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ABSTRACT 

 

Econometric Analyses of Public Water Demand in the United States. (December 2011) 

David Ray Bell, B.A., University of Texas at Austin 

Chair of Advisory Committee: Dr. Ronald C. Griffin 

 

Two broad surveys of community-level water consumption and pricing behavior 

are used to answer questions about water demand in a more flexible and dynamic 

context than is provided in the literature.  Central themes of price representation, 

aggregation, and dynamic adjustment tie together three econometric demand analyses.  

The centerpiece of each analysis is an exogenous weighted price representation. 

A model in first-differences is estimated by ordinary least squares using data 

from a personally-conducted survey of Texas urban water suppliers.  Annual price 

elasticity is found to vary with weather and income, with a value of -0.127 at the data 

mean.  The dynamic model becomes a periodic error correction model when the 

residuals of 12 static monthly models are inserted into the difference model.  Distinct 

residential, commercial, and industrial variables and historical climatic conditions are 

added to the integrated model, using new national data.  Quantity demanded is found to 

be periodically integrated with a common stochastic root.  Because of this, the structural 

monthly models must be cointegrated to be consistent, which they appear to be.  The 

error correction coefficient is estimated at -0.187.  Demand is found to be seasonal and 

slow to adjust to shocks, with little or no adjustment in a single year and 90% adjustment 
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taking a decade or more.  Residential and commercial demand parameters are found to 

be indistinguishable. 

The sources of price endogeneity and historical fixes are reviewed.  Ideal 

properties of a weighted price index are identified.  For schedules containing exactly two 

rates, weighting is equivalent to a distribution function in consumption.  This property is 

exploited to derive empirical weights from the national data, using values from a 

nonparametric generalization of the structural demand model and a nonparametric 

cumulative density function.  The result is a generalization of the price difference metric 

to a weighted level-price index.  The validity of a uniform weighting is not rejected. 

The new approach of weighted price indexing is data intensive, but the payoff is 

increased depth and precision for the economist and accessibility for the practitioner. 
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CHAPTER I 

INTRODUCTION 

 

Freshwater withdrawals of 44.2 billion gallons are supplied daily to the public of the 

United States (Barber 2009).  Public supply includes treated and pressurized water 

delivered to households, businesses, and institutions.  How does a change in water 

quantity resulting from a new policy or project affect the value received by these users?  

What are the conservation and revenue implications of pricing changes?  Developing 

answers to these and other questions requires a demand function, yet the nature of water 

demand is quirky, posing unique modeling challenges. 

The existence of a demand function for water, where price influences consumption, 

was not widely accepted before 1967, when Howe and Linaweaver published the first 

national study of residential water demand.  Their finding of significant price effects 

challenged the use of one-size-fits-all coefficients to approximate daily per capita water 

use.  In that era of industrial expansion, Howe and Linaweaver focused on the 

implications of their results for efficient plant design.  If consumption is invariant to 

price, optimal sizing of a water facility is simply a matter of providing a quantity of 

water equivalent to the estimated use coefficient times the estimated service population.  

Cost sufficiency can then be achieved by billing consumption on the basis of average 

cost.  If, on the other hand, consumption is a function of price, then plants must be 

designed to deliver the quantity demanded by the service population at a price level that 
__________ 
This dissertation follows the style of Land Economics. 
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covers costs (Howe and Linaweaver 1967).  The recognition of feedback between price 

and quantity introduces an economic dimension to a problem traditionally dominated by 

engineering solutions. 

Hundreds of water demand studies have followed Howe and Linaweaver, providing 

persuasive evidence of the existence of a price effect on consumption (Dalhuisen et al. 

2003).  Meanwhile, the landscape of water management has changed.  In 2011, water 

production infrastructure is more abundant than it was in 1967, and undeveloped water 

supplies are scarcer.  The benefits of supply enhancement have been largely exploited in 

many parts of the country (Ward et al. 2006), and benefits of demand management may 

hold more promise for the future (Renzetti 1992). 

Demand analysis for infrastructure planning does not emphasize timing because 

dams and reservoirs take years to build and operate for decades without rescaling.  

Demand management with pricing tools, in contrast, is dynamic with annual (or 

interannual, Hausman et al. 1979) adjustment opportunities.  During a drought, for 

instance, water managers may wish to shrink excess demand by raising rates.  Supply-

side solutions are inadequate for this purpose because even a serious drought will have 

abated before new supplies could be developed.  The quicker pace of demand 

management calls for a dynamic element that is largely absent from existing demand 

models.  The models introduced in this dissertation ask not only what the ultimate price 

effect on consumption will be, but also when price effects will occur.  The parameters of 

a water demand model with dynamic adjustment can inform rate-setters of the effects 
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their policies will have over a given interval, such as a fiscal year.  This information can 

contribute to efficiency, budgetary, and social gains. 

Demand at its most basic is the relationship between quantity consumed and price.  

Most texts and articles on the subject of demand take price to be a primitive and self-

evident signal known to all parties.  No measure exists in the arena of water demand, 

though, that can be clearly and unambiguously called a price.  Water is transacted at 

many rates, none of which is known to every consumer.  This ambiguity is mostly due to 

the low value that water managers place on transparency.  Complicated multi-block rate 

schedules and poor communication ensure that consumers perceive the true marginal 

price of water dimly at best.  There is a disconnect between the signal issued by the 

producer and that received by the consumer.  The producer's signal is observable and 

public, but unwieldy.  A quantity-independent consumer price signal is assumed by 

demand theory but unobserved.  The concept of demand is only useful and believable if 

the two signals somehow coincide.  Researchers have struggled and continue to struggle 

with a definition of water price that represents observable values while maintaining 

statistical independence.  A central objective of the present research is to advance this 

endeavor. 

Most intuitive representations of price under block rate schedules and/or dim price 

perception result in inconsistent econometric estimation.  Some mitigation techniques 

are reviewed in Chapter II, and a new quasidifference representation of price is 

introduced.  The quasidifference price is statistically independent of quantity consumed, 

but it only supports estimation of a short-run model.  The first of two major datasets 
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developed for this dissertation is introduced and used to estimate a demand model in first 

differences.  The data consist of price schedules obtained for 734 utility systems 

surveyed by the author, augmented with quantity data from the Texas Water 

Development Board and economic and climatic data from national data sources.  

Flexibility is provided in the empirical model to allow for interactions between pairs of 

covariates.  Price elasticity is shown to be variable when the functional form of demand 

allows for variation.  

The quasidifference model is expanded into an error correction (EC) model in 

Chapter III.  Here, the model from Chapter II is augmented with a regressor representing 

the lagged residual of steady-state demand.  By incorporating both dynamic and 

structural components, the EC model allows consistent simultaneous estimation of 

demand effects at multiple time scales.  A seasonal component is incorporated as well, 

by estimating a different steady-state demand equation for each calendar month and 

including only the month-specific lagged residual in the EC model.  Seasonal unit-root 

tests reject seasonal nonstationarity in the residual series, assuring statistical consistency 

in the EC model. 

The second original and major dataset is introduced in Chapter III and used to 

estimate the empirical demand model.  The data consist of over 16,000 observations on 

167 municipal utility systems.  Price data are obtained from a survey by the author of 

over 1000 systems nationwide.  Quantity data are obtained from eight state agencies and 

a municipality.  National datasets provide economic and climatic data to round out the 

model.  Residential and commercial demand effects are identified separately, although 
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commercial demand dynamics are not shown to be conclusively different from 

residential demand dynamics.  When a long-run structural demand relationship is taken 

into account, short-run demand response is not shown to be statistically significant. 

The quasidifference price representation used in Chapters II and III is the difference 

between two weighted rate indices.  The weighting function is essentially one of 

convenience.  An empirical test of weighting functions on water rate schedules is 

developed in Chapter IV.  Desirable properties of weighted indices are discussed in 

Chapter II and detailed in Chapter IV.  A method is demonstrated for deriving a 

consistent empirical weighting, if one exists, by estimating a nonparametric cumulative 

distribution function from a dataset of two-rate schedules.  The empirical weighting 

function is neither normally nor lognormally distributed, but it is statistically similar to a 

uniform distribution.  Like the empirical weighting, uniform weighting is independent of 

quantity consumed, but it is easier to apply in practice and performs approximately as 

well as the empirical weighting in both parametric and nonparametric demand models. 

The dissertation concludes with Chapter V, a rephrasing of the central problem of 

price with a synopsis of procedures and findings and some observations relevant to the 

application of the findings. 
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CHAPTER II 

AN ANNUAL QUASIDIFFERENCE APPROACH TO WATER PRICE ELASTICITY 

 

Economic views on water demand continue to gain attention as a result of the 

scarcity sensitivity that is intrinsic to a value-dependent vision of demand.  The almost 

worldwide phenomenon of rising water scarcity makes the economic perspective useful 

in multiple ways.  Among these is the policy significance of signaling scarcity to all 

water users through more informed rate-making, so as to motivate efficient consumption 

behavior and conservation activities.  Another key advantage of understanding how 

water usage depends on water value is being able to perform ex ante appraisals of water 

projects' prospective benefits.  Other policy-relevant advantages are also attributable to 

the economic view of demand or do not become tractable until demands have been 

estimated. 

To firm up these achievements and turn concepts into practice, economists have 

conducted many empirical investigations of water demand (Renzetti 2002).  The study 

area of greatest concentration pertains to household demand for water in urbanized areas, 

which is also the subject of this study (Arbués et al. 2003; Dalhuisen et al. 2003).  

Undoubtedly, a strong contributing factor for this disciplinary emphasis is the 

comparative availability of reasonably reliable data.  As compared to agricultural, 

industrial, and heavy commercial water usage, residential/urban water use is more likely 

                                                
 This chapter reprinted with permission from, "An Annual Quasidifference Approach to Water Price 
Elasticity" by Bell, D. R., and R. C. Griffin, 2008, Water Resources Research.  Copyright 2008 by 
American Geophysical Union. 
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to occur in settings where many water users are active, water use is reasonably well 

metered and not self-reported, and a variety of consumption circumstances can be 

observed.  The latter factor is important for producing an acceptable degree of variation 

in statistically exogenous variables, so as to permit analysis of potentially influential 

factors.  In all such studies, fundamental requirements are that consumers have the 

freedom to determine their water use, and that researchers can observe water use and 

water price(s), as well as other demand-driving factors. 

Utility-maximizing consumer behavior is straightforward to model when price and 

quantity demanded are well known to the consumer, and standard modeling practice is 

that consumers are presumed to be rationally advancing their own welfares in the data 

they generate for us.  These assumptions are seldom met, however, when the good in 

question is retail water service.  Unlike most goods households buy, water costs are fully 

revealed to the consumer well after the consumption decision is made, when the monthly 

or bimonthly bill arrives.  When this bill does come, it typically does not transparently 

communicate water price to consumers. 

Even water quantity information is elusive from the consumer's vantage, since 

water-consuming taps and appliances hardly ever provide volumetric usage information.  

Nor does a water bill provide the consumer with a fully satisfactory alternative.  A water 

bill does not itemize the array of water use activities conducted by the consumer; instead 

they are lumped into a single water usage quantity.  On top of the quantity-side 

confusion, discerning the prospective expenditure effects of behavioral modifications 

can be a challenge for consumers, given that bills are functionally dependent on some or 
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all of the following:  a flat fee per period billing, uniform or block rates, seasonal rates, 

metered-water-dependent sewerage fees, and often fees for the provision of nonwater 

services such as garbage disposal and energy. 

Consumer perception of water's marginal price is especially dim.  Evidence suggests 

that fewer than 10% of customers invest in marginal price knowledge (Carter and Milon 

2005).  In a recent survey of water utility systems, only 2.9% provided customers with 

the price schedule on their water bills (Gaudin 2006).  Cognizant of the bounds of 

consumer rationality under costly information, water (and electricity) demand modelers 

have turned their attention from the price to which consumers allegedly should respond, 

to ask which price do consumers respond to (Shin 1985).  In econometric terms, this 

requires formal testing of alternate price specifications. 

Unfortunately, the gathering of evidence to settle this empirical question has been 

confounded by the difficulty of producing any price index that conforms to the OLS 

assumption of a random error term uncorrelated with the independent variable.  

Competing specifications cannot be fairly compared unless they are measured 

accurately.  Some previous attempts to construct an exogenous price index are reviewed 

in this article.  None has been entirely satisfactory.  An alternative index is proposed that 

incorporates rate information in a hypothetical price difference between rate regimes.  

The new index is a quasidifference operation:  the difference between the observed 

lagged price and the unobserved contemporaneous price net of demand-side influences.  

Since it is based on the published (deterministic) supply decisions of the water provider, 

this price quasidifference does not vary simultaneously with demand and therefore 
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provides a theoretically unbiased estimate of supply price change.  From this basis, the 

relative behavioral influence of alternate theoretical specifications can be compared.  It 

is hoped that this procedure will open the door to a more active generation of 

behaviorally based price hypotheses.  We limit ourselves here to consideration of 

marginal price and average price specifications only. 

Once an unbiased and behaviorally descriptive price index is selected, an equation 

of annual demand elasticity is calculated.  Community-level rate and usage data are 

obtained for a sample of 385 utility systems in Texas.  The breadth of the data may be 

unprecedented among studies of this kind.  The wide range of observed prices in this 

data may provide a wider applicability for the estimated parameters than previous 

research.  The aggregate character of the data is respected by weighting the 

quasidifference estimators by the presumed standard lognormal distribution of 

households across total quantity demanded.  A semi-flexible functional form is 

employed that allows price elasticity to vary linearly with the climatic parameters, 

resulting in a rejection of the hypothesis of constant elasticity.  Unlike the preponderance 

of demand analyses which are static, this elasticity in differences provides a time-rate of 

adjustment (one year) rather than an assumed reequilibrium adjustment.  This distinction 

makes the results especially useful for projecting the repercussions of a change in pricing 

policy over the near future, or in planning successive rate changes.  

Sources of and Responses to Price Endogeneity 

Charges for residential water service are set administratively, typically only at the 

beginning of the fiscal year.  Consumers experience the rate schedule as they would a 
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market supply correspondence, except that the household supply function is nonconstant 

when the marginal price of water varies with household usage.  In contemporary rate 

structures the most common form of water price discrimination is the increasing block 

rate (IBR) structure, which is found in 47% of the present data (with less than 1% 

exhibiting decreasing block rates).  Under IBR or any other rate regime where price is 

determined simultaneously with the quantity decision, identification issues analogous to 

those familiar to market demand analysts must be addressed (Working 1927).  It is also 

possible that the choice to adopt IBR is itself endogenous (Hewitt 2000b; Reynaud et al. 

2005). 

In choosing a consumption quantity, consumers subjected to block rates implicitly 

select a marginal price, even if they are unaware of the choice.  If an entire community is 

modeled as a single representative consumer, this price endogeneity can be exaggerated, 

spuriously influencing elasticity estimates (Shin 1985).  The low-information average 

price specification is further biased by the algebraic simultaneity of division by the 

dependent variable when a flat fee is included (Taylor et al. 2004).  This problem exists 

for uniform rates (constant marginal price) as well as for variable block rates.  Given 

these inconvenient properties of observed price measures, research has tried to derive a 

price variable that more adequately captures the ceteris paribus effect of changing fee 

schedules.  Previous strategies to properly identify the price signal may be generally 

grouped into reduced form, instrumental variable (IV), and maximum likelihood (ML) 

techniques (Herriges and King 1994). 
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Reduced Form Price 

The reduced form strategy involves creating a price index of known fee schedule 

parameters that is independent of observed volume.  An early example is provided by 

Taylor (1975), who proposed regressing on each block of multi-block rates.  Since 

nonlinear fee schedules are multidimensional, this technique incorporates more price 

information, while eliminating quantity consumed as an argument of price charged.  The 

disadvantages of the approach are the lack of theoretical support, additional complexity 

(Herriges and King 1994), and misspecification bias.  The latter arises from the 

inaccurate assumption that any given price index will be equally representative across 

the range of observed consumption quantities. 

Instrumental Price 

The IV approach (Nieswiadomy 1991) allows price to vary across the observed 

range, at the cost of additional complexity, by identifying a linear proxy to the 

theoretical supply curve.  Although widespread in studies of competitive markets, IV 

applied to public utilities suffers a number of disadvantages.  One is the problem of 

estimating a censored variable as a line.  IV price estimates evaluated at the extrema are 

not necessarily a combination of experienced prices or even necessarily greater than 

zero.  The result is a correlation between the IV price and the regression error (Terza 

1986).  When this problem is addressed with the use of limited dependent variable 

techniques, the method is equivalent to ML price estimation. 
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The demand price, that ideal scalar employed by the model consumer's decision 

process, is ultimately unknown.  Demand modeling depends upon parameterizing the 

demand price in terms of the supply price, i.e. the rate schedule.  An IV price is therefore 

an instrumental estimate of an instrument.  Problematically, the IV price correspondence 

predicts intra-annual price changes that are neither observed nor institutionally feasible.  

Nevertheless, IV may be necessary if the data used are spot prices at arbitrary 

consumption levels.  If the timing and magnitude of fee schedule changes are known, 

however, the IV approach is a distant second-best solution, as it is inefficient to 

reconstruct perfectly known price policies into a stochastic estimate of pricing policy.  In 

Texas as elsewhere, price schedules are available data, so an instrumental estimation of 

price is unnecessary.  Even though household perception of price remains mysterious, 

the supplier's signal is known to researchers. 

Maximum Likelihood Price 

ML estimation can be used to probabilistically assign a marginal price to a 

representative consumer either based on an IV inverse supply function or as a two-stage 

procedure simultaneously estimating price and quantity demanded (Burtless and 

Hausman 1978; Herriges and King 1994).  The "discrete/continuous" (Hanemann 1984) 

or "endogenous sorting" (Reiss and White 2005) model is a ML model brought to the 

arena of water demand by Hewitt and Hanemann (1995).  The story behind endogenous 

sorting is that consumers select the price region (block) in which their consumption will 

lie, then an exact quantity within the block (Hewitt and Hanemann 1995).  The method 

adds a degree of rationality to the price specification dilemma, but perhaps too much.  
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The information demand on the consumer under this model is intense (Martínez-

Espiñeira 2003), and some studies have experienced difficulty deriving a probability 

estimate that is positive in the neighborhood of price kinks (Cavanagh et al. 2002).  That 

is, observed aggregate quantity decisions may be assigned negative probabilities, 

implying that the representative consumer is irrational.  Ensuring the existence of a 

cumulative distribution function under such circumstances is nontrivial.  Furthermore, 

repeated application of ML in a dynamic model is computationally demanding (Reiss 

and White 2005). 

More fundamentally, when aggregate data are modeled with a ML price, the 

distinction is lost between the representative consumer and representative consumption.  

If the individual makes a ML consumption decision, the community consumes across the 

whole probability distribution.  Whether the average consumer enjoys average 

consumption depends heavily upon the normality assumption (Hewitt 2000a).  Although 

the ML approach is unsupportably utility theoretic under incomplete information, it does 

offer a helpful framework that will be exploited in a forthcoming section addressing 

aggregation issues. 

Quasidifference Price 

Assuming that demand for water service is functionally related to price and other 

exogenous variables, the typical under-identified demand function is 

 w ( p(w), z) , [2.1] 
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where w, quantity demanded in a given period, is functionally related to p(w), the price 

index calculated at w, and other variables, z.  Net price changes may fruitfully be seen as 

composed of a policy price change and possibly an endogenous change resultant from a 

change in quantity demanded.  Although the price faced by any particular consumer 

varies with the level of consumption, the nominal price schedule varies exogenously 

only when the water provider decides to vary it.  Changes in price due to the purchasing 

power of money are also exogenous, but are withheld from the following discussion for 

clarity. 

Though a price level net of demand-side influences has proven elusive, price change 

is separable in the derivative, 

 
dp
dt


p
t


p
w

w
t , [2.2] 

 where
p
t

 p(w)
 [2.3] 

is the exogenous price difference evaluated at some consumption level w . 

The form of equation [2.1] to be estimated is the annual difference in demand: 

 w  wt  wt12  (p(w),z) . [2.4] 

Choice of the point w  depends on the price change that is to be measured, because 

price changes are not generally uniform.  A simple reduced form approach is to evaluate 

p  at a single consumption level for all observations.  The reduced form assignment of 

 wt W *,   for all t, [2.5] 
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is too rigid, though, if consumption is not stationary about W*.  Whenever consumers 

migrate their consumption out of the rate block containing W*, p(W *)  will cease to be 

a good estimator of p .  If instead, 

 wt  wt12 , [2.6] 

p  may be interpreted as the price change that would have obtained if consumption had 

remained constant from the same month of the year before.  The interpretation conforms 

to both the behavioral model of households reacting to pricing policy and to the ceteris 

paribus principle of statistical inference.  The quasidifference estimator is defined as 

 p  pt (wt12 ) pt12 (wt12 )  [2.7] 

in the linear model, or 

 
 ln p  ln pt (wt12 )

pt12 (wt12 )











 [2.8] 

in the logarithmic models used in this paper. 

The necessity of adopting an annual lag when monthly data are available follows 

from the dominance of seasonal behavior in water consumption patterns.  Seasonality 

has been modeled with climatic variables (Griffin and Chang 1991) and with Fourier 

harmonics (Renwick and Green 2000), but neither method has completely captured the 

persistent demand characteristics unique to each month of the year. 

This dynamic form dictates a specific interpretation of estimated parameters.  The 

implied consumption response occurs within a single community over the span of one 
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year.  Comparisons across communities are no longer applicable, including the common 

interpretation of cross-sectional variation as a measure of long run adjustment (Kennedy 

2003, p. 211).  Because the differential form implies a price elasticity of demand for 

water to pricing policy (and inflationary) changes within a given community, its 

implications are more relevant to projecting and evaluating incremental local 

adjustments than basinwide projects with long horizons, which would benefit from the 

scope of a static model.  The results of this estimation should not be used to prescribe an 

efficient equilibrium pricing policy because adjustment will commonly take longer than 

the one-year time step emphasized here. 

On the other hand, standard structural estimation is not well suited to applications 

requiring a finite time horizon.  The price response implied by such models may take an 

indefinitely long time to realize.  Knowledge of the time-path of adjustment is necessary 

to describe optimal policies that achieve period-by-period utility system goals such as 

revenue sufficiency and stability.  For example, in cases of acute capacity constraint 

such as drought, timing is a factor, and a policy based on a structural elasticity may not 

achieve the desired demand management goal (i.e. a temporary reallocation) before the 

drought dissipates.  An elasticity derived from the approach introduced here is 

recommended for such applications. 

Aggregation 

The ML endogenous sorting model recognizes that different consumers make 

choices that place them in different rate blocks (Hanemann 1984), but the implications 

for aggregation have not been well explored.  The probability that a consumer consumes 
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within a rate block is analogous to the proportion of consumers in an aggregate who 

consume within that block.  This interpretation allows the usual point estimate of 

aggregate consumption to be replaced with a consumption distribution in the formulation 

of price indices.  When block rates are present in the data, this alternative can greatly 

improve the explanatory power of price. 

Because all consumers do not simultaneously move from block to block, a point 

estimate of representative consumption and price exaggerates block effects (Shin 1985).  

Schefter and David (1985) observe that the price faced by the mean consumer may 

estimate mean price with bias, especially if the variance of consumption is high.  The 

distributional symmetry assumption that justifies point estimates of marginal price is 

tenuous and has been empirically rejected (Hewitt 2000a; Schefter and David 1985).  

Distribution of water consumption over households is asymmetrical (with median < 

mean) and truncated at zero, conforming to a possible gamma or lognormal distribution, 

as a small number of households consumes a relatively large amount of water.  

Martínez-Espiñeira (2003) corrects this bias using additional information about customer 

types to weight marginal price across the community aggregate. 

The least precise representation of aggregate marginal price under block rates is a 

point-mass centered at the mean of consumption multiplied by the price effective at that 

consumption level.  The most precise is a weighting of prices by the actual proportion of 

consumers whose marginal consumption falls in each block.  Lacking agent-level data, 

the model employed here uses a distributional assumption in lieu of customer type data.  

Since the standard lognormal distribution is asymmetrical, truncated at zero, and 
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uniquely determined by a single parameter that is conveniently related to mean 

consumption, w , the distribution of individual consumption levels for each community in 

each period is modeled as standard lognormal.  A lognormal distribution of w is 

consistent with OLS assumptions on 

 ln w = ln X + , [2.9] 

which is the general form on which the present analysis is based.  The aggregate 

quasidifference price variable is therefore a quasidifference operation on a linear 

combination of prices weighted by a block consumption probability function assumed to 

be standard lognormal with a mean at the data point wt .  The assumption of lognormality 

is much cruder than the sorting devices proposed in the ML models, suggesting that even 

more precision could be achieved by refinements of the weighting function. 

Let F(w)  be the cumulative distribution of a standard lognormal function whose 

mean is wt .  Given block rate function P(w)  pi : xi1  w  xi , where w is partitioned 

into N blocks by x x0  0, xN  , the aggregate price index is defined as 

 
p  p j[F(x j ) F(x j1)]

j1

N


  [2.10] 

The procedure is analogous to probability weighting of time-of-day electricity prices 

(Hausman et al. 1979).  Choice of the partition x is straightforward for the calculation of 

marginal price.  All consumers in the same rate block do not share a common average 

price, however.  In the calculation of aggregate average price, x is defined in increments 

of 500 gallons up to 50,000 gallons, and a mean average price is calculated for each 
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interval.  To construct the aggregate quasidifference price, both the contemporaneous 

and the lagged price functions are weighted by the same distribution and then 

differenced.  

Empirical Model 

Dynamic Specification 

Most empirically estimated water demand equations have been static.  

Unfortunately, dynamic studies that have tested the significance of the contemporaneous 

price variable have found its effect to be insignificant during nonsummer months 

(Lyman 1992), inconsistent across models (Agthe and Billings 1980), insignificant or 

unexpectedly close to zero (Carver and Boland 1980).  Investigations of natural gas 

(Balestra and Nerlove 1966) and electricity (Bushnell and Mansur 2005) have also 

suffered from weak results.  Low significance levels in contemporaneous price are 

consistent with the hypothesis of incomplete information, which would imply a learning 

process over time (Carver and Boland 1980). 

Nauges and Thomas (2003) provide a more revealing dynamic analysis that 

estimates a statistically significant short-term elasticity of –0.26.  Although their study is 

focused on cross-sectional heterogeneity, an issue set aside in the current research, it is 

exemplary in the sense of incorporating additional information on pricing practice 

unique to the region under study. 

The price elasticity actually measured by static equations is typically cross-sectional 

elasticity (Balestra and Nerlove 1966).  It can be argued that this is a measure of the 
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longest adjustment term, over which habits and stocks of water-demanding capital have 

tended to evolve to near-equilibria.  Such a horizon is too long to serve all types of 

policy analysis, however, as suggested above.  In contrast, an annual elasticity is sought 

here.  Although a wider range of results are obtained, the central question is, “What is 

the percent change in consumption over one year following a uniform 1% rate change or 

its equivalent?” 

Flexibility 

Quantity-dependent pricing implies highly informed consumers would perceive a 

nonlinear budget set, then inferring idiosyncratic hypotheses about the resulting price 

elasticity.  In particular, price elasticity is expected to vary with income level, especially 

for a subsistence good (Dalhuisen et al. 2003).  The limited available evidence suggests 

that price elasticity is also sensitive to climatic conditions in nontrivial ways (Griffin and 

Chang 1991).  Nevertheless, many empirical estimates use the simple log-linear 

functional form (Equation [2.9]), which imposes constant elasticity.  In this instance, a 

generalization of Equation [2.9] is employed that allows a second-order interaction 

among the covariates (X I ) , based on the translog functional form (Christensen et al. 

1973): 

 
ln w  i

i1

I

 ln xi 
 ij

2j i

I


i1

I

 ln xi ln x j  
 [2.11] 
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Note that the quadratic terms of the full translog model are excluded.  While the 

model indicated by Equation [2.11] is more flexible than that that of Equation [2.9], it is 

not a globally or even locally flexible form.  

Price Elasticity 

To distinguish price effects, Equation [2.11] may be rewritten as 

 
ln w   p ln p  i

i2

I

 ln xi   pi ln p ln xi
i2

I

 
 ij

2j2

I


i2

I

 ln xi ln x j 
[2.12] 

Introducing a temporal element and taking the first difference produces 

 
 ln w  p ln p  i

i2

I

  ln xi   pi(ln p ln xi
i2

I

 )
 ij

2j2

I


i2

I

 (ln xi ln x j )
  

 [2.13] 

Equation [2.13] is the estimating equation for the empirical analysis of the next 

section.  Since an expression for the ceteris paribus price effect on the quantity of water 

demanded is sought,  ln xi  0 is stipulated for each i-th covariate when calculating 

price elasticity.  Note that, for each term in the second summation, 

 pi(ln p ln xi )   pi[ln pt ln xit  ln pt1(ln xit  ln xi )]  pi( ln pt ln xit  ln pt1 ln xi )  

 [2.14] 

Thus [2.13] reduces to, 

 

 ln w
 ln p

  p   pi ln xi
i2

I

 
 [2.15] 
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In the limit, for small changes, 

 
  p   pi ln xi

i2

I


 [2.16] 

is the own-price elasticity of demand.  Constant elasticity is confirmed if  pi  0  for 

every i  I . 

Data 

The original data for this application consists of monthly water supply series for 385 

Texas communities (serving 5.6 million Texas residents).  Water use data are provided 

by the Texas Water Development Board, and corresponding water and sewer service 

rates are provided by the communities themselves per request.  Of 1406 community 

water providers considered, 734 responded to mailed inquiries seeking water and 

sewerage rate structures for a five-year period.  Raw data expressed in nominal dollars 

are corrected for inflation in the analysis. 

Due to the lag structure of the proposed model, only those communities for which 

supply and price series are complete from January 1999 to December 2003 are 

considered further.  The 385x60 panel contains 23,100 elements of which 20% are 

expended in support of the lag structure.  Twelve additional observations are excluded 

because the marginal price changed from zero to a positive quantity over the year, 

resulting in an undefined log difference.  In other cases (<1% of data) where price 

remained at zero in both periods, log price difference is redefined to be zero.  Based on 

comparisons of community size and monthly usage, the sample is representative of the 
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targeted population although the high variance of both of these measures reduces their 

ability to verify sample selection bias. 

Personal income statistics from the Bureau of Economic Analysis (www.bea.gov 

/regional/reis/) and climate data from the National Climatic Data Center (NCDC; 

www.ncdc.noaa.gov/) augment the data.  Personal income is aggregated at the county 

level, with 156 counties represented, or at the metropolitan level of larger cities for 

which income data are available.  Daily temperature and precipitation data are matched 

by proximity to the nearest NCDC cooperative weather station, usually in the same 

county as the system observation.  All dollar amounts are normalized to December 2003, 

using the Urban South CPI measurement (www.bls.gov/data/).  Data are summarized in 

Table 2.1.  The log difference transformations of the data are summarized in Table 2.2. 

 

Table 2.1.  Summary Statistics, N = 23100 

Variable Units Mean Standard 
Deviation 

Volume per capita per day Liters 540.3645 267.2517 
Marginal water price 2003$ / kliter 0.6607 0.2966 
Marginal sewer price 2003$ / kliter 0.1466 0.2314 
Average water price 2003$ / kliter 1.1242 0.5506 
Average sewer price 2003$ / kliter 0.4356 0.4215 
Monthly personal Income 2003$ 2158.2780 499.6223 
Average minimum 
temperature 

ºF 55.3835 14.0675 

Average maximum 
temperature 

ºF 78.2141 13.2448 

Days in month with no 
precipitation 

Days 27.1997 2.7631 

 

http://www.bea.gov
http://www.ncdc.noaa.gov/)
http://www.bls.gov/data/).
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Table 2.2.  Summary of Differences in Logs, N = 18468 

Variable Mean Standard Deviation 

dlnw -0.0141 0.2658 
dlnMP (water) 0.0066 0.0980 
dlnMP (sewer) 0.0012 0.0691 
dlnAP (water) 0.0041 0.0776 
dlnAP (sewer) 0.0084 0.0936 
dlnPI 0.0010 0.0276 
dlnTmin -0.0057 0.0916 
dlnTmax -0.0086 0.0775 
dlndry -0.0020 0.1862 

 

 

Figures 2.1 and 2.2 illustrate the variation in water price over the sample.  The wide 

variation in price measures provides an advantage in estimation over more 

geographically limited studies, in that the estimated expression for price elasticity may 

be confidently generalized over a wider range of price levels.  The degree of variation in 

the other regressors supports the maintained hypothesis that individual (cross-sectional) 

effects are random across the sample. 

Results 

Log-linear Model 

The centerpiece of this econometric investigation is estimation of a 

multidimensional elasticity function.  However, simple log-linear regressions are 

performed ahead of the more flexible central regression to guide the selection of 

independent variables.  Variables included in the preliminary regressions are average 
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Figure 2.1.  Distribution of Observed Marginal Water Prices  

 

Figure 2.2.  Distribution of Observed Average Water Prices 

 

water price, marginal water price, average sewer price, marginal sewer price, monthly 

income, mean minimum daily temperature, mean maximum daily temperature, and 
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number of days in the month with less than 0.25 inches of precipitation.  The regressed 

values in each case are the annual differences in logarithms of variable levels. 

It has been argued that the nonlinear price schedule creates a secondary income 

effect that ought to be measured (Nordin 1976).  The “Nordin difference” (which is not 

in any way related to the quasidifference introduced here) has not been included, 

primarily because the assumptive base for identifying such a variable in aggregate data is 

too tenuous.  This choice is also justified ex post by the insignificance of the primary 

income variable, as will be shown below. 

Final selection of price variable is determined by comparing a marginal price model 

with an average price model using the Akaike Information Criterion or the Schwarz 

Criterion, both of which are in this case equivalent to finding the specification with the 

lowest sum of squared errors.  Additionally, since parsimony is improved if water and 

sewer prices can be combined or if minimum and maximum temperatures can be 

averaged prior to estimation, both of these hypotheses are tested. 

Results of the log-linear estimations are shown in Table 2.3, with marginal price 

variables included in Model 1 and average price variables in Model 2.  The lower 

information criteria corresponding to Model 1 indicate the better fit.  On this 

comparative basis, marginal price is adopted as the price index of the central analysis.  

The marginal sewer price index, however, is insignificant.  For many systems in the 

sample, marginal price for sewer service is zero in nonwinter months due to many 

utilities' policies of setting sewer cost ceilings and "winter averages".  The insignificant 

coefficient may indicate that consumers are not aware of these practices.  Even 
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considering months where marginal sewer price is strictly positive, the t-statistic for the 

corresponding coefficient is only –0.35.  Consumption is apparently unresponsive to 

 

Table 2.3.  Log-linear Regression, N = 18468  

 Dependent variable is dlnW (t-scores) 

Variable Model 1 Model 2 

dlnMP (water) -0.1423 (-7.20)a  
dlnMP (sewer) 0.0077 (0.28)  
dlnAP (water)  -0.1124 (-4.47)a 
dlnAP (sewer)  -0.0462 (-2.21) 
dlnPI -0.0662 (-0.96) -0.0738 (-1.07) 
dlnTmin -0.3238 (-12.14)a -0.3220 (-12.06)a 
dlnTmax 0.9062 (26.78)a 0.9051 (26.73)a 
dlndry 0.0947 (8.49)a 0.0952 (8.53)a 
Constant -0.0069 (-3.63)a -0.0070 (-3.66)a 
   
Akaike criterion 2267.3 2289.3 
Schwarz criterion 2322.1 2344.0 
F(6, 18461) 208.84 204.94 

a   p < 0.01. 

 
 

 
marginal sewer pricing.  This variable is not included in the central regression. 

An alternative, nested test of water price specification is proposed by Shin (1985).  

Here both average price and marginal price variables are included in the same 

regression.  Parameter estimates for this regression are not reported.  Interpretation of the 

marginal price and average price coefficients as (1–k)and k, respectively, allows a 

measure of the relative influence of marginal and average price on the consumption 
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decision (Shin 1985).  For water, we obtain k = –0.76.  On the basis of k < 0.5 for water 

service, marginal price is indicated as more influential than average price.  The 

corresponding value of k = 2.89 for sewer service supports the average price 

specification for sewerage.  Bearing in mind that 0 < k < 1 in a well-specified Shin test, 

these results are curious.  

The hypothesis that the effect of an increase in daily low temperature is equivalent 

to the effect of an increase in daily high temperature is rejected.  Both variables are 

included in the more flexible regression. 

The existence of an income effect is rejected.  An unfortunate characteristic of the 

income data is that the variation is cross-sectional except for the CPI normalization, and 

is therefore unnoticed by this procedure.  It is plausible that income is insignificant 

because of slow aggregate response to income change, but it is more likely in this case 

that the income measure is simply too broadly aggregated to accurately identify the 

spending power of a single community.  Perhaps a refined monthly income measure 

would produce better results.  Income is not included in the following regression.   

Semi-Flexible Model 

The final regressors are differences in logs of marginal water price, average low 

temperature, average high temperature, and number of days without precipitation, as 

well as the differences in products of each pair of independent variables' logarithms.  

The results of this central regression are summarized in Table 2.4.  Due to the inclusion 

of the interactive product regressors, the intuitive value of Table 2.4 is limited, although 
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the strong significance of these interactive terms justifies the use of the more flexible 

functional form.  In particular, the significance of the price interactions allows the 

rejection of the hypothesis of constant price elasticity across the sample.  The Breusch-

Pagan statistic of 1.51 for this regression (p = 0.219) fails to reject the null hypothesis of 

homoskedasticity. 

 

Table 2.4.  Log-nonlinear Regression, N = 18468 

 Dependent variable is dlnW (t-scores) 

Variable Coefficient 

dlnMP 1.2901 (6.15) 
dlnTmin -1.8966 (-3.25) 
dlnTmax -15.8700 (-19.30) 
dlndry -7.7871 (-17.96) 
dlnMP•dlnTmin 0.1904 (3.57) 
dlnMP•dlnTmax -0.4392 (-6.13) 
dlnMP•dlndry -0.0809 (-3.05) 
dlnTmin•dlnTmax 1.6405 (23.47) 
dlnTmin•dlndry -1.6420 (-10.42) 
dlnTmax•dlndry 3.3590 (14.48) 
Constant -0.0053 (-2.85) 
  
Adjusted R2 0.1172 
F(10, 18457) 246.21 

p < 0.01 for all estimated coefficients. 
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Applying the coefficients in Table 2.4 to Equation [2.16] results in the elasticity 

equation, 

 � = 1.290 + 0.190 log tmin – 0.439 log tmax – 0.081 log d                    [2.17] 

Each of the individual coefficients is significant at the 99% level.  Demand for water 

service is more elastic when daily high temperature is higher or when more days of the 

month pass without precipitation.  Demand is less elastic when daily low temperatures 

are higher.  The magnitude of the coefficient on high temperature is higher than that on 

low temperature, implying that hotter months see an increase in price elasticity (more 

elastic demand). 

Price elasticity evaluated as a linear combination of mean variable levels and 

regression coefficients is found to have a mean of –0.127.  The standard deviation of , 

estimated using the regression standard errors and variance-covariance matrix is 0.0188, 

implying that demand is inelastic but significantly downsloping at the mean.  The 

estimate is consistent with other recent research on short term elasticity (Martínez-

Espiñeira 2004; Renwick and Green 2000).  It is somewhat lower in absolute value than 

most cross-sectional static models (Dalhuisen et al. 2003), consistent with the hypothesis 

of adjustment lags greater than one year. 

Summary 

Fully informed and rational consumers will use water until the monetized marginal 

benefit of the next unit is equal to its marginal price.  Yet, price and quantity information 

is dimly available to water customers, and these consumers cannot improve their 
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information conditions without experiencing costs.  Imperfectly informed consumption 

behavior is therefore the norm.  Less informed consumers may be expected to optimize 

with respect to a lower information price index, for example average price.  Although 

Shin (1985) provides a test of relative explanatory power between two proposed price 

indices, the test results are only meaningful if both indices consistently represent the 

theoretical quantities they purport to represent.  Prices based on observation or on the 

usage of a representative consumer are endogenous and not necessarily unbiased. 

Prices constructed as instrumental variables can be a poor fit because strong 

instruments are generally lacking.  Continuous, linear pricing is characteristic of IV 

prices but not of the actual price-setting process.  Maximum likelihood prices are not 

guaranteed to be fully defined throughout the range and do not aggregate well to the 

community level.  If a complete rate history is known, an alternative strategy is to 

calculate the difference in a defined price index for each consumption level before and 

after a rate change.  In the case of aggregate data, these hypothetical differences should 

be weighted by the probability density of each consumption level.  We assume that 

consumption is distributed standard lognormally and weight the prices corresponding to 

each block by the probability density of consumption in the block.  A tradeoff of 

operating in differences is that cross-sectional variation in variable levels disappears, 

limiting application of the results to annual adjustments.  This idiosyncrasy can be put to 

good use, however, given the thinner water demand literature on adjustment over time. 

A comparison of information criteria for log-linear regressions on quasidifferenced 

marginal and average prices indicates that marginal price change is more influential than 
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average price change.  Sewer price changes are not shown to be significant, nor are 

income changes.  An equation of marginal price elasticity of demand is derived from a 

more flexible regression of annual change in monthly water use on changes in marginal 

price, mean low temperature, mean high temperature, and number of days without 

significant precipitation. 

The data are an original set of system-level price, quantity, income, and climate 

observations for 385 systems in the state of Texas, USA.  The dataset is remarkable due 

to its volume and the variety of systems polled, water providers for millions of Texans.  

Own-price elasticity is shown to vary with climatic conditions.  The derived mean 

elasticity of –0.127 in the first year is plausible in relation to previous research.  It is less 

elastic than most structural estimates of long-run elasticity, implying an adjustment 

period longer than one year. 

As water demand adjustment behavior remains incompletely understood, further 

research that demonstrates both shorter and longer demand patterns in an integrated way 

would contribute significantly to modeling and policy-setting efforts.  A fundamentally 

elusive element is the decision mechanism of the retail water consumer.  Since neither 

marginal price nor average price appears to capture this mechanism fully, developing 

and testing of new price indices is to be anticipated.  In further research on aggregate 

demand under block pricing, more consistent and representative price indices could be 

developed by incorporating probabilistic methods from endogenous sorting models 

previously applied only to micro-level data. 
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CHAPTER III 

URBAN WATER DEMAND WITH PERIODIC ERROR CORRECTION 

 

Local media have applied the phrase "water crisis" so often in describing the 

condition of some city that it has become cliché (Russ 2009; Cregan 2009; Evans 2009; 

Bond 2009).  Despite the sensationalizing rhetoric, excess demand for publicly supplied 

urban water persists in many places and is arising in others.  The resulting management 

issues underscore the troubled and oft-politicized nature of water planning.  Urban water 

supply is naturally monopolistic due to its high capital requirements.  Therefore, an 

assumption of the invisible hand theorem is unmet, and socially efficient allocation is 

not automatic.  Most decision making is conducted by public water authorities which do 

not have a strong track record of efficient adaptation (Grafton and Ward 2008; Lach, 

Ingram, and Rayner 2005; Hewitt 2000).  Yet, experimentation, along with progress, is 

slowly occurring.  Among the policy mechanisms being tried are alternative rate 

structures and higher rates.  Perhaps rates that include water's opportunity costs will 

eventually be explored, as recommended by economists.  If these approaches are to be 

successful, planners and regulators require consumer demand information to 

simultaneously establish rates and anticipate the level of water deliveries. 

Traditionally, water utility systems have focused narrowly on adjusting water 

supply to meet level-price water demand (Dziegielewski 1999).  Still, efficient supply 

enhancement requires knowledge of future aggregate demand, and carelessness over 
                                                
 This chapter reprinted with permission from, "Urban Water Demand with Periodic Error Correction" by 
Bell, D. R., and R. C. Griffin, 2011, Land Economics.  Copyright 2011 by University of Wisconsin Press. 
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either revenue-seeking or efficiency-seeking changes to water and wastewater prices 

may lead to error in demand projections.  Even under perfect information, the costs of 

supply enhancement continue to rise as the most accessible sources of water are tapped 

to capacity or depleted, necessitating rate changes that subsequently affect quantity 

demanded.  These increasing costs further advance the value of traditionally 

underemployed demand management strategies, including efficient pricing. 

Pricing, or rate-setting, is complicated by the balancing of multiple objectives.  

Unlike the textbook monopolist, the typical water utility system does not pursue the 

objective of profit maximization.  In addition to economic efficiency, water utilities seek 

goals such as revenue sufficiency and fairness (Griffin 2006, p. 251), and they rank these 

more highly than efficiency.  While public authorities commonly infer that their rate-

setting efforts pursue multiple goals simultaneously, the Tinbergen principle warns that 

each goal requires a separate instrument (Young and McColl 2005).  Moreover, 

achieving multiple goals involves the solution of a complex set of system objectives, 

which requires detailed knowledge of demand behavior.  For example, when efficiency 

and revenue sufficiency are conjunctively sought, an efficient marginal rate may be 

derived from supply information alone, but the calculation of other rate components 

requires an estimate of future billed volumes (Griffin 2001; Edwards 2006).  For demand 

management policies to improve, analytical techniques for estimating demand must 

evolve to support them. 

Econometric estimates of residential demand for water abound (Dalhuisen et al. 

2003), but existing demand estimates lack the detail to support many rate design 
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applications.  A time-path of adjustment to consumer equilibrium is seldom explicitly 

estimated in prior econometric work; seasonal patterns of demand tend to be 

underrepresented; and the important commercial and industrial sectors of demand are 

often set aside or assumed to be proportionally linked to residential use.  Water 

management policies that fail to consider the time-path of adjustment risk outpacing 

consumers' ability to develop new habits or optimize their stocks of water-associated 

capital, such as landscaping, plumbing fixtures, and appliances.  Policies without 

seasonal considerations risk incurring excess demand during cyclical demand peaks.  

Policies that fail to differentiate between household demand and commercial demand 

risk decreased efficiency relative to sector-tailored policies.  The empirical results of this 

research indicate that slow adjustment, seasonality, and sectoral sensitivity are all 

characteristic of the sample.  Simpler models that are unable to accommodate these 

characteristics are therefore misspecified to some extent. 

The present research incorporates a demand function into a dynamic consumption 

model using the error correction (EC) technique, thereby merging both short- and long-

run demand drivers and possibly improving forecast accuracy (Engle, Granger, and 

Hallman 1989).  Seasonal demand behavior is modeled by identifying and accounting 

for periodic integration in the associated series (Boswijk and Franses 1995a).  

Commercial and industrial contributions to aggregate demand are modeled by including 

sectoral intensity factors in the estimating equation.  Unlike dynamic water demand 

studies considering only a single locale, the present research includes original data from 

a panel of 167 geographically dispersed cities within the United States, observed 
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monthly from January 1995 through December 2005.  The breadth of the sample allows 

a model to be fitted over a wider range of conditions than previously possible.  The 

multitude of community cross-sections allow a uniquely statistical look at the problem of 

nonstationarity in quantity demanded. 

A periodic error correction model is developed in the next section.  The model is 

applied to the national panel in the section following.  The last section offers concluding 

remarks. 

Developing the Theoretical Model 

Structural and Dynamic Demand 

The object of most econometric water demand research is a demand function for 

water, which is a mapping of consumption quantities over the range of possible prices 

and other variables.  For convenience, the relationship between price and quantity 

demanded is often characterized by a price elasticity scalar.  Such demand functions rely 

on mathematical structure implied by microeconomic theory, so they are called 

structural models as opposed to statistical models which are theoretically unrestricted.  

The early structural models were well suited to examining the belief held by 

noneconomists that rates do not affect use (Howe and Linaweaver 1967).  The persistent 

testing and rejection of this hypothesis by economists is a contribution of our literature 

(Espey, Espey, and Shaw 1997), albeit only haltingly applied to policy.  The same 

models are pivotal to the determination of consumer valuation that is necessary for 
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thorough policy and project appraisals, because it is the demand function that identifies 

the marginal benefit of price and quantity changes. 

It is unlikely, though, that water consumers instantaneously adapt to demand 

perturbations such as price and weather shocks (Griffin and Mjelde 2000, Carver and 

Boland 1980).  During periods of adjustment to new conditions, consumers are 

constrained by their learned behaviors (habits) and by their inventories of water-

associated durable goods, e.g. appliances and landscaping.  While adjusting, customers 

can experience nonzero excess demand in the sense that the quantities they demand 

would not be optimal in a longer view during which habits and durable possessions can 

be refined.  A demand correspondence is not a demand function if multiple consumption 

quantities can be mapped to the same argument values, so the structure supporting the 

typical static demand model can lead to conflicting results in a dynamic context.  

Conversely, the dynamic demand correspondence offers little insight into consumer 

welfare or willingness to pay. 

The inclusion or omission of an adjustment process separates the time-independent 

water demand models from the dynamic models.  The former class contributes insights 

primarily at longer time horizons, whereas the latter may more accurately model short-

run behavior.  A structural model can utilize slow-moving variables that either do not 

vary or are not measured monthly, just as a dynamic model can incorporate seasonal 

changes that are insignificant or average out in the long run (Engle, Granger, and 

Hallman 1989).  In contrast to the literally hundreds of structural water demand studies 

stand only a handful of dynamic demand studies (Bell and Griffin 2008a; Fullerton and 
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Elias 2004; Nauges and Thomas 2003), although some essentially structural studies have 

employed the flow-adjustment hypothesis to deduce an adjustment rate (Lyman 1992; 

Carver and Boland 1980). 

Regardless of the comparative advantages of the two approaches, the possibility that 

forecasts from a structural model may contradict those from a dynamic model creates a 

tension between them (Engle, Granger, and Hallman 1989).  A dynamic model may be 

the preferred tool for balancing the objectives of controlling water use and covering 

production costs year to year, but only a structural model can be interpreted as a demand 

function.  Fortunately, advancements in statistical treatment of time series now allow the 

simultaneous enjoyment of both sets of advantages.  The integrated model proposed 

below will be used in the next section to estimate the demand for water in United States 

cities and to predict twelve monthly consumption quantities beyond the estimation 

sample.  The model will also facilitate testing for monthly seasonality and instantaneous 

adjustment. 

Error Correction and Periodic Cointegration 

The empirical model developed here is an extension of a model in first differences 

previously used to project annual changes in quantity demanded (Bell and Griffin 

2008a).  A shortcoming of the earlier application is its omission of a force summoning 

consumer equilibrium.  Even though excess demand is not expected to be identically 

zero in any particular time period, its tendency toward zero is as omnipresent as 

individual self-interest, in the sense that individuals are not content with states of 
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nonzero excess demand.  Inclusion of a lagged expression of excess demand turns the 

difference model into an EC model (Engel, Granger, and Hallman 1989). 

Excess demand reflects an imbalance that can be improved upon, an error to be 

corrected.  A condition of excess demand implies that a higher level of aggregate utility 

could have been achieved at the same expenditure level with a different stock of capital 

or information; thus excess demand is not stable.  Although the mechanisms and 

information requirements for rational consumers to resolve their ideal consumption 

bundles are not explicitly identifiable, the assumption that a locally stable structural 

demand exists implies that all solution paths starting from small levels of excess demand 

converge to points on the structural demand curve (McKenzie 2002, p. 56).  Because 

utility systems set rates in advance of realized demand, convergence implies adjustments 

in quantity demanded.  In a linear EC model, the speed of convergence is represented by 

the coefficient of the EC variable.  If the EC coefficient is positive, the system is 

explosive.  If the coefficient is equal to -1, full correction takes place in one time period.  

If the coefficient is in the interval (0, -1), correction takes longer than a single period. 

It is necessary for the consistency of the model that the EC term is stationary – that 

its conditional means are distributed about its sample mean – since the dependent 

variable is presumed to be stationary.  The lagged EC term, which is the lagged residual 

of a structural demand function, may not in fact be stationary if the dependent variable 

of the structural model is not stationary.  If this is the case, the residual will be consistent 

only if the structural model is cointegrated (Juselius 2006, p. 86).  If the left- and right-

hand sides of a regression model are cointegrated, their respective lacks of stationarity 
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have cancelled each other, so they are "super-consistent" with respect to each other, and 

their residual will qualify as a valid EC regressor.  Stationarity is relative, however – "a 

convenient statistical approximation" (Juselius 2006, p. 20) – so it is important not to 

assign too much weight to the various tests of cointegration, the unit root tests.  Super-

consistency is not necessary for consistency of EC parameter estimates, and mere 

consistency can be tested ex post. 

Water consumption patterns may exhibit seasonality, an attribute of many 

macroeconomic series for which new modeling techniques have been proposed within 

the cointegration literature.  The technique of seasonal cointegration dictates the 

inclusion of multiple EC terms corresponding to multiple seasonal lags (Kunst 1993).  

Seasonal cointegration is mathematically appealing when the frequency of the data is 

quarterly but much less so when the frequency is monthly.  As the mathematical and 

computational requirements increase, economic interpretation of the results becomes 

more elusive.  An alternative is periodic cointegration (Boswijk and Franses 1995a).  

Periodically cointegrated series are bound by a vector of coefficients that vary from 

season to season.  In the case of monthly data, periodic cointegration is represented by a 

vector of 12 separate variable combinations, one for each calendar month.  It has been 

established that a pair of series cannot compose a valid cointegrating relation in one 

season without being cointegrated in every season (Castro and Osborn 2008).  In 

addition to an annual cycle, water demand may exhibit cycles longer than one year, but 

we will leave the possibility to further research.  Some communities may experience 
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seasonality that is only approximately annual in frequency, and this characteristic would 

be better modeled by seasonal integration than by periodic integration. 

Use of the EC model has a single, recent precedent in the water demand literature.  

Martinez-Espineira (2007) illustrates well the difficulties of seasonal cointegration.  

Nine years of monthly data on a single community are further collapsed into quarterly 

observations to circumvent the daunting procedure of simultaneously testing stationarity 

in 12 monthly frequencies.  Results of the battery of diagnostic tests are generally 

consistent but not definitive due to both the small sample size and the low power of 

existing unit root tests.  Martinez-Espineira's paper is nevertheless a milestone in terms 

of introducing EC to water demand modeling that is extended here in data scope, 

variable sophistication, and use of the periodic EC alternative. 

The object of the present research is community demand for publicly supplied 

water.  The water demanded in the sample is delivered by a sole or majority supplier.  

Community demand is not synonymous with residential demand inasmuch as businesses 

as well as residents demand water within the community.  Even though it is recognized 

that water consumption is not entirely residential, an expedient practice when using 

aggregate data is to simplify analysis by representing the dependent variable as the ratio 

of quantity demanded to population (for a recent example, Ruijs, Zimmermann, and van 

den Berg 2008).  Such a practice raises questions about the role of commercial and 

industrial activity in aggregate demand.  The assumption that the extent of commercial 

and industrial water demands are proportional to population is stronger and less 



 42

appealing than the assumption that the extent of residential demand is proportional to 

population, especially with respect to a diverse cross-section of cities.   

Nevertheless, a demand-per-capita dependent variable facilitates the planning 

convention of multiplying per capita demand by projected population.  More generally, 

it separates intensive from extensive community demand growth, allowing a population-

free intensive demand comparable to the results of a household-level study.  Potential 

and practiced applications of community water demand are many and varied, so a 

flexible representation has the advantage of interoperability.  In this spirit, the 

community demand model estimated in this research includes sectoral intensity factors 

as independent variables.  By considering the extent of commercial and industrial 

activity (in dollars) per capita, the model incorporates more sectoral information without 

sacrificing the advantages of an intensive dependent variable. 

Price Specification 

Because of the complexity of typical water rates and the absence of a true market 

for processed water, the rates of exchange for water cannot be called market prices.  For 

a given utility system and client there is, however, a cost of the marginal unit of water, 

dw, that influences residual income, m.  If that marginal cost is designated p then it is 

equal to the ratio of the change in income, dm, to dw: 

  
p  dm

dw . [3.1] 
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If p were known, it would enter an individual demand function,  , with income and 

other prices, P: 

 ( , , )w p m P  [3.2] 

under the usual assumption of utility-maximizing water consumers operating in an 

environment of costless transactions.  This is the perfect information rationale for using 

marginal price as an argument of an empirical demand function. 

On the other hand, marginal price is generally unknown to the consumer (Foster and 

Beattie 1981a).  By one estimate, fewer than 10% of utility customers are aware of the 

marginal price of service they face (Carter and Milon 2005).  Most water customers 

receive total consumption and total expenditure information in their periodic bill, but 

marginal price information is difficult (costly) for consumers to access.  Consumers have 

been found to respond less to marginal prices that are not included in the bill (Gaudin 

2006).  Modern water rate schedules can be complex, and they may only be available 

online or not at all, as opposed to being transparently identified within bills.  It is 

plausible, then, that at least some consumers may attempt to decide consumption based 

on average price, which is essentially marginal price measured with error due either to 

fixed charges, a variable marginal rate (as with block rates), or both.  Proponents of the 

average price specification are willing to accept a more complex model of consumer 

behavior to gain explanatory power. 

Choosing a price metric is not a casual decision because marginal price and average 

price are not generally simultaneously consistent within the boundaries of ordinary least 
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squares.  For example, if   is a utility-maximizing demand function and the linear 

specification 

 w p m       P  [3.3] 

is a consistent estimator of  , then '( , , )w ap m P  is also utility-maximizing as long 

as 

 w ap m       P  [3.4] 

is consistent.  Even in the case that average price, ap, is computed from a relatively 

simple rate schedule with a fixed charge, k, such that 

  
ap  pw  k

w  [3.5] 

[3.3] and [3.4] cannot coexist, since [3.4] implies 

 

kw p m
w

          
 

P
 [3.6] 

With k and w both variable, either   = 0, which implies the spurious result that  = 0, or 

   0 , which implies that Equation [3.3] is inconsistent (as well as heteroskedastic).  

Admittedly, a maximum-likelihood pair of quadratic conjugate solutions to [3.6] could 

be found; but their error structure would be indeterminate, and estimation would be 

arduous.  Reconciling the two price metrics becomes even more complicated as less 

linear functional forms and more involved pricing policies are considered.  Because of 
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this inconsistency, advocates of marginal price specification do not always accept 

average price as a legitimate alternative specification (Griffin, Martin, and Wade 1981). 

It is tempting to pose the question of price perception as a dichotomy between 

marginal price and average price.  Arguably, only marginal price leads to efficient 

decision-making, yet how can consumers respond to a marginal cost that is unknown?  

The juxtaposition need not be a dichotomy, though.  One alternative is to explicitly 

model efficient decision-making as a balance between how much water to consume and 

how much effort to expend in understanding rates.  Empirically, this approach is likely 

to require additional data pertaining to effort expenditures and approaches to information 

discovery by consumers. 

Another alternative is to take marginal price as the theoretical limit of price 

perception applicable to equilibrium consumption and average price as the month-to-

month price metric of least cost.  An implication of this "dim perception" model of 

marginal price is that price knowledge becomes a learning process.  Adaptation to a new 

marginal rate may take months or years (Bushnell and Mansur 2005).  In the meantime, 

customers may rely on the more accessible average price estimate.  This research takes 

the second alternative, essentially specifying a marginal-price demand function within an 

average-price dynamic consumption equation.  Among other benefits, this tack allows 

the demand function to be interpreted in a standard way by welfare applications without 

making strenuous assumptions about perfect information.  Our choice of price 

specifications is thus made on theoretical and practical grounds, rather than on the 

strictly empirical basis suggested by some (Foster and Beattie 1981b). 
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Aggregation 

Aggregation of the community demand function means treating thousands of 

individual choices as a single decision.  When rates are multi-tiered (block rates), these 

choices include both quantity and price components.  One way to match up quantities 

and prices is to study microdata on individual households and businesses.  Observing 

household budgeting decisions has theoretical appeal, but it is not as informative for 

policy or project evaluation as direct observation of the community aggregate, and it 

magnifies statistical endogeneity (Shin 1985).  The latter weakness is a consequence of 

predominately increasing block rate structures, leading to consumption neighborhoods 

wherein a small positive change in quantity will accompany a large positive change in 

price, spuriously diluting negative price effects. 

An alternative to surveying every household and business within a community is to 

treat the mean of consumption as a point-mass serving as the representative consumer.  

In this research, the representative consumer is actually a distribution of consumption 

levels mapped onto the price schedule.  The procedure originated with Schefter and 

David (1985) and has been employed with some success recently (Diakite, Semenov, 

and Thomas 2009; Bell and Griffin 2008a; Martinez-Espineira 2003).  The introduced 

distributional information smoothes abrupt endogenous price changes while including 

more of the complex price schedule in a scalar price metric and acknowledging 

differential effects of rate changes on people operating in different blocks.  Distributed 

consumption seems considerably more realistic than point-mass consumption, even 

though additional and potentially ad hoc distributional assumptions are usually required. 
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Building the Empirical Model 

The Sample 

The data consist of originally compiled monthly consumption, price, demographic 

and weather observations on 167 United States cities, each with population exceeding 

25,000.  The sample spans nine states (Alaska, California, Florida, Indiana, Kansas, 

Minnesota, Ohio, Texas, and Wisconsin) and the time horizon 1995 through 2005, for 

132 possible monthly observations per city.  Although expansive, the scope of the 

sample is constrained by the availability of historical water deliveries data, which is 

determined by state reporting protocols.  Compared with a balanced panel of 22,044 

observations, the data are 76% complete, with 16,804 observations.  Summary statistics 

are given in Table 3.1.  A detailed account of data collection and data characteristics 

may be found in Bell and Griffin (2008b), but a few highlights follow. 

 

Table 3.1.  Summary Statistics 
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Price observations were gathered through electronic and personal contact with over 

1,000 municipal and state agencies nationwide.  Water prices for 37,159 observation-

months in 319 communities were obtained, with sewer prices for 23,060 observation-

months in 210 communities.  Missing sewer price observations in the sample panel are 

estimated from a univariate regression on water prices.  Price and cost variables in the 

analysis are sums of water and sewer prices and costs.  Residential prices are those 

charged to 0.75-inch connections, and commercial prices correspond to 2-inch 

connections.  As illustrated in Table 3.1, the biggest difference between the two 

schedules tends to be the magnitude of fixed charges. 

Within the price sample, an average of 1200 gallons per month is allowed per 

residential customer and an average of 2700 gallons per business at no marginal charge.  

Approximately 85% of utility systems bill monthly, with the rest billing bimonthly or 

quarterly.  Fixed charges are lowest on average in New England, although the region is 

not as well represented as South, West, and Midwest regions in the price dataset.  

Marginal prices are lowest in the West, perhaps paradoxical for a region associated with 

increased water scarcity, but reconcilable given the conventional focus of rate design on 

cost recovery rather than efficiency.  Decreasing block rate structures are most common 

in the Midwest.  Nominal marginal rates grew over the sample horizon faster than 

inflation, but fixed fees increased more slowly; so the relative proportion of water 

charges attributed to the volume of consumption increased from 1995 to 2005. 

Aggregate delivery volumes (Daily Use) were obtained from state records for 216 

utility systems over 25,833 observation-months.  The existence of historical volume data 
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is rare in the absence of a state-level reporting program, so a bias is incurred against data 

in the New England region, where perhaps water availability is less of a concern and 

data collection efforts appear weaker (based on our contacts with data sources).  No 

observations from New England are included in the regressions due to the missing 

volume data.  Monthly volume supplied per capita averages 6.0 thousand gallons (kGal), 

with Alaska averaging only 4.0 kGal and Texas averaging 7.2 kGal.  Winter average 

supply (December and January) averages 5.0 kGal, whereas summer average supply 

(July and August) averages 7.8 kGal.  Between 0.177 gallons (Alaska) and 0.54 gallons 

(Texas) are supplied per dollar earned, with a mean of 0.43 gallons per dollar.  The 

winter average is 0.354 gallons per dollar earned, and the summer average is 0.549. 

Population data are taken from the U.S. Census, personal income (Income) and 

nonfarm income (Commerce) from the Bureau of Economic Analysis, and inflation 

measures (CPI and PPI) from the Bureau of Labor Statistics.  The climate measures, 

monthly highest and lowest recorded temperatures (Min. Temp. and Max. Temp) and the 

proportion of days when precipitation was recorded (Frac. Precip.) are taken from the 

National Climatic Data Center. 

The Dependent Variable 

The applicability of an EC regressor derived from a distinct structural model 

depends on the stationarity, or integration level, of the regressor itself and not, per se, on 

the cointegration status of its components.  The EC technique applied to stationary series 

will be equally consistent and confer many of the same advantages as if applied to 

nonstationary but cointegrated series.  Similarly, periodic EC applied to aperiodic series 
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will produce consistent if redundant estimates.  Nevertheless, the academic interest in 

cointegration is sufficient to merit a preliminary examination of the dependent variable, 

total daily quantity of water demanded per capita. 

A candidate test of periodic integration is that proposed by Boswijk and Franses 

(1995b).  Periodic integration with a single common root process (a common stochastic 

trend) in periodic data is equivalent to aperiodic integration in the same data stacked as 

an annual vector.  A univariate autoregressive equation on the stacked vector can be 

performed functionally as an autoregression on the pooled monthly data with monthly 

dummies.  A Dickey-Fuller-style test is performed on the vector product of the estimated 

autoregressive parameters.  Just as in the Dickey-Fuller test, the null hypothesis is that 

the estimated parameter (in this case the vector product of estimated parameters) equals 

unity, implying the existence of a unit root, thus that the series is nonstationary.  The 

alternative is theoretically one-sided, although a few observations in practice produce an 

autoregressive parameter greater than unity. 

Boswijk and Franses suggest a likelihood ratio test based on imposing the unity 

restriction, but only the asymptotic distribution of this test is known, and the time series 

samples here are small.  Therefore, a t-statistic on the distance between the nonlinear 

combination of estimated parameters and unity is presented alongside an F-test on the 

imposed restriction, with the understanding that results may be more demonstrative than 

rigorous. 

The quantity demanded panel is unbalanced by missing observations, so the periodic 

unit-root hypothesis is tested separately for each community rather than in a pooled test.  
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The t-test median over all communities is 0.005, with 78% of observations greater than -

1.30.  The F-test median is 1.175, with 68% of observations less than 2.70.  The 

distribution of t-scores is displayed graphically in Figure 3.1.  Although critical values 

for both tests vary with the number of time observations in each panel, -1.30 is higher 

than the 95% critical value for any one-sided t-test, and 2.70 is lower than the 90% 

critical value for F(1,120), which is the most restrictive case among the panels tested.  

Therefore, individual test statistics fail to reject the null in over 70% of cases.  The 

hypothesis that all quantity data are periodically integrated of order one cannot be 

rejected either.  These results sound the alarm that residuals generated from a linear 

regression on quantity demanded will generally not be stationary in the absence of a 

periodic cointegrating vector.  Periodic cointegration is justified on this basis. 

The Structural Model 

The long-run structural model employed at this stage is a Cobb-Douglas model.  

The Cobb-Douglas functional form is still the most popular (Basani, Isham, and Reilly 

2008; Olmstead, Hanemann, and Stavins 2007; Musolesi and Nosvelli 2007).  Other 

common forms include the semilog (Kostas and Chrysostomos 2006) and linear (Ruijs, 

Zimmermann, and van den Berg 2008).  The Stone-Geary form also has its adherents 

(Gaudin et al. 2001, Martinez-Espineira and Nauges 2004). 

Interpretation of the model parameters is different in the context of an EC model 

than it would be as a stand-alone regression.  In addition to the usual explanations for 

nonzero residuals, such as measurement error and random innovation, disequilibrium 
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Figure 3.1.  Testing for a Periodic Unit Root in Quantity Delivered 

 

due to slow adjustment must also be included.  In deference to the periodic integration 

results of the previous subsection, one structural model per calendar month will be 

estimated, not as a predictive model but to contribute long-run perspective to the 

dynamic model. 

Covariates include weather and climate measures, residential and commercial 

marginal price indices, sectoral intensity ratios, and income.  The weather measures are 

average minimum temperature, average maximum temperature, and the proportion of 

days in the month with less than 0.10 inches precipitation.  The climate measures consist 

of the 30-year averages of each weather measure, by month (Av. Min. Temp., Av. Max. 

Temp., and Av. Dry Frac.).  Personal income is taken directly from the Bureau of 



 53

Economic Analysis.  Income not only reflects the contemporaneous budget constraint, it 

proxies the level of capital expenditure, including water-using durables.  Unfortunately, 

the geographic boundaries of the income aggregates do not consistently correspond to 

the areas of municipal water service coverage.  Also, mean personal income may be an 

insufficient statistic when the distribution of income within communities matters.  

Finally, personal income data is annual rather than monthly. 

Marginal prices (Res. Price and Comm. Price) are adjusted for inflation and 

weighted across residential and commercial price schedules according to an assumed 

distribution (Bell and Griffin 2008a).  Household consumption and business 

consumption within a given community are each assumed to be distributed lognormally 

over quantities demanded.  Total, mean, and median consumption are sufficient statistics 

to describe a lognormal distribution.  Medians of consumption for each observation are 

calculated so that the ratio of mean to median is identical to the ratio observed in the 

distribution of total consumption across observations (which is 2.48).  The unique 

distributions so defined are mapped onto each residential and commercial rate schedule 

to produce a weighted marginal price index.  The same weighting is applied to average 

prices in the formulation of the short-run average price indices, although these are 

summed discretely every 500 gallons from 500 to 100,000, whereas the marginal price 

indices are integrated continuously.  None of the sample communities experiences a 

price that is strictly zero. 

In order to represent community differences in commercial activity, commercial and 

industrial intensity ratios (Comm. Intensity and Ind. Intensity) are included as covariates 
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by dividing the monetized nonfarm and industrial outputs, respectively, by population.  

Industry is the subsector of commerce primarily concerned with physically 

transformative processes, which can in many cases demand high levels of input water.  

Its inclusion is problematic because its distinction from other forms of commerce is 

arbitrary, water uses vary widely within the industrial sector, and an unknown portion of 

the industrial sector obtains water from wholesalers or is self-supplied.  The error 

associated with this measure should therefore be considered underestimated by the 

regression.  Nevertheless, as one of the more significant factors in the regression (Table 

3.2), its inclusion is cautiously justified.  An industrial price is not included because the 

combination of measurement error and collinearity with the other price measures would 

eclipse any reliable explanatory power. 

Results of the structural regressions for each calendar month are presented in Table 

3.2.  The residuals of this regression, lagged one year, will constitute the EC term of the 

dynamic regression in differences.  A hypothesis of this research is that seasonality at the  

monthly frequency is a consideration in water demand.  If seasonality is evident, then the 

monthly coefficients should be significantly different from the coefficients of a pooled 

regression of all months.  To settle this question, a Chow test is performed comparing 

each monthly regression to the pooled regression of the other eleven months.  The 

appropriate statistic is F(12, 14762), but for simplicity, results were compared to the 1% 

critical value of F(12, ∞), which is 2.185.  The hypothesis that all monthly parameters 

are indistinguishable from all pooled parameters is rejected for every month except April 

(1.920) and October (0.820), which is expected since a pooled average, like a broken  
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clock, should still be right twice per cycle.  These results indicate the unlikelihood of a 

constant demand relationship, and they support the probability of 12-phase (monthly) 

seasonality, but they do not preclude the possibility of other intra-annual (such as 4-

phase) or extra-annual (such as El Niño) cyclic frequencies. 

A cursory examination of Table 3.2 reveals that residential price and industrial 

intensity are the most consistently significant covariates.  The price signal is generally  

stronger in the warmer summer months.  Residential demand seems to be more sensitive 

to seasonality than commercial demand.  Although the residential and commercial mean 

price elasticities of -0.147 and -0.124 are low (in absolute value), their combined mean 

of -0.272 is consistent with previous research (Dalhuisen et al. 2003).  Evidence 

supporting the hypothesis that water-consuming sectors should be treated separately can 

be drawn from the sectoral intensity variables and by comparing the effects of the two 

price indices.  Although industrial intensity appears to figure significantly in all months, 

commercial intensity is only significantly positive in July and August.  The residential 

and commercial price variables (whose pairwise correlation is 0.831) exhibit effects that 

appear to be generally similar and that are in fact statistically indistinguishable in every 

period.  The null hypothesis that residential and commercial consumption can be 

adequately described in a single-sector model cannot be rejected, although the evidence 

supports identification of a separate industrial sector. 

Personal income enters negatively, which is an unexpected result.  The negative 

income effect could be essentially spurious, resulting from the disappointingly high level 

of income aggregation, or it could reveal a higher stock of political capital in more 
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affluent communities.  It is possible that such communities could exert a monopsonistic 

influence on price and quantity supplied; however, the lack of corroborating evidence 

from prior literature casts doubt on this explanation.  Average maximum temperature 

and average minimum temperature coefficients frequently carry opposite signs, 

indicating that temperature spread is an important determinant of water demand. 

 

 

Figure 3.2.  Testing for a Periodically Integrated Residual 

 

The distribution of t-statistics testing the null hypothesis of periodic integration in 

the residuals is illustrated by Figure 3.2.  The median t-score is -26.53, with 85% of test 

statistics lying outside the 95% (one-sided) probability interval of the null, allowing a 

handy rejection of the hypothesis that the residuals are systematically periodically 



 58

integrated.  The median F-test statistic is 468.0; 83.4% of statistics lie outside the 90% 

interval.  With some caution, it may be said that the left- and right-hand sides of each 

structural relation are periodically cointegrated.  Although the regressions summarized in 

Table 3.2 are consistent periodic cointegration vectors, they should not be taken as 

indicative of observed water demand behavior because they omit important short-run 

components to be addressed in the dynamic model. 

The Dynamic Model 

The short-run model is a logarithmic model in annual first differences, augmented 

with pairwise products of covariates.  The dependent variable, ln w , is the annual log 

difference in daily consumption per capita: 

2 2 2 2
ln ln ln (ln ln ) (ln ln )

2

I I I I
ij

p i i pi i i j
i i i j

w x x x x EC


    
   

            p p

  [3.7] 

Prices, p, are annotated separately from the other covariates, x, for clarity only.  

Except for the error correction term, EC, the model is taken from Bell and Griffin 

(2008a).  In contrast to the earlier application, both residential and commercial prices are 

included in the present model.  A product of the two prices is not included because its 

inclusion would obscure the price elasticity calculations.  Also, the price metric here is 

average quasidifference price rather than marginal quasidifference price.  The 

quasidifference price is the difference between two price schedules, weighted by the 

distribution of lagged consumption.  By weighting contemporaneous and lagged price 

schedules identically, the spurious endogeneity of a quantity-dependent price index is 
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avoided.  Only residential and commercial prices, weather realizations, and the EC term 

are included in this short-run regression since climate, income, and sectoral intensity are 

assumed to change too slowly to drive an annual model. 

 

Table 3.3.  Results of Logarithmic Dynamic Regression 

 

 

Estimation results are presented in Table 3.3.  The last year of data is withheld from 

the estimation to test prediction accuracy.  The EC term is highly significant, the most 

significant coefficient in fact, indicating that the pull to equilibrium is a motive force 

affecting quantity demanded at the annual level.  Not only is the coefficient (-0.187) 

different from zero, it is different from -1, implying a multi-year adjustment path.  It is 

noteworthy that the EC coefficient could reflect behavior other than consumption, such 

as mitigation of system losses by utilities. 
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Price covariates are significant only when paired with weather covariates (such as 

Res. Price*Min. Temp), indicating the effect of the weather on price response.  The 

frequency of precipitation (Dry Frac.) does not appear to be as important in the short run 

as temperature.  Mean high and low temperatures appear to be the motive force behind 

demand in the short run, not only in themselves but also in governing the effect of price. 

Short-run elasticity is composed of two elements for each sector, the immediate 

response to a price shock and the momentum of adjustment to previous shocks.  The 

shock response is computed with respect to the estimated parameters corresponding to 

that sector's price index according to the formula 

   
   p   pi ln xi

i2

I


 [3.8] 

The adjustment elasticity, embedded in the EC component, can be understood as the 

proportion of long-run elasticity distributed to each period.  Adjustment elasticities are 

products of the long-run price coefficients reported in Table 3.2 and the EC coefficient 

reported in Table 3.3. 

Table 3.4 shows estimated short-run price elasticities derived by the dynamic 

model, grouped by month.  The theoretical annual elasticity of demand due to a 

simultaneous price change in both residential and commercial schedules (Annual) is 

decomposed into sectors, with each sectoral elasticity (Res. Total and Comm. Total) 

further separated into contemporaneous (Beta) and lagged (EC) components.  The 
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Table 3.4.  Annual Average Price Elasticity by Month and Sector 
(Values are not Significantly Different from Zero) 

 
 
 

contemporaneous components are slightly positive and generally smaller than the lagged 

components, contributing little or no price effect.  From the EC coefficient reported in 

Table 3.3, each of the annual disequilibrium elasticity estimates is approximately 18.7% 

of the total estimated structural elasticity.  None of the short-run elasticity means is 

statistically negative, owing primarily to variation in the data.  It appears that 

communities take a minimum of one year to notice a price change and only begin to 

react in the second year. 

 

Table 3.5.  Comparison of Model Predictions 
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The dynamic EC model is used to project each 2004 observation one annual step 

forward.  The results reported in Table 3.5 include predicted mean daily consumption 

per capita, mean absolute percent error (MAPE), and mean squared error (MSE) of the 

preferred model (EC), compared to the observed 2005 data mean and two benchmarks.  

The benchmarks include predictions from the monthly structural models and from the 

dynamic model re-estimated without an EC term.  The EC model (as well as the non-EC 

dynamic model) clearly outperforms the structural models on all measures, illustrating 

the importance of temporal consideration in modeling water demand.  The EC model 

only marginally outperforms the non-EC dynamic model.  Inclusion of the EC term is 

arguably recommended on the grounds of avoiding theoretical misspecification rather 

than on predictive grounds. 

Conclusions 

An atypically broad panel of monthly demand data for publicly-supplied water in 

American urban centers is analyzed using a periodic error correction model.  Although 

the model can be applied to household data as well as community data, the independent 

variables used in the analysis mitigate the relative weakness of aggregate data.  A micro-

level approach can be pursued by more conventional means when such data are 

available. 

The EC model allows examination of the time path of demand by integrating shorter 

and longer perspectives in a single estimation model.  The estimated effect of the lagged 

residual implies that demand adjustments are not instantaneous or even as quick as a 

single year.  The model significance and predictive power of the dynamic model in 
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annual differences allows a rejection of the possibility that a purely structural model is 

well specified for time-dependent applications.  Estimation of distinct structural relations 

for each calendar month allows a test of seasonality of demand.  Rejection of the null 

hypothesis that structural parameters are equivalent across months suggests that ignoring 

seasonality can lead to misspecification, even when weather and climatic factors are 

taken into account.  Inclusion of both residential and commercial price indices, as well 

as commercial and industrial intensity ratios, tests the adequacy of the more common 

single-sector model.  Although some evidence suggests that businesses, especially 

industrial businesses, demand water differently than households, the single-sector model 

is not conclusively rejected. 

Some new possibilities are suggested by the results.  Ignoring the distinction 

between the sectors may be unwise.  Social costs arising from temporary misalignment 

of supply and demand may be reduced by adjusting residential rates and commercial 

rates differentially to the same target price.  Many rate setters change the entire rate 

schedule uniformly, either for convenience or out of an interest in intersectoral equity.  

Recognizing that tensions exist inherently among competing objectives is a necessary 

step to striking good balances.  For example, the dictum of efficiency requires that all 

sectors face natural water's opportunity costs, and these should be locally equivalent 

across sectors.  Thus, efficiency is best advanced by equal rates except where marginal 

processing costs differ sectorally. 

Demand factors appear to be seasonal in a way that is not entirely captured by 

climatic conditions.  This finding speaks to the use of seasonal management policies, 
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especially if a risk of acutely exceeding peak capacity is present.  Short-run demand 

response may be only marginally significant in summer months, but it is very close to 

zero in nonsummer months.  Also, annual elasticity appears to be much lower than 

structural elasticity, indicating a very slow adjustment process.  Managers cannot expect 

an immediate readjustment to changing conditions.  Applying these findings may require 

a deeper consideration of the habits and durable possessions of water users, which are 

both seasonal and slow to evolve.  Because of the dim perception consumers have of 

marginal water cost, information must also be counted as a valuable capital good. 

The periodic error correction model produces near-term forecasts with an 

appealingly low level of error (21.6% MAPE), even though it may not be the best model 

for projecting future conditions or for testing hypotheses regarding price elasticity.  The 

model and the exercise of developing the model underscore the inadequacy of the term 

"price elasticity".  Many elasticities have been generated in this research alone, varying 

with time horizon, season, sector, and model.  Meaningful comparison and application of 

these estimates depends on an explicit characterization of which elasticity is to be 

derived. 

Community water consumption series could contain a seasonal stochastic trend, as 

the series in this sample apparently do.  If this is the case, OLS estimates of demand 

cannot be assumed consistent.  Fortunately, the data of the present sample are seasonally 

cointegrated.  Unit root tests are available to assist in the determination of trend 

stationarity, as are seasonal and periodic integration tests to determine cyclical patterns.  

When demand relations tend to equilibrate slowly, an integrated structural/dynamic 
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model such as an error correction model will provide improvements in both forecasting 

and insight over either a static or a dynamic model alone.  Finally, as the accuracy of 

these findings is limited by the quality of the available data, it will be interesting to see if 

similar findings persist as data recording becomes more widespread, more uniform, and 

more precise. 
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CHAPTER IV 

EMPIRICAL DERIVATION OF A WEIGHTED BLOCK RATE INDEX 
 
 

 

Charges for publicly provided nonmarket goods such as water, natural gas, and 

electricity can be more complicated than just a single price per unit consumed.  The use 

of multipart rate schemes by public monopolists may be motivated by revenue 

sufficiency (Boiteux 1971) or equity objectives (Diakite et al. 2008).  A prevalent 

multipart pricing policy examined in this research is the block rate schedule, in which 

different marginal rates are assigned to different blocks of quantities consumed.  

Demand modelers struggle with block rates because price uniqueness is fundamental to 

consumer theory, yet price is not unique in a block rate schedule.  The central problem 

of demand estimation specific to block rates is whether to choose a price among multiple 

candidate rates (Moffitt 1986; Hausman 1985), or to somehow reduce the rate schedule 

to a scalar price index (Agthe et al. 1986). 

A convenient method of assigning a price to a household consumption observation 

is to use the rate effective in the block containing that household’s consumption quantity 

(Chicoine and Ramamurthy 1986).  Consumption, the dependent variable, is stochastic, 

so consumption by the same household could fall in a different block in the next period 

under exactly the same conditions.  This would imply that price is also stochastic, as 

well as dependent on quantity consumed.  Inferences drawn from regression demand 
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models are only valid if price is independent of quantity demanded, so the convenient 

price representation leads to inconsistent demand estimation. 

Perplexingly, price exogeneity under block rate schedules depends on how price is 

defined.  The rate of service is functionally tied to the level of consumption and is 

therefore endogenous with respect to quantity consumed, but the schedule itself is a 

document that is published prior to consumption and is therefore exogenous.  

Unfortunately, many demand models allow price to vary when the schedule remains 

unchanged.  If these models are applied to data from a single utility service area, the 

primary source of observed price variation is consumer behavior.  Even though many 

such models provide econometric techniques to unbias their results as though the 

changes had been exogenous, the problem is that they model a process that is itself 

endogenous. 

Convenient price representation is even more problematic when applied to 

aggregate data (Agthe and Billings 1980).  Quantity demanded may be modeled on a 

per-capita basis, but businesses and institutions also contribute to aggregate demand, so 

average consumption per household may not represent the community’s exposure to the 

rate schedule very well.  Furthermore, a community is not a single household with a 

single budget constraint, so it is unlikely that the whole community will respond to just 

one segment of the rate schedule.  Aggregate demand is more realistically modeled as a 

distribution of behaviors than as a discrete choice.  Since the data modeled in the 

empirical section of this paper is aggregate in nature, issues of aggregation will be focal 

in the discussion of alternative price representations. 
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Evaluation of price representation methods in the literature has been largely 

theoretical so far.  Although price methods have been compared based on the assumption 

that the most explanatory variable choice is preferred (Shin 1985), none has been 

empirically tested against an objective standard.  The present research provides such a 

test by asking what continuous price index would generate values to fit an observed 

inverse demand function.  The procedure exploits a large national dataset of community-

level water demand featuring an atypically high degree of variability in rate magnitudes, 

numbers of blocks, and locations of block boundaries (Bell and Griffin 2011). 

Some of the rate schedules in the sample are composed of only one volumetric rate.  

Since these observations have a unique price, they are used to estimate demand and 

inverse demand functions.  Interpreting multiple-block schedules as linear combinations 

of single-block schedules, a weighting function can be identified from the inverse 

demand function for any schedule of two blocks.  Refinements could theoretically be 

gained by iterating the procedure for schedules of three blocks and more, but error is 

magnified for each estimate based on another estimate.  Schedules of more than two 

blocks are used to validate the method instead. 

The weighted price index derived in this research is qualitatively different from 

other price specifications under block rates because it originates from an empirical 

demand function rather than from theory or convenience.  It is necessarily also a product 

of the auxiliary assumptions used in its derivation (Davis 2004).  An example of a 

restrictive auxiliary assumption common to demand estimation is the constant elasticity 

assumption, implemented through a Cobb-Douglas functional form of demand.  More 
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flexible empirical models have rejected constant elasticity (Bell and Griffin 2008), yet it 

remains popular in practice (Olmstead et al. 2007).  Demand and distribution functions 

in this research are estimated nonparametrically to reduce the number and severity of 

auxiliary assumptions.  Where parametric estimators fit a member of a family of global 

functions to the data, nonparametric estimators fit a series of local functions.  Values 

predicted from a nonparametric regression are consequently closer to observed values 

(error variance is reduced), although computational demands are increased and 

prediction outside the observed range is sacrificed altogether.  The trade-off magnifies 

the role of observational data in hypothesis testing, but restricts the range of hypotheses 

that can be tested. 

The proposed empirical price index assumes only nonnegativity and continuity of 

the weighting function and the existence of a continuous demand function with a 

continuous inverse, whereas other models have implicitly employed discrete or point 

distributions and restrictive functional forms.  The index is invariant to demand shifts on 

a given rate schedule.  This property insures that only exogenous price changes are 

measured.  The primary source of exogenous price change is updating of the rate 

schedule, although de facto inflationary changes are also present in the data.  The model 

is fitted to aggregate data and requires only commonly available data aggregates. 

Notable prior research on demand under block rates is reviewed in the next section, 

with an emphasis on applicability to aggregate data.  A new solution is proposed in the 

third section and estimated in the fourth.  Conclusions are drawn in the final section. 
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Literature Review 

The beginnings of multipart pricing were controversial.  Hotelling (1938) argues 

that public monopolists, even under declining costs, can only maximize social welfare 

by charging a uniform rate of service equal to the long-run marginal cost of that service.  

For Hotelling, financing capital costs through general taxation is socially preferable to 

financing through fixed charges on commodities, and "nothing could be more absurd" 

than to equate the social value of an enterprise with its repayment of overhead costs.  

Coase (1946) directly challenges this view, arguing in essence that a price system is as 

useful in determining which goods to provide as it is in determining the quantities to be 

provided.  Since public monopolies have to answer both questions, the best pricing 

policies for them involve two parts.  The "parts" are conceived as a unit price, equal to 

marginal product cost, and a fixed charge sufficient to balance the overhead costs 

necessary to the enterprise.  Although fixed charges could be positive or negative 

(Griffin 2001), negative fixed charges are unknown in practice. 

Gabor (1955) shows that a schedule of two unit rates corresponding to two blocks of 

consumption can achieve the same revenue control as a single rate with a fixed charge.  

Rate schedules consisting of fixed charges and multiple block rates were already 

prevalent in electricity provision by the time of Gabor’s writing (Houthakker 1951), but 

Taylor (1975) is credited with the original theoretical treatment of demand under block 

rates.  Taylor defines marginal price conveniently, as the rate applicable to a consumer's 

marginal consumption, and addresses primarily the problem of budgeting.  The 

possibility of facing more than one price for the same good means that the consumer's 
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budget line is kinked.  Consequently, an equilibrium quantity demanded may not be 

unique or analytically derivable.  To triangulate across budget segments, Taylor suggests 

using both marginal and average price variables in empirical applications. 

Nordin (1976) rejects Taylor's use of average price, proposing instead a "difference" 

variable corresponding to the net loss (or gain) in income between a purchase under a 

block rate schedule and the same purchase under a constant price policy.  This position 

is based on the inability of an average price specification to produce a unique quantity 

demanded solution to the classical consumer problem.  Average price suffers more than 

marginal price from endogeneity with quantity and is not well defined on the domain of 

possible outcomes, i.e. zero consumption.  Nordin fails to address the possibility that 

some consumers, faced with limited information, might use average price to proxy 

marginal price (Foster and Beattie 1981).  If this were true, fixed charges and rate 

elements encountered before the margin would have a "perception" effect on demand.  

Indeed, empirical studies have not generated estimates of Nordin's difference variable 

consistent with a pure income effect.  The average-price/marginal-price controversy is 

interwoven with the question of price representation in the water and utility literature 

(Bell and Griffin 2011), but it will not be dealt with in detail here. 

  Agthe et al. (1986) reject the exogeneity of their convenient price representation 

for aggregate data and introduce a simultaneous-equations approach with instrumental 

variables (IV).  IV estimators are biased but asymptotically consistent (Deller et al. 

1986), so they are seen by some researchers as preferable to inconsistent yet convenient 

estimators.  Price instruments can include billed charges and quantities, block rates, 
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and/or miscellaneous regressors such as climate and income.  Unfortunately, Agthe et al. 

use only a binary variable to represent a change in rate schedule, so their research is 

rather insensitive to truly exogenous price change.  IV price estimation can be applied to 

either household or aggregate data, but does not bypass the fundamental feedback 

present in the block-rate system.  Applied to aggregate data, some IV procedures assume 

that all households consume on the same block, whereas others weight all block rates 

equally (Deller et al. 1986).   IV prices are linear predictions, so they do not always take 

on plausible values, especially at data extrema (Terza 1986).  They can only perform as 

well as the instruments selected. 

A more sophisticated treatment first identifies a probable rate block using a 

maximum likelihood (ML) estimator then estimates quantity demanded within the block 

boundaries.  This model has been called endogenous sorting (Reiss and White 2005) or 

discrete/continuous choice (Hewitt and Hanemann 1995), but will be referenced here as 

ML (Moffitt 1986).  In addition to ML search routines, probit (Terza 1986) and logit 

(Corral et al. 1998) regressions have been used to model block choice.  The weakness of 

ML is its strong theoretical structure.  If limited-dependent-variable estimators are not 

used, ML is susceptible to intervals of negative probability at block kinks.  A two- or 

three-part error structure is necessary to confine quantity demanded to the chosen block.  

The error components must be distributed normally, but consistency is hard to test 

because the components are not observationally identified (Moffitt 1986).  Nonnormality 

of the data has been cited as a source of error in ML models (Blomquist and Newey 

2002).  Estimating the discrete block choice requires many observations on the same rate 
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schedule, so the method is unsuitable for aggregate data or changing rate schedules 

(Corral et al. 1998).  More intuitively, it is doubtful that real consumers possess the full 

information and hyper-rationality of the ML demand mechanism.  

Schefter and David (1985) propose an average marginal price specification 

conceived as a weighting of block rates by the "proportion of households in each rate 

block."  Schefter and David's model is motivated by the use of aggregate data, where a 

distinction must be made between mean marginal price and marginal price at mean 

consumption.  The two statistics are only equivalent under the assumption of 

symmetrical distribution.  An unbounded symmetrical distribution cannot precisely 

represent consumption, because consumption is bounded by zero.  It may be preferable, 

therefore, to introduce additional information rather than to assume normality.  

Following this logic, distributional information on household consumption has been used 

to estimate a weighted price index (Martinez-Espineira 2003), and to aggregate over 

logit probabilities (Corral 1998).  The "proportion of households" interpretation is 

intrinsically endogenous, though (Diakite et al. 1998).  Diakite et al. (2008) aggregate 

over volume proportions instead of household proportions, but then reestimate their 

price index in an IV model to produce (asymptotically) consistent estimates.  Bell and 

Griffin (2011, 2008a) approximate the distribution of consumption over blocks as 

loglinear.  This assumption imbues the resulting price index with a number of desirable 

qualities, but lacks empirical or theoretical justification. 

Restrictions are employed implicitly in both ML and IV estimations in the form of 

distributional assumptions on quantity demanded and the functional form specification 



 74

of demand.  These assumptions may be severe enough to dictate the results of 

estimation.  Nonparametric smoothing is introduced to demand analysis by Varian 

(1982), as an alternative to reliance on functional form specifications that arise from 

convenience rather than theory.  Varian shows that a finite collection of demand data is 

rationalizable under general conditions (when the data satisfy the Generalized Axiom of 

Revealed Preference), so that a smoothing of individual data points easily fits into 

received demand theory.  "Smoothing" means that nearby data points are connected by a 

series of continuous local functions, instead of being fitted to a global function (such as a 

line). 

Blomquist and Newey (2002) suggest a nonparametric estimation based on local 

power series that is applicable to the block-rate problem.  By imposing continuity rather 

than a functional form, small local nonconvexities are allowed in the ML estimator 

without the regions of negative probability that a kinked line would produce.  The result 

is a discrete choice estimate sharing the statistical properties of the data, rather than 

imposed normality.  Unfortunately, the Blomquist and Newey model requires 

consumption observations on each block segment and cannot adapt to changes in the rate 

schedule.  Residential water demand (Nauges and Blundell 2001) and labor supply (Wu 

2002) have been modeled along the same lines.  Newey and Powell (2003) present a 

nonparametric IV model based on series approximation that estimates over two stages to 

ensure continuity of the reduced inverse function.  In the Generalized Additive Model 

(GAM), the local function is cubic (Hastie and Tibshirani 1990).  Smoothness is 



 75

inversely proportional to the second derivative of the local cubic, so increasing a penalty 

on the second derivative results in a smoother approximation.   

The model introduced in the next section merges the idea of a weighted price index 

with the technique of nonparametric estimation.  Demand data are smoothed in a GAM 

inverse demand function that is forced into a bijection, so that both demand and inverse 

demand are continuous functions.  In the case where rate schedules consist of two 

blocks, the inverse demand estimate is interpreted as a linear combination of the two 

rates.  A cumulative density function is derived from these results, the derivative of 

which becomes the weighting index over quantity blocks. 

Standard ML estimation assumes a normal distribution of consumption over the rate 

schedule.  Bell and Griffin (2011, 2008a) impose a lognormal distribution.  Both of these 

distributions will be tested against the empirical findings.  Few of the price estimators 

reviewed in this section are adaptable to aggregate data or rate schedule variation, but an 

IV estimator using three benchmark volumes as instruments will be compared to the 

derived estimator in both parametric and nonparametric regressions. 

 

Theoretical Model 

The effective marginal price of a single-block rate schedule is not controversial.  

Given full information and nonzero consumption, the uniform rate satisfies standard 

definitions of price.  Principally, all quantities are bought and sold at the uniform rate.  

The full information assumption may be problematic inasmuch as fixed charges obscure 
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the marginal price signal, so fixed charges may be considered in this model as a 

separable covariate.  This convenience may be an oversimplification. 

Call the uniform rate p, and assume the existence of a general aggregate function for 

quantity demanded, q, in p and other covariates, x: 

( , ).q f p x       [4.1] 

Price is not defined yet for rate vectors of dimension greater than one.  The goal of this 

section is to find a price index, ( ),p R that satisfies ( , )q f p x   for any rate vector R, 

regardless of dimension.  The step function R can be represented as a series of rates, P, 

and their left-hand termini B, so that R1 = {p, 0} and RN = {(p1,p2…pN),(0,b1…bN-1)}. 

For two-block schedules, R2 = {(p1,p2),(0,b)}, let 2
1 1 2 2( ) ( ) ( ) .p R b p b p     It is no 

loss of generality to represent an arbitrary scalar as a linear combination of two other 

scalars, but the representation does assume that p is unique for any combination of

1 2( , , ).p p b   Two-block rate vectors are isolated here because the relation between the 

rate elements and the price index can be reduced to a function in the single boundary 

point, b.  First, the existence of ( )p R is assumed and properties are assigned to it that 

justify calling it a price index and facilitate the estimation. 

The first desirable property of a price index is its identity with respect to unique 

price: ( , 0) .p p p  The index should at minimum map a uniform rate schedule to itself, 

since a uniform rate has every characteristic of a traditional price.  Secondly, the 

negative own-price effect on water demand has been verified by numerous empirical 
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studies (Espey et al. 1997), so a water price index should also satisfy the law of demand.   

The demand function in Equation [4.1] obeys the law of demand if 0f p   , so the 

second property stipulated for p is that it mimic the law of demand: 0.f p    Thirdly, 

it is stipulated that 1 2, ... 0Np p p   implies 0.p    Negative rates are not observed in the 

data, so a negative price effect is implausible.  As a more practical concern, the 

nonparametric estimator is ineffectual outside the range of observations. 

Additional properties of an ideal price index follow from the identity, demand, and 

nonnegativity properties: 

(1)  1 2 1    for any b.  If 1 2 1   , let 1 2 .p p p   Then 

 1 2 ,p p p    which violates the identity property. 

(2) 1 2(1 ) ,b bp p p    where b denotes 1( ),b follows directly from (1). 

(3) 0 0,  since {(p1,p2),(0,0)} = {p2}. 

(4) 1,  since lim
b

{(p1,p2),(0,b)} = {p1}. 

(5) 1 2, , 0p p p   implies 0 1.b   If 0,b  then any combination of p1, p2, 

such that 1

2

1b

b

p
p





  would imply 0,p  which would violate nonnegativity.  A 

parallel argument holds for 1 0.b   

It is clear from Property (5) and the representation of 2( )p R  as a linear combination 

that 1 0p p   and 2 0.p p    To facilitate the transition from 2( )p R  to 3( ),p R  the 
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generalization is made that 0.np p    Then, comparing R2 to R2' = {(p1,p2),(0,b+δ)} as 

though a small rate block between b and  b+δ  held the value pδ,

2 2
1 2( ') ( ) ( ).p R p R p p      Therefore, 0.p p      As δ approaches zero, 

(6) 0,b

b





and so, 

(7) b is a cumulative density function on b = [0, ∞) (Properties 3, 4, 6). 

b is estimated in a GAM over the two-block data subset, smoothed only as 

necessary to impose (6).  The dependent variable is defined as 

2

1 2

ˆ
.b

p p
p p





       [4.2] 

p̂ is interpolated from the single-block inverse demand function.  If ( , )f p x is one-

to-one, then 1ˆ ( ; )p f q x will be single-valued.  ˆ ( , )p g q x  is estimated in a GAM 

using the minimum smoothing necessary to insure this condition, leading to a unique 

prediction of ˆ ,p and therefore a unique b for each observation.  In a GAM demand 

model, the sum of squared differences between local functional values and observed 

quantities is minimized subject to a "smoothness" penalty, s, on the second derivative of 

the local function (Hastie and Tibshirani 1990, p. 27): 

   
1

0

2 2

1
( , ) ( )

an

i i i
i a

q f p x s f t dt


       [4.3] 
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where n observations in the neighborhood 0 1[ , ]a a  form the local support.  The existence 

of a functional estimate of either inverse demand or cumulative density depends on 

underlying monotonic trends in the data, which fortunately exist in both cases.  

Numerical differentiation produces the weighting function, ˆ( ) ,bb b    such that 

0

( ) ( ) .p z P z dz


        [4.4] 

Empirical Model and Results 

Step 1: A Demand Function in One Price 

The demand function to be estimated is, 

( , , , )q f p k m c       [4.5] 

where q is quantity demanded in gallons per capita per day, p is uniform price, k is a 

fixed monthly charge, m is annual personal income, and c is a climate variable composed 

of mean high temperature plus mean low temperature, times the proportion of days 

where no precipitation above 0.10 inches was recorded.  The data, consisting of 8117 

community-months, are summarized in Table 4.1.  They are obtained through a 

campaign of internet searches and follow-up contacts with municipal, district, and state 

sources conducted by the author, augmented with national weather and economic values.  

The data were previously employed by Bell and Griffin (2011). 

The dependent variable is defined as the quantity supplied per day divided by the 

population, although it is recognized that this definition discounts the effect of business 
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activity on aggregate demand (Bell and Griffin 2011).  Prices and monthly charges are 

combined for water and sewer service, both of which are based on the same monthly 

metering.  Bell and Griffin (2011) estimate missing sewer rates when water rates are 

known, but these observations have been omitted in the present research.  Prices, 

charges, and income are normalized to 2005 price levels.  It may be seen from Table 4.1 

that all variable means for each block subsample are statistically indistinguishable from 

the data means, although fixed charges are noticeably greater in the one-block subsample 

than in the others. 

 
Table 4.1.  Descriptive Statistics by Numbers of Blocks (Standard Deviations in Italics) 

Variable Units Single 
Block 

Two 
Blocks 

3 -8 Blocks All 

Water Use Gallons 211.13 164.64 173.69 197.76 
  152.91 80.25 91.36 157.59 
Fixed Charges  2005$ 34.82 16.96 18.79 20.72 
  56.14 8.55 8.70 24.96 
Income 2005$ 26,968 24,718 25,517 25,903 
  8152 4851 7393 7283 
Weather Index Degrees F 105.47 103.42 107.66 106.21 
  32.11 31.78 25.67 29.14 
      
Observations  1680 2565 3872 8117 
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Figure 4.1. Quantity Demanded as a Function of Price, Three Different Smoothing 
Parameters 
Vertical Axes: Gallons per Capita per Day. Horizontal Axes: 2005 U.S. dollars. 
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Figure 4.2. Quantity as a Univariate Function: Fixed Monthly Charges, Income, and 
Climate 
Vertical Axes: Gallons per Capita per Day 
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It is important that ( )f p  is one-to-one and "onto", so that 1g f   produces a 

unique value for each observation.  Figure 4.1 illustrates three different univariate 

demand functions estimated from the same data, but smoothed to different degrees.  The 

smoothing parameters corresponding to the functions in the figures are s = 0.01, s = 0.05 

and s = 0.07.  As the smallest value of s such that 0q p   is maintained across the 

sample, s = 0.07 is chosen as the smoothing parameter of the estimated demand and 

inverse demand functions.  The combined F-statistic for the demand function in 4 

regressors over 1680 constant-price observations is 65.65, which indicates a p-score near 

zero.  45.4% of variation is explained by the model, comparable to an adjusted-R2 

measure of 0.448.  Since multivariate nonparametric estimations are difficult to 

visualize, Figure 4.2 illustrates the partial relationships between the dependent variable 

and each nonprice regressor.  Price alone explains an estimated 7.7% of variations, fixed 

charges 0.3%, income 1.1%, and weather 24.6%. 

All partial p-scores are less than 0.001 except that for fixed charges, for which 

p = 0.020.  Given the number of observations and the emphasis of fit over parsimony in 

GAM, p > 0.010 is not a very high statistical bar, and fixed charges fail to reach it 

nevertheless.   From Table 4.1, the mean of fixed charges is only 1.5% of mean income, 

so it is not surprising that a significant income effect is not observed.  Lack of a 

perception effect may be due to the insensitivity of the model to short-run dynamics.  

Climate appears to be the dominant driver of demand in this model.  From Figure 4.2(c), 

the positive effect of temperature and absence of precipitation on demand exists across 
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the range of observation.  In contrast, the effect of price is generally negative but "wavy" 

(Figure 4.1), and the effect of income is ambiguous (Figure 4.2(b)). 

Step 2: A Cumulative Density Function for Two-Rate Combinations 

The inverse demand function is estimated with the same data under the same model 

and smoothing parameter as the demand function.  Predicted values are fitted to each 

observation in the two-block subsample.  These fitted values are entered as p̂ in Equation 

[4.2], where 1p and 2p are the two block rates of the observed schedule, to produce a 

vector of b estimates.  The estimated b of 707 (27.6%) out of 2565 observations is less 

than zero.  For 554 observations (21.6%), the estimated b is greater than unity.  These 

extreme values are forced to 0 or 1, respectively. 

 

 
Figure 4.3.  Mean Derived Values of α, by Block Boundary b 
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Figure 4.4. Smoothing from α(b) to a Cumulative Density Function 
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Table 4.2.  Estimated Mean and Smoothed Alpha by Block Endpoint 
 
Block Endpoint 
    (Gallons) 

Mean Alpha Standard 
Deviation 

Smoothed 
   Alpha 

1,000 0.4860 0.0847 0.2719 
2,000 0.2806 0.2722 0.2897 
3,000 0.2419 0.1082 0.3087 
8,000 0.0000 0.0000 0.4403 
10,000 0.7518 0.1592 0.5082 
12,000 0.8370 0.2726 0.5659 
14,000 0.7237 0.2197 0.5984 
15,000 0.6828 0.4414 0.6056 
16,000 1.0000 0.0000 0.6089 
17,000 0.0316 0.1293 0.6102 
   
 
 
 

The subsample contains 14 different values of b, the break point between the two 

price blocks.  Figure 4.3 plots the means of b over these b values, also reported in the 

second column of Table 4.2.  Figure 4.4 shows 3 smooths of these 14 points, at  

s = 0.001, s = 0.1, and s = 0.18.  Figure 4.5 plots fitted values from the s = 0.18 model, 

since it is the least smoothed one-to-one function.  The purpose of smoothing is to 

satisfy Property (6) while doing the least harm to the structure revealed by the raw 

estimates. 

Figure 4.6 is a histogram of densities implied by the model of Figures 4.4 and 

4.5, also reported in the third column of Table 4.2.  The histogram of this model does not 

appear to be unimodal.  It features two distinguishable masses and a surprising third 

peak between them at 13,000-14,000 gallons.  The histogram depicted in Figure 4.6 does 
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Figure 4.5. Fourteen Points on an Empirical Cumulative Density Function in b 
 
 
 

 
 
Figure 4.6. Empirically Derived Density Weighting in b 
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not resemble any common distribution by inspection.  Whether the empirical distribution 

approximates either a normal distribution, which would validate parametric ML 

procedure, or a lognormal distribution, which would validate Bell and Griffin (2011, 

2008a), are testable hypotheses.  The sudden peak could indicate clustering at kink 

points (Moffitt 1986), but insufficient data are available to test this hypothesis. 

Shapiro-Wilk and Shapiro-Francia tests of normal distribution reject the hypotheses 

that the derived distribution is normal or lognormal, each with a p-score below 0.01.  A 

linear trend regression, on the other hand, fails to reject the hypothesis that the 

distribution is uniform about the mean of 0.0213 (for the trend coefficient, t = –0.50, 

p = 0.62).  Additional distributional hypotheses may be tested similarly, by treating the 

values of the third column of Table 4.2 as realizations of a random variable.  Parametric 

distributions may also be imposed by fitting the 14 points to the desired functional form. 

Although these results are food for thought, the uncensored estimate of b is near 

zero with a standard deviation of 4.036, so distributional advice from even this unusually 

extensive data is inconclusive.  Also, the estimated density of (30)b is only 0.821, so 

the model provides no information on the distribution of the other 0.179 density to 

blocks over 30,000 gallons per month.  Assuming a uniform distribution, the implied 

support would be 0 to 47,000 gallons. 
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Step 3: A Demand Function in Weighted Marginal Price 

The subsample of observations containing more than two rate blocks is used to test 

the results of the previous section.  A price index for each of these observations is 

calculated using the derived empirical distribution given in the third column of Table 4.2 

and illustrated in Figures 4.4-6.  In lieu of better empirical guidance, the full unassigned 

weight of 0.179 is applied to the rate applicable at 31,000 gallons per month.  Another 

index is calculated as a uniform density from 0 to 47,000 gallons.  A third index simply 

consists of the nonzero rate applicable to the lowest-volume block, i.e. 1p  unless 1 0.p   

A fourth index consists of an IV price composed of the predicted values of the 

convenient (consumption-identified) price regressed on the rates effective at 8,000, 

14,000, and 26,000 gallons.  The instruments are based on the three peak densities 

shown in Figure 4.6. 

The value of each index is evaluated against the constant-price subsample according 

to three criteria: 1) Is it distributed similarly to constant price?  2) Does it explain 

demand as well?  3) Does it provide a similar demand estimate?  Addressing these 

criteria, Table 4.3 presents the moments of each price index, the results of univariate and 

multivariate GAM demand regressions, and the results of a standard Cobb-Douglas 

demand regression. 

If the distribution of a price index does not resemble the distribution of observed 

constant price, either the decision to use a multiple-rate schedule is correlated with the 

magnitude of the monopolist's price signal, or the index does not represent the price 
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signal in some way.  The means of all four indices are higher than the mean of constant 

price (Row 1, Table 4.3), although not significantly so, since the standard deviation of 

constant price is 2.45 (Row 2).  This does not conclusively indicate a relationship  

 

Table 4.3.  Comparison of Price Metrics. 

Statistic First Nonzero Uniform 
Price 

Empirical 
Price 

IV Price Constant 
Price 

 Distributional      
Mean 5.12 4.38 3.83 4.34 3.09 
Standard Dev. 2.30 1.96 1.76 1.73 2.45 
Skewness  0.98 0.85 1.02 0.58 1.09 
Kurtosis 3.52 3.36 3.59 4.07 3.68 
 Multivariate GAM     
F-test 88.34 73.87 75.27 5.58 65.65 
Explained % 29.60 26.60 26.40 8.66 45.40 
 Univariate GAM     
F-test 37.52 43.62 35.70 15.50 26.11 
Explained % 6.08 5.91 5.00 2.04 7.69 
 Cobb-Douglas 

Douglas 
    

Price -0.2187 -0.3358 -0.4114 -0.1860 -0.2283 
 0.0172 0.0161 0.0166 0.0160 0.0195 
Fixed Charges -0.2138 -0.2879 -0.3222 -0.2558 -0.0550 
 0.0175 0.0177 0.0177 0.0183 0.0136 
Income -0.0279 0.0963 0.0714 0.0805 0.0639 
 0.0289 0.0279 0.0274 0.0295 0.0398 
Climate 0.2562 0.2707 0.2825 0.2645 0.5104 
 0.0213 0.0209 0.0207 0.0215 0.0.33 
Constant 5.1297 4.1380 4.4815 4.0318 2.5983 
 0.3149 0.2957 0.2927 0.3098 0.4599 
Adjusted R2 0.0564 0.0915 0.1135 0.0539 0.2236 
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between higher price and additional rate blocks.  Individually, each of the indices passes 

the distribution test.  Comparisons of skewness and kurtosis (Rows 3 and 4) are meant to 

be comparative.  The empirical distribution best matches the distribution of constant 

prices in mean, skewness, and kurtosis, but with a lower standard deviation.  None of the 

indices appears to have radically departed from the comparison distribution. 

To represent price well, the indices must demonstrate an effect similar to the price 

effect observed in the constant-price subsample.  This requirement includes both 

goodness of fit and similarity of fit.  Similarity is difficult to quantify without 

parameters, so a Cobb-Douglas regression model is presented in Table 4.3 along with fit 

measures of the GAM nonparametric regressions from the previous section applied to 

the new indices.  Although F-statistics are presented, the regression in constant price is 

not comparable to the others because the constant-price subsample is less than half the 

size of the multiblock subsample (see Table 4.1). 

None of the multiprice indices explains as much variation in the tested models as 

constant price, despite the larger sample size of the former.  The indices appear 

comparable among one another, with the first-nonzero price index somewhat 

outperforming the empirical and uniform indices.  The first-nonzero price also produces 

the only constant elasticity estimate in the parametric regression that falls within the 

95% confidence interval of the constant price estimate.  The empirical,  uniform, and IV 

indices produce closer income elasticity estimates, and none of the index models 

produces an estimate of fixed-charge or climate elasticity that is statistically similar to a 

comparison estimate.  From the visual evidence of Figure 4.2(b), the Cobb-Douglas 
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income variable is likely misspecified.  Despite an unimpressive match with the 

constant-price comparison, the empirical Cobb-Douglas regression does boast the best 

overall fit of the index regressions, as measured by adjusted R-squared.  IV price 

performs most poorly on most of the criteria.  It is possible that the shape of the block 

schedule has an independent effect on demand (Olmstead et al. 2007).  This effect would 

challenge the similarity criterion and give more credit to the empirically-weighted price 

index. 

Conclusions 

The problem of representing price under multiblock rate schedules is recognized, 

and theoretical progress has been made in defining price when rates are variable.  

Empirical tests of price representations are difficult to construct.  The present research 

assumes that a linear weighting of block rates can consistently represent an aggregate 

price signal.  A continuous distribution of weights across an arbitrary block schedule is 

derived by dissecting demand behavior under a two-block schedule and comparing it to 

demand under constant price.  The derived weighted price index is unique among 

multiblock price representations because it reflects the data rather than just the 

assumptive base.  By construction, the index is independent of quantity demanded, 

responsive to change in the rate schedules, and applicable to aggregate data. 

Despite data spanning 105 communities over 11 years, the results of the research 

still suffer from a lack of variation in the block variable, b, upon which the procedures 

heavily rely.  Nevertheless, some useful findings are obtained.  A series of 14 ( , )b pairs 
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are estimated which can be used to fit parametric distributions, independent of regression 

functional form (Figure 4.5 and Table 4.2).  The uniform distribution is not ruled out, but 

linear and loglinear distributions are rejected.  Furthermore, an empirical basis for a 

range of price sensitivity is established.  Based on the estimated cumulative distribution, 

82% of price response occurs at volumes below 30,000 gallons monthly per connection.  

If community price response is distributed uniformly on the rate schedule, rates effective 

above 50,000 gallons should be irrelevant to demand. 

Researchers may find it redundant to repeat a national survey when a demand 

function is desired for one community.  In this case, they may wish to corroborate the 

evidence here with their local knowledge of distribution across blocks, or use a uniform 

distribution (such as from zero to the recommended 47,000 gallons).  Even using the 

first nonzero rate in their schedule is a passable solution, although it is premature to 

advise discarding rate information. 
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CHAPTER V 

CONCLUSIONS 

 

Urban water demand studies in the period 1967-2002 focused on determining 

structural own-price elasticity (Arbues 2003).  Common research questions in this period 

included whether an estimated price elasticity agreed with the body of previous studies 

and whether it was in the interval (-1, 0).  Economists were more easily convinced of a 

price effect on water than were policy makers.  One reason may be that substantial price 

elasticities of -0.3 to -0.6, as found in the literature, do not jibe with practitioners' 

experience.  The present research hints at an explanation:  full adjustment to price is too 

slow to be noticed at the level of a single policy cycle.  Better accounting of timing 

effects can lead to greater acceptance of demand management and more reasonable 

expectations of its potential.  

In the present research, both "price" and "elasticity" are found to be problematic 

concepts.  Many representations of price are reviewed, differing in assumptive base and 

statistical properties.  Many elasticities are found, differing in time horizon and price 

argument.  Results obtained here challenge the traditional simplifications of water 

demand by applying broad data, emerging econometric techniques, and weighted price 

indexing.  The overall message to researchers is to relax more assumptions and to test 

the underpinnings of the simple model.  The cost of increased complexity is justified by 

the rewards of increased clarity and relevance to real situations. 
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We began with the concept of a community as a geographical focus of economic 

activity and the belief that the community is a meaningful behavioral unit of water 

demand.  Late in 2004, we identified 1400 of the largest providers of water to Texas 

communities and asked them what their rate schedules had been for the five years 

preceding, 1999- 2003.  The Texas Water Development Board had already requested 

reports of monthly withdrawals for those years from the same providers.  Although 1400 

households would have been easier to survey than 1400 communities, estimation results 

from the community data were strengthened by the diversity of economic and weather 

conditions and prices observed.  Although households in the same community may 

experience different rates, they all experience the same rate schedule, so any appearance 

of price variation in such a sample would be illusory and lead to spurious results.   Also, 

community behavior is more directly applicable to regional and national policy dialog 

than household behavior.  Data from the 734 respondent communities form the empirical 

basis of Chapter II. 

Encouraged by our results, we repeated the exercise on a national scale starting in 

2006.  This time, we pursued a more ambitious time series, the months of 1995 through 

2005.  Rather than issue a mailed survey, we collected as much rate data as possible 

from the websites of water utility systems and municipal ordinances before making 

individual phone and e-mail contacts.  This step was facilitated by restricting our 

universe to only urban communities of population greater than 25,000.  There is no 

national depository of monthly withdrawals, so we contacted the natural resources 

departments of the states.  Fortunately, eight states with communities for which we had 
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rate data also had annual water withdrawal reporting protocols.  Communities in these 

eight states, plus the borough of Anchorage, Alaska, form the empirical basis of 

Chapters III and IV. 

Our surveys revealed a diversity of rate practices among American water providers.  

Many use schedules of multiple rates that increase and/or decrease with quantity 

purchased, but some use only one rate, and some do not meter water use at all.  Some 

rate schedules vary with nonvolumetric factors such as elevation, home size, or season.  

The most prevalent nonvolumetric rate factor is whether the customer is a residence or a 

business.  Among those who offer sewerage service, most estimate sewer use based on 

water use volume or winter water use volume (winter averaging).  Although we 

regrettably could not capture every aspect of every rate schedule, we could at least 

represent the volumetric rates themselves. 

Rate schedules are like prices in many respects.  Most importantly, the area under 

the rate schedule represents the total variable cost to an individual consumer.  Unlike a 

canonical price, though, a multiple block rate schedule does not uniquely identify an 

aggregate expenditure because x quantity demanded by a single consumer may not cost 

the same as x quantity shared among multiple consumers.  Therefore the marginal value 

of water supply depends on an unknown distribution of use at the margin, and a rate-

demand function would not be invertible even if it could be cleverly parameterized.  The 

utility of the block rate schedule as an economic tool is limited if it does not correspond 

to an invertible demand argument. 
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The power of demand theory would be open to block rate schedules if only they 

were transitively ordered.  Then a family of schedules would correspond to both a 

unique value of aggregate quantity demanded and a defined scalar price.  In other words, 

any rate schedule would correspond to a unique demand argument.  A one-way index 

from block rates to the real number line would achieve such an ordering.  The catch is 

that contemporaneous quantity demanded cannot be used to identify such an index 

because quantity is the dependent variable.  The goal is exogenous price representation 

and the solution offered and investigated in this dissertation is weighted price indexing. 

Summary 

In Chapter II, the shortcomings of prevalent price metrics are discussed.  A metric 

that is weakly representative of experienced price may produce nonsensical or 

misleading estimates of price effects.  A metric that depends on a quantity argument is 

intrinsically endogenous and susceptible to inconsistent estimation.  Even relatively 

sophisticated instrumental and probabilistic price representations suffer from one or both 

of these flaws.  The proposed quasidifference price is highly representative because it is 

composed of a weighted combination of observed rates.  Endogeneity is eliminated by 

differencing two prices weighted by the same function. 

In the empirical portion of Chapter II, marginal price is found to offer more 

descriptive power than average price.  Weather covariates and quasidifference price are 

shown to be significant determinants of demand, but mean personal income and 

availability of central sewerage are not.  Price elasticity is shown to vary with respect to 

all explanatory variables.  Price elasticity estimated at the means of each explanatory 
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variable is found to be -0.127.  This estimate is lower in absolute value than most static 

estimates, as is expected from a shorter-run model.  An implication for water planning is 

that the single-year impact of a rate hike will be weaker than predicted by point 

expansion using a structural elasticity. 

The finding of significant variation in price elasticity with respect to other 

explanatory variables implies that constant elasticity estimates are subject to bias arising 

from the omission of the other variables.  The seriousness of such a bias is unknown but 

worthy of contemplation since so many constant water price elasticities are estimated in 

the literature.  In addition to bias, constant elasticity is inadequate for precise 

applications because it does not parameterize relevant considerations such as when, 

during what season, or for which regions or communities the elasticity estimate is 

supposed to apply.  For instance, it may be relevant to the dialog on climate change that 

water demand is more elastic at higher mean temperatures. 

In Chapter III, dynamic adjustment, seasonality, and a distinct commercial sector 

are added to the demand model.  Adjustment to exogenous shocks is shown to occur 

slowly, as evinced by the significant EC coefficient of -0.187.  This value implies that 

realizing 90% of a demand adjustment could take 12 years.  Seasonality is evident, as 

structural model coefficients vary significantly by month.  Coefficients do not vary 

across sectors sufficiently to justify the multisectoral approach.  Since the dependent 

variable series is found to exhibit a stochastic seasonal root, consistency of the EC model 

is initially in question.  The finding of residual consistency, however, indicates that the 

structural model is cointegrated and thus that the results are not only consistent but 
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super-consistent.  The rich variation in price elasticity over season and temporal scale 

testifies to the inadequacy of the concept of "price elasticity" in any but the broadest 

applications of water demand information.  Rather than an elasticity scalar, researchers 

may be better served to use an elasticity equation, such as Equation 2.17 on Page 29. 

The idea of a weighted price index, although used in Chapters II and III, is 

scrutinized in Chapter IV.  Building on the discussion in Chapter II, none of the popular 

price representations is entirely acceptable as an aggregate price signal.  A weighted 

price index could be a valid representation as long as a few reasonable assumptions are 

met.  These assumptions do seem to be met by the data, although the weighting function 

derived cannot be considered definitive due to low variation in the locations of block 

boundaries.  Based on the derived price weighting, the most explanatory price index is 

not distributed normally or lognormally.  This is significant because the quasidifference 

index is weighted lognormally in Chapters II and III.  Performance differences among 

consistent indices are slight, however.  The validity of a uniform weighting on the 

approximate interval 0 to 47,000 gallons monthly is not rejected. 

Observations 

More than the techniques employed, it is the data that have enabled this research to 

produce new results that illuminate the mechanisms of aggregate water demand.  The 

techniques demand more variation in rate structure and quantity consumed than a single 

time series can provide, necessitating a panel approach.  Several states collect quantity 

data from their water providers, but there is no known clearinghouse of rate data.  It is 

imperative that price metrics are built for their ability to independently represent the 
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perceived opportunity cost of consuming water, not for convenient data gathering.  

Therefore, researchers cannot be satisfied with less than the full rate schedule.  The data 

used in this research are already out of date, and researchers will be forced to repeat the 

arduous task of data collection until a database of historical rates is established. 

Water demand modelers and demand management practitioners alike must be 

conscious of the temporal aspect of water demand.  Aggregate demand is manifestly 

seasonal, even when weather and climate are taken into account, and aggregate 

adjustment takes several years.  If cross-sectional elasticity is to be interpreted as an 

adjustment parameter, adjustment time must be assumed to exceed ten years with only a 

negligible effect in the first year.  The role of timing in demand management depends on 

whether the goal is drought management, peak loading, or facility scaling.  In drought 

management, emergency rates should be sufficiently high to force a timely response.  To 

accommodate or control peak loads, capacity calculations should be based on demand 

parameters unique to the peak season (usually summer).  Timing may be less important 

to facility designers, although they will want to design capacity based on seasonal 

loading. 

The economist is likely to be more interested in forecasting and welfare 

measurement than in plant design.  The forecasting implications of this research are 

rather straightforward, with some projections made at the end of Chapter III.  The 

finding of a slow adjustment rate carries a major implication for welfare analysis that 

may be less obvious.  Welfare effects of temporal events, such as drought, should not be 

derived from calculus on the structural demand function, but on a steeper demand 



 101

function corresponding to the community's ability to adjust over the horizon of the event.  

The slope of uncompensated demand in the first year of quantity rationing will be 5-6 

times as steep as the long-run uncompensated demand function usually employed.  If 

drought is stochastic, the optimal a priori price level will therefore be higher than the 

generally accepted static efficient price.  In other words, a community may benefit in the 

long run from exposure to above-equilibrium "conservation" pricing that induces small 

reductions in demand in wet years, depending on the likelihood and severity of drought. 

This dissertation starts from the assumption that water demand can be represented as 

a function of price, income, and weather variables.  Flexible specifications of demand 

indicate that the relationships among these variables are not simple.  Misspecification 

arising from independence and linearity restrictions is not trivial.  On the other hand, 

data demands become more burdensome as the empirical model gains complexity.  The 

income effect on water demand is ambiguous.  The nonparametric income effect 

estimated in Chapter IV exhibits a U-shape at higher income levels, whereas parametric 

estimates show an insignificant monotonic income effect.  The personal income data 

used in the analysis reduces the reliability of these particular results, though.  Higher 

moments of aggregate personal income may be needed to clarify the income effect. 

Prior, statistically-based approaches to exogenous price representation have not 

ideally complemented water demand with water's economic idiosyncrasies.  Although 

theoretically elaborate and computationally intense, IV and ML price metrics have not 

contributed much to model fit or residual independence.  A weighted index is an easy-to-

apply alternative that short-circuits the feedback between price and quantity consumed.  
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Because price representation is a persistent problem for water demand estimation, future 

research to provide either theoretical or empirical support for the shape of a standard 

weighting function would improve the accessibility of high-level demand analysis to 

both water management professionals and economists. 
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