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ABSTRACT 

 

14
C(n,γ)

15
C as a Test Case in the Evaluation of a New Method to Determine Spectroscopic 

Factors Using Asymptotic Normalization Coefficients. 

(December 2011) 

Matthew Edgar McCleskey, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Robert E. Tribble 

 

With new radioactive isotope accelerators coming online in the next decade, the problem 

of extracting reliable nuclear structure information from reactions with unstable nuclei deserves 

considerable attention. A method has been proposed to determine spectroscopic factors (SFs) 

using the asymptotic normalization coefficient (ANC) to fix the external contribution of a non-

peripheral reaction, reducing the uncertainty in the SF. The 
15

C↔
14

C+n system was chosen as a 

test case for this new method. The direct neutron capture rate on 
14

C is important for a variety of 

topics of interest in astrophysics, and the ANC for 
15

C↔
14

C+n was also used to calculate this 

reaction rate. 

The objective of the first part of this work was to find the ANC for 
15

C↔
14

C+n. This 

was done in two independent experiments. First, the heavy ion neutron transfer reaction 

13
C(

14
C,

15
C)

12
C was measured at 12 MeV/nucleon. Second, the inverse kinematics reaction 

d(
14

C,p)
15

C was measured using the new Texas Edinburgh Catania Silicon Array (TECSA). The 

next phase of the experimental program was to measure a reaction with a non-negligible interior 

contribution, for which 
14

C(d,p)
15

C at 60 MeV deuteron energy was used. This reaction turned 

out to be more peripheral than anticipated, and as a result, the ANC for the ground state was 

extracted from this measurement as well. The final results for the three measurements are 

1/2

2

2sC = 1.96±0.16 fm
-1

 for the ground state and 
5/2

2

1dC = (4.23±0.38)·10
-3

 fm
-1

 for the first excited 

state. 

Because the 60 MeV 
14

C(d,p)
15

C reaction turned out to have a very weak dependence on 

the interior, the SF could not be determined for the 
14

C+n ground state in 
15

C using the new 

method. A lower limit of 1.05 was found for the first excited state. It is possible that other 

reactions might turn out to be more suitable for this method, however, the difficulty encountered 
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at this relatively high deuteron energy highlights a substantial problem likely to be seen in other 

applications. 

Using the ANCs determined in this work, the astrophysical 
14

C(n,γ)
15

C reaction rate was 

calculated. The resulting value for the cross section for capture to the ground state at 23 keV was 

σgs(23 keV)=5.1±0.4 µb and to the first excited state was σexc(23 keV)=0.2±0.02 µb. 
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CHAPTER I 

INTRODUCTION 

 

 It was only a century ago that the existence of the atomic nucleus as we now know it was 

discovered by Earnest Rutherford [1] based on his now famous scattering experiments. The 

magnitude of this discovery is perhaps best captured by Rutherford himself [2]: 

It was quite the most incredible event that has ever happened to 

me in my life. It was almost as incredible as if you fired a 15-

inch shell at a piece of tissue paper and it came back and hit 

you. On consideration, I realized that this scattering backward 

must be the result of a single collision, and when I made 

calculations I saw that it was impossible to get anything of that 

order of magnitude unless you took a system in which the 

greater part of the mass of the atom was concentrated in a 

minute nucleus. It was then that I had the idea of an atom with a 

minute massive centre, carrying a charge. 

 

Prevailing ideas of matter at that time had the mass and charge of the atom spread throughout its 

volume, yet what Rutherford had found from his examination of scattering data was something 

entirely different: a compact, positively charged nucleus that would have to be held together by a 

force great enough to overcome the significant Coulomb repulsion that would take place at such 

small distances. This insight was, in a sense, our first step towards the body of knowledge upon 

which we now stand as we peer into distant galaxies and contemplate the inner workings of stars 

and novae. Our study of the nucleus and nuclear reactions has had a profound effect for mankind 

in everything from our terrestrial concerns such as energy, security, and medicine to providing 

some of the answers to basic questions such as the origin of elements from which the first stars 

were made.  

 When a nucleon (or another nucleus) collides with a nucleus many types of interactions 

are possible. The simplest interaction would be elastic scattering like that observed by 

Rutherford. Alternatively, a reaction could take place which changes the nucleus. The concept of 

compound nucleus formation to describe reactions between nuclei was formulated in the 1930’s 

[3]. In a compound nuclear reaction the projectile is absorbed into the target nucleus and has 

many interactions with the constituent parts of the target. The resulting excited  

____________ 

This dissertation follows the format of Physical Review C. 
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compound nucleus, through these many complex interactions, loses essentially all information 

about how it was formed, and because the energy of the incident particle is distributed amongst 

so many constituent nucleons of the target, the energy of each one is low as is the probability of 

one escaping. As a result, compound nuclear reactions are characterized by time durations much 

longer than the time it would take for the projectile to simply traverse the nucleus, also, the 

angular distribution of reaction products is isotropic, which is consistent with a compound 

system that has “forgotten” the input channel. This has been exploited to indirectly study (n,γ) 

and (n,f) reactions via other reactions such as A(d,p)B* using the so-called surrogate method 

(see, for example, [4]). 

 In contrast to compound nuclear reactions, direct reactions take place on time scales 

comparable to that which it would take for the projectile to pass through the nucleus. Only a 

single interaction occurs inside the nucleus and the angular distributions are forward-peaked. 

Indeed, the reaction may not take place inside the nucleus at all, but rather in the surface region, 

maybe interacting with a single valence nucleon in a shell model orbital. Because of this, direct 

reactions were recognized early on as a means to probe the single particle structure of the nuclear 

states involved in the reaction. Specifically, it was shown by Butler [5] that (d,p) and (d,n) 

reactions were strongly dependent on the spins and parities of the nuclei involved in the reaction, 

and that the spin and parity of one state could be determined if the other was known based on the 

shape of the angular distribution of ejectile. 

 In the decades following the theoretical description of Butler and others of direct nuclear 

reactions, many measurements were made and many different models were proposed and 

developed to understand nuclei. Much was learned. However, the recent development of 

radioactive beam facilities around the world, capable of providing beams of nuclei far from 

stability that are now, in many cases, high enough in kinetic energy and intensity to study 

reactions, has fostered a nuclear renaissance. Methods to extract reliable nuclear structure 

information from reactions with available unstable nuclei need to continue to be developed and 

improved upon. 

In particular, neutron capture reactions on unstable nuclei present a challenging problem 

for nuclear physics. Their cross sections are needed for a variety of applications. However, due 

to practical considerations, direct measurements are difficult if not impossible. Inverse 

kinematics, as is often used for reactions involving unstable particles, is not available as no 

neutron target exists. While forward kinematics may be an option for neutron capture on either 
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stable or long-lived targets, capture on very short-lived radioactive nuclei cannot be measured in 

this way as making a target of such an unstable isotope is not possible. It is therefore imperative 

that indirect methods for determining these capture cross sections be developed. 

Indirect methods for determining reaction cross sections generally involve making a 

laboratory measurement of a relevant physical quantity that can then be related to the reaction of 

interest by means of knowledge of the nuclear structure. Traditionally this has taken the form of 

the measurement of angular distributions of transfer reactions at laboratory energies that are then 

analyzed using the distorted-wave Born approximation (DWBA) for the purpose of extracting 

the spectroscopic factors (SFs), often taken as the ratio of the experimental angular distribution 

to that of a DWBA calculation. A SF determined in this way is model-dependent and the 

usefulness of such a number is limited as it is only meaningful with detailed knowledge of the 

DWBA calculation that was performed and the potentials and wave functions used. 

 

A. ANCs and a new method for extracting SFs 

 

 The asymptotic normalization coefficient (ANC) is the factor which determines the 

normalization of the tail of the radial overlap function at large radii [6]. At these large radii the 

overlap function behaves as a Whittaker function or, in the case of a neutron being transferred, a 

Hankel function of the first kind. The traditional form of parameterizing the experimentally 

measured angular distribution to the calculated distribution in terms of the SFs is 

 
( )

B B a a B B a a

B a

DW

Axl j bxl j l j l j
ex jp j

S
d

S
d

σ θ
σ

Ω
= ∑ , (1.1) 

where the transfer of a nucleon x from an incoming projectile a = b + x onto a target nucleus A to 

form the final nucleus B = A + x is considered. The SF 
a abxl jS  can be thought of as the 

probability for finding the configuration of the particle x in a single particle shell model orbital 

laja in a moving about the core b, which is in its ground state. This common shell model 

interpretation of the SF does not hold if the radial overlap function differs significantly from the 

single particle bound state wave function [7], which may very well be the case particularly in the 

interior of the nucleus. 

 Most transfer reactions between charged particles measured in the laboratory at 

reasonably low energies are largely peripheral. As such, they may not probe the nuclear interior 

at all and thus give no information about the behavior of the radial overlap function in the 
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interior. In these situations the parameterization of (1.1) will not be meaningful as the calculation 

of 
B B a a

DW

l j l jσ  will be strongly dependent on the choice of the bound state potential geometry, which 

is chosen based on standard values which give reasonable results for many reactions. A more 

relevant quantity in such a situation is the ANC which can be experimentally determined in 

peripheral reactions using a parameterization analogous to (1.1), namely 

 
2 2

2 2
( ) ( ) B B a a

B B a a

B B B B a a

DW

l j l jB a

Axl j bxl j

j l Axl j bxl j

d
C C

d b b

σσ
=

Ω ∑ . (1.2) 

Here b is the single particle ANC (SPANC) for the configurations A + x in B and b + x in a. The 

SPANC contains the dependence on the binding potential and this parameter dependence is 

canceled out in the ratio  

 
2 2

B B a a

B B a a

DW

l j l j

Axl j bxl jb b

σ
. (1.3) 

The ANCs extracted via (1.2) for a peripheral reaction are therefore a more parameter 

independent quantity than the SFs of (1.1). Since many reactions of significance to stellar 

evolution, such as all low energy proton capture and even some neutron capture reactions, are 

peripheral processes, the ANC is very useful for determining these rates [8], [9]. 

 A new method to extract spectroscopic factors utilizing asymptotic normalization 

coefficients (ANCs) has been proposed [8]. The details of the approach will be given in Chapter 

II, but the basic idea is to use two reactions, the first peripheral to determine the relevant ANC 

and a second reaction that is non-peripheral to find the SF. The SF is determined by using the 

ANC to fix the external part of the DWBA amplitude and then varying the bound state geometry 

to give the DWBA amplitude as a function of the SPANC. By doing this, the SPANC can be 

fixed experimentally giving the correct SF by 

 

2

2

lj

lj

lj

C
S

b
= . (1.4) 

This approach requires for the second reaction one that both has a significant contribution from 

the interior but also is described well under the DWBA, the assumptions of which will also be 

described in Chapter II.  

 
15

C has been chosen as a test case for this procedure. It is a loosely bound neutron-rich 

nucleus which should be described well in the single particle approximation and has been well 

studied due to the astrophysical interest in the 
14

C(n,γ)
15

C reaction, which will be discussed in 
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the next section. This reaction is one of the few neutron capture reactions on unstable nuclei that 

has both been measured directly and for which numerous indirect determinations of the cross 

section exist. Despite this, however, a significant disagreement in the cross section has persisted 

for close to 20 years, and only recently have the various determinations started to come into 

agreement. As such, a good determination of the ANC for 
15

C↔
14

C+n is desirable as a means to 

independently calculate the neutron capture cross section at astrophysical energies, which is 

possible since it is a peripheral capture process [10]. This ANC has been determined previously 

([11], [12], [13], [14]) however the current numbers are not in good agreement and a new 

independent determination is desirable. 

 

B.
 14

C(n,γ)
15

C 

 

 The neutron capture on 
14

C is an important reaction for nuclear astrophysics both 

because of the important role it plays in several astrophysical processes and because it is one of 

the few reactions where it is possible to validate indirect methods against direct measurements 

for neutron capture cross sections [10]. Several indirect methods have been applied to this 

reaction such as Coulomb dissociation, nuclear breakup, and the ANC approach. 

 Inhomogeneous big bang nucleosynthesis (BBN) was proposed [15] as a mechanism by 

which neutron-rich regions could be formed in the early universe [16]. These regions could give 

rise to the production of heavier elements than what could be expected by standard BBN and 

thus potentially answer some outstanding questions about the presence of metals (nuclei heavier 

than helium) in the earliest observed stars. It should be noted, however, that inhomogeneous 

BBN is not widely accepted and it has been argued [17] that any such inhomogeneities would 

have little impact on heavy element abundances if observational constraints such as 
7
Li 

abundance are imposed on the model. Nevertheless, there is a continued interest in the topic and 

if such regions do occur, the reaction chain 

7
Li ( ),n γ 8

Li ( , )nα 11
B ( ),n γ 12

B ( )β 12
C ( ),n γ 13

C ( ),n γ 14
C 

may contribute to the production of A>12 nuclei. Since this chain ends at the long lived 
14

C (t1/2 

~ 6000 y, stable on the timescale of BBN) subsequent reactions on 
14

C could have an impact on 

the production of heavier elements [16]. 

 Another astrophysical scenario in which the cross section for 
14

C(n,γ) is important is in 

the neutron-induced depletion of carbon-nitrogen-oxygen (CNO) cycle isotopes in the helium 
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burning layer of asymptotic giant branch (AGB) stars [18]. The CNO cycle is a stable process by 

which carbon, nitrogen and oxygen nuclei are used as catalysts in the conversion of hydrogen to 

helium. The typical reaction sequence is 

12
C ( ),p γ 13

N ( )β 13
C ( ),p γ 14

N ( ),p γ 15
O ( )β 15

N ( ),p γ (
12

C+α). 

In AGB stars of mass 1-3 M
⊙

 ( M ≡
⊙

1.989·10
33

 g, the mass of the Sun), significant neutron 

flux can be created in the helium burning region via the 
13

C ( , )nα  reaction. This neutron flux 

can then give rise to neutron capture on CNO cycle nuclei and the reaction chain 

12
C ( ),n γ 13

C ( ),n γ 14
C ( ),n γ 15

C ( )β 15
N ( ),n γ 16

N ( )β 16
O ( ),n γ 17

O ( ),n α 14
C. 

The slowest of these reactions is 
14

C ( ),n γ 15
C [19], and therefore a significant buildup of 

14
C 

may occur. 

 Finally, the r-process that might take place in core-collapse supernovae may be 

significantly influenced by the availability of light seed nuclei produced in a neutrino driven 

wind environment [20]. The rate at which the reactions take place to form seed nuclei will 

determine whether the neutron to seed ratio is high enough for heavy r-process nuclei to be 

formed. One of the reactions affecting the production of seed nuclei is ( ),n γ  on 
14

C which is 

formed in the sequence 

4
He ( , )nα γ 9

Be ( , )nα 12
C ( ),n γ 13

C ( ),n γ 14
C or 

4
He ( , )nα γ 9

Be ( ),n γ 10
Be ( , )α γ 14

C. 

Due to the high temperature of such an environment (
9~ 3 10⋅  K) higher energies for the ( ),n γ  

cross section is needed for such a scenario, up to about 1 MeV [19]. 

 The first direct measurement of 
14

C ( ),n γ  is described in Ref. [21]. In this measurement 

the Maxwellian averaged cross section (MAC) of 1.72±0.43 µb was obtained. The MAC is 

related to the energy dependent cross section, σ(E) by 

 

1/2

1.5 ( )
T kT

v kT
E

E
C

v
MA

σ
σ

〈 〉  
  

 
≡ = 

 
. (1.5) 

Thus this experiment yielded a σ(23.3 keV)=1.1±0.28 µb. Calculated values at the time were 

(25 keV) 5.1 bσ µ=  [22] and (25 keV) 100 bσ µ=  [23]. Even disregarding the calculation 

of [23] as being much too large in light of the measurement of [21], this still left a factor of ~5 

discrepancy between the calculated and measured value. This measurement was eventually 

repeated [19] and a significantly larger value for the cross section was found because of an error 
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in Ref. [21] that arose from the activation of the container for the 
14

C powder as the result of a 

previous experiment with that apparatus. By the time the measurement in Ref. [19] was made, 

sufficient time had elapsed to reduce the activity of the container to an acceptably low level. The 

resulting radiative neutron capture cross section found in [19] was 

(23.3 keV) 5.2 0.3 bσ µ= ± . 

 Indirect methods have also been applied to this reaction, notably Coulomb breakup of 

15
C [24], [25], [13], [26], [27] and charge symmetry for the 

15
C-

15
F mirror nuclei [10]. A 

summary of the values for the cross section at 23.3 keV is given in Table 1. In cases where the 

cross section was not explicitly given in the reference it was calculated based on the information 

given. 

 

 

 

Table 1. Comparison of (n,γ) cross sections on 
14

C. 

Reference type of measurement σ(23.3 keV) (µb) 

[26] Breakup 2.6±0.9 

[27] Breakup 4.5±0.5 

[10] Mirror nucleus 5.3±0.3 

[13] Breakup, CDCC 4.48±0.09 

[25] Breakup 4.1±0.4 

[19] Direct 5.2±0.3 

 

 

 

C. Objectives 

 

 The aim of this work is to investigate the feasibility of the method of determining the SF 

of [8]. As part of this, the ANC for 
15

C↔
14

C+n will be determined and will then be used to 

calculate the astrophysical radiative neutron capture on 
14

C. This capture rate can then be 

compared with the most recent direct measurement [19]. 
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D. Dissertation outline 

 

 This dissertation consists of five chapters, the first of which was meant to provide the 

background and motivation for this work, including a review of the current state of affairs with 

respect to the neutron capture cross section and a review of the relevant literature. The next 

chapter, Chapter II, will cover the theoretical basis of this work, expanding on many of the ideas 

presented in Chapter I. Chapter III covers the experimental setup and details, including the 

multipole-dipole-multipole (MDM) spectrometer used to make the HI transfer and forward 

kinematics (d,p) measurements and the newly commissioned Texas-Edinburgh-Catania Silicon 

Array (TECSA) used for the inverse (d,p) reaction. Next is Chapter IV, which covers the 

analysis of the data from the various measurements and the extraction of the ANCs, as well as 

the investigation of the new method to extract the SF. Finally, the results of the direct capture 

calculations are given in Chapter V, along with a conclusion. 
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CHAPTER II 

THEORY 

 

A. Reaction kinematics 

 

 A reaction of a particle a incident on a nucleus A resulting in the nuclei b and B can be 

expressed as 

 ( )  or A a, b Ba A b B+ → + . (2.1) 

The initial system of a and A is the entrance channel, which will be denoted as α, whereas the 

exit channel b + B will be denoted as β. The total kinetic energy of the entrance channel is  

 
2 21 1

v v
2 2

tot a a A AE m m= + , (2.2) 

where va(A) and ma(A) are the velocity and mass of a(A) respectively. These velocities are in a 

fixed laboratory system, but for many calculations it is more convenient to work in a system in 

which the center of mass is fixed. In any system the position of the center of mass is defined as 

 ( ) /a a A A aAS m r m r m= +
� � �

, (2.3) 

where AaaA mmm += . Also the relative position of a and A can be expressed as a vector  

 .a AR r r= −
� � �

 (2.4) 

Solving for ar
�

 and Ar
�

 in terms of S
�

, R
�

, am , and Am , the total energy can be rewritten as 

 
2 21 1

.
2 2

tot aA aAE m S Rµ= +ɺ ɺ  (2.5) 

In the above equation 
aA

Aa
aA

m

mm
=µ  is the reduced mass of particles a and A. The first term is 

the energy of the motion of the center of mass and the second term is the energy of the relative 

motion of the two particles. If v 0A =  as is the case for a stationary target being bombarded by a 

particle beam, the energy in the CM system can be related to that of the lab system as 

 
21

v .
2

A
CM a aA a

aA

m
E E

m
µ= =  (2.6) 
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 Since the measurements of the angular distributions of cross sections are made with a 

fixed target and measured in the laboratory frame, it is necessary to relate the measured lab angle 

to the angle in the CM frame of reference, which is used in the theories that describe the 

interactions. The laboratory velocity of a particle can be decomposed into a sum of the velocity 

of the center of mass and the CM velocity of that particle as 

 CMv S v= +
�� �ɺ

, (2.7) 

which is illustrated in Fig. 1. 

 

        

Fig. 1. Vector diagram showing the velocities and angles of the particles B and b in the exit channel of the 

reaction defined by (2.1) in the lab and CM frames. 

 

 

 

 From this one can relate the angles in the two frames by 

 
v sin( )

tan( ) .
v cos( )

CM CM
lab

CM CMS

θ
θ

θ
=

+ɺ
 (2.8) 

The solid angles in the two frames are related by 

 

3

2 2( ) 2 cos ) ( )

cos

(1

|1 |

lab CM CM

lab CM CM

d d

d d

σ θ ρ ρ θ σ θ
ρ θΩ +

=
Ω

+ +
, (2.9) 

where 

1

2
ba

A B

m m E

m m Q E
ρ

 
=  + 

.  
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B. Quantum description of scattering and reactions 

 

 The non-relativistic motion of the particle a of Eq. (2.1) in the entrance channel α  is 

described by the Schrödinger equation: 

 ( ) 0H E− Ψ = , (2.10) 

where H is the total Hamiltonian, E is the total energy, and Ψ  is the total wave function, which 

includes both the relative motion and the internal configuration of the particles. It can be 

decomposed into a part Φ  that depends on the internal configuration only and a part ψ  that 

depends only on the external coordinates. The Hamiltonian can be written as 

 .a AH H H T Vα α= + + +  (2.11) 

Here Tα and Vα are the kinetic energy operator and the potential energy, respectively, for the 

channel α. Ha(A) is the Hamiltonian that describes the internal structure of a(A). The Schrödinger 

equation can be rewritten as 

 ( ) .E H T Vα α α α α− − Ψ = Ψ  (2.12) 

To find an equation that describes the motion in the exit channel, one can multiply (2.12) by the 

wave function describing the internal configuration of the exit channel and integrate over the 

internal coordinates. In the case of elastic scattering, this wave function is the same as for the 

entrance channel αΦ . If a transition to a second channel (here denoted as β) occurs through 

inelastic scattering or a reaction, it is βΦ  and (2.12) becomes 

 ( ) ( , )E T Vβ β β β β αψ− = Φ Ψ , (2.13) 

where Eβ  is the kinetic energy of relative motion in the channel β , and using the convention 

that 

 
* internal coordinate( , ( s) ).V V dβ β α β αβΦ Ψ≡ ΦΨ ∫  (2.14) 

Equation (2.13) can be rewritten in terms of a Green’s function which solves the equation 

 
0( ) ( ) ).(E T G r r r rβ β β β β β βδ′ ′− − = −
� � � �

 (2.15) 

By the definition of the delta function, the general solution to (2.13) in terms of (2.15) is 

 
0 ( , )( , ) .G r r V drβ β β β β β α βψ Φ Ψ′ ′= ∫
� � �

 (2.16) 

A solution to (2.15) is 
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0( )

2at large r

2 exp( )
exp( ).

4
( )G r r

m ik r
ik r

r

β β
β βπ

+  
′− = −  


′− ⋅



� �

ℏ

� �
 (2.17) 

Inserting (2.17) into (2.16) yields the scattering amplitude 

 
( )) exp( ( ) ,

2
) .(f r V di r

m
k

β
βα β β β αθ

π
+= − − Φ⋅ Ψ∫

��

ℏ

�
 (2.18) 

Using the convention that 
*

| (all coordinates)f g f gd≡ ∫ , (2.18) can be rewritten as a 

transition matrix element 

 
( )| | ,T Vβα β β αφ +Ψ=ɶ  (2.19) 

where exp( )ik rβ β β βφ = ⋅ Φ−
� �

 is the wave function describing the plane wave motion of a free 

particle. 

 In Eq. (2.19) the motion of the particles in the outgoing channel β  is described by a 

plane wave, and the entrance channel still contains the exact solution of Eq. (2.10), which takes 

into account all processes and interactions that can occur. It is useful to introduce a potential U(r) 

that depends only on the relative coordinate and describes the motion in the channel. This 

potential could be chosen such that it describes well the elastic scattering in the given channel, 

for example. Separating this potential from the total Vβ and defining an appropriate Green’s 

function with it, after manipulations similar to those from (2.13) to (2.18), Eq. (2.19) becomes 

 ( ) ( )| |VT Uβα β β β β αχ − +〈 Φ Ψ= 〉−ɶ . (2.20) 

 Here βχ  is a distorted wave which describes the motion in the exit channel β  on account of 

the potential U, the description of which is given in the next section.  

  

C. Optical model potentials 

 

 It is not possible to calculate the complete, exact wave function αΨ . The reaction 

described by (2.19) is a complicated, many body problem involving a large number of possible 

reaction channels. At typical laboratory energies, nuclear interactions are dominated by elastic 

scattering and other open direct reaction channels can be treated as small perturbations. In these 

situations, an optical model potential (OMP) is a useful tool to describe the interaction. The 

OMP reduces the problem from a many body problem to that of a two body problem with a 



 13 

potential that depends on the relative coordinate of the two particles in the channel. Because of 

the availability of other reaction channels, flux is not conserved and thus the OMP should be 

complex. Global potentials for nucleon-nucleus systems are available that consist of many fits to 

data at different energies and with different targets that are then interpolated to make a general 

potential for new reactions and energies. There are also OMP parameterizations available for 

some light particles such as deuterons and tritons. For a transfer reaction where elastic scattering 

will also take place (and typically at a cross section orders of magnitude higher than the 

transfer), the typical approach is to measure the elastic scattering angular distribution as well and 

to fit an OMP to that data which can then be used for the entrance channel for the transfer. The 

OMP for the exit channel for the transfer can then be determined by fitting to elastic scattering 

from another experiment or from the use of a global potential. 

 Typically the shape of the potential describing the nuclear interaction is that of a Woods-

Saxon (WS), which is given by 

  

 

0

0

0

.

1 exp

WS

V

r

a

V
R −

+ 


−




=  (2.21) 

 This form is used for both the real and imaginary (absorptive) terms. 0R  is often 

parameterized as  

 

1 1

3 3
0 0 ( )R r a A= +  (2.22) 

where 0 1.2 fmr ≈  and a and A are the numbers of nucleons in the two nuclei. This works fairly 

well in most cases, however it should be noted that it is an approximation. 

 Similarly, 0a , the diffuseness, is often taken as 0.6 fm≈ . The radius and diffuseness 

can be varied together to produce the same potential for different values, so it may be useful to 

fix one parameter at an arbitrary value and vary the other to fit the data. Sometimes a surface 

term is added to the imaginary term to account for collective surface modes, peripheral collisions 

resulting in transfers and other surface-peaked processes. This term takes the form 

 WS
s

dW
W

dr
=  (2.23) 

where WSW  is the imaginary volume term and has the same form as (2.21). 
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 For charged particles, the Coulomb potential must also be considered. For particles at a 

large distance this is simply that of two point charges, but a charged projectile near the target 

nucleus will experience a potential determined by the charge distribution of the two nuclei. For a 

uniform charge distribution, this can be written as 

 

2

2
2

3 1
 for 

2 2

1
                     for 

*
c

c c
c a A

c

r
r R

R

r R

e

r

V Z
R

Z

 
  

−

>



≤
=




 (2.24) 

 

 A spin orbit (SO) term may be added to account for the coupling of the spin of the 

projectile to the relative orbital angular momentum of the channel. 

 The total OMP can be written as 

 ( ) .OMP S C SOU V i W W V V= + + + +  (2.25) 

Equation (2.25) has up to 13 free parameters if independent geometries are used that must be 

found when fitting to scattering data. Often some of the geometries are chosen to be identical. 

Even if the SO term is neglected and the imaginary surface and volume geometries are set to be 

identical as is often done, this still leaves eight parameters.  

 One alternative approach to this problem is to use a so-called double folding procedure 

to obtain an OMP. Such a procedure is described in Ref. [28]. The first step in this method is to 

calculate the nuclear density distributions in a Hartree-Fock calculation. Once the densities are 

calculated a double integral over the two nuclei is performed to get the potential 

 1 2 1 1 2 1 2(( ) ) .( ) ( )fold effV r dr r r v r rd rrρ ρ= + −∫∫
� � � � �

 (2.26) 

An appropriate nucleon-nucleon interaction potential ( effv ) must be chosen. In [28] the 

Jeukenne, Lejeune and Mahaux [29] (JLM) effective interaction was used, as well as several 

other interactions and the JLM was found to give the best results for the nuclei studied. To utilize 

the JLM effective interaction, which is energy and density dependent, Eq. (2.26) is rewritten as: 

 1 2 1 1 2 2 0) ( ) , ) (( ) ( ( ),r r r v EV r d d r sρ ρ ρ δ= ∫∫
� � �

 (2.27) 

where 1 2s r r r+= −
� � � �

 and 

 0 0
0

( , ) ( , )
( , )

V E i
Ev

W Eρ ρ
ρ

ρ
+

=  (2.28) 
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has independent real and imaginary parts starting from elastic scattering of nucleons in infinite 

nuclear matter of density ρ . The local density, ρ , is approximated as 

 

1/2

1 1 2 2
2

.
2

s s
r rρ ρ ρ

    + −    
    

=
� �

� �
 (2.29) 

An improvement in the local density approximation is achieved by replacing the delta function in 

(2.27) with a Gaussian form factor 

 

3 2

2
( exp

1
)

s
sg

tt π

 − 
=  






 

�
�

, (2.30) 

where t is a range parameter. The resulting double folding potential is 

 ( ) ( ) ( ).V fold W foldU r N V r iN W r= +  (2.31) 

There are only two parameters in Eq. (2.31), or four if the ranges are left free, compared with six 

in an analogous potential of the WS form. Furthermore, since differences in the nuclei for the 

channel being described are accounted for in the density calculations, standard values of these 

parameters (Nv=0.37, Nw=1.00, tv=1.20 fm and tr=1.75 fm) turned out to work well for a variety 

of nuclei.  

 

D. Spectroscopic factors and asymptotic normalization coefficients 

 

The spectroscopic factor (SF) is a measure of the probability of finding, for example in 

the case of direct nucleon capture, the internal configuration of a core (A) plus a nucleon (n- 

either a proton or a neutron) in the composite residual nucleus (B = A + n). This is expressed 

formally in terms of the norm of the overlap function: 

 
2

2

( )

0

( )B

nlj An nljSF N I r r dr

∞

= ∫
�

, (2.32) 

where the overlap function is defined as [9] 

 

( )

( )

( ) ( ) | ( , ; )

ˆ( ) ( )B

B B B B l B BB

B l B jB B

B

An nlj A A n n B A n

l B

A A B j B B n n B l B j l m An An l j An

l m j m

I r

J M j m J M J M l m j m i Y r I r

ζ ζ ζ ζ= Φ Φ Φ

= ∑

�

. (2.33) 

Here the overlap function, )()( rI B

nljAn

�
, is proportional to the probability of removing a nucleon 

(either a proton or a neutron) at position r
�

from the composite system B and leaving the core in 



 16 

the state described by the wave function AΦ . The orbital is specified by the quantum numbers 

nlj  which are the principal quantum number, the orbital angular momentum and the total 

angular momentum respectively. Context should make it clear whether n refers to a nucleon or a 

principal quantum number. ζ  are the internal coordinates of the nucleus whereas r
�

 describes 

the motion of its center of mass. N is the antisymmetrization factor. 

 Far away from the nuclear interior, the tail of the radial overlap function is proportional 

to a Whittaker function over the radius, r, as 

 
1,

2
( ) ( )

(2 )
( )

B B
r R BlB B

An nlj An nlj

W r
I r C

r

η
κ> +

≈ , (2.34) 

which, in the case of n being a neutron with the Sommerfeld parameter 0=η , reduces to 

 ( ) ( )( ) ( ) ( )
r R

B B

An nlj An nlj lI r C i h i rκ κ
>

≈  (2.35) 

where 
B

ljAnC )(  is the asymptotic normalization coefficient (ANC) and defines the amplitude, 

AnAnεµκ 2=  is the wave number with Anµ  as the reduced mass and Anε as the nucleon 

separation energy, and lh  is a Hankel function.  

 Some reactions, such as direct proton capture below the Coulomb barrier, are very 

peripheral and their cross sections can be accurately calculated if the ANC is known. This is very 

useful since such sub-Coulomb capture reactions are extremely difficult to directly measure in a 

terrestrial laboratory. Not only is the cross section extremely low, which results in a very low 

count rate that requires long run times and makes one very sensitive to background, Coulomb 

screening may significantly affect results. In contrast, the ANC can be extracted from a heavy-

ion (HI) transfer reaction at a laboratory energy selected to make the reaction peripheral in order 

to keep the approximation in (2.34) valid.  Such a HI transfer reaction has a cross section orders 

of magnitude higher than that of the direct capture reaction, yet the information gained (the 

ANC) is directly applicable. 

 From (2.34) it is apparent that the radial overlap function dies off exponentially at large 

r, and therefore the largest contribution to the SF will be from the nuclear interior. Thus, while a 

peripheral HI transfer reaction described above would be appropriate for gaining information 

about the tail of the overlap function, it will not probe the nuclear interior and will not be useful 

in experimentally measuring the SF. At higher energies transfer reactions (both HI and (d,p)) 
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become less peripheral and begin to give information about the nuclear interior. However, for 

these non-peripheral reactions the traditional method of extracting the SF by normalizing the 

distorted wave Born approximation (DWBA) cross section (see below) to the experimentally 

measured cross section is inadequate due to antisymmetrization and many-body effects making 

the single particle approximation used invalid. 

 The cross section for a transfer reaction βα =+→+= bBaA , where a particle x is 

transferred from a to A, may be expressed, omitting the notation for spin and angular 

momentum, in terms of the transfer matrix element 

( )
2

22

~

2
βα

α

ββα

βα π

µµσ
T

k

k

d

d

ℏ

=







Ω

, 

where )(βαµ  and )(βαk  are the reduced mass and the wave number respectively in channel 

)(βα  and the transfer matrix element  

 
( ) ( )T V Uβα β β β β αχ − += Φ − Ψɶ . (2.36) 

Here 
)(+Ψα  is an exact solution to the Schrödinger equation and includes both energy of the 

relative motion and the internal structure of the entrance channel α. ββ UV −  is the interaction 

potential in post form. 
)(−

βχ  is the wave function of the relative motion in the exit channel β and 

BbΦΦ=Φ β  is the bound state wave function for the intrinsic state of the nuclei b and B in the 

exit channel. This transfer matrix element contains the amplitude of the transition from entrance 

channel α to the exit channel β. Because 
)(+Ψα  is an exact solution of the Schrödinger equation it 

can be decomposed into a sum over all physically allowable eigenfunctions making the transition 

amplitude  

 
( ) ( )T V Uβα β β β β γ γ

γ

χ ψ− += Φ − Φ∑ɶ , (2.37) 

where ∑ =ΦΦ
γ

γγ 1|)(| . This shows that all available channels (γ) may contribute to the 

transition probability α→β. 

 It is not possible to calculate the exact solution, αΨ , to the many-body scattering 

problem. However, this solution can be approximated to first order as the product of a wave 
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function describing the internal configuration of the nuclei in channel α and a wave function 

describing the relative motion in that channel, 

 
( ) ( )

α α αχ+ +Ψ ≈ Φ . (2.38) 

Inserting this approximation into the transition matrix (2.36) above gives 

 
( ) ( )DWBAT V Uβα β β β β α αχ χ− += Φ − Φɶ , (2.39) 

the DWBA transition matrix, which essentially assumes a one-step process.  

The distorted waves that describe the relative motion in the entrance and exit channels 

are solutions to the Schrödinger equation where the potential U is a complex optical model 

potential, typically in the form of a Wood-Saxon potential that has been fitted to elastic 

scattering data. Such a fit to elastic scattering data ensures the correct form for the distorted 

waves asymptotically as r→∞, but may not be accurate near the nuclear surface where the 

reaction typically takes place.  

Another approximation taking place is that in the DWBA only the direct reaction from 

entrance channel α to the exit channel β is considered. The other contributions to the matrix 

element shown explicitly in (2.37) are neglected, which for a direct reaction is usually a good 

approximation. For less peripheral reactions at higher energies, where compound nucleus 

formation or multi-step processes may take place, this approximation becomes less appropriate. 

 Equation (2.39) may be written to show explicitly the bound state wave functions for the 

nuclei in the channels α and β: 

)()(~ +− ΦΦ−ΦΦ= αββββα χχ aAbB

DWBA UVT . 

With some rearranging and utilization of the definition of the overlap function (2.33) the transfer 

matrix becomes 

 
( ) ( )( ) ( ) .DWBA A a

B bT I r V U I rβα β β β αχ χ− += −
� �ɶ  (2.40) 

In the single particle approximation the radial overlap function may be written [6] as 

 
( ) ( ) 1/2( ) ( ) [ ] ( )

B B B B B B B

B B sp sp

Al j Al j n l jI r I r SF rφ≈ = , (2.41) 

where )(r
BBB jlnϕ  is the normalized single particle radial wave function. Subscripts denoting the 

principal quantum number n, the orbital angular momentum l and the total angular momentum j 

have been added for clarity. Using this single-particle approximation and bringing out of the 
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integration the SFs, the DWBA cross section can be parameterized in terms of the single particle 

SFs as 

 
( ) ( ) ( )

B B B B B B a a

B B

sp sp DWBA

Axl j bxl j l j l j

j l

d
SF SF

d

σ
σ θ=

Ω ∑ . (2.42) 

Typically (2.42) is used to determine SFs from normalization to experimental data in order to 

compare with SFs from shell model calculations. It is important to note, however, that the SFs in 

(2.42) are, because of the approximation in (2.41), actually single particle SFs and are not 

necessarily directly comparable with the SF from (2.32), which is dependent on the behavior of 

the radial overlap function in the nuclear interior. If the reaction used to get the single-particle 

SF is peripheral, the nuclear interior is not probed and therefore the result is extremely model-

dependent. On the other hand, a non-peripheral reaction will likely not be accurately described 

by the single-particle approximation as many body effects become important and other channels 

contribute to the cross section. 

 It has been shown [6] that if the reaction is peripheral the more appropriate quantity to 

extract is the ANC. In the asymptotic region the radial bound state wave function of (2.41) may 

be written as 

 
, 1/2 (2 )

( ) B BN

B B B B B

l Br R

n l j l j

W r
r b

r

η κ
ϕ − +>→  (2.43) 

for protons. A similar expression may be written for neutrons in terms of a Hankel function as 

(2.34) becomes (2.35) since 0=η . However, in the interior of the nucleus the shape of ϕ  will 

depend on the geometry of the binding potential that is used to calculate it. This geometry is not 

typically known and this results in ljb  that depend on the geometry, specifically on the radius (r) 

and diffuseness (a) if the binding potential used is of the WS form. 

 Comparing (2.34), (2.41) and (2.43) gives the relationship between the ANC, the single-

particle SF and the single-particle ANC (
BB jlb ): 

 

2

( )

2

( )

( )

B B

B B

B B

B

Axl jsp

l j

l j

C
SF

b
= . (2.44) 

And from (2.44) the cross section may be parameterized in terms of the ANCs: 

 
2 2

2 2
( ) ( ) B B a a

B B a a

B B B B a a

DW

l j l jB a

Axl j bxl j

j l Axl j bxl j

d
C C

d b b

σσ
=

Ω ∑ . (2.45) 
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The ratio of the calculated DWBA cross section to the product of the squared SPANCs is 

parameter-independent for a highly peripheral reaction, and thus, unlike the single-particle SF, 

the ANC extracted from a peripheral reaction is a parameter-independent quantity. Therefore, in 

(2.45), the ANC 
B

jAxl BB
C  can be determined in the above transfer reaction if one has prior 

knowledge of 
a

jbxl aa
C  from another measurement without detailed knowledge of the bound state 

wave functions and optical model potentials used in the analysis of that previous measurement. 

This is in contrast to the single particle SF which does require such information and is very 

model dependent. However, for non-peripheral processes such as s-wave neutron capture, the SF 

is clearly the more appropriate quantity, as the ANC only contains information about the 

normalization of the tail of the overlap function, and does not tell anything about the form of the 

overlap function in the interior. To solve this problem a reliable and model independent method 

to extract spectroscopic information for reactions with a non-trivial interior contribution is 

needed. 

 

E. New method for extracting spectroscopic factors 

 

 A new method for extracting SFs has been proposed [8] that utilizes the ANC.  It 

requires two measurements, one peripheral to determine the ANC and a second that has a 

significant contribution from the nuclear interior.  In this second, non-peripheral experiment, the 

ANC is used to fix the external component of the reaction amplitude leaving the internal part 

whose normalization is determined by the SF. Given that most transfer reactions used to 

determine SFs in the laboratory are largely peripheral and that the overlap functions (and thus, 

via (2.32), the SFs) are dominated in their normalization by the interior region, fixing this 

significant external contribution is very important. The advantage to this approach is that it 

experimentally constrains variables that would otherwise be arbitrarily assigned, thus eliminating 

significant uncertainty in the final result. 

To illustrate this, consider a (d,p) stripping reaction A(d,p)B. Equation (2.39) then 

becomes 

 
( ) ( )( )DWBA B

An pnT I r Vβα β αχ χ− += ∆ Φɶ , (2.46) 



 21 

where pnΦ  is the bound-state deuteron wave function and V∆ is the interaction potential, which 

in post form is pBpApn UVV −+ . The model independent definition of the SF is given by (2.32), 

however the antisymmeterization factor N will be absorbed into the overlap function in the 

following. Because the particle being transferred is a neutron, the Sommerfeld parameter η  is 

zero, here again the Whittaker function in (2.34) reduces to a Hankel function (2.35): 

 ( ) ( ) ( )
r R

B

An nlj nlj lI r C i h i rκ κ
>

≈ . (2.47) 

Furthermore, the overlap function may be assumed to be proportional to the bound-state wave 

function [8], 

 ( ) ( )( ) ( )B

An nlj nlj An nljI r K r= Φ . (2.48) 

Here nljK  is an asymptotic proportionality constant that is related to the SPANC by  

 lj nlj nljC K b= . (2.49) 

Applying (2.48) and (2.49) to (2.47) gives the asymptotic behavior of the neutron single-particle 

wave function: 

 ( ) ( ).
r R

An nlj nlj lb i h i rκ κ
>

Φ ≈  (2.50) 

Given (2.32) and the assumed normalization of the bound-state wave function )()( rnljAnΦ , it 

follows that 
2

nljlj KSF = . However, it is important to remember that in the nuclear interior (2.48) 

may not hold as the overlap function becomes non-trivial and its behavior is not necessarily 

described by the single-particle bound-state wave function. Applying (2.48) to the transition 

amplitude (2.46) gives 

 
( ) ( )

( ) ( )DWBA

nlj An nlj pnT K r Vβα β αχ χ− += Φ ∆ Φɶ . (2.51) 

This reaction amplitude can be split up into an exterior and an interior part as 

 int[ ]DWBA

nlj nlj nlj extT K T b K b Tαβ = +ɶ ɶ ɶ . (2.52) 

In (2.52), due to the application of (2.50), the exterior matrix element, extT
~

, does not depend on 

the SPANC. However, the interior component does depend on it through )()( rnljAnΦ . From 

(2.49), the normalization of the exterior component is given by the ANC. This leaves the interior 

part whose normalization is through the SF. 



 22 

 To make use of (2.52) a transfer reaction must be selected that has a non-trivial 

contribution from the interior but that can still be described by DWBA. In order to compare such 

an experiment with the DW calculation, dividing (2.52) by the ANC and then taking the square 

norm gives a function 

 

2

int( )DW

nlj ext

nlj

T
R b T

b
= +
ɶ

ɶ , (2.53) 

whose experimentally measurable counterpart is 

 

exp

exp

2

lj

d

dR
C

σ
Ω= . (2.54) 

By setting (2.53) equal to (2.54), the SPANC, bnlj, is experimentally fixed and the SF is given by 

2

2

nlj

lj

lj
b

C
SF = . 

 To reiterate, this approach requires two measurements. One experiment is needed to find 

the ANC if it is not already known. This could be, for instance, a HI transfer reaction that is 

performed at an energy selected to ensure that the reaction is peripheral (and thus that 0
~

int =T ). 

Once the ANC is known, a second reaction is measured that has a non-negligible int

~
T . As the 

reaction becomes less peripheral, the dependence on bnlj in (2.53) becomes stronger and thus the 

uncertainty of the SF is reduced, however at some point the assumptions inherent in DWBA 

analysis become less valid and thus the theory does not accurately describe the reaction taking 

place. 
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CHAPTER III 

EXPERIMENTAL SETUP AND PROCEDURES 

 

 All experiments were performed at the Texas A&M University Cyclotron Institute with 

beams from the K500 superconducting cyclotron. The two experiments performed on the 

multipole-dipole-multipole (MDM) spectrometer were done using the beam analysis system 

(BAS). The beams impinged with thin foil targets in the reaction chamber of the MDM beamline 

and reaction products were measured using the high-resolution MDM spectrometer coupled with 

the Oxford ionization chamber detector. A third experiment was performed using the Momentum 

Acromat Recoil Spectrometer (MARS) and the Texas A&M-Edinburgh-Catania Silicon Array 

(TECSA). 

 In this chapter the following conventions will be used: the z axis is defined as the axis 

along which the beam travels, the x axis is the horizontal axis perpendicular to the path of the 

beam, and the y axis is the vertical axis perpendicular to the beam path. The angles θ and φ are 

used to represent angles in the x-z plane and in the y-z plane, respectively.  

 

A. Beam analysis system 

 

 The Beam Analysis System [30] was constructed to improve the quality of beams 

available to the MDM spectrometer. It consists of seven dipoles and eight quadrupoles and has 

slits at three positions. Following entrance slits, the first four dipoles make an 88° counter-

clockwise bend after which there is a second set of slits. Another set of three dipoles, which 

makes an 87° clock-wise bend, and a third set of slits serve to remove slit-scattered particles 

from the beam. The net result is a clean beam with a ∆E/E resolution of 1/2500 and about a 2 

mm x 2 mm spot size on target. This resolution can be compared with a 1/700 resolution when 

using a K500 beam without the BAS [30]. The BAS was used for both of the MDM experiments 

described here. A simplified diagram of the beam line setup showing the K500, the BAS and the 

MDM beam line is shown in Fig. 2. 
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Fig. 2. Diagram of the beam line used in the experiments on MDM including the BAS. 

 

B. MDM spectrometer 

 

 The MDM spectrometer [31] is a 1.6 m radius, 100° dipole spectrometer with an 

entrance quadrupole. At Texas A&M the coil was modified and some iron was added in the 

return yoke to increase the K-factor. The spectrometer is mounted on a rotatable arm that can be 

moved to measure a large range of scattering angles. The beam is focused on the target at the 

center of a sliding-seal reaction chamber. Downstream of this target position is a slit box with 

several collimators which define the angular acceptance of the spectrometer. For the 

measurement of the angular distribution of reaction cross sections a collimator with 4° 

acceptance in θ and 1° in φ was used, while a five finger collimator mask was used for position 

calibrations and to check the reconstruction of the target angle. A third collimator with a single 

centered slit with acceptance 0.1° in θ and 1° in φ was also used. 

 The dipole magnet is capable of fields in excess of 1 T. Entrance and exit field 

boundaries are designed to optimize the spectrometer performance. The exit boundary has a 
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concave radius of 0.5 m and serves to make the focal plane of the detector linear and 

perpendicular to the z axis. The 0.63 m convex radius of the entrance boundary corrects some 

aberrations that result from the curvature of the exit boundary. The entrance quadrupole magnet 

focuses the scattered particles in the y direction, reducing the necessary vertical gap for the 

dipole for a given acceptance in φ. The spectrometer is shown in Fig. 3. 

 

  

 

Figure 3. The MDM spectrometer. (D.M. Pringle et al. NIM A245 (1986) pg. 230-247) 

 

 

C. Oxford detector 

 

 The Oxford detector is an ionization chamber detector placed after the exit of the MDM 

spectrometer and is used to measure the energy and trajectory of scattered particles (Fig. 4). The 

position of the detector along the z axis can be changed to place the focal plane inside of the 

detector. Entrance and exit windows are Aramica and are 25 and 50 µm thick, respectively. The 

inside of the detector is filled with isobutane gas at a pressure of about 50 torr. This gas is 
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continuously flowed in order to remove molecules broken down by the beam and to prevent 

charge build up. 

 

 

Fig. 4. The Oxford detector. 

 

 Energy loss is measured by means of anode plates along the top of the detector that 

collect electrons released by the ionization of gas molecules along the trajectory of the particles. 

These electrons are driven to the anode plates by the potential gradient between the negatively 

biased cathode (typically at -500 V) and the Frisch grid at the top of the detector just under the 

anode plates which are grounded through a resistor. Uniformity of the field in this region is 

achieved by biased rods running along the sides of the detector parallel to the z axis which are 

coupled between the two sides of the detector by field shaping wires connected to rods at the 

same potential on either side of the detector. The three anode plates along the top are split into 

two banks (the first and second make up ∆E1 and the third is ∆E2), giving two signals for energy 

loss along the particles’ path in the detector. Due do noise in the second bank, only the first was 

used for particle identification. 

 The trajectory of particles in the detector is measured with four position-sensitive 

avalanche counters (ACs) that lie perpendicular to the z axis and slightly above the plane of the 

Frisch grid. These consist of very thin wires at high potential (about 1.5 kV) inside a half shell 
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that is kept at +100V. The bottom (towards the detector) has screening wires to contain the field. 

When electrons pass by the screening grid and experience the large field, an avalanche event 

occurs and the resulting charge is collected at both ends of the thin resistive central wire. Current 

readout at both ends is recorded and compared to find the position of the avalanche event. The 

difference in position at the first and fourth ACs was used to find the angle of the particle’s 

trajectory inside of the detector (θd). This angle is compared with angles measured between the 

other sets of wires to check for consistency. The position in x in the focal plane is then found 

using θd and the position in x at the nearest AC. The position of the focal plane along z is known 

prior to the measurement by means of a RAYTRACE [32] calculation. The code RAYTRACE 

calculates the transformation of a vector representing the position, mass, charge and velocity of a 

particle through the optical matrices that represent the components of the system being 

calculated. It is very important in such a calculation that the field strengths and geometries be 

carefully determined for all of the elements entered, which has been done for the MDM 

spectrometer. The version of RAYTRACE used in this work has been set to accept several target 

angles and to give as output the positions and angles at a user-determined point along the z-axis 

after the spectrometer, taking into account the kinematic variation with angle. This output can 

then be checked against the observed scattering through the 5-finger mask. 

 After passing through the exit window, the particles traverse a 1.25” vacuum gap before 

being stopped in a BC-400 plastic scintillator. Photons resulting from the interaction of the 

particles with the scintillator are collected in two Hamamatsu 1960 photomultiplier tubes 

(PMTs), one on each side of the scintillator, which are in physical contact with the light guides 

No grease or optical epoxy was used between the light guides and the PMTs. Epoxy for this joint 

is not acceptable as different scintillators must be used with the same PMTs. Optical grease was 

not used in order to eliminate the possibility of a degradation of the light transmission due to 

imperfect application of the grease or movement of the scintillator or PMTs after application, 

such as during the pumping out of the chamber. The thickness of scintillator was chosen based 

on the energy and Z of the particles to be measured: a 0.25” scintillator backed by a 0.75” Lucite 

sheet was used for heavy ions and a 1.5” scintillator was used for (d,p) reactions. The use of two 

phototubes gives an energy signal that is largely independent of the x position of the particle in 

the scintillator. 
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D. Signal processing and data recording 

 

 For these measurements an updated electronic scheme was used to record the signals 

from the Oxford detector. In this new setup, all electronics were put close to the detector in the 

cave in an effort to eliminate the cable patches between the cave and the counting room as a 

source of noise. Canberra model 2004 charge-sensitive preamplifiers are connected via short 50 

Ω coaxial cables to the ACs and the anode plates. These signals are then brought to a CAEN 

N568B 16ch shaper amplifier. The amplifier output is digitized by a Mesytec 32ch VME ADC. 

The PM anode one signals are digitized by a CAEN VME QDC while the anode two signals are 

used to make the trigger. A coincidence requirement between the two PMs is imposed using a 

Phillips 754 logic unit. The DAQ busy signal is used as a veto for the trigger to prevent triggers 

while data is being recorded. 

 The VME crate was controlled by a CES CBD 8210 and an SBS interface module 

connected via fiberoptic cable to a computer running a ROOT-based data transport program. 

Data was viewed online using a ROOT program and also recorded to disk for later offline 

analysis. 

 

E. Particle Identification 

 

 Two methods of particle identification were used. In the case of heavy ions (HI), a plot 

of energy loss collected in the first anode in the ionization chamber (∆E) versus the energy 

deposited when the particle stops in the plastic scintillator (Eres) was used in a standard ∆E- Eres 

scheme. Fig. 5 shows an example of such a particle identification with the particles of interest 

labled. 
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Fig. 5. Particle identification for the HI measurement. 

 

 

 The (d,p) reaction at Ed= 60 MeV required a different technique for particle 

identification due to the very small energy loss of both the deuterons and protons in the gas in 

the detector. For this reaction identification was done using only the scintillator. This could not 

be done using the same 0.25 “ thick scintillator used in the HI experiment. Thus, in order to 

improve the separation of the protons and the deuterons, I designed a new 1.5” thick scintillator 

and light guides. This scintillator is sufficiently thick to stop the protons from the (d,p) reaction. 

While the total energy deposited by the protons and the inelastically scattered deuterons that also 

make it into the detector is similar, they have very different path lengths (about 28 mm for the 

protons and 4.7 mm for the inelastic deuterons) to which the light output of the scintillator is 

roughly proportional, and the signals allowed easy p-d separation (Fig 6). 
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Fig. 6. Particle identification for 

14
C(d,p)

15
C. On the left is particle identification with a 0.25” scintillator 

through which the particles punch through and on the right is the new 1.5” thick scintillator which stops 

even the high energy protons. 

 

 

 

F. Position calibration of the Oxford detector 

 

 A position calibration is required to meaningfully compare the signals from the ACs. 

This is achieved by comparing the scattering of the beam on a thin gold target to a calculation by 

the code RAYTRACE. The input parameters for the MDM in RAYTRACE are well known. To 

get discrete positions at the ACs a five finger mask is used in the collimator position that consists 

of five slits 1° high in φ, 0.1° wide in θ and at a 0.765° spacing in θ with the middle slit at the 

central angle of the spectrometer. These five fingers are seen at each of the four ACs. A gate is 

placed on θd (determined by comparing the positions in the first and fourth ACs) for each finger, 

and the position of particles in these gates at each AC is plotted. RAYTRACE is used to 

calculate the trajectory of particles that passed through each slit through the spectrometer and 

gives the position of these particles at the entrance of the detector and their angle in the detector. 

For each wire a second-order polynomial is found that gives the calculated position in mm as a 

function of observed channel number. 

Protons 

deuterons 

deuterons 

protons 
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G. Angle reconstruction 

 

 By the design of the spectrometer, in the focal plane the kinematic variation 

θ
θ

d

dp

p
k t 








≡

1
)(  cancels out the dependence on the scattering angle at the target so that the 

position in the focal plane (which is perpendicular to the z-axis by the design of the 

spectrometer) is only dependent on the magnetic rigidity of the particle (Bρ). Thus one can 

uniquely determine the scattering angle at the target, θt, for a given focal plane position by 

measuring the angle in the detector, θd. 

 To make use of this, a RAYTRACE calculation is performed for a given reaction or 

scattering process for several values of θt and for each value θd is found. From this calculation θt 

is plotted as a function of θd: 

2

ddt CBA θθθ ++= . 

This calculation is then repeated at several energies so that the coefficients A,B and C can be 

plotted as second order polynomial functions of the focal plane position. It should be emphasized 

that this target angle reconstruction is accomplished with only RAYTRACE calculations, unlike 

the position calibration. However, it can be checked during the experiment by verifying that the 

reconstruction correctly reproduces the angles of the rays from the five finger mask and adjusted 

if necessary. 

 

H. TECSA 

 

 The Texas-Edinburgh-Catania Silicon Detector Array, TECSA, is a high-efficiency 

array of annular sector silicon strip detectors designed to study reactions involving radioactive 

beams produced by MARS or by the facility upgrade at the Texas A&M Cyclotron [33]. The 

array consists of up to 16 Micron Semiconductor YY1-300 detectors with 8 detectors being used 

to measure position and energy loss and the other 8 behind in close geometry to measure the 

residual energy.  Each detector has 16 annular ring sectors and is about 300 um thick. It is a 

cooperative effort of Texas A&M, the University of Edinburgh and the INFN Catania of the last 

two years. The electronics were from Edinburgh from the LEDA project and Catania provided 

the detectors and the deuterated polyethylene targets for the d(
14

C,p)
15

C measurement. Texas 
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A&M provided the infrastructure and as part of that I designed the chambers for the detectors 

and targets as well as the target assembly and electrical feed through flanges. 

 The targets are on a holder with a rotating, six position wheel to allow for up to five 

targets and one target detector. The target detector is a dual-axis dual-lateral position sensitive 

detector from Micron [34], which allows for good position and energy resolution whilst 

minimizing the number of signals that must be processed. This target detector is in addition to 

the usual MARS target detector, upstream of TECSA, on which initial beam identification and 

tuning is performed and allows precise focusing of the secondary (radioactive) beam so as to 

minimize the beam spot size at the target and the associated degradation of the angular 

resolution. The target holder is on a precision linear motion track mounted to a plate in the 

detector chamber to allow reproducible control of the z-axis position of the target relative to the 

detector-as well as fixing the x and y position-and thus the angular range of the array. A 

schematic showing the general setup is given in Fig. 7. Fig. 8 shows the array mounted in its 

chamber on the back end of MARS. 

 

 

Fig. 7. A schematic showing the general setup of TECSA. Here the array is shown configured to measure 

backwards (lab) scattering, but it can be reconfigured to measure in the forward direction. 

 

 The electronic readout consists of RAL-108 16 channel preamplifiers (one for each 

YY1-300 detector) whose output goes into RAL-109 shaper-amplifiers [35].  The RAL shaper-

amplifiers have both an analog output which is converted by Mesytec VME ADCs and an ECL 

MARS 

Radioactive beam from MARS 

TECSA target 
 

TECSA silicon ring array 

Distance to target 
determines angular range 
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timing signal output.  The ECL output is split between CAEN VME TDCs and an OR module 

which gives a NIM logic signal for an event in any of the detector strips.  This OR signal is sent 

to a Phillips 756 logic unit where an OR condition is made for all of the strips in all of the 

detectors.  This final OR is used in the master trigger and for the ADC gates. The ADC, TDC 

and scaler outputs are read using our in-house data acquisition system. 

 The commissioning run for TECSA was the d(
14

C,p)
15

C experiment mentioned 

previously that was used to independently verify the ANC for CnC 1514 ↔+ . 

 

 

 

Fig. 8. The TECSA silicon detector array. Target chamber has been removed for a better view. 
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CHAPTER IV 

DATA ANALYSIS 

 

 

 The data analysis is divided into two parts. First, the ANC for 
15

C↔
14

C+n is determined. 

This primarily involves the analysis of the heavy ion (HI) neutron transfer reaction 

13
C(

14
C,

15
C)

12
C. Additionally, the inverse kinematics reaction d(

14
C,p)

15
C measured using 

TECSA was used to verify the result. The second part of the analysis then uses this ANC in an 

attempt to find the SF for the configuration (
14

C+n)gnd in 
15

C. 

 

A. ANC for 
15

C↔
14

C+n 

 

1.
 13

C(
14

C,
15

C)
12

C 

 

 In this experiment a 12 MeV/nucleon 
14

C beam impinged on a 
13

C target. Reaction 

products were measured using the MDM spectrometer and the Oxford detector. Because of 

similar Bρ values for the elastically scattered particles and the neutron transfer reaction products, 

both elastic scattering and transfer were able to be measured simultaneously. Particle 

identification was made by plotting the energy loss in the gas against the energy deposited when 

stopping in the scintillator, as shown in Fig. 5, and polygon gate conditions were set around the 

elastic and transfer peaks. Reaction products were measured with the MDM spectrometer at 4°, 

6°, 9°, 12° and 15°, each spectrometer setting used the 4° x 1° mask, allowing overlap to check 

for consistency. Because of low cross sections at larger angles, only elastic scattering was 

measured at 15°. Limited beam time in conjunction with the lower cross sections at larger angles 

limited the angular range of the measured elastic scattering more than would be ideal, as will be 

apparent in the discussion of the optical model fits. 

 Target thickness was measured offline using a 
228

Th α source. Both the Au and 
13

C 

targets were placed onto a ladder attached to a linear motion vacuum feed through, as was an 

empty frame. This ladder was then placed between the source and a 1mm thick silicon detector. 

The silicon detector was connected through a preamplifier to a shaping amplifier whose output 



 35 

was digitized and recorded using a multichannel analyzer (MCA). The 
228

Th spectrum was 

measured with the empty frame in place and then the spectrum was again measured with the Au 

and then the 
13

C targets. A calibration was performed for the spectrum taken with the empty 

frame and then the shift of the peaks with the other targets was measured. The energy shifts of 

five of the α peaks in the 
228

Th spectrum were then compared with energy loss calculations 

performed using LISE [36]. The thickness of the 
13

C target was found to be 101 µg/cm
2
 ± 4 

µg/cm
2
. 

 The target angle was reconstructed as described in the previous chapter. It was checked 

with the five finger mask with the spectrometer at 4°. Comparison of the positions of the 

reconstructed target angles with the known angles of the slits of the mask gave a second order 

polynomial correction function for the target angle that was used for all spectrometer angles. The 

validity of this correction was checked by observing that the high and low angle cutoffs in the 

reconstructed target angle corresponded to the known edges of the 4°x1° mask. The solid angle 

of the 4°x1° mask was calculated using the formula: 

 
2

ˆ

s

n da

r
Ω = ∫∫

�
i

 (4.1) 

where n̂  is a unit vector that points in the direction from the center of the target to the area 

segment da
�

. The distance from the target to the area segment of the slit is r and s denotes 

integration over the surface of the slit. 

 Using the polygon gate condition shown in Fig. 5, the position in the focal plane of 

elastic (or transfer) particles is plotted against the (corrected) reconstructed target angle (Fig. 9). 

The position in the focal plane depends on the energy of the particle and can be calculated using 

RAYTRACE. Inside the particle ID gate for 
14

C are both elastic and inelastic scattering, and 

therefore another polygon gate is placed around the elastic scattering. This is then projected onto 

the target angle axis and divided into 16 bins 0.25° in width, which gives the angular distribution 

for this spectrometer setting.  



 36 

 

Fig. 9. The contents of the elastic gate, which was shown in Fig. 5, is plotted in position in focal plane 

against reconstructed target angle. Peaks from scattering on impurities in the target are labeled. 

 

Normalization of the measured angular distribution into a differential cross section is given by 

 ( ) det

inc t

Nd

d N N

σ
θ =

Ω ∆Ω
, (4.2) 

where Ndet is the number of particles detected in solid angle ∆Ω  at angle θ  for Ninc number of 

particles incident on a target that is Nt atoms/cm
2
 thick. Differential cross sections are typically 

given in millibarns/steradian (mb/sr) where 1 mb = 1x10
-27

 cm
2
. The number of particles incident 

on the target is determined by the integration of the beam current in the Faraday cup after the 

target. A correction for the dead time of the data acquisition system is also applied. 

 Elastic scattering on several impurities in the target can be seen in Fig. 9. The impurities 

are identified by comparing the location of the focal plane of particles scattered off of them and 

also their x position in the focal plane with RAYTRACE calculations. At small angles the 

scattering on impurities cannot be distinguished from scattering on 
13

C and therefore it is 

important to estimate the contribution of the impurities at these small angles. For scattering on 

the heavier impurities such as W, Fe and Si at small angles, the scattering should basically be 

Rutherford, however at larger angles (for Fe above about 4° in this case and for Si sooner) the 

cross sections may deviate significantly from that of Rutherford scattering. Therefore, to 

estimate the contribution of these impurities at small angles their angular distributions were 
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measured at larger angles where they were well separated from the scattering on 
13

C. The 

angular distributions were then compared with optical model calculations using a potential 

generated by a double folding procedure using generic normalizations and ranges. The data were 

then normalized to the calculations to find the amount of each impurity in the target. The most 

significant were Fe (1%), Si (0.4%) and O (2.7%). Using the calculated angular distributions and 

the normalized measured angular distributions at larger angles the contributions at forward 

angles were estimated and corrections were made for them. 

 

Optical model fits 

 

 The elastic scattering data were used to find a suitable OMP that could be used for the 

transfer DWBA calculation. An optical potential of the form of (2.25) was used, however the 

imaginary surface and spin orbit interactions were neglected as a good fit was possible without 

them and adding them would greatly increase the number of parameters and thus the complexity 

of the fitting procedure. Calculation of the elastic scattering and fitting to the experimental data 

were performed using the optical model elastic scattering code OPTIMINIX [37] and also in 

PTOLEMY [38]. Both of these codes are solving the Schrödinger equation that describes the 

relative motion, using the user-specified potential, and calculating the differential cross section 

from the resulting wave function. The codes have the option, used here, to read in experimental 

scattering data and associated uncertainty to which they fit, using a χ
2
 minimization routine, the 

calculated distribution by varying the parameters specified as free by the user. A grid search was 

performed in V, the depth of the real potential, while allowing the other five parameters to be fit 

for each point. The results, shown in Fig. 10, indicate a highly ambiguous solution with some 

discrete ambiguities for low V, and continuously ambiguous beyond about 100 MeV. Since it 

was apparent that practically any V could produce an acceptable fit, several were selected for 

further fitting. 
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Figure 10. Grid search in V for elastic scattering of 
14

C on 
13

C. 

 

 For each of the five selected WS potentials another fit was then performed allowing all 

six parameters to be optimized. The results are summarized in Table 2. The real depth, V, and 

correspondingly the real volume potential varies greatly, while the imaginary depth, W, is nearly 

constant at around 15 MeV. Each potential gives a good fit to the elastic scattering data. In Table 

2, rv(w) and av(w) are the real (imaginary) radius parameter and diffuseness respectively, χ
2
 is given 

by 

 

2

2

2

( ( ) ( ))1

( ( ))

exp i theory i

i exp iN f

σ θ σ θ
χ

δσ θ−
=

−
∑ , (4.3) 

where N is the number of data points, f is the number of free parameters and ( )exp iδσ θ  is the 

experimental uncertainty of data point i. Jv and Jw are the volume integrals per nucleon pair 

defined as 

 2

0

4
( ( ) ( ))v w

p t

iJ V r iW r r drJ J
A A

π ∞

+= = − +∫ . (4.4) 

The real volume integral varies significantly as is expected for the large range of V, while the 

imaginary volume integral varies little. The mean squared radii are given in the columns labeled 

Rv and Rw. 
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Table 2. Optical model potential parameters for 12 MeV/nucleon 
14

C elastic on 
13

C. 

 V 

(MeV) 

W 

(MeV) 

rv (fm) rw (fm) av (fm) aw (fm) χ2 Jv 

(MeV 

fm3) 

Rv (fm) Jw 

(MeV 

fm3) 

Rw (fm) 

WS1 77.1 13.32 0.987 1.209 0.703 0.723 3.09 225 4.480 68 5.206 

WS2 118.7 14.15 0.927 1.191 0.690 0.739 3.4 292 4.275 69 5.182 

WS3 162.4 15.03 0.891 1.169 0.674 0.767 3.59 357 4.132 71 5.169 

WS4 203.1 16.04 0.894 1.133 0.627 0.825 3.6 438 4.038 71 5.183 

WS5 248.8 16.66 0.885 1.115 0.606 0.848 3.65 516 3.965 72 5.180 

 

 

 

 The real potentials are plotted in Fig. 11 as a function of radius. While the depths at r=0 

vary significantly, the potentials are similar in the surface region (around 5 to 9 fm), which is 

where the peripheral transfer reaction is expected to take place. The radial dependence of the 

calculation was evaluated by placing a Gaussian perturbation at various radii and recording the 

χ
2
 for each point. The result of this test is shown in Fig. 12. The strongest radial dependence is 

from about 5.5 to 7.5 fm, with a much less significant effect at smaller radii. Angular 

distributions from four of the potentials are shown in Fig. 13, and a reasonable agreement with 

the data for the substantially different potentials is evident, which highlights the ambiguous 

nature of optical potentials fit to elastic scattering. Also shown in Fig. 13 is a decomposition of 

the angular distribution into near- and far-side components. An interesting feature of the 

calculations is the peak in the far-side component at around 45°, however no reliable data were 

obtained at these larger angles to compare with the calculation. This is an example of the 

ambiguity inherent in these calculations, particularly when too little data are available. 
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Fig. 11. Real part of the potential as a function of radius. Note the convergence in the surface region. 
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Fig. 12. On the left is the effect on the χ
2
 of a Gaussian perturbation placed at different radii for the WS1 

OMP. On the right is the transfer S-matrix as function of impact parameter for the DF OMP, showing that 

most of its peak is well into the surface region (~6 fm). 
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Fig. 13. Experimental data points are shown as black dots. Also shown are the calculated near (blue line) 

and far (red line) distributions and their coherent sum (black line). 

 

 

Double folding 

 

 An alternative approach, the double folding (DF) method with the JLM effective 

interaction described in Ch. 2, was also used to obtain an optical potential for the 
14

C + 
13

C 

elastic channel. The average values Nv=0.37, Nw=1.0 for the normalizations found in [28] were 

used as a starting point for the calculations. A reasonable fit to the data (reduced χ
2
=3.4) was 

obtained with Nv=0.45, Nw=0.9, tv=1.2 and tw=1.75 and is shown in Fig. 14. A smearing routine 
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was applied to the calculation to reflect the angular resolution of the detector that was observed 

with the five finger mask (δθ=0.30° C.M). A near and far side decomposition of the calculation 

is shown in Fig. 15. The higher angle peak in the far side component is absent for this potential. 
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Fig. 14. Experimental points are the black dots. The blue and red lines are the optical model calculations 

obtained with the double folding procedure before and after, respectively, smearing to reflect the 

experimental angular resolution of the detector. 

 



 43 

 

Fig. 15. Double folding potential near/far decomposition. 

 

Transfer 

 

 The angular distribution for the HI neutron transfer reaction was measured for the 
15

C 

ground state (J
π
=1/2

+
) and first excited state (Eexc=740 keV, J

 π
=5/2

+
) from about 5° to 30° C.M. 

An example of a transfer distribution is shown in Fig. 16, with data taken from the gate labeled 

“transfer” in Fig. 8. Because of the proximity and low counts in the ground state peak, a fit of the 

ground state and first excited state to Gaussian peaks was performed in ROOT [39]. The 

resulting functions were then integrated to get the counts in each peak. An example of such a fit 

is shown in Fig. 17. 
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Fig. 16. Position in the focal plane vs reconstructed target angle. 
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Fig. 17. An example of a fit of Gaussian functions to the ground state and first excited state of 
15

C, plus a 

linear background. 

 

 DWBA calculations were performed using the code PTOLEMY with the optical 

potentials obtained by fits to the elastic scattering as input. Using the OMP, PTOLEMY solves 

the Schrödinger equation describing the scattering problem and computes the S-matrix for the 

user-specified range of orbital angular momentum values. The calculation of the wave functions 

is controlled by the choice of step size and radial cutoff (given in fm), which can be specified by 

using a built-in parameter set or be explicitly given. It is important to vary these values to check 

for convergence. With the wave functions calculated, PTOLEMY then computes the radial 

integrals for the transfer reaction and calculates the angular distribution for the cross section, 

again using a user-specified or built in parameter set to control the integration grid. For all the 

calculations shown here, these parameter values were varied in order to confirm convergence 

and stability in the calculated angular distribution for a given potential input. For each 

calculation the same potential was used for both the entrance and exit channels. In the case of the 

potential obtained through the double folding procedure, the real and imaginary parts of the 

potential were fit to a Woods-Saxon (WS) form over the surface region (3 to 9 fm) to obtain a 

potential to be used in the PTOLEMY DWBA calculation. The results of the calculations are 

shown in Fig. 18 and Fig. 19. The same calculation was performed for the 5/2
+
 first excited state 

and the results for that are plotted in Fig. 20. While the calculated angular distributions vary 
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significantly at larger angles, they agree reasonably well up to the first observed minimum 

around 12°. The reactions leading to a 
15

C exiting the target at larger angles are associated with 

smaller impact parameters and therefore may not be described well by the DWBA since other 

reaction channels may have a non-trivial influence. Perhaps more significantly, these reactions 

take place further into the interior of the nucleus at a radius that the elastic scattering is not 

sensitive to (see Fig. 12). The calculations were normalized to the experimental angular 

distribution to obtain the phenomenological SF.  
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Fig. 18. The calculated distributions for the ground state have been normalized to the experimental data 

from 5 to 11°. 
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Fig. 19. Double folding potential normalized to experimental distribution for the ground state. 
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Fig. 20. Angular distribution for the first excited state, shown with calculations (WS potentials from the 

grid search top, DF bottom) which have be normalized to the experiment. 
 

 The single particle ANC is given by [6] 
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( ) 12

nl

r
l

R

j

j

l

b
h rr

ϕ

κ> −= . (4.5) 

In this case, 0l =  for capture to the 2s1/2 ground state. Equation (4.5) holds for values of r well 

outside of the nuclear radius R. The wave function calculated by PTOLEMY divided by the 

Hankel function over r was plotted as a function of the radius and the value of this function in 

the asymptotic region where it is flat is the SPANC (see Fig. 21). This was performed for both 

13
C and 

15
C. The ANC can be determined by (2.42) given knowledge of the ANC

2
 for 

13
C↔

12
C+n, which is 13

1/2

2

(1 , )p C
C = 2.31 ± 0.08 fm

-1
 [40]. The ANC for 

15
C↔

14
C+n determined 

from the WS and DF fits are given in Table 3. The same procedure was also applied to the 

neutron transfer to the 5/2
+
 state in 

15
C. The angular distribution and the fits are shown in Fig. 

20, normalized to the experimental data in most forward peak of the distribution. The extracted 

values for C
2

d5/2 are summarized in the last column in Table 3. 
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Fig. 21. The blue diamonds are the calculated wave function, the magenta squares are the Hankel function, 

and the red triangles are the ratio between the two, which in the asymptotic region (beyond about 9 fm 

where it is flat) is equal to the single particle ANC for 
15

C (b2s1/2=1.37 fm-1/2) with r0=1.2 fm and a=0.60 

fm. 
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Table 3. Normalizations (N) and ANCs obtained with DWBA calculation using the WS OMP fits. 

 SF2s1/2 
1/2

2

2sC  (fm
-1
) SF1d5/2 

5/2

2

1dC x10
-3
 (fm

-1
) 

WS1-WS1 1.22 2.30 1.13 4.45 

WS2-WS2 1.16 2.18 1.02 4.03 

WS3-WS3 1.04 1.95 1.13 4.46 

WS4-WS4 0.98 1.83 1.20 4.74 

WS5-WS5 1.14 2.14 1.25 4.94 

DF 1.15 2.16 1.09 4.28 

Average 1.12 2.09 1.14 4.48 

 

 

 The sources of uncertainty in the ANCs for the gs were as follows: 4% target thickness, 

3% normalization to the number of incident particles, 5% data extraction and disentanglement 

from the 1
st
 excited state of 

15
C, 6% statistical uncertainty and 10% systematic uncertainty based 

on the variation of the results from the calculations. Adding these independent sources of 

uncertainty in quadrature gives an overall uncertainty in the C
2
 of 14%, and thus 

1/2

2

2sC = 2.09 ± 

0.29 fm
-1

. The first excited state had lower statistical uncertainty, around 1% at the forward 

angles, giving an overall uncertainty for its ANC
2
 of 13% and therefore 

5/2

2

1dC = (4.48 ± 

0.58)
310−

i  fm
-1

. 

 

2. d(
14

C,p)
15

C 

 

 The 
14

C(d,p)
15

C reaction was measured in inverse kinematics with an 11.7 MeV/nucleon 

14
C beam on a deuterated polyethelyne target using the TECSA detector array mounted on the 

MARS beam line at Texas A&M, as described in the previous chapter. The 3
+
 beam from the 

K500 cyclotron was fully stripped by a foil after extraction in order to remove the 
14

N impurity. 

MARS was used with no target at the primary (production) target position, allowing the 
14

C 

beam to simply pass through MARS to the secondary target position, where TECSA was 

mounted. The TECSA target thickness was 251 ± 5 µg/cm
2
 with a deuterium:hydrogen ratio of 

98:2. The detector array was mounted in the backward (lab) direction and protons from the 

reaction were measured (see Fig. 7). The reaction was measured with the distance from the target 

to the detector array at 20, 12, 5 and 2.8 cm covering an angular range of 102° to 165° lab (4.5° 
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to 32.2° CM) with overlap to check for consistency. The reaction rate was normalized to the 

incident beam measured in a Faraday cup immediately behind the target. 

 An adiabatic distorted wave approximation calculation (ADWA) was made using 

potentials taken from the CH89 [41] parameterization. In the ADWA the breakup of the deuteron 

in the entrance channel is handled explicitly and the transition matrix for a (d,p) reaction 

 ( ) ( )| |nA npT Vχ φ− += 〈 Ψ 〉ɶ  (4.6) 

reduces to [42] 

 ( ) | |ADW nA pn pnT Vχ φ χφ−= 〈 〉ɶ ɶ , (4.7) 

where the n-p effective interaction, pnV , is taken to be zero range and 

 0[ ] 0R VTE χ+ − =− ɶε . (4.8) 

Here 0ε  is the deuteron binding energy and  

 n p CV V V V= + + , (4.9) 

where nV  and pV  are, respectively, the neutron and proton optical potentials evaluated at half of 

the deuteron energy. CV  is the Coulomb potential. Finite range effects on the deuteron potential 

can be approximated by [43] 

 
| ( ) |

| |

d np n p d

FR

d pn d

U
V V V

V

φ φ

φ φ

〈 + 〉

〈
≈

〉
. (4.10) 

This potential still contains the proton- and neutron-target optical potentials evaluated at half the 

deuteron energy, but the evaluation is significantly more complex, requiring integration over the 

deuteron wave function along with the n-p interaction. A simple approximation of the finite 

range effect was given by Ref. [44] and this, along with the formulation of Ref. [43], were 

examined for several cases in [45]. For both approximations an increase in real and imaginary 

diffuseness and real and imaginary depths was observed, though the two approximations differed 

in amount. For all ADWA calculations performed here the Wales-Johnson approximation of [44] 

was used for simplicity of calculation. 

 The ADWA has the advantage that only nucleon optical potentials are required, for 

which CH89 was utilized. The Reid soft core potential [46] was used for the n-p interaction. The 

calculations were made using the coupled-channel reaction code FRESCO [47]. The 

experimental angular distribution and calculation for the transfer to the ground state and first 

excited state are shown in Fig. 22. 
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Fig. 22. On the left is the transfer to the 2s1/2 ground state. Blue squares mark the experimental data points 

and the red line is the ADWA calculation. On the right is the 740 keV 1d5/2 first excited state, with 

experimental points shown as blue squares and the ADWA calculation as a green line. 

  

 

 The overall experimental uncertainty for the measured differential cross section was 8%, 

which consisted of 2% due to target thickness, 2% incident beam normalization, 4% for the 

analysis and < 2% for statistics. This combined with a 10% systematic uncertainty gives an 

overall error in C
2
 of 12%. C

2
 for the ground state was found to be 

1/2

2

2C =2.01 0.24s ±  fm
-1

 and the 

first excited state 
5/2

2 3

1
(4.06 0.49) 10

d
C −= ± i  fm

-1
. 

 

B. Non-peripheral 
14

C(d,p)
15

C 

  

 For this experiment a 60 MeV deuteron beam was used on a high-purity 
14

C target. The 

incident deuteron energy of 60 MeV was selected to be a compromise between penetration into 

the interior of the nucleus to maximize the contribution of that region to the transfer matrix 

element and the low cross section at higher energies that results from a large momentum 

mismatch for the proton between the entrance and exit channels. Target thickness was 

determined online using a 15 MeV/nucleon 
20

Ne beam on the 
14

C target backed by a ~600 

µg/cm
2
 Au target. The single slit collimator was used and the position of the peak in the focal 

plane of the spectrometer was measured. This was repeated for several different positions on the 

target to check for uniformity. After the position in the FP had been measured for the different 

spots on the target, the 
14

C target was removed and the position in the focal plane was again 

measured. By comparing the shift to a calculation with RAYTRACE the thickness was 
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determined for each position on the target that was measured. The thickness for the 
14

C target 

was found to be 355 ± 25 µg/cm
2
. During the experiment (d,p) was measured on a 

12
C target of 

known thickness as well and this was compared with the measured 
12

C(d,p) from impurity in the 

14
C target to determine the amount of 

12
C in the 

14
C target. The 

14
C target was found to have 

approximately 1.6x10
18

 atoms/cm
2
 

12
C, or about 11% by number. Elastic scattering on the 

12
C 

target was also measured and this was used to correct the elastic angular distribution for 

scattering on 
14

C. 

 The angular distributions for both elastic scattering and (d,p) on the 
14

C target were 

measured. As noted in Ch. 3, particle identification was made using only a thick scintillator 

because of the low energy deposited in the isobutane gas by the light, high energy particles. 

Particle identification and the proton spectrum are shown in Fig. 23. 

 

 

Fig. 23. This histogram shows the content of the proton peak on the right in Fig. 6 plotted as a function of 

position in the focal plane. 

 

 The elastic scattering was fit using an OMP of the WS form. The global potential 

parameterization of [48] was used as a seed. To improve the fit, spin orbit coupling and the 

surface imaginary terms were neglected. A grid search for values of the real volume potential 
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was performed to find local 
2χ  minima (Fig. 24). The local minima were then used for a further 

fit over all six optical model parameters. The three fits are shown in Fig. 25. The potential 

parameters are given in Table 4. 
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Fig. 24. Grid search in V. 
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C. 
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 Table 4. Summary of optical potentials for elastic scattering of 60 MeV deuterons on 
14

C. 

 V 

(MeV) 

W 

(MeV) 

rv (fm) rw (fm) av (fm) aw (fm) χ2 

WS1 151 8.05 1.36 4.59 0.920 0.913 1.19 

WS2 274 17.3 1.79 2.54 0.729 1.30 1.437 

WS3 376 3.88 1.24 5.56 0.739 0.861 0.871 

 

 

 The (d,p) on 
14

C was calculated using the ADWA in the same manner as was described 

in the previous section (Fig. 26). In order to attempt to fix the single particle ANC and thus the 

neutron binding geometry, the angular distribution was calculated for r0=0.9 to 2.0 fm, while the 

diffuseness was kept fixed at a=0.65 fm. The potential depth was adjusted at each point to 

reproduce correctly the binding energy. In order to compare with the experiment, the calculated 

differential cross section was taken at CMθ =4.1°, which corresponds to the lowest measured 

angle and for each point was divided by the square of the SPANC to get the function RDW of Eq. 

(2.53). This was compared with Rexp and for the transfer to the ground state is shown in Fig. 27. 

Dependence on the interior is clearly very weak, particularly in comparison with the 

experimental uncertainty. Because of this, the method of [8] to fix the geometry and remove this 

ambiguity in the SF can not be applied for this case. The error bars on the theory points reflect an 

assumed 10% uncertainty due to the ambiguity of the optical potential. Uncertainty for the 

experimental value of R is from both the ANC (8%) and the measurement of the cross section at 

the lowest angle (14%). 
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Fig. 26. On the left is the angular distribution for transfer to the ground state (blue) and the ADWA 

calculation (red), the same is shown on the right for transfer to the d5/2 excited state.



 57 

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

0.8 1 1.2 1.4 1.6 1.8 2

r0 (fm)

R
 (

m
b

 f
m

)

 
Fig. 27. Calculated points are the blue diamonds. The experimental value is the black line with the bounds 

of the uncertainty indicated by the red lines. The uncertainty in the calculation due to optical potential 

ambiguity is taken to be 10% and is indicated by the blue lines. 

 

 

 

 Given the weak dependence on the interior observed, the ANC for the ground state was 

determined. The value was found to be 
1/2

2

2sC = 1.76±0.29 fm
-1

. Uncertainties were as follows: 

10% target thickness/composition, 5% data extraction, 3% normalization to the number of 

incident deuterons, 5% statistics, and 10% systematic uncertainty in the calculations, giving an 

overall uncertainty of 16%. This value was lower than those from the inverse kinematics (d,p) 

and the HI transfer experiment, which could be due to unaccounted contributions of other 

reaction channels that might be more significant at this higher energy, however it agrees within 

the uncertainty. 

 The dependence of 
1/2

2

2sC  on the single particle ANC is shown in Fig. 28. As would be 

expected based the results in Fig. 27, the dependence is rather weak, which is indicative of a 

peripheral reaction. 
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Fig. 28. C
2
 for the ground state as a function of the SPANC. Uncertainty in the ANC is 16%, which is 

larger than the variation. 

 

 The same method to calculate RDW was applied to the case of transfer to the first excited 

state and the result is shown in Fig. 29. In this figure the Rexp is the measured cross section at the 

smallest angle (4.1° C.M.) and the uncertainty (indicated by the red lines) corresponds to the 

uncertainty in C
2
 (13%) extracted from the HI transfer and inverse kinematics measurements and 

in the measurement of the cross section at that point (12% - this point had ~3% statistical 

uncertainty, other sources of uncertainty were as stated above for the ground state). The 

dependence of RDW on r0 for the d5/2 excited state is stronger than for the ground state and from 

this an upper limit on the SPANC can be set. Assuming a 10% uncertainty in the calculation due 

to optical potential ambiguity, Fig. 29 shows an upper limit of r0 of ~1.15 fm, which corresponds 

to b
2
 = 34.01 10−

i  fm
-1

. From the relation 

 

2

2

nlj

nlj

nlj

C

b
SF =  (4.11) 

one obtains a lower limit of SF=1.05. No attempt was made to set an upper limit as the lowest 

point in RDW which was calculated corresponds to r0=0.8 fm, which is already quite low and  

going further would not be physically meaningful.  

 



 59 

0

1000

2000

3000

4000

5000

6000

0.7 0.9 1.1 1.3 1.5 1.7 1.9

r0 (fm)

R
 (

µ
b

 f
m

)

 

Fig. 29. RDW (blue dots) and Rexp (black line) for transfer to the d5/2 first excited state. The uncertainty in 

the calculation due to systematic uncertainties is taken to be 10% and is shown by the thin blue lines. 

 

 

C. Summary of ANCs 

 

 The average value weighted for the uncertainty for the three measurements for ground 

state is 
1/2

2

2sC = 1.96±0.16 fm
-1

 and for the two measurements for the first excited state is 

5/2

2

1dC = (4.23±.038)·10
-3

 fm
-1

. The value for transfer to the ground state is not in agreement with 

the value of 2

2 1/2sC = 1.64±0.03 fm
-1

 found from the analysis [13] of a Coulomb dissociation 

experiment at 68 MeV/nucleon [24]. In [13] a comparison of a calculated excitation function 

with that which was measured in [24] was used to find χ
2
 as a quadratic function of the ANC. 

The ANC at the minimum of this function was taken to be the accepted value and the uncertainty 

was the variation of the ANC corresponding to 
2

minχ  + 1. An uncertainty determined in this 

manner may be underestimated because systematic uncertainties in the experiment are not taken 

into account. The ANCs found from the different measurements in this work are summarized 

along with the average values in Table 5. 
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       Table 5. Summary of ANCs found in the different measurements. 

experiment 
1/2

2

2sC  (fm
-1

)  
5/2

2

1dC  (fm
-1

) 

HI transfer 2.09±0.29 (4.48±0.58)·10
-3

  

TECSA d(
14

C,p)
15

C 2.01±0.24 (4.06±0.49) ·10
-3

 

60 MeV (d,p) 1.76±0.29  

average 1.96±0.16 (4.23±0.38) ·10
-3

 

 

 

 An analysis of nuclear breakup measurements of 
15

C at about 60 MeV/nucleon [49], [50] 

found the 
2

2 1/2sC = 1.48±0.18 fm
-1

 [11], which is also substantially lower than the value found 

here. A recent analysis of older low energy (14 MeV) 
14

C(d,p) data [12] found 
2

2 1/2sC = 2.14 fm
-1

 

using a similar ADWA calculation method to the one used here. The similarity of the ANCs 

from transfer reactions both in this work and in [12] and their apparent disagreement with the 

Coulomb disassociation and breakup measurements is interesting and might be indicative of the 

inadequacy of the current methods of transfer calculations to handle exotic, loosely bound 

nuclei. This possibility was explored in the analysis of a recent measurement of 
14

C(d,p) at 

Ed=17 MeV made at the Nuclear Physics Institute of the Czech Academy of Sciences [14], 

however the ANC
2
 for the ground state of 

15
C determined using an ADWA calculation was 

found to be 1.64±0.26 fm
-1

, which is consistent with the Coulomb disassociation analysis of [13]. 

If a larger uncertainty is considered for the value from Ref. [13] such as 15%, then there would 

not be a disagreement with the value found in this work. A summary of the ANCs is given in 

Table 6. 
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Table 6. Comparison of ANC values from previous determinations. 

 
1/2

2

2sC  (fm
-1

)  
5/2

2

1dC  (fm
-1

) 

Ref. [11] 1.48±0.18  

Ref. [10] 1.89±0.11  

Ref. [12] 2.14  

Ref. [13] 1.64±0.03  

Ref. [14] 1.64±0.26 3.55±0.43 

This work 1.96±0.16 4.23±0.38 
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CHAPTER V 

ASTROPHYSICAL 
14

C(n,γ)
15

C CROSS SECTION AND CONCLUSION 

 

A. The (n,γ) calculation 

 

 The radiative neutron capture rates for 
14

C(n,γ)
15

C have been calculated using the code 

RADCAP [51] and the ANCs that were found in the previous chapter. At astrophysical energies 

only the first two states, the 2s1/2 ground state and the 740 keV 1d5/2 first excited state, contribute 

to the neutron capture cross section. The next state at 3.1 MeV and ~ 40 keV in width is too high 

to contribute [26]. S-wave neutron capture is not significant for the 
14

C(n,γ) reaction due to parity 

conservation [22]. 
14

C has J
π
=0

+
 and coupled with an s-wave neutron would give a system with 

J
π
=1/2

+
. Because the ground and first excited states in 

15
C are J

π
=1/2

+
 and J

π
=5/2

+
, respectively 

this only allows for weak M1 and E2 transitions. Alternatively, a p-wave neutron would give the 

14
C+n system J

π
=1/2

-
 or 3/2

-
, which would then be able to allow E1 transitions and thus a much 

higher cross section. For the first excited state E2 transitions should also be taken into account 

[22]. 

 RADCAP solves the Schrödinger equation for the relative motion of the core (in this 

case 
14

C) and the captured particle (in this case a neutron), using a potential chosen by the user. 

Two options for potentials are the user-defined potential of the Wood-Saxon form with central 

nuclear, spin orbit and, in the case of charged particle capture, Coulomb terms or a semi-

microscopic calculated potential using the M3Y interaction. In all the calculations presented here 

the first option, the phenomenological WS potential, was used. RADCAP uses the potential 

entered by the user to calculate the bound state wave function to be used as input for the capture 

calculation, and saves this function in a file for later use. With the bound state wave function 

calculated, the program is run again, this time to calculate the capture reaction. The direct 

radiative capture cross section is found via detailed balance from the photo-absorption cross 

section. Again, the potential used for the core plus captured particle interaction is specified by 

the user, and the equation of relative motion is solved, this time for the continuum state over an 

energy range dictated by the user. To calculate the photo-absorption cross section, the continuum 

wave function is used to calculate the matrix element for the photo-transition and, in turn, the 

total multipole strength by summing the multipole strength over the partial waves that the user 
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specifies. The total multipole strength is then used to calculate the photo-absorption cross section 

and, from that, the capture cross section. 

 The average single particle spectroscopic factors from the three measurements presented 

in the last chapter were 1.0 and 0.99 for the ground state and first excited state respectively, 

which are consistent with a N=8 closed shell and a neutron in a sd-shell single particle state. The 

neutron binding potential used was of the WS form with the real potential depth adjusted to 

reproduce the neutron binding energy for each state. The neutron separation energy for 
15

C is 

1.218 MeV. The binding potential parameters were, for the ground state, V0=-54.71 MeV, 

r=2.8922 fm, a=0.60 fm and VSO=-9.30 MeV (using the SO convention described in [51]). The 

same geometry was used for the real and SO parts of the potential. The real depth was V0=-54.11 

MeV for the first excited state. 

 The cross section divided by the square root of the energy is given in Fig. 30 for both 

capture to the ground state and the first excited state. The capture to the first excited state 

accounts for about 4% of the total (only the two states are considered). The sum of the two states 

is shown along with the recent direct measurement of Reifarth et al. [19] in Fig. 31.  

 The calculated value for the cross section for capture to the ground state at 23 keV was 

σgs(23 keV)=5.1±0.4 µb and to the first excited state was σexc(23 keV)=0.19±0.02 µb. The total 

cross section at 23 keV was found to be σ(23 keV)=5.3±0.5, which is in good agreement with the 

most recent direct measurement [19]. 
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Fig. 30. Top shows the cross section divided by the square root of the energy for capture to the ground 

state. The bottom shows the same for the first excited state. 
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Fig. 31. Calculated cross section (sum of capture to gs and 1
st
 exc. state, blue dots with red uncertainty) 

compared with Ref. [19] (black squares). 

 

 

 

B. Conclusion 

 

 The ANCs for 
15

C↔
14

C+n were measured in three separate experiments and the values 

2

2 1/2sC = 1.98±0.15 fm
-1

 and 2 3

1 5/2 (4.27 0.43) 10dC −= ± i  fm
-1

 were obtained. These results are in 

reasonable agreement with previous values ([13],[12]), especially when one considers that the 

uncertainty quoted in [13] is unrealistically low. The values obtained here are also in good 

agreement with the recent work described in Ref. [14]. 

 We were unsuccessful in our attempt to apply the method of [8] to obtain a less 

ambiguous SF for the ground state of 
15

C as a result of a weak dependence on the interior for the 

higher energy (d,p) reaction that was measured. Because of the momentum mismatch in the 

entrance and exit channels and the resulting small cross section at higher energies, it is unlikely 

that this reaction could be measured at a less peripheral energy using the same technique. Also, 

depending on the energy necessary to achieve an adequate interior contribution, moving to a 

significantly higher energy may bring into question the validity of the assumptions inherent in 

the DWBA. A stronger dependence on the SPANC was observed for transfer to the d5/2 first 
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excited state of 
15

C and an upper limit on SPANC
2
 of 4.01 fm

-1
 and thus a lower limit on the SF 

of 1.05 was obtained. The dependence on the SPANC for the d5/2 state was still rather weak and 

if the ANC for the first excited state were found to be slightly lower than determined here, as 

was the case in [14], and the comparison of RDW to Rexp were repeated using this ANC, no limit 

could be assigned. 

 This method might be more useful for states with higher l, as the shape of the binding 

potential has a more significant effect at larger radii for such states. However, as shown here, 

even for a relatively high deuteron energy and a loosely bound halo nucleus, the transfer to an s 

state does not have a strong enough dependence on the interior. In [8] the example of (d,p) on 

208
Pb was given as one such reaction with a higher l  that would have a strong dependence on the 

interior. With this stronger interior dependence, 
208

Pb(d,p) is an example of the kind of reaction 

where this method would work better. 

 Recently [52], the use of transfer reaction rates in the determination of SFs was shown to 

be impossible in the context of future exact many-body theory. In such an exact calculation the 

SF is dependent on the NN and many-body potentials of which there are an infinite number that 

will produce the same asymptotic behavior and thus the same ANCs and reaction rates. Even 

( ),e e p′  reactions which probe deep into the nuclear interior are subject to ambiguities as a 

result of short-range correlations which can affect the overlap function (and thus the SF) but do 

not change the reaction amplitude (the observable in those reactions). This information reiterates 

the point that the SF extracted from normalizing a DWBA calculation to a reaction amplitude is 

a single particle SF that relates the single particle bound state wave function of the transferred 

nucleon to the overlap function of the initial and final states. The vast majority of the amplitudes 

for both the overlap function and the single particle bound state wave function lie deep within 

the nuclear interior and are not probed in transfer reactions. These single particle SFs are 

certainly useful but must be taken within the context of the model dependencies with which they 

were extracted. 

 The method tested in this work seeks to reduce the model dependency of extracted SFs 

and has been experimentally demonstrated to have at least limited success, in this case for the 

excited state of 
15

C. However, the difficulty of getting a strong enough dependency on the 

nuclear interior was also demonstrated and this must be carefully considered in any future 

attempts to utilize this method. Transfer reactions remain a key tool in the exploration of the 
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structure of exotic nuclei and methods to better utilize the information from these reactions in 

this exploration is important and should be pursued. 
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