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ABSTRACT 

 

Pseudofunctional Delay Tests for High Quality Small Delay Defect Testing. 

(December 2011) 

Shayak Lahiri, B.Tech., Motilal Nehru National Institute of Technology, Allahabad, 

India 

Chair of Advisory Committee: Dr. Duncan Walker 

 

Testing integrated circuits to verify their operating frequency, known as delay testing, is 

essential to achieve acceptable product quality. The high cost of functional testing has 

driven the industry to automatically-generated structural tests, applied by low-cost 

testers taking advantage of design-for-test (DFT) circuitry on the chip. Traditional at-

speed functional testing of digital circuits is increasingly challenged by new defect types 

and the high cost of functional test development. This research addressed the problems 

of accurate delay testing in DSM circuits by targeting resistive open and short circuits, 

while taking into account manufacturing process variation, power dissipation and power 

supply noise. In this work, we developed a class of structural delay tests in which we 

extended traditional launch-on-capture delay testing to additional launch and capture 

cycles. We call these Pseudofunctional Tests (PFT). A test pattern is scanned into the 

circuit, and then multiple functional clock cycles are applied to it with at-speed launch 

and capture for the last two cycles. The circuit switching activity over an extended 

period allows the off-chip power supply noise transient to die down prior to the at-speed 
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launch and capture, achieving better timing correlation with the functional mode of 

operation. In addition, we also proposed advanced compaction methodologies to 

compact the generated test patterns into a smaller test set in order to reduce the test 

application time. We modified our CodGen K longest paths per gate automatic test 

pattern generator to implement PFT pattern generation. Experimental results show that 

PFT test generation is practical in terms of test generation time. 
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1 INTRODUCTION 

Testing integrated circuits to verify their operating frequency, known as delay testing, is 

essential to achieve acceptable product quality. Delay test must not accept slow chips 

nor reject fast ones. The high cost of functional test has driven the industry to 

automatically-generated structural tests, applied by low-cost testers taking advantage of 

design-for-test (DFT) circuitry on the chip, such as scan chains, on-chip test pattern 

compression/decompression, built-in self-test (BIST) circuits, and test access 

mechanisms (TAM). The principal challenge in structural delay test is to achieve the 

same quality as functional and system test while minimizing the cost (test data volume, 

test application time, DFT circuit overhead) while minimizing overkill (rejecting good 

chips as bad). The delay test challenge is more difficult for chips fabricated in deep 

submicron (DSM) semiconductor technology. DSM technology has increased circuit 

delay variability, increased signal crosstalk, power supply noise, and requires complex 

circuit techniques to reduce power dissipation. This research addresses the problems of 

accurate delay test in DSM circuits by targeting resistive open and short circuits while 

taking into account manufacturing process variation, power dissipation and power 

supply noise.  

 The main goal of delay test is to detect timing defects in order to guarantee that 

the design meets the timing specifications. It has been observed that tests that do not 

specifically look for timing failures have a very low fortuitous detection rate. 

____________ 

This thesis follows the style of IEEE Transactions on Computer-Aided Design of 

Integrated Circuits and Systems. 
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As the semiconductor industry pushes toward more aggressive timing 

requirements, the detection of small delay defects is becoming increasingly critical. One 

of the main aspects of testing is that it should be able to detect problems that may arise 

in the functional operation of the chip. This requires careful characterization of the 

functional mode and increased effort to get as close to it as possible to this environment 

while in test mode. Some important factors that need to closely correspond to functional 

mode are the power supply noise, signal coupling and power dissipation. This is critical 

in systems-on-chip (SOCs) and die stacks, where modeling the overall noise 

environment is very difficult, due to the unknown combinations of subsystems. Thus a 

test performed under different conditions may not be able to achieve the desired 

objectives. Tests performed under different operating conditions can lead to over testing 

and under testing, affecting yield, reliability, reputation and profits. 

 In light of the above discussion, it is clear that one of the most important 

structural test requirements is a high correlation to functional and system test. This 

research focuses on development of new structural test methods to target small delay 

defects with high functional and system test correlation in the presence of deep 

submicron effects. 
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2 MOTIVATION 

The International Technology Roadmap for Semiconductors (ITRS) projects that design-

for-test (DFT) methods must continue to improve to maintain product quality, while 

reducing the test cost per transistor [1]. Traditional at-speed functional testing of digital 

circuits is increasingly challenged by new defect types and the high cost of functional 

test development. Even when available, extensive functional test patterns still miss 

defects caught by structural tests. Functional tests also make it more difficult to diagnose 

defects for yield improvement. As noted in the roadmap, increasingly the focus of delay 

test is on screening small delay defects (SDD). It also notes that any new delay test 

method must minimize overkill by avoiding test of false paths [2] [3], and must 

minimize test data volume with aggressive test pattern compression [4].  

One of the challenges of scan-based structural delay test is that it uses a slow-

fast-slow clocking approach, with slow scan and fast functional clock cycles. In launch-

on-capture (LOC) test, the time delay between the last scan-in cycle and the first 

functional cycle must be long enough to allow the scan enable (SE) signal to change. 

The scan cycle time is typically an order of magnitude slower than the functional cycle 

time, in order to minimize the area and power cost of scan chain routing and buffering. 

Since the power grid is designed for functional operation, it largely reaches its quiescent 

state prior to the first functional (launch) cycle. The power grid time constant due to off-

chip inductance is much longer than the functional clock cycle, so it can take dozens of 

functional clocks before the inductor currents ramp up to supply the on-chip switching 

activity. In the meantime, this current must be supplied from on-chip parasitic and 
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decoupling capacitance, causing the supply voltage to droop. This droop is known as the 

dI/dt effect, and is the dominant power supply noise problem. This initial voltage droop 

causes the circuit to operate more slowly than in normal functional operation [5] [6]. 

However, the ringing of the supply can also cause the circuit to operate faster than in 

normal operation in some situations [5]. Essentially, there is a mismatch between scan 

and functional test speeds due to the mismatch between the functional and test power 

supply voltages. 

Prior work [5] [6] has shown that one solution to the dI/dt problem is to apply a 

series of scan or functional cycles that are slower than functional speed, but much faster 

than scan speed, to ramp inductor currents prior to the launch and capture of the delay 

test. In this work, we extend traditional launch-on-capture delay testing to additional 

launch and capture cycles, which we term Pseudofunctional test (PFT). Our motivation 

is to be able to achieve a higher correlation to functional mode than traditional LOC test. 

In addition, we also propose advanced compaction methodologies to compact the 

generated test patterns into a reduced test set, in order to reduce the test application time. 

The merit of the proposed research is that it has the potential to significantly improve the 

quality of structural delay test, with the goal of being competitive with the accuracy of 

functional delay test at a much lower cost. The models, algorithms and software tools 

developed in this research can be used to help drive related research areas, such as test 

pattern compression and delay defect diagnosis. 
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3 PSEUDOFUNCTIONAL TEST 

Pseudofunctional Test (PFT) is a class of structural delay tests, in which traditional 

launch-on-capture delay testing is extended to additional launch and capture cycles. A 

test pattern is scanned into the circuit, and then multiple functional clock cycles are 

applied to it, with at-speed launch and capture for the last two cycles. The circuit 

switching activity over an extended period allows the off-chip power supply noise 

transient to die down prior to the at-speed launch and capture. This helps us in reaching 

an operating environment close to functional mode when the launch and capture take 

place. This increases the delay test correlation between structural and functional models, 

and minimizes over and under testing. 

The term Pseudofunctional test has previously been used in digital circuit testing 

to mean constraining test patterns to use functional or near-functional states [7] [8] [9] 

[10] [11] [12] [13] . In this work, we would develop Pseudofunctional structural delay 

tests in which a test pattern is scanned into the circuit, and then multiple functional clock 

cycles are applied to it, as shown in Fig. 1. If the initial state is functional, then these 

tests are short bursts of functional tests. We do not make an explicit effort to constrain 

the pattern generation to use functional states. The major focus of this work is to ensure 

that the circuit is close to functional operating mode when the test is being applied. If the 

initial pattern is a functional pattern, then we have the added advantage of applying 

functional patterns to the circuit under test in a functional or near functional mode. The 

nature of most circuit designs is that the starting state for a PFT test will be functional or 

near-functional. 
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Fig. 1. Clocking of Pseudofunctional Test. 

 

A Pseudofunctional test has multiple advantages. First, the power supply noise, 

signal coupling and power dissipation are similar to functional operation. This is critical 

in SOCs and die stacks, where modeling the overall noise environment is very difficult 

due to the unknown combinations of subsystems. Multi-cycle tests also permit test of 

time-borrowing between latches, and detection of metastability events triggered by setup 

or hold time violations. PFTs also permit detection of defects in power gating circuitry, 

and test of circuits using clock networks that require multiple cycles to stabilize, such as 

tuned LC networks. 

PFT can also be used to address the dI/dt effect described in Chapter 2. One 

solution to the dI/dt problem is to apply a series of scan or functional cycles that are 

slower than functional speed, but much faster than scan speed, to ramp inductor currents 

prior to the launch and capture of the delay test [5] [6]. These cycles are termed 

preamble cycles, as shown in Fig. 2. 

3.1 Preamble Cycles for PFT 

Preamble cycles are a series of scan or functional cycles that are slower than 

functional speed, but much faster than scan speed. They ramp inductor currents prior to 

...CLK

SE ...

Scan In Scan OutFunctional Tests

...CLK

SE ...

Scan In Scan OutFunctional Tests
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the launch and capture of the delay test. The preamble must have the following 

characteristics: 

1. Preamble cycles should be significantly longer than the chip-to-package time 

constant, so that transients have died down by the end of the preamble cycles. 

2. The clock cycle time should be significantly shorter than the off-chip time 

constant, so that the off-chip supply can reach steady-state. 

3. The preamble should propagate launch transitions on short paths to minimize 

the chances of test invalidation due to a delay fault caused by supply noise 

during preamble cycles. 

4. There should be as few preamble cycles as possible in order to minimize 

automatic test pattern generation (ATPG) effort. 

The chip-to-package time constant can be 30 or more functional cycles. The 

preamble clock cycles can be several times slower than functional clock cycles, so 

correspondingly fewer of them are required, meeting requirements 1, 2 and 4 [5] [6]. 

Requirement 3 can be met by using least-effort justification, which tends to find the 

shortest propagation paths. Fig. 2 shows a constant preamble cycle time, but it can be 

ramped down towards the functional cycle time, to minimize the voltage transient. 

 

 

Fig. 2. Preamble Cycles Followed by At-Speed Launch and Capture Cycles in PFT. 
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The delay test that is launched and captured at speed must be justified back 

through the preamble cycles to the test pattern. From the viewpoint of the ATPG, these 

preamble cycles cause the circuit to appear as time frame expanded. This concept is 

illustrated in Fig. 3. Time frame expanded means that the vector in the n
th

 time frame is 

derived from the circuit logic in the n-1
th

 time frame. This can be also expressed as Vn = 

C (Vn-1). Here, Vn is the pattern of the n
th

 time frame and Vn-1 is the pattern of the n-1
th

 

time frame. As seen from the figure, a pattern can be initially shifted into the scan cells 

and the circuit response to it is captured back into the scan cells. This response is now 

applied back to the circuit again. We can alternatively view this as the concatenation of 

copies of the entire circuit including the scan cells as many times as there are clock 

cycles. Each of these copies corresponds to a single time frame. 

It becomes the work of the ATPG to determine if the pattern in any particular 

time frame is going to cause an illegal state in any future time frame. Also, the ATPG 

needs to determine if there are any conflicts between the logical states of each gate in 

each of the time frames. It can be seen that with the increase in the number of time 

frames, the ATPG effort will increase significantly. Thus, one of the basic requirements 

of using PFT for delay test is to use a delay test model that is efficient and scalable. 
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Fig. 3. Time Frame Expansion of the Circuit for PFT. 

 

3.2 Extending LOC Path Delay Test for PFT 

In launch-on-capture (LOC) test, the time delay between the last scan-in cycle and 

the first functional cycle must be long enough to allow the scan enable (SE) signal to 

change. The scan cycle time is typically an order of magnitude slower than the 

functional cycle time. Since the power grid is designed for functional operation, it 

largely reaches its quiescent state prior to the first functional (launch) cycle. The power 

grid time constant due to off-chip inductance is much longer than the functional clock 

cycle, so it takes dozens of functional clocks before the inductor currents can ramp up to 

supply the on-chip switching activity. In the meantime, this current must be supplied 

from on-chip parasitic and decoupling capacitances, causing the supply voltage to droop. 

This causes a poor correlation between test and functional operating conditions.  

In order to avoid this, the traditional LOC model [14] must be modified to support 

preamble cycles. For the purposes of path delay test, we set a transition at the output of 

every gate of the target path. In the traditional LOC model, the transition at the start of 
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the path is caused by the value at the data input of the scan cell being opposite of the 

scanned in value, e.g. if the scanned in value is a 0 and the data input is a 1, then 

clocking the cell will cause a rising transition at the cell output. The ATPG problem is to 

go back one time frame to determine the initial test pattern that will generate the required 

transition at the start of the path and the necessary assignments to propagate transitions 

along the path to a capture point. With the introduction of preamble cycles, this model 

must be revised. We still want to justify the transitions for detecting the delay faults 

along the path in the last two time frames. However, we need to find the pattern which 

would cause these transitions from a time frame that is n cycles back, where n is the 

number of preamble cycles that we are applying. The traditional model for LOC 

described the initial and the final states of the circuit. Transitions were set based on 

values assigned in these states. With preamble cycles, these two states are now the 2
nd

 to 

last and the last time frame. In traditional LOC, the test pattern was scanned in on the 

initial cycle. Now, the pattern must be scanned in on the 0
th

 cycle. This is illustrated in 

Fig. 4. In other words, the final state of the circuit is moved to the last time frame. The 

initial state is moved to the 2
nd

 to last time frame for setting the transitions, while the 

pattern application state is now the 0
th

 cycle. The ATPG tries to find a pattern, which 

when applied in the 0
th

 time frame, will cause the required transitions to occur going 

from the 2nd to last to the last time frame. 
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Fig. 4. Extending the Traditional LOC Model for Preamble Cycles in PFT. 
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4 KLPG FOR PSEUDOFUNCTIONAL TEST 

The KLPG algorithm generates the K longest rising and falling paths through a target 

line under robustness constraints. The search space for each fault site, as shown in Fig. 5, 

is the fan-in and fan-out paths of the target line. In this work, we will combine KLPG 

path generation with PFT. In other words, we propose to generate KLPG patterns based 

on the PFT model. CodGen is a path delay test ATPG engine to generate the K Longest 

Paths per Gate (KLPG) [15] [16]. In order to make CodGen able to generate patterns for 

PFT, it will be modified to extend its capabilities beyond traditional LOC test. We will 

incorporate the model that we have described in Section 3.2. This makes the problem of 

path generation and path justification much harder than before. Since we are no longer 

following the traditional LOC test, the term initial and final clock cycles do not convey 

any meaningful information. Instead we use the term ‘time frame’ to designate each 

clock cycle from the scan in of the pattern to the capture cycle. The pattern is scanned in 

at time frame 0 and for a 16 cycle test; the capture is in time frame 15. The state of the 

circuit in any time frame is derived from its previous time frame. 

 

 

Fig. 5. KLPG Path Search Space. 

g

Search space

Constraints from 

outside search space
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There are three major steps in the KLPG process: 

1. Path Initialization: The set up of the Launch Points in the circuit. A launch point 

can be a Primary Input (PI) or a Pseudo Primary Input (PPI). 

2. Path Growth: Extending the path by adding one gate at a time, so that it extends 

from a Launch Point to a Capture Point. A Capture Point can be a Primary 

Output (PO) or Pseudo Primary Output (PPO). 

3. Final Justification: Finding the test pattern as well as checking compatibility 

between all internal assigned values in the circuit. 

We describe each of these processes in greater detail in this section. Due to the 

incorporation of the PFT model in the ATPG process, the Path Generation and Final 

Justification algorithms needed to be modified. A high level flowchart for KLPG is 

shown in Fig. 6. The algorithm is described in Fig. 7. 

 

 

Fig. 6. Overview of KLPG Path Generation. 
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1. Parse the input files and perform pre-processing steps. 

2. For each target fault site, until K paths has been generated or no more possible 

3.      Initialize the paths from the target fan-in cone Launch Points. 

4.      Add these to the Partial Path Store. 

5.      Extract the partial path with maximum Esperance. 

6.      Extend the extracted path. 

7.      Add side input constraints and perform Multi-Frame Direct Implications. 

8.      If a conflict is detected 

9.           Trash this partial path 

10.      End If 

11.      Else If Complete path formed 

12.           Perform Final Justification. 

13.       End If 

14.       Else If Complete Path is not formed 

15.           Apply false path elimination heuristics 

16.           Update the Esperance. 

17.           Re-insert in a sorted fashion into the Partial Path Store 

18.           Go to step 6. 

19.      End If 

20. End For 

Fig. 7. KLPG Algorithm. 
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4.1 Path Initialization and Growth 

KLPG requires us to generate K longest rising and falling paths through a target 

line under robustness constraints. In order to activate the small delay defects across any 

of these long paths, we set transitions along the path, going from the 2
nd

 to last to the last 

time frame. Transitions are set along each gate of the path. A transition can be of two 

types: rising or falling. A rising transition is one where the value on the 2
nd

 to last time 

frame at the output of a gate is 0 and it changes to 1 in the next time frame. A falling 

transition is one where the value changes from 1 to 0. The path generation procedure has 

been derived from [15] and extended so that it is able to generate paths for the PFT 

model. When the number of preamble cycles are reduced to zero, the Launch on Capture 

model and PFT model become the same. 

We perform preprocessing to help in the path generation process. We compute the 

maximum delay of each gate to the capture points. This is done without taking logic 

constraints into account. This is known as PERT or STA analysis and these delay values 

are known as PERT or STA delays. We also compute the SCOAP [17] values of the 

gates in the circuit. SCOAP values are used to guide the test generation and justification 

process.  

In the initialization phase, we first identify the target fan-in cones and the target 

fan-out cones for the activation and propagation of a fault at any particular fault site. As 

shown in Fig. 5, this is the fan-in and the fan-out cone of that particular fault site. Path 

initialization starts with assigning transitions going from the 2
nd

 last to the last time 

frame at every launch point in the target fan-in cone. All of these are considered partial 
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paths. A partial path is a path that has originated from a launch point but has not reached 

a capture point [14]. Partial paths are associated with an Esperance value, which is the 

sum of the PERT delay of the last node on the partial path and the total delay of the 

partial path. This Esperance serves as the upper bound of delay for any path, from a 

launch point to a capture point, and containing the partial path. Path growth takes place 

by adding a gate to the partial path with the highest Esperance and setting a transition on 

it going from the 2
nd

 last to the last time frame. In the case of adding a multiple fan-out 

gate, we split the partial path. Based on the robustness criterion (e.g. robust, non-robust, 

long transition) we assign the constraints to propagate the transition. In order to quickly 

propagate the constraints through the circuit, we need to perform Direct Implication [15] 

over each of the time frames. This process continues iteratively unless we encounter 

conflicts and drop the partial path, or we reach a capture point.  

When a partial path has not reached a capture point, false path elimination 

techniques are applied to trim off any false paths [15]. Then the path is re-inserted into 

the partial path store with an updated Esperance. Once a complete path is achieved, a 

Final Justification procedure is invoked.  This checks the compatibility of indirectly 

implied logical values and finds a test pattern for the path. In the next sections, we 

describe the Direct Implication and the Final Justification procedures. 

4.2 Multi-Frame Direct Implication
 

Previous work has shown that immediate identification of uniquely determined 

signals helps in speeding up the search process [18] [19]. We use the same philosophy 

during path generation and justification. During the path generation process, we set the 
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necessary transitions in the last two time frames. Each of these assignments, and the 

combination of previously discovered assignments, imply other logic values in the 

circuit. In order to determine these logic values, we use a process that we term Multi-

Frame Direct Implication. It uses the basic concepts of Direct Implication [15] but it is 

able to discover and set implications across multiple time frames. Another potential 

benefit of this approach is that it is able to detect conflicts in assignments much earlier 

and trim off false paths at an earlier stage. This speeds up the search process. Multi-

Frame Direct Implication is also able to propagate through Scan Cells into previous time 

frames, to yield maximum benefits. 

Multi-frame Direct Implication is based on the following principle: the output 

value of a gate in time frame j is derived from the inputs to the gate in time frame j or 

vice versa. Multi-frame Direct Implication is performed on scanned flip-flops as well. 

The output of the scan cell in the time frame j is propagated backwards into time frame j-

1 on its data input line (and thus on the fan-in cone of the input line in time frame j-1). 

This is a bidirectional implication, which means that a value on the input of the scan cell 

is propagated forward into the next time frame through the data output line (and thus on 

the fan-out cone of the output of the scan call into the circuit).  

An example of Multi-Frame Direct Implication is shown in Fig. 8. In the scan cell, 

the 1 at the input of the scan cell is derived from the output of the scan cell in the 

previous time frame. The 0 at the output of the scan cell is derived from the input of the 

scan cell in the next time frame. For the Backward implication through the AND gate, 

initially the values of 1, 0 and 1 are set at the output of the gate in three different time 
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frames. Let us consider that the inputs do not have any values on them, i.e. they are all 

X. The output value 1 implies input values 1 in the same time frame on both the input 

lines. This is an example of a uniquely determined signal. However, the output value of 

0 cannot imply any value on the input lines. This is because a value of 0 on any input 

line (or both) will cause this output value. So the input values cannot be uniquely 

determined in this case, and thus remain X. Similarly, in the case of forward implication, 

let us assume we set 0, X and 1 on one input and 1, 0 and X on the other input in three 

different time frames. Also, let us assume that the outputs were all initially X. In the 1
st
 

time frame, the combination of 0 and 1 gives the signal 0 at the output. In the 2
nd

 time 

frame, the combination of X and 0 gives us the value 0. However in the 3
rd

 time frame, 1 

and X give no uniquely determined signal and the output remains X.  

One important aspect of Multi-Frame Direct Implication on logic gates is that it 

treats the values on the same gate at different time frames as independent logic values. 

This is correct because values on the same gate in a different time frame do not directly 

affect each other. The value may be propagated backwards or forwards into a scan cell, 

move into a new time frame and then trace back along a path to eventually reach the 

same gate again in a different time frame. However, in this case, the inputs or outputs of 

the particular gate already have the implied values and thus we need not worry about a 

direct relation between different time frame values on the same logic gate.  
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Fig. 8. Multi-frame Direct Implications. 

 

It is to be noted that when we are not able to uniquely determine the values at the 

inputs or outputs of a gate by implications, we still need to ensure that these values do 

not cause a conflict. This is determined by Final Justification. A gate, is termed an 

Unjustified Gate [19] when an input is not uniquely determined by the value on the 

output line (and input lines that have a non-X value). Final justification ensures that each 

unjustified gate is justified and also helps in finding a vector for the path. 

4.3 Final Justification for PFT 

When a complete path is found, we need to perform Final Justification. The two 

major goals of this process are to justify each unjustified gate, and finding a pattern for 

testing the path that has been generated. An unjustified gate is one which has a non-X 

value, i.e. 0 or 1 on its output in a particular time frame; however the logical operation 

on its inputs in the same time frame yields an X. This has already been discussed in 

Section 4.2. A gate can be unjustified in multiple time frames. This means that we need 
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to justify the logic values at the gate output for each time frame. As discussed in Section 

4.2 we treat the outputs of the same gate in different time frames as independent 

problems. The Final Justification procedure justifies values back to the 0
th

 time frame, 

since that is the only time frame where we can set assignments by scanning in a test 

pattern. We have built on the PODEM [20] based procedure for LOC test, present in 

CodGen. The high level flow is shown in Fig. 9 and described in Fig. 10. 

 

 

Fig. 9. KLPG Final Justification Algorithm. 
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1. Create a sorted list (decreasing CO) of unjustified gates. Set level as 0. 

2. Get the 1
st
 gate in the original list that is still unjustified. Done when none exist. 

3. Back-Trace across time-frames until a PI or a 0
th

 time frame PPI is reached. 

4. Set 1/0 at the PI or PPI. 

5. Perform Multi-Frame Forward Implications. 

6. If no conflict is detected 

7.      Increase level by 1 and go to step 3. 

8. End If 

9. Else 

10.    Try the reverse value at the PI or PPI. 

11.     Perform Multi-Frame Forward Implications. 

12.     If no conflict is detected 

13.          Increase level by 1 and go to step 3. 

14.      End If 

15.      Else 

16.           Remove all assignments made at this level and decrease level by 1. 

17.           Reverse decisions made higher in the BDD tree and go to step 11. 

18.      End Else 

19. End Else 

Fig. 10. Final Justification Algorithm. 
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During Final Justification, when an unjustified gate is encountered, back-trace is 

performed to a scan cell’s 0
th

 time frame, or to a PI in any time frame. In terms of the 

time frame expanded circuit, Fig. 3, the search must go back to the leftmost set of scan 

cells, or to a PI in any of the time frames. A value is set on the scan cell/PI and multi-

frame direct implication is used to propagate the values forward. Whenever a decision (a 

logic value on any bit in either pattern) is made at a PI or scan cell, direct implications 

must be performed to trim the search space. If the gate is now justified, the next 

unjustified gate is considered, otherwise the search backtracks to reverse the previous 

decision and the search continued. In case both the options have been tried, the 

procedure backtracks to the next higher level in the Binary Decision Tree. If both 

options at the root have been tried and no success was achieved, then the path is 

dropped. A complete traversal of the entire search tree is infeasible, so a limit is set on 

the number of unsuccessful attempts at justification. If we exceed this backtrack limit, 

we drop the path. Such an action can potentially lower the fault coverage. Experiments 

have been performed with different backtrack limits to show the effect of the backtrack 

limit on the ATPG process. Hitting the backtrack limit may not result in a loss of 

coverage, since when a path is dropped, the ATPG tries to generate another long path 

through the target fault site. This next path can only be as long as the path that was 

dropped. However, it is still a long path through the target fault site. 

In the back-trace, we start from an unjustified gate. This gate is unjustified 

because one or more of its inputs has the value X in the same time frame. This, in turn, is 

due to the input gate having one or more X values on its own inputs. This goes on until 
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we encounter a PI or a PPI. If we reach a PI, we have our decision point. But a PPI is a 

decision point only if it is in its 0
th

 time frame. If a PPI is not in its 0
th

 time frame, its 

output is an X because the corresponding PPO value is X in the previous time frame. So, 

we back-track from the PPO into its own fan-in cone, but this time the process occurs in 

the previous time frame. This process goes on until we reach either a PI or a PPI in the 

0
th

 time frame. 

The Final Justification procedure is guided by SCOAP [17] measures. For time 

frame expansion, we need to calculate the SCOAP measures for each time frame. This is 

done by calculating the Controllability values for the 0
th

 time frame, then using these 

values to compute the SCOAP measures for the 1
st
 time frame and so on. Observability 

values are computed in the last time frame and then propagated backwards until the 0
th

 

time frame is reached. This ensures that the search process through the time frames is 

guided by SCOAP measures that take into account the effect of time frame expansion. 

This is done in the preprocessing phase. The preprocessing phase also sets the test setup 

values in the circuit. This is also done in a time frame expanded manner. The values are 

set in their particular time frames, and are then propagated into the future time frames. 
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5 COMPACTION FOR PSEUDOFUNCTIONAL TEST 

In the domain of scan-based very large scale integrated (VLSI) circuits, the pattern count 

affects the test cost. This is due to the test application time being proportional to the test 

set size [21].  Also, if the size of the test set is larger than the memory of the tester, the 

patterns need to be reloaded, adding an extra cost. A test pattern has 0, 1 or X assigned 

to each PI and PPI. Compaction takes advantage of unassigned values, i.e. X’s to merge 

together different tests, reducing the total test size. There are two main classes of 

compaction algorithms for combinational and fully-scanned sequential circuits: static 

compaction and dynamic compaction. 

In Static Compaction, when two patterns are being compacted together, each bit 

position is compared and the two patterns are replaced by a single pattern. Two patterns 

can be statically compacted if there are no conflicts at corresponding bit positions of 

both patterns. A conflict occurs when one pattern has 0 in a particular bit position and 

the other pattern has a 1. Static Compaction is independent of the test generation and can 

be performed as a post-processing step. In this research, we have developed a parallel 

static compaction tool, which we will describe in Section 8.  

Dynamic Compaction has already been shown to achieve a higher compaction 

rate than static compaction, and allows the switching activity to be close to Transition 

Fault Test patterns [22]. Dynamic Compaction is a part of the test generation process. 

The classic approach is to generate a pattern for one fault, and then use heuristics to 

modify the unspecified bits, and drop other detected faults in the fault list via fault 

simulation. But path delay test has a very low fortuitous detection rate, causing this 
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approach to be unsuitable. We build upon the previous Dynamic Compaction procedure 

in CodGen [22]. In this approach, paths were compacted based on their necessary 

assignments (NAs). This procedure needs to be extended to be able to compact together 

NAs from multiple time frames. One of the basic problems is the fact that a particular 

gate can have different values in different time frames as NAs. We need a methodology 

to efficiently represent such situations and be able to deal with them.  

We perform Dynamic Compaction on a path after it has passed the Final 

Justification procedure. The values discovered during the Final Justification procedure 

are not NAs, since they are just a set of values that can satisfy the unjustified gates of a 

single path. A pool of paths, called Path-Pool is maintained, which contains a set of 

Dynamically Compacted paths. We try to compact the newly justified path with one of 

the members of Path-Pool. If we do not succeed, we enter this path in the Path-Pool and 

the ATPG moves on to generating another path through the next target fault site. The 

Dynamic Compaction approach relies heavily on the Multi-Frame Direct Implication 

and the Final Justification procedures described earlier. 

In a very simple example of Dynamic Compaction, let us consider two paths, 

Path1 and Path2, through target fault sites A and B respectively. Each path has its own 

NAs, spread across different time frames. The first step is to put together the NAs of 

both these paths and check for any direct conflicts in each time frame. A direct conflict 

is one when there are conflicting values at the output of a particular gate in the same 

time frame. If there is such a conflict, then these two paths are not compactable with 

each other. If there is no direct conflict, we perform Multi-Frame Direct Implication to 
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discover any conflicts. This helps us in detecting a conflict in an early stage in the 

compaction process. If any conflict is detected, then Path1 and Path2 cannot be 

compacted with each other. This procedure also helps in finding more NAs which speeds 

up the next step, Final Justification. If no conflict is detected after the Multi Frame 

Direct Implication has been performed then we perform the Final Justification procedure 

described in Section 4.3. This justification is done based on the combined NAs. If this 

step succeeds, then these two paths are compactable. We discard the assignments 

discovered during the Final Justification phase and put this path in the Path-Pool. It now 

contains the NAs of Path1 and Path2, as well as the NAs discovered by implications. 

Fig. 11 illustrates this.  

During the Dynamic Compaction process, there can be cases where the same gate 

has NAs in more than one time frame. We treat these NAs as independent of each other. 

The process of performing a compatibility check only between necessary assignments 

helps in greatly expanding the compaction space without loss of fault coverage. The 

generation of final test patterns takes place after the test generation and dynamic 

compaction is completed. This helps us to achieve maximum flexibility for compaction. 

The Dynamic Compaction algorithm has been integrated with the CodGen code flow. 
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Fig. 11. Dynamic Compaction of Two Paths. 

 

We now describe the Dynamic Compaction procedure in Fig. 12. The high level flow 

is similar to the original Dynamic Compaction [22]. The internal details, as described 

above are different, so that the algorithm is able to deal with NAs across multiple time 

frames as well as generate a vector for the combined paths by traversing multiple time 

frames in both forward and reverse directions.  
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1. If the Path-Pool is empty, go to step 19. 

2. Else set the pointer PP at the head of the Path-Pool. 

3. If there is Direct Conflicts between PP and CP, 

4.      Move PP to next path in Path-Pool. If no more paths exist, go to step 19. 

5. End If 

6. Else 

7.      Combine NAs from all time frames of PP and CP as TP. 

8.      Perform Multi-Frame Direct Implication on the combined NAs. 

9.      If conflict occurs 

10.           Discard TP. 

11.           Move PP to next path in Path-Pool. If no more paths exist, go to step 19. 

12.      End If 

13.      Else 

14.           If Final Justification (Fig. 10) on TP is successful 

15.               Discard learning in Final Justification. Replace PP with TP and return. 

16.           End If 

17.      End Else 

18. End Else 

19. Insert CP in Path-Pool and return. 

Fig. 12. Dynamic Compaction Algorithm for PFT. 
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The entire KLPG flow with the Dynamic Compaction procedure is described in Fig. 13. 

 

 

1. Initialize Path-Pool as empty. 

2. Use KLPG algorithm (Fig. 7) to generate a complete path, CP including Final 

Justification (Fig. 10). 

3. Discard learning from Final Justification of CP. 

4. Call Dynamic Compaction (Fig. 12) for CP. 

5. If no more paths can be generated, go to step 6, else go to step 2. 

6. Perform Final Justification on each member of Path-Pool to find vectors for 

them. 

 

Fig. 13. KLPG Algorithm with Dynamic Compaction. 
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6 RESULTS OF KLPG PATTERN GENERATION 

The proposed PFT KLPG pattern generation with integrated Dynamic Compaction has 

been implemented in Visual C++ and run on an 8 core HP Server with 64-bit Windows 7 

Enterprise with a 2.6 GHz AMD Opteron processor and 16 GB of memory. Experiments 

are performed on the full scan versions of the largest ISCAS89 and ITC99 benchmark 

circuits. 

The experiments were performed for values of K being increased from 1 to 5. 

This was done in combination with the number of preamble cycles being varied from 0 

to 6, in steps of 2. In other words, time frame expansion of 2, 4, 6 and 8 frames was 

done, and for each frame, KLPG with K = 1, 2, 3, 4 and 5 were observed. In order to 

study the effect of the Back-Track Limit discussed in Section 4.3, these experiments 

were performed with two different Back-Track limits.  

Low cost testers often have the constraint that PI values must remain constant 

during the test application process, since the tester has only a few high-speed pins. In 

this work, we wanted to evaluate the effect of such a constraint. So the experiments were 

performed keeping PI values constant over all the cycles as well as allowing PI values to 

change. In the path generation process, the Launch Points were restricted to PPIs, while 

capture points were restricted to PPOs. 

6.1 Path Generation with PIs Held Constant 

In order to adhere to the constraints imposed by low cost testers, we assume that 

the Primary Input (PI) values cannot change during the application of test, since low-cost 
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testers have only a few high-speed pins. PIs are held constant over all cycles. Similarly, 

we mask off the Primary Outputs (PO). In other words, we only consider paths that end 

at a scan cell. Our ATPG has the ability to remove these constraints to evaluate their 

effect on the path generation process. We generate paths for values of K from 1 to 5. We 

observe that as the number of time frames increases, the number of sensitizable paths 

falls. For K = 1 in Fig. 14, there is only a slight decrease for s35932, but a significant 

drop for s38584 and s38417. For the other circuits, there is a significant drop going from 

2 to 4 time frames, and then a gradual drop after that.  A similar result is observed for 

K=5 in Fig. 15, and other values of K. For a constant number of frames, the number of 

paths rises with K. 

 

 

Fig. 14. The Number of Sensitizable Paths for Each Circuit; K=1; Constant PIs. 
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Fig. 15. The Number of Sensitizable Paths for Each Circuit; K=5; Constant PIs. 

 

Relative CPU times are shown in Fig. 16 and Fig. 17. The CPU times are relative 

to the CPU time for K=1 and two time frames, which is the type of KLPG test used in 

prior work. The CPU time is roughly constant for many circuits. The smaller s5378 has a 

sublinear CPU time increase.  The figures also show that the CPU time rises sublinearly 

in K. The reason that the CPU time rises so slowly with increasing number of time 

frames is that the decreasing number of sensitizable paths compensates for the increasing 

effort to find each path. 
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Fig. 16. CPU Time for K=1, Relative to K=1, Frames=2. PIs Constant. 

 

 

 

Fig. 17. CPU Time for K=5, Relative to K=1, Frames=2. PIs Constant. 
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6.2 Path Generation with PIs Not Constant 

The impact of holding PIs constant was evaluated by removing this constraint. In 

practice this would require a tester with high-speed pins on all PIs or corresponding DFT 

logic.  Fig. 18 and Fig. 19 show the results for generating the K longest robustly-testable 

rising and falling paths through each line, under the launch-on-capture constraints, 

allowing the PIs to have different values in each time frame. Allowing the PIs to have 

different values can also lead to potentially higher switching activity in the circuit. In 

these experiments, we do not consider the PIs to be Launch Points and the POs to be 

capture points. This is done to maintain consistency with Section 6.1. Also, if we require 

the PIs and the POs to be Launch and Capture points, we would need additional 

hardware on the testers, which may not be available. We have generated paths, along 

with Dynamic Compaction of the patterns for 2, 4, 6 and 8 time frame expansions. For 

each of the time frame, we have taken the value of K = 1, 2, 3, 4 and 5. 

 

 
Fig. 18. The Number of Sensitizable Paths for K=1. PIs Not Constant. 
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Fig. 19. The Number of Sensitizable Paths for K=5. PIs Not Constant. 
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Back-Track limit to 800 found the paths that were dropped without the PI constraint. 

These are shown in Fig. 20 and Fig. 21. 

 

 

Fig. 20. Increase in # Paths by Removing PI Constraint (BackTrack Limit = 200). 

 

 

Fig. 21. Increase # Paths by Removing PI Constraint (BackTrack Limit = 800). 
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The relative CPU times without PI constraints are shown in Fig. 22 and Fig. 23.  

The CPU times are relative to K=1 and 2 time frames, with no PI constraints.  There is 

more increase in CPU time with time frames than in the case where PIs are held 

constant, but it is still sublinear. The higher growth rate is because the CPU time for 

Final Justification rises faster with time frames than does the CPU time for path 

generation with Direct Implication. In addition, the decrease in paths with increasing 

number of time frames is only about half as much. This shows that holding the PIs 

constant for these circuits has a significant impact on the number of paths that can be 

tested. However, this impact is likely to be much smaller in larger circuits. It must be 

noted that this time includes the Dynamic Compaction time. This means that the total 

time is not only dependent on the path generation process, but also includes the time 

taken to compact each of the generated path with one or more of the previously 

generated paths. We take the Dynamic Compaction time into account because in a 

realistic ATPG process, compaction is always a part of the entire pattern generation 

scheme. 
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Fig. 22. CPU Time for K=1, Relative to K=1, Frames=2. PIs Not Constant. 

 

 

 

Fig. 23. CPU Time for K=5, Relative to K=1, Frames=2. PIs Not Constant. 
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6.3 Dynamic Compaction for PFT  

In order to reduce the pattern count for PFT, our new dynamic compaction 

algorithm was used. There are two factors that play a major role in this scenario. One 

factor is that with the increase in the number of time frames, the care bit density of each 

pattern increases. This is due to more necessary assignments in the time-frame-expanded 

circuit, causing the compaction ratio to fall and the pattern count to rise. The second 

factor that comes into play is that with the increase in the number of time frames, the 

number of sensitizable paths falls, even when the PIs are allowed to change. This causes 

the pattern count to go down. The effect of time frame expansion on the pattern count is 

observed for the PIs held constant and as well as allowing them to change. These are 

shown in the figures below. As can be seen in the results, the number of patterns is 

relatively stable as the number of time frames increases, since the reduced compaction 

ratio roughly balances the decreasing number of paths. This is true both for fixed and 

changing PIs. The CPU time grows significantly with increasing number of time frames, 

since the search problem becomes more difficult. The pattern count is shown in Fig. 24 

and Fig. 25 for PIs held constant; Fig. 26 and Fig. 27 for PIs changing. The compaction 

ratios are shown in Fig. 28 and Fig. 29 for PIs held constant; Fig. 30 and Fig. 31 for PIs 

changing. 
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Fig. 24. Pattern Count for K=1, PIs Constant. 

 

 

 

Fig. 25. Pattern Count for K=5, PIs Constant. 

 

0

100

200

300

400

500

600

700

800

2 4 6 8

# 
P

at
te

rn
s 

# Frames 

s38584

s38417

s35932

s15850

s13207

s9234

s5378

s1494

s1488

s1423

0

1000

2000

3000

4000

5000

6000

7000

2 4 6 8

# 
P

at
te

rn
s 

# Frames 

s38584

s38417

s35932

s15850

s13207

s9234

s5378

s1494

s1488

s1423



41 

 

Fig. 26. Pattern Count for K=1, PIs Not Constant. 

 

 

 

Fig. 27. Pattern Count for K=5, PIs Not Constant. 
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Fig. 28. Compaction Ratio for K=1, PIs Constant. 

 

 

 

Fig. 29. Compaction Ratio for K=5, PIs Constant. 

 

0

50

100

150

200

250

300

350

2 4 6 8

C
o

m
p

ac
ti

o
n

 R
at

io
 

# Frames 

s38584

s35932

s38417

s15850

s13207

s9234

s5378

s1494

s1488

s1423

0

100

200

300

400

500

600

700

800

2 4 6 8

C
o

m
p

ac
ti

o
n

 R
at

io
 

# Frames 

s38584

s38417

s35932

s15850

s13207

s9234

s5378

s1494

s1488

s1423



43 

 

Fig. 30. Compaction Ratio for K=1, PIs Not Constant. 

 

 

 

Fig. 31. Compaction Ratio for K=5, PIs Not Constant. 
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7 POWER GRID MODELING 

The scan cycle time is typically an order of magnitude slower than the functional cycle 

time. The power grid time constant due to off-chip inductance is much longer than the 

functional clock cycle, so it takes a series of functional clocks before the inductor 

currents can ramp up to supply the on-chip switching activity. In the meantime, this 

current must be supplied from on-chip parasitic and decoupling capacitance, causing the 

supply voltage to droop. This phenomenon has already been explained in Section 2 and 

3. One of our main motivations behind PFT was to achieve a high correlation between 

the power supply behavior in functional and test mode. The introduction of the preamble 

cycles was meant to facilitate the power grid reaching its functional mode before the at-

speed launch and capture cycles were applied.  

In this section, we describe a study of the power grid behavior during the PFT 

process. We also attempt to correlate power grid behavior in the functional mode. Based 

on a detailed modeling of the power grid and simulations, we would analyze the effect of 

the PFT patterns on the power supply voltage, as well as the correlation between power 

grid behavior during the at-speed cycles and the functional state. We also analyze the 

delay on a path during a traditional two cycle LOC test and compare it with the delay 

during PFT. In order to make the study more accurate, delay characterization of the 

standard cells has been done. 
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7.1 Power Grid Modeling 

In order to study the behavior of the power grid, we need to model it in terms of its 

RLC components [23]. We start with the Design Exchange Format (DEF) files of 

benchmark circuit s1488. This contains the placement information of the standard cells, 

as well as the VDD and the GND rails. In addition, there is information about the layout. 

We parse this information to associate each cell with its VDD and GND rail. Then we 

model each unit distance on the rail as a RLC block and replace the rails with these 

blocks. The Verilog file is parsed to set up the input and output connections of each gate, 

and connect them with their VDD and GND rails. Next the pattern file is scanned. In 

order to initialize the circuit, we use a MUX to scan in the values in the D Flip Flops 

(DFF) for the 1
st
 cycle. For subsequent cycles, the select line is flipped so that the DFF 

are in normal operational mode. Values are initialized on the PIs for all cycles. The VDD 

and the VSS pins are also modeled as a RLC block. An example is shown in Fig. 32. 

 

 
Fig. 32. Power Grid Model. 
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7.2 Power Grid Simulation 

We have used the 45nm PTM High Performance model card from the Predictive 

Technology Model (PTM) [24] [25] [26]  [27] [28]. We have used the NANGATE 45nm 

standard cell library. We first present a snapshot of voltage variation on the VDD Rail at 

the point where the RLC unit of the VDD pin feeds the circuit in Fig. 33. In order to 

study the operating VDD characteristics, waveforms have been observed at other points 

as well. The ideal VDD is 1.0 V for the technology and model card used. The circuit 

clock is operated at 2 GHz. The critical path lengths were lesser than 0.5ns, which 

allowed us to operate at this particular frequency. The power grid, VDD and VSS Pin 

were modeled with the following parameters: 

Resistance = 0.04 Ω/µm. 

Inductance = 0.01 nH/µm 

Capacitance = 0.2 fF/µm. 

Rs = Rp = 0.3 Ω. 

 Ls = Lp = 0.8 nH. 

Cs = Cp = 4 pF 

These values were taken from PTM Interconnect Structure 2 parameters for the above 

mentioned technology. For the simulation, we ran the circuit for 6 half speed preamble 

cycles (1 GHz) followed by 2 at-speed cycles (2 GHz). 
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Fig. 33. Voltage Response of Power Grid. 

 

The results show that over the 1
st
 two clock cycles, there is a significant drop in the 

VDD voltage. This is the time when a normal LOC test would have been applied. During 

this droop phase, the circuit would have run slower compared to functional mode of 

operation, since the gates have a lower VDD voltage. This might have caused some 

critical paths to fail the timing constraints, and thus the chip would be marked as slow. 

The chip requires a set of preamble cycles before its VDD rails recover to the functional 
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operating voltage. Our experiments show that the amount of time required for the VDD 

to recover is fairly independent of the frequency of the preamble cycles. Thus, if we can 

apply slower clocking during the preamble cycles, we can reduce the number of such 

cycles required. In this example, we would require 6 at-speed preamble cycles or 3 half-

speed preamble cycles. It was also observed that as the circuit size increases, the amount 

of droop and the recovery time also increase. Thus, it is expected that larger designs will 

require a higher number (or slower) of preamble cycles than a smaller design. Compared 

to PFT, a traditional LOC test would have been poorly correlated with functional test, 

due to different operating conditions. This might have caused a good chip to be marked 

slow, causing yield loss and loss in profit. Thus PFT plays an important role in 

improving correlation between functional and test mode while also reducing the test 

application time. 

7.3 Cell Delay Characterization 

In order to characterize the individual cell delays, we have simulated their 

behavior under the robust sensitization criterion. This is because during our ATPG 

process, we have generated robust paths. The side inputs of the gates have been held at 

non-controlling values, while the input is allowed to change. In order to make the delay 

estimate more realistic, the input is fed from an inverter and the logic cell drives an 

inverter. This more accurately represents circuit conditions, where gates are both driven 

by and drive other gates. The cells that we have characterized are the ones which are 

found in the ISCAS89 benchmark circuits. The delay characterization has been 

performed by varying the VDD in steps of 0.01 V, centered about 1.0 V. 
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Fig. 34. Rising Delay of Standard Cells. 

 

 

Fig. 35. Falling Delay of Standard Cells. 
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The delay trends in Fig. 34 and Fig. 35 show that as VDD decreases, the delay of 

each cell increases. This means that during the droop phase at the start of functional 

clocking, path delays would be higher than normal. 

7.4 Path Delay Comparison 

The path delay behavior of the ISCAS89 benchmark circuit s1488 has been 

studied in detail and is presented here. s1488 offers the advantage of being a small 

circuit, which can be fully simulated using HSPICE within a reasonable amount of time.  

Fig. 36 shows the difference in path delay observed for the 40 longest paths (about one-

third of the total) during a traditional LOC test and PFT test. This shows that the 

traditional LOC test finds a path to be slower than PFT. For the purposes of 

measurement, we have compared the same path under a 2-cycle as well as 8-cycle test. 

The figure shows the percentage difference in delay predicted by LOC with the delay 

predicted by an 8-cycle PFT test. It was found that LOC always predicted a higher delay, 

due to the voltage droop. 
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Fig. 36. Delay Difference between LOC and PFT. 
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8 PARALLEL STATIC COMPACTION 

We have considered reducing the compaction time by parallelizing the Static 

Compaction process. Static Compaction was described in Section 5. A tool has been 

developed to perform parallel Static Compaction in an efficient manner using the 

OpenMP model. Static compaction has the advantage that it can be performed as a post-

processing step and does not need to be integrated with the ATPG flow. Also, Static 

Compaction can be performed on patterns that have already been Dynamically 

Compacted, to further reduce the patter count. Compaction, being a NP complete 

problem, gives us a lot of scope to use heuristics to achieve near-optimal results [29].  

In this section, we evaluate the effect of parallelizing the heuristics on compaction 

results. The most common heuristics are greedy forward order, reverse order and random 

access [30]. We also propose a new approach of compaction, using a weighted 

distribution. We compare the benefits of the different approaches. 

8.1 Overview 

We take the initial list of patterns. Depending on the approach, we assign a sub-set 

of the patterns to each of the processors. The processors compact the patterns that they 

are assigned sequentially and update a Master List containing compacted patterns from 

each processor. After each of the processors has done their processing, we compact these 

patterns together. The steps are illustrated in Fig. 37. 

: 
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1. Assign a sub-set of patterns to each processor based on the scheme being 

implemented. 

2. Compact the patterns inside each processor and upload to a Master-List. 

3. Compact the master-list. 

 

Fig. 37. Parallel Static Compaction Overview. 

 

The main advantage of parallelization is two-fold. First, each processor is 

allocated a smaller problem size. Since the complexity of the sequential algorithm is 

quadratic in terms of the input size, we see a significant reduction in the running time of 

each processor. Second, by parallelizing the task, we are also able to speed up the entire 

process and achieve significant reduction in running time. 

The major challenge was to break the inherently sequential nature of the compaction 

algorithms. Previous work [31] uses a methodology where the compaction process uses 

synchronization at every step. This is inefficient because it limits the amount of speedup 

that we can achieve. High synchronization overheads reduce the benefits of parallelizing 

the compaction process. In order to be efficient, we let each processor create its own 

compacted list of patterns, called Pattern Pool, independent of other processors. This 

ensures that we avoid per-step synchronization. We have a barrier at the end to cause the 

master thread to wait for all the processors to finish their execution before running the 

top-off sequential compaction procedure on the combined list from each processor. 
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Making the Pattern Pool local to one processor allows us to solve the problem of 

Concurrent Writes. If we had a globally shared Pattern Pool, it may happen that multiple 

processors may try to compact a pattern from their assigned patterns into the same 

pattern in the global Pattern Pool. These patterns may have conflicts among themselves. 

Making the Pattern Pool local to every processor helps us in avoiding this problem. It 

also saves the overhead of having an atomic procedure to deal with conflicting 

concurrent writes.  

8.1.1 Forward Order Compaction 

We divide the list of patterns into as many segments as there are processors, 

following the order of patterns. Then we assign each segment to a processor. Each 

processor compacts the segment of patterns that it has got and updates the master list 

after which we compact the master list. 

8.1.2 Forward Order Compaction with Internal Sorting 

This is a modified version of Forward Order Compaction. In this scheme, after 

we have assigned a set of patterns to each processor, we sort the patterns in each set in 

descending order based on their care-bit densities. An advantage of this scheme is that 

instead of sorting the entire list, we are sorting the smaller sets, and sorting in parallel, 

thus saving time in the sorting operation.  

8.1.3 Equal Weighted Bucket Compaction 

One of the limitations of the Forward Order compaction schemes is that the time 

taken by one processor can be much higher than another processor. This can happen 
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when one processor gets a set of patterns which have very low compatibility. This causes 

a bottleneck in the parallel computation, since we can finish the parallel processing only 

as fast as our slowest processor. In order to get around this problem, we would like to 

distribute the patterns in such a way that each set has nearly equal chances of 

compaction. This would ensure that the compaction time of the processors have low 

variance. Weights are assigned based on the care-bit density of the pattern. The idea is 

based on the fact that the higher the percentage of don’t care bits in a pattern, the greater 

are its chances of compaction. In order to distribute the weights evenly, we have two 

schemes. 

8.1.3.1 Round-robin Weight Distribution  

We sort the patterns by weights. Then we divide the patterns into blocks of size 

equal to number of processors (p). From each block, processor i is assigned pattern I as 

shown in Fig. 38. The entire chunk is the total set of patterns (n), which is divided into 

n/p smaller blocks. The numbers inside the smaller squares indicate the processor to 

which this pattern of the particular block was assigned. n/p = 4 for illustrative purposes. 

 

 

Fig. 38. Round-Robin Pattern Distribution. 
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8.1.3.2 Striped Weight Distribution 

We sort the patterns by weights and divide the patterns into blocks of size equal 

number of processors (p). From every odd chunk, processor i is assigned pattern i. From 

every even chunk, processor i is assigned pattern = number of Processors - i. This is 

shown in Fig. 39. The entire chunk is the total patterns (n), which is divided into n/p 

smaller blocks. The numbers inside the smaller squares indicate the processor to which 

this pattern of a particular block was assigned. n/p = 4 for illustrative purposes. 

 

 

Fig. 39. Striped Pattern Distribution. 

 

8.2 Parallel Static Compaction Algorithm 

In our algorithms, we maintain an individual list of compacted patterns in each 

processor, called Pattern Pool. This list solely depends on the patterns that were assigned 

to this processor. So, the compaction process in one processor is completely independent 

of the compaction process of another processor. This helps us in avoiding 

communication and synchronization penalties while running the compaction in parallel. 

After the processors finish, they update the master list of patterns. This is a one-time 

shared memory access, having lower performance overheads compared to having a 

globally shared Pattern Pool among the processors. By performing the compaction in 

parallel, on smaller sets of patterns, we can achieve a high degree of speed-up. The 
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reason is that the complexity of the sequential algorithm is quadratic in terms of the 

input size. We run a round of compaction on the master list, because we can further 

reduce the number of patterns by trying to compact the pattern set from one processor 

with another. Although this takes more time, we achieve a smaller test set. We can 

always skip this step if test compaction time is our primary concern. If the number of 

patterns is our main concern, we perform this final compaction as the amount of extra 

time is compensated by the time saved in applying the reduced test set on the tester. The 

algorithm is described in Fig. 40 

 

1. Start 

2. Divide the Pattern List into segments of size depending on the pattern 

distribution scheme being used. 

3. Assign patterns to processors using one of the pattern distribution schemes. 

4. For j = 0 to Total Patterns/ No. of Processors pardo 

5.      If the PatternPool is empty 

6.           Insert 1
st
 pattern into PatternPool 

7.      Else If the PatternPool is not empty 

8.           For k = 0 to current size of PatternPool 

9. If j
th

 pattern of Pattern List can be compacted into k
th

 pattern of 

PatternPool 

Fig. 40. Parallel Static Compaction Algorithm. 
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10. Compact the two patterns and increment Success Counter of k
th

 

pattern of Pattern Pool by 1. 

11. Else increment Failure Counter of k
th

 pattern of PatternPool by 1. 

12. End For 

13. If the j
th

 pattern of Pattern List could not be compacted into PatternPool 

14. Add j
th

 pattern of Pattern List to PatternPool and set Success & 

Failure counter= 0. 

15. End If 

16. End Else 

17. End For 

18. Add each pattern from PatternPool of each processor to form MasterPatternList. 

19. Initialize MasterPatternPool to the 1
st
 pattern in the MasterPatternList, Success 

Counter & Failure Counter to Success Counter & Failure Counter value of 1
st
 

pattern. 

20. For j = 0 to Total Patterns in MasterPatternList 

21. For k = 0 to current size of MasterPatternPool 

22. If j
th

 pattern of MasterPatternList can be compacted into k
th

 pattern of 

MasterPatternPool) 

Fig. 40. Continued. 
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23. Compact the two patterns and increment Success Counter of k
th

 

pattern of Master Pattern Pool by the Success Counter of the j
th

 

pattern. 

24. Else increment Failure Counter of k
th

 pattern of MasterPatternPool by 1. 

25. End For 

26. If j
th

 pattern of Pattern List could not be compacted into MasterPatternPool) 

27. Add j
th

 pattern of Master Pattern List to MasterPatternPool and set 

Success & Failure counter To Success and Failure Counter value of the 

j
th

 pattern. 

28. End If 

29. End For 

30. End 

Fig. 40. Continued. 

 

8.3 Experimental Results 

We performed all the experiments on a system with 8 AMD Opteron processors 

with 4 cores each (32 cores total) running at 1.9 GHz with 128 GB of DDR2 RAM. We 

conducted experiments to study the performance, speedup and strong and weak scaling 

of the algorithms. For scaling, we use pattern counts of 8,000,000 and 4,000,000 

randomly generated patterns. Note that we have chosen a problem size such that the 

memory used exceeded the cache memory available per core. This is important in 

smaller problem size because we may observe superlinear scalability. The patterns for 
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static compaction are generated randomly inside the program using the rand() function. 

We use the same seed for our experiments to obtain the same set of patterns for each of 

our algorithms. Each pattern is assigned a care bit density, randomly chosen between 1 

and 6%, which is typical in ATPG patterns. Depending on the chosen care bit density, 

each bit of the pattern is assigned one of the values 0, 1 or X. Each pattern is 100 bits 

long. All these parameters can be varied in order to model any set of real life patterns. 

The input sizes start from 1,000,000 and are increased up to 8,000,000 in multiples of 2. 

We created a separate class for the timing function, which accurately determines 

the time by employing the function gettimeofday(). The Timer class object is reset using 

the function Restart() and the time is obtained by the function GetTime() which reports 

the time in seconds. Each experiment was repeated 32 times. The execution time was 

averaged to get more consistent results. 

8.3.1 Speedup 

Fig. 41 and Fig. 42 show the speedup of the different algorithms. 

 

 
Fig. 41. Speedup of Algorithms vs. # Processors for # Elements = 4*10e6. 
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Fig. 42. Speedup of Algorithms vs. # Processors for # Elements = 8*10e6. 

 

We see that Equal Weight Distribution (Round Robin and Striped) has a much 

higher speedup compared to the Forward Order schemes. Even with the drop in speedup 

for Equal Weight Distribution schemes in going from 8 to 16 processors, the speedup 

obtained for these schemes in case of 16 processors is higher than the Forward Order 

schemes. Also, we see that all these algorithms have a speedup > 1 for all cases. So, we 

see that parallelizing static compaction has yielded significant benefits in terms of 

reducing the running time of the process, and that the Equal Weight Distribution 

approach has a significant speedup for 1 to 16 processors. 

8.3.2 Strong Scaling 

Fig. 43 and Fig. 44 show the strong scalability of the algorithms. Strong 

scalability is when the speedup matches the increase in processor count for a fixed 
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version for large data sets to avoid effects like caching of the entire data set. 
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Fig. 43. Strong Scaling for n = 4*10e6. 

 

 

Fig. 44. Strong Scaling for n = 8*10e6. 
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8.3.3 Weak Scaling 

Weak scaling is when the problem size scales with the number of processors. 

Ideally the total execution time should remain constant. We show the weak scaling plots 

for n/p = 500000 and n/p = 1000000 for the parallel version. The weak scaling is shown 

in Fig. 45 and Fig. 46. 

 

 

Fig. 45. Weak Scaling for n/p = 0.5*10e6. 

 

 

Fig. 46. Weak Scaling for n/p = 1*10e6. 
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The plots shows that a fairly ideal weak scaling performance. This shows that for 

a fixed problem size per processor, the time taken by the parallel algorithms is relatively 

constant and close to ideal. This can be interpreted as the CPU time per processor 

remains constant if the problem size per processor remains constant, and the CPU time 

per processor dominates total time. This is true due to the way static compaction is 

implemented. 

8.3.4 Final Pattern Count 

We look at the final pattern count produced by each algorithm. We analyze the 

effect of increasing the number of processors on final pattern count. Since the purpose of 

compaction is to reduce the number of patterns that are finally applied to the tester, this 

is a very important parameter to consider. Fig. 47 and Fig. 48 show a comparative 

pattern count study. 

 

 

Fig. 47. Pattern Count of Algorithms vs. # Processors for # Patterns = 4*10^6. 
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Fig. 48. Pattern Count of Algorithms vs. # Processors for # Patterns = 8*10^6. 
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solution to the optimization problem that we are facing in this case. Our answer would 

depend on the situation and the input scenario. 

8.4 Discussion 

From all the above results, we observe that by parallelizing Static Compaction 

algorithms we can achieve a significant reduction in running time compared to the best 

known sequential algorithm. This is possible due to the fact that we have been able to 

successfully break the patterns into multiple chunks, and utilize each processor to 

perform compaction independently on that chunk. We have also removed 

synchronization at every step of the parallel part, so that we can avoid overheads of 

synchronization and work more efficiently. This is reflected in the speedup that we have 

obtained with increase in parallelization. We have also seen that the Equal Weight 

Distribution achieves a better speedup than the Forward Order schemes. This is because 

the distribution of patterns was done in a manner in which each processor would spend 

an equal amount of time, rather than waiting on the slowest processor to finish its 

execution. We have also observed that beyond a certain threshold, a decrease in problem 

size per processor causes an increase in final pattern count. This occurs as each 

individual processors have fewer patterns to start. This causes the amount of compaction 

in the Pattern Pool to decrease. When we run the sequential compaction on the list of 

patterns that we have obtained by combining the patterns from each processor, we spend 

a longer time in trying to compact them together. This increases the total running time. 

In order to avoid this, we need to take care that we give each processor a sufficient 

number of patterns to compact. 
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We have already stated that the problem of Static Compaction is NP-Complete. 

None of the algorithms that we have proposed or the algorithms that are currently being 

used in the industry, try to achieve the optimal result. Instead, all of them use heuristics 

to achieve a close to optimal result. This is judged by the pattern count obtained after the 

compaction process. We have used the pattern count of the sequential algorithm as a 

benchmark for judging the amount of compaction that the parallel algorithms were able 

to achieve.  We observe that we are able to achieve a significant reduction in pattern 

count with Equal Weight Distribution. The promising result is that this scheme yields a 

lower count for a good degree of parallelization. This means that we can use our scheme 

to reduce the running time without incurring a penalty of increased pattern count. 

It is to be noted that we are interested in reducing the pattern count because we are trying 

to save on the time it takes to apply these patterns on a tester. However, if we use more 

processors, the amount of time that we need to get these final patterns also reduces. So, 

the decision must be made whether we want to save time during compaction or during 

application of these patterns. The choice would be dependent on the priorities that exist 

at that time.  
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9 CONCLUSION AND FUTURE WORK 

This research addresses the problems of accurate delay test in DSM circuits by targeting 

resistive open and shorts. The introduction of a Pseudofunctional test (PFT) technique, 

in which the circuit is initialized to a given state, clocked in normal functional mode for 

a number of cycles, and then the state is read out, has been shown to have many 

advantages. One advantage of this approach is that the chip can be clocked in functional 

mode an order of magnitude faster than the state can be loaded or unloaded. Compared 

to a traditional scan test, a Pseudofunctional test has the potential to reduce test time and 

test data volume. The fact that the chip is operating in functional mode increases the 

correlation between structural and functional test, in terms of functional states, supply 

noise, power dissipation and signal crosstalk. 

In this work, we have proposed the extension of KLPG tests to Pseudofunctional 

tests with a set of preamble cycles leading to launch-on-capture KLPG tests, in order to 

control dI/dt noise. Our experiments show that that number of sensitizable paths falls 

with increasing number of preamble cycles, particularly when the primary inputs are 

held constant. As a result, the CPU time to generate these tests grows modestly for most 

circuits. We have also studied the effect of not holding the PIs constant over the test 

generation. Although letting the PIs take different values in different clock cycles 

increases the number of sensitized paths, it becomes less important in larger designs. 

This is primarily due to a very low percentage of pins being PIs and the fact that these 

circuits have very low care bit density for a single pattern (without compaction).  
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The memory overhead in implementing PFT in CodGen is mainly in storing the values 

for additional time frames, including SCOAP values, necessary assignments and 

temporary values. These grow roughly with the number of time frames, but are still 

relatively small compared to the memory to hold the circuit description and auxiliary 

data structures. 

We have also developed a dynamic test pattern compaction for PFT. We see that 

there is a slight reduction in compaction rate for most circuits with increased number of 

preamble cycles. This is due to the larger number of necessary assignments required to 

propagate the at-speed test over multiple preamble cycles. However, it is also the case 

that the decrease in compaction ratio is coupled with a decrease in overall pattern count, 

so the test generation time does not increase with a higher number of preamble cycles. 

In addition to the dynamic compaction technique, we have also developed a parallel tool 

for static compaction. This tool has demonstrated high scalability, with respect to both 

problem size and number of processors. In environments where dynamic compaction 

may not be needed, this tool can be used as a post-processing step to the ATPG in order 

to efficiently reduce the pattern count without loss of test coverage. 

One of the questions that arose from this work is that if a path can be sensitized 

over 6 cycles, but not over 8 cycles, is it a true path. This depends on the circuit 

operation, and whether the state found searching back 6 cycles is a reachable state. From 

a test generation perspective, this is similar to the situation of faults that can be tested 

under launch-on-shift constraints, but not launch-on-capture. 
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Profiling of the experiments indicates that the vast majority of the time is spent in 

Final Justification. This indicates that a more efficient search algorithm than PODEM 

must be used. This is important because the same Final Justification algorithm is being 

used in justification of a complete path, as well as during the dynamic compaction 

process. A faster algorithm would benefit the entire ATPG process. In addition to a 

faster justification procedure, the low-cost fault coverage metric, where paths with large 

slack are targeted by transition fault test, needs to be integrated with PFT. The metric 

must be able to take into account the effect of the preamble cycles in addition to process 

variation. An area that needs investigation is applying multiple at-speed cycles, that is, 

the longest path is tested across several cycles, which can target latch time borrowing 

and flip-flop metastability. 
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APPENDIX 

 

TABLE I  

KLPG RESULTS, K=1 

Circuit Params 

PI  Constant PI Not Constant 

FRAMES FRAMES 

2 4 6 8 2 4 6 8 

s38584 

#Paths 9742 7367 5451 5016 10777 9432 7983 7284 

#Patterns 252 246 189 198 285 286 243 267 

Time 973 1508 2150 3029 1214 2828 4592 7894 

s38417 

#Paths 14405 13139 10818 8562 14413 13343 12013 10566 

#Patterns 411 549 474 519 409 554 508 525 

Time 3213 5648 9315 12519 3393 5369 9196 13188 

s35392 

#Paths 9442 9248 9145 9070 9946 9946 9941 9884 

#Patterns 29 33 130 235 36 48 65 74 

Time 940 858 2467 5045 1068 1218 2914 4053 

s15850 

#Paths 2434 1840 1562 1519 2530 2323 2201 2070 

#Patterns 272 326 274 283 272 222 229 221 

Time 250 256 251 409 260 269 446 619 

s13207 

#Paths 3253 1699 965 741 3469 2053 1291 1039 

#Patterns 721 99 101 71 813 106 99 65 

Time 163 190 131 76 215 258 124 100 

s9234 

#Paths 2385 1524 641 550 2393 1972 1109 1117 

#Patterns 409 244 84 65 402 349 196 227 

Time 233 222 273 356 239 461 721 489 

s5378 

#Paths 1801 958 694 579 1801 1514 1273 1200 

#Patterns 243 164 101 93 238 175 163 152 

Time 20 39 51 83 19 37 58 84 

s1494 

#Paths 193 129 113 107 197 112 77 77 

#Patterns 63 48 47 44 65 50 33 34 

Time 1 4 8 12 1 3 4 5 

s1488 

#Paths 167 109 104 94 170 102 70 68 

#Patterns 60 43 43 42 63 48 31 32 

Time 1 3 6 10 1 3 4 4 

s1423 

#Paths 397 180 128 86 407 312 290 279 

#Patterns 139 74 52 33 140 123 93 83 

Time 39 11 15 18 42 48 50 55 
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TABLE II  

KLPG RESULTS, K=2 

Circuit Params 

PI  Constant PI Not Constant 

FRAMES FRAMES 

2 4 6 8 2 4 6 8 

s38584 

#Paths 13258 9442 6539 6055 14755 12412 10167 9038 

#Patterns 325 314 230 233 360 356 295 318 

Time 1173 2156 3056 3720 1944 4056 7630 12382 

s38417 

#Paths 25400 22793 18019 13970 25414 23093 20236 17883 

#Patterns 580 758 700 776 580 751 702 802 

Time 6169 11925 16028 20430 6964 10792 16939 23813 

s35392 

#Paths 20255 19967 19680 19488 21534 21534 21534 21389 

#Patterns 33 39 156 296 48 59 67 96 

Time 1733 1712 4903 11162 1925 2689 4949 8535 

s15850 

#Paths 3810 2735 2167 2089 3913 3452 3155 2943 

#Patterns 461 506 437 451 468 380 382 386 

Time 285 335 378 590 299 401 599 865 

s13207 

#Paths 4490 1984 1024 780 4872 2459 1488 1201 

#Patterns 1144 114 112 70 1254 123 113 69 

Time 234 207 157 77 298 207 145 113 

s9234 

#Paths 3753 2290 800 680 3763 3104 1587 1569 

#Patterns 544 316 90 75 550 459 244 268 

Time 285 301 292 384 281 604 860 608 

s5378 

#Paths 2996 1323 915 740 2996 2422 2048 1916 

#Patterns 327 208 115 109 320 246 238 223 

Time 35 60 67 110 32 66 99 122 

s1494 

#Paths 202 133 115 108 206 116 115 79 

#Patterns 64 49 48 44 66 51 48 35 

Time 1 4 9 14 1 3 6 5 

s1488 

#Paths 185 118 110 100 188 112 76 76 

#Patterns 62 45 45 43 65 49 34 36 

Time 1 4 8 12 1 4 4 5 

s1423 

#Paths 690 296 184 118 700 503 463 418 

#Patterns 200 110 68 43 203 151 131 109 

Time 41 12 16 18 40 43 49 56 
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TABLE III  

KLPG RESULTS, K=3 

Circuit Params 

PI  Constant PI Not Constant 

FRAMES FRAMES 

2 4 6 8 2 4 6 8 

s38584 

#Paths 15284 10328 6887 6294 17116 13737 11017 9617 

#Patterns 349 333 257 239 394 367 317 334 

Time 1783 2666 3497 4150 2387 4525 8629 12436 

s38417 

#Paths 34686 30332 23212 17664 34707 30757 26474 23536 

#Patterns 733 951 891 966 724 942 884 1013 

Time 10195 16709 22353 28002 9776 16519 25653 33490 

s35392 

#Paths 21458 21074 20690 20498 22738 22720 22589 22380 

#Patterns 31 41 164 310 74 41 70 97 

Time 1997 1750 6029 12805 2394 2701 6029 10226 

s15850 

#Paths 4853 3294 2572 2477 4964 4239 3772 3500 

#Patterns 690 658 583 597 693 526 494 507 

Time 343 455 556 849 345 534 862 1022 

s13207 

#Paths 5352 2192 1032 786 5908 2658 1508 1214 

#Patterns 1495 114 119 69 1638 123 119 68 

Time 306 214 146 84 384 284 156 120 

s9234 

#Paths 4792 2748 867 736 4802 3915 1891 1860 

#Patterns 663 352 94 74 658 530 270 281 

Time 323 404 325 410 319 733 955 616 

s5378 

#Paths 3937 1538 1018 806 3937 3151 2656 2495 

#Patterns 415 241 126 116 408 313 298 286 

Time 54 78 84 127 50 91 127 163 

s1494 

#Paths 202 133 115 108 206 116 115 79 

#Patterns 66 50 48 44 67 51 48 35 

Time 2 5 10 16 2 4 10 6 

s1488 

#Paths 201 120 112 103 191 113 77 77 

#Patterns 69 45 45 43 65 50 34 35 

Time 1 5 8 13 1 4 8 13 

s1423 

#Paths 929 378 193 130 941 679 599 511 

#Patterns 235 139 71 48 237 202 146 122 

Time 39 13 17 20 40 13 51 60 
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TABLE IV 

 KLPG RESULTS, K=4 

Circuit Params 

PI  Constant PI Not Constant 

FRAMES FRAMES 

2 4 6 8 2 4 6 8 

s38584 

#Paths 16505 10815 7033 6396 18615 14540 11543 9936 

#Patterns 390 333 255 249 428 382 329 335 

Time 1927 2483 3364 4265 2569 5646 8864 15861 

s38417 

#Paths 42714 36539 27317 20724 42745 37085 31563 28343 

#Patterns 887 1115 1048 1110 880 1101 1019 1166 

Time 13989 22511 27977 32992 14189 25464 33229 42521 

s35392 

#Paths 21856 21472 21088 20896 23392 23232 22999 22784 

#Patterns 31 41 165 311 43 73 66 96 

Time 2356 2007 6104 13014 2586 3385 7059 10831 

s15850 

#Paths 5798 3806 2929 2836 5798 4916 4270 3950 

#Patterns 892 806 712 741 897 656 601 631 

Time 415 573 679 1135 396 625 977 1222 

s13207 

#Paths 6130 2365 1038 786 6130 2789 1521 1220 

#Patterns 1779 123 124 69 1779 137 124 66 

Time 381 225 154 82 381 293 176 114 

s9234 

#Paths 5784 3101 894 770 5792 4616 2155 2100 

#Patterns 697 384 93 75 704 580 284 294 

Time 369 397 325 423 361 838 977 648 

s5378 

#Paths 4738 1659 1049 824 4738 3753 3139 2962 

#Patterns 471 262 126 120 467 382 354 344 

Time 69 81 87 125 68 115 144 180 

s1494 

#Paths 202 133 115 108 206 116 115 79 

#Patterns 65 50 48 46 66 51 48 35 

Time 2 5 10 16 2 4 5 6 

s1488 

#Paths 189 121 113 104 192 114 77 77 

#Patterns 64 45 46 44 66 51 34 35 

Time 1 5 8 13 1 4 8 13 

s1423 

#Paths 1139 439 197 135 1153 828 695 580 

#Patterns 272 162 73 50 278 234 165 137 

Time 37 14 17 20 40 41 55 65 
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TABLE V  

KLPG RESULTS, K=5 

Circuit Params 

PI  Constant PI Not Constant 

FRAMES FRAMES 

2 4 6 8 2 4 6 8 

s38584 

#Paths 17314 11031 7072 6428 19621 14909 11799 10076 

#Patterns 422 338 258 245 459 382 318 346 

Time 2117 3015 3708 4319 2769 5947 9147 14099 

s38417 

#Paths 50172 42085 30885 23255 50209 42721 36168 32496 

#Patterns 999 1220 1187 1234 992 1206 1144 1307 

Time 18024 27682 30033 34861 17212 29595 41407 48168 

s35392 

#Paths 22274 21890 21506 21314 23810 23650 23417 23202 

#Patterns 31 41 165 311 43 73 66 96 

Time 2367 1908 6333 13326 2933 3203 7326 11152 

s15850 

#Paths 6618 4284 3241 3147 6737 5440 4610 4263 

#Patterns 1071 935 831 852 1077 785 718 735 

Time 492 679 897 1413 461 717 1070 1421 

s13207 

#Paths 6886 2513 1042 786 7760 2893 1526 1225 

#Patterns 2068 123 127 69 2254 141 125 66 

Time 459 232 160 81 596 311 174 121 

s9234 

#Paths 6605 3342 905 779 6613 5187 2330 2297 

#Patterns 759 399 92 77 759 606 289 311 

Time 401 429 321 443 422 947 1074 693 

s5378 

#Paths 5214 1731 1052 826 5214 3988 3300 3109 

#Patterns 501 263 122 121 398 263 369 364 

Time 78 80 90 131 75 115 156 191 

s1494 

#Paths 202 133 115 108 206 116 115 79 

#Patterns 65 50 48 46 66 51 48 35 

Time 1 5 11 17 1 5 6 6 

s1488 

#Paths 189 121 113 104 189 121 77 77 

#Patterns 65 45 46 44 65 45 46 35 

Time 1 5 9 15 1 5 9 6 

s1423 

#Paths 1323 488 199 137 1339 956 750 638 

#Patterns 306 173 73 50 309 253 171 150 

Time 37 15 18 20 37 44 56 63 
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