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ABSTRACT 

 

Modeling Different Failure Mechanisms in Metals. (December 2011) 

Liang Zhang, B.S., University of Science and Technology of China; M.S., Texas A&M 

University 

Chair of Advisory Committee: Dr. Jyhwen Wang 

 

This work consists of three parts corresponding to three different failure 

mechanisms in metals, i.e., the localized necking in sheet metals, the bifurcation in bulk 

and sheet metals, and the ductile fracture induced by the void nucleation, growth, and 

coalescence.  

The objective of the first part is to model the localized necking in anisotropic 

sheet metals to demonstrate that localized geometric softening at a certain stage of 

deformation is the main cause of localized necking. The sheet is assumed to have no 

initial geometric defects. Its deformation process is divided into two stages. The neck 

formation and evolution are considered. A novel failure criterion is proposed. The 

competition among different types of necks is identified. The predictions are found to fit 

with the experimental results well. The sheet thickness, the strain hardening behavior, 

and plastic anisotropy are found to affect the sheet metal formability. 

The objective of the second part is to model the bifurcation in anisotropic bulk 

and sheet metals to couple plastic anisotropy and the strain hardening/softening behavior. 

The material is assumed to obey a Hill-type Drucker-Prager yield criterion along with a 
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non associated flow rule. The conditions for bifurcation in bulk and sheet metals are 

derived. The internal friction coefficient, plastic anisotropy, and other correctional terms 

are found to affect the onset of bifurcation. Two bifurcation modes are found to exist in 

sheet metals. 

The objective of the third part is to derive the constitutive relations for porous 

metals using generalized Green’s functions to better understand the micromechanism of 

the ductile fracture in metals. A porous metal is idealized as an isotropic, rigid-perfectly 

plastic matrix embedded with numerous cylindrical or spherical voids. Two types of 

hollow cuboid RVEs are employed corresponding to the two void shapes. The 

microscopic velocity fields are obtained using generalized Green’s functions. The 

constitutive relations are derived using the kinematic approach of the Hill-Mandel 

homogenization theory and the limit analysis theory. The macroscopic mean stress, the 

porosity, the unperturbed velocity field, and the void distribution anisotropy are found to 

affect the macroscopic effective stress and the microscopic effective rate of deformation 

field. 
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1. INTRODUCTION 

 Material failure plays an important role in human life. People sometimes expect 

its occurrence but at other times do not. As indicated by its name, material failure 

consists of two major parts, i.e., the material involved in it and the failure mechanism 

behind it. The failure mechanism is affected by many factors, such as the microstructure 

of the material, the specimen geometry, and the loading condition. As a result, the same 

material may fail by different failure mechanisms, while different materials may fail by 

the same failure mechanism. For example, the specimens made of the same material may 

fail either by microcrack propagation or by geometric softening, whereas the specimens 

made of different materials may all fail by microcrack propagation. This phenomenon 

indicates that it may be difficult to determine the failure mechanism behind a certain 

kind of material failure. Despite difficulties, numerous efforts have been devoted to 

investigating different failure mechanisms. This is because, by doing this, people can 

more precisely predict the failure conditions for various materials so as to develop new 

products, to enhance product performances, and most importantly, to save lives. 

 This work consists of three parts corresponding to three different failure 

mechanisms in metals, i.e., the localized necking in sheet metals, the bifurcation in bulk 

and sheet metals, and the ductile fracture induced by the void nucleation, growth, and 

coalescence. The first part provides an alternative approach to modeling the localized  

____________ 
This dissertation follows the style of International Journal of Adhesion and Adhesives. 
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necking in anisotropic sheet metals to demonstrate that localized geometric softening at 

a certain stage of deformation rather than the initial defects is the main cause of localized 

necking. The second part provides an applicable approach to modeling the bifurcation in 

anisotropic bulk and sheet metals to couple plastic anisotropy and the strain 

hardening/softening behavior and also to identify different bifurcation modes in sheet 

metals. The third part provides an alternative approach to deriving the constitutive 

relations for porous metals to better understand the micromechanism of the ductile 

fracture in metals. This work is expected to provide novel insights into several failure 

mechanisms. 

 

1.1 Localized Necking in Sheet Metals 

 

As a sheet metal is stretched into the plastic range, its deformation often becomes 

intensively concentrated into a narrow band. This phenomenon is referred to as localized 

necking. Localized necking is one of the most frequently observed failure mechanisms in 

many sheet forming processes. The onset of localized necking limits the sheet metal 

formability. 

Keeler [1] and Goodwin [2] first introduced the concept of the forming limit 

diagram (FLD). The FLD plots the limiting major and minor strains that can be achieved 

along different stress or strain paths. It characterizes the sheet metal formability and is 

widely used in industrial practices. Much effort has been devoted to experimentally 

determining the FLDs of sheet metals of different sheet thicknesses and material 
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properties [3-10]. However, it is expensive and time consuming to conduct a large 

number of experiments. There is a need to theoretically predict the FLDs of sheet metals 

of different sheet thicknesses and material properties. 

Hill [11] idealized localized necking as a velocity discontinuity and found that 

the necks always form along the zero extension directions. Since the zero extension 

directions do not exist on the right-hand side of the FLD, he only predicted half of the 

FLD. Swift [12] suggested that instability occurs when the principal stresses attain their 

maximum and predicted the critical strains for diffuse necking. Although he predicted 

the entire FLD, his predictions on the right-hand side, together with Hill’s predictions, 

are often used to plot the entire FLD. 

Stören and Rice [13] idealized localized necking as a bifurcation from a uniform 

or smoothly varying deformation field and proposed a bifurcation theory for sheet metals 

to predict the entire FLD. They suggested that the subsequent yield surfaces of the 

material would develop a vertex-like structure during continued deformation and found 

that the vertex-like structure affects the sheet metal formability. Several authors [14, 15] 

extended their work by taking into account either various yield criterions or some special 

material behaviors (e.g., strain softening). According to the bifurcation theory, localized 

necking is rarely related to localized geometric softening. However, its onset is always 

observed to be accompanied with localized geometric softening. It is hereby 

questionable whether the pointed vertex on the smooth yield locus is the main cause of 

localized necking. 
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Marciniak and Kuczynski [16] proposed the most widely used model, which is 

referred to as the M-K model, to predict the right-hand side of the FLD. They suggested 

that it is the initial geometric defects that cause material failure. They idealized a defect 

as a groove thinner than its neighboring region and assumed that the groove lies 

perpendicular to the major strain direction. They modeled the groove evolution and 

calculate the limiting strains at which the groove extends much more quickly than its 

neighboring region in its width direction. Marciniak et al. [17] later incorporated a rate-

dependent behavior into the model and found that this behavior can affect the groove 

evolution. Hutchinson and Neale [18, 19] improved the M-K model by enabling it to 

also predict the left-hand side of the FLD. They suggested that the groove does not 

necessarily lie perpendicular to the major strain direction but can lie inclined by an angle 

with respect to the major strain direction. They determined the real neck orientation by 

finding the groove orientation minimizing the major limiting stain. Several authors [20-

23] further validated this approach. Barata da Rocha et al. [20] also found that, for 

anisotropic materials, the groove does not always lies perpendicular to the major stress 

direction even on the right-hand side of the FLD. 

The M-K model provides a relatively simple description of the mechanism of 

localized necking. It also brings in the important concept of the initial geometric defects 

because the defects are unavoidable in real materials. However, several authors [24-26] 

found that the defect sizes measured in the test specimens are much smaller than those 

selected to fit the predictions to the experimental results. It is hereby questionable 

whether the initial geometric defects are the main cause of localized necking. Tadros and 
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Mellor [27] suggested that it is the instable deformation that enables the groove 

evolution and improved the M-K model by letting the groove start to evolve not at the 

very beginning of the deformation process but at the onset of diffuse necking. Tadros 

and Mellor [26] also conducted a series of in-plane stretching tests on sheet metals with 

premade aligned grooves to validate their hypothesis. They observed that the necks tend 

to form perpendicular to the major strain direction no matter whether the grooves lie 

perpendicular or parallel to the major strain direction. This observation again leads one 

to question whether the initial geometric defects may not be the main cause of localized 

necking. 

Several authors implemented different yield criterions into the M-K model to 

incorporate special material properties and found that the predictions are quite sensitive 

to the selection of the yield criterion. Sowerby and Duncan [28] implemented the 

quadratic Hill criterion into the M-K model to incorporate plastic anisotropy and found 

overestimates in the predictions. Several authors [4, 29-35] implemented different 

nonquadratic yield criterions into the M-K model and found their predictions to better fit 

the experimental results. Meanwhile, several authors [21, 29, 36-41] employed a Taylor 

type model to characterize the microstructure of polycrystalline, simulated the texture 

evolution during continued deformation, and found that their predictions also fit the 

experimental results well. Although nowadays the nonquadratic yield criterions are more 

favorable, the quadratic yield criterions are still often employed to examine the validity 

of new models. 
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Keeler and Brazier [7] observed that, for steel sheets, the limiting major strain 

under plane strain conditions increases with increasing sheet thickness. They also 

provided empirical equations to approximate this effect. Smith and Lee [9] observed that 

this effect also exists in aluminum sheets but is not as prominent as that in steel sheets. 

Wilson et al. [42, 43] observed that the sheet thickness effect also exists in copper and 

brass sheets. In industries, this sheet thickness effect enables people to increase the sheet 

metal formability or to reduce the weight and cost of sheet metal products by varying the 

sheet thickness. Therefore, it is of great practical value to theoretically predict the sheet 

thickness effect. 

Recently, several authors studied localized necking in different ways. Kuwabara 

et al. [44] incorporated the strain path change into the M-K model and found the sheet 

metal formability is path-dependent. Korkolis and Kyriakides [45] later experimentally 

demonstrated this finding. Eyckens et al. [46, 47] and Allwood and Shouler [48] 

incorporated the out-of-plane normal and shear stresses into the M-K model and found 

these stresses may help to enhance the sheet metal formability. Wu et al. [49] 

incorporated the hydrostatic pressure into the M-K model and drew a similar conclusion. 

They all found these stresses may help to enhance the sheet metal formability. Stoughton 

[50] and Stoughton and Yoon [51, 52] introduced the concept of the stress-based FLD 

and also proposed the associated stress-based approach to surface cracking, and etc.. 

Aretz [53] proposed a simple isotropic-distortional hardening model and applied it to 

predict the onset of localized necking in orthotropic sheet metals, while Kobayashi [54] 
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also proposed an acceleration wave theory to predict the onsets of diffuse and localized 

necking. 

 

1.2 Bifurcation in Bulk and Sheet Metals 

 

As a ductile solid is deformed into the plastic range, its deformation often 

becomes intensively concentrated into a narrow band. The examples of localization of 

deformation include the Lüders bands in metals, the rock faults in marble and sandstone, 

the shear bands in soils, and etc. [55]. Such localization is one of the most frequently 

observed failure mechanisms in engineering structures. It is hereby of great significance 

to theoretically predict the onset of localization. The onset of localization is believed to 

be affected the by the defects in the material. Unfortunately, it is almost impossible to 

accurately represent these defects. However, it has been proven to be doable to idealize 

an imperfect material as homogeneous on a large scale and also to treat localization 

occurs as a bifurcation from uniform deformation [56-59]. The problem can hereby be 

simplified as seeking for the conditions for the onset of bifurcation. 

Several authors [56-59] constructed the fundamental theory of bifurcation. Hill 

[56] and Thomas [59] proposed an acceleration wave theory to predict the onsets of 

bifurcation in dynamically deformed solids, while Rudnicki and Rice [57, 58] proposed 

an alternative theory to predict the onsets of bifurcation in quasistatically deformed 

solids. Rudnicki and Rice [57, 58] solved the problem as follows: first, they proposed the 

constitutive relations including a tangent tensor relating the stress rates to the rates of 
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deformation; second, they idealized bifurcation as a singularity in the uniform rate of 

deformation field; third, they obtained the conditions for the onset of bifurcation as a 

function of the tangent tensor. Their works provided a solid framework for modeling 

bifurcation and enable the successive researchers to implement more elaborate 

considerations into the model. 

Several authors [55, 57, 58, 60] found that the constitutive relations for the 

material can significantly affect the onset of bifurcation. Specifically, plastic anisotropy, 

plastic non-normality, dilatancy, and the strain hardening behavior are found to all affect 

the onset of bifurcation. Rudnicki and Rice [57, 58] assumed that the material exhibits a 

plastically isotropic, dilatant, non-linear hardening behavior and also suggested that the 

subsequent yield surfaces of the material would develop a vertex-like structure during 

the continued deformation. They found these factors differently affect the onset of 

bifurcation. Steinmann et al. [60] later incorporated plastic anisotropy into the model. 

They found plastic anisotropy can also affect the onset of bifurcation. However, they 

assumed the material to be rigid-perfectly plastic. Therefore, there is a need for a model 

truly conjugating the effects of plastic anisotropy and the strain hardening behavior. 

Borja [55] assumed different materials obeying different yield criterions (i.e., the 

Drucker-Prager criterion [61], the Labe-Ducan criterion [62], and the Matusuoka-Nakai 

criterion [63]) along with the corresponding non-associated flow rules. He also found 

that different yield criterions and non-associated flow rules can also affect the onset of 

bifurcation. 
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Earlier works on the bifurcation theory primarily focused on the geometrically 

linear case corresponding to small deformation. Ogden [64] first found that geometric 

nonlinearity also plays an important role in the bifurcation theory. In fact, geometric 

nonlinearity has a profound effect on the onset of bifurcation. Specifically, if the stresses 

are comparable to the tangent modulus, geometric nonlinearity tends to cause the tangent 

tensor to be asymmetric and hereby to promote the onset of bifurcation [55]. Several 

authors [55, 65-67] incorporated geometric nonlinearity into the bifurcation theory using 

the finite deformation elasto-plasticity theory. Armero and Garikipati [65] first derived 

the unregularized conditions for the onset of bifurcation. Larsson and co-workers [66, 

67] later derived the regularized ones. However, these two groups of authors obtained 

different predictions of the onset of bifurcation. Borja [55] pointed out that the 

discrepancy arises from the constitutive relations. 

Stören and Rice [13] proposed the bifurcation theory for sheet metals. They took 

into account the restrictions introduced by plane stress conditions and also suggested a 

vertex-like structure of the yield surface. They succeeded in plotting the forming limit 

diagrams of the sheet metals. Similarly to Rice and Rudncki [58], they found that the 

vertex structure can affect the sheet metal formability. Several authors [14, 15] extended 

their work by taking into account either various yield criterions or some special material 

behaviors, e.g., strain softening. However, these authors all required the bifurcation band 

to only lie in the sheet plane. Further investigation in this part will show that this is not 

realistic. 
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1.3 Deformation of Porous Metals 

 

Ductile fracture in metals is often caused by the void nucleation, growth, and 

coalescence. As a metal is deformed into the plastic range, numerous voids tend to 

nucleate around the second-phase particles by the particle cracking and debonding [68]. 

The metallic matrix flow is closely connected with the void evolution because: first, it 

plays an important role in the particle cracking and debonding and hereby affects the 

void nucleation; second, it also accounts for dilatation; last, it even has an impact on the 

ligament growth and breakage. Therefore, studying the micromechanics of the matrix 

helps to predict ductile fracture in metals. It is doable to either experimentally 

monitoring or numerically simulating the matrix deformation. However, it is expensive 

and time consuming to conduct a large number of experiments or simulations. Therefore, 

there is a need to predict the matrix flow and thereafter to derive the constitutive 

relations for porous metals. 

The micromechanical approach is the most widely used approach to predicting 

the matrix flow. Several earlier authors [69-73] first studied the growth of an isolated 

void in an infinite medium to evaluate the effects of the void shape and the matrix 

properties. McClintock [71] first assumed an elliptic cylindrical void under generalized 

plane strain conditions. Tracey [73] also assumed a cylindrical void under generalized 

plane strain conditions. Rice and Tracey [72] then assumed a spherical void subject to 

combined uniaxial and hydrostatic extension. Budiansky et al. [69] and Lee and Mear 

[70] later assumed an elliptical void subject to axisymmetric extension. In addition, 
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McClintock [71], Tracey [73], and Rice and Tracey [72] assumed an isotropic perfectly 

plastic medium, while Budiansky et al. [69] and Lee and Mear [70] assumed a viscous 

nonlinear medium. These works provided valuable insights into the micromechanics of 

the problem and also prepared the successive researchers for studying the 

micromechanics of porous metals. 

Gurson [74] proposed the most widely used model, which is referred to as the 

Gurson model, to study the micromechanics of porous metals. He employed a hollow 

cylindrical and a hollow spherical RVE to represent to typical properties of porous 

metals with cylindrical and spherical voids, respectively. He also assumed isotropic 

perfectly plastic subject to axisymmetric extension. He succeeded in deriving the 

macroscopic yield criterions and the porosity evolution laws for porous metals. Leblond 

[75] later found that his derivation is amendable to the kinematic approach of the Hill-

Mandel [76, 77] homogenization theory and the limit analysis [78] of the selected RVE 

subject arbitrary extension. Leblond [75] also demonstrated that, for the selected RVE, 

the Gurson model provides a rigorous upper bound. 

Several authors [79-85] incorporated the void nucleation, growth, and 

coalescence into the Gurson model. Tvergaard [84, 85] introduced a parameter with a 

value of  to account for the void interactions based on his numerical studies. 

Needleman and Tvergaard [82] later proposed a phenomenological description of the 

void coalescence including two parameters, i.e., the critical porosity and the acceleration 

rate, to account for the fracture behavior. Several authors [79-81, 83] further looked into 

the micromechanism of the void coalescence and quantified the effect of the 
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microstructure on the two aforementioned parameters. These improvements enable the 

Gurson-type models to provide more accurate predictions. 

Several authors [79, 80, 86-93] also incorporated the void shape effect and the 

plastic anisotropy of the matrix into the Gurson model. Gologanu et al. [88-90] and 

Garajeu [87] assumed either spherical or ellipsoidal voids, while Benzerga and Besson 

[86] assumed an plastic anisotropic matrix. They found that the void shape effect and 

plastic anisotropy both affect the macroscopic yield criterions and the porosity evolution 

laws. Benzerga et al. [79, 80] then incorporated both initial and induced anisotropy and 

also combined the void shape effect and plastic anisotropy. Monchiet et al. [93] and 

Keralavarma and Benzerga [91] later derived different sets of macroscopic yield 

criterions truly coupling the void shape effect and plastic anisotropy. Keralavarma and 

Benzerga [92] recently derived a new set of macroscopic yield criterions and porosity 

evolution laws applicable to more general deformations. These improvements enable the 

Gurson-type models to have broader applications. 

 

1.4 Research Objectives 

 

The objective of Section 2 is to model the localized necking in anisotropic sheet 

metals to demonstrate that the main cause of localized necking is localized geometric 

softening at a certain stage of deformation rather than the initial defects. The quadratic 

Hill yield criterion is employed to characterize plastic anisotropy. The sheet is assumed 

to have no initial geometric defects. The deformation process is divided into two stages. 
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A Considère-type criterion is proposed to determine the critical strains for a neck to 

form. An energy-based hypothesis is proposed to quantify the defect ratio at the neck 

formation. The neck evolution is considered. A novel failure criterion is proposed. Two 

types of necks are found to be most competitive to cause material failure during 

continued deformation. The forming limit curves are hereby found to exhibit different 

characteristics in different region. The predicted forming limit curve of 2036-T4 

aluminum is found to fit the experimental results well. The sheet thickness, the strain 

hardening behavior, and plastic anisotropy are found to affect the sheet metal 

formability. More realistic yield criterions and strain hardening behaviors can be 

implemented into the proposed model. This part provides an alternative approach to 

modeling the localized necking in anisotropic sheet metals. 

The objective of Section 3 is to model the bifurcation in anisotropic bulk and 

sheet metals to couple plastic anisotropy and the strain hardening/softening behavior. 

The material is assumed to obey a Hill-type Drucker-Prager yield criterion along with a 

non associated flow rule.  The constitutive relations for the material under consideration 

are derived. The conditions for bifurcation in bulk metals proposed by Rudnicki and 

Rice are employed, while the conditions for bifurcation in sheet metals are obtained with 

consideration of the restrictions imposed by the stress resultant equilibrium. Different 

bifurcation modes in sheet metals are identified. The critical tangent modulus at the 

onset of bifurcation and the corresponding bifurcation band orientation are obtained. A 

series of so-called bifurcation curves are generated to represent to which extent a metal 

can be deformed without causing the onset of bifurcation. The effects of the internal 
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friction coefficient, plastic anisotropy, the terms introduced by the co-rotational stress 

rates, and the terms introduced by the stress resultant equilibrium on the onset of 

bifurcation are evaluated. 

The objective of Section 4 is to derive the constitutive relations for porous metals 

using generalized Green’s functions to better understand the micromechanism of the 

ductile fracture in metals. The porous metals are assumed to consist of an isotropic, 

rigid-perfectly plastic matrix and numerous periodically distributed voids and to be 

subject to non-equal biaxial or triaxial extension. Two types of hollow cuboid RVEs are 

employed represent the typical properties of porous metals with cylindrical and spherical 

voids. The microscopic velocity fields are obtained using generalized Green’s functions. 

The constitutive relations are derived using the kinematic approach of the Hill-Mandel 

homogenization theory and the limit analysis theory. The effects of the macroscopic 

mean stress, the porosity, the unperturbed velocity field, and the void distribution 

anisotropy on the macroscopic effective stress and the microscopic effective rate of 

deformation field are evaluated. The potential applications of the predicted microscopic 

effective rate of deformation field are addressed. The results obtained using the cuboid 

RVEs are compared with those obtained using the non-cuboid RVEs. 
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2. MODELING THE LOCALIZED NECKING IN ANISOTROPIC SHEET METALS 

2.1 Theoretical Considerations 

 

2.1.1 Yield Criterion and Constitutive Relations 

 

For plastically orthotropic, isotropic strain hardening materials, the yield function 

takes the form of 

  (2.1) 

where  denotes the Hill effective stress;  denotes the effective plastic strain;  

denotes the current uniaxial strength increasing with increasing . Assume that the 

material exhibits a rate-dependent strain hardening behavior that can be represented by 

  (2.2) 

Following Benzerga and Besson [86],  can be expressed as 

  (2.3) 

where  denotes the deviatoric tensor and  denotes the fourth-order anisotropy 

tensor.  can be expressed in the Voigt notation as 

  (2.4) 

The effective plastic strain increment, , can be expressed as [86] 

  (2.5) 
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where  denotes the formal inverse of .  is related to  by [86] 

  (2.6) 

Eqs. (2.3) and (2.5) provide an appropriate measure of work equivalence that can be 

expressed as 

  (2.7) 

The -value is widely used to characterize the plastic anisotropy of sheet metals. 

It is defined as the mean value of the ratios of the plastic strain in the width direction to 

that in the thickness direction. The -values are generally obtained from the uniaxial 

tensile tests on specimens cut at angels ,  and  to the rolling direction. An 

average -value is often used and can be defined as 

  (2.8) 

If the orthotropic axes are set to coincide with the principal stress and strain directions, 

the crossed stress and strain components vanish. The components  hereby do 

not appear.  can be expressed in terms of  and  as [86] 

  (2.9) 
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The associated flow rule can be expressed in terms of  as [86] 

  (2.10) 

Eq. (2.10) can be formally inverted to 

  (2.11) 

Eq. (2.11) can be rewritten in terms of the principal components as 

  (2.12) 

Assume the out-of-plane stresses to vanish. This implies that  and , 

where  denotes the mean stress. Eq. (2.12) can then be further modified as 

  (2.13) 

  (2.14) 

where  denotes the plastic strain ratio. Eq. (2.5) can also be rewritten as 

  (2.15) 

 can then be expressed as 

  (2.16) 
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2.1.2 Overview 

 

As mentioned above, there are debates on whether the initial geometric defects 

are the main cause of localized necking. In this paper, an attempt is made to demonstrate 

whether localized geometric softening at a certain stage of deformation is the main cause 

of localized necking. For this reason, assume the sheet to have no initial geometric 

defects. Accordingly, let the neck formation be subject to a Considère-type criterion, that 

is, as the load acting on a certain sheet cross section attains its maximum, the sheet will 

not be able to support a higher load along this cross section, and a neck hereby forms. It 

can be seen that the necks can only form after the sheet has been deformed over certain 

strain. 

Here the neck is idealized as a groove thinner than its neighboring region. Fig. 

2.1 schematically illustrates different neck configurations. Further investigation will 

show that the critical major strain for a set of necks to form is a function of the strain 

ratio and the neck orientation. Here the term “a set of necks” means that all the necks of 

the same set are of the same neck orientation. Specifically, as the sheet is deformed 

along a proportional strain path, the first set of necks forms perpendicular to the major 

strain direction at  (see Fig. 2.1 (c) and (d)), while the other sets of necks form 

along other orientations at  (see Fig. 2.1 (a) and (b)). As a result, as the sheet is 

deformed at , multiple sets of necks coexist. To reduce the complexity of 

derivations, the necks are assumed to be so far apart from each other that the interaction 
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between any two necks is negligible. This assumption ensures that different necks can 

form and evolve independently. 

 

 

 

Fig. 2.1. Sketch of different neck configurations: (a) ; (b) the top view of (a); (c) 
; (d) the side view of (c). 

 

As the sheet becomes more and more deformed, different sets of necks form 

successively along different orientations and evolve simultaneously. This process lasts 

till the failure criterion is first met in one set of necks. After failure occurs, the sheet 

becomes unstressed, while all the neck evolution ceases. The limiting strains and the real 

neck orientations can be subsequently obtained. During this process, different sets of 

necks can be treated as competing with each other to cause material failure. 
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It now turns out that the deformation process can be divided into two stages: at 

the first stage, the sheet is uniformly deformed till the first set of necks forms 

perpendicular to the major strain direction at ; at the second stage, different sets of 

necks form successively along different orientations, evolve simultaneously, and 

compete with each other to cause material failure during continued deformation till the 

failure criterion is first met in one set of them. It is worth notice that this process enables 

the competition among different set of necks. The numerical results will show that this 

competition causes the resulting forming limit curves to exhibit some special 

characteristics. 

 

2.1.3 Critical Strains for a Neck to Form 

 

Consider the neck configurations as shown in Fig. 2.1. Introduce a Cartesian 

coordinate system  ( ) with the  and  axes parallel to the major and 

minor strain directions, respectively, and also introduce a Cartesian coordinate system  

( ) with the  and  axes parallel to the neck width and length directions, 

respectively. 

Let  denote the unit normal vector to the sheet cross section, and let ,  and 

 denote the corresponding load, cross sectional area and traction, respectively. 

According to the aforementioned Considère-type neck formation criterion, as the load 

acting on a sheet cross section attains its maximum, a neck forms, that is, 

  (2.17) 
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For large deformation, the elastic strain increments are negligible. The total strain 

increments can hereby be approximated as the plastic strain increments, i.e., . 

Eq. (2.17) can then be rewritten as 

  (2.18) 

Let  denote the angle between the  and  axes at the neck formation.  and  

can then be expressed in terms of  and  as 

  (2.19) 

  (2.20) 

Let the sheet be deformed along a proportional strain path. This implies that  is 

proportional to . Substituting Eqs. (2.19) and (2.20) into Eq. (2.18) and replacing  

by  give 

  (2.21) 

Also assume that the strain rate is constant. Therefore, 

  (2.22) 

Substituting Eqs. (2.2) and (2.22) into Eq. (2.21) gives the critical effective strain for the 

neck to form as 

  (2.23) 
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where the subscript  denotes the quantity value at the neck formation. The 

corresponding critical major strain can then be obtained as 

  (2.24) 

If the neck is required to only form along the zero extension direction, that is, 

  (2.25) 

Eq. (2.24) reduces to 

  (2.26) 

which is the expression for the limiting major strain predicted by Hill [94]. 

It is worth notice that the Considère-type neck formation criterion is more 

general than the Considère criterion. According to the Considère criterion, the neck 

orientation is known a priori, and  is hereby independent of . In fact, Tadros and 

Mellor [27] have already suggested that the necks lie perpendicular to the major strain 

direction and start to evolve at the onset of diffuse necking However, here the neck 

orientation is set to be variable, and  is hereby a function of . This enables 

different sets of necks to form successively along different orientations, to evolve 

simultaneously, and to compete with each other to cause material failure during 

continued deformation. Further investigation will also show that the necks causing 

material failure do not always lie perpendicular to the major strain direction. 
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2.1.4 Defect Ratio at the Neck Formation 

 

As mentioned above, the neck is idealized as a groove thinner than its 

neighboring region. The defect ratio, , characterizes the neck size. It is defined as the 

ratio of the thickness within the neck to that out of the neck. The defect ratio at the neck 

formation, , hereby characterizes the neck size at its formation. According to Hosford 

and Caddell [95], the necks are generally undetectable at their formation and can be 

detected only after they have evolved over certain strain. This implies that  should be 

close to . The initial defect ratio, , in the M-K model is similar to  here. It is 

generally assumed to be constant to represent a constant initial defect size. However, 

since here the neck forms at a certain stage of the deformation process,  should no 

longer be constant. In this section, an energy-based hypothesis will be proposed to 

quantify . Based on this hypothesis,  will be found to be a function of , , and the 

initial sheet thickness, . 

Let the superscripts  and  denote the quantities out of and within the neck, 

respectively. Assume that, as  increases from  to ,  increases from 

 to  due to localized geometric softening, where  is a small positive 

constant. Also let  denote the difference between the quantities within and out of the 

neck, e.g., .  can hereby be expressed as 

  (2.27) 
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Note that .  is hereby less than . Let the superscript  denote the quantity 

value at , and also let the superscript  denote the quantity value at  and 

. Eq. (2.27) can then be rewritten as 

  (2.28) 

where  and  is the value of  at  and . Here  is 

employed as a referential parameter. Further investigation will show that it can be 

obtained from the experimental results. As mentioned above,  be a function of , , 

and . As both  and  are fixed,  seems to be only a function of . This, however, 

is not true. In fact,  also integrates the effects of the internal defects and the crystal 

structure on the neck size at its formation. For example, real limiting major strains under 

plane strain conditions have been observed to be much greater than  as predicted by 

Hill [94] for steel sheets but to be close to  for aluminum sheets [7, 9]. This indicates 

that the values of  for steel sheets should be closer to  compared with those for 

aluminum sheets. However, it is beyond the scope of this part to quantify the effect of 

the internal defects and the crystal structure on . 

Here  and hereby  will be obtained using an energy-based hypothesis. 

Consider the region of  in the  coordinates in the 

neighborhood of the neck (see Fig. 2.1). Let  denote the current sheet thickness, and 

assume that . According to Hosford and Caddell [95], the neck width generally 

roughly equals the neck thickness. For simplicity, assume the neck width to be the same 

as the neck thickness. 
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Since here the neck is idealized as a groove, the hardening law and the 

equilibrium equations cannot be satisfied simultaneously. This implies that the strain 

increments can only be approximated. Note that  is very small. This leads one to 

approximate  as increasing first by  and then by  and also to assume 

 and . The total strain energy in the region takes the form of 

  (2.29) 

where  denotes the strain energy density and  denotes the volume occupied by the 

region. For uniform stress and strain fields, Eq. (2.29) can be rewritten as 

  (2.30) 

The total strain energy increment can be expressed as 

  (2.31) 

Note that, in Eq. (2.31),  for plastic deformation. The strain energy increments 

within and out of the neck can be obtained as 

  (2.32) 

  (2.33) 

The total strain energy increment hereby becomes 

  (2.34) 

Eq. (2.34) indicates that the total strain energy increment, , consists of two parts, i.e., 

the unperturbed strain energy increment, , and the perturbing strain energy 

increment, . As a perturbation,  should be much smaller than . 
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Therefore,  can be approximated as , while  can be treated as its 

perturbation, . 

Note that  and  are proportional to  and , respectively.  

can hereby be expressed as 

  (2.35) 

where 

  (2.36) 

Eq. (2.35) leads one to assume  is a small positive constant. This physically 

means that a small fixed fraction of the total strain energy increment is consumed to 

form the neck. 

The compatibility condition through the neck can be expressed as 

  (2.37) 

Rearranging Eq. (2.37) gives 

  (2.38) 

Eq. (2.38) implies that .  can hereby be related to  by 

  (2.39) 

Combining Eqs. (2.35), (2.36), and (2.39) gives 
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  (2.40) 

As can be seen,  consists of two factors: the former one is the ratio of  to 

, which is a function of  (see Eqs. (2.37) – (2.39)); the latter one equals 

 and hereby  (see Eqs. (2.35) and (2.36)). As can be seen, for given 

material properties,  is a function of  and . This implies that  actually 

characterizes the effects of  and  on the neck formation. 

The relationship between  and  can also be obtained from Eqs. (2.35), 

(2.36), and (2.39). Eq. (2.35) implies that  is proportional to , while Eq. (2.39) 

implies that  is proportional to . Therefore,  is proportional to . 

Eq. (2.36) also implies that . Therefore,  is also proportional to 

. Note that . It then turns out that  is proportional to . 

The sheet thickness effect can hereby be incorporated as follows: first, select a 

experimental forming limit curve of sheet metals of a given sheet thickness; second, find 

the value of  which fits the predicted forming limit curve well to the experimental 

one; last, adjust the value of  to obtain the forming limit curves for different sheet 

thicknesses. 
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2.1.5 Neck Evolution 

 

The neck evolution can be modeled first by imposing an major strain increment, 

, on the material within the neck and then by finding the corresponding major strain 

increment out of the neck, , iteratively till the failure criterion is met [95]. 

As  increases to , the current effective stress becomes 

  (2.41) 

where  can be expressed in terms of  as shown in Eq. (2.15). The neck generally 

rotates during continued deformation. The change in the neck orientation can be 

represented by 

  (2.42) 

The current defect ratio, , can be obtained as 

  (2.43) 

The compatibility condition through the neck can be expressed as 

  (2.44) 

where  can be expressed as 

  (2.45) 

Eq. (2.45) can be rewritten as 

  (2.46) 

It can be seen that, once ,  and  are specified,  and  can be obtained from 

Eqs. (2.44) and (2.46). 
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For the special case of  ( ),  within and out of the 

neck. This implies that 

  (2.47) 

The stress resultants acting on the neck cross section are 

  (2.48) 

These stress resultants have to be continuous through the neck, that is, 

  (2.49) 

Substituting Eq. (2.48) into Eq. (2.49) and noting that  give 

  (2.50) 

Note that  and  can be related to  and  by 

  (2.51) 

  (2.52) 

where  and  can be expressed in terms of  as shown in Eqs. (2.13) and (2.14), 

respectively. Also note that  can by related to  and  by 

  (2.53) 

Combining Eqs. (2.50) and (2.53) gives 

  (2.54) 

Let .  can then be expressed in terms of  as 

  (2.55) 

where  can be expressed in terms of  as shown in Eq. (2.16). Substituting Eq. (2.41) 

into Eq. (2.55) gives 

  (2.56) 
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Substituting Eq. (2.56) into Eq. (2.54) gives 

  (2.57) 

Note that . Eq. (2.57) can then be rewritten as 

  (2.58) 

For the other cases,  and . Let . Eq. (2.56) 

can then be rewritten as 

  (2.59) 

Accordingly, Eq. (2.57) can be rewritten as 

  (2.60) 

Note that . Eq. (2.60) can then be rewritten as 

  (2.61) 

In this part, the Van Wijngaarden-Dekker-Brent method [96] is employed to 

solve for  satisfying either Eq. (2.58) or Eq. (2.61). In fact, Eq. (2.61) provides higher 

accuracy compared with Eq. (2.58). This is because Eq. (2.58) includes the factors 

 and  and hereby causes its solution to depend on the step size. However, if 

the step size is properly selected, Eqs. (2.58) and (2.61) can both provide sufficient 

accuracy. The numerical results show that a step size of  is appropriate. The 

calculation process lasts till the failure criterion is met. After this, the final values of  

and  can be taken as the limiting strains for given values of  and . 

Note that, for a given value of ,  and  are only functions of . Since the 

neck causing material failure should provide the lowest value of , the real limiting 
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strains can be determined by finding the value of  minimizing . In this part, the Brent 

method [96] is employed to find . Once  is obtained, its corresponding values of  

and  determines the point for the given value of  on the forming limit curve. 

 

2.1.6 Failure Criterion 

 

In the previous works, a number of failure criterions have been proposed in 

different ways. According to Marciniak and Kuczynski [16], failure occurs when  drops 

below a critical value, while according to several other authors [20, 30, 35, 97, 98], 

failure occurs when a certain strain increment the ratio (e.g., , , or either 

 or ) attains a critical value (e.g., ). A failure criterion should be able 

to characterize the strain increment discontinuity through the neck cross section and also 

to avoid the problem of division by zero. In this part, a novel failure criterion being able 

to meet these two requirements, is proposed. 

Consider two neighboring material points on the interface between the neck and 

its neighboring region with one on the neck side of the interface and the other on the 

other side. Let  denote a strain increment related vector on the interface, which is 

given by 

  (2.62) 

or 

  (2.63) 

The difference in  between these two material points can be obtained as 
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  (2.64) 

 characterizes the magnitude and direction of the relative motion of the material 

point on the neck side with respect to that on the other side. The failure criterion can 

hereby be proposed as follows: failure occurs when 

  (2.65) 

where  is a sufficiently great critical value and is set to be  in this part in 

correspondence to the critical value of  in the previous works. Eq. (2.65) physically 

means that failure occurs when the material point on the neck side moves away from that 

on the other side at a high relative rate. By using Eq. (2.65), the problem of division by 

zero is avoided. 

 

2.2 Results and Discussion 

 

2.2.1 Competition between Two Types of Necks 

 

 As mentioned above, the deformation process can be divided into two stages: at 

the first stage, the sheet is uniformly deformed till the first set of necks forms 

perpendicular to the major strain direction at ; at the second stage, different sets of 

necks form successively along different orientations, evolve simultaneously, and 

compete with each other to cause material failure during continued deformation till the 

failure criterion is first met in one set of them. The numerical results show that two types 
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of necks are most likely to cause material failure: the first type of necks forms 

perpendicular to the major strain direction at ; the second type of necks form along 

certain favorable orientations at . Here the term “favorable” means that the 

orientations enable the necks to evolve very quickly. As can be seen, the first type of 

necks forms earliest but may not evolve very quickly, while the second type of necks 

does not form earliest but evolves very quickly. As a result, in thin sheets, since all the 

necks just need to evolve over limited strain to cause material failure, the first type of 

necks can cause material failure earliest; in thick sheets, since most of the necks have to 

evolve over considerable strain to cause material failure, the second type of necks can 

cause material failure just after their formation. Therefore, the first type of necks is more 

competitive in thin sheets, while the second type of necks is more competitive in thick 

sheets. 

The above discussion implies that a forming limit curve can be determined by 

only focusing on the competition between the aforementioned two types of necks, or 

specifically, first by plotting the forming limit curves due to the two types of necks, 

respectively, and then by connecting the lower points on the two curves along each 

proportional path. Fig. 2.2 (a) and (b) illustrate how this is accomplished: in Fig. 2.2 (a), 

the parabolic curves are due to the first type of necks, while the decline curves are due to 

the second type of necks; in Fig. 2.2 (b), the forming limit curves are obtained by 

connecting the lower points on the corresponding parabolic and decline curves along 

each proportional path. 
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Fig. 2.2. (a) Competition between two types of necks for different sheet thicknesses 
(  is proportional to ), (b) the resulting forming limit diagrams, and (c) the 
corresponding  versus  curves. 
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Fig. 2.2 Continued. 
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Fig. 2.2 Continued. 
 

Fig. 2.2 (b) and (c) show the forming limit curves for different values of  and 

the corresponding  versus  curves, respectively. Here the other parameters are set to 

be , , and . As mentioned above,  is proportional to 

. Therefore, Fig. 2.2 (b) actually shows the forming limit curves for different sheet 

thickness. As a result of the competition between the two types of necks, the forming 

limit curves may exhibit different characteristics in different regions. For example, in 

Fig. 2.2 (b), the curve for  exhibits different characteristics in three different 

regions: for , the first type of necks causes material failure, and this 

curve section is parabolic; for  and , the second type of necks causes 
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material failure, and the curve sections are decline. These three regions can classified 

into two types, i.e., the neck formation dominate region for  and the neck 

evolution dominate region for  and . As can be seen in Fig. 2.2 (b), as 

 increases, the forming limit curve shifts upwards, while the neck formation dominant 

region first shrinks and finally disappears. This can be understood by noting that, as the 

sheet thickness increases, the second type of necks becomes more competitive. As can 

be seen in Fig. 2.2 (c), for each curve,  in the neck formation dominate region, 

while  in the neck evolution dominate region. Therefore, the value of  can 

indicate the region type. 

 

2.2.2 Comparison between the Predicted Forming Limit Curve and the Experimental 

Results 

 

Fig. 2.3 compares the predicted forming limit curve of 2036-T4 aluminum with 

the experimental results [5]. Here the tensile properties are , , and 

 [5, 6], while the parameters are set to be  and  to obtain 

the numerical results. Since the calculation converges only if , here  is set to be 

 instead of  according to Hecker [6]. The failure criterion implies that the 

predicted curve should lie among the necked and fractured data points. As can be seen, 

the predicted curve fits the experimental results well except that some of the necked data 

points lie below the predicted curve or even below . This is because, in real 



 38 

materials, the internal defects weaken the material and hereby lower the sheet metal 

formability. 

 

Fig. 2.3. Comparison between the predicted forming limit curve and the experimental 
results for 2036-T4 aluminum (after Hecker [5]). 
 

2.2.3 Effects of the Strain Hardening Behavior, the Sheet Thickness, and Plastic 

Anisotropy 

 

Fig. 2.4 (a) and (b) show the forming limit curves for different values of  and 

the corresponding  versus  curves, respectively. Here the other parameters are set to 

be , , and . In Fig. 2.4 (a), as  increases, the forming limit 

curve approximately scales up. This can be understood by noting that, in Eq. (2.24),  
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is proportional to . However, this does not imply that these curves are similar. Fig. 2.4 

(b) shows that the extent of the neck formation dominant region also varies with . This 

indicates that  affects not only the neck formation but also the neck evolution. In fact, 

Eqs. (2.58) and (2.61) have already indicated that  affects the equilibrium equations for 

the neck evolution. 

 

Fig. 2.4. (a) Forming limit diagrams for different values of  and (b) the corresponding 
 versus  curves. 
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Fig. 2.4 Continued. 
 

Fig. 2.5 shows the forming limit curves for different values of , where 

 is used to approximate a rate-independent strain hardening behavior. Here 

the other parameters are set to be , , and .  In Fig. 2.5, as  

increases, the forming limit curve shifts upwards, while the neck formation dominant 

region shrinks and finally disappears. This indicates that, as  increases, the second type 

of necks also becomes more competitive. It is also worth notice that one segment of the 

curve for  is horizontal. This indicates that, for low values of  (in fact, and 

also ), the first type of necks forms earliest and causes material failure only after the 

first strain increment. 
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Fig. 2.5. Forming limit curves for different values of . 
 

Fig. 2.6 plots  versus  for different values of . Here the 

other parameters are set to be  and . As mentioned above,  is 

proportional to , or in other words, the difference between  and  

is merely a constant. Therefore, Fig. 2.6 actually shows the relationship between the 

sheet metal formability under plane strain conditions and the sheet thickness. The curve 

for  exhibits a typical trend and can be taken as an example. It can be divided 

into three segments, i.e., a horizontal one, a rapidly increasing one, and a slowly 

increasing one. Here each segment actually corresponds to a certain deformation 

process: in the first segment, since the sheet is very thin, the first type of necks forms 
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earliest and causes material failure only after the first strain increment; in the second 

segment, as the sheet becomes thicker, the first type of necks causes material failure 

after they have evolved over certain strain; in the third segment, as the sheet becomes 

sufficiently thick, the second type of necks turns out to cause material failure. It is worth 

notice that the slope of the second segment is greater than that of the third one. This is in 

agreement with Fig. 2.2 (a). In Fig. 2.2 (a), as  increases, the parabolic curve shifts 

upwards more rapidly than the decline curve. In addition, in Fig. 2.6, for , the 

sheet metal formability under plane strain conditions is insensitive to the sheet thickness; 

as  increases, it becomes more and more sensitive to the sheet thickness. This indicates 

that  affects the sheet thickness effect. 

 

Fig. 2.6.  versus  for different values of . 
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Fig. 2.7 (a) and (b) show the forming limit curves for different values of  and 

the corresponding  versus  curves, respectively. Here the other parameters are set to 

be , , and . It has been widely accepted that the lowest 

point on the forming limit curve is always located at . However, in Fig. 2.7 (a), as 

 increases, the neck formation dominant region shifts rightwards, while the lowest 

point shifts from the left-hand side of the FLD to the right-hand of the FLD. This 

indicates that the -value can generally affect the neck evolution and hereby the location 

of the lowest point. However, it is also worth notice that, in Fig. 2.7 (a), all the curves 

intersect at the same point at . This indicates that the -value cannot affect the 

neck evolution under plane strain conditions. In addition, the numerical results also show 

that, for , the sheet metal formability may exhibit a dramatic increase in the 

neighborhood of . This implies that, in this case, the neck evolution is inhibited by 

the prevailing stress and strain states. This, however, is unrealistic. This is because here 

the sheet is assumed to have no internal defects. In fact, in real materials, the defect 

growth limits the sheet metal formability. As a result, the real sheets may fail before it is 

deformed to a great extent. Therefore, in Fig. 2.7 (a), the curves including unrealistic 

predictions are marked with a dot. Here the dot denotes that, to the right of it, the 

predictions become unrealistic. 
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Fig. 2.7. Forming limit curves for different values of  and the corresponding  versus 
 curves. 
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Fig. 2.7 Continued. 
 

2.2.4 Comparison among Different Models 

 

Fig. 2.8 (a) compares the forming limit curves predicted by the proposed model, 

the Hill model, the M-K model, and the Swift model, respectively, and Fig. 2.8 (b) also 

compares the corresponding  versus  curves. Here the parameters are set to be 

, , , and , and specially,  is used for the 

M-K model to let . In Fig. 2.8 (a) and (b), for , the curves predicted by the 

proposed model and the Hill model are quite close to each other. However, there exists a 

major distinction between these two models. According to Hill [94], localized necking 
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occurs as a velocity discontinuity. This implies that the necks in the Hill model do not 

evolve. However, here the necks are assumed to form at a certain stage of the 

deformation process and also to be able to evolve after that. It should be noted that, only 

if the neck evolution is considered, the parameters such as the sheet thickness and plastic 

anisotropy can be incorporated into the model. Therefore, the Hill model is valid for 

rigid plastic materials, while the proposed model is appropriate for strain hardening 

materials. 

 

Fig. 2.8. (a) Forming limit curves predicted by the proposed model, the Hill model, the 
M-K model, and the Swift model and (b) the corresponding  versus  curves. 
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Fig. 2.8 Continued. 
 

For comparison purposes, the quadratic Hill yield criterion is also implemented 

into the M-K model. As expected, in Fig. 2.8 (a), for , the M-K model tends to 

overestimate the sheet metal formability. As mentioned above, this is also why 

nowadays the nonquadratic yield criterions are preferable to the quadratic ones. 

However, as can be seen in Fig. 2.3, although the quadratic Hill yield criterion is also 

implemented into the proposed model, the predicted forming limit curve still fits the 

experimental results well. In fact, as mentioned above, Marciniak and Kuczynski [16] 

suggested that it is the initial geometric defects that cause material failure. However, 

several authors [24-26] found that the defect sizes measured in the test specimens are 
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much smaller than those selected to fit the predictions to the experimental results, while 

Tadros and Mellor [26] observed that, in sheet metals with premade aligned grooves, the 

necks tend to form perpendicular to the major strain direction no matter the groove 

orientation. All these findings indicate that the initial geometric defects may not be the 

main cause of localized necking. Therefore, it is necessary to consider the neck 

formation at a certain stage of the deformation process. 

 

2.3 Conclusions 

 

This part provides an alternative approach to modeling the localized necking in 

anisotropic sheet metals. Localized geometric softening at a certain stage of deformation 

rather than the initial defects is found to be the main cause of localized necking. The 

deformation process is found to consist of two stages: at the first stage, the sheet is 

uniformly deformed till the first set of necks forms perpendicular to the major strain 

direction at ; at the second stage, different sets of necks form successively along 

different orientations, evolve simultaneously, and compete with each other to cause 

material failure during continued deformation till the failure criterion is first met in one 

set of them. The Considère-type criterion is found to be able to determine the critical 

strains for a neck to form. The energy-based hypothesis is found to be able to quantify 

the defect ratio at the neck formation. Two types of necks are found to be most 

competitive to cause material failure: the first type of necks forms earliest but evolves 

not so quickly; the second type of necks forms not so early but evolves very quickly. As 
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a result, the forming limit curves are found to exhibit different characteristics in different 

regions that can be classified as the neck formation dominant region and the neck 

evolution dominant region.  is found to be able to indicate the region type. The 

predicted forming limit curve of 2036-T4 aluminum is also found to mostly fit the 

experimental results well. The strain hardening exponent is found to affect both the neck 

formation and the neck evolution, while the sheet thickness and the strain rate hardening 

exponent are found to only affect the neck evolution. The -value is also found to affect 

the neck evolution and hereby the location of the lowest point on the forming limit 

curve. The proposed model is also found to work well with the quadratic Hill yield 

criterion. 

The following conclusions can be drawn from the above findings: 

• In sheet metals subject to nonuniform deformation, localized necking 

tends to occur in the regions of strain ratios resulting in lower limiting 

major strains; 

• In sheet metals of nonuniform thicknesses in different regions, localized 

necking tends to occur in the regions of smaller thicknesses; 

• If the sheet thickness is below a certain value, increasing the sheet 

thickness can enhance the sheet metal formability; if the sheet thickness is 

above this value, increasing the sheet thickness will hardly enhance the 

sheet metal formability the sheet metal formability; 

• More realistic yield criterions and strain hardening behaviors can be 

implemented into the proposed model. 
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3. MODELING THE BIFURCATION IN ANISOTROPIC BULK AND SHEET 

METALS 

3.1 Theoretical Considerations 

 

3.1.1 Conditions for the Onsets of Bifurcation in Bulk Metals 

 

Let a bulk metal be subject to uniform quasistatic deformation. Accroding to 

Rudnicki and Rice, once the uniform rates of deformation enables a singularity to exist, 

bifurcation occurs. Fig. 3.1 schematically illustrates the bulk metal geometry at the onset 

of bifurcation. Introduce a Cartesian coordinate system  ( ) with the  axis 

perpendicular to the planar bifurcation band. Note that the rate of deformation has to 

vary through the band. The difference between the velocity gradient within and out of 

the band can be expressed as 

  (3.1) 

where  denotes the velocity vector;  denotes the difference between the quantities 

within and out of the band; the superscript  denotes the quantities out of the band. Also 

note that the velocity is still continuous at the onset of bifurcation. This implies that the 

compatibility condition 

  (3.2) 
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has to be satisfied, where  denotes the unit normal to the bifurcation band and  is a 

function of the distance through the band ( ) and vanishes out of the band. 

 

 

 

Fig. 3.1. Bulk metal geometry at the onset of bifurcation. 
 

The equilibrium equations can be expressed as 

  (3.3) 

where the superposed dot denotes the material time rate. Note that the stresses are 

uniform here. Eq. (3.3) hereby reduces to 

  (3.4) 
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In addition, Eq. (3.2) also implies that, at the onset of bifurcation, the stresses remain 

uniform out of the band and are functions of  within the band. This, together with 

Eq. (3.4), implies that 

  (3.5) 

Let the constitutive relations take a general form of 

  (3.6) 

where  denotes the rate of deformation tensor and is the symmetric part of , 

and  is symmetric with respect to the interchange of  and  and also that of  and . 

The Jaumann co-rotational rate of stress tensor takes the form of 

  (3.7) 

where  denotes the rotation tensor and is the anti-symmetric part of . Note 

that   is not invariant to under rigid rotations [57, 58]. For this reason,   rather than 

 is employed here. 

Let the constitutive relations take the forms of 

  (3.8) 

within the band and 

  (3.9) 

out of the band. Eq. (3.2) can be rewritten in terms of  as 

  (3.10) 

Combining Eqs. (3.5), (3.8), (3.9) and (3.10) gives 

  (3.11) 
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where 

  (3.12) 

is the difference between  and . Eq. (3.11) represents the conditions for the onsets 

of bifurcation in bulk metals. If  remains continuous within and out of the band at 

the onset of bifurcation (i.e., ), the term on the right hand side of Eq. (3.11) 

vanishes. In this case, only if  is nonzero, or to say, only if 

  (3.13) 

bifurcation can occur. 

 

3.1.2 Constitutive Relations 

 

Following Rudnicki and Rice [58], let the strain increments be related by the 

stress increments by 

  (3.14) 

  (3.15) 

where  and  denote the effective and mean stresses, respectively;  and  denote 

the effective and mean plastic strains, respectively;  and  denote the internal friction 

coefficient and the dilatancy factor, respectively [57, 58];  denotes the tangent 

modulus.  can be expressed in terms of the anisotropy tensor, , as shown in 

Section 2.1.1. As mentioned above, also assume the material to exhibit a non-linear 
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strain hardening/softening behavior whose form will be presented in the section of 

results and discussion. 

Divide  into its elastic and plastic parts,  and .  can be obtained from 

Eqs. (3.14) and (3.15) as 

  (3.16) 

where  is named as the nominal stress tensor in this part and is a purely 

deviatoric second order tensor. Eq. (3.16) can be inversed to give  by solving 

  (3.17) 

where  denotes the fourth order elastic modulus tensor. Let the material be 

elastically isotropic.  hereby takes the form of [57] 

  (3.18) 

Substituting Eqs. (3.16) and (3.18) into Eq. (3.17) gives 

  (3.19) 

where 

  (3.20) 

Eq. (3.19) represents the constitutive relations for the material under consideration. 
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3.1.3 Critical Tangent Moduli at the Onsets of Bifurcation in Bulk Metals 

 

To reduce the complexity of derivations, here assume the term  in Eq. (3.13) 

to be negligible. Note this term is the difference between  and . This assumption 

hereby implies that . Further investigation will show that making this 

assumption is equivalent to neglecting the terms of magnitude  in the expression 

for . Eq. (3.13) then reduces to 

  (3.21) 

where 

  (3.22) 

Solving for the tangent modulus, , from Eq. (3.21) gives 

  (3.23) 

Eq. (3.23) indicates that  is a function of , , , , and the nominal stresses. For 

most strain hardening materials and also the materials under consideration,  is a 

decreasing function of . This implies that, as  increases, bifurcation is more and more 

likely to occur. In addition, for certain values of  and ,  should be a function only 
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of the band orientation. This implies that the critical tangent modulus at the onset of 

bifurcation, , can be obtained by finding the band orientation maximizing . 

Let  ( ) denote the principal nominal stresses with . 

Introduce a Cartesian coordinate system  with the  axis parallel to the  direction 

(see Fig. 3.1). The ’s in Eq. (3.23) can be related to  by 

  (3.24) 

  (3.25) 

where  denotes the unit normal to the bifurcation band. 

Rudnicki and Rice [58] have shown that, for plastically isotropic material, if the 

principal deviatoric stresses are distinct, the normal to the bifurcation band lies 

perpendicular to the  direction only if the inequality 

  (3.26) 

is satisfied, otherwise it lies perpendicular to the  direction. For plastically anisotropic 

materials under consideration here, a similar statement can be made, that is, if the 

principal nominal stresses are distinct, the normal to the bifurcation band lies 

perpendicular to the  direction only if the inequality 

  (3.27) 

is satisfied, otherwise it lies perpendicular to the  direction. Needleman and Rice [99] 

suggested that, for metals,  and  should both be very small. This implies that the term 

on the right hand side of Eq. (3.27) is close to zero. In addition, it can also be deduced 
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that, if two of the principal nominal stresses are equal, the normal to the bifurcation band 

is nonunique. 

To reduce to complexity of derivations, let the principal nominal stresses be 

distinct. As mentioned above, the normal to the bifurcation band always lies 

perpendicular to one principal nominal stresses direction. Here let the normal lies 

perpendicular to the  direction. If the normal lies perpendicular to the  direction, 

one just needs to exchange the subscripts  and  in the corresponding equations. 

Without loss of generality, let the  direction is set to coincide with the  direction. 

This leads  to vanish. Eq. (3.21) hereby reduces to 

  (3.28) 

where the indices  and  vary from  to . Accordingly, Eq. (3.23) reduces to 

  (3.29) 

Let  denote the angle between the normal and the  direction.  can then be 

related to  by 

  (3.30) 

Now the problem becomes finding the value of  maximizing , say . Rudnicki and 

Rice [58] have shown that  can be solved using the method of Lagrange multipliers. 

Following Rudnicki and Rice [58],  can be finally obtained as 

  (3.31) 
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Eq. (3.31) indicates that, even if all the three principal nominal stresses are distinct, there 

may exist two distinct possible values of , say  and , where 

  (3.32) 

This physically means that two bifurcation bands may develop simultaneously at the 

onset of bifurcation. In fact, this phenomenon is in agreement with the experimental 

observations. After this,  can be obtained as 

  (3.33) 

Eq. (3.33), together with the hardening law, determines the strains for the onset of 

bifurcation along a certain proportional strain path. This will be discussed in detail in the 

section of results and discussion. 

 

3.1.4 Correction due to the Co-Rotational Stress Rates 

 

In Eq. (3.13), the term  is assumed to be negligible. Here incorporate the 

correction due to  into the critical tangent modulus. Still let the  direction coincide 

with the  direction. Eq. (3.13) hereby becomes 

  (3.34) 

Solve for  from Eq. (3.34) gives 

  (3.35) 
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It can be deduced that the difference between the expression for  obtained from Eq. 

(3.35) and that obtained from Eq. (3.29) is of magnitude . For metals, this 

difference is quite small. For this reason, the value of  maximizing  in Eq. (3.35), or 

to say, the corrected , should be close to that in Eq. (3.31). For the same reason, the 

corrected  should also be close that in Eq. (3.33). In this part, the Brent method [96] is 

employed to find the corrected  and  with knowing their approximate values. 

 

3.1.5 Conditions for the Onsets of Bifurcation in Sheet Metals 

 

The conditions for the onsets of bifurcation in sheet metals are quite similar with 

those in bulk metals. However, there exists one significant distinction between these two 

sets of conditions, that is, the stress resultant equilibrium is required here rather than the 

stress equilibrium. Fig. 3.2 schematically illustrates the sheet metal geometry at the onset 

of bifurcation. Let the sheet metal subject to in-plane biaxial extension (i.e.,  

vanishes). Let  and  denote the principal stresses in the sheet plane, and also let  

and  denote the corresponding principal nominal stresses with . Introduce a 

Cartesian coordinate system Introduce a Cartesian coordinate system  ( ) 

with the  and  axes parallel to the  and  directions, respectively. Also Introduce 

a Cartesian coordinate system  ( ) with the  axis perpendicular to the 

bifurcation band. Unlike Stören and Rice [13], let the normal to the bifurcation band be 

able lie out of the sheet plane. Further investigation will show that whether the normal 

lies in the sheet plane depends on the nominal stresses. 
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Fig. 3.2. Sheet metal geometry at the onset of bifurcation: (a) the normal to the 
bifurcation band lies in the sheet plane; (b) the top view of (a); (c) the normal to the 
bifurcation band lies out of the sheet plane; (d) the side view of (c). 
 

The in-plane stress resultants are 

  (3.36) 

where  is the initial sheet thickness. As mentioned above, the stress resultant 

equilibrium is required here rather than the stress equilibrium. The equilibrium equations 

hereby become 

  (3.37) 

Similarly to Section 3.1.1, Eq. (3.37) implies that 
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  (3.38) 

where  is the difference between the ’s within and out of the band. 

Substituting Eq. (3.7) into Eq. (3.38) gives 

  (3.39) 

and hereby 

  (3.40) 

It is convenient to write 

  (3.41) 

Note that the constitutive relations in Section 3.1.2 remain valid here. Combining Eqs. 

(3.16), (3.17) and (3.18) gives 

  (3.42) 

 can hereby be obtained as 

  (3.43) 

Combining Eqs. (3.8) – (3.10), (3.40) and (3.41) gives 

  (3.44) 

Eq. (3.11) represents the conditions for the onsets of bifurcation in bulk metals. Note that 

Eq. (3.44) is quite similar to Eq. (3.11) except that Eq. (3.44) also includes an term 

related to . This term results primarily from the restriction imposed by the stress 
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resultant equilibrium. Its effect will be evaluated in the section of results and discussion. 

Again, if  remains continuous within and out of the band at the onset of bifurcation, 

the term on the right hand side of Eq. (3.44) vanishes. In this case, only if  is nonzero, 

or to say, only if 

  (3.45) 

bifurcation can occur. 

 

3.1.6 Critical Tangent Moduli at the Onsets of Bifurcation in Sheet Metals 

 

To reduce the complexity of derivations, still assume that  is negligible, and 

still let the  direction coincide with the  or  direction, i.e.,  vanishes. Eq. 

(3.45) then becomes 

  (3.46) 

Substituting Eqs. (3.22) and (3.43) into Eq. (3.46) and solving for  give 

  (3.47) 

It can be deduced that the difference between the expression for  obtained from Eq. 

(3.47) and that obtained from Eq. (3.29) is also of magnitude . This implies that, to 

accurately predict the onsets of bifurcation in sheet metals, one needs to incorporate  

and  simultaneously. 
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Rewrite Eq. (3.45) as 

  (3.48) 

Solve for  from Eq. (3.48) gives 

  (3.49) 

As expected, the difference between the expression for  obtained from Eq. (3.49) 

and that obtained from Eq. (3.29) is still of magnitude . In addition, it is also worth 

notice that this difference even includes a term of magnitude  (see the third line 

of Eq. (3.49)). In fact, this term is due to the interaction between  and . 

Note that here  and  are the in-plane principal nominal stresses and that 

. This implies that, although  is still smaller than , it is not always smaller 

than . As a result, the direction of the normal to the bifurcation band is more difficult 

to determine. Here classify the bifurcation into two modes: for the mode I bifurcation, 

the normal lies in the sheet plane, or to say, lies perpendicular to the  direction; for 

the mode II bifurcation, the normal lies out of the sheet plane, or to say, lies 

perpendicular to the  direction. Similarly to Section 3.1.3, for , if Eq. (3.27) 

is unsatisfied, the mode I bifurcation dominates, otherwise the mode II bifurcation 



 64 

dominates; for , if Eq. (3.27) is satisfied, the mode I bifurcation dominates, 

otherwise the mode II bifurcation dominates. For the mode I bifurcation, the  direction 

coincide with the  direction, and  can then be expressed in terms of  as 

  (3.50) 

for the mode I bifurcation, the  direction coincide with the  direction, and  can 

then be expressed in terms of  as 

  (3.51) 

Similarly to Section 3.1.4, here the corrected  should be close to that in Eq. (3.31), 

while the corrected  should be close that in Eq. (3.33). The Brent method (Press, 

Teukolsky et al. 1992) can hereby still be employed to find the corrected  and  with 

knowing their approximate values. 

 

3.2 Results and Discussion 

 

Extensive studies have shown that bifurcation is more likely to occur in materials 

exhibiting a strain softening behavior. An example of such kind of materials is the equal-

channel angular extrusion (ECAE) processed Zn-40Al alloy. Fig. 3.3 shows its typical 

true stress-strain curve. As can be seen, it exhibits a strain hardening behavior and also a 

stain softening behavior. Here let the materials under consideration exhibit the same 

stress-strain relationship as shown Fig. 3.3, and also let them be of the same values of 

  (3.52) 
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but of different values of  and . In addition, let the bulk or sheet metals made of these 

materials be subject to in-plane biaxial extension (i.e.,  vanishes), and let them be 

deformed along different proportional strain paths (i.e.,  is constant along 

each strain path, and here  is also the strain ratio). For each value of , one can obtain a 

corresponding  and the major and minor strains at the onset of bifurcation,  and . 

If one plots  versus  for all values of , he can obtain a curve similar to the forming 

limit curve. Let this curve be named as the bifurcation curve. It physically represents to 

which extent a metal can be deformed without causing the onset of bifurcation. In this 

section, its dependences on the form of , , and  will be evaluated. 

 

Fig. 3.3. True stress-strain curve of the ECAE processed Zn-40Al alloy (provided by Dr. 
Karman, Texas A&M University). 
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Fig. 3.4 (a) plots  versus  obtained from different equations. Here the other 

parameters are set to be  and , and cases 1, 2, and 3 denote that the 

corresponding ’s are obtained from Eqs. (48), (50), and (64), respectively. Note that 

the minimum hardening modulus obtained from Fig. 3.3 is -2500 MPa. For case 1,  is 

greater than this value in two regions. Let region I denote the one in the neighborhood of 

, and let region II denote the one in the neighborhood of . According to 

Section 3.1.6, one can tell that: in region I, the mode I bifurcation dominates; in region 

II, the mode II bifurcation dominates. Eq. (48) indicates that  varies with  

hyperbolically. For this reason, in Fig. 3.4 (a),  varies with  approximately 

hyperbolically in both regions. In addition, Fig. 3.4 (a) shows that the curves for 

different cases lie quite close to each other in region I. This indicates that the terms 

introduced by  and  are quite small there. However, Fig. 3.4 (a) also shows that 

the curve for case 3 prominently deviates from the other two curves in region II. This 

indicates that, if the mean stress is great, the terms introduced by  can also 

significantly affect . 
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Fig. 3.4. (a)  versus  curves obtained from different equations and (b) bifurcation 
curves for different cases. 
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Fig. 3.4 Continued. 
 

Fig. 3.4 (b) shows the bifurcation curves for different cases. As can be seen, each 

bifurcation curve consists of two segments: one segment is located in region I where the 

mode I bifurcation dominates; the other segment is located in region II where the mode 

II bifurcation dominates. In addition, each segment exhibits a V-shape with the lowest 

point located at either  or . This is in agreement with Fig. 3.4 (a) in which 

 attains its local maximums at  and . This also indicates that, unlike the 

localized necking in sheet metals, bifurcation is most likely to occur under pure shear. 

This can be treated as a characteristic of bifurcation. Note that, in Fig. 3.4 (a), the  

versus  curve for case 3 prominently deviates from the other two curves in region II. 
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Accordingly, in Fig. 3.4 (b), the bifurcation curve for case 3 prominently deviates from 

the other two curves in region II. Especially, this curve provides an quite low local 

minimum at . This again indicates that, if the mean stress is great, the terms 

introduced by  can also significantly affect  and hereby the strains at the onset 

of bifurcation. This physically means that, if the mean stress is great, the onsets of 

bifurcation in sheet metals can be significantly affected by the restrictions imposed by 

the stress resultant equilibrium. 

Fig. 3.5 plots the bifurcation curves for case 3 as shown in Fig 4 (b) for different 

values of . Here  is set to be . According to Rudnicki and Rice [58], for rocks, the 

onset of bifurcation is quite sensitive to  and . This is because, for rocks, the values of 

 and  can both range from  to  or even to . However, according to Needleman 

and Rice [99], for metals,  also takes much smaller values compared to that for rocks 

(e.g., ), while  generally equals zero. This implies that, for metals, the effects of  

and  on the onset of bifurcation may not be quite significant. Fig. 3.5 shows that, as  

increases, the bifurcation curve shift rightward and downward in region I. This 

physically means that high values of  can promote the onset of bifurcation there. 

However, Fig. 3.5 also shows that, as  increases, the bifurcation curve hardly shifts in 

region II. This can be understood by noting that, in Eq. (3.49),  can hardly affect the 

magnitudes of the terms introduced by . For this reason, if the terms introduced 

by  are great enough, the effect of  on the onset of bifurcation can be neglected. 
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Fig. 3.5. Bifurcation curves for different values of . 
 

Fig. 3.6 plots the bifurcation curves for case 3 as shown in Fig 3.4 (b) for 

different values of . Here  is set to be . Fig. 3.6 shows that, as  increases, the 

bifurcation curve leftward and upward and also has a decrease in the opening of its V-

shape in region I. This indicates that high values of  can differently inhibit the onsets 

of bifurcation along different strain paths. However, Fig. 3.6 also shows that, as  

increases, the bifurcation curve hardly shifts in region II. Similarly to Fig. 3.5, this can 

be understood by noting that, in Eq. (3.49),  and hereby  can hardly affect the 

magnitudes of the terms introduced by . For this reason, if the terms introduced 

by  are great enough, the effect of  on the onset of bifurcation can be neglected. 
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Fig. 3.6. Bifurcation curves for different values of . 
 

3.3 Conclusions 

 

This part provides an applicable approach to modeling the bifurcation in 

anisotropic bulk and sheet metals. Plastic anisotropy and the strain hardening/softening 

behavior are found to be able to be coupled. Two bifurcation modes are found to exist in 

sheet metals. The critical tangent modulus at the onset of bifurcation and the 

corresponding bifurcation band orientation are found to be functions of the elasticity 

coefficients, the internal friction coefficient, the dilatancy factor, and the nominal 

stresses integrating the effects of the stresses and plastic anisotropy. The so-called 



 72 

bifurcation curves are generated for the ECAE processed Zn-40Al alloy. It is found to be 

able to represent to which extent a metal can be deformed without causing the onset of 

bifurcation. The terms introduced by the co-rotational stress rates are found to be 

negligible, while those introduced by the stress resultant equilibrium are found to 

increase with the mean stress and to be able to significantly affect the onset of the mode 

II bifurcation. The internal friction coefficient is found to affect the onset of the mode I 

bifurcation but to hardly affect the onset of the mode II bifurcation. The -value is 

found to differently affect the onsets of the mode I bifurcation along different strain 

paths but to hardly affect the onset of the mode II bifurcation. 

The following conclusions can be drawn from the above findings: 

• The micromechanisms resulting in macroscopic strain softening (e.g., 

progressive damage and the void nucleation, growth and coalescence) can 

promote the onset of bifurcation; 

• In bulk and sheet metals subject to nonuniform deformation, bifurcation 

tends to occur in the regions under pure shear; 

• In sheet metals subject to nonuniform deformation, bifurcation tends to 

occur in the regions subject to higher mean stresses; 

• More realistic material properties (e.g., the yield criterion, the flow rule, 

and the strain hardening/softening behavior) can be implemented into the 

proposed model. 
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4. DERIVING THE CONSTITUTIVE RELATIONS FOR POROUS METALS 

USING GENERALIZED GREEN’S FUNCTIONS 

4.1 Theoretical Considerations 

 

4.1.1 Fundamentals for Porous Metals 

 

Here the fundamentals for porous metals include the kinematic approach of the 

Hill-Mandel homogenization theory and the limit analysis theory [100]. Consider a 

typical RVE for porous metals consisting of a matrix and several voids (see Fig. 4.1). 

Let  and  denote the total domain and the domain occupied by the voids, respectively. 

For notational convenience, also let  and  denote their respective volumes. The 

porosity, , hereby equals . In this part, the RVE is set to be subject to kinematic 

boundary conditions on the external surface of the domain, , that is, 

  (4.1) 

where  denotes the microscopic velocity field and  denotes a specified second order 

symmetric tensor. Therefore, the kinematic approach of the Hill-Mandel homogenization 

theory is used. The macroscopic stress, , is defined as the volume average of the 

microscopic stress, , that is, 

  (4.2) 
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where  denotes the volume average of the quantity.  can be proven to equal the 

volume average of the microscopic rate of deformation, , using Green’s theorem, that 

is, 

  (4.3) 

As a result of Eq. (4.3),  is named as the macroscopic rate of deformation. 

 

 

 

Fig. 4.1. Sketch of a typical RVE for porous metals. 
 

Now let  be a kinematically admissible velocity field, that is,  satisfies Eq. 

(4.1). Also let  be a statically admissible stress field, that is,  is self equilibrating and 

satisfies the traction free boundary conditions on the void surface, . The Hill-Mandel 

lemma [76, 77] can hereby be stated as 

  (4.4) 

It is worth notice that, in this lemma,  and  do not need to be related through a 

constitutive relation. 

Assume the matrix to be rigid-perfectly plastic and also to obey a certain yield 

criterion along with an associated flow rule. For a given matrix deformation field , the 

microscopic plastic dissipation is defined as 
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  (4.5) 

where the supremum is taken over all the microscopic stresses which fall within the 

microscopic convex domain of elasticity . The Hill-Mandel lemma, together with Eq. 

(4.5), implies that 

  (4.6) 

where  denotes the set of kinematically admissible microscopic deformation and 

takes the form of 

 (4.7) 

Following Suquet [78],  is defined as the macroscopic plastic dissipation. The 

classical limit analysis theory states that, as a result of Eq. (4.6), the macroscopic yield 

surface is defined by 

  (4.8) 

So far, the fundamentals for porous metals have been briefly reviewed. Eq. (4.5) 

– (4.8) implies that, to determine the macroscopic yield surface, several items need to be 

specified, i.e., the RVE geometry, the trial microscopic velocity fields defining , 

and the microscopic plastic model defining . In the following sections, these items 

will be specified so as to determine the macroscopic yield surfaces of porous metals with 

cylindrical and spherical voids. 
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4.1.2 Basic Ideas 

 

Consider an isolated cylindrical void in an infinite medium. Assume the matrix to 

be rigid-perfectly plastic and also to obey the von Mises criterion along with the 

associated flow rule. Also assume the matrix to be under generalized plane strain 

conditions. Tracey [73] proposed a family of microscopic velocity fields consisting of 

two parts: the first part accounts for purely deviatoric uniform extension; the second part 

accounts for dilatational expansion. Introduce a cylindrical coordinate system  with 

the origin, , located at the axis of the cylindrical void and the  axis parallel to the axis 

of the cylindrical void. The family of microscopic velocity field takes the form of 

  (4.9) 

where 

  (4.10) 

where  denotes the radius vectors of an arbitrary point. Also introduce a Cartesian 

coordinate system  with the origin, , and the  axis coincide with those of the 

coordinate system . Let  take the form of 

  (4.11) 

Here  is traceless second order tensor with its principal directions parallel to the , , 

and  axes, and , where  is the macroscopic rate of deformation due to 

. In Eq. (4.10),  accounts for in-plane isotropic radial expansion and equals 
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 rather than  proposed by Tracey [73]. Further investigation will 

show that, by letting  equal ,  can have a clear physical meaning. 

Eq. (4.10) indicates that  is irrotational and can be represented as the gradient 

of a velocity potential. Let  denote the velocity potential for .  can be related to 

 by 

  (4.12) 

Substituting Eq. (4.10) into Eq. (4.12) and solving for  give 

  (4.13) 

Eq. (4.13) reminds one of the Green’s function on an unbounded two-dimensional 

domain with the point source located at the origin, that is, 

  (4.14) 

The appendix gives the derivations for the Green’s and generalized Green’s functions on 

different domains. It can be seen that  can be related to  by 

  (4.15) 

Note that, even if the matrix is incompressible, the porous medium is not. This is 

because the void is compressible. In fact, the void acts as the source of dilatation. This 

leads one to treat the void as a perturbation to the perfect medium. Accordingly, one can 

also treat  as the unperturbed velocity field in the perfect medium and  as the 

perturbing velocity field due to the void. In addition, one can further idealize the void as 

a point source located at the origin. According to the definition of the point source, now 
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 should be singular at the origin but vanish elsewhere. Therefore,  should 

satisfy the two-dimensional Poisson’s equation 

  (4.16) 

on the unbounded domain. By comparing Eq. (4.16) with Eq. (C1.2) (see Appendix C1), 

one can relate  to  as described in Eq. (4.15). In addition, Eq. (4.16) also 

indicates that  is mathematically the point source intensity. Note that the void acts as 

the source of dilatation. This implies that  is physically a measure of the void 

dilatation. 

So far, it has been proven valid to use the Green’s function to find the perturbing 

velocity potential so as to provide the microscopic velocity field in an infinite medium 

with an isolated void. This leads one to use generalized Green’s functions to also find 

the perturbing velocity potentials so as to provide the microscopic velocity fields in 

porous metals with different void shapes and distributions. 

 

4.1.3 RVE Geometry and Microscopic Velocity Fields for Porous Metals with 

Cylindrical Voids 

 

Note that, by definition, the RVEs should be able to form into a continuum. 

Therefore, it is better for a RVE to be a tetrahedron, a parallelepiped, a hexagonal prism, 

or etc. Consider a hollow cuboid RVE of width , length , and thickness  (not shown) 

and with a cylindrical void of radius  located at its center (see Fig. 4.2). Here  can be 

set not to equal  so as to incorporate the void distribution anisotropy. Still assume the 
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matrix to be rigid-perfectly plastic and also to obey the von Mises criterion along with 

the associated flow rule. Also assume the matrix to be under generalized plane strain 

conditions. Introduce a Cartesian coordinate system  with the origin, , located at 

the center of the void and the , , and  axes parallel to the length, width and height 

directions of the RVE, respectively. 

 

 

 

Fig. 4.2. Sketch of the RVE for porous metals with cylindrical voids. 
 

Let the family of microscopic velocity fields take the form of 

  (4.17) 

where 

  (4.18) 

Let  still take the form of 

  (4.19) 
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Note that the matrix is under generalized plane strain conditions. This implies that  

and  are still independent of . Still idealize the void as a point source located at the 

origin.  should hereby satisfy the two-dimensional Poisson’s equation 

  (4.20) 

within the RVE. 

Here let  account for in-plane equal biaxial expansion. This implies that  

has to be constant across each external RVE edge, where  denotes the unit normal to 

the edge. In addition, due to symmetry, 

  (4.21) 

while due to in-plane equal biaxial expansion, 

  (4.22) 

where  is a constant to be determined. Note that here 

  (4.23) 

Combining Eqs.(4.21), (4.22), and (4.23) gives 

  (4.24) 

which are the boundary conditions associated with Eq. (4.20). However, in Eq. (4.24), 

 is still undetermined. 
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To determine , again compare  with its corresponding generalized Green’s 

function, where the term “generalized” indicates that nonhomogeneous boundary 

conditions are applied. This generalized Green’s function should satisfy the two-

dimensional Poisson’s equation 

  (4.25) 

within the RVE. For notational convenience, let  denote  in this and the 

next sections. By comparing Eq. (4.20) with Eq. (4.25), one can relate  to  by 

  (4.26) 

and also obtain the boundary conditions associated with Eq. (4.26) as 

  (4.27) 

It can be proven that  can exist only if  satisfies 

  (4.28) 

[101]. Substituting Eqs. (4.25) and (4.27) into Eq. (4.28) gives 

  (4.29) 

Now the boundary conditions are fully specified, while  is uniquely determined. 

Appendix C1 gives the derivation for , while Eq. (C1.29) gives the expression for . 

Substituting Eq. (C1.29) into Eq. (4.26) gives the expression for . The family of 

microscopic velocity fields for porous metals with cylindrical voids can be subsequently 

obtained. 
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Eqs. (4.26) and (4.28) imply that  should satisfy 

  (4.30) 

Eq. (4.30) is quite similar to Eq. (4.28) and has its clear physical meaning. In fact, in Eq. 

(4.30), the integral to the left of the equal sign represents the void dilatation, while that 

to the right represents the RVE dilatation. Eq. (4.30) requires these two integrals to be 

equal and hereby physically means that the matrix is incompressible. Similarly, Eq. 

(4.28) also physically means that the matrix is incompressible. 

 

4.1.4 Constitutive Relations for Porous Metals with Cylindrical Voids 

 

Note that 

  (4.31) 

by definition. Substituting Eq. (4.31) into Eq. (4.3) and applying the Gauss theorem to 

the equation give 

  (4.32) 

Substituting Eqs. (4.24) and (4.29) into Eq. (4.32) gives 

  (4.33) 

Separate  into its deviatoric and mean parts, i.e.,  and .  and  can hereby be 

expressed as 
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  (4.34) 

where  is given by Eq. (4.19); 

  (4.35) 

here;  denotes the unit second order tensor. Accordingly, the macroscopic effective and 

mean rates of deformation, i.e.,  and , can be obtained as 

  (4.36) 

Also separate  into its deviatoric and mean parts, i.e.,  and . Note that 

  (4.37) 

 and  can hereby be expressed as 

  (4.38) 

For a matrix obeying the von Mises criterion along with the associated flow rule, 

  (4.39) 

  (4.40) 

where  and  are positive scalar-valued functions. Following Keralavarma and 

Benzerga [92], use the change of variables  to determine  and  

and hereby  and . Express  and  in terms of  and  

using the chain rule as 

  (4.41) 
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  (4.42) 

Substituting Eq. (4.34) into Eqs. (4.41) and (4.42) gives 

  (4.43) 

  (4.44) 

Substituting Eq. (4.39) into Eq. (4.43) gives 

  (4.45) 

Therefore, 

  (4.46) 

and 

  (4.47) 

Substituting Eq. (4.40) and (4.47) into Eq. (4.44) gives 

  (4.48) 

Therefore, 

  (4.49) 

and 
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  (4.50) 

Substituting Eqs. (4.47) and (4.50) into Eq. (4.38) gives 

  (4.51) 

which are the constitutive relations for porous metals with cylindrical voids. 

Accordingly, the macroscopic effective and mean stresses, i.e.,  and , can be 

obtained as 

  (4.52) 

The values of  and  can be numerically calculated. Note that  

vanishes within the void. Therefore, 

  (4.53) 

and 

  (4.54) 

where  denotes the domain occupied by the matrix. For notational convenience, let 

 denote . Substituting Eqs. (4.17) – (4.19), and (4.26) into Eq. (4.31) gives 

  (4.55) 

where , , and  can be numerically calculated as described in Appendix. Also 

note that 
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  (4.56) 

by definition. Substituting Eq. (4.55) into Eq. (4.56) and noting that  give 

  (4.57) 

 and  can hereby be obtained as 

  (4.58) 

  (4.59) 

Substituting Eqs. (4.58) and (4.59) into Eq. (4.54) and numerically calculating the 

integrals give the values of  and . 

 

4.1.5 RVE Geometry and Microscopic Velocity Fields for Porous Metals with 

Spherical Voids 

 

Consider a hollow cuboid RVE of width , length , and height  and with a 

spherical void of radius  located at its center (see Fig. 4.3). Here , , and  can be set 

not to equal each other so as to incorporate the void distribution anisotropy. Still assume 

the matrix to be rigid-perfectly plastic and also to obey the von Mises criterion along 

with the associated flow rule. Introduce a Cartesian coordinate system  with the 

origin, , located at the center of the void and the , , and  axes parallel to the length, 

width, and height directions of the RVE, respectively. 
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Fig. 4.3. Sketch of the RVE for porous metals with spherical voids. 

 

Let the family of microscopic velocity fields take the form of 

  (4.60) 

where 

  (4.61) 

Let  still take the form of 

  (4.62) 

Note that the matrix is no longer under generalized plane strain conditions. This implies 

that here  and  depend on . Still idealize the void as a point source located at the 

origin.  should hereby satisfy the three-dimensional Poisson’s equation 

  (4.63) 

within the RVE. 
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Here let  account for equal triaxial extension. This implies that  has to 

be constant across each external RVE surface, where  denotes the unit normal to the 

surface. In addition, due to symmetry, 

  (4.64) 

while due to equal triaxial extension, 

  (4.65) 

where  is a constant to be determined. Note that here 

  (4.66) 

Combining Eqs. (4.64), (4.65), and (4.66) gives 

  (4.67) 

which are the boundary conditions associated with Eq. (4.63). 

Similarly to Section 4.1.3,  should satisfy 

  (4.68) 

Substituting Eqs. (4.63) and (4.67) into Eq. (4.68) gives 
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  (4.69) 

Now the boundary conditions are fully specified, while  is uniquely determined. 

Similarly to Section 4.1.3, one can still  relate to its corresponding generalized 

Green’s function by 

  (4.70) 

For notational convenience, let  denote  in this and the next sections. 

 should satisfy the three-dimensional Poisson’s equation 

  (4.71) 

subject to the nonhomogeneous boundary conditions. Appendix C1 gives the derivation 

for , while Eq. (C1.42) gives the expression for . Substituting (C1.42) into Eq. (4.70) 

gives the expression for . The family of microscopic velocity fields for porous metals 

with spherical voids can be subsequently obtained. 

 

4.1.6 Constitutive Relations for Porous Metals with Spherical Voids 

 

Subsitituting Eqs. (4.67) and (4.69) into (4.32) gives 

  (4.72) 

Separate  into  and .  and  can hereby be expressed as 

  (4.73) 

Accordingly,  and  can be obtained as 
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  (4.74) 

Also separate  into  and . Similarly to Section 4.1.4, the constitutive 

relations for porous metals with spherical voids can be finally obtained as 

  (4.75) 

Accordingly,  and  can be obtained as 

  (4.76) 

The values of  and  can be numerically calculated. Substituting 

Eqs. (4.60) – (4.62) and (4.70) into Eq. (4.31) gives 

  (4.77) 

where , , , and etc. can be numerically calculated as described in Section 

4.4.2. Substituting Eq. (4.77) into Eq. (4.56) and noting that  give 

  (4.78) 

 and  can hereby be obtained as 

  (4.79) 

  (4.80) 
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Substituting Eqs. (4.79) and (4.80) into Eq. (4.54) and numerically calculating the 

integrals give the values of  and . 

 

4.2 Results and Discussion 

 

4.2.1 Effects of the Macroscopic Mean Stress and the Porosity for Porous Metals 

with Cylindrical Voids 

 

In this section, let the RVE be subject to in-plane equal biaxial extension, and let 

its cross section be square. Fig. 4.4 plots  versus  for different values of . 

Here the other parameters are set to be  and . As can be seen, as  

increases,  decreases monotonically, and especially, as  approaches its 

upper limit,  decreases rapidly to zero. In addition, as  increases, the curve shifts 

inward. This physically means that, as the porosity increases, the material can sustain 

lower macroscopic effective and mean stresses. This is in agreement with the 

experimental and numerical observations. The results here are also quite similar to those 

obtained by Gurson [74]. However, further investigation will show that there still exists 

some discrepancy between the results here and those obtained by Gurson [74]. 
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Fig. 4.4.  versus  for different values of . 
 

Fig. 4.5 shows the contour plots of the microscopic effective rate of deformation 

fields for different values of . Here the other parameters are set to be , 

, , and . Here the RVE is divided into  elements and is 

hereby of  nodes. For given values of the parameters, the value of  at each 

node can be calculated from Eq. (4.57). A contour plot can hereby be plotted based on 

the calculated values of . Note that here the porosity is set to be quite low. This causes 

the node density to be relatively low around the void. As a result, the illustrated void 

may not be strictly circular. This, however, has no effect on the field within the matrix. 

In addition, a logarithmic scale is used in each contour plot. As can be seen in Fig. 4.5, 
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the assumed microscopic effective rate of deformation fields are quite sophisticated: as 

 increases, the field exhibits different characteristics: for , the field is 

quite uniform, while  slightly concentrates around the void (see Fig. 4.5 (a)); as 

 increases,  concentrates more and more around the void and also at the 

ligaments (see Fig. 4.5 (b) and (c)); as  attains its upper limit, the field becomes 

highly nonuniform, while  heavily concentrates around the void and at the ligaments 

but diminishes at the corners (see Fig. 4.5 (d)). 

 

Fig. 4.5. Contour plots of the microscopic effective rate of deformation fields (a) for 
, (b) for , (c) for , and (d) for 

. 



 94 

 

Fig. 4.5 Continued. 
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Fig. 4.5 Continued. 
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Fig. 4.5 Continued. 
 

Fig. 4.5 (c) and Fig. 4.6 show the contour plots of the microscopic effective rate 

of deformation fields for different values of . Here the other parameters are set to be 

, , , and . Note that, as the porosity increases, 

the void becomes greater, while the ligament becomes narrower. As a result, in Fig. 4.5 

(c) and Fig. 4.6, as  increases,  concentrates more and more around the void and at 

the ligaments. Fig. 4.5 and Fig. 4.6 indicate that the macroscopic mean stress and the 

porosity both affect the microscopic effective rate of deformation field. 
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Fig. 4.6. Contour plots of the microscopic effective rate of deformation fields (a) for 
 and (b) for . 
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Fig. 4.6 Continued. 
 

4.2.2 Effect of the Unperturbed Velocity Field for Porous Metals with Cylindrical 

Voids 

 

In this section, let the RVE be subject to in-plane biaxial extension, and let its 

cross section still be square. Here the other parameters are set to be  and 

. As mentioned above, one can treat  as the unperturbed velocity field in the 

perfect medium and  as the perturbing velocity field due to the void. Also note that 

 by definition. This leads one to name  as the unperturbed rate of 

deformation ratio. Fig. 4.7 plots  versus  for different values of . As can 
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be seen,  hardly affects the relationship between  and . This physically 

means that the unperturbed velocity field does not affect the macroscopic effective 

stress. This is in agreement with the Gurson model. 

 

Fig. 4.7.  versus  for different values of . 
 

Fig. 4.5 (c) and Fig. 4.8 show the contour plots of the microscopic effective rate 

of deformation fields for different values of . Here the other parameters are set to be 

, , , and . As can be seen, for , the field 

is rotation symmetric of the fourth order (see Fig. 4.5 (c)); as  decreases to zero and 

further below zero, the field becomes merely centrosymmetric, while  concentrates 

more and more at the ligaments perpendicular to the  direction (i.e., the ligaments 
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subject to higher in-plane extension) but less and less at the ligaments perpendicular to 

the  direction (i.e., the ligaments subject to lower in-plane extension) (see Fig. 4.8). Fig. 

4.5 (c) and Fig. 4.8 indicate that, although the specific unperturbed velocity field does 

not affect the macroscopic effective stress, it affects the microscopic effective rate of 

deformation field. 

 

Fig. 4.8. Contour plots of the microscopic effective rate of deformation fields (a) for 
 and (b) for . 
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Fig. 4.8 Continued. 
 

4.2.3 Effect of the Void Distribution Anisotropy for Porous Metals with Cylindrical 

Voids 

 

In this section, let the RVE be subject to in-plane equal biaxial extension, and let 

its cross section be rectangular so as to incorporate the void distribution anisotropy. Fig. 

4.9 plots  versus  for different values of . Here the other parameters are 

set to be  and .As can be seen, as  decreases, the curve slightly shifts 

outward. This physically means that the void distribution anisotropy slightly affects the 

macroscopic effective stress. 
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Fig. 4.9.  versus  for different values of . 
 

Fig. 4.5 (c) and Fig. 4.10 show the contour plots of the microscopic effective rate 

of deformation fields for different values of . Here the other parameters are set to be 

, , , and . As can be seen, for , the field 

is rotation symmetric of the fourth order (see Fig. 4.5 (c)); as  decreases, the field 

becomes centrosymmetric, while  concentrates more and more at the ligaments 

perpendicular to the  direction (i.e., the wider ligaments) but less and less at the 

ligaments perpendicular to the  direction (i.e., the narrower ligaments) (see Fig. 4.10). 

Fig. 4.5 (c) and Fig. 4.10 indicate that the void distribution anisotropy also affects the 

microscopic effective rate of deformation field. 
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Fig. 4.10. Contour plots of the microscopic effective rate of deformation fields (a) for 
 and (b) for . 
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Fig. 4.10 Continued. 
 

4.2.4 Effect of the Void Distribution Anisotropy for Porous Metals with Spherical 

Voids 

 

The effects of different factors for porous metals with special voids can be 

evaluated similarly to Sections 4.2.1 – 4.2.3. Here evaluate the effect of the void 

distribution anisotropy on the microscopic effective rate of deformation field as an 

example. In this section, let the RVE be subject to equal triaxial extension, and let the 

RVE width, , length, , and height, , not equal each other so as to incorporate the void 

distribution anisotropy. Fig. 4.11 shows the contour plots of the microscopic effective 
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rate of deformation fields for different values of . Here the other parameters 

are set to be  and . As can be seen, for , the field is rotation 

symmetric of the fourth order (see Fig. 4.11 (a) and (b)); as  decreases, the field 

becomes centrosymmetric, while while  concentrates more and more at the ligaments 

perpendicular to the  direction (i.e., the wider ligaments) but less and less at the 

ligaments perpendicular to the  direction (i.e., the narrower ligaments) (see Fig. 4.11 (c) 

and (d)). Fig. 4.11 indicates that, for porous metals with spherical voids, the void 

distribution anisotropy still affects the microscopic effective rate of deformation field. 

 

Fig. 4.11. Contour plots of the microscopic effective rate of deformation fields (a) for 
 at  and (b) at  and (c) for  at  and 

(d) at . The RVE is set to be subject to equal triaxial extension. 



 106 

 

Fig. 4.11 Continued. 
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Fig. 4.11 Continued. 
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Fig. 4.11 Continued. 
 

4.2.5 Comparison between the Results Obtained Using the Cuboid and Non-Cuboid 

RVEs 

 

In this part, two types of cuboid RVEs are employed to represent the typical 

properties of porous metals. Using the cuboid RVEs leads to sophisticated microscopic 

rate of deformation fields and hereby reliable results. However, it also prohibits one 

from obtaining analytical macroscopic yield criterions and introduces additional 

computational efforts. It is hereby of interest whether using the cuboid RVEs is worth 

the cost. Here compare the results obtained using the cuboid RVE as shown in Fig. 4.2 
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with those obtained using the corresponding non-cuboid RVE in the Gurson model as an 

example. For comparison purposes, let the cuboid RVE be subject to in-plane equal 

biaxial extension, and let its cross section be square ( ). This RVE now turns out to 

correspond to the cylindrical RVE in the Gurson model. According to Gurson [74], the 

cylindrical RVEs can be set to be subject to in-plane axisymmetric extension to 

approximate in-plane equal biaxial extension. Therefore, let the cylindrical RVE be 

subject to in-plane axisymmetric extension. Fig. 4.12 plots  versus  

obtained using the cuboid and cylindrical RVEs. Here the other parameters are set to be 

, , and , and the cylindrical RVE is set to subject axisymmetric 

extension. As can be seen, for low values of , the two curves lie quite close to 

each other; as  increases, the curve obtained using the cuboid RVEs deviates 

more and more from that obtained using the cylindrical RVEs. It is also worth notice that 

the curve obtained using the cuboid RVEs mostly lies exterior to that obtained using the 

cylindrical RVEs. Note that the Gurson model provides a rigorous upper bound. Fig. 

4.12 hereby indicates that the proposed model also provides a rigorous upper bound. 
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Fig. 4.12.  versus  predicted by the proposed model and the Gurson model. 
 

4.3 Conclusions 

 

This part provides an alternative approach to deriving the constitutive relations 

for porous metals. The hollow cuboid RVEs and the corresponding microscopic velocity 

fields are found to be able to well represent the typical properties of porous metals with 

cylindrical and spherical voids. The microscopic velocity fields are found to be able to 

be obtained using generalized Green’s functions. The macroscopic mean stress, the 

porosity, the unperturbed velocity field, and the void distribution anisotropy are found to 

affect the macroscopic effective stress and the microscopic effective rate of deformation 
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field for porous metals with cylindrical voids. The macroscopic effective stress is found 

to decrease with increasing macroscopic mean stress. As the macroscopic mean stress 

increases, the microscopic effective rate of deformation is found to concentrate more and 

more around the void and at the ligaments. The unperturbed velocity field is found to 

affect not the macroscopic effective stress but the microscopic effective rate of 

deformation field. The void distribution anisotropy is found to affect the macroscopic 

effective stress and also the microscopic effective rate of deformation field. The 

proposed model is found to provide a rigorous upper bound. 

The following conclusions can be drawn from the above findings: 

• The microscopic velocity fields for other RVE shapes (e.g., elliptic 

cylindrical and ellipsoidal RVEs) can also be obtained using generalized 

Green’s functions; 

• The assumed sophisticated microscopic velocity fields can be employed 

to estimate the void growth; 

• The proposed model is able to predict the upper bounds of the 

macroscopic yield and mean stresses that a porous metal can endure and 

hereby to provide an estimation of the safe loads; 

• More complicated matrix properties (e.g., plastic anisotropy) and void 

shapes can be implemented into the proposed model. 
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5. SUMMARY AND FUTURE WORK 

This work consists of three parts corresponding to three different failure 

mechanisms in metals. The first part provides an alternative approach to modeling the 

localized necking in anisotropic sheet metals to demonstrate that localized geometric 

softening at a certain stage of deformation rather than the initial defects is the main cause 

of localized necking. Its future work includes modeling the localized necking in steel 

sheet metals by looking into the steel’s microstructure and modeling the localized 

necking in pipes subject to internal pressure. The second part provides an applicable 

approach to modeling the bifurcation in anisotropic bulk and sheet metals to couple 

plastic anisotropy and the strain hardening/softening behavior and also to identify 

different bifurcation modes in sheet metals. Its future work includes implementing more 

realistic material properties (e.g., the yield criterion, the flow rule, and the strain 

hardening/softening behavior) into the proposed approach. The applicability of the 

methodology outlined here in the content of modeling the void coalescence remains to 

be investigated. One challenge is to be able to describe the velocity field corresponding 

to the highly localized deformation. The third part provides an alternative approach to 

deriving the constitutive relations for porous metals to better understand the 

micromechanism of the ductile fracture in metals. Its future work includes extending the 

proposed approach to be applicable to porous metals of high porosity and implementing 

more complicated matrix properties (e.g., plastic anisotropy) and void shapes into the 
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proposed approach. This work provides novel insights into these three failure 

mechanisms. 
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APPENDIX A 

C PROGRAM FOR SECTION 2 

 

“nrutil.h” 
 
#ifndef _NR_UTILS_H_ 
#define _NR_UTILS_H_ 
 
static float sqrarg; 
#define SQR(a) ((sqrarg=(a)) == 0.0 ? 0.0 : sqrarg*sqrarg) 
 
static double dsqrarg; 
#define DSQR(a) ((dsqrarg=(a)) == 0.0 ? 0.0 : dsqrarg*dsqrarg) 
 
static double dmaxarg1,dmaxarg2; 
#define DMAX(a,b) (dmaxarg1=(a),dmaxarg2=(b),(dmaxarg1) > (dmaxarg2) ?\ 
        (dmaxarg1) : (dmaxarg2)) 
 
static double dminarg1,dminarg2; 
#define DMIN(a,b) (dminarg1=(a),dminarg2=(b),(dminarg1) < (dminarg2) ?\ 
        (dminarg1) : (dminarg2)) 
 
static float maxarg1,maxarg2; 
#define FMAX(a,b) (maxarg1=(a),maxarg2=(b),(maxarg1) > (maxarg2) ?\ 
        (maxarg1) : (maxarg2)) 
 
static float minarg1,minarg2; 
#define FMIN(a,b) (minarg1=(a),minarg2=(b),(minarg1) < (minarg2) ?\ 
        (minarg1) : (minarg2)) 
 
static long lmaxarg1,lmaxarg2; 
#define LMAX(a,b) (lmaxarg1=(a),lmaxarg2=(b),(lmaxarg1) > (lmaxarg2) ?\ 
        (lmaxarg1) : (lmaxarg2)) 
 
static long lminarg1,lminarg2; 
#define LMIN(a,b) (lminarg1=(a),lminarg2=(b),(lminarg1) < (lminarg2) ?\ 
        (lminarg1) : (lminarg2)) 
 
static int imaxarg1,imaxarg2; 
#define IMAX(a,b) (imaxarg1=(a),imaxarg2=(b),(imaxarg1) > (imaxarg2) ?\ 
        (imaxarg1) : (imaxarg2)) 
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static int iminarg1,iminarg2; 
#define IMIN(a,b) (iminarg1=(a),iminarg2=(b),(iminarg1) < (iminarg2) ?\ 
        (iminarg1) : (iminarg2)) 
 
#define SIGN(a,b) ((b) >= 0.0 ? fabs(a) : -fabs(a)) 
 
#if defined(__STDC__) || defined(ANSI) || defined(NRANSI) /* ANSI */ 
 
void nrerror(char error_text[]); 
float *vector(long nl, long nh); 
int *ivector(long nl, long nh); 
float **matrix(long nrl, long nrh, long ncl, long nch); 
void free_vector(float *v, long nl, long nh); 
void free_ivector(int *v, long nl, long nh); 
void free_matrix(float **m, long nrl, long nrh, long ncl, long nch); 
 
#else /* ANSI */ 
/* traditional - K&R */ 
 
void nrerror(); 
float *vector(); 
float **matrix(); 
int *ivector(); 
void free_vector(); 
void free_ivector(); 
void free_matrix(); 
 
#endif /* ANSI */ 
 
#endif /* _NR_UTILS_H_ */ 
 
“nutril.cpp” 
 
#include <stdio.h> 
#include <stddef.h> 
#include <stdlib.h> 
#define NR_END 1 
#define FREE_ARG char* 
 
void nrerror(char error_text[]) 
/* Numerical Recipes standard error handler */ 
{ 
 fprintf(stderr,"Numerical Recipes run-time error...\n"); 
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 fprintf(stderr,"%s\n",error_text); 
 fprintf(stderr,"...now exiting to system...\n"); 
 exit(1); 
} 
 
double *vector(long nl, long nh) 
/* allocate a double vector with subscript range v[nl..nh] */ 
{ 
 double *v; 
 
 v=(double *)malloc((size_t) ((nh-nl+1+NR_END)*sizeof(double))); 
 if (!v) nrerror("allocation failure in vector()"); 
 return v-nl+NR_END; 
} 
 
int *ivector(long nl, long nh) 
/* allocate an int vector with subscript range v[nl..nh] */ 
{ 
 int *v; 
 
 v=(int *)malloc((size_t) ((nh-nl+1+NR_END)*sizeof(int))); 
 if (!v) nrerror("allocation failure in ivector()"); 
 return v-nl+NR_END; 
} 
 
double **matrix(long nrl, long nrh, long ncl, long nch) 
/* allocate a double matrix with subscript range m[nrl..nrh][ncl..nch] */ 
{ 
 long i, nrow=nrh-nrl+1,ncol=nch-ncl+1; 
 double **m; 
 
 /* allocate pointers to rows */ 
 m=(double **) malloc((size_t)((nrow+NR_END)*sizeof(double*))); 
 if (!m) nrerror("allocation failure 1 in matrix()"); 
 m += NR_END; 
 m -= nrl; 
 
 /* allocate rows and set pointers to them */ 
 m[nrl]=(double *) malloc((size_t)((nrow*ncol+NR_END)*sizeof(double))); 
 if (!m[nrl]) nrerror("allocation failure 2 in matrix()"); 
 m[nrl] += NR_END; 
 m[nrl] -= ncl; 
 
 for(i=nrl+1;i<=nrh;i++) m[i]=m[i-1]+ncol; 
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 /* return pointer to array of pointers to rows */ 
 return m; 
} 
 
void free_vector(double *v, long nl, long nh) 
/* free a double vector allocated with vector() */ 
{ 
 free((FREE_ARG) (v+nl-NR_END)); 
} 
 
void free_ivector(int *v, long nl, long nh) 
/* free an int vector allocated with ivector() */ 
{ 
 free((FREE_ARG) (v+nl-NR_END)); 
} 
 
void free_matrix(double **m, long nrl, long nrh, long ncl, long nch) 
/* free a double matrix allocated by matrix() */ 
{ 
 free((FREE_ARG) (m[nrl]+ncl-NR_END)); 
 free((FREE_ARG) (m+nrl-NR_END)); 
} 
 
“main.cpp” 
 
#include <stdio.h> 
#include <conio.h> 
#include <math.h> 
#include "nrutil.h" 
#include "nrutil.cpp" 
#define PI 3.14159265 
#define DEG 0.01745329 
 
#define ITMAX 100 //Maximum allowed number of iterations. 
#define EPS 3.0e-8 //Machine doubleing-point precision. 
 
#define CGOLD 0.3819660 
#define ZEPS 1.0e-10 
/*Here ITMAX is the maximum allowed number of iterations; CGOLD is the golden 
ratio; ZEPS is a small number that protects against trying to achieve fractional accuracy 
for a minimum that happens to be exactly zero.*/ 
#define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
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#define TOL 3.0e-8 //Tolerance passed to brent. 
 
FILE *fp; 
 
double r; 
double f_1_00; 
double m,n; 
double **A,**A_hat; 
double R_0,R_90; 
 
int nvar; //Variables that you must define and set in your main program. 
int kmax,kount; 
double *xp,**yp; 
 
double ea_I,ea_II,ea_III,ea_e; 
double dea_I,dea_II,dea_III,dea_e; 
double sa_I,sa_II,sa_III,sa_e,sa_n; 
double **ea,**dea,**sa; 
double eb_I,eb_II,eb_III,eb_e; 
double deb_I,deb_II,deb_III,deb_e; 
double sb_I,sb_II,sb_III,sb_e,sb_n; 
double **eb,**deb,**sb; 
double ra,rb,Pa_n,Pb_n; 
double psi; 
double chi_1,f_1,f; 
double ba,bb,mua,mub; 
double dea_n,Dde_n; 
 
double increment(double dea_I) 
//Given dea_I, solve for deb_I. 
{ 
 dea_II=ra*dea_I; 
 dea_e=sqrt(2.0/3.0*(A_hat[1][1]+ra*ra*A_hat[2][2]+pow(1.0+ra,2.0)*A_hat[3][
3]))*dea_I; 
 dea[2][2]=dea_I*pow(sin(psi),2.0)+dea_II*pow(cos(psi),2.0); 
  
 sa_I=2.0/9.0*(2.0*A_hat[1][1]-ra*A_hat[2][2]+4.0*(1.0+ra)*A_hat[3][3]); 
 sa_II=2.0/9.0*(-A_hat[1][1]+2.0*ra*A_hat[2][2]+4.0*(1.0+ra)*A_hat[3][3]); 
 sa_e=sqrt(2.0/3.0*(A_hat[1][1]+ra*ra*A_hat[2][2]+pow(1.0+ra,2.0)*A_hat[3][3
])); 
 sa[1][1]=sa_I*pow(cos(psi),2.0)+sa_II*pow(sin(psi),2.0); 
 sa[1][2]=-(sa_I-sa_II)*cos(psi)*sin(psi); 
 sa_n=sqrt(pow(sa[1][1],2.0)+pow(sa[1][2],2.0)); 
 mua=sa_n/sa_e; 
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 if (dea[2][2]<TOL) 
  Pa_n=mua*pow(dea_e,m)*pow(ea_e+dea_e,n); 
 else { 
  ba=dea_e/dea[2][2]; 
  Pa_n=mua*pow(ba,m)*pow(ea_e+dea_e,n); 
 } 
  
 deb[2][2]=dea[2][2]; 
 deb_II=(deb[2][2]-deb_I*pow(sin(psi),2.0))/pow(cos(psi),2.0); 
 rb=deb_II/deb_I; 
 deb_e=sqrt(2.0/3.0*(A_hat[1][1]+rb*rb*A_hat[2][2]+pow(1.0+rb,2.0)*A_hat[3]
[3]))*deb_I; 
  
 sb_I=2.0/9.0*(2.0*A_hat[1][1]-rb*A_hat[2][2]+4.0*(1.0+rb)*A_hat[3][3]); 
 sb_II=2.0/9.0*(-A_hat[1][1]+2.0*rb*A_hat[2][2]+4.0*(1.0+rb)*A_hat[3][3]); 
 sb_e=sqrt(2.0/3.0*(A_hat[1][1]+rb*rb*A_hat[2][2]+pow(1.0+rb,2.0)*A_hat[3][3
])); 
 sb[1][1]=sb_I*pow(cos(psi),2.0)+sb_II*pow(sin(psi),2.0); 
 sb[1][2]=-(sb_I-sb_II)*cos(psi)*sin(psi); 
 sb_n=sqrt(pow(sb[1][1],2.0)+pow(sb[1][2],2.0)); 
 mub=sb_n/sb_e; 
 
 if (dea[2][2]<TOL) 
  Pb_n=f*mub*pow(deb_e,m)*pow(eb_e+deb_e,n); 
 else { 
  bb=deb_e/deb[2][2]; 
  Pb_n=f*mub*pow(bb,m)*pow(eb_e+deb_e,n); 
 } 
 
 return Pb_n-Pa_n; 
} 
 
double neck(double psi_1) 
//Given the strain ratio and the neck orientation, solve for the limiting strain. 
{ 
 double increment(double dea_I); 
 double zbrent(double (*func)(double), double x1, double x2, double tol); 
 int flag; //i,j; 
 
 ea=matrix(1,3,1,3); 
 dea=matrix(1,3,1,3); 
 sa=matrix(1,3,1,3); 
 eb=matrix(1,3,1,3); 
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 deb=matrix(1,3,1,3); 
 sb=matrix(1,3,1,3); 
 
 flag=1; //Flag. 
 ra=r; 
 psi=psi_1; 
  
 ea_I=n/(pow(cos(psi),2.0)+ra*pow(sin(psi),2.0)); //Principal strain at the 
formation of the neck. 
 ea_e=sqrt(2.0/3.0*(A_hat[1][1]+ra*ra*A_hat[2][2]+pow(1.0+ra,2.0)*A_hat[3][3
]))*ea_I; 
 ea[3][3]=-(1.0+ra)*ea_I; 
  
 eb_e=ea_e; 
 eb[3][3]=ea[3][3]; 
  
 chi_1=(1.0-pow(tan(psi),2.0))*sqrt((A_hat[1][1]+A_hat[3][3])/ 
  (A_hat[1][1]+pow(tan(psi),4.0)*A_hat[2][2]+pow(1.0-
pow(tan(psi),2.0),2.0)*A_hat[3][3]))* 
 
 exp((pow(sin(psi),2.0)+ra*pow(cos(psi),2.0))/(pow(cos(psi),2.0)+ra*pow(sin(psi
),2.0))*n); 
 f_1=1.0-chi_1*(1-f_1_00); 
 f=f_1; //Initialize. 
 
 deb_I=0.001; //Major step size. 
 
 do {   
  dea_I=zbrent(increment,0.0,f*deb_I,EPS); 
   
   
  dea[1][1]=dea_I*pow(cos(psi),2.0)+dea_II*pow(sin(psi),2.0); 
  dea[1][2]=-(dea_I-dea_II)*cos(psi)*sin(psi); 
  deb[1][1]=deb_I*pow(cos(psi),2.0)+deb_II*pow(sin(psi),2.0); 
  deb[1][2]=-(deb_I-deb_II)*cos(psi)*sin(psi); 
  dea_n=sqrt(pow(dea[1][1],2.0)+pow(dea[1][2],2.0)); 
  Dde_n=sqrt(pow(deb[1][1]-dea[1][1],2.0)+pow(deb[1][2]-dea[1][2],2.0)); 
   
  if (Dde_n/dea_n<9.0) { //Continue loading. 
   ea_I=ea_I+dea_I; 
   ea_e=ea_e+dea_e; 
   ea[3][3]=ea[3][3]-(1+ra)*dea_I; 
   eb_e=eb_e+deb_e; 
   eb[3][3]=eb[3][3]-(1+rb)*deb_I; 
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   psi=atan(tan(psi)*(1+dea_I)/(1+dea_II)); 
   f=f_1*exp(eb[3][3]-ea[3][3]); 
  } 
  else { //Localization occurs. 
   flag=0; 
   ea_I=ea_I+dea_I; 
   psi=atan(tan(psi)*(1+dea_I)/(1+dea_II)); 
  } 
 } while (flag); 
  
 free_matrix(ea,1,3,1,3); 
 free_matrix(dea,1,3,1,3); 
 free_matrix(sa,1,3,1,3); 
 free_matrix(eb,1,3,1,3); 
 free_matrix(deb,1,3,1,3); 
 free_matrix(sb,1,3,1,3); 
 
 return ea_I; 
} 
 
double zbrent(double (*func)(double), double x1, double x2, double tol) 
/*Using Brent's method, find the root of a function func known to lie between x1 and x2. 
The root, returned as zbrent, will be refined until its accuracy is tol.*/ 
{ 
 int iter; 
 double a=x1,b=x2,c=x2,d,e,min1,min2; 
 double fa=(*func)(a),fb=(*func)(b),fc,p,q,r,s,tol1,xm; 
 
 if ((fa > 0.0 && fb > 0.0) || (fa < 0.0 && fb < 0.0)) { 
  printf("fa:\n"); 
  printf("%f\n",fa); 
  printf("fb:\n"); 
  printf("%f\n",fb); 
  nrerror("Root must be bracketed in zbrent"); 
 } 
 fc=fb; 
 for (iter=1;iter<=ITMAX;iter++) { 
  if ((fb > 0.0 && fc > 0.0) || (fb < 0.0 && fc < 0.0)) { 
   c=a; //Rename a, b, c and adjust bounding interval 
   fc=fa; //d. 
   e=d=b-a; 
  } 
  if (fabs(fc) < fabs(fb)) { 
   a=b; 
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   b=c; 
   c=a; 
   fa=fb; 
   fb=fc; 
   fc=fa; 
  } 
  tol1=2.0*EPS*fabs(b)+0.5*tol; //Convergence check. 
  xm=0.5*(c-b); 
  if (fabs(xm) <= tol1 || fb == 0.0) return b; 
  if (fabs(e) >= tol1 && fabs(fa) > fabs(fb)) { 
   s=fb/fa; //Attempt inverse quadratic interpolation. 
   if (a == c) { 
    p=2.0*xm*s; 
    q=1.0-s; 
   } else { 
    q=fa/fc; 
    r=fb/fc; 
    p=s*(2.0*xm*q*(q-r)-(b-a)*(r-1.0)); 
    q=(q-1.0)*(r-1.0)*(s-1.0); 
   } 
   if (p > 0.0) q = -q; //Check whether in bounds. 
   p=fabs(p); 
   min1=3.0*xm*q-fabs(tol1*q); 
   min2=fabs(e*q); 
   if (2.0*p < (min1 < min2 ? min1 : min2)) { 
    e=d; //Accept interpolation. 
    d=p/q; 
   } else { 
    d=xm; //Interpolation failed, use bisection. 
    e=d; 
   } 
  } else { //Bounds decreasing too slowly, use bisection. 
   d=xm; 
   e=d; 
  } 
  a=b; //Move last best guess to a. 
  fa=fb; 
  if (fabs(d) > tol1) //Evaluate new trial root. 
   b += d; 
  else 
   b += SIGN(tol1,xm); 
  fb=(*func)(b); 
 } 
 nrerror("Maximum number of iterations exceeded in zbrent"); 
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 return 0.0; //Never get here. 
} 
 
double brent(double ax, double bx, double cx, double (*f)(double), double tol, 
   double *xmin) 
/*Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx 
is between ax and cx, and f(bx) is less than both f(ax) and f(cx)), this routine isolates the 
minimum to a fractional precision of about tol using Brent's method. The abscissa of the 
minimum is returned as xmin, and the minimum function value is returned as brent, the 
returned function value.*/ 
{ 
 int iter; 
 double a,b,d,etemp,fu,fv,fw,fx,p,q,r,tol1,tol2,u,v,w,x,xm; 
 double e=0.0; //This will be the distance moved on 
 //the step before last. 
 a=(ax < cx ? ax : cx); //a and b must be in ascending order, 
 b=(ax > cx ? ax : cx); //but input abscissas need not be. 
 x=w=v=bx; //Initializations... 
 fw=fv=fx=(*f)(x); 
 for (iter=1;iter<=ITMAX;iter++) { //Main program loop. 
  xm=0.5*(a+b); 
  tol2=2.0*(tol1=tol*fabs(x)+ZEPS); 
  if (fabs(x-xm) <= (tol2-0.5*(b-a))) { //Test for done here. 
   *xmin=x; 
   return fx; 
  } 
  if (fabs(e) > tol1) { //Construct a trial parabolic fit. 
   r=(x-w)*(fx-fv); 
   q=(x-v)*(fx-fw); 
   p=(x-v)*q-(x-w)*r; 
   q=2.0*(q-r); 
   if (q > 0.0) p = -p; 
   q=fabs(q); 
   etemp=e; 
   e=d; 
   if (fabs(p) >= fabs(0.5*q*etemp) || p <= q*(a-x) || p >= q*(b-x)) 
    d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
   //The above conditions determine the acceptability of the 
parabolic fit. Here we 
   //take the golden section step into the larger of the two segments. 
   else { 
    d=p/q; //Take the parabolic step. 
    u=x+d; 
    if (u-a < tol2 || b-u < tol2) 
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     d=SIGN(tol1,xm-x); 
   } 
  } else { 
   d=CGOLD*(e=(x >= xm ? a-x : b-x)); 
  } 
  u=(fabs(d) >= tol1 ? x+d : x+SIGN(tol1,d)); 
  fu=(*f)(u); 
  //This is the one function evaluation per iteration. 
  if (fu <= fx) { //Now decide what to do with our func- 
   if (u >= x) a=x; else b=x; //tion evaluation. 
   SHFT(v,w,x,u) //Housekeeping follows: 
    SHFT(fv,fw,fx,fu) 
  } else { 
   if (u < x) a=u; else b=u; 
   if (fu <= fw || w == x) { 
    v=w; 
    w=u; 
    fv=fw; 
    fw=fu; 
   } else if (fu <= fv || v == x || v == w) { 
    v=u; 
    fv=fu; 
   } 
   } //Done with housekeeping. Back for 
 } //another iteration. 
 nrerror("Too many iterations in brent"); 
 *xmin=x; //Never get here. 
 return fx; 
} 
 
int main(void) 
// Main program. 
{ 
 double brent(double ax, double bx, double cx, 
  double (*f)(double), double tol, double *xmin); 
 double neck(double psi_1); 
 double increment(double dea_I); 
 double zbrent(double (*func)(double), double x1, double x2, double tol); 
  
 double xx,dx,xmin,fx,fb,fa,bx,ax; 
 double temp; 
 int flag,i,j,kk; 
 
 A=matrix(1,3,1,3); 
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 A_hat=matrix(1,3,1,3); 
  
// f_1_00=0.998; 
 
 m=0.012; 
 n=0.325269; 
 
 R_0=1.0; 
 R_90=1.0; 
 
 dx=1.0*DEG; 
 
 nvar=4; 
 kmax=1000; 
 
 xp=vector(1,kmax); 
 yp=matrix(1,nvar,1,kmax); 
 
 for (i=1;i<=3;i++) { 
  for (j=1;j<=3;j++) { 
   A[i][j]=0.0; 
   A_hat[i][j]=0.0; 
  } 
 } 
 A[1][1]=2.0/3.0*(-R_0*R_90+2.0*R_0+2.0)/(R_0+1.0); 
 A[2][2]=2.0/3.0*(2.0*R_0*R_90+2.0*R_0-1.0)/(R_0+1.0); 
 A[3][3]=2.0/3.0*(2.0*R_0*R_90-R_0+2.0)/(R_0+1.0); 
 
 temp=A[1][1]*A[2][2]+A[2][2]*A[3][3]+A[3][3]*A[1][1]; 
 A_hat[1][1]=(-A[1][1]+2.0*A[2][2]+2.0*A[3][3])/temp; 
 A_hat[2][2]=(2.0*A[1][1]-A[2][2]+2.0*A[3][3])/temp; 
 A_hat[3][3]=(2.0*A[1][1]+2.0*A[2][2]-A[3][3])/temp; 
 
 r=-0.6; //Jog rightward. 
 //Precondition. 
 xmin=atan(sqrt(-r+0.01)); 
 
 f_1_00=0.989; 
 do { 
  flag=1; 
  xx=atan(sqrt(-r))+(xmin-atan(sqrt(-r+0.001)));   
  do { 
   ax=xx-dx; 
   bx=xx+dx; 
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   temp=brent(ax,xx,bx,neck,TOL,&xmin); 
   if (fabs(xmin-xx)<TOL) 
    flag=0; 
   else xx=xmin; 
  } while (flag); 
  r=r+0.01; 
 } while (r<-0.5); 
 
 r=-0.5; //Left-hand side. 
 xmin=atan(sqrt(-r+0.01)); 
  
 do { 
  flag=1; 
  xx=atan(sqrt(-r))+(xmin-atan(sqrt(-r+0.001)));   
  do { 
   ax=xx-dx; 
   bx=xx+dx; 
   temp=brent(ax,xx,bx,neck,TOL,&xmin); 
   if (fabs(xmin-xx)<TOL) 
    flag=0; 
   else xx=xmin; 
  } while (flag); 
  xp[++kount]=r; 
  yp[2][kount]=temp; 
  yp[1][kount]=r*yp[2][kount]; 
  yp[3][kount]=xmin; 
  r=r+0.01; 
 } while (r<0.0); 
 
 r=0.0; //Right-hand side. 
 xmin=0.0; 
 
 do { 
  if (xmin<=dx) { 
   ax=0.0; 
   xx=0.01*DEG; 
   fa=neck(ax); 
   fx=neck(xx); 
   if (fa<=fx) { //xmin=0.0. 
    xx=xmin=ax; 
    xp[++kount]=r; 
    yp[2][kount]=fa; 
    yp[1][kount]=r*fa; 
    yp[3][kount]=xmin; 
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    r=r+0.01; 
   } else { //xmin!=0.0. 
    flag=1; 
    xx=xmin; 
    do { 
     bx=xx+dx; 
     temp=brent(ax,xx,bx,neck,TOL,&xmin); 
     if (fabs(xmin-xx)<TOL) 
      flag=0; 
     else xx=xmin; 
    } while (flag); 
    xp[++kount]=r; 
    yp[2][kount]=temp; 
    yp[1][kount]=r*yp[2][kount]; 
    yp[3][kount]=xmin; 
    r=r+0.01; 
   } 
  } else { 
   flag=1; 
   xx=xmin; 
   do { 
    ax=xx-dx; 
    bx=xx+dx; 
    temp=brent(ax,xx,bx,neck,TOL,&xmin); 
    if (fabs(xmin-xx)<TOL) 
     flag=0; 
    else xx=xmin; 
   } while (flag); 
   xp[++kount]=r; 
   yp[2][kount]=temp; 
   yp[1][kount]=r*yp[2][kount]; 
   yp[3][kount]=xmin; 
   r=r+0.01; 
  } 
 } while (r<1.0); 
 
 kk=kount; 
 
 r=0.99; //Jog leftward. 
 //Precondition.  
 flag=1;  
 ax=0.0; 
 xx=37.0*DEG; 
 bx=45.0*DEG; 
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 do { 
  temp=brent(ax,xx,bx,neck,TOL,&xmin); 
  if (fabs(xmin-xx)<TOL) 
   flag=0; 
  else { 
   ax=0.0; 
   xx=xmin; 
   bx=45.0*DEG; 
  } 
 } while (flag); 
 xp[kount]=r; 
 xmin=(temp < yp[2][kount] ? xmin : yp[3][kount]); 
 yp[2][kount]=(temp < yp[2][kount] ? temp : yp[2][kount]); 
 yp[1][kount]=r*yp[2][kount]; 
 yp[3][kount--]=xmin; 
 r=r-0.01; 
 
 do { //Left-hand side. 
  if (xmin<=dx) { 
   ax=0.0; 
   xx=0.01*DEG; 
   fa=neck(ax); 
   fx=neck(xx); 
   if (fa<=fx) { //xmin=0.0. 
    xx=xmin=ax; 
    xp[kount]=r; 
    xmin=(fa < yp[2][kount] ? xmin : yp[3][kount]); 
    yp[2][kount]=(fa < yp[2][kount] ? fa : yp[2][kount]); 
    yp[1][kount]=r*yp[2][kount];     
    yp[3][kount--]=xmin; 
    r=r-0.01; 
   } else { //xmin!=0.0. 
    flag=1; 
    xx=xmin; 
    do { 
     bx=xx+dx; 
     temp=brent(ax,xx,bx,neck,TOL,&xmin); 
     if (fabs(xmin-xx)<TOL) 
      flag=0; 
     else xx=xmin; 
    } while (flag); 
    xp[kount]=r; 
    xmin=(temp < yp[2][kount] ? xmin : yp[3][kount]); 
    yp[2][kount]=(temp < yp[2][kount] ? temp : yp[2][kount]); 



 142 

    yp[1][kount]=r*yp[2][kount]; 
    yp[3][kount--]=xmin; 
    r=r-0.01; 
   } 
  } else { 
   flag=1; 
   xx=xmin; 
   do { 
    ax=xx-dx; 
    bx=xx+dx; 
    temp=brent(ax,xx,bx,neck,TOL,&xmin); 
    if (fabs(xmin-xx)<TOL) 
     flag=0; 
    else xx=xmin; 
   } while (flag); 
   xp[kount]=r; 
   xmin=(temp < yp[2][kount] ? xmin : yp[3][kount]); 
   yp[2][kount]=(temp < yp[2][kount] ? temp : yp[2][kount]); 
   yp[1][kount]=r*yp[2][kount]; 
   yp[3][kount--]=xmin; 
   r=r-0.01; 
  } 
 } while (r>-0.01); 
 
 r=-0.01; //Right-hand side. 
 xmin=0.0; 
 
 do { 
  flag=1; 
  xx=atan(sqrt(-r))+(xmin-atan(sqrt(-r-0.01)));   
  do { 
   ax=xx-dx; 
   bx=xx+dx; 
   temp=brent(ax,xx,bx,neck,TOL,&xmin); 
   if (fabs(xmin-xx)<TOL) 
    flag=0; 
   else xx=xmin; 
  } while (flag); 
  xp[kount]=r; 
  xmin=(temp < yp[2][kount] ? xmin : yp[3][kount]); 
  yp[2][kount]=(temp < yp[2][kount] ? temp : yp[2][kount]); 
  yp[1][kount]=r*yp[2][kount]; 
  yp[3][kount--]=xmin; 
  r=r-0.01; 
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 } while (r>-0.51); 
 
 fp=fopen("data.txt","w"); 
 printf("epsilon_II:\n"); 
 fprintf(fp,"epsilon_II:\n"); 
 for (i=1;i<=kk;i++) { 
  printf("%f\n",yp[1][i]); 
  fprintf(fp,"%f\n",yp[1][i]); 
 } 
 printf("epsilon_I:\n"); 
 fprintf(fp,"epsilon_I:\n"); 
 for (i=1;i<=kk;i++) { 
  printf("%f\n",yp[2][i]); 
  fprintf(fp,"%f\n",yp[2][i]); 
 } 
 printf("rho:\n"); 
 fprintf(fp,"rho:\n"); 
 for (i=1;i<=kk;i++) { 
  printf("%f\n",xp[i]); 
  fprintf(fp,"%f\n",xp[i]); 
 } 
 printf("psi_1:\n"); 
 fprintf(fp,"psi_1:\n"); 
 for (i=1;i<=kk;i++) { 
  printf("%f\n",yp[3][i]/DEG); 
  fprintf(fp,"%f\n",yp[3][i]/DEG); 
 } 
 
 return 0; 
} 
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 APPENDIX B 

C PROGRAM FOR SECTION 3 

 

“nrutil.h” //The same as that in Appednix A. 
 
“nutril.cpp” //The same as that in Appednix A. 
 
“main.cpp” 
 
#include <stdio.h> 
#include <conio.h> 
#include <math.h> 
#include "nrutil.h" 
#include "nrutil.cpp" 
#include <algorithm> 
#include <ctime> 
using namespace std; 
#define NMAX 732 
#define PI 3.14159265 
#define DEG 0.01745329 
#define BIG 1.0e30 
#define IT 10 
#define AMIN -1.2 
 
#define ITMAX 100 //Maximum allowed number of iterations. 
#define EPS 3.0e-8 //Machine doubleing-point precision. 
 
#define CGOLD 0.3819660 
#define ZEPS 1.0e-10 
/*Here ITMAX is the maximum allowed number of iterations; CGOLD is the golden 
ratio; ZEPS is a small number that protects against trying to achieve fractional accuracy 
for a minimum that happens to be exactly zero.*/ 
#define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 
#define TOL 3.0e-8 //Tolerance passed to brent. 
 
FILE *fp; 
 
double *et,*st,*Ht; 
double *et1,*st1,*Ht1,*et2,*st2,*Ht2; 
int k1,k2; 
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double yp11,ypn1,*y21,yp12,ypn2,*y22,yp13,ypn3,*y23; 
double Hc1,thc1,s1,xx,xt; 
double E,nu,G,K,mu,beta; 
double alpha,*ep,rho; 
double **A,**Ah; 
double R_0,R_90; 
 
int nvar; //Variables that you must define and set in your main program. 
int kmax,kount; 
double *xp,**yp; 
 
double H3(double theta) 
{ 
 double *spp,*sp,*shp,**s,**sh; 
 double *stemp,sm,sy,shm,omega2; 
 double costh,sinth,temp1,temp2,temp3,temp4,temp5,temp6; 
 double H1,H2,H3; 
 int i; 
 
 spp=vector(1,3); 
 sp=vector(1,3); 
 shp=vector(1,3); 
 s=matrix(1,2,1,2); 
 sh=matrix(1,2,1,2); 
 stemp=vector(1,3); 
 
 spp[1]=1.0; 
 spp[2]=alpha*spp[1]; 
 spp[3]=-(1.0+alpha)*spp[1]; 
 sm=-spp[3]; 
 for (i=1;i<=3;i++) sp[i]=spp[i]+sm; 
 sy=0.0; 
 shm=0.0; 
 for (i=1;i<=3;i++) { 
  stemp[i]=A[i][i]*spp[i]; 
  sy += spp[i]*stemp[i]; 
  shm += stemp[i]; 
 } 
 sy=sqrt(3.0/2.0*sy); 
 shm /= 3.0; 
 omega2=0.0; 
 for (i=1;i<=3;i++) { 
  shp[i]=stemp[i]-shm; 
  omega2 += shp[i]*shp[i]; 
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 } 
 omega2=3.0/2.0*omega2/(sy*sy); 
 
 costh=cos(theta); 
 sinth=sin(theta); 
 temp1=2.0*shp[1]-shp[2]-shp[3]-2.0/3.0*sy*(beta+mu); 
 temp2=s1/sy; 
 if ((shp[2] >= shp[3] && temp1 >= 0.0) || (shp[2] <= shp[3] && temp1 <= 0.0)) 
{ 
  s[1][1]=temp2*(sp[1]*costh*costh+sp[3]*sinth*sinth); 
  s[1][2]=temp2*(-(sp[1]-sp[3])*costh*sinth); 
  s[2][1]=s[1][2]; 
  s[2][2]=temp2*(sp[1]*sinth*sinth+sp[3]*costh*costh); 
  sh[1][1]=shp[1]*costh*costh+shp[3]*sinth*sinth; 
  sh[1][2]=-(shp[1]-shp[3])*costh*sinth; 
  sh[2][1]=sh[1][2]; 
  sh[2][2]=shp[1]*sinth*sinth+shp[3]*costh*costh; 
 } 
 else { 
  s[1][1]=temp2*(sp[1]*costh*costh+sp[2]*sinth*sinth); 
  s[1][2]=temp2*(-(sp[1]-sp[2])*costh*sinth); 
  s[2][1]=s[1][2]; 
  s[2][2]=temp2*(sp[1]*sinth*sinth+sp[2]*costh*costh); 
  sh[1][1]=shp[1]*costh*costh+shp[2]*sinth*sinth; 
  sh[1][2]=-(shp[1]-shp[2])*costh*sinth; 
  sh[2][1]=sh[1][2]; 
  sh[2][2]=shp[1]*sinth*sinth+shp[2]*costh*costh; 
 } 
 temp1=K+4.0/3.0*G; 
 temp2=G*sh[2][2]/sy+K*mu; 
 temp3=1.0+(s[2][2]-s[1][1])/(2.0*G); 
 temp4=sh[1][2]/sy; 
 temp5=3.0*G*omega2+9.0*K*mu*beta; 
 H1=9.0/temp1*(G*sh[2][2]/sy+K*beta)*temp2+9.0*G*temp4*temp4-temp5; 
 H2=9.0/temp1*(G*sh[2][2]/sy+K*beta)*temp2+9.0*G/temp3*temp4*temp4-
temp5; 
 temp6=3.0*(3.0/2.0*shp[3]/sy+beta); 
 H3=H2-temp6*(s[2][2]/temp1*temp2+s[1][2]/temp3*temp4)-
temp6*s[1][2]*s[1][2]/(G*temp1*temp3)*temp2; 
  
 free_vector(spp,1,3); 
 free_vector(sp,1,3); 
 free_vector(shp,1,3); 
 free_matrix(s,1,2,1,2); 
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 free_matrix(sh,1,2,1,2); 
 free_vector(stemp,1,3); 
 
 return -H3; 
} 
 
void strain(double alpha, double *ep) 
{ 
 double *spp,*sp,*shp,**s,**sh; 
 double *stemp,sm,sy,shm,ee; 
 int i; 
 
 spp=vector(1,3); 
 sp=vector(1,3); 
 shp=vector(1,3); 
 s=matrix(1,2,1,2); 
 sh=matrix(1,2,1,2); 
 stemp=vector(1,3); 
 
 spp[1]=1.0; 
 spp[2]=alpha*spp[1]; 
 spp[3]=-(1.0+alpha)*spp[1]; 
 sm=-spp[3]; 
 for (i=1;i<=3;i++) sp[i]=spp[i]+sm; 
 sy=0.0; 
 shm=0.0; 
 for (i=1;i<=3;i++) { 
  stemp[i]=A[i][i]*spp[i]; 
  sy += spp[i]*stemp[i]; 
  shm += stemp[i]; 
 } 
 sy=sqrt(3.0/2.0*sy); 
 shm /= 3.0; 
 ee=0.0; 
 for (i=1;i<=3;i++) { 
  shp[i]=stemp[i]-shm; 
  ep[i]=3.0/2.0*shp[i]/sy; 
  ee += ep[i]*Ah[i][i]*ep[i]; 
  } 
 ee=sqrt(2.0/3.0*ee); 
 for (i=1;i<=3;i++) ep[i] /= ee; 
} 
 
void trial(double alpha, double *Hc1, double *thc1) 
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{ 
 double *spp,*sp,*shp,**s,**sh; 
 double *stemp,sm,sy,shm; 
 double temp1,temp2; 
 int i; 
 
 spp=vector(1,3); 
 sp=vector(1,3); 
 shp=vector(1,3); 
 s=matrix(1,2,1,2); 
 sh=matrix(1,2,1,2); 
 stemp=vector(1,3); 
 
 spp[1]=1.0; 
 spp[2]=alpha*spp[1]; 
 spp[3]=-(1.0+alpha)*spp[1]; 
 sm=-spp[3]; 
 for (i=1;i<=3;i++) sp[i]=spp[i]+sm; 
 sy=0.0; 
 shm=0.0; 
 for (i=1;i<=3;i++) { 
  stemp[i]=A[i][i]*spp[i]; 
  sy += spp[i]*stemp[i]; 
  shm += stemp[i]; 
 } 
 sy=sqrt(3.0/2.0*sy); 
 shm /= 3.0; 
 for (i=1;i<=3;i++) shp[i]=stemp[i]-shm; 
 
 temp1=2.0*shp[1]-shp[2]-shp[3]-2.0/3.0*sy*(beta+mu); 
 if ((shp[2] >= shp[3] && temp1 >= 0.0) || (shp[2] <= shp[3] && temp1 <= 0.0)) 
{ 
  temp1=beta-mu; 
  temp2=shp[2]/sy+(beta+mu)/3.0; 
  *Hc1=G*(1.0+nu)/(1.0-nu)*temp1*temp1-
9.0/2.0*G*(1.0+nu)*temp2*temp2; 
  *thc1=0.5*acos(((1.0-2.0*nu)*shp[2]-
2.0/3.0*sy*(1+nu)*(beta+mu))/(shp[1]-shp[3])); 
 } 
 else { 
  temp1=beta-mu; 
  temp2=shp[3]/sy+(beta+mu)/3.0; 
  *Hc1=G*(1.0+nu)/(1.0-nu)*temp1*temp1-
9.0/2.0*G*(1.0+nu)*temp2*temp2; 
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  *thc1=0.5*acos(((1.0-2.0*nu)*shp[3]-
2.0/3.0*sy*(1+nu)*(beta+mu))/(shp[1]-shp[2])); 
 } 
  
 free_vector(spp,1,3); 
 free_vector(sp,1,3); 
 free_vector(shp,1,3); 
 free_matrix(s,1,2,1,2); 
 free_matrix(sh,1,2,1,2); 
 free_vector(stemp,1,3); 
} 
 
 
int zarr(double xa[], int n) 
{ 
 void nrerror(char error_text[]); 
 int klo,khi,k; 
 double h; 
 
 klo=1; 
 khi=n; 
 while (khi-klo > 1) { 
  k=(khi+klo) >> 1; 
  if (xa[k] < 0.0) khi=k; //Modified due to a decreasing function. 
  else klo=k; 
 } //klo and khi now bracket the input value of x. 
 h=xa[khi]-xa[klo]; 
 if (h == 0.0) nrerror("Bad xa input to routine zarr"); //The xa's must be distinct. 
 return klo; 
} 
 
double random(int x) 
//Generate a random number between 0 and Pi/4. 
{ 
 return PI/2.0*double(rand()%x)/double(x); 
} 
 
double fz1(int k) 
{ 
 double H3(double theta); 
 double random(int x); 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double 
*fc, double (*func)(double)); 
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 double golden(double ax, double bx, double cx, double (*f)(double), double tol, 
double *xmin); 
 
 double ax,bx,cx,fa,fb,fc,xmin; 
 double Hc,temp; 
 int i; 
 
 s1=st1[k]; 
 Hc=-BIG; 
 for (i=1;i<=IT;i++) { 
  ax=random(100); 
  bx=random(100); 
  mnbrak(&ax,&bx,&cx,&fa,&fb,&fc,H3); 
  temp=-golden(ax,bx,cx,H3,TOL,&xmin); 
  if (temp > Hc) { 
   Hc=temp; 
   xx=xmin; 
  } 
 } 
 return Hc-Ht1[k]; 
} 
 
double fz2(int k) 
{ 
 double H3(double theta); 
 double random(int x); 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double 
*fc, double (*func)(double)); 
 double golden(double ax, double bx, double cx, double (*f)(double), double tol, 
double *xmin); 
 
 double ax,bx,cx,fa,fb,fc,xmin; 
 double Hc,temp; 
 int i; 
 
 s1=st2[k]; 
 Hc=-BIG; 
 for (i=1;i<=IT;i++) { 
  ax=random(100); 
  bx=random(100); 
  mnbrak(&ax,&bx,&cx,&fa,&fb,&fc,H3); 
  temp=-golden(ax,bx,cx,H3,TOL,&xmin); 
  if (temp > Hc) { 
   Hc=temp; 
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   xx=xmin; 
  } 
 } 
 return Hc-Ht2[k]; 
} 
 
double fr1(double H) 
{ 
 double H3(double theta); 
 double random(int x); 
 void splint1(double xa[], double ya[], double y2a[], int n, double x, double *y); 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double 
*fc, double (*func)(double)); 
 double golden(double ax, double bx, double cx, double (*f)(double), double tol, 
double *xmin); 
 
 double ax,bx,cx,fa,fb,fc,xmin; 
 double Hc,temp; 
 int i; 
 
 splint1(Ht1,st1,y21,k1,H,&s1); 
 Hc=-BIG; 
 for (i=1;i<=IT;i++) { 
  ax=random(100); 
  bx=random(100); 
  mnbrak(&ax,&bx,&cx,&fa,&fb,&fc,H3); 
  temp=-golden(ax,bx,cx,H3,TOL,&xmin); 
  if (temp > Hc) { 
   Hc=temp; 
   xx=xmin; 
  } 
 } 
 return Hc-H; 
} 
 
double fr2(double H) 
{ 
 double H3(double theta); 
 double random(int x); 
 void splint2(double xa[], double ya[], double y2a[], int n, double x, double *y); 
 void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double 
*fc, double (*func)(double)); 
 double golden(double ax, double bx, double cx, double (*f)(double), double tol, 
double *xmin); 
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 double ax,bx,cx,fa,fb,fc,xmin; 
 double Hc,temp; 
 int i; 
 
 splint2(Ht2,st2,y22,k2,H,&s1); 
 Hc=-BIG; 
 for (i=1;i<=IT;i++) { 
  ax=random(100); 
  bx=random(100); 
  mnbrak(&ax,&bx,&cx,&fa,&fb,&fc,H3); 
  temp=-golden(ax,bx,cx,H3,TOL,&xmin); 
  if (temp > Hc) { 
   Hc=temp; 
   xx=xmin; 
  } 
 } 
 return Hc-H; 
} 
 
void spline(double x[], double y[], int n, double yp1, double ypn, double y2[]) 
/*Given arrays x[1..n] and y[1..n] containing a tabulated function, i.e., yi = f(xi), with x1 
<x2 < :: : < xN, and given values yp1 and ypn for the first derivative of the interpolating 
function at points 1 and n, respectively, this routine returns an array y2[1..n] that 
contains the second derivatives of the interpolating function at the tabulated points xi. If 
yp1 and/or ypn are equal to 1 . 1030 or larger, the routine is signaled to set the 
corresponding boundary condition for a natural spline, with zero second derivative on 
that boundary.*/ 
{ 
 int i,k; 
 double p,qn,sig,un,*u; 
 
 u=vector(1,n-1); 
 if (yp1 > 0.99e30) //The lower boundary condition is set either to be "nat 
  y2[1]=u[1]=0.0; //ural" 
 else { //or else to have a specified first derivative. 
  y2[1] = -0.5; 
  u[1]=(3.0/(x[2]-x[1]))*((y[2]-y[1])/(x[2]-x[1])-yp1); 
 } 
 for (i=2;i<=n-1;i++) { //This is the decomposition loop of the tridiagonal 
algorithm. 
  //y2 and u are used for temporary storage of the decomposed factors. 
  sig=(x[i]-x[i-1])/(x[i+1]-x[i-1]); 
  p=sig*y2[i-1]+2.0; 
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  y2[i]=(sig-1.0)/p; 
  u[i]=(y[i+1]-y[i])/(x[i+1]-x[i]) - (y[i]-y[i-1])/(x[i]-x[i-1]); 
  u[i]=(6.0*u[i]/(x[i+1]-x[i-1])-sig*u[i-1])/p; 
 } 
 if (ypn > 0.99e30) //The upper boundary condition is set either to be 
  qn=un=0.0; //"natural" 
 else { //or else to have a specified first derivative. 
  qn=0.5; 
  un=(3.0/(x[n]-x[n-1]))*(ypn-(y[n]-y[n-1])/(x[n]-x[n-1])); 
 } 
 y2[n]=(un-qn*u[n-1])/(qn*y2[n-1]+1.0); 
 for (k=n-1;k>=1;k--) //This is the backsubstitution loop of the tridiagonal 
  y2[k]=y2[k]*y2[k+1]+u[k]; //algorithm. 
  free_vector(u,1,n-1); 
} 
 
void splint1(double xa[], double ya[], double y2a[], int n, double x, double *y) 
/*Given the arrays xa[1..n] and ya[1..n], which tabulate a function (with the xai's in 
order), and given the array y2a[1..n], which is the output from spline above, and given a 
value of x, this routine returns a cubic-spline interpolated value y.*/ 
{ 
 void nrerror(char error_text[]); 
 int klo,khi,k; 
 double h,b,a; 
 
 klo=1; /*We will find the right place in the table by means of 
     bisection. This is optimal if sequential calls to this 
     routine are at random values of x. If sequential calls 
     are in order, and closely spaced, one would do better 
     to store previous values of klo and khi and test if 
 they remain appropriate on the next call.*/ 
 khi=n; 
 while (khi-klo > 1) { 
  k=(khi+klo) >> 1; 
  if (xa[k] < x) khi=k; //Modified due to the trends of Ht1[] and st1[]. 
  else klo=k; 
 } //klo and khi now bracket the input value of x. 
 h=xa[khi]-xa[klo]; 
 if (h == 0.0) nrerror("Bad xa input to routine splint1"); //The xa's must be dis- 
 a=(xa[khi]-x)/h; //tinct. 
 b=(x-xa[klo])/h; //Cubic spline polynomial is now evaluated. 
 *y=a*ya[klo]+b*ya[khi]+((a*a*a-a)*y2a[klo]+(b*b*b-b)*y2a[khi])*(h*h)/6.0; 
} 
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void splint2(double xa[], double ya[], double y2a[], int n, double x, double *y) 
/*Given the arrays xa[1..n] and ya[1..n], which tabulate a function (with the xai's in 
order), and given the array y2a[1..n], which is the output from spline above, and given a 
value of x, this routine returns a cubic-spline interpolated value y.*/ 
{ 
 void nrerror(char error_text[]); 
 int klo,khi,k; 
 double h,b,a; 
 
 klo=1; /*We will find the right place in the table by means of 
     bisection. This is optimal if sequential calls to this 
     routine are at random values of x. If sequential calls 
     are in order, and closely spaced, one would do better 
     to store previous values of klo and khi and test if 
 they remain appropriate on the next call.*/ 
 khi=n; 
 while (khi-klo > 1) { 
  k=(khi+klo) >> 1; 
  if (xa[k] > x) khi=k; //Modified due to the trends of Ht2[] and st2[]. 
  else klo=k; 
 } //klo and khi now bracket the input value of x. 
 h=xa[khi]-xa[klo]; 
 if (h == 0.0) nrerror("Bad xa input to routine splint2"); //The xa's must be dis- 
 a=(xa[khi]-x)/h; //tinct. 
 b=(x-xa[klo])/h; //Cubic spline polynomial is now evaluated. 
 *y=a*ya[klo]+b*ya[khi]+((a*a*a-a)*y2a[klo]+(b*b*b-b)*y2a[khi])*(h*h)/6.0; 
} 
 
void zbrak(double (*func)(int), int n, int *xb1, int *xb2) 
/*Given a function fx defined on the interval from x1-x2 subdivide the interval into n 
equally spaced segments, and search for zero crossings of the function. nb is input as the 
maximum number of roots sought, and is reset to the number of bracketing pairs 
xb1[1..nb], xb2[1..nb] that are found.*/ 
{ 
 int klo,khi,k; 
 double x,fp,fc,fmid,dx; 
 
 klo=1; 
 khi=n; 
 fp=(*func)(klo); 
 fc=(*func)(khi); 
 if (fp*fc >= 0.0) { 
  if (fp >= 0.0) { //Applicable to H3-Ht[i]; 
   *xb1=1; 
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   *xb2=2; 
   return; 
  } 
  else { 
   *xb1=n-1; 
   *xb2=n; 
   return; 
  } 
 } 
 while (khi-klo > 1) { 
  k=(khi+klo) >> 1; 
  fmid=(*func)(k); 
  if (fp*fmid < 0.0) khi=k; 
  else klo=k; 
  fp=(*func)(klo); 
  fc=(*func)(khi); 
 } //klo and khi now bracket the input value of x. 
 *xb1=klo; 
 *xb2=khi; 
} 
 
#define JMAX 40 //Maximum allowed number of bisections. 
 
double rtbis1(double (*func)(double), int x1, int x2, double xacc) 
/*Using bisection, find the root of a function func known to lie between x1 and x2. The 
root, returned as rtbis, will be refined until its accuracy is .xacc.*/ 
{ 
 void nrerror(char error_text[]); 
 int j; 
 double dx,f,fmid,xmid,rtb; 
  
 f=(*func)(Ht1[x1]); 
 fmid=(*func)(Ht1[x2]); 
 if (f*fmid >= 0.0) return Ht1[x1]; //nrerror("Root must be bracketed for bisection 
in rtbis"); 
 rtb = f < 0.0 ? (dx=Ht1[x2]-Ht1[x1],Ht1[x1]) : (dx=Ht1[x1]-Ht1[x2],Ht1[x2]); 
//Orient the search so that f>0 
 for (j=1;j<=JMAX;j++) { //lies at x+dx. 
  fmid=(*func)(xmid=rtb+(dx *= 0.5)); //Bisection loop. 
  if (fmid <= 0.0) rtb=xmid; 
  if (fabs(dx) < xacc || fmid == 0.0) return rtb; 
 } 
 nrerror("Too many bisections in rtbis"); 
 return 0.0; //Never get here. 



 156 

} 
 
double rtbis2(double (*func)(double), int x1, int x2, double xacc) 
/*Using bisection, find the root of a function func known to lie between x1 and x2. The 
root, returned as rtbis, will be refined until its accuracy is .xacc.*/ 
{ 
 void nrerror(char error_text[]); 
 int j; 
 double dx,f,fmid,xmid,rtb; 
  
 f=(*func)(Ht2[x1]); 
 fmid=(*func)(Ht2[x2]); 
 if (f*fmid >= 0.0) return Ht2[x1]; //nrerror("Root must be bracketed for bisection 
in rtbis"); 
 rtb = f < 0.0 ? (dx=Ht2[x2]-Ht2[x1],Ht2[x1]) : (dx=Ht2[x1]-Ht2[x2],Ht2[x2]); 
//Orient the search so that f>0 
 for (j=1;j<=JMAX;j++) { //lies at x+dx. 
  fmid=(*func)(xmid=rtb+(dx *= 0.5)); //Bisection loop. 
  if (fmid <= 0.0) rtb=xmid; 
  if (fabs(dx) < xacc || fmid == 0.0) return rtb; 
 } 
 nrerror("Too many bisections in rtbis"); 
 return 0.0; //Never get here. 
} 
 
#include <math.h> 
#include "nrutil.h" 
#define GOLD 1.618034 
#define GLIMIT 100.0 
#define TINY 1.0e-20 
#define SHFT(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
/*Here GOLD is the default ratio by which successive intervals are magnified; GLIMIT 
is the maximum magnification allowed for a parabolic-fit step.*/ 
 
#define ITMAX 100 
#define CGOLD 0.3819660 
#define ZEPS 1.0e-10 
/*Here ITMAX is the maximum allowed number of iterations; CGOLD is the golden 
ratio; ZEPS is a small number that protects against trying to achieve fractional accuracy 
for a minimum that happens to be exactly zero.*/ 
 
#define R 0.61803399 //The golden ratios. 
#define C (1.0-R) 
#define SHFT2(a,b,c) (a)=(b);(b)=(c); 
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#define SHFT3(a,b,c,d) (a)=(b);(b)=(c);(c)=(d); 
 
void mnbrak(double *ax, double *bx, double *cx, double *fa, double *fb, double *fc, 
   double (*func)(double)) 
/*Given a function func, and given distinct initial points ax and bx, this routine searches 
in the downhill direction (defined by the function as evaluated at the initial points) and 
returns new points ax, bx, cx that bracket a minimum of the function. Also returned are 
the function values at the three points, fa, fb, and fc.*/ 
{ 
 double ulim,u,r,q,fu,dum; 
  
 *fa=(*func)(*ax); 
 *fb=(*func)(*bx); 
 if (*fb > *fa) { //Switch roles of a and b so that we can go 
  SHFT(dum,*ax,*bx,dum) //downhill in the direction from a to b. 
  SHFT(dum,*fb,*fa,dum) 
 } 
 *cx=(*bx)+GOLD*(*bx-*ax); //First guess for c. 
 *fc=(*func)(*cx); 
 while (*fb > *fc) { //Keep returning here until we bracket. 
  r=(*bx-*ax)*(*fb-*fc); //Compute u by parabolic extrapolation from 
  q=(*bx-*cx)*(*fb-*fa); //a, b, c. TINY is used to prevent any possible 
division by zero. 
  u=(*bx)-((*bx-*cx)*q-(*bx-*ax)*r)/(2.0*SIGN(FMAX(fabs(q-
r),TINY),q-r)); 
  ulim=(*bx)+GLIMIT*(*cx-*bx); 
  //We won't go farther than this. Test various possibilities: 
  if ((*bx-u)*(u-*cx) > 0.0) { //Parabolic u is between b and c: try it. 
   fu=(*func)(u); 
   if (fu < *fc) { //Got a minimum between b and c. 
    *ax=(*bx); 
    *bx=u; 
    *fa=(*fb); 
    *fb=fu; 
    return; 
   } else if (fu > *fb) { //Got a minimum between between a and u. 
    *cx=u; 
    *fc=fu; 
    return; 
   } 
   u=(*cx)+GOLD*(*cx-*bx); //Parabolic fit was no use. Use default 
mag- 
   fu=(*func)(u); //nification. 
  } else if ((*cx-u)*(u-ulim) > 0.0) { //Parabolic fit is between c and its 
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   fu=(*func)(u); //allowed limit. 
   if (fu < *fc) { 
    SHFT(*bx,*cx,u,*cx+GOLD*(*cx-*bx)) 
     SHFT(*fb,*fc,fu,(*func)(u)) 
   } 
  } else if ((u-ulim)*(ulim-*cx) >= 0.0) { //Limit parabolic u to maximum 
   u=ulim; //allowed value. 
   fu=(*func)(u); 
  } else { //Reject parabolic u, use default magnifica- 
   u=(*cx)+GOLD*(*cx-*bx); //tion. 
   fu=(*func)(u); 
  } 
  SHFT(*ax,*bx,*cx,u) //Eliminate oldest point and continue. 
   SHFT(*fa,*fb,*fc,fu) 
 } 
} 
 
double golden(double ax, double bx, double cx, double (*f)(double), double tol, 
    double *xmin) 
/*Given a function f, and given a bracketing triplet of abscissas ax, bx, cx (such that bx 
is between ax and cx, and f(bx) is less than both f(ax) and f(cx)), this routine performs a 
golden section search for the minimum, isolating it to a fractional precision of about tol. 
The abscissa of the minimum is returned as xmin, and the minimum function value is 
returned as golden, the returned function value.*/ 
{ 
 double f1,f2,x0,x1,x2,x3; 
 x0=ax; //At any given time we will keep track of four 
 x3=cx; //points, x0,x1,x2,x3. 
 if (fabs(cx-bx) > fabs(bx-ax)) { //Make x0 to x1 the smaller segment, 
  x1=bx; 
  x2=bx+C*(cx-bx); //and fill in the new point to be tried. 
 } else { 
  x2=bx; 
  x1=bx-C*(bx-ax); 
 } 
 f1=(*f)(x1); //The initial function evaluations. Note that 
 f2=(*f)(x2); //we never need to evaluate the function 
 while (fabs(x3-x0) > tol*(fabs(x1)+fabs(x2))) { //at the original endpoints. 
  if (f2 < f1) { //One possible outcome, 
   SHFT3(x0,x1,x2,R*x1+C*x3) //its housekeeping, 
    SHFT2(f1,f2,(*f)(x2)) //and a new function evaluation. 
  } else { //The other outcome, 
   SHFT3(x3,x2,x1,R*x2+C*x0) 
    SHFT2(f2,f1,(*f)(x1)) //and its new function evaluation. 
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   } 
 } //Back to see if we are done. 
 if (f1 < f2) { //We are done. Output the best of the two 
  *xmin=x1; //current values. 
  return f1; 
 } else { 
  *xmin=x2; 
  return f2; 
 } 
} 
 
int main(void) 
// Main program. 
{ 
 double zbrent(double (*func)(double), double x1, double x2, double tol); 
 double brent(double ax, double bx, double cx, 
  double (*f)(double), double tol, double *xmin); 
 
 double temp; 
 int xb1,xb2,i,j; 
 
 double et0[NMAX]={0.00530, 0.00539, 0.00544, 0.00543, 
 … 
 0.29940, 0.29984, 0.30030, 0.30071, 0.30121}; 
 double st0[NMAX]={224.80029, 225.92985, 227.02087, 228.10968, 
 … 
 177.91770, 176.03557, 173.69792, 172.60690, 171.39155}; 
 double Ht0[NMAX]={13188.99168, 12555.19453, 11921.07304, 11401.57595, 
… 
-3146.85009, -3189.18008, -3225.36108, -3267.17647, -3300.81183}; 
 et=vector(1,NMAX); 
 st=vector(1,NMAX); 
 Ht=vector(1,NMAX); 
 for (i=1;i<=NMAX;i++) { 
  et[i]=et0[i-1]; 
  st[i]=st0[i-1]; 
  Ht[i]=Ht0[i-1]; 
 } 
 k1=zarr(Ht,NMAX); 
 k2=NMAX-k1; 
 et1=vector(1,k1); 
 st1=vector(1,k1); 
 Ht1=vector(1,k1); 
 et2=vector(1,k2); 
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 st2=vector(1,k2); 
 Ht2=vector(1,k2); 
 for (i=1;i<=k1;i++) { 
  et1[i]=et[i]; 
  st1[i]=st[i]; 
  Ht1[i]=Ht[i]; 
 } 
 for (i=1;i<=k2;i++) { 
  et2[i]=et[k1+i]; 
  st2[i]=st[k1+i]; 
  Ht2[i]=Ht[k1+i]; 
 } 
 y21=vector(1,k1); 
 y22=vector(1,k2); 
 yp11=(st[2]-st[1])/(Ht[2]-Ht[1]); 
 ypn1=(st[k1+1]-st[k1-1])/(Ht[k1+1]-Ht[k1-1]); 
 yp12=(st[k1+2]-st[k1])/(Ht[k1+2]-Ht[k1]); 
 ypn2=(st[NMAX]-st[NMAX-1])/(Ht[NMAX]-Ht[NMAX-1]); 
 spline(Ht1,st1,k1,yp11,ypn1,y21); 
 spline(Ht2,st2,k2,yp12,ypn2,y22); 
 y23=vector(1,NMAX); 
 yp13=(et[2]-et[1])/(Ht[2]-Ht[1]); 
 ypn3=(et[NMAX]-et[NMAX-1])/(Ht[NMAX]-Ht[NMAX-1]); 
 spline(Ht,et,NMAX,yp13,ypn3,y23); 
 
 E=55000.0; 
 nu=0.3; 
 G=E/(2.0*(1.0+nu)); 
 K=E/(3.0*(1.0-2.0*nu)); 
 mu=0.02; 
 beta=0.0; 
 A=matrix(1,3,1,3); 
 Ah=matrix(1,3,1,3); 
 ep=vector(1,3); 
 R_0=0.5; 
 R_90=R_0; 
 nvar=8; 
 kmax=1000; 
 xp=vector(1,kmax); 
 yp=matrix(1,nvar,1,kmax); 
 
 for (i=1;i<=3;i++) { 
  for (j=1;j<=3;j++) { 
   A[i][j]=0.0; 
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   Ah[i][j]=0.0; 
  } 
 } 
 A[1][1]=2.0/3.0*(-R_0*R_90+2.0*R_0+2.0)/(R_0+1.0); 
 A[2][2]=2.0/3.0*(2.0*R_0*R_90+2.0*R_0-1.0)/(R_0+1.0); 
 A[3][3]=2.0/3.0*(2.0*R_0*R_90-R_0+2.0)/(R_0+1.0); 
 temp=A[1][1]*A[2][2]+A[2][2]*A[3][3]+A[3][3]*A[1][1]; 
 Ah[1][1]=(-A[1][1]+2.0*A[2][2]+2.0*A[3][3])/temp; 
 Ah[2][2]=(2.0*A[1][1]-A[2][2]+2.0*A[3][3])/temp; 
 Ah[3][3]=(2.0*A[1][1]+2.0*A[2][2]-A[3][3])/temp; 
 
 alpha=AMIN; 
 srand(unsigned(time(NULL))); 
 do { 
  trial(alpha,&Hc1,&thc1); 
  zbrak(fz1,k1,&xb1,&xb2); 
  if (xb2 != k1) { 
   temp=rtbis1(fr1,xb1,xb2,TOL); 
   xp[++kount]=alpha; 
   yp[1][kount]=Hc1; 
   yp[2][kount]=thc1; 
   yp[3][kount]=temp; 
   temp=fabs(fmod(xx,PI)); 
   yp[4][kount]=(temp <= PI/2.0 ? temp : PI-temp); 
   for (i=1;i<=IT-1;i++) { 
    zbrak(fz1,k1,&xb1,&xb2); 
    temp=rtbis1(fr1,xb1,xb2,TOL); 
    if (temp > yp[3][kount]) { 
     yp[3][kount]=temp; 
     temp=fabs(fmod(xx,PI)); 
     yp[4][kount]=(temp <= PI/2.0 ? temp : PI-temp); 
    } 
   } 
  } 
  else { 
   zbrak(fz2,k2,&xb1,&xb2); 
   if (xb2 != k2) { 
    temp=rtbis2(fr2,xb1,xb2,TOL); 
    xp[++kount]=alpha; 
    yp[1][kount]=Hc1; 
    yp[2][kount]=thc1; 
    yp[3][kount]=temp; 
    temp=fabs(fmod(xx,PI)); 
    yp[4][kount]=(temp <= PI/2.0 ? temp : PI-temp); 
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    for (i=1;i<=IT-1;i++) { 
     zbrak(fz2,k2,&xb1,&xb2); 
     temp=rtbis2(fr2,xb1,xb2,TOL); 
     if (temp > yp[3][kount]) { 
      yp[3][kount]=temp; 
      temp=fabs(fmod(xx,PI)); 
      yp[4][kount]=(temp <= PI/2.0 ? temp : PI-
temp); 
     } 
    } 
   } 
   else { 
    xp[++kount]=alpha; 
    yp[1][kount]=Hc1; 
    yp[2][kount]=thc1; 
    yp[3][kount]=Hc1; 
    yp[4][kount]=thc1; 
   } 
  } 
  alpha=alpha+0.01; 
 } while (alpha<1.01); 
 
 for (i=1;i<=kount;i++) { 
  strain(xp[i],ep); 
  rho=ep[2]/ep[1]; 
  if (yp[3][i]<Ht[NMAX]) temp=1.0; 
  else splint1(Ht,et,y23,NMAX,yp[3][i],&temp); 
  yp[5][i]=rho; 
  yp[6][i]=temp*ep[1]; 
  yp[7][i]=temp*ep[2]; 
  yp[8][i]=temp; 
 } 
 
 fp=fopen("data.txt","w"); 
 printf("alpha:\n"); 
 fprintf(fp,"alpha:\n"); 
 for (i=1;i<=kount;i++) { 
  printf("%f\n",xp[i]); 
  fprintf(fp,"%f\n",xp[i]); 
 } 
 printf("Hc1:\n"); 
 fprintf(fp,"Hc1:\n"); 
 for (i=1;i<=kount;i++) { 
  printf("%f\n",yp[1][i]); 
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  fprintf(fp,"%f\n",yp[1][i]); 
 } 
 printf("thc1:\n"); 
 fprintf(fp,"thc1:\n"); 
 for (i=1;i<=kount;i++) { 
  printf("%f\n",yp[2][i]/DEG); 
  fprintf(fp,"%f\n",yp[2][i]/DEG); 
 } 
 printf("Hc3:\n"); 
 fprintf(fp,"Hc3:\n"); 
 for (i=1;i<=kount;i++) { 
  printf("%f\n",yp[3][i]); 
  fprintf(fp,"%f\n",yp[3][i]); 
 } 
 printf("thc3:\n"); 
 fprintf(fp,"thc3:\n"); 
 for (i=1;i<=kount;i++) { 
  printf("%f\n",yp[4][i]/DEG); 
  fprintf(fp,"%f\n",yp[4][i]/DEG); 
 } 
 printf("rho:\n"); 
 fprintf(fp,"rho:\n"); 
 for (i=1;i<=kount;i++) { 
  printf("%f\n",yp[5][i]); 
  fprintf(fp,"%f\n",yp[5][i]); 
 } 
 printf("e1:\n"); 
 fprintf(fp,"e1:\n"); 
 for (i=1;i<=kount;i++) { 
  printf("%f\n",yp[6][i]); 
  fprintf(fp,"%f\n",yp[6][i]); 
 } 
 printf("e2:\n"); 
 fprintf(fp,"e2:\n"); 
 for (i=1;i<=kount;i++) { 
  printf("%f\n",yp[7][i]); 
  fprintf(fp,"%f\n",yp[7][i]); 
 } 
 printf("ee:\n"); 
 fprintf(fp,"ee:\n"); 
 for (i=1;i<=kount;i++) { 
  printf("%f\n",yp[8][i]); 
  fprintf(fp,"%f\n",yp[8][i]); 
 } 
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 return 0; 
} 
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APPENDIX C1 

GREEN’S AND GENERALIZED GREEN’S FUNCTIONS 

 

C1.1 Green’s Function on an Unbounded Domain 

 

The fundamental interpretation of the Green’s function is the response at  due to 

a point source located at , where  and  denote the radius vectors of an arbitrary point 

and the point source, respectively. In general, the Green’s function should satisfy 

  (C1.1) 

where  denotes a differential operator, which varies from problem to problem, and 

 denotes a one-dimensional or multidimensional Dirac delta function. It can be 

proven that . This symmetry of the Green’s function is referred to as 

Maxwell’s reciprocity. It physically means that the response at  due to a point source 

located at  is the same as that at  due to a point source located at . 

Let , , and  denote the unit vectors in the , , and  directions, respectively. 

The Green’s function on an unbounded two-dimensional domain should satisfy the two-

dimensional Poisson’s equation 

  (C1.2) 

on the unbounded domain, where here  and  take the forms of  and 

, respectively, and  takes the form of 

  (C1.3) 

The solution to Eq. (C1.2) can be obtained as 
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  (C1.4) 

where 

  (C1.5) 

The Green’s function on an unbounded three-dimensional domain should satisfy 

the three-dimensional Poisson’s equation 

  (C1.6) 

on the unbounded domain, where here  and  take the forms of  and 

, respectively, and  takes the form of 

  (C1.7) 

The solution to Eq. (C1.6) can be obtained as 

  (C1.8) 

where 

  (C1.9) 

 

C1.2 Generalized Green’s Function on a Rectangular Domain 

 

The Green’s fuctions satisfying Poisson’s equations on various domains have 

been extensively studied. For example, Gao and Rowlands [102] derived the Green’s 

functions satisfying Poisson’s equations on cuboid, cylindrical, and spherical domains, 

respectively, subject to homogeneous Dirichlet boundary conditions. According to 
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Section 4.1.3 and 4.1.4, the required generalized Green’s functions are subject to 

nonhomogeneous Neumann boundary conditions. For this reason, these generalized 

Green’s functions should be of different forms compared with the aforementioned 

Green’s functions and need to be derived. Specifically, according to Section 4.1.3, the 

generalized Green’s function on a rectangular domain should satisfy the two-

dimensional Poisson’s equation 

  (C1.10) 

subject to the nonhomogeneous boundary conditions 

  (C1.11) 

 can be decomposed into two parts, that is, 

  (C1.12) 

where  satisfies the two-dimensional Poisson’s equation 

  (C1.13) 

subject to the homogenous boundary conditions 

  (C1.14) 

and  satisfies the two-dimensional Poisson’s equation 

  (C1.15) 
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subject to the nonhomogeneous boundary conditions 

  (C1.16) 

 can be easily obtained as 

  (C1.17) 

To reduce the complexity of derivations, introduce a coordinate system , 

where , , and  can be related to , , and  by 

  (C1.18) 

Now  should satisfy the two-dimensional Poisson’s equation 

  (C1.19) 

subject to the homogenous boundary conditions 

  (C1.20) 

 can be solved by expanding it in terms of the eigenfunctions  of the partial 

differential equation 

  (C1.21) 

and Eq. (C1.14). The eigenvalues and their corresponding eigenfunctions of Eq. (C1.21) 

can be obtained as 
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  (C1.22) 

  (C1.23) 

where  and .  can then be expressed as 

  (C1.24) 

Substituting Eq. (C1.24) into Eq. (C1.13) gives 

  (C1.25) 

Eq. (C1.25) indicates that  can be obtained by finding the corresponding double 

Fourier coefficients for the function to the right of the equal sign. , , and  

can hereby be obtained as 

  (C1.26) 

Especially, for  and , 

  (C1.27) 
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In Eq. (C1.25), the term corresponding to  also vanishes. This implies that, no matter 

which value  takes, Eq. (C1.25) can always be satisfied. Therefore, it is doable to set 

 to be zero here. It now turns out that the term  in Eq. (C1.13) is specially 

selected to let the integral in Eq. (C1.27) vanish. If this term took another value, Eq. 

(C1.25) would never be satisfied, and  would not exist. Substituting Eq. (C1.26) into 

Eq. (C1.24) and noting that  give  as 

 (C1.28) 

Substituting Eqs. (C1.17) and (C1.28) into Eq. (C1.12) gives the expression for . For 

the special case of Section 4.1.3, the point source is located at the origin in  or at 

 in . Substituting  and  into the expression for  gives 

 (C1.29) 
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Fig. C1.1 shows the 3D color map surface of . Unfortunately, the 

Fourier series for , , and  do not converge. Although the Fejér sum can be 

used to approximate these Fourier series, it is more convenient to calculate the numerical 

derivatives of . In this part, Ridders’ method is used to calculate these numerical 

derivatives [96]. 

 

 

Fig. C1.1. 3D color map surface of  for . 
 

C1.3 Generalized Green’s Function on a Cuboid Domain 
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According to Section 4.1.5, the generalized Green’s function on a cuboid domain 

should satisfy the three-dimensional Poisson’s equation 

  (C1.30) 

subject to the nonhomogeneous boundary conditions 

  (C1.31) 

Similarly to Section C1.2,  can be decomposed into two parts, that is, 

  (C1.32) 

where  satisfies the two-dimensional Poisson’s equation 

  (C1.33) 

subject to the homogeneous boundary conditions 

  (C1.34) 

and  satisfies the two-dimensional Poisson’s equation 

  (C1.35) 

subject to the nonhomogeneous boundary conditions 



 173 

  (C1.36) 

 can be easily obtained as 

  (C1.37) 

To reduce the complexity of derivations, introduce a coordinate system , 

where , , and  can be related to , , and  by 

  (C1.38) 

Now  should satisfy the two-dimensional Poisson’s equation 

  (C1.39) 

subject to the homogenous boundary conditions 

  (C1.40) 

The derivation for  is quite similar to that in Section C1.2. Finally,  can be obtained 

as 
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 (C1.41) 

Substituting Eqs. (C1.37) and (C1.41) into Eq. (C1.32) gives the expression for . For 

the special case of Section 4.1.3, the point source is located at the origin in  or at 

 in . Substituting , , and  into the 

expression for  gives 



 175 

 

 (C1.42) 

Similarly to Section C1.2, the numerical derivatives of  are calculated instead of the 

Fourier series for , , , and etc.. 
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APPENDIX C2 

C PROGRAM FOR SECTION 4 

 

“nrutil.h” //The same as that in Appednix A. 
 
“nutril.cpp” //The same as that in Appednix A. 
 
“main.cpp” 
 
#include <stdio.h> 
#include <conio.h> 
#include <math.h> 
#include "nrutil.h" 
#include "nrutil.cpp" 
#define PI 3.14159265358979 
 
#define ITMAX 100 //Maximum allowed number of iterations. 
#define EPS 1.0e-4 
//#define EPS 3.0e-8 //Machine doubleing-point precision. 
 
#define TOL 3.0e-8 //Tolerance passed to brent. 
 
FILE *fp; 
 
double A,B,C,a,b,c,f; 
int m,n; 
double h; 
 
int nvar; //Variables that you must define and set in your main program. 
int kmax,kount; //Communicates with odeint. 
double *xp,**yp,dxsav; 
/*User storage for intermediate results. Preset kmax and dxsav in the calling program. If 
kmax 6=0 results are stored at approximate intervals dxsav in the arrays xp[1..kount], 
yp[1..nvar][1..kount], where kount is output by odeint. Defining declarations for these 
variables, with memory allocations xp[1..kmax] and yp[1..nvar][1..kmax] for the arrays, 
should be in the calling program.*/ 
 
double G(double x, double y) 
{ 
 int i,j; 
 double lambda,mu,sum; 
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 sum=0.0; 
 
 for (i=1;i<=n;i++) { 
  lambda=2*i*PI/b; 
  sum += -2.0/(b*c)*pow(-1.0,i)*cos(lambda*x)/(lambda*lambda); 
 } 
 for (j=1;j<=n;j++) { 
  mu=2*j*PI/c; 
  sum += -2.0/(b*c)*pow(-1.0,j)*cos(mu*y)/(mu*mu); 
 } 
 for (i=1;i<=n;i++) { 
  for (j=1;j<=n;j++) { 
   lambda=2*i*PI/b; 
   mu=2*j*PI/c; 
   sum += -4.0/(b*c)*pow(-
1.0,i+j)*cos(lambda*x)*cos(mu*y)/(lambda*lambda+mu*mu); 
  } 
 } 
 sum += (x*x+b*b/4.0+y*y+c*c/4.0)/(4.0*b*c); 
 
 return sum; 
} 
 
double de_edA(double x, double y, double h) 
{ 
 double G(double x, double y); 
 double dxx(double (*func)(double, double), double x, double y, double h, double 
*err); 
 double dyy(double (*func)(double, double), double x, double y, double h, double 
*err); 
 double dxy(double (*func)(double, double), double x, double y, double h, double 
*err); 
 
 double G_xx,G_yy,G_xy,temp; 
 double *err; 
 
 err=vector(1,1); 
 
// G_xx=dxx(G,x,y,h,err); 
 G_yy=dyy(G,x,y,h,err); 
 G_xx=-G_yy; 
// G_xx=0.5*(dxx(G,x,y,h,err)-dyy(G,x,y,h,err)); 
// G_yy=-G_xx; //G_xx+G_yy=0 
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 G_xy=dxy(G,x,y,h,err); 
 temp=sqrt(6.0*A*A+B*B*(G_xx*G_xx+G_yy*G_yy+2.0*G_xy*G_xy)); 
 
 free_vector(err,1,1); 
 
 return sqrt(2.0/3.0)*6.0*A/temp; 
} 
 
double de_edB(double x, double y, double h) 
{ 
 double G(double x, double y); 
 double dxx(double (*func)(double, double), double x, double y, double h, double 
*err); 
 double dyy(double (*func)(double, double), double x, double y, double h, double 
*err); 
 double dxy(double (*func)(double, double), double x, double y, double h, double 
*err); 
 
 double G_xx,G_yy,G_xy,temp; 
 double *err; 
 
 err=vector(1,1); 
 
// G_xx=dxx(G,x,y,h,err); 
// G_yy=dyy(G,x,y,h,err); 
 G_xx=0.5*(dxx(G,x,y,h,err)-dyy(G,x,y,h,err)); 
 G_yy=-G_xx; //G_xx+G_yy=0 
 G_xy=dxy(G,x,y,h,err); 
 temp=sqrt(6.0*A*A+B*B*(G_xx*G_xx+G_yy*G_yy+2.0*G_xy*G_xy)); 
 
 free_vector(err,1,1); 
 
 return sqrt(2.0/3.0)*B*(G_xx*G_xx+G_yy*G_yy+2.0*G_xy*G_xy)/temp; 
} 
 
#define CON 1.4 //Stepsize is decreased by CON at each iteration. 
#define CON2 (CON*CON) 
#define BIG 1.0e30 
#define NTAB 10 //Sets maximum size of tableau. 
#define SAFE 2.0 //Return when error is SAFE worse than the best so far. 
 
double dxx(double (*func)(double, double), double x, double y, double h, double *err) 
/*Returns the derivative of a function func at a point x by Ridders' method of polynomial 
extrapolation. The value h is input as an estimated initial stepsize; it need not be small, 
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but rather should be an increment in x over which func changes substantially. An 
estimate of the error in the derivative is returned as err.*/ 
{ 
 int i,j; 
 double errt,fac,h1,h2,**a,ans; 
 
 if (h == 0.0) nrerror("h must be nonzero in dfridr."); 
 a=matrix(1,NTAB,1,NTAB); 
 h1=h*b; 
 h2=h*c; 
 a[1][1]=((*func)(x+h1,y)-2.0*(*func)(x,y)+(*func)(x-h1,y))/(h1*h1); 
 *err=BIG; 
 for (i=2;i<=NTAB;i++) { 
  //Successive columns in the Neville tableau will go to smaller stepsizes 
and higher orders of 
  //extrapolation. 
  h1 /= CON; 
  h2 /= CON; 
  a[1][i]=((*func)(x+h1,y)-2.0*(*func)(x,y)+(*func)(x-h1,y))/(h1*h1); 
//Try new, smaller step- 
  fac=CON2; //size. 
  for (j=2;j<=i;j++) { //Compute extrapolations of various orders, requiring 
   //no new function evaluations. 
   a[j][i]=(a[j-1][i]*fac-a[j-1][i-1])/(fac-1.0); 
   fac=CON2*fac; 
   errt=FMAX(fabs(a[j][i]-a[j-1][i]),fabs(a[j][i]-a[j-1][i-1])); 
   //The error strategy is to compare each new extrapolation to one 
order lower, both 
   //at the present stepsize and the previous one. 
   if (errt <= *err) { //If error is decreased, save the improved 
answer. 
    *err=errt; 
    ans=a[j][i]; 
   } 
  } 
  if (fabs(a[i][i]-a[i-1][i-1]) >= SAFE*(*err)) break; 
  //If higher order is worse by a significant factor SAFE, then quit early. 
 } 
 free_matrix(a,1,NTAB,1,NTAB); 
 return ans; 
} 
 
double dyy(double (*func)(double, double), double x, double y, double h, double *err) 
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/*Returns the derivative of a function func at a point x by Ridders' method of polynomial 
extrapolation. The value h is input as an estimated initial stepsize; it need not be small, 
but rather should be an increment in x over which func changes substantially. An 
estimate of the error in the derivative is returned as err.*/ 
{ 
 int i,j; 
 double errt,fac,h1,h2,**a,ans; 
 
 if (h == 0.0) nrerror("h must be nonzero in dfridr."); 
 a=matrix(1,NTAB,1,NTAB); 
 h1=h*b; 
 h2=h*c; 
 a[1][1]=((*func)(x,y+h2)-2.0*(*func)(x,y)+(*func)(x,y-h2))/(h2*h2); 
 *err=BIG; 
 for (i=2;i<=NTAB;i++) { 
  //Successive columns in the Neville tableau will go to smaller stepsizes 
and higher orders of 
  //extrapolation. 
  h1 /= CON; 
  h2 /= CON; 
  a[1][i]=((*func)(x,y+h2)-2.0*(*func)(x,y)+(*func)(x,y-h2))/(h2*h2); 
//Try new, smaller step- 
  fac=CON2; //size. 
  for (j=2;j<=i;j++) { //Compute extrapolations of various orders, requiring 
   //no new function evaluations. 
   a[j][i]=(a[j-1][i]*fac-a[j-1][i-1])/(fac-1.0); 
   fac=CON2*fac; 
   errt=FMAX(fabs(a[j][i]-a[j-1][i]),fabs(a[j][i]-a[j-1][i-1])); 
   //The error strategy is to compare each new extrapolation to one 
order lower, both 
   //at the present stepsize and the previous one. 
   if (errt <= *err) { //If error is decreased, save the improved 
answer. 
    *err=errt; 
    ans=a[j][i]; 
   } 
  } 
  if (fabs(a[i][i]-a[i-1][i-1]) >= SAFE*(*err)) break; 
  //If higher order is worse by a significant factor SAFE, then quit early. 
 } 
 free_matrix(a,1,NTAB,1,NTAB); 
 return ans; 
} 
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double dxy(double (*func)(double, double), double x, double y, double h, double *err) 
/*Returns the derivative of a function func at a point x by Ridders' method of polynomial 
extrapolation. The value h is input as an estimated initial stepsize; it need not be small, 
but rather should be an increment in x over which func changes substantially. An 
estimate of the error in the derivative is returned as err.*/ 
{ 
 int i,j; 
 double errt,fac,h1,h2,**a,ans; 
 
 if (h == 0.0) nrerror("h must be nonzero in dfridr."); 
 a=matrix(1,NTAB,1,NTAB); 
 h1=h*b; 
 h2=h*c; 
 a[1][1]=(((*func)(x+h1,y+h2)-(*func)(x+h1,y-h2))-((*func)(x-h1,y+h2)-
(*func)(x-h1,y-h2)))/(4.0*h1*h2); 
 *err=BIG; 
 for (i=2;i<=NTAB;i++) { 
  //Successive columns in the Neville tableau will go to smaller stepsizes 
and higher orders of 
  //extrapolation. 
  h1 /= CON; 
  h2 /= CON; 
  a[1][i]=(((*func)(x+h1,y+h2)-(*func)(x+h1,y-h2))-((*func)(x-h1,y+h2)-
(*func)(x-h1,y-h2)))/(4.0*h1*h2); //Try new, smaller step- 
  fac=CON2; //size. 
  for (j=2;j<=i;j++) { //Compute extrapolations of various orders, requiring 
   //no new function evaluations. 
   a[j][i]=(a[j-1][i]*fac-a[j-1][i-1])/(fac-1.0); 
   fac=CON2*fac; 
   errt=FMAX(fabs(a[j][i]-a[j-1][i]),fabs(a[j][i]-a[j-1][i-1])); 
   //The error strategy is to compare each new extrapolation to one 
order lower, both 
   //at the present stepsize and the previous one. 
   if (errt <= *err) { //If error is decreased, save the improved 
answer. 
    *err=errt; 
    ans=a[j][i]; 
   } 
  } 
  if (fabs(a[i][i]-a[i-1][i-1]) >= SAFE*(*err)) break; 
  //If higher order is worse by a significant factor SAFE, then quit early. 
 } 
 free_matrix(a,1,NTAB,1,NTAB); 
 return ans; 
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} 
 
double qgaus(double (*func)(double, double), double a, double b, double h) 
/*Returns the integral of the function func between a and b, by ten-point Gauss-
Legendre integration: the function is evaluated exactly ten times at interior points in the 
range of integration.*/ 
{ 
 int j; 
 double xr,xm,dx,s; 
 static double x[]={0.0,0.1488743389,0.4333953941, //The abscissas and weights. 
  //First value of each array 
  //not used. 
  0.6794095682,0.8650633666,0.9739065285}; 
 static double w[]={0.0,0.2955242247,0.2692667193, 
  0.2190863625,0.1494513491,0.0666713443}; 
 
 xm=0.5*(b+a); 
 xr=0.5*(b-a); 
 s=0; //Will be twice the average value of the function, since the 
 //ten weights (fove numbers above each used twice) 
 //sum to 2. 
 for (j=1;j<=5;j++) { 
  dx=xr*x[j]; 
  s += w[j]*((*func)(xm+dx,h)+(*func)(xm-dx,h)); 
 } 
 return s *= xr; //Scale the answer to the range of integration. 
} 
 
static double xsav; 
static double (*nrfunc)(double, double, double); 
 
double quad2d_1(double (*func)(double, double, double), double x1, double x2, double 
h) 
/*Returns the integral of a user-supplied function func over a three-dimensional region 
specified 
by the limits x1, x2, and by the user-supplied functions yy1, yy2, z1, and z2, as defined 
in 
(4.6.2). (The functions y1 and y2 are here called yy1 and yy2 to avoid conflict with the 
names 
of Bessel functions in some C libraries). Integration is performed by calling qgaus 
recursively.*/ 
{ 
 double qgaus(double (*func)(double, double), double a, double b, double h); 
 double f1_1(double x, double h); 



 183 

 nrfunc=func; 
 return qgaus(f1_1,x1,x2,h); 
} 
 
double f1_1(double x, double h) //This is H of eq. (4.6.5). 
{ 
 double qgaus(double (*func)(double, double), double a, double b, double h); 
 double f2_1(double y, double h); 
 double yy1_1(double),yy2_1(double); 
 
 xsav=x; 
 return qgaus(f2_1,yy1_1(x),yy2_1(x),h); 
} 
 
double f2_1(double y, double h) //This is G of eq. (4.6.4). 
{ 
 return (*nrfunc)(xsav,y,h); 
} 
 
double yy1_1(double x) 
{ 
 return sqrt(a*a-(x-0.5*b)*(x-0.5*b))+0.5*c; 
} 
 
double yy2_1(double x) 
{ 
 return a+0.5*c; 
} 
 
double quad2d_2(double (*func)(double, double, double), double x1, double x2, double 
h) 
/*Returns the integral of a user-supplied function func over a three-dimensional region 
specified by the limits x1, x2, and by the user-supplied functions yy1, yy2, z1, and z2, as 
defined in (4.6.2). (The functions y1 and y2 are here called yy1 and yy2 to avoid conflict 
with the names of Bessel functions in some C libraries). Integration is performed by 
calling qgaus recursively.*/ 
{ 
 double qgaus(double (*func)(double, double), double a, double b, double h); 
 double f1_2(double x, double h); 
 nrfunc=func; 
 return qgaus(f1_2,x1,x2,h); 
} 
 
double f1_2(double x, double h) //This is H of eq. (4.6.5). 
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{ 
 double qgaus(double (*func)(double, double), double a, double b, double h); 
 double f2_2(double y, double h); 
 double yy1_2(double),yy2_2(double); 
 
 xsav=x; 
 return qgaus(f2_2,yy1_2(x),yy2_2(x),h); 
} 
 
double f2_2(double y, double h) //This is G of eq. (4.6.4). 
{ 
 return (*nrfunc)(xsav,y,h); 
} 
 
double yy1_2(double x) 
{ 
 return 0.5*c; 
} 
 
double yy2_2(double x) 
{ 
 return a+0.5*c; 
} 
 
double quad2d_3(double (*func)(double, double, double), double x1, double x2, double 
h) 
/*Returns the integral of a user-supplied function func over a three-dimensional region 
specified by the limits x1, x2, and by the user-supplied functions yy1, yy2, z1, and z2, as 
defined in (4.6.2). (The functions y1 and y2 are here called yy1 and yy2 to avoid conflict 
with the names of Bessel functions in some C libraries). Integration is performed by 
calling qgaus recursively.*/ 
{ 
 double qgaus(double (*func)(double, double), double a, double b, double h); 
 double f1_3(double x, double h); 
 nrfunc=func; 
 return qgaus(f1_3,x1,x2,h); 
} 
 
double f1_3(double x, double h) //This is H of eq. (4.6.5). 
{ 
 double qgaus(double (*func)(double, double), double a, double b, double h); 
 double f2_3(double y, double h); 
 double yy1_3(double),yy2_3(double); 
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 xsav=x; 
 return qgaus(f2_3,yy1_3(x),yy2_3(x),h); 
} 
 
double f2_3(double y, double h) //This is G of eq. (4.6.4). 
{ 
 return (*nrfunc)(xsav,y,h); 
} 
 
double yy1_3(double x) 
{ 
 return a+0.5*c; 
} 
 
double yy2_3(double x) 
{ 
 return c; 
} 
 
double quad2d_4(double (*func)(double, double, double), double x1, double x2, double 
h) 
/*Returns the integral of a user-supplied function func over a three-dimensional region 
specified by the limits x1, x2, and by the user-supplied functions yy1, yy2, z1, and z2, as 
defined in (4.6.2). (The functions y1 and y2 are here called yy1 and yy2 to avoid conflict 
with the names of Bessel functions in some C libraries). Integration is performed by 
calling qgaus recursively.*/ 
{ 
 double qgaus(double (*func)(double, double), double a, double b, double h); 
 double f1_4(double x, double h); 
 nrfunc=func; 
 return qgaus(f1_4,x1,x2,h); 
} 
 
double f1_4(double x, double h) //This is H of eq. (4.6.5). 
{ 
 double qgaus(double (*func)(double, double), double a, double b, double h); 
 double f2_4(double y, double h); 
 double yy1_4(double),yy2_4(double); 
 
 xsav=x; 
 return qgaus(f2_4,yy1_4(x),yy2_4(x),h); 
} 
 
double f2_4(double y, double h) //This is G of eq. (4.6.4). 
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{ 
 return (*nrfunc)(xsav,y,h); 
} 
 
double yy1_4(double x) 
{ 
 return a+0.5*c; 
} 
 
double yy2_4(double x) 
{ 
 return c; 
} 
 
int main(void) 
// Main program. 
{ 
 double epsilon_e(double x, double y, double h); 
 
 int i,j,k; 
 double r,chi,temp; 
 double *err,**ep; 
 
 f=0.02; 
 b=1.0; 
 c=1.0; 
 a=sqrt(f*b*c/PI); 
 n=20; 
 k=20; 
 kmax=2*k+1; 
 nvar=4; 
 xp=vector(1,kmax); 
 yp=matrix(1,nvar,1,kmax); 
 r=pow(2.0,0.5); 
 
 for (i=1;i<=kmax;i++) { 
  chi=pow(r,-k-9+i); 
  A=1.0; 
  B=chi*6.0*b*c*A; 
  xp[i]=chi; 
 
 yp[1][i]=4.0/(b*c)*(quad2d_1(de_edA,0.5*b,a+0.5*b,0.01)+quad2d_2(de_edA,a
+0.5*b,b,0.01) 
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 +quad2d_3(de_edA,0.5*b,a+0.5*b,0.01)+quad2d_4(de_edA,a+0.5*b,b,0.01)); 
//dWdA 
 
 yp[2][i]=4.0/(b*c)*(quad2d_1(de_edB,0.5*b,a+0.5*b,0.01)+quad2d_2(de_edB,a
+0.5*b,b,0.01) 
  
 +quad2d_3(de_edB,0.5*b,a+0.5*b,0.01)+quad2d_4(de_edB,a+0.5*b,b,0.01)); 
//dWdB 
  yp[3][i]=b*c*yp[2][i]-yp[1][i]/6.0; //Sigma_m 
  yp[4][i]=0.5*yp[1][i]; //Sigma_e 
 } 
 
 fp=fopen("data.txt","w"); 
 printf("dWdA:\n"); 
 fprintf(fp,"dWdA:\n"); 
 for (i=1;i<=kmax;i++) { 
  printf("%f\n",yp[1][i]); 
  fprintf(fp,"%f\n",yp[1][i]); 
 } 
 printf("dWdB:\n"); 
 fprintf(fp,"dWdB:\n"); 
 for (i=1;i<=kmax;i++) { 
  printf("%f\n",yp[2][i]); 
  fprintf(fp,"%f\n",yp[2][i]); 
 } 
 printf("Sigma_m:\n"); 
 fprintf(fp,"Sigma_m:\n"); 
 for (i=1;i<=kmax;i++) { 
  printf("%f\n",yp[3][i]); 
  fprintf(fp,"%f\n",yp[3][i]); 
 } 
 printf("Sigma_e:\n"); 
 fprintf(fp,"Sigma_e:\n"); 
 for (i=1;i<=kmax;i++) { 
  printf("%f\n",yp[4][i]); 
  fprintf(fp,"%f\n",yp[4][i]); 
 } 
 
 return 0; 
} 
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