50 (corresponding to m=10), and clkave = 9, 19 for the stag-

gered and the sequential architectures respectively for 16-QAM. These parameters

were chosen such that the BER performance (Fig. 26) for each algorithm is very close

to that of the unconstrained (at BER of 10−3). Corresponding numbers for 64-QAM

are clkave = 15, 23.

Based on Table 1, we note that the Staggered approach achieves about half the

throughput of the parallel approach, using about a fifth of the area of the paral-

lel scheme. Also, the throughput of the Staggered approach is twice that of the

Sequential approach. In terms of the power per decoded symbol vector, the Stag-

gered approach consumes twice the power as Sequential approach. The throughput

per area, the Staggered approach is slightly better than the Sequential approaches.
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Fig. 26. BER Performance of the Sequential,and Staggered Architectures Under Re-

source Constraint

Whereas, the Sequential approach is slighly better when is comes to throughput per

unit power(calculated at a SNR of 12dB). Sequential and staggered both have better

architectural efficiencies than the parallel architecture.Results for 64-QAM are shown

in Table 2, here we see similar behaviour in that the sequential architecture is slightly

better when it comes to throughput per unit power. Whereas staggered architecture

is slightly better for throughput per unit area. Fig. 27 shows the power consumption

profile of the staggered as well as sequential architecture as a function of SNR.
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Fig. 27. Power Consumption Per Vector Symbol as a Function of Eb/No

Table 1. Implementation Results (16-QAM)

Arch. fclk Throughput Area T/mW T/Area

(MHz) (T)(Mbps) (µm2) (Mbps/mW) (Mbps/µm2)

Stag. 179.53 319.16 2143.83 325.67 0.15

Seq. 179.53 151.18 1288.33 335.95 0.12

Par. 161.55 646.20 10350.88 118.29 0.06
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Table 2. Implementation Results (64-QAM)

Arch. fclk Throughput Area T/mW T/Area

(MHz) (T)(Mbps) (µm2) (Mbps/mW) (Mbps/µm2)

Stag. 138.33 221.33 4804.35 240.58 0.046

Seq. 138.33 144.34 3248.61 262.44 0.044
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CHAPTER IV

CONFIGURABLE HARD OUTPUT DETECTOR

MIMO systems is a key technology for future high speed wireless communication stan-

dards like 802.11n,LTE, and WiMax. To make judicious use of the spectrum these

standards require support for multiple modulation and coding schemes (MCS). Hence,

the receiver hardware should be able to accommodate these schemes preferably on a

single configurable architecture. The difficulty of implementing MIMO detectors is

further compounded by the dynamic configurability requirements. In this chapter, we

present a configurable architecture for MIMO detection and its FPGA implementa-

tion. The design is able to configure on the fly which is one of the prime requirements

for future wireless standards. This chapter also presents detector architecture space

exploration for 802.11n standard.

A. Configurable Detector

The choice of algorithm and architecture has a significant impact on the final hardware

complexity and configurability. The algorithm should be chosen such that it leads

to a highly pipelined and parallel architecture. BER performance of the algorithm

crucial as well. The algorithm/architecture should be amenable to dynamic configu-

ration. One implementation that supports configuration is given in [44]. However, the

authors in [44] use VBLAST based detection scheme that incurs significant error rate

degradation. We chose to use COSIC algorithm [24] for our detector because it can

be implemented in a highly parallel and pipelined manner, has fixed throughput(for

a given modulation scheme), delivers close to maximum likelihood (ML) performance

and is amenable to runtime configuration to detect QPSK, 16-QAM and 64-QAM

modulation schemes.
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1. Hardware Architecture to Detect QPSK,16-QAM and 64-QAM Symbols

Fig. 28 shows the high level architecture of detector. The choice of 4-way paral-

lelism was made because the smallest constellation supported on our decoder is QPSK

(which has four symbols,η=4). If this architecture is pipelined with m stages then it

has an initial latency of m+η/4 clock cycles. Since the COSIC tree has η paths for a

η-ary modulation scheme the proposed architecture takes η/4 clock cycle to detect a

η-ary modulated MIMO symbol. At each level of the COSIC tree (Fig. 10) we need to

Fig. 28. High level architecture

compute the di(s
(i)) metrics using equations (3.5)-(3.7). Each of these equations are
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computed by dedicated MCUs. Fig. 29 shows the microarchitecture of the MCU at

level 1. The upper box in the Fig. 14 evaluates equation (3.7). Recall from chapter III

that there is no need to implement the product terms in equation (3.7) using a mul-

tiplier. This product can be achieved by shift and add operation, because the QAM

constellation points only take on a finite number of integer values (e.g. in 16-QAM

scheme the real and imaginary part of sjε{−3,−1, 1, 3}). The block named slicer

Fig. 29. Metric Computation Unit of Level 1

picks the nearest QAM symbol to ci+1 as shown in Fig. 30(a). The slicing operation

involves independently comparing the real and imaginary parts of ci+1 with appro-
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Table 3. Comparison with Existing Designs

Ref. QPSK 16-QAM 64-QAM Dynamic BER

Config.

[21] No Yes No No Close to ML

[23] No Yes No No Close to ML

[20] No Yes No No ML

[10] No Yes No No Close to ML

[44] Yes Yes Yes Yes Sub-Optimal

[45] No Yes No No Close to ML

[Ours] Yes Yes Yes Yes Close to ML

priate decision thresholds. The decision thresholds are given by (−(
√
η− 2) + 2j)Rii,

where j is an integer such that 0 ≤ j ≤ (
√
η − 2). The detector configures the slicer

based on Modulation Format (MF) bits, which indicates the modulation scheme of

the current MIMO symbol. The control unit of our design is a simple Finite State

Machine (FSM) which takes in MF[1:0] (00=>QPSK, 01=>16-QAM,and 10=>64-

QAM) and generates a signal ’endbit’ every (η/4) clock cycle. This signal indicates

the completion of detecting one MIMO symbol. The waveforms in Fig. 31 shows the

relation of the control signals with respect to the MIMO symbol. From Fig. 31 it can

be seen that the detector has systolic like qualities and provides uninterrupted de-

tected symbols. The design of the control unit is independent of m, this implies that

very little redesign effort is required in case one wants to achieve very high through-

put by increasing m(subject to latency constraint). The parallelism factor can also

be increased (with corresponding changes in the control logic) to further increase the

throughput. Table 3 shows a qualitative comparison of existing architectures for the

detector.
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Fig. 30. Slicer
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Table 4. FPGA Implementation Details

Target FPGA Device xc4vfx60 (Xilinx Virtex-4)

Number of 4 input LUTs 10,745

Number of Slice Flip Flops 851

Multipliers None

Maximum Frequency 35MHz

Decoding Rate: QPSK 280Mbps

Decoding Rate: 16-QAM 140Mbps

Decoding Rate: 64-QAM 52.5Mbps

Control Logic Overhead 0.3%

MATLAB is used to simulate bit accurate model of the decoder. We chose eleven

bit fixed point quantization(internal precision is maintained). Based on the MAT-

LAB model, a detailed hardware architecture is developed. The RTL coding and

synthesis is done using Verilog HDL and Xilinx ISE 8.1 Embedded Development Kit

respectively. Xilinx Virtex-4 [xc4vfx60] device is used for mapping the synthesized

netlist. Floorplanning, Place and Route(P&R) of the design is done using the in-

tegrated Xilinx Floorplanner and automatic P&R tool. The input test vectors are

generated by the fixed-point MATLAB model. The hardware design is validated by

carrying out simulations on these test vectors with the Post-P&R simulation model

using ModelSim PE 6.3c. Table 4 shows the implementation results.

2. Hardware Architecture to Detect QPSK,16-QAM and 64-QAM Symbols for

2x2, 3x3, and 4x4 MIMO Systems

Fig. 32(b) shows the high level architecture of the detector. It consists of a systolic-

like array MCUs along with a Find Minimum Unit (FMU). The output of the array
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Fig. 31. Output and Control Waveforms

is fed to the FMU (Fig. 33), which iteratively computes the final estimate ŝ by picking

the best path in the COSIC tree.

Fig. 34 shows the array nodes in some more details. The incoming signals from

the left are provided by the local memory. Instruction instr = {MF,NS,NA} in-

dicate the modulation format and end of the current MIMO symbol processing (or

arrival of new symbol), and number of antennas respectively. For example, the out-

put of the node at level 4, which is {s4, d4(s4), instr}, is then fed to the nodes at

the lower level of the tree. Fig. 34 shows the details of nodes at various levels of

the tree. The node at level 2 (MCU2) operates on {s4, s3, s2, d2(s2), instr} to pro-

duce {s4, s3, s2, s1, d1(s1), instr} Fig. 35. FMU then operates on the output of the

nodes at level 1 and iteratively computes the best MIMO symbol estimate,which is

{s4, s3, s2, s1}.

At the start of the detection process, a QAM symbol (s4) from the constellation

is picked. In the next clock cycle next QAM symbol is picked and so on. This
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Fig. 32. Tree Structure for FSD Algorithm and Systolic-Like Array Architecture
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Fig. 33. FMU
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Fig. 34. Node Details
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Fig. 35. Micro-Architecture of MCU2

continues until all the QAM symbols are exhausted. Once all symbols from the

constellation are exhausted, processing on the next MIMO symbol can be started

immediately. The initial latency is incurred only during the processing of the first

MIMO symbol, and is hidden during the following MIMO symbols. This initial

latency depends on the number of pipelines inserted in the array. Since the COSIC

tree has η candidate MIMO vectors to be evaluated(for an η-ary modulation scheme),

and because the detector incurs no configuration latency, it takes η clock cycles to

detect an η-ary modulated MIMO symbol in steady state. The throughput of the
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detector can be very easily computed as follows. We are considering a n × n, where

n=1,2,3,4 MIMO system, and an η-ary QAM symbol is constructed using log2(η) bits.

Hence, per detected MIMO symbol there are nlog2(η) bits, the throughput will then

be (nlog2(η)/η)f bps, where f is the clock frequency. Hence, higher throughput is

achievable by introducing more pipeline stages. Also, multiple detector cores can be

used to increase the throughput further.

Because the information (data and control signals) flow is unidirectional the ar-

chitecture can be deeply pipelined. Only constraint on number of pipelines is the loop

in the FMU (Fig. 33). We introduced 10 pipeline stages it(and re-timed) in the whole

architecture(array+FMU). The detector core can operate at 500MHz clock frequency.

As a result the proposed detector design is able to achieve very high throughput

even for high order modulation scheme like 64-QAM (187.5Mbps), whereas, QPSK

and 16-QAM are detected at 1Gbps and 500Mbps respectively. The basic aim of a

communication system is to increase the throughput with constellation size. In the

presented design the throughputs decrease with increasing constellation size. Also,

multiple detector cores can meet the most stringent throughput requirements. For

example, the 802.11n standard requires the throughput to be 346.7Mbps, 231.1Mbps,

and 115.6Mbps for 64-QAM, 16-QAM and QPSK respectively [12]. Clearly just two

detector cores can meet the requirements for all the modulation schemes for 802.11n.

Table 5 shows the ASIC implementation estimates of our detector and how it com-

pares with existing solutions.In table opt. means optimal and c-opt. means close to

optimal.
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Table 5. Comparison

Ref. Supported BER Area Power Tech. Through-

put

Modes (mW) (nm) (Mbps)

[42] 16-QAM c-opt. 50KGE 473 250 169

[43] 16-QAM c-opt. 91KGE 626 350 52

[48] QPSK opt. 685KGE N/A 180 28.8

[49] 16-QAM c-opt. 175KGE 407 180 160

Ours nxn,QPSK c-opt. 18KGE N.A. 45nm 250.n

nxn,16-QAM c-opt. 18KGE N.A. 45nm 125.n

nxn,64-QAM c-opt. 18KGE N.A. 45nm 46.87.n

where n=2,3 or 4.

B. Configurable MIMO Detectors for 802.11n WLAN: A Design Case Study

While searching for an appropriate architecture attention needs to be paid to appli-

cation requirements such as required throughput,limits on latency, and configuration

between different modes of operations given the requirements of the standard. Im-

portant hardware design metrics such as area and power needs to be optimized over

all the operating modes of the detector. Here we carry out extensive architectural

space exploration to address the issues of power consumption,area, and configura-

bility between different modes of operation while meeting the standards throughput

requirement. Ultimately, we come up with two designs that target low area and low

power respectively. The design estimates are based on 45nm technology library. We

do not include the intermediate estimate unit in the analysis here, this analysis can

be easily extended to the design that includes the intermediate estimate unit.



65

Fig. 36. MIMO-OFDM Detection Interface Timing

1. 802.11n Standard Requirements

In this section be begin with a brief discussion about the throughput limitations

imposed by the 802.11n standard. We then develop a strategy to evaluate various

architectural parameters that meet the requirements of the standard. In MIMO-

OFDM systems, such as 802.11n, OFDM is used to mitigate the affect of multi-path

fading. There are 52 data tones (or sub-carriers) to be processed at the receiver.

Each tone carries a MIMO symbol, hence the detector has to process 52 MIMO

symbols in the stipulated time of 3.6µs(as imposed by the standard). This fact is

shown pictorially in Fig. 36. All 52 data tones are modulated using same modulation

scheme (e.g. on the cell phone side), thus the detector does not have to switch between

modes within an OFDM symbol. Fig. 37 shows the array detector that can process

m candidate vectors in parallel. Furthermore, each data path in the array can be

pipelined into k parts. The objective is to find m and k such that power and area

is minimized as much as possible subject to the throughput constraint. Since, the

decoder is configurable this optimization has to be over all the supported modes.
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Fig. 37. High Level Architecture for FSD Based MIMO Detection

2. Throughput Planning

First we will establish the relationship between the time taken, Tp, to process 52

MIMO symbols with m, k and η. Since the COSIC tree has η candidate vectors to

be evaluated(for an η-ary modulation scheme), it takes dη/me clock cycles to detect

an η-ary modulated MIMO symbol in steady state (where d.e is the ceil function).

Hence, Tp is given by equation (4.1).

Tp = 52. dη/me .freq (4.1)

We assume that the critical delay of data-path after introducing k pipelines(and

re-timing) reduces to Cd/(k+1). This assumption has been validated empirically for

k=0 to 10, using Synopsys re-timing utility . equation (4.1) thus becomes:

Tp = 52. dη/me .Cd/(k + 1) (4.2)

where the factor 52 corresponds to the number of data tones, Cd is the combina-
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tional delay of the un-pipelined data-path (or equivalently un-pipelined array). Since

802.11n requires that the processing of all 52 tones be over in 3600ns, Tp ≤ 3600ns.

Using above discussed model we show (Fig. 38) how Tp behaves in the architecture

space(with m,k) for QPSK, 16QAM, and 64QAM (η=4,16 and 64 resp.). Fig. 38

also shows the constraint imposed by the 802.11n standard on the maximum time

alloted to process all MIMO symbols. Clearly, all the points above the constraint

plane are unacceptable as they wont meet the throughput criteria. In practice we

keep the constraint plane at 3000ns (rather than 3600ns), this is to accommodate

15-20% pessimism factor.

3. Power, Delay, and Area Estimation

The power consumed comprises mainly of the core power (due to switching/leakage of

logic gates), and due to clock network. The technology mapped verilog netlist is ana-

lyzed for core power using Synopsys Design/Power Compiler. The technology library

used was a composite current source(typical) based 45nm library from Nangate. The

power consumed due to clock depends on number of flops and the geometry of the

clock network. The clock network was modeled as a symmetrical mesh, the global

clock network power is estimated using HSPICE. The local clock power is estimated

using capacitive load due to the number of flip-flops driven by an appropriately sized

local clock buffer(number of flops can be found from the mapped gate level verilog

netlist).

Synopsys Design Compiler is use to estimate the critical delay of the array (re-

timed circuit depending on the number of pipeline stages). Area estimates are also

provided by Design Compiler.
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Fig. 38. Tp vs (m,k) and Constraint Due to 802.11n

4. Architectural Exploration for Low Area

In this subsection we describe our exploration procedure for low area, based on (m,k)

constrained to throughput requirements of 802.11n. Fig. 38 shows the exploration

space w.r.t m and k. The points below the constraint plane are called admissible

points. Since 64-QAM is computationally most expensive(it takes most number of

clock cycles), the admissible points for 64-QAM are admissible for 16-QAM and QPSK

too. Hence, to find (m,k) for area optimized decoder we only need to meet throughput

requirements for 64-QAM with minimum hardware. Fig. 39 shows variation of area

of the decoder with m and k. The values of m=3 and k=8 meets the throughput

requirement of 64QAM while occupying least area (Fig. 39).
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Fig. 39. Area vs. Tp for 64-QAM

5. Architectural Exploration for Low Power

Exploring the same space for power is more complicated, because different modula-

tion schemes have different power consumption profiles while achieving the required

throughput. Power consumption has to be optimized over all modes of operation.

This means we have to pick (m,k) such that the aggregate power is minimized. We

define aggregate power as Powagg=Prob(QPSK) ∗ Pow(QPSK)+Prob(16QAM) ∗

Pow(16QAM)+Prob(64QAM) ∗ Pow(64QAM), where Prob(QPSK) is the prob-

ability of the decoder being reconfigured to process QPSK MIMO symbols, and

Pow(QPSK) is the power consumed by it while processing a QPSK MIMO sym-

bol etc. Since there is no a-priori knowledge of the probabilities, we assume them to

be equally likely,i.e. Prob(QPSK)=Prob(16QAM)=Prob(64QAM)=1/3.

Powagg is a function of (m,k) as shown in Fig. 40. However the point correspond-
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Fig. 40. Aggregate Power vs m,k

ing to the least power, does not meet the throughput criteria. Fig. 40 shows the points

(using stems) that meet the throughput criteria. Hence, (m,k) for least power, needs

to be searched among these points. Hence, in our power optimized design uses m=4

and k=5 corresponding to 9.7mW of power.

In Table 6 we present implementation results of our two designs (area and power

optimized).
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Table 6. ASIC Implementation Details

Design Parameters Area Optimized Power Optimized

Target Tech. Library Nangate 45nm PDK Nangate 45nm PDK

Pipeline Stages (k) 8 5

Parallelism (m) 3 4

Gate Equivalent 58.2k 67.7k

Power Consumption 11.91mW 9.7mW

Frequency: QPSK 38.8MHz 18MHz

Frequency: 16-QAM 116.3MHz 71.8MHz

Frequency: 64-QAM 426.6MHz 287.3MHz

Throughput

Requirement: QPSK 115.6Mbps 115.6Mbps

Throughput

Achieved: QPSK 155Mbps 144Mbps

Throughput

Requirement: 16-QAM 231.1Mbps 231.1Mbps

Throughput

Achieved: 16-QAM 310.13Mbps 287.2Mbps

Throughput

Requirement: 64-QAM 346.7Mbps 346.7Mbps

Throughput

Achieved: 64-QAM 465.38Mbps 430.95Mbps
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CHAPTER V

CONFIGURABLE SOFT OUTPUT DETECTOR

Detectors can be classified as: hard output and soft output. In terms of the packet

error rate (PER) or equivalently the frame error rate (FER), the soft detectors per-

form much better than their hard counterparts [25]. Soft detectors based on linear

techniques such as zero-forcing(ZF) and Minimum Mean Squared Error(MMSE) are

low complexity but incur high penalty in BER/FER performance. Non-linear soft

detectors like Successive Interference Cancellation(SIC) are low complexity too, but

provide only modest gain over their linear counterparts. Moreover, neither ZF nor

SIC based receivers do well in a wireless channel with limited diversity. Authors in

[57] provide excellent comparative study of various detectors in different channel con-

ditions. From [57] it can be concluded that more sophisticated algorithms (non-linear)

need to be considered for practical systems due their superior performance(especially

in channels that offer little or no diversity). To get close to the optimum error rate

performance researchers have proposed many algorithms, that do non-exhaustive tree

search, such as List Sphere Decoder (LSD)[51], however, its complexity is still too

large, and is very hard to map onto a parallel, pipelined architecture. Also, LSD con-

verges to a solution in a random fashion making it difficult to integrate in a practical

system. On the other hand, algorithms based on Breadth First Search (BFS) such

as K-best, provides constant throughput but involves sorting operation which is very

expensive, especially for higher order modulation schemes like 64-QAM. One of the

reported implementation of a soft MIMO detector that supports 64-QAM is presented

in [50].The soft detection is more complex process than the hard detection. There

have been a few high speed configurable hard detectors presented in open literature

[11],[44]. The configurable soft detectors have received little attention so far, some
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of the notable ones are presented in [52],[53]. The detector in [52] uses Layered OR-

thogonal Detection (LORD) algorithm [54], while the one in [53] uses a linear MMSE

approach to generate soft output. LORD outperforms the lower complexity MMSE

based soft detector by a significant margin in a wide variety of channel conditions and

MCS [54]. Authors in [55] also provides an excellent comparison of various detectors

for various MCS and channel conditions; and concludes that the linear detectors are

attractive only for channels with high diversity, low code rate and low order mod-

ulation schemes. In this chapter we present a configurable systolic-like architecture

that can switch between three modulation schemes QPSK, 16-QAM, and 64-QAM

on-the-fly. We also present a lower complexity algorithm and systolic like architecture

for soft detection.

A. Soft Detection

For the sake of readability we briefly redescribe the system model before moving on

to soft detection.

Channel Model and MIMO detection: As mentioned earlier for a MIMO system

with MT transmit and MR receive antennas can be expressed as shown in equation

5.1.

y = Hs + n (5.1)

where y=[y1, y2, ..., yMR
]T is a MR × 1 received vector, s=[s1, s2, ..., sMT

]T is MT × 1

transmitted vector, n is MR×1 zero mean complex Gaussian noise vector, and H is a

MR ×MT -dimensional complex matrix. In this paper we will assume MT = MR = 4,

unless specified otherwise.

Each entry si (i = 1, 2, ..MT ) in the vector s is an η-ary Quadrature Amplitude

Modulated (QAM) symbol. Each QAM symbol is constructed by mapping log2 η data
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bits onto a complex number. The objective of the MIMO detector is to estimate ŝ

of s based on the the observation of y along with the knowledge of H. It has been

shown that the optimal or the Maximum Likelihood (ML) hard estimate ŝml of s is

given by equation 5.2 [25]:

ŝml = arg min
s∈ΩMT

‖y−Hs‖2 (5.2)

The above equation can be further simplified to get equations (5.3)-(5.6).

ŝml = arg min
s∈ΩMT

‖ŷ−Rs‖2, and ŷ = QHy (5.3)

Above equation can be further expanded as shown in equations (5.4)- (5.6).

di(s
(i)) = di+1(s(i+1)) + |ei(s(i))|2 (5.4)

|ei(s(i))|2 = |ci+1(s(i+1))−Rii.si|2 (5.5)

ci+1(s(i+1)) = ŷi −
MT∑

k=i+1

Rik.sk (5.6)

The above expressions enables the detector to compute a hard estimate of the

transmitted signal. On the other hand the objective of a soft MIMO detector is

to compute the reliability associated with each hard output bit. This reliability is

expressed in terms of the Log-Likelihood Ratio (LLR) of each bit, and is defined as

L(xi,j) = lnP (xi,j=1|y)

P (xi,j=0|y)
, where xi,j is jth bit in label of the ith constituent QAM symbol

of s. Max-Log-Map approximation of this can be expressed as [25]:

L(xi,j) ≈ min
s∈X(0)

i,j

{d(s)} − min
s∈X(1)

i,j

{d(s)} (5.7)

where d(s)=||y −Hs||2, and the variables X
(0)
i,j and X

(1)
i,j are sets of vector, with jth

bit in the label of ith QAM symbol in s, as 0 and 1 respectively.

One of the two terms in equation (5.7) will always correspond to the ML hard
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estimate because its (i, j)th label has to be either a 1 or a 0. If we denote the ED

d(ŝml) with just dml then equation (5.7) can be rewritten as [51]:

L(xi,j) = dml − dml
i,j , x

ml
i,j = 0 (5.8)

= dml
i,j − dml, xml

i,j = 1 (5.9)

where dml
i,j is the ED of the best path with (i, j)th bit that is complement of the (i, j)th

bit of the ml path. It is clear that to evaluate equation (5.7), we need to compute

ŝml, dml, and dml
i,j for i=1,2,..MT and j =1,2,...,log2η [50].

1. Layered Orthogonal Detection Algorithm

Fig. 41. The Algorithm Flow

The LORD algorithm has been proposed in [54]-[56]. In [56] the authors focus

on the iterative turbo-MIMO systems. However, in the same paper they have shown

that LORD (with some enhancements) performs very well even in a non-iterative

MIMO system (which is the system we consider here).
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LORD searches for ŝml, dml, and dml
i,j in a much reduced space (Fig. 41). It

computes the LLRs for individual QAM symbols sent from four different transmit

antennas. It does this by generating four sets (each of cardinality η) of paths and

then searching for the required terms in these sets. A set of paths is constructed by

evaluating all the children of the root node and best child of these nodes down the

tree as shown. For example, to compute LLRs for the QAM symbol s4 (transmitted

from antenna no.4) it constructs the set ψ1 of paths and searches for the LLR terms

within it. Note that ŝml is now actually a scalar ŝ4
best, dml is dbest, and dml

i,j is dbesti,j (we

use superscript best because it is the best in the constructed set and not necessarily

ML). It then permutes the columns of H matrix such that s3 appears at i=4 of the

tree, this entails another QRD (QRD2) computation. The above explained process

is then repeated to get the LLRs for s3. After four such iterations, LLRs for all the

QAM symbols in s can be computed.

Authors in [56] have also suggested metric-recycling enhancement that signifi-

cantly improves its error rate performance. The main observation is that the LLR

terms computed in one set may be improved in another set. For example, if dbest and

dbesti,j are associated with s4 = a in ψ1, it is possible that s4 = a (at i = 3) can occur in

the ψ4 with better dbest and/or dbesti,j . In this case the algorithm uses the better EDs

to compute the LLRs. This essentially means that the enhanced LORD searches for

the LLR terms in the augmented set ψ = ψ1 ∪ ψ2 ∪ ψ3 ∪ ψ4, and not surprisingly its

error rate performance improves.
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B. On-the-Fly Configurable Soft Detector

1. Detector Architecture

Fig. 42. High Level Architecture of the Detector

Fig. 42 shows the high level architecture of the proposed decoder. It consists of

a array of tightly coupled heterogeneous processors arranged as shown. Each node

processor(which is basically an MCU) is fed the data (ŷi, Rik, sk) via dedicated flip-flop

registers (reg4, reg3 etc.). The control instructions MF,NS, π,NP are fed through

the topmost node processor. The temporary registers (temp reg4 etc.), communicate
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with memory which stores the matrix and control data for multiple received vectors.

The new matrix data is loaded into the dedicated registers at every new permutation

(signal NP denotes this event). π is a two bit signal that informs the detector about

the permutation order. This signal is used to de-permute elements in s so that the

correct QAM symbols gets compared during metric-recycling. The signal NS denotes

the arrival of new MIMO symbol into the detector array. MF is a two bit signal that

indicates the modulation format of the vector symbol being processed. The signal

NP/NS stay high only during the first cycle of a new permutation/vector symbol.

Each of the processor is pipelined to improve the operating frequency. The node

processors computes equations (5.4)-(5.6) for i=4,3,2,1. These node processors switch

between modulation schemes by a specially designed “slicer” (which acts on the value

of MF). The slicer works in similar fashion as that of the configurable hard detector.

2. BitMetric Processor

The BitMetric processor (Fig. 43) carries out the task of bit selections and metric

comparisons to compute the LLR terms. For the sake of clarity in the figures, let ai,j

denote the (i, j)th bit of the current best path, bi,j denote the (i, j)th bit of the new

(or incoming) path, and let ci,j denote dbesti,j . Furthermore, let da denote dbest, and

db denote the metric of the incoming path. The processor operates concurrently on

the data stored in memory locations ai,j, bi,j, ci,j and da, db, where i = 1, 2, ...4 and

j = 1, 2, ...log264. Similar to [50], the operation of bit selection and ED comparisons

can be expressed as follows: If da > db, it means the incoming path is the new best

path. Hence, for all i, j where ai,j and bi,j differ, da is assigned to ci,j. This would be

followed by assignments ai,j=bi,j, and da=db. If da < db, it means the incoming path

cannot be a new best path. It may however, still effect the EDs ci,j. Hence, for all

i, j where ai,j and bi,j are complements of each other, the processor will assign ci,j=db
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if db < ci,j.

Fig. 43. BitMetric Processor

Above procedure for LLR update can be broken down into two fundamental

steps.

1. Decide on the memory locations to be updated, i.e. the ordered pairs (i, j)’s:

These locations are always the ones where the ai,j and bi,j differ, and hence can
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be implemented using an X-OR operation (in a cell in bit manager).

2. Since (i, j)’s are now known we have to decide what to update ci,j with.

(a) If da > db: Replace ci,j with da. Then, replace ai,j with bi,j, and da with db

(b) If da < db: Replace ci,j with db if ci,j > db. Comparator cmp1 checks

for these conditions and instructs, via MUX M3 (in central manager),

whether da or db is the candidate for replacing ci,j. Compare select unit

cmpsel further “filters” the candidate by comparing it with the existing

value of ci,j (in a cell in bitmetric manager).

The π−1 block de-permutes the incoming bits for correct alignment of QAM

symbols in different ψi’s. The signal NS is used to enable the processing of new

received vector by initializing the BitMetric processor.

3. LLR Processor

The LLR processor (Fig. 44) consists of storage elements, c regi,j for dbesti,j , ai,j for bits

in ŝi
best, and da reg for dbest, where i = 1, 2, 3, 4 and j = 1, 2.., log264. The processor

serially reads dbesti,j , ai,j from the addresses based on the value of MF. For example,

if MF=0 then it reads from i = 1, 2, 3, 4, j = 1, 2, and if MF=2 then locations

i = 1, 2, 3, 4, j = 1, 2..., 6 are read from. The final LLR values are computed using

equation (5.9).
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Fig. 44. LLR Processor

Throughput Analysis : Let the cumulative number of pipeline stages in node

processor array be n1, n2 in the BitMetric Processor, and n3 in the LLR processor.

Generally, an η-ary QAM vector symbol will spend n1+4η cycles in the node processor

array, n2+4η cycles in the BitMetric processor. Finally, the serialized LLR processor

will take n3+1+4log2η cycles to compute the LLRs. Note that, the BitMetric pro-

cessor will be ready to write the data into the LLR processor every data 4η cycles.

The node processors and the BitMetric processor will not stall even while switching

between two modulation schemes as long as we have 4η1 > n3 + 1 + 4log2(η2), where

η1 and η2 corresponds to the new old vector symbols respectively. Aforementioned

condition will be satisfied if η1 > η2 for a reasonable value of n3 (such as 2 or 3). This

can be ensured by reading the vector symbols from the memory in their increasing

modulation order.
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Fig. 45. Timing Diagram

The architecture has many qualities of a systolic architecture, in that the proces-

sors have mostly local connections, has continuous flow even while switching between

modulation schemes, and data is read from memory only at the start of the detection

process for a received vector.

Recall that every vector symbol is composed of 4log2η bits, and it takes 4η cycles

to generate LLRs in steady state per vector symbol. Hence, the throughput is given

by (log2(η)/η)f, where f is the clock frequency.

Fig. 45 shows the timing diagram of the detector. It is straightforward to see that

the LLR values out of the LLR processor are independent of the number of pipeline

stages n1, n2, n3. While switching between QPSK to 16-QAM it takes 56 cycles

to compute LLRs for 16-QAM, this is because we are using a serial LLR processor.

However, in steady state it takes 4η =48 cycles to generate LLRs for 16-QAM.
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C. Discussion

We have made use of l1 norm [20] to the avoid use of multipliers. Use of this norm

leads to a loss of about 0.3-0.4dB w.r.t to the optimal l2 norm (Fig. 46). The SNR

gains due to metric-recycling vary from 0.9dB in case of 64-QAM to about 1.3dB in

case of QPSK.

An estimate of hardware resources of the detector is shown in Table 7. Synthesis

was done using Synopsys Design-Vision and mapped on 45nm Nangate library. The

input data (matrix data) is 11 bits fixed point (for both, real and imaginary parts).

The internal precision is maintained, which leads to word-length of 22bits for the EDs.

The maximum achievable clock frequency is limited by the loop in the cell in bitmetric

manager (containing 22 bit cmpsel, M1), this loop delay comes to about 2.3ns. Hence,

it is estimated to be clocked at 434MHz. Assuming that the node processor array

needs 55+55+77+99=286 bits every four cycles (recall that new matrix data is loaded

every η cycles, and η=4 for QPSK) the memory bandwidth is upper bounded by about

9bytes/cycle. The detector achieves a throughput of 217Mbps for QPSK, 108.5Mbps

for 16-QAM, and 40.6Mbps for 64-QAM can be achieved in steady state. The clock

frequency can be improved further by reducing the wordlength of the EDs by using

“clipping” [50]. However, the impact of clipping on the PER needs to be carefully

studied for various MCS and channel conditions. Moreover, overall throughput can

be scaled simply by letting multiple detector cores operate on different carrier tones

in a multi-carrier system such as MIMO-OFDM. Dynamic configurability is especially

useful in an OFDMA system (the tones in OFDMA is shared between multiple users

transmitting at different MCS). The detector that can switch dynamically avoids

incurring latency while processing different tones (potentially thousands).
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Fig. 46. PER Performance of LORD Algorithm

Table 7. Synthesis Results

Gate Count Storage FFs

Node Procs 10.3KGE 572

BitMetric Proc 6.5KGE 584

LLR Proc 1.1KGE 574

D. Systolic-Like Detector for High Order MIMO System

LORD algorithm does provide excellent error rate performance. It can be imple-

mented in a highly parallel and pipelined manner and hence it is very suitable for
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hardware implementation. However, it involves multiple QR decomposition opera-

tions (equal to the number of antennas) which are not only expensive (especially in a

case when the channel changes quickly) but require larger memory to store the decom-

posed matrices. Furthermore, multiple decompositions increases the pre-processing

latency, which is a concern in most upcoming wireless standards. In this section we

derive a lower complexity algorithm which is inspired by COSIC and LORD algo-

rithms.

E. Low Complexity Soft Detection Algorithm

Intuitively, the FER/BER performance of the soft MIMO detector will depend on the

signs and magnitudes of the LLRs being fed to the FEC decoder. From the earlier

discussion it is clear that sign of the LLRs crucially depend on the effectiveness of the

decoder to get to ŝml. The COSIC algorithm is an efficient alternative for providing

clsoe to ml hard performance, hence it is a suitable candidate for computing sml

and dml(Because the BER performance of COSIC is close to ML, we can reasonably

assume that ŝml=ŝFSD with very high probability. Hence, we treat the output of

COSIC algorithm as ŝml).

In COSIC all children of the root node are processed, thereon, only their best

child is extended. To compute the soft values of the associated bits we propose to

use not only the ml path, but also the “surrounding” paths. As noted earlier that

for every bit, one term in equation (5.7) is always associated with the ML path.

To compute the other term we search for the paths with opposite bit and pick the

one with least ED. If a path with a valid counter hypothesis is not found we simply

assign the corresponding LLR, a clipping value with appropriate sign. Clipping is

also applied to limit the maximum magnitude of the LLR.
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1. Performance Analysis

We evaluated the above discussed algorithm on a block fading channel(this channel is

equivalent to a channel with no diversity) of 120 information bits encoded by a rate

1/2 convolutional encoder with generator polynomial of [7,5]. Hence 240 coded bits

were transmitted over which the fading matrix H was constant. H was generated

independently for the next block. We counted 100 frame errors to get an estimate of

FER.

Fig. 47 shows the impact of clipping value on the FER performance. We see

that unlike in STS and LSD, the performance deteriorates after clip exceeds about

5. At FER of 1%, clip=3 achieves almost 3dB gain w.r.t to hard decision decod-

ing(henceforth we refer to hard decision decoding performance a ml performance).

Fig. 47. FER vs SNR For Various Clipping Values
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A clip=5 achieves about 1.89dB, for clip=7 the gain is about 1.8dB. To pronounce

the affect of large clipping value we also show FER for clip=300, which achieves gain of

only about 1.5dB. From now on we will only discuss FER/BER results corresponding

to the best clipping value(will be called clip in sequel).

2. High Level Architecture and Data Flow

Fig. 48. Tree Structure and High Level Architecture/Process-Flow

Fig. 48 shows the high level architecture of the proposed decoder. It consists of an one

dimensional systolic like array of MCUs. These units feed the Metric Management

Unit(MMU), and the LLR Computation Unit(LCU). The MMU is same as the bit

metric processor in Fig. 43 and LCU is very similar to LLR processor but does not

support configuration.

Fig. 48 also shows the process flow of the detection process(assuming one MCU

takes one cycle to process), it shows the sequence in which the nodes in the tree are

processed. MCU4 is being utilized for cycles from 1 to 64, MCU3 from 2 to 65, and

so on. Note that even though it takes 67 cycles to process one MIMO symbol, a new
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MIMO symbol can be fed into the pipeline after(at MCU4), and hence it effectively

takes 64 cycles to process one MIMO symbol.

Fig. 49. Timing Diagram

Fig. 49 shows the timing details of the whole detector architecture. First n

cycles are due to the pipelines introduced in the MCU array. All vector symbol

Sym1,Sym2,... are processed by the array for a total of n+64 cycles. However,

the array can start processing Sym2 after 64 cycles because all the top level nodes

of the previous symbol would be processed within 64 cycles. Hence, baring initial

latency of n cycles the total cycles needed per vector symbol is 64. The MMU

operates with a latency of 2 cycles. Since the LCU operates serially it takes further

24 cycles(corresponding to 24 LLRs). The MMU takes 64 cycles to process one vector

symbol and LCU takes 24, hence, the slower throughput of the LCU is effectively
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“hidden”. This fact is shown on negative Y-axis in Fig. 49. Overall, the whole

detector outputs 24 LLRs every 64 cycles. Thus, the throughput of the architecture

is given by: θ = 24
64
freq, where freq is the operational frequency of the architecture.

3. Node Pruning to Lower the Energy Consumption

Fig. 50. Node Pruning Behavior for l2 with SNR

As mentioned earlier, sphere decoder reduces the search complexity by updating the

radius value whenever a leaf node is reached. We apply same concept to our detector,

except that we use (da + clip) as radius. This way we can preclude(via clock gating)

some MCUs from carrying out computations, thereby reducing energy consumption.
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Fig. 51. Clock Gating Details

Pruning is usually most aggressive when the top level nodes in the FSD tree are

processed in increasing order of their PEDs. One way to do this efficiently, is by

enumerating them as described in [52] or in [44]. However, approaches in [44]-[52] are

not conducive for pipelining because of the inherent loop that occur in the hardware

realization of the procedure. Furthermore,they need 8 MCU4 and a 8-way compare

select unit(using approach of [52]), and 9 MCU1 9-way compare select unit(if we

use the approach of [44]), which is a huge hardware overhead. Hence, we propose

a suboptimal approach to carry out enumeration. Finding the exact enumeration
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on real(or imaginary) axis can be implemented using counters generating a zig-zag

pattern. In our approach, we first find the zig-zag pattern the symbols on real axis

and imaginary axis. We then keep the real part constant while we pick imaginary

part per the pattern until the column corresponding to the real part is exhausted. We

then pick the next real part in the pattern and keep it constant while we traverse its

column. We do this until all the QAM-64 points are visited. Fig. 50 shows the pruning

behavior for l2 norm with clip=3. It can be seen that the pruning performance of

the exact and simplified enumeration schemes is similar except for MCU4, this is

because the PEDs at the top level are not strictly increasing.Hence, we cannot use

early termination and have to process all 64 nodes. Note that, the nodes lower down

the tree are more computationally complex(and more energy consuming).

In hardware, node pruning can be achieved by clock gating as shown in Fig. 51.

da from MMU is the current best metric, which is added to clip to get the radius. to

distinguish between current vector symbol and the next one we use “ns” bit to drive

the value of radius to a very large value(’111..1’), this is to preclude the radius of

older vector symbol to interfere. Each combinational cloud consists of MCUi and a

comparator to check for radius violations (RVs). RVs are basically the clock gating

signals that propagate along the pipeline as shown. Note that, by doing clock gating

we have introduced a loop in the MCU array. However, this loop can be run at a high

speed since it has a two operand (7 and 3 bits each) adder and a 2-to-1 MUX (this

delay comes to about 0.8ns based on our synthesis results). Fig. 52 shows the energy

consumption per detected bit as a function of SNR. It shows the energy consumption

profile with and without pruning.
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Fig. 52. Energy per Detected Bit vs SNR for l2,l1 Norms With and Without Pruning

F. Discussion

The FER plot for the proposed detector is shown in Fig. 53. We see that at FER of

1% the proposed detector gains almost 2dB wrt to the COSIC hard detector. Use of

l1 norm causes the FER to degrade by about 0.4dB.
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Fig. 53. FER Performance of Proposed Scheme

l2 norm also gives better energy efficient after incorporating pruning as can be

seen from Fig. 52. Use of l2 norm, however, requires about 73% gate count more than

l1 norm (Table 8). The minimum delay in MMU is 1.5ns because of the loop, and

minimum delay in MCU array is 0.8ns. We can introduce pipelines to get as close as

possible to 1.5ns. Let pi denote the number of pipelines in level i. For l1 norm we

chose pi=7,7,6,3 for i=1,2,3,4, and for l2 norm we chose pi=9,9,8,4 for i=1,2,3,4. This

was done in order to get close to the bottleneck of 1.5ns imposed by the loop in the

MMU. The reduction in loop delay is possible because of the clipping that reduces

the size of cmpsel and M1 in Fig. 43.

The RTL coding was done using Verilog HDL. Nangate 45nm CMOS standard



94

cell library was used for the design flow. Synopsys Design Compiler was used to

synthesize the gate level net-list and to get power, area, and delay estimates.

Table 8. Synthesis Results and Comparisons

l1 l2 [59] [52]

Gate Equivalent 19.1K 33.1K 280K 70K

Power Consumption at 20dB(mW) 44.8 23.6 94 114

Energy per Bit at 20dB(nJ) 0.19 0.11 N.A 0.61

Frequency(MHz) 613.5 574.7 270 500

Throughput(Mbps) 230 215 8.57 187.5

SNR Gain wrt to hard detection 1.6dB 2dB N.A N.A

Tech. Library 45nm 45nm 130nm 45nm

G. Summary

A configurable accelerator architecture is presented for detecting Spatially Multi-

plexed (SM) data in a high order (4x4) multiple-input-multiple-output (MIMO) wire-

less systems. It is a customized architecture that provides soft values to the error

control codes, with systolic-like data and control flow. The detector is able to switch

between three different modulation schemes (QPSK, 16-QAM, and 64-QAM) with-

out any configuration latency. RTL synthesis results indicate that a detector core

uses only about 18 Kilo Gate Equivalent (KGE) in addition to around 1800 storage

flip-flops. Multiple detector cores can be stacked to achieve very high throughput in

a multi-carrier MIMO system. Moreover, the performance of the detector in terms

of the error rate performance is excellent. The processor is very well suited for base-

band processing at wireless base-stations and mobile handsets alike. A novel high

speed systolic MIMO detector architecture and its ASIC implementation estimate is
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presented in this paper. I lower complexity algorithm is derived based on observation

from LORD and COSIC algorithms. We see that use of multiplier-less l1 does not nec-

essarily improve energy efficiency. This is due to more aggressive pruning when using

l2 norm. By using multiple detectors operating concurrently the throughput scales

linearly with linear increase in hardware. This detector is highly suitable for MIMO-

OFDM systems which offer inherent parallelism and require very high throughputs.
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CHAPTER VI

CONCLUSION

In this research we have taken an approach, wherein, algorithms and hardware ar-

chitectures are considered jointly. This approach has resulted in efficient detector

architectures. Specifically the detector architecture, 1) has high throughput, 2) has

systolic data flow, 3) is configurable to support multiple modes of operation, 4) and

maintains excellent algorithmic performance (close to optimal for hard detection).

We also evaluated different detector architectures under a variety of conditions.

The architectural evaluation in terms of their efficiencies is presented in Chapter

III. The sequential architecture achieves a throughput of 151.18/144.34Mbps, and

detector core occupies an area of 1288.33/3248.6 µm2 (for 16/64-QAM). The Stag-

gered architecture achieves a throughput of 319.16/221.33 Mbps at an area cost of

2143.83/4804.35 µm2. The parallel architecture provides the fastest throughput of

646.46Mbps (for 16-QAM), but at an area cost of 10350.88 µm2. The second imple-

mentation achieves significantly higher throughput than the sequential approach, and

half the throughput of the parallel approach (using an area of much less than half

of the parallel implementation). We also see that the efficiency of the architectures

reduces when we attempt to achieve constant throughput using BET scheme.

Chapter IV presents architecture for a configurable hard output detector. The

detector is capable of supporting QPSK, 16-QAM and 64-QAM modulation scheme

for 2x2,3x3 and 4x4 MIMO systems. It has a many qualities of a systolic architec-

ture and can be easily modified to support much higher throughput. Moreover, the

configuration can be done during runtime and incurs no latency. This attribute is

especially useful for wireless systems employing OFDM technology. The algorithmic

performance of the detector is close to optimal. This chapter also presents a design
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case study for detector design under baseband timing limit imposed by 802.11n stan-

dard. We have presented two designs that are optimized for power consumption and

area for a given constraint.

In Chapter V, we present VLSI architecture for configurable soft output detector.

We have developed a deeply pipelined systolic like architecture that provide high

quality soft estimates at high throughput. The architecture supports detection of all

three modulation scheme mentioned above. An advanced version of this architecture

is then developed that supports algorithmic enhancements that improve the error

rate performance by up to 1.5dB. Furthermore, a lower complexity algorithm and its

hardware implementation is developed. This algorithm has complexity that is 25%

of the LORD algorithm. The detector achieves a sustained throughput of 215Mbps

for 64-QAM constellation and still gains almost 2dB over hard ML detection. Owing

to its fixed throughput multiple detector cores can operate concurrently to efficiently

extract parallelism inherent in a multi-carrier MIMO system. The overall throughput

of this multi-core system scales linearly with each additional core.

Our research efforts have culminated in hardware solutions for hard and soft

output detection. The soft output in our work is based on a non-iterative principle.

More advanced receivers use iterative soft detection. Here the soft information is

exchanged between the outer decoder and the detector. This leads to much improved

error rate performance. Viability of ideas from this work need to be examined for

iterative MIMO receivers. In particular, the idea of systolic like data-flow can be

extended to include information exchange between the decoder and the detector. The

impact of algorithmic modifications to enable this needs to be studied in detailed.
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