
PSEUDOFUNCTIONAL DELAY TESTS FOR HIGH QUALITY

SMALL DELAY DEFECT TESTING

A Thesis

by

SHAYAK LAHIRI

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

December 2011

Major Subject: Computer Engineering

Pseudofunctional Delay Tests for High Quality Small Delay Defect Testing

Copyright 2011 Shayak Lahiri

PSEUDOFUNCTIONAL DELAY TESTS FOR HIGH QUALITY

SMALL DELAY DEFECT TESTING

A Thesis

by

SHAYAK LAHIRI

Submitted to the Office of Graduate Studies of

Texas A&M University

in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Approved by:

Chair of Committee, Duncan Walker

Committee Members, Jyh-Charn Liu

 Sunil Khatri

Head of Department, Duncan Walker

December 2011

Major Subject: Computer Engineering

iii

ABSTRACT

Pseudofunctional Delay Tests for High Quality Small Delay Defect Testing.

(December 2011)

Shayak Lahiri, B.Tech., Motilal Nehru National Institute of Technology, Allahabad,

India

Chair of Advisory Committee: Dr. Duncan Walker

Testing integrated circuits to verify their operating frequency, known as delay testing, is

essential to achieve acceptable product quality. The high cost of functional testing has

driven the industry to automatically-generated structural tests, applied by low-cost

testers taking advantage of design-for-test (DFT) circuitry on the chip. Traditional at-

speed functional testing of digital circuits is increasingly challenged by new defect types

and the high cost of functional test development. This research addressed the problems

of accurate delay testing in DSM circuits by targeting resistive open and short circuits,

while taking into account manufacturing process variation, power dissipation and power

supply noise. In this work, we developed a class of structural delay tests in which we

extended traditional launch-on-capture delay testing to additional launch and capture

cycles. We call these Pseudofunctional Tests (PFT). A test pattern is scanned into the

circuit, and then multiple functional clock cycles are applied to it with at-speed launch

and capture for the last two cycles. The circuit switching activity over an extended

period allows the off-chip power supply noise transient to die down prior to the at-speed

iv

launch and capture, achieving better timing correlation with the functional mode of

operation. In addition, we also proposed advanced compaction methodologies to

compact the generated test patterns into a smaller test set in order to reduce the test

application time. We modified our CodGen K longest paths per gate automatic test

pattern generator to implement PFT pattern generation. Experimental results show that

PFT test generation is practical in terms of test generation time.

v

DEDICATION

To my parents

vi

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my advisor, Dr. Duncan M. (Hank)

Walker, for his continuous support throughout the course of this work. This work would

not have been in its current form without his guidance. I am highly indebted to him for

his great concern and wonderful advice in all matters pertaining to this work, my

graduate studies at Texas A&M University, and life in general.

I would like to extend my gratefulness to the members of my advisory

committee, Dr. Sunil Khatri and Dr. Jyh-Charn (Steve) Liu, for their guidance in my

research. Thanks to my colleagues Zheng Wang, Zhongwei Jiang and Dibakar Gope for

their help throughout this research. I would also like to thank the staff of the Department

of Computer Science for making a big difference throughout the course of my MS.

I am also thankful to Ayan Mandal and Kavita Aditi Mehrotra for all their help

with key sections of this work. A special thanks to my friends Rudrajit Tapadar, Saurabh

Mittal and Nikhil Pandey for all their support and encouragement in making my

transition into Computer Science a very smooth process. I am thankful to my parents for

their love, encouragement and confidence in my abilities. Finally, I would like to thank

Aditi for being a constant source of support, encouragement and motivation to graduate

within a reasonable amount of time. My research was funded in part by Semiconductor

Research Corporation (SRC) and by The National Science Foundation (NSF). I thank

them for their financial support.

vii

TABLE OF CONTENTS

Page

ABSTRACT .. iii

DEDICATION ... v

ACKNOWLEDGEMENTS .. vi

TABLE OF CONTENTS ... vii

LIST OF FIGURES... ix

1 INTRODUCTION .. 1

2 MOTIVATION ... 3

3 PSEUDOFUNCTIONAL TEST ... 5

3.1 Preamble Cycles for PFT... 6
3.2 Extending LOC Path Delay Test for PFT.. 9

4 KLPG FOR PSEUDOFUNCTIONAL TEST... 12

4.1 Path Initialization and Growth... 15

4.2 Multi-Frame Direct Implication .. 16
4.3 Final Justification for PFT ... 19

5 COMPACTION FOR PSEUDOFUNCTIONAL TEST... 24

6 RESULTS OF KLPG PATTERN GENERATION .. 30

6.1 Path Generation with PIs Held Constant ... 30
6.2 Path Generation with PIs Not Constant ... 34

6.3 Dynamic Compaction for PFT .. 39

7 POWER GRID MODELING ... 44

7.1 Power Grid Modeling .. 45
7.2 Power Grid Simulation .. 46
7.3 Cell Delay Characterization .. 48
7.4 Path Delay Comparison ... 50

viii

Page

8 PARALLEL STATIC COMPACTION.. 52

8.1 Overview ... 52
8.2 Parallel Static Compaction Algorithm... 56
8.3 Experimental Results ... 59
8.4 Discussion.. 66

9 CONCLUSION AND FUTURE WORK ... 68

REFERENCES ... 71

APPENDIX .. 75

VITA .. 80

ix

LIST OF FIGURES

Page

Fig. 1. Clocking of Pseudofunctional Test. .. 6

Fig. 2. Preamble Cycles Followed by At-Speed Launch and Capture Cycles in PFT. 7

Fig. 3. Time Frame Expansion of the Circuit for PFT. .. 9

Fig. 4. Extending the Traditional LOC Model for Preamble Cycles in PFT. 11

Fig. 5. KLPG Path Search Space. ... 12

Fig. 6. Overview of KLPG Path Generation. ... 13

Fig. 7. KLPG Algorithm. ... 14

Fig. 8. Multi-frame Direct Implications. .. 19

Fig. 9. KLPG Final Justification Algorithm. .. 20

Fig. 10. Final Justification Algorithm. ... 21

Fig. 11. Dynamic Compaction of Two Paths. .. 27

Fig. 12. Dynamic Compaction Algorithm for PFT. ... 28

Fig. 13. KLPG Algorithm with Dynamic Compaction. ... 29

Fig. 14. The Number of Sensitizable Paths for Each Circuit; K=1; Constant PIs. 31

Fig. 15. The Number of Sensitizable Paths for Each Circuit; K=5; Constant PIs. 32

Fig. 16. CPU Time for K=1, Relative to K=1, Frames=2. PIs Constant. 33

Fig. 17. CPU Time for K=5, Relative to K=1, Frames=2. PIs Constant. 33

Fig. 18. The Number of Sensitizable Paths for K=1. PIs Not Constant. 34

Fig. 19. The Number of Sensitizable Paths for K=5. PIs Not Constant. 35

Fig. 20. Increase in # Paths by Removing PI Constraint (BackTrack Limit = 200). 36

x

Page

Fig. 21. Increase # Paths by Removing PI Constraint (BackTrack Limit = 800). 36

Fig. 22. CPU Time for K=1, Relative to K=1, Frames=2. PIs Not Constant. 38

Fig. 23. CPU Time for K=5, Relative to K=1, Frames=2. PIs Not Constant. 38

Fig. 24. Pattern Count for K=1, PIs Constant. ... 40

Fig. 25. Pattern Count for K=5, PIs Constant. ... 40

Fig. 26. Pattern Count for K=1, PIs Not Constant. .. 41

Fig. 27. Pattern Count for K=5, PIs Not Constant. .. 41

Fig. 28. Compaction Ratio for K=1, PIs Constant. .. 42

Fig. 29. Compaction Ratio for K=5, PIs Constant. .. 42

Fig. 30. Compaction Ratio for K=1, PIs Not Constant. ... 43

Fig. 31. Compaction Ratio for K=5, PIs Not Constant. ... 43

Fig. 32. Power Grid Model. .. 45

Fig. 33. Voltage Response of Power Grid. ... 47

Fig. 34. Rising Delay of Standard Cells. .. 49

Fig. 35. Falling Delay of Standard Cells. ... 49

Fig. 36. Delay Difference between LOC and PFT. .. 51

Fig. 37. Parallel Static Compaction Overview. .. 53

Fig. 38. Round-Robin Pattern Distribution. ... 55

Fig. 39. Striped Pattern Distribution. ... 56

Fig. 40. Parallel Static Compaction Algorithm. ... 57

Fig. 41. Speedup of Algorithms vs. # Processors for # Elements = 4*10e6. 60

xi

Page

Fig. 42. Speedup of Algorithms vs. # Processors for # Elements = 8*10e6. 61

Fig. 43. Strong Scaling for n = 4*10e6. ... 62

Fig. 44. Strong Scaling for n = 8*10e6. ... 62

Fig. 45. Weak Scaling for n/p = 0.5*10e6. .. 63

Fig. 46. Weak Scaling for n/p = 1*10e6. ... 63

Fig. 47. Pattern Count of Algorithms vs. # Processors for # Patterns = 4*10^6. 64

Fig. 48. Pattern Count of Algorithms vs. # Processors for # Patterns = 8*10^6. 65

1

1 INTRODUCTION

Testing integrated circuits to verify their operating frequency, known as delay testing, is

essential to achieve acceptable product quality. Delay test must not accept slow chips

nor reject fast ones. The high cost of functional test has driven the industry to

automatically-generated structural tests, applied by low-cost testers taking advantage of

design-for-test (DFT) circuitry on the chip, such as scan chains, on-chip test pattern

compression/decompression, built-in self-test (BIST) circuits, and test access

mechanisms (TAM). The principal challenge in structural delay test is to achieve the

same quality as functional and system test while minimizing the cost (test data volume,

test application time, DFT circuit overhead) while minimizing overkill (rejecting good

chips as bad). The delay test challenge is more difficult for chips fabricated in deep

submicron (DSM) semiconductor technology. DSM technology has increased circuit

delay variability, increased signal crosstalk, power supply noise, and requires complex

circuit techniques to reduce power dissipation. This research addresses the problems of

accurate delay test in DSM circuits by targeting resistive open and short circuits while

taking into account manufacturing process variation, power dissipation and power

supply noise.

 The main goal of delay test is to detect timing defects in order to guarantee that

the design meets the timing specifications. It has been observed that tests that do not

specifically look for timing failures have a very low fortuitous detection rate.

This thesis follows the style of IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems.

2

As the semiconductor industry pushes toward more aggressive timing

requirements, the detection of small delay defects is becoming increasingly critical. One

of the main aspects of testing is that it should be able to detect problems that may arise

in the functional operation of the chip. This requires careful characterization of the

functional mode and increased effort to get as close to it as possible to this environment

while in test mode. Some important factors that need to closely correspond to functional

mode are the power supply noise, signal coupling and power dissipation. This is critical

in systems-on-chip (SOCs) and die stacks, where modeling the overall noise

environment is very difficult, due to the unknown combinations of subsystems. Thus a

test performed under different conditions may not be able to achieve the desired

objectives. Tests performed under different operating conditions can lead to over testing

and under testing, affecting yield, reliability, reputation and profits.

 In light of the above discussion, it is clear that one of the most important

structural test requirements is a high correlation to functional and system test. This

research focuses on development of new structural test methods to target small delay

defects with high functional and system test correlation in the presence of deep

submicron effects.

3

2 MOTIVATION

The International Technology Roadmap for Semiconductors (ITRS) projects that design-

for-test (DFT) methods must continue to improve to maintain product quality, while

reducing the test cost per transistor [1]. Traditional at-speed functional testing of digital

circuits is increasingly challenged by new defect types and the high cost of functional

test development. Even when available, extensive functional test patterns still miss

defects caught by structural tests. Functional tests also make it more difficult to diagnose

defects for yield improvement. As noted in the roadmap, increasingly the focus of delay

test is on screening small delay defects (SDD). It also notes that any new delay test

method must minimize overkill by avoiding test of false paths [2] [3], and must

minimize test data volume with aggressive test pattern compression [4].

One of the challenges of scan-based structural delay test is that it uses a slow-

fast-slow clocking approach, with slow scan and fast functional clock cycles. In launch-

on-capture (LOC) test, the time delay between the last scan-in cycle and the first

functional cycle must be long enough to allow the scan enable (SE) signal to change.

The scan cycle time is typically an order of magnitude slower than the functional cycle

time, in order to minimize the area and power cost of scan chain routing and buffering.

Since the power grid is designed for functional operation, it largely reaches its quiescent

state prior to the first functional (launch) cycle. The power grid time constant due to off-

chip inductance is much longer than the functional clock cycle, so it can take dozens of

functional clocks before the inductor currents ramp up to supply the on-chip switching

activity. In the meantime, this current must be supplied from on-chip parasitic and

4

decoupling capacitance, causing the supply voltage to droop. This droop is known as the

dI/dt effect, and is the dominant power supply noise problem. This initial voltage droop

causes the circuit to operate more slowly than in normal functional operation [5] [6].

However, the ringing of the supply can also cause the circuit to operate faster than in

normal operation in some situations [5]. Essentially, there is a mismatch between scan

and functional test speeds due to the mismatch between the functional and test power

supply voltages.

Prior work [5] [6] has shown that one solution to the dI/dt problem is to apply a

series of scan or functional cycles that are slower than functional speed, but much faster

than scan speed, to ramp inductor currents prior to the launch and capture of the delay

test. In this work, we extend traditional launch-on-capture delay testing to additional

launch and capture cycles, which we term Pseudofunctional test (PFT). Our motivation

is to be able to achieve a higher correlation to functional mode than traditional LOC test.

In addition, we also propose advanced compaction methodologies to compact the

generated test patterns into a reduced test set, in order to reduce the test application time.

The merit of the proposed research is that it has the potential to significantly improve the

quality of structural delay test, with the goal of being competitive with the accuracy of

functional delay test at a much lower cost. The models, algorithms and software tools

developed in this research can be used to help drive related research areas, such as test

pattern compression and delay defect diagnosis.

5

3 PSEUDOFUNCTIONAL TEST

Pseudofunctional Test (PFT) is a class of structural delay tests, in which traditional

launch-on-capture delay testing is extended to additional launch and capture cycles. A

test pattern is scanned into the circuit, and then multiple functional clock cycles are

applied to it, with at-speed launch and capture for the last two cycles. The circuit

switching activity over an extended period allows the off-chip power supply noise

transient to die down prior to the at-speed launch and capture. This helps us in reaching

an operating environment close to functional mode when the launch and capture take

place. This increases the delay test correlation between structural and functional models,

and minimizes over and under testing.

The term Pseudofunctional test has previously been used in digital circuit testing

to mean constraining test patterns to use functional or near-functional states [7] [8] [9]

[10] [11] [12] [13] . In this work, we would develop Pseudofunctional structural delay

tests in which a test pattern is scanned into the circuit, and then multiple functional clock

cycles are applied to it, as shown in Fig. 1. If the initial state is functional, then these

tests are short bursts of functional tests. We do not make an explicit effort to constrain

the pattern generation to use functional states. The major focus of this work is to ensure

that the circuit is close to functional operating mode when the test is being applied. If the

initial pattern is a functional pattern, then we have the added advantage of applying

functional patterns to the circuit under test in a functional or near functional mode. The

nature of most circuit designs is that the starting state for a PFT test will be functional or

near-functional.

6

Fig. 1. Clocking of Pseudofunctional Test.

A Pseudofunctional test has multiple advantages. First, the power supply noise,

signal coupling and power dissipation are similar to functional operation. This is critical

in SOCs and die stacks, where modeling the overall noise environment is very difficult

due to the unknown combinations of subsystems. Multi-cycle tests also permit test of

time-borrowing between latches, and detection of metastability events triggered by setup

or hold time violations. PFTs also permit detection of defects in power gating circuitry,

and test of circuits using clock networks that require multiple cycles to stabilize, such as

tuned LC networks.

PFT can also be used to address the dI/dt effect described in Chapter 2. One

solution to the dI/dt problem is to apply a series of scan or functional cycles that are

slower than functional speed, but much faster than scan speed, to ramp inductor currents

prior to the launch and capture of the delay test [5] [6]. These cycles are termed

preamble cycles, as shown in Fig. 2.

3.1 Preamble Cycles for PFT

Preamble cycles are a series of scan or functional cycles that are slower than

functional speed, but much faster than scan speed. They ramp inductor currents prior to

...CLK

SE ...

Scan In Scan OutFunctional Tests

...CLK

SE ...

Scan In Scan OutFunctional Tests

7

the launch and capture of the delay test. The preamble must have the following

characteristics:

1. Preamble cycles should be significantly longer than the chip-to-package time

constant, so that transients have died down by the end of the preamble cycles.

2. The clock cycle time should be significantly shorter than the off-chip time

constant, so that the off-chip supply can reach steady-state.

3. The preamble should propagate launch transitions on short paths to minimize

the chances of test invalidation due to a delay fault caused by supply noise

during preamble cycles.

4. There should be as few preamble cycles as possible in order to minimize

automatic test pattern generation (ATPG) effort.

The chip-to-package time constant can be 30 or more functional cycles. The

preamble clock cycles can be several times slower than functional clock cycles, so

correspondingly fewer of them are required, meeting requirements 1, 2 and 4 [5] [6].

Requirement 3 can be met by using least-effort justification, which tends to find the

shortest propagation paths. Fig. 2 shows a constant preamble cycle time, but it can be

ramped down towards the functional cycle time, to minimize the voltage transient.

Fig. 2. Preamble Cycles Followed by At-Speed Launch and Capture Cycles in PFT.

8

The delay test that is launched and captured at speed must be justified back

through the preamble cycles to the test pattern. From the viewpoint of the ATPG, these

preamble cycles cause the circuit to appear as time frame expanded. This concept is

illustrated in Fig. 3. Time frame expanded means that the vector in the n
th

 time frame is

derived from the circuit logic in the n-1
th

 time frame. This can be also expressed as Vn =

C (Vn-1). Here, Vn is the pattern of the n
th

 time frame and Vn-1 is the pattern of the n-1
th

time frame. As seen from the figure, a pattern can be initially shifted into the scan cells

and the circuit response to it is captured back into the scan cells. This response is now

applied back to the circuit again. We can alternatively view this as the concatenation of

copies of the entire circuit including the scan cells as many times as there are clock

cycles. Each of these copies corresponds to a single time frame.

It becomes the work of the ATPG to determine if the pattern in any particular

time frame is going to cause an illegal state in any future time frame. Also, the ATPG

needs to determine if there are any conflicts between the logical states of each gate in

each of the time frames. It can be seen that with the increase in the number of time

frames, the ATPG effort will increase significantly. Thus, one of the basic requirements

of using PFT for delay test is to use a delay test model that is efficient and scalable.

9

Fig. 3. Time Frame Expansion of the Circuit for PFT.

3.2 Extending LOC Path Delay Test for PFT

In launch-on-capture (LOC) test, the time delay between the last scan-in cycle and

the first functional cycle must be long enough to allow the scan enable (SE) signal to

change. The scan cycle time is typically an order of magnitude slower than the

functional cycle time. Since the power grid is designed for functional operation, it

largely reaches its quiescent state prior to the first functional (launch) cycle. The power

grid time constant due to off-chip inductance is much longer than the functional clock

cycle, so it takes dozens of functional clocks before the inductor currents can ramp up to

supply the on-chip switching activity. In the meantime, this current must be supplied

from on-chip parasitic and decoupling capacitances, causing the supply voltage to droop.

This causes a poor correlation between test and functional operating conditions.

In order to avoid this, the traditional LOC model [14] must be modified to support

preamble cycles. For the purposes of path delay test, we set a transition at the output of

every gate of the target path. In the traditional LOC model, the transition at the start of

10

the path is caused by the value at the data input of the scan cell being opposite of the

scanned in value, e.g. if the scanned in value is a 0 and the data input is a 1, then

clocking the cell will cause a rising transition at the cell output. The ATPG problem is to

go back one time frame to determine the initial test pattern that will generate the required

transition at the start of the path and the necessary assignments to propagate transitions

along the path to a capture point. With the introduction of preamble cycles, this model

must be revised. We still want to justify the transitions for detecting the delay faults

along the path in the last two time frames. However, we need to find the pattern which

would cause these transitions from a time frame that is n cycles back, where n is the

number of preamble cycles that we are applying. The traditional model for LOC

described the initial and the final states of the circuit. Transitions were set based on

values assigned in these states. With preamble cycles, these two states are now the 2
nd

 to

last and the last time frame. In traditional LOC, the test pattern was scanned in on the

initial cycle. Now, the pattern must be scanned in on the 0
th

 cycle. This is illustrated in

Fig. 4. In other words, the final state of the circuit is moved to the last time frame. The

initial state is moved to the 2
nd

 to last time frame for setting the transitions, while the

pattern application state is now the 0
th

 cycle. The ATPG tries to find a pattern, which

when applied in the 0
th

 time frame, will cause the required transitions to occur going

from the 2nd to last to the last time frame.

11

Fig. 4. Extending the Traditional LOC Model for Preamble Cycles in PFT.

12

4 KLPG FOR PSEUDOFUNCTIONAL TEST

The KLPG algorithm generates the K longest rising and falling paths through a target

line under robustness constraints. The search space for each fault site, as shown in Fig. 5,

is the fan-in and fan-out paths of the target line. In this work, we will combine KLPG

path generation with PFT. In other words, we propose to generate KLPG patterns based

on the PFT model. CodGen is a path delay test ATPG engine to generate the K Longest

Paths per Gate (KLPG) [15] [16]. In order to make CodGen able to generate patterns for

PFT, it will be modified to extend its capabilities beyond traditional LOC test. We will

incorporate the model that we have described in Section 3.2. This makes the problem of

path generation and path justification much harder than before. Since we are no longer

following the traditional LOC test, the term initial and final clock cycles do not convey

any meaningful information. Instead we use the term ‘time frame’ to designate each

clock cycle from the scan in of the pattern to the capture cycle. The pattern is scanned in

at time frame 0 and for a 16 cycle test; the capture is in time frame 15. The state of the

circuit in any time frame is derived from its previous time frame.

Fig. 5. KLPG Path Search Space.

g

Search space

Constraints from

outside search space

13

There are three major steps in the KLPG process:

1. Path Initialization: The set up of the Launch Points in the circuit. A launch point

can be a Primary Input (PI) or a Pseudo Primary Input (PPI).

2. Path Growth: Extending the path by adding one gate at a time, so that it extends

from a Launch Point to a Capture Point. A Capture Point can be a Primary

Output (PO) or Pseudo Primary Output (PPO).

3. Final Justification: Finding the test pattern as well as checking compatibility

between all internal assigned values in the circuit.

We describe each of these processes in greater detail in this section. Due to the

incorporation of the PFT model in the ATPG process, the Path Generation and Final

Justification algorithms needed to be modified. A high level flowchart for KLPG is

shown in Fig. 6. The algorithm is described in Fig. 7.

Fig. 6. Overview of KLPG Path Generation.

14

1. Parse the input files and perform pre-processing steps.

2. For each target fault site, until K paths has been generated or no more possible

3. Initialize the paths from the target fan-in cone Launch Points.

4. Add these to the Partial Path Store.

5. Extract the partial path with maximum Esperance.

6. Extend the extracted path.

7. Add side input constraints and perform Multi-Frame Direct Implications.

8. If a conflict is detected

9. Trash this partial path

10. End If

11. Else If Complete path formed

12. Perform Final Justification.

13. End If

14. Else If Complete Path is not formed

15. Apply false path elimination heuristics

16. Update the Esperance.

17. Re-insert in a sorted fashion into the Partial Path Store

18. Go to step 6.

19. End If

20. End For

Fig. 7. KLPG Algorithm.

15

4.1 Path Initialization and Growth

KLPG requires us to generate K longest rising and falling paths through a target

line under robustness constraints. In order to activate the small delay defects across any

of these long paths, we set transitions along the path, going from the 2
nd

 to last to the last

time frame. Transitions are set along each gate of the path. A transition can be of two

types: rising or falling. A rising transition is one where the value on the 2
nd

 to last time

frame at the output of a gate is 0 and it changes to 1 in the next time frame. A falling

transition is one where the value changes from 1 to 0. The path generation procedure has

been derived from [15] and extended so that it is able to generate paths for the PFT

model. When the number of preamble cycles are reduced to zero, the Launch on Capture

model and PFT model become the same.

We perform preprocessing to help in the path generation process. We compute the

maximum delay of each gate to the capture points. This is done without taking logic

constraints into account. This is known as PERT or STA analysis and these delay values

are known as PERT or STA delays. We also compute the SCOAP [17] values of the

gates in the circuit. SCOAP values are used to guide the test generation and justification

process.

In the initialization phase, we first identify the target fan-in cones and the target

fan-out cones for the activation and propagation of a fault at any particular fault site. As

shown in Fig. 5, this is the fan-in and the fan-out cone of that particular fault site. Path

initialization starts with assigning transitions going from the 2
nd

 last to the last time

frame at every launch point in the target fan-in cone. All of these are considered partial

16

paths. A partial path is a path that has originated from a launch point but has not reached

a capture point [14]. Partial paths are associated with an Esperance value, which is the

sum of the PERT delay of the last node on the partial path and the total delay of the

partial path. This Esperance serves as the upper bound of delay for any path, from a

launch point to a capture point, and containing the partial path. Path growth takes place

by adding a gate to the partial path with the highest Esperance and setting a transition on

it going from the 2
nd

 last to the last time frame. In the case of adding a multiple fan-out

gate, we split the partial path. Based on the robustness criterion (e.g. robust, non-robust,

long transition) we assign the constraints to propagate the transition. In order to quickly

propagate the constraints through the circuit, we need to perform Direct Implication [15]

over each of the time frames. This process continues iteratively unless we encounter

conflicts and drop the partial path, or we reach a capture point.

When a partial path has not reached a capture point, false path elimination

techniques are applied to trim off any false paths [15]. Then the path is re-inserted into

the partial path store with an updated Esperance. Once a complete path is achieved, a

Final Justification procedure is invoked. This checks the compatibility of indirectly

implied logical values and finds a test pattern for the path. In the next sections, we

describe the Direct Implication and the Final Justification procedures.

4.2 Multi-Frame Direct Implication

Previous work has shown that immediate identification of uniquely determined

signals helps in speeding up the search process [18] [19]. We use the same philosophy

during path generation and justification. During the path generation process, we set the

17

necessary transitions in the last two time frames. Each of these assignments, and the

combination of previously discovered assignments, imply other logic values in the

circuit. In order to determine these logic values, we use a process that we term Multi-

Frame Direct Implication. It uses the basic concepts of Direct Implication [15] but it is

able to discover and set implications across multiple time frames. Another potential

benefit of this approach is that it is able to detect conflicts in assignments much earlier

and trim off false paths at an earlier stage. This speeds up the search process. Multi-

Frame Direct Implication is also able to propagate through Scan Cells into previous time

frames, to yield maximum benefits.

Multi-frame Direct Implication is based on the following principle: the output

value of a gate in time frame j is derived from the inputs to the gate in time frame j or

vice versa. Multi-frame Direct Implication is performed on scanned flip-flops as well.

The output of the scan cell in the time frame j is propagated backwards into time frame j-

1 on its data input line (and thus on the fan-in cone of the input line in time frame j-1).

This is a bidirectional implication, which means that a value on the input of the scan cell

is propagated forward into the next time frame through the data output line (and thus on

the fan-out cone of the output of the scan call into the circuit).

An example of Multi-Frame Direct Implication is shown in Fig. 8. In the scan cell,

the 1 at the input of the scan cell is derived from the output of the scan cell in the

previous time frame. The 0 at the output of the scan cell is derived from the input of the

scan cell in the next time frame. For the Backward implication through the AND gate,

initially the values of 1, 0 and 1 are set at the output of the gate in three different time

18

frames. Let us consider that the inputs do not have any values on them, i.e. they are all

X. The output value 1 implies input values 1 in the same time frame on both the input

lines. This is an example of a uniquely determined signal. However, the output value of

0 cannot imply any value on the input lines. This is because a value of 0 on any input

line (or both) will cause this output value. So the input values cannot be uniquely

determined in this case, and thus remain X. Similarly, in the case of forward implication,

let us assume we set 0, X and 1 on one input and 1, 0 and X on the other input in three

different time frames. Also, let us assume that the outputs were all initially X. In the 1
st

time frame, the combination of 0 and 1 gives the signal 0 at the output. In the 2
nd

 time

frame, the combination of X and 0 gives us the value 0. However in the 3
rd

 time frame, 1

and X give no uniquely determined signal and the output remains X.

One important aspect of Multi-Frame Direct Implication on logic gates is that it

treats the values on the same gate at different time frames as independent logic values.

This is correct because values on the same gate in a different time frame do not directly

affect each other. The value may be propagated backwards or forwards into a scan cell,

move into a new time frame and then trace back along a path to eventually reach the

same gate again in a different time frame. However, in this case, the inputs or outputs of

the particular gate already have the implied values and thus we need not worry about a

direct relation between different time frame values on the same logic gate.

19

Fig. 8. Multi-frame Direct Implications.

It is to be noted that when we are not able to uniquely determine the values at the

inputs or outputs of a gate by implications, we still need to ensure that these values do

not cause a conflict. This is determined by Final Justification. A gate, is termed an

Unjustified Gate [19] when an input is not uniquely determined by the value on the

output line (and input lines that have a non-X value). Final justification ensures that each

unjustified gate is justified and also helps in finding a vector for the path.

4.3 Final Justification for PFT

When a complete path is found, we need to perform Final Justification. The two

major goals of this process are to justify each unjustified gate, and finding a pattern for

testing the path that has been generated. An unjustified gate is one which has a non-X

value, i.e. 0 or 1 on its output in a particular time frame; however the logical operation

on its inputs in the same time frame yields an X. This has already been discussed in

Section 4.2. A gate can be unjustified in multiple time frames. This means that we need

20

to justify the logic values at the gate output for each time frame. As discussed in Section

4.2 we treat the outputs of the same gate in different time frames as independent

problems. The Final Justification procedure justifies values back to the 0
th

 time frame,

since that is the only time frame where we can set assignments by scanning in a test

pattern. We have built on the PODEM [20] based procedure for LOC test, present in

CodGen. The high level flow is shown in Fig. 9 and described in Fig. 10.

Fig. 9. KLPG Final Justification Algorithm.

21

1. Create a sorted list (decreasing CO) of unjustified gates. Set level as 0.

2. Get the 1
st
 gate in the original list that is still unjustified. Done when none exist.

3. Back-Trace across time-frames until a PI or a 0
th

 time frame PPI is reached.

4. Set 1/0 at the PI or PPI.

5. Perform Multi-Frame Forward Implications.

6. If no conflict is detected

7. Increase level by 1 and go to step 3.

8. End If

9. Else

10. Try the reverse value at the PI or PPI.

11. Perform Multi-Frame Forward Implications.

12. If no conflict is detected

13. Increase level by 1 and go to step 3.

14. End If

15. Else

16. Remove all assignments made at this level and decrease level by 1.

17. Reverse decisions made higher in the BDD tree and go to step 11.

18. End Else

19. End Else

Fig. 10. Final Justification Algorithm.

22

During Final Justification, when an unjustified gate is encountered, back-trace is

performed to a scan cell’s 0
th

 time frame, or to a PI in any time frame. In terms of the

time frame expanded circuit, Fig. 3, the search must go back to the leftmost set of scan

cells, or to a PI in any of the time frames. A value is set on the scan cell/PI and multi-

frame direct implication is used to propagate the values forward. Whenever a decision (a

logic value on any bit in either pattern) is made at a PI or scan cell, direct implications

must be performed to trim the search space. If the gate is now justified, the next

unjustified gate is considered, otherwise the search backtracks to reverse the previous

decision and the search continued. In case both the options have been tried, the

procedure backtracks to the next higher level in the Binary Decision Tree. If both

options at the root have been tried and no success was achieved, then the path is

dropped. A complete traversal of the entire search tree is infeasible, so a limit is set on

the number of unsuccessful attempts at justification. If we exceed this backtrack limit,

we drop the path. Such an action can potentially lower the fault coverage. Experiments

have been performed with different backtrack limits to show the effect of the backtrack

limit on the ATPG process. Hitting the backtrack limit may not result in a loss of

coverage, since when a path is dropped, the ATPG tries to generate another long path

through the target fault site. This next path can only be as long as the path that was

dropped. However, it is still a long path through the target fault site.

In the back-trace, we start from an unjustified gate. This gate is unjustified

because one or more of its inputs has the value X in the same time frame. This, in turn, is

due to the input gate having one or more X values on its own inputs. This goes on until

23

we encounter a PI or a PPI. If we reach a PI, we have our decision point. But a PPI is a

decision point only if it is in its 0
th

 time frame. If a PPI is not in its 0
th

 time frame, its

output is an X because the corresponding PPO value is X in the previous time frame. So,

we back-track from the PPO into its own fan-in cone, but this time the process occurs in

the previous time frame. This process goes on until we reach either a PI or a PPI in the

0
th

 time frame.

The Final Justification procedure is guided by SCOAP [17] measures. For time

frame expansion, we need to calculate the SCOAP measures for each time frame. This is

done by calculating the Controllability values for the 0
th

 time frame, then using these

values to compute the SCOAP measures for the 1
st
 time frame and so on. Observability

values are computed in the last time frame and then propagated backwards until the 0
th

time frame is reached. This ensures that the search process through the time frames is

guided by SCOAP measures that take into account the effect of time frame expansion.

This is done in the preprocessing phase. The preprocessing phase also sets the test setup

values in the circuit. This is also done in a time frame expanded manner. The values are

set in their particular time frames, and are then propagated into the future time frames.

24

5 COMPACTION FOR PSEUDOFUNCTIONAL TEST

In the domain of scan-based very large scale integrated (VLSI) circuits, the pattern count

affects the test cost. This is due to the test application time being proportional to the test

set size [21]. Also, if the size of the test set is larger than the memory of the tester, the

patterns need to be reloaded, adding an extra cost. A test pattern has 0, 1 or X assigned

to each PI and PPI. Compaction takes advantage of unassigned values, i.e. X’s to merge

together different tests, reducing the total test size. There are two main classes of

compaction algorithms for combinational and fully-scanned sequential circuits: static

compaction and dynamic compaction.

In Static Compaction, when two patterns are being compacted together, each bit

position is compared and the two patterns are replaced by a single pattern. Two patterns

can be statically compacted if there are no conflicts at corresponding bit positions of

both patterns. A conflict occurs when one pattern has 0 in a particular bit position and

the other pattern has a 1. Static Compaction is independent of the test generation and can

be performed as a post-processing step. In this research, we have developed a parallel

static compaction tool, which we will describe in Section 8.

Dynamic Compaction has already been shown to achieve a higher compaction

rate than static compaction, and allows the switching activity to be close to Transition

Fault Test patterns [22]. Dynamic Compaction is a part of the test generation process.

The classic approach is to generate a pattern for one fault, and then use heuristics to

modify the unspecified bits, and drop other detected faults in the fault list via fault

simulation. But path delay test has a very low fortuitous detection rate, causing this

25

approach to be unsuitable. We build upon the previous Dynamic Compaction procedure

in CodGen [22]. In this approach, paths were compacted based on their necessary

assignments (NAs). This procedure needs to be extended to be able to compact together

NAs from multiple time frames. One of the basic problems is the fact that a particular

gate can have different values in different time frames as NAs. We need a methodology

to efficiently represent such situations and be able to deal with them.

We perform Dynamic Compaction on a path after it has passed the Final

Justification procedure. The values discovered during the Final Justification procedure

are not NAs, since they are just a set of values that can satisfy the unjustified gates of a

single path. A pool of paths, called Path-Pool is maintained, which contains a set of

Dynamically Compacted paths. We try to compact the newly justified path with one of

the members of Path-Pool. If we do not succeed, we enter this path in the Path-Pool and

the ATPG moves on to generating another path through the next target fault site. The

Dynamic Compaction approach relies heavily on the Multi-Frame Direct Implication

and the Final Justification procedures described earlier.

In a very simple example of Dynamic Compaction, let us consider two paths,

Path1 and Path2, through target fault sites A and B respectively. Each path has its own

NAs, spread across different time frames. The first step is to put together the NAs of

both these paths and check for any direct conflicts in each time frame. A direct conflict

is one when there are conflicting values at the output of a particular gate in the same

time frame. If there is such a conflict, then these two paths are not compactable with

each other. If there is no direct conflict, we perform Multi-Frame Direct Implication to

26

discover any conflicts. This helps us in detecting a conflict in an early stage in the

compaction process. If any conflict is detected, then Path1 and Path2 cannot be

compacted with each other. This procedure also helps in finding more NAs which speeds

up the next step, Final Justification. If no conflict is detected after the Multi Frame

Direct Implication has been performed then we perform the Final Justification procedure

described in Section 4.3. This justification is done based on the combined NAs. If this

step succeeds, then these two paths are compactable. We discard the assignments

discovered during the Final Justification phase and put this path in the Path-Pool. It now

contains the NAs of Path1 and Path2, as well as the NAs discovered by implications.

Fig. 11 illustrates this.

During the Dynamic Compaction process, there can be cases where the same gate

has NAs in more than one time frame. We treat these NAs as independent of each other.

The process of performing a compatibility check only between necessary assignments

helps in greatly expanding the compaction space without loss of fault coverage. The

generation of final test patterns takes place after the test generation and dynamic

compaction is completed. This helps us to achieve maximum flexibility for compaction.

The Dynamic Compaction algorithm has been integrated with the CodGen code flow.

27

Fig. 11. Dynamic Compaction of Two Paths.

We now describe the Dynamic Compaction procedure in Fig. 12. The high level flow

is similar to the original Dynamic Compaction [22]. The internal details, as described

above are different, so that the algorithm is able to deal with NAs across multiple time

frames as well as generate a vector for the combined paths by traversing multiple time

frames in both forward and reverse directions.

28

1. If the Path-Pool is empty, go to step 19.

2. Else set the pointer PP at the head of the Path-Pool.

3. If there is Direct Conflicts between PP and CP,

4. Move PP to next path in Path-Pool. If no more paths exist, go to step 19.

5. End If

6. Else

7. Combine NAs from all time frames of PP and CP as TP.

8. Perform Multi-Frame Direct Implication on the combined NAs.

9. If conflict occurs

10. Discard TP.

11. Move PP to next path in Path-Pool. If no more paths exist, go to step 19.

12. End If

13. Else

14. If Final Justification (Fig. 10) on TP is successful

15. Discard learning in Final Justification. Replace PP with TP and return.

16. End If

17. End Else

18. End Else

19. Insert CP in Path-Pool and return.

Fig. 12. Dynamic Compaction Algorithm for PFT.

29

The entire KLPG flow with the Dynamic Compaction procedure is described in Fig. 13.

1. Initialize Path-Pool as empty.

2. Use KLPG algorithm (Fig. 7) to generate a complete path, CP including Final

Justification (Fig. 10).

3. Discard learning from Final Justification of CP.

4. Call Dynamic Compaction (Fig. 12) for CP.

5. If no more paths can be generated, go to step 6, else go to step 2.

6. Perform Final Justification on each member of Path-Pool to find vectors for

them.

Fig. 13. KLPG Algorithm with Dynamic Compaction.

30

6 RESULTS OF KLPG PATTERN GENERATION

The proposed PFT KLPG pattern generation with integrated Dynamic Compaction has

been implemented in Visual C++ and run on an 8 core HP Server with 64-bit Windows 7

Enterprise with a 2.6 GHz AMD Opteron processor and 16 GB of memory. Experiments

are performed on the full scan versions of the largest ISCAS89 and ITC99 benchmark

circuits.

The experiments were performed for values of K being increased from 1 to 5.

This was done in combination with the number of preamble cycles being varied from 0

to 6, in steps of 2. In other words, time frame expansion of 2, 4, 6 and 8 frames was

done, and for each frame, KLPG with K = 1, 2, 3, 4 and 5 were observed. In order to

study the effect of the Back-Track Limit discussed in Section 4.3, these experiments

were performed with two different Back-Track limits.

Low cost testers often have the constraint that PI values must remain constant

during the test application process, since the tester has only a few high-speed pins. In

this work, we wanted to evaluate the effect of such a constraint. So the experiments were

performed keeping PI values constant over all the cycles as well as allowing PI values to

change. In the path generation process, the Launch Points were restricted to PPIs, while

capture points were restricted to PPOs.

6.1 Path Generation with PIs Held Constant

In order to adhere to the constraints imposed by low cost testers, we assume that

the Primary Input (PI) values cannot change during the application of test, since low-cost

31

testers have only a few high-speed pins. PIs are held constant over all cycles. Similarly,

we mask off the Primary Outputs (PO). In other words, we only consider paths that end

at a scan cell. Our ATPG has the ability to remove these constraints to evaluate their

effect on the path generation process. We generate paths for values of K from 1 to 5. We

observe that as the number of time frames increases, the number of sensitizable paths

falls. For K = 1 in Fig. 14, there is only a slight decrease for s35932, but a significant

drop for s38584 and s38417. For the other circuits, there is a significant drop going from

2 to 4 time frames, and then a gradual drop after that. A similar result is observed for

K=5 in Fig. 15, and other values of K. For a constant number of frames, the number of

paths rises with K.

Fig. 14. The Number of Sensitizable Paths for Each Circuit; K=1; Constant PIs.

0

2000

4000

6000

8000

10000

12000

14000

16000

2 4 6 8

P

at
h

s

Frames

s38584

s38417

s35932

s15850

s13207

s9234

s5378

s1494

s1488

s1423

32

Fig. 15. The Number of Sensitizable Paths for Each Circuit; K=5; Constant PIs.

Relative CPU times are shown in Fig. 16 and Fig. 17. The CPU times are relative

to the CPU time for K=1 and two time frames, which is the type of KLPG test used in

prior work. The CPU time is roughly constant for many circuits. The smaller s5378 has a

sublinear CPU time increase. The figures also show that the CPU time rises sublinearly

in K. The reason that the CPU time rises so slowly with increasing number of time

frames is that the decreasing number of sensitizable paths compensates for the increasing

effort to find each path.

0

10000

20000

30000

40000

50000

60000

2 4 6 8

P

at
h

s

Frames

s38584

s38417

s35932

s15850

s13207

s9234

s5378

s1494

s1488

s1423

33

Fig. 16. CPU Time for K=1, Relative to K=1, Frames=2. PIs Constant.

Fig. 17. CPU Time for K=5, Relative to K=1, Frames=2. PIs Constant.

0

2

4

6

8

10

12

14

2 4 6 8

R
at

io
 (

C
P

U
 T

im
e

)

FRAMES

s38584

s38417

s35932

s15850

s13207

s9234

s5378

s1494

s1488

s1423

0

2

4

6

8

10

12

14

16

18

2 4 6 8

R
at

io
 (

C
P

U
 T

im
e

)

FRAMES

s38584

s38417

s35932

s15850

s13207

s9234

s5378

s1494

s1488

s1423

34

6.2 Path Generation with PIs Not Constant

The impact of holding PIs constant was evaluated by removing this constraint. In

practice this would require a tester with high-speed pins on all PIs or corresponding DFT

logic. Fig. 18 and Fig. 19 show the results for generating the K longest robustly-testable

rising and falling paths through each line, under the launch-on-capture constraints,

allowing the PIs to have different values in each time frame. Allowing the PIs to have

different values can also lead to potentially higher switching activity in the circuit. In

these experiments, we do not consider the PIs to be Launch Points and the POs to be

capture points. This is done to maintain consistency with Section 6.1. Also, if we require

the PIs and the POs to be Launch and Capture points, we would need additional

hardware on the testers, which may not be available. We have generated paths, along

with Dynamic Compaction of the patterns for 2, 4, 6 and 8 time frame expansions. For

each of the time frame, we have taken the value of K = 1, 2, 3, 4 and 5.

Fig. 18. The Number of Sensitizable Paths for K=1. PIs Not Constant.

0

2000

4000

6000

8000

10000

12000

14000

16000

2 4 6 8

P

at
h

s

Frames

s38584

s38417

s35932

s15850

s13207

s9234

s5378

s1494

s1488

s1423

35

Fig. 19. The Number of Sensitizable Paths for K=5. PIs Not Constant.

In these experiments, we expect an increase in the number of paths, compared to

constant PI case, since there are fewer constraints. However, we see a drop in the

number of paths in the case of s1494 and s1488. This requires a deeper understanding of

the relationship between the Direct Implication and the Final Justification procedures.

When we remove the PI fixed value constraint, we are not using Multi-Frame Direct

Implication to set the values on the PI. Instead, we are leaving it to the Final Justification

procedure to discover these values. Cases arise where the constant value was also the

value discovered by Final Justification. However, in some cases, Final Justification hits

its Back-Track limit when attempting to justify these paths without the PI constraints.

This effect is only visible in circuits where the total number of paths is small and

consequently, the dropped paths outnumber the additional paths found. Increasing the

0

10000

20000

30000

40000

50000

60000

2 4 6 8

P

at
h

s

Frames

s38584

s38417

s35932

s15850

s13207

s9234

s5378

s1494

s1488

s1423

36

Back-Track limit to 800 found the paths that were dropped without the PI constraint.

These are shown in Fig. 20 and Fig. 21.

Fig. 20. Increase in # Paths by Removing PI Constraint (BackTrack Limit = 200).

Fig. 21. Increase # Paths by Removing PI Constraint (BackTrack Limit = 800).

0

1000

2000

3000

4000

5000

Δ
P

at
h

Circuit

2

4

6

8

0

500

1000

1500

2000

2500

3000

Δ
P

at
h

Circuit

2

4

6

8

37

The relative CPU times without PI constraints are shown in Fig. 22 and Fig. 23.

The CPU times are relative to K=1 and 2 time frames, with no PI constraints. There is

more increase in CPU time with time frames than in the case where PIs are held

constant, but it is still sublinear. The higher growth rate is because the CPU time for

Final Justification rises faster with time frames than does the CPU time for path

generation with Direct Implication. In addition, the decrease in paths with increasing

number of time frames is only about half as much. This shows that holding the PIs

constant for these circuits has a significant impact on the number of paths that can be

tested. However, this impact is likely to be much smaller in larger circuits. It must be

noted that this time includes the Dynamic Compaction time. This means that the total

time is not only dependent on the path generation process, but also includes the time

taken to compact each of the generated path with one or more of the previously

generated paths. We take the Dynamic Compaction time into account because in a

realistic ATPG process, compaction is always a part of the entire pattern generation

scheme.

38

Fig. 22. CPU Time for K=1, Relative to K=1, Frames=2. PIs Not Constant.

Fig. 23. CPU Time for K=5, Relative to K=1, Frames=2. PIs Not Constant.

0

1

2

3

4

5

6

7

2 4 6 8

R
at

io
 (

C
P

U
 T

im
e

)

FRAMES

s38584

s38417

s35932

s15850

s13207

s9234

s5378

s1494

s1488

s1423

0

2

4

6

8

10

12

14

16

2 4 6 8

R
at

io
 (

C
P

U
 T

im
e

)

FRAMES

s38584

s38417

s35932

s15850

s13207

s9234

s5378

s1494

s1488

s1423

39

6.3 Dynamic Compaction for PFT

In order to reduce the pattern count for PFT, our new dynamic compaction

algorithm was used. There are two factors that play a major role in this scenario. One

factor is that with the increase in the number of time frames, the care bit density of each

pattern increases. This is due to more necessary assignments in the time-frame-expanded

circuit, causing the compaction ratio to fall and the pattern count to rise. The second

factor that comes into play is that with the increase in the number of time frames, the

number of sensitizable paths falls, even when the PIs are allowed to change. This causes

the pattern count to go down. The effect of time frame expansion on the pattern count is

observed for the PIs held constant and as well as allowing them to change. These are

shown in the figures below. As can be seen in the results, the number of patterns is

relatively stable as the number of time frames increases, since the reduced compaction

ratio roughly balances the decreasing number of paths. This is true both for fixed and

changing PIs. The CPU time grows significantly with increasing number of time frames,

since the search problem becomes more difficult. The pattern count is shown in Fig. 24

and Fig. 25 for PIs held constant; Fig. 26 and Fig. 27 for PIs changing. The compaction

ratios are shown in Fig. 28 and Fig. 29 for PIs held constant; Fig. 30 and Fig. 31 for PIs

changing.

40

Fig. 24. Pattern Count for K=1, PIs Constant.

Fig. 25. Pattern Count for K=5, PIs Constant.

0

100

200

300

400

500

600

700

800

2 4 6 8

P

at
te

rn
s

Frames

s38584

s38417

s35932

s15850

s13207

s9234

s5378

s1494

s1488

s1423

0

1000

2000

3000

4000

5000

6000

7000

2 4 6 8

P

at
te

rn
s

Frames

s38584

s38417

s35932

s15850

s13207

s9234

s5378

s1494

s1488

s1423

41

Fig. 26. Pattern Count for K=1, PIs Not Constant.

Fig. 27. Pattern Count for K=5, PIs Not Constant.

0

100

200

300

400

500

600

700

800

2 4 6 8

P

at
te

rn
s

Frames

s38584

s38417

s35932

s15850

s13207

s9234

s5378

s1494

s1488

s1423

0

1000

2000

3000

4000

5000

6000

7000

2 4 6 8

P

at
te

rn
s

Frames

s38584

s38417

s35932

s15850

s13207

s9234

s5378

s1494

s1488

s1423

42

Fig. 28. Compaction Ratio for K=1, PIs Constant.

Fig. 29. Compaction Ratio for K=5, PIs Constant.

0

50

100

150

200

250

300

350

2 4 6 8

C
o

m
p

ac
ti

o
n

 R
at

io

Frames

s38584

s35932

s38417

s15850

s13207

s9234

s5378

s1494

s1488

s1423

0

100

200

300

400

500

600

700

800

2 4 6 8

C
o

m
p

ac
ti

o
n

 R
at

io

Frames

s38584

s38417

s35932

s15850

s13207

s9234

s5378

s1494

s1488

s1423

43

Fig. 30. Compaction Ratio for K=1, PIs Not Constant.

Fig. 31. Compaction Ratio for K=5, PIs Not Constant.

0

50

100

150

200

250

300

350

2 4 6 8

C
o

m
p

ac
ti

o
n

 R
at

io

Frames

s38584

s38417

s35932

s15850

s13207

s9234

s5378

s1494

s1488

s1423

0

100

200

300

400

500

600

700

800

2 4 6 8

C
o

m
p

ac
ti

o
n

 R
at

io

Frames

s38584

s38417

s35932

s15850

s13207

s9234

s5378

s1494

s1488

s1423

44

7 POWER GRID MODELING

The scan cycle time is typically an order of magnitude slower than the functional cycle

time. The power grid time constant due to off-chip inductance is much longer than the

functional clock cycle, so it takes a series of functional clocks before the inductor

currents can ramp up to supply the on-chip switching activity. In the meantime, this

current must be supplied from on-chip parasitic and decoupling capacitance, causing the

supply voltage to droop. This phenomenon has already been explained in Section 2 and

3. One of our main motivations behind PFT was to achieve a high correlation between

the power supply behavior in functional and test mode. The introduction of the preamble

cycles was meant to facilitate the power grid reaching its functional mode before the at-

speed launch and capture cycles were applied.

In this section, we describe a study of the power grid behavior during the PFT

process. We also attempt to correlate power grid behavior in the functional mode. Based

on a detailed modeling of the power grid and simulations, we would analyze the effect of

the PFT patterns on the power supply voltage, as well as the correlation between power

grid behavior during the at-speed cycles and the functional state. We also analyze the

delay on a path during a traditional two cycle LOC test and compare it with the delay

during PFT. In order to make the study more accurate, delay characterization of the

standard cells has been done.

45

7.1 Power Grid Modeling

In order to study the behavior of the power grid, we need to model it in terms of its

RLC components [23]. We start with the Design Exchange Format (DEF) files of

benchmark circuit s1488. This contains the placement information of the standard cells,

as well as the VDD and the GND rails. In addition, there is information about the layout.

We parse this information to associate each cell with its VDD and GND rail. Then we

model each unit distance on the rail as a RLC block and replace the rails with these

blocks. The Verilog file is parsed to set up the input and output connections of each gate,

and connect them with their VDD and GND rails. Next the pattern file is scanned. In

order to initialize the circuit, we use a MUX to scan in the values in the D Flip Flops

(DFF) for the 1
st
 cycle. For subsequent cycles, the select line is flipped so that the DFF

are in normal operational mode. Values are initialized on the PIs for all cycles. The VDD

and the VSS pins are also modeled as a RLC block. An example is shown in Fig. 32.

Fig. 32. Power Grid Model.

46

7.2 Power Grid Simulation

We have used the 45nm PTM High Performance model card from the Predictive

Technology Model (PTM) [24] [25] [26] [27] [28]. We have used the NANGATE 45nm

standard cell library. We first present a snapshot of voltage variation on the VDD Rail at

the point where the RLC unit of the VDD pin feeds the circuit in Fig. 33. In order to

study the operating VDD characteristics, waveforms have been observed at other points

as well. The ideal VDD is 1.0 V for the technology and model card used. The circuit

clock is operated at 2 GHz. The critical path lengths were lesser than 0.5ns, which

allowed us to operate at this particular frequency. The power grid, VDD and VSS Pin

were modeled with the following parameters:

Resistance = 0.04 Ω/µm.

Inductance = 0.01 nH/µm

Capacitance = 0.2 fF/µm.

Rs = Rp = 0.3 Ω.

 Ls = Lp = 0.8 nH.

Cs = Cp = 4 pF

These values were taken from PTM Interconnect Structure 2 parameters for the above

mentioned technology. For the simulation, we ran the circuit for 6 half speed preamble

cycles (1 GHz) followed by 2 at-speed cycles (2 GHz).

47

Fig. 33. Voltage Response of Power Grid.

The results show that over the 1
st
 two clock cycles, there is a significant drop in the

VDD voltage. This is the time when a normal LOC test would have been applied. During

this droop phase, the circuit would have run slower compared to functional mode of

operation, since the gates have a lower VDD voltage. This might have caused some

critical paths to fail the timing constraints, and thus the chip would be marked as slow.

The chip requires a set of preamble cycles before its VDD rails recover to the functional

48

operating voltage. Our experiments show that the amount of time required for the VDD

to recover is fairly independent of the frequency of the preamble cycles. Thus, if we can

apply slower clocking during the preamble cycles, we can reduce the number of such

cycles required. In this example, we would require 6 at-speed preamble cycles or 3 half-

speed preamble cycles. It was also observed that as the circuit size increases, the amount

of droop and the recovery time also increase. Thus, it is expected that larger designs will

require a higher number (or slower) of preamble cycles than a smaller design. Compared

to PFT, a traditional LOC test would have been poorly correlated with functional test,

due to different operating conditions. This might have caused a good chip to be marked

slow, causing yield loss and loss in profit. Thus PFT plays an important role in

improving correlation between functional and test mode while also reducing the test

application time.

7.3 Cell Delay Characterization

In order to characterize the individual cell delays, we have simulated their

behavior under the robust sensitization criterion. This is because during our ATPG

process, we have generated robust paths. The side inputs of the gates have been held at

non-controlling values, while the input is allowed to change. In order to make the delay

estimate more realistic, the input is fed from an inverter and the logic cell drives an

inverter. This more accurately represents circuit conditions, where gates are both driven

by and drive other gates. The cells that we have characterized are the ones which are

found in the ISCAS89 benchmark circuits. The delay characterization has been

performed by varying the VDD in steps of 0.01 V, centered about 1.0 V.

49

Fig. 34. Rising Delay of Standard Cells.

Fig. 35. Falling Delay of Standard Cells.

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.9 0.95 1 1.05 1.1

D
e

la
y

(p
s)

VDD (V)

NAND2

NAND3

NAND4

NOR2

NOR4

AND2

AND3

AND4

OR2

OR3

OR4

INV

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

0.9 0.95 1 1.05 1.1

D
e

la
y

(p
s)

VDD (V)

NAND2

NAND3

NAND4

NOR2

NOR3

NOR4

AND2

AND3

AND4

OR2

OR3

OR4

INV

50

The delay trends in Fig. 34 and Fig. 35 show that as VDD decreases, the delay of

each cell increases. This means that during the droop phase at the start of functional

clocking, path delays would be higher than normal.

7.4 Path Delay Comparison

The path delay behavior of the ISCAS89 benchmark circuit s1488 has been

studied in detail and is presented here. s1488 offers the advantage of being a small

circuit, which can be fully simulated using HSPICE within a reasonable amount of time.

Fig. 36 shows the difference in path delay observed for the 40 longest paths (about one-

third of the total) during a traditional LOC test and PFT test. This shows that the

traditional LOC test finds a path to be slower than PFT. For the purposes of

measurement, we have compared the same path under a 2-cycle as well as 8-cycle test.

The figure shows the percentage difference in delay predicted by LOC with the delay

predicted by an 8-cycle PFT test. It was found that LOC always predicted a higher delay,

due to the voltage droop.

51

Fig. 36. Delay Difference between LOC and PFT.

The figure shows that there is an average of 3-4 % delay increase when using

two-cycle LOC compared to 8-cycle PFT. In the domain of small delay defects, such an

error margin can cause a good chip to be labeled as slow. Thus, it is important to be as

close to the functional voltage as possible, which is achieved by PFT. The six preamble

cycles of the PFT test cause the launch and capture cycles to be applied when the power

grid has reached the steady-state, so the circuit delay measured by PFT should closely

track that of functional test for this circuit.

It was seen in our experiments that as the circuit size increases, the power grid time

constant increases. This would cause industrial designs to have a droop comparable to

the ones reported in [6]. Industrial measurements also show a higher inductive response,

so more ringing. However, simulating circuits of such magnitude on HSPICE was

beyond our cost and time constraints.

0.00

1.00

2.00

3.00

4.00

5.00

6.00

7.00

8.00

9.00

10.00

0 5 10 15 20 25 30 35 40

%
 D

e
la

y
In

cr
e

as
e

Path #

52

8 PARALLEL STATIC COMPACTION

We have considered reducing the compaction time by parallelizing the Static

Compaction process. Static Compaction was described in Section 5. A tool has been

developed to perform parallel Static Compaction in an efficient manner using the

OpenMP model. Static compaction has the advantage that it can be performed as a post-

processing step and does not need to be integrated with the ATPG flow. Also, Static

Compaction can be performed on patterns that have already been Dynamically

Compacted, to further reduce the patter count. Compaction, being a NP complete

problem, gives us a lot of scope to use heuristics to achieve near-optimal results [29].

In this section, we evaluate the effect of parallelizing the heuristics on compaction

results. The most common heuristics are greedy forward order, reverse order and random

access [30]. We also propose a new approach of compaction, using a weighted

distribution. We compare the benefits of the different approaches.

8.1 Overview

We take the initial list of patterns. Depending on the approach, we assign a sub-set

of the patterns to each of the processors. The processors compact the patterns that they

are assigned sequentially and update a Master List containing compacted patterns from

each processor. After each of the processors has done their processing, we compact these

patterns together. The steps are illustrated in Fig. 37.

:

53

1. Assign a sub-set of patterns to each processor based on the scheme being

implemented.

2. Compact the patterns inside each processor and upload to a Master-List.

3. Compact the master-list.

Fig. 37. Parallel Static Compaction Overview.

The main advantage of parallelization is two-fold. First, each processor is

allocated a smaller problem size. Since the complexity of the sequential algorithm is

quadratic in terms of the input size, we see a significant reduction in the running time of

each processor. Second, by parallelizing the task, we are also able to speed up the entire

process and achieve significant reduction in running time.

The major challenge was to break the inherently sequential nature of the compaction

algorithms. Previous work [31] uses a methodology where the compaction process uses

synchronization at every step. This is inefficient because it limits the amount of speedup

that we can achieve. High synchronization overheads reduce the benefits of parallelizing

the compaction process. In order to be efficient, we let each processor create its own

compacted list of patterns, called Pattern Pool, independent of other processors. This

ensures that we avoid per-step synchronization. We have a barrier at the end to cause the

master thread to wait for all the processors to finish their execution before running the

top-off sequential compaction procedure on the combined list from each processor.

54

Making the Pattern Pool local to one processor allows us to solve the problem of

Concurrent Writes. If we had a globally shared Pattern Pool, it may happen that multiple

processors may try to compact a pattern from their assigned patterns into the same

pattern in the global Pattern Pool. These patterns may have conflicts among themselves.

Making the Pattern Pool local to every processor helps us in avoiding this problem. It

also saves the overhead of having an atomic procedure to deal with conflicting

concurrent writes.

8.1.1 Forward Order Compaction

We divide the list of patterns into as many segments as there are processors,

following the order of patterns. Then we assign each segment to a processor. Each

processor compacts the segment of patterns that it has got and updates the master list

after which we compact the master list.

8.1.2 Forward Order Compaction with Internal Sorting

This is a modified version of Forward Order Compaction. In this scheme, after

we have assigned a set of patterns to each processor, we sort the patterns in each set in

descending order based on their care-bit densities. An advantage of this scheme is that

instead of sorting the entire list, we are sorting the smaller sets, and sorting in parallel,

thus saving time in the sorting operation.

8.1.3 Equal Weighted Bucket Compaction

One of the limitations of the Forward Order compaction schemes is that the time

taken by one processor can be much higher than another processor. This can happen

55

when one processor gets a set of patterns which have very low compatibility. This causes

a bottleneck in the parallel computation, since we can finish the parallel processing only

as fast as our slowest processor. In order to get around this problem, we would like to

distribute the patterns in such a way that each set has nearly equal chances of

compaction. This would ensure that the compaction time of the processors have low

variance. Weights are assigned based on the care-bit density of the pattern. The idea is

based on the fact that the higher the percentage of don’t care bits in a pattern, the greater

are its chances of compaction. In order to distribute the weights evenly, we have two

schemes.

8.1.3.1 Round-robin Weight Distribution

We sort the patterns by weights. Then we divide the patterns into blocks of size

equal to number of processors (p). From each block, processor i is assigned pattern I as

shown in Fig. 38. The entire chunk is the total set of patterns (n), which is divided into

n/p smaller blocks. The numbers inside the smaller squares indicate the processor to

which this pattern of the particular block was assigned. n/p = 4 for illustrative purposes.

Fig. 38. Round-Robin Pattern Distribution.

56

8.1.3.2 Striped Weight Distribution

We sort the patterns by weights and divide the patterns into blocks of size equal

number of processors (p). From every odd chunk, processor i is assigned pattern i. From

every even chunk, processor i is assigned pattern = number of Processors - i. This is

shown in Fig. 39. The entire chunk is the total patterns (n), which is divided into n/p

smaller blocks. The numbers inside the smaller squares indicate the processor to which

this pattern of a particular block was assigned. n/p = 4 for illustrative purposes.

Fig. 39. Striped Pattern Distribution.

8.2 Parallel Static Compaction Algorithm

In our algorithms, we maintain an individual list of compacted patterns in each

processor, called Pattern Pool. This list solely depends on the patterns that were assigned

to this processor. So, the compaction process in one processor is completely independent

of the compaction process of another processor. This helps us in avoiding

communication and synchronization penalties while running the compaction in parallel.

After the processors finish, they update the master list of patterns. This is a one-time

shared memory access, having lower performance overheads compared to having a

globally shared Pattern Pool among the processors. By performing the compaction in

parallel, on smaller sets of patterns, we can achieve a high degree of speed-up. The

57

reason is that the complexity of the sequential algorithm is quadratic in terms of the

input size. We run a round of compaction on the master list, because we can further

reduce the number of patterns by trying to compact the pattern set from one processor

with another. Although this takes more time, we achieve a smaller test set. We can

always skip this step if test compaction time is our primary concern. If the number of

patterns is our main concern, we perform this final compaction as the amount of extra

time is compensated by the time saved in applying the reduced test set on the tester. The

algorithm is described in Fig. 40

1. Start

2. Divide the Pattern List into segments of size depending on the pattern

distribution scheme being used.

3. Assign patterns to processors using one of the pattern distribution schemes.

4. For j = 0 to Total Patterns/ No. of Processors pardo

5. If the PatternPool is empty

6. Insert 1
st
 pattern into PatternPool

7. Else If the PatternPool is not empty

8. For k = 0 to current size of PatternPool

9. If j
th

 pattern of Pattern List can be compacted into k
th

 pattern of

PatternPool

Fig. 40. Parallel Static Compaction Algorithm.

58

10. Compact the two patterns and increment Success Counter of k
th

pattern of Pattern Pool by 1.

11. Else increment Failure Counter of k
th

 pattern of PatternPool by 1.

12. End For

13. If the j
th

 pattern of Pattern List could not be compacted into PatternPool

14. Add j
th

 pattern of Pattern List to PatternPool and set Success &

Failure counter= 0.

15. End If

16. End Else

17. End For

18. Add each pattern from PatternPool of each processor to form MasterPatternList.

19. Initialize MasterPatternPool to the 1
st
 pattern in the MasterPatternList, Success

Counter & Failure Counter to Success Counter & Failure Counter value of 1
st

pattern.

20. For j = 0 to Total Patterns in MasterPatternList

21. For k = 0 to current size of MasterPatternPool

22. If j
th

 pattern of MasterPatternList can be compacted into k
th

 pattern of

MasterPatternPool)

Fig. 40. Continued.

59

23. Compact the two patterns and increment Success Counter of k
th

pattern of Master Pattern Pool by the Success Counter of the j
th

pattern.

24. Else increment Failure Counter of k
th

 pattern of MasterPatternPool by 1.

25. End For

26. If j
th

 pattern of Pattern List could not be compacted into MasterPatternPool)

27. Add j
th

 pattern of Master Pattern List to MasterPatternPool and set

Success & Failure counter To Success and Failure Counter value of the

j
th

 pattern.

28. End If

29. End For

30. End

Fig. 40. Continued.

8.3 Experimental Results

We performed all the experiments on a system with 8 AMD Opteron processors

with 4 cores each (32 cores total) running at 1.9 GHz with 128 GB of DDR2 RAM. We

conducted experiments to study the performance, speedup and strong and weak scaling

of the algorithms. For scaling, we use pattern counts of 8,000,000 and 4,000,000

randomly generated patterns. Note that we have chosen a problem size such that the

memory used exceeded the cache memory available per core. This is important in

smaller problem size because we may observe superlinear scalability. The patterns for

60

static compaction are generated randomly inside the program using the rand() function.

We use the same seed for our experiments to obtain the same set of patterns for each of

our algorithms. Each pattern is assigned a care bit density, randomly chosen between 1

and 6%, which is typical in ATPG patterns. Depending on the chosen care bit density,

each bit of the pattern is assigned one of the values 0, 1 or X. Each pattern is 100 bits

long. All these parameters can be varied in order to model any set of real life patterns.

The input sizes start from 1,000,000 and are increased up to 8,000,000 in multiples of 2.

We created a separate class for the timing function, which accurately determines

the time by employing the function gettimeofday(). The Timer class object is reset using

the function Restart() and the time is obtained by the function GetTime() which reports

the time in seconds. Each experiment was repeated 32 times. The execution time was

averaged to get more consistent results.

8.3.1 Speedup

Fig. 41 and Fig. 42 show the speedup of the different algorithms.

Fig. 41. Speedup of Algorithms vs. # Processors for # Elements = 4*10e6.

0

10

20

30

40

1 2 4 8 16

sp
e

e
d

u
p

processors

FWD

FWD_SORTED

ROUND_ROBIN

STRIPED

n = 4*10^6

61

Fig. 42. Speedup of Algorithms vs. # Processors for # Elements = 8*10e6.

We see that Equal Weight Distribution (Round Robin and Striped) has a much

higher speedup compared to the Forward Order schemes. Even with the drop in speedup

for Equal Weight Distribution schemes in going from 8 to 16 processors, the speedup

obtained for these schemes in case of 16 processors is higher than the Forward Order

schemes. Also, we see that all these algorithms have a speedup > 1 for all cases. So, we

see that parallelizing static compaction has yielded significant benefits in terms of

reducing the running time of the process, and that the Equal Weight Distribution

approach has a significant speedup for 1 to 16 processors.

8.3.2 Strong Scaling

Fig. 43 and Fig. 44 show the strong scalability of the algorithms. Strong

scalability is when the speedup matches the increase in processor count for a fixed

problem size. We plot for n = 8,000,000 and n = 4,000,000. We plot only the parallel

version for large data sets to avoid effects like caching of the entire data set.

0

10

20

30

40

1 2 4 8 16

sp
e

e
d

u
p

#processors

FWD

FWD_SORTED

ROUND_ROBIN

STRIPED

n = 8*10^6

62

Fig. 43. Strong Scaling for n = 4*10e6.

Fig. 44. Strong Scaling for n = 8*10e6.

The large problem size causes the computation cost to dominate over the

communication cost, so the speedup is linear or superlinear with processor count (when

the data begins to fit into the cache). For smaller overall problem sizes, the

communication costs become more important, and the speedup is not as high. The strong

scaling of the algorithms is similar to each other because inside the parallel block, the

processes are identical. Also, we see that the performance improves as the problem size

per processor increases for a higher number of processors.

0

2

4

6

8

10

12

1 2 4 8 16

sc
al

in
g

p
e

rf
o

rm
an

ce

processors

FWD

FWD_SORTED

ROUND_ROBIN

STRIPED

n = 4*10^6

0

2

4

6

8

10

12

1 2 4 8 16

sc
al

in
g

p
e

rf
o

rm
an

ce

processors

FWD

FWD_SORTED

ROUND_ROBIN

STRIPED

n = 8*10^6

63

8.3.3 Weak Scaling

Weak scaling is when the problem size scales with the number of processors.

Ideally the total execution time should remain constant. We show the weak scaling plots

for n/p = 500000 and n/p = 1000000 for the parallel version. The weak scaling is shown

in Fig. 45 and Fig. 46.

Fig. 45. Weak Scaling for n/p = 0.5*10e6.

Fig. 46. Weak Scaling for n/p = 1*10e6.

.

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16

Sc
al

in
g

fa
ct

o
r

processors

FWD

FWD_SORTED

ROUND_ROBIN

STRIPED

n/p = 0.5*10^6

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16

Sc
al

in
g

fa
ct

o
r

processors

FWD

FWD_SORTED

ROUND_ROBIN

STRIPED

n/p = 1*10^6

64

The plots shows that a fairly ideal weak scaling performance. This shows that for

a fixed problem size per processor, the time taken by the parallel algorithms is relatively

constant and close to ideal. This can be interpreted as the CPU time per processor

remains constant if the problem size per processor remains constant, and the CPU time

per processor dominates total time. This is true due to the way static compaction is

implemented.

8.3.4 Final Pattern Count

We look at the final pattern count produced by each algorithm. We analyze the

effect of increasing the number of processors on final pattern count. Since the purpose of

compaction is to reduce the number of patterns that are finally applied to the tester, this

is a very important parameter to consider. Fig. 47 and Fig. 48 show a comparative

pattern count study.

Fig. 47. Pattern Count of Algorithms vs. # Processors for # Patterns = 4*10^6.

0

2000

4000

6000

8000

10000

1 2 4 8 16

p
at

te
rn

 c
o

u
n

t

processors

FWD

FWD_SORTED

ROUND_ROBIN

STRIPED

SEQ

n = 4*10^6

65

Fig. 48. Pattern Count of Algorithms vs. # Processors for # Patterns = 8*10^6.

These graphs verify our analysis that with increase in the number of processors,

we have a smaller set assigned to each processor. Beyond a certain threshold, we suffer

reduced compaction among these pattern subsets and a higher total compacted pattern

count. This would in turn cause the serial Static Compaction procedure at the end to take

more time. The net effect is that we suffer a reduction in speedup beyond a certain point

and an increase in pattern count. Despite this, our total running time remains much lower

than the sequential running time even with higher number of processors.

Another observation here is that now we have a choice not only in terms of

number of processors, but also between algorithms. As we can see, at a higher processor

count, the pattern counts of Forward Order schemes are better than the Equal Weight

Distribution schemes. Forward Order schemes take less running time than the sequential

implementation. However the correct choice would also be dictated by the exact nature

of the patterns that we are trying to compact. There is no general answer to the best

0

5000

10000

15000

1 2 4 8 16

p
at

te
rn

 c
o

u
n

t

processors

FWD

FWD_SORTED

ROUND_ROBIN

STRIPED

SEQ

n = 8*10^6

66

solution to the optimization problem that we are facing in this case. Our answer would

depend on the situation and the input scenario.

8.4 Discussion

From all the above results, we observe that by parallelizing Static Compaction

algorithms we can achieve a significant reduction in running time compared to the best

known sequential algorithm. This is possible due to the fact that we have been able to

successfully break the patterns into multiple chunks, and utilize each processor to

perform compaction independently on that chunk. We have also removed

synchronization at every step of the parallel part, so that we can avoid overheads of

synchronization and work more efficiently. This is reflected in the speedup that we have

obtained with increase in parallelization. We have also seen that the Equal Weight

Distribution achieves a better speedup than the Forward Order schemes. This is because

the distribution of patterns was done in a manner in which each processor would spend

an equal amount of time, rather than waiting on the slowest processor to finish its

execution. We have also observed that beyond a certain threshold, a decrease in problem

size per processor causes an increase in final pattern count. This occurs as each

individual processors have fewer patterns to start. This causes the amount of compaction

in the Pattern Pool to decrease. When we run the sequential compaction on the list of

patterns that we have obtained by combining the patterns from each processor, we spend

a longer time in trying to compact them together. This increases the total running time.

In order to avoid this, we need to take care that we give each processor a sufficient

number of patterns to compact.

67

We have already stated that the problem of Static Compaction is NP-Complete.

None of the algorithms that we have proposed or the algorithms that are currently being

used in the industry, try to achieve the optimal result. Instead, all of them use heuristics

to achieve a close to optimal result. This is judged by the pattern count obtained after the

compaction process. We have used the pattern count of the sequential algorithm as a

benchmark for judging the amount of compaction that the parallel algorithms were able

to achieve. We observe that we are able to achieve a significant reduction in pattern

count with Equal Weight Distribution. The promising result is that this scheme yields a

lower count for a good degree of parallelization. This means that we can use our scheme

to reduce the running time without incurring a penalty of increased pattern count.

It is to be noted that we are interested in reducing the pattern count because we are trying

to save on the time it takes to apply these patterns on a tester. However, if we use more

processors, the amount of time that we need to get these final patterns also reduces. So,

the decision must be made whether we want to save time during compaction or during

application of these patterns. The choice would be dependent on the priorities that exist

at that time.

68

9 CONCLUSION AND FUTURE WORK

This research addresses the problems of accurate delay test in DSM circuits by targeting

resistive open and shorts. The introduction of a Pseudofunctional test (PFT) technique,

in which the circuit is initialized to a given state, clocked in normal functional mode for

a number of cycles, and then the state is read out, has been shown to have many

advantages. One advantage of this approach is that the chip can be clocked in functional

mode an order of magnitude faster than the state can be loaded or unloaded. Compared

to a traditional scan test, a Pseudofunctional test has the potential to reduce test time and

test data volume. The fact that the chip is operating in functional mode increases the

correlation between structural and functional test, in terms of functional states, supply

noise, power dissipation and signal crosstalk.

In this work, we have proposed the extension of KLPG tests to Pseudofunctional

tests with a set of preamble cycles leading to launch-on-capture KLPG tests, in order to

control dI/dt noise. Our experiments show that that number of sensitizable paths falls

with increasing number of preamble cycles, particularly when the primary inputs are

held constant. As a result, the CPU time to generate these tests grows modestly for most

circuits. We have also studied the effect of not holding the PIs constant over the test

generation. Although letting the PIs take different values in different clock cycles

increases the number of sensitized paths, it becomes less important in larger designs.

This is primarily due to a very low percentage of pins being PIs and the fact that these

circuits have very low care bit density for a single pattern (without compaction).

69

The memory overhead in implementing PFT in CodGen is mainly in storing the values

for additional time frames, including SCOAP values, necessary assignments and

temporary values. These grow roughly with the number of time frames, but are still

relatively small compared to the memory to hold the circuit description and auxiliary

data structures.

We have also developed a dynamic test pattern compaction for PFT. We see that

there is a slight reduction in compaction rate for most circuits with increased number of

preamble cycles. This is due to the larger number of necessary assignments required to

propagate the at-speed test over multiple preamble cycles. However, it is also the case

that the decrease in compaction ratio is coupled with a decrease in overall pattern count,

so the test generation time does not increase with a higher number of preamble cycles.

In addition to the dynamic compaction technique, we have also developed a parallel tool

for static compaction. This tool has demonstrated high scalability, with respect to both

problem size and number of processors. In environments where dynamic compaction

may not be needed, this tool can be used as a post-processing step to the ATPG in order

to efficiently reduce the pattern count without loss of test coverage.

One of the questions that arose from this work is that if a path can be sensitized

over 6 cycles, but not over 8 cycles, is it a true path. This depends on the circuit

operation, and whether the state found searching back 6 cycles is a reachable state. From

a test generation perspective, this is similar to the situation of faults that can be tested

under launch-on-shift constraints, but not launch-on-capture.

70

Profiling of the experiments indicates that the vast majority of the time is spent in

Final Justification. This indicates that a more efficient search algorithm than PODEM

must be used. This is important because the same Final Justification algorithm is being

used in justification of a complete path, as well as during the dynamic compaction

process. A faster algorithm would benefit the entire ATPG process. In addition to a

faster justification procedure, the low-cost fault coverage metric, where paths with large

slack are targeted by transition fault test, needs to be integrated with PFT. The metric

must be able to take into account the effect of the preamble cycles in addition to process

variation. An area that needs investigation is applying multiple at-speed cycles, that is,

the longest path is tested across several cycles, which can target latch time borrowing

and flip-flop metastability.

71

REFERENCES

[1] Semiconductor Industries Association, International Technology Roadmap for

Semiconductors. San Jose, CA: Semiconductor Industries Association, 2009.

[2] H. Liu and M. S. Hsiao, "Constrained ATPG for broadside transition testing," in

Proc. IEEE Intl. Symp. DFT VLSI Syst., Nov. 2003, pp. 175-182.

[3] P. Gupta and M. S. Hsiao, "High quality ATPG for delay defects," in Proc. IEEE

Intl. Test Conf., Sep. 2003, pp. 584-591.

[4] N. Touba, "Survey of test vector compression techniques," IEEE Trans. Design Test

Comput., vol. 23, no. 4, pp. 294-303, Jul. 2006.

[5] B. Nadeau-Dostie, K. Takeshita, and J. Cote, "Power-aware at-speed scan test

methodology for circuits with synchronous clocks," in Proc. IEEE Intl. Test Conf.,

Sep. 2008, pp. 1-10.

[6] P. Pant and J. Zelman, "Understanding power supply droop during at-speed scan

testing," in Proc. IEEE VLSI Test Symp., May 2003, pp. 227-232.

[7] Z. Zhang, S. M. Reddy, and I. Pomeranz, "On generating pseudo-functional delay

fault tests for scan designs," in Proc. IEEE VLSI Test Symp., May 2005, pp. 398-

405.

[8] Y. Lin, F. Lu, and K. Cheng, "Pseudofunctional testing," IEEE Trans. Comput.-

Aided Design Integr. Circuits Syst., vol. 25, no. 8, pp. 1535-1546, Aug. 2006.

[9] F. Yuan and Q. Xu, "On systematic illegal state identification for pseudo-functional

testing," in Proc. Des. Autom. Conf., Jul. 2009, pp. 702-777.

72

[10] W. Wu and M. S. Hsiao, "Mining sequential constraints for pseudo-functional

testing," in Proc. Asian Test Symp., Oct. 2007, pp. 19-24.

[11] X. Liu and M. S. Hsiao, "A novel transition fault ATPG that reduces yield loss,"

IEEE Trans. Design Test Comput., vol. 22, no. 6, pp. 576-584, Nov. 2005.

[12] M. Syal, K. Chandrasekar, V. Vimjam, and M. S. Hsiao., "A study of implication

based pseudo functional testing," in Proc. IEEE Intl. Test Conf., Sep. 2006, pp. 1-

10.

[13] H. Liu, H. Li, Y. Hu, and X. Li, "A scan-based delay test method for reduction of

overtesting," in Proc. IEEE Intl. Symp. Electronic Design, Test Applications, Jan.

2008, pp. 521-526.

[14] L. T. Wang, C. E. Stroud, and N. A. Touba, System-on-Chip Test Architectures:

Nanometer Design for Testability. Burlington, VT: Elsevier, 2008.

[15] W. Qui and D. M. H. Walker, "An efficient algorithm for finding the k longest

testable paths through each gate in a combinational circuit," in Proc. IEEE Intl. Test

Conf., Sep. 2003, pp. 223-231.

[16] W. Qiu, X. Lu, D. M. H. Walker, and W. Shi, "A statistical fault coverage metric

for realistic path delay faults," in Proc. IEEE VLSI Test Symp., May 2004, pp. 27-

42.

[17] L. H. Goldstein and E. L. Thigpen, "SCOAP: Sandia controllability / observability

analysis program," in Proc. IEEE-ACM Des. Autom. Conf., Jun. 1980, pp. 190-196.

[18] H. Fujiwara, "FAN: A fanout-oriented test pattern generation algorithm," in Proc.

73

ISCAS 85, Jun. 1985, pp. 671-674.

[19] H. Fujiwara and T. Shimono, "On the acceleration of test generation algorithms,"

IEEE Trans. Computers, vol. C-32, pp. 1137-1144, Dec. 1983.

[20] P. Goel, "An implicit enumeration algorithm to generate tests for combinational

logic circuits," IEEE Trans. Computers, vol. 30, no. 3, pp. 215-222, Mar. 1981.

[21] I. Hamzaoglu and J. H. Patel, "Test set compaction algorithms for combinational

circuits," IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 19, no. 8,

pp. 957 - 963, Aug. 2000.

[22] Z. Wang and D. M. H. Walker, "Dynamic compaction for high quality delay test,"

in Proc. VLSI Test Symp., May 2008, pp. 243-248.

[23] M. Nourani, M. Tehranipoor, and N. Ahmed, "Pattern generation and estimation for

power supply noise analysis," in Proc. IEEE VLSI Test Symp., May 2005, pp. 439-

444.

[24] S. Zhao, K. Roy, and C.K. Koh, "Estimation of inductive and resistive switching

noise on power supply network," in Proc. Intl. Conf. Comput. Des., Sep. 2000, pp.

65-72.

[25] W. Zhao and Y. Cao, "New generation of predictive technology model for sub-

45nm early design exploration," IEEE Trans. Electron Devices, vol. 53, no. 11, pp.

2816-2823, Nov. 2006.

[26] Y. Cao, T. Sato, D. Sylvester, M. Orshansky, and C. Hu, "New paradigm of

predictive MOSFET and interconnect modeling for early circuit design," in Proc.

74

Custom Integr. Circuits Conf., Jun. 2000, pp. 201-204.

[27] A. Balijepalli, S. Sinha, and Y. Cao, "Compact modeling of carbon nanotube

transistor for early stage process-design exploration," in Proc. Intl. Symp. Low

Power Electronics Design, Aug. 2007, pp. 2-7.

[28] Nanoscale Integration and Modeling (NIMO) Group. Predictive Technology Model.

[Online]. http://ptm.asu.edu/

[29] J. Wang Z. Yue, X. Lu, W. Qiu, W. Shi, and D. M. H. Walker, "A vector-based

approach for power supply noise analysis in test compaction," in Proc. IEEE Intl.

Test Conf., Sep. 2005, pp. 517-526.

[30] J. Wang, X. Lu, W. Qiu, Z. Yue, S. Fancler, W. Shi, and D. M. H. Walker, "Static

compaction of delay tests considering power supply noise," in Proc. IEEE VLSI

Test Symp., May 2005, pp. 235-240.

[31] X. Cai, P. Wohl, J. A. Waicukausk, and P. Notiyath, "Highly efficient parallel

ATPG based on shared memory," in Proc. IEEE Intl. Test Conf., Nov. 2010, pp. 1-

7.

75

APPENDIX

TABLE I

KLPG RESULTS, K=1

Circuit Params

PI Constant PI Not Constant

FRAMES FRAMES

2 4 6 8 2 4 6 8

s38584

#Paths 9742 7367 5451 5016 10777 9432 7983 7284

#Patterns 252 246 189 198 285 286 243 267

Time 973 1508 2150 3029 1214 2828 4592 7894

s38417

#Paths 14405 13139 10818 8562 14413 13343 12013 10566

#Patterns 411 549 474 519 409 554 508 525

Time 3213 5648 9315 12519 3393 5369 9196 13188

s35392

#Paths 9442 9248 9145 9070 9946 9946 9941 9884

#Patterns 29 33 130 235 36 48 65 74

Time 940 858 2467 5045 1068 1218 2914 4053

s15850

#Paths 2434 1840 1562 1519 2530 2323 2201 2070

#Patterns 272 326 274 283 272 222 229 221

Time 250 256 251 409 260 269 446 619

s13207

#Paths 3253 1699 965 741 3469 2053 1291 1039

#Patterns 721 99 101 71 813 106 99 65

Time 163 190 131 76 215 258 124 100

s9234

#Paths 2385 1524 641 550 2393 1972 1109 1117

#Patterns 409 244 84 65 402 349 196 227

Time 233 222 273 356 239 461 721 489

s5378

#Paths 1801 958 694 579 1801 1514 1273 1200

#Patterns 243 164 101 93 238 175 163 152

Time 20 39 51 83 19 37 58 84

s1494

#Paths 193 129 113 107 197 112 77 77

#Patterns 63 48 47 44 65 50 33 34

Time 1 4 8 12 1 3 4 5

s1488

#Paths 167 109 104 94 170 102 70 68

#Patterns 60 43 43 42 63 48 31 32

Time 1 3 6 10 1 3 4 4

s1423

#Paths 397 180 128 86 407 312 290 279

#Patterns 139 74 52 33 140 123 93 83

Time 39 11 15 18 42 48 50 55

76

TABLE II

KLPG RESULTS, K=2

Circuit Params

PI Constant PI Not Constant

FRAMES FRAMES

2 4 6 8 2 4 6 8

s38584

#Paths 13258 9442 6539 6055 14755 12412 10167 9038

#Patterns 325 314 230 233 360 356 295 318

Time 1173 2156 3056 3720 1944 4056 7630 12382

s38417

#Paths 25400 22793 18019 13970 25414 23093 20236 17883

#Patterns 580 758 700 776 580 751 702 802

Time 6169 11925 16028 20430 6964 10792 16939 23813

s35392

#Paths 20255 19967 19680 19488 21534 21534 21534 21389

#Patterns 33 39 156 296 48 59 67 96

Time 1733 1712 4903 11162 1925 2689 4949 8535

s15850

#Paths 3810 2735 2167 2089 3913 3452 3155 2943

#Patterns 461 506 437 451 468 380 382 386

Time 285 335 378 590 299 401 599 865

s13207

#Paths 4490 1984 1024 780 4872 2459 1488 1201

#Patterns 1144 114 112 70 1254 123 113 69

Time 234 207 157 77 298 207 145 113

s9234

#Paths 3753 2290 800 680 3763 3104 1587 1569

#Patterns 544 316 90 75 550 459 244 268

Time 285 301 292 384 281 604 860 608

s5378

#Paths 2996 1323 915 740 2996 2422 2048 1916

#Patterns 327 208 115 109 320 246 238 223

Time 35 60 67 110 32 66 99 122

s1494

#Paths 202 133 115 108 206 116 115 79

#Patterns 64 49 48 44 66 51 48 35

Time 1 4 9 14 1 3 6 5

s1488

#Paths 185 118 110 100 188 112 76 76

#Patterns 62 45 45 43 65 49 34 36

Time 1 4 8 12 1 4 4 5

s1423

#Paths 690 296 184 118 700 503 463 418

#Patterns 200 110 68 43 203 151 131 109

Time 41 12 16 18 40 43 49 56

77

TABLE III

KLPG RESULTS, K=3

Circuit Params

PI Constant PI Not Constant

FRAMES FRAMES

2 4 6 8 2 4 6 8

s38584

#Paths 15284 10328 6887 6294 17116 13737 11017 9617

#Patterns 349 333 257 239 394 367 317 334

Time 1783 2666 3497 4150 2387 4525 8629 12436

s38417

#Paths 34686 30332 23212 17664 34707 30757 26474 23536

#Patterns 733 951 891 966 724 942 884 1013

Time 10195 16709 22353 28002 9776 16519 25653 33490

s35392

#Paths 21458 21074 20690 20498 22738 22720 22589 22380

#Patterns 31 41 164 310 74 41 70 97

Time 1997 1750 6029 12805 2394 2701 6029 10226

s15850

#Paths 4853 3294 2572 2477 4964 4239 3772 3500

#Patterns 690 658 583 597 693 526 494 507

Time 343 455 556 849 345 534 862 1022

s13207

#Paths 5352 2192 1032 786 5908 2658 1508 1214

#Patterns 1495 114 119 69 1638 123 119 68

Time 306 214 146 84 384 284 156 120

s9234

#Paths 4792 2748 867 736 4802 3915 1891 1860

#Patterns 663 352 94 74 658 530 270 281

Time 323 404 325 410 319 733 955 616

s5378

#Paths 3937 1538 1018 806 3937 3151 2656 2495

#Patterns 415 241 126 116 408 313 298 286

Time 54 78 84 127 50 91 127 163

s1494

#Paths 202 133 115 108 206 116 115 79

#Patterns 66 50 48 44 67 51 48 35

Time 2 5 10 16 2 4 10 6

s1488

#Paths 201 120 112 103 191 113 77 77

#Patterns 69 45 45 43 65 50 34 35

Time 1 5 8 13 1 4 8 13

s1423

#Paths 929 378 193 130 941 679 599 511

#Patterns 235 139 71 48 237 202 146 122

Time 39 13 17 20 40 13 51 60

78

TABLE IV

 KLPG RESULTS, K=4

Circuit Params

PI Constant PI Not Constant

FRAMES FRAMES

2 4 6 8 2 4 6 8

s38584

#Paths 16505 10815 7033 6396 18615 14540 11543 9936

#Patterns 390 333 255 249 428 382 329 335

Time 1927 2483 3364 4265 2569 5646 8864 15861

s38417

#Paths 42714 36539 27317 20724 42745 37085 31563 28343

#Patterns 887 1115 1048 1110 880 1101 1019 1166

Time 13989 22511 27977 32992 14189 25464 33229 42521

s35392

#Paths 21856 21472 21088 20896 23392 23232 22999 22784

#Patterns 31 41 165 311 43 73 66 96

Time 2356 2007 6104 13014 2586 3385 7059 10831

s15850

#Paths 5798 3806 2929 2836 5798 4916 4270 3950

#Patterns 892 806 712 741 897 656 601 631

Time 415 573 679 1135 396 625 977 1222

s13207

#Paths 6130 2365 1038 786 6130 2789 1521 1220

#Patterns 1779 123 124 69 1779 137 124 66

Time 381 225 154 82 381 293 176 114

s9234

#Paths 5784 3101 894 770 5792 4616 2155 2100

#Patterns 697 384 93 75 704 580 284 294

Time 369 397 325 423 361 838 977 648

s5378

#Paths 4738 1659 1049 824 4738 3753 3139 2962

#Patterns 471 262 126 120 467 382 354 344

Time 69 81 87 125 68 115 144 180

s1494

#Paths 202 133 115 108 206 116 115 79

#Patterns 65 50 48 46 66 51 48 35

Time 2 5 10 16 2 4 5 6

s1488

#Paths 189 121 113 104 192 114 77 77

#Patterns 64 45 46 44 66 51 34 35

Time 1 5 8 13 1 4 8 13

s1423

#Paths 1139 439 197 135 1153 828 695 580

#Patterns 272 162 73 50 278 234 165 137

Time 37 14 17 20 40 41 55 65

79

TABLE V

KLPG RESULTS, K=5

Circuit Params

PI Constant PI Not Constant

FRAMES FRAMES

2 4 6 8 2 4 6 8

s38584

#Paths 17314 11031 7072 6428 19621 14909 11799 10076

#Patterns 422 338 258 245 459 382 318 346

Time 2117 3015 3708 4319 2769 5947 9147 14099

s38417

#Paths 50172 42085 30885 23255 50209 42721 36168 32496

#Patterns 999 1220 1187 1234 992 1206 1144 1307

Time 18024 27682 30033 34861 17212 29595 41407 48168

s35392

#Paths 22274 21890 21506 21314 23810 23650 23417 23202

#Patterns 31 41 165 311 43 73 66 96

Time 2367 1908 6333 13326 2933 3203 7326 11152

s15850

#Paths 6618 4284 3241 3147 6737 5440 4610 4263

#Patterns 1071 935 831 852 1077 785 718 735

Time 492 679 897 1413 461 717 1070 1421

s13207

#Paths 6886 2513 1042 786 7760 2893 1526 1225

#Patterns 2068 123 127 69 2254 141 125 66

Time 459 232 160 81 596 311 174 121

s9234

#Paths 6605 3342 905 779 6613 5187 2330 2297

#Patterns 759 399 92 77 759 606 289 311

Time 401 429 321 443 422 947 1074 693

s5378

#Paths 5214 1731 1052 826 5214 3988 3300 3109

#Patterns 501 263 122 121 398 263 369 364

Time 78 80 90 131 75 115 156 191

s1494

#Paths 202 133 115 108 206 116 115 79

#Patterns 65 50 48 46 66 51 48 35

Time 1 5 11 17 1 5 6 6

s1488

#Paths 189 121 113 104 189 121 77 77

#Patterns 65 45 46 44 65 45 46 35

Time 1 5 9 15 1 5 9 6

s1423

#Paths 1323 488 199 137 1339 956 750 638

#Patterns 306 173 73 50 309 253 171 150

Time 37 15 18 20 37 44 56 63

80

VITA

Name: Shayak Lahiri

Address: Department of Computer Science and Engineering

Texas A&M University

3112 TAMU

College Station, TX 77843-3112

Email Address: shayak@cse.tamu.edu

Education: B.Tech, Electronics and Communication Engineering, Motilal

Nehru National Institute of Technology, Allahabad, India, 2009

MS, Computer Engineering, Texas A&M University, 2011

