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ABSTRACT 

 

Grain-scale Comminution and Alteration of Arkosic Rocks in the Damage Zone of the 

San Andreas Fault at SAFOD. (December 2011) 

Bretani Rebecca Heron, B.S., The University of Texas at Austin 

Co-Chairs of Advisory Committee: Dr. Judith Chester 

        Dr. Frederick Chester 

 

Spot core from the San Andreas Fault Observatory at Depth (SAFOD) borehole 

provides the opportunity to characterize and quantify damage and mineral alteration of 

siliciclastics within an active, large-displacement plate-boundary fault zone. Deformed 

arkosic, coarse-grained, pebbly sandstone, and fine-grained sandstone and siltstone 

retrieved from 2.55 km depth represent the western damaged zone of the San Andreas 

Fault, approximately 130 m west of the Southwest Deforming Zone (SDZ). The 

sandstone is cut by numerous subsidiary faults that display extensive evidence of 

repeating episodes of compaction, shear, dilation, and cementation. The cataclasites 

contain fractured host-rock particles of quartz, oligoclase, and orthoclase, in addition to 

albite and laumontite produced by syn-deformation alteration reactions. This study 

quantifies the particle size distributions and the particle shape of the host rock mineral 

phases and the volume fraction of the alteration products for the following structural 

units distinguished in the subsidiary fault zones: fractured sandstones, brecciated 

sandstones, microbreccias, microbreccias within distinct shear zones, and principal slip 

surfaces. Overall, the particle sizes are consistent with a power law distribution over the 
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particle size range investigated (0.3 µm < d < 400 µm). The exponent (fractal dimension, 

D) is found to increase with shear strain and volume fraction of laumontite. This overall 

increase in D and evolution of shape with increasing shear strain reflects a general 

transition from constrained comminution, active at low shear strains to abrasion 

processes that dominate at high shear strains. 
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1. INTRODUCTION 

 

Major plate-boundary faults in the continental crust often consist of one or more 

fault cores that are bounded by zones of associated damage [e.g., Sibson, 1986; Chester 

et al., 1993; Wibberley and Shimamoto, 2003; Chester et al., 2004; Imber et al., 2008; 

Savage and Brodsky, 2011]. Fault cores represent the zones of highly concentrated fault-

parallel shear, and can display distinct layers representing different degrees of strain 

localization and different magnitudes of displacement. In many studies these regions are 

referred to as the “on-fault” zones, as they serve as long-standing sites of recurrent 

rupture or zones of persistent fault-creep [Sibson, 2003]. The surrounding damage zones 

are cut by subsidiary faults and fractures of all scales, and although these zones 

accommodate much less shear strain than the cores, the deformation in the damage zone 

is integral to fault formation, accommodation of slip in the core, and the mechanics of 

faulting [e.g., Scholz et al., 1993; Chester et al., 2004]. In the case of earthquake 

faulting, the “off-fault” deformation in the damage zone plays an important role in 

energy dissipation, influences dynamic rupture characteristics, and accounts for a 

significant portion of the total earthquake energy budget [e.g., Andrews, 2005; Chester et 

al., 2005; Templeton and Rice, 2008]. 

Spot core from the San Andreas Fault Observatory at Depth (SAFOD) borehole 

(Figure 1) [e.g., Zoback et al., 2011] provides the unique opportunity to characterize and 

quantify the in situ damage and mineral alteration of siliciclastics along an active, large- 

____________ 
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displacement, plate-boundary fault zone currently undergoing seismic and aseismic slip. 

Such data are critical to define how the porosity, permeability, and strength of a fault 

zone evolve spatially and temporally, and can help constrain estimates of the energetics 

of earthquake rupture events [e.g., Kanamori, 1994; Wibberley and Shimamoto, 2003; 

Chester et al., 2005; Faulkner et al., 2011]. 

Twelve meters of deformed arkosic, coarse-grained, pebbly sandstone, and fine-

grained sandstone and siltstone were retrieved during Phase 1 drilling at SAFOD. These 

samples represent the westernmost portion of the damage zone [Chester et al., 2007; 

Heron et al., 2011] of the San Andreas Fault (SAF) at 2.55 km depth and 130 m west of 

the actively creeping Southwest Deforming Zone (SDZ) (Figure 2) [Zoback et al., 2010]. 

We hypothesize that the deformation displayed in this core represents the cumulative 

damage suffered by the western wall rock as it was transported 315 km to the northwest 

from the seismogenic section of the SAF to its current location adjacent the southern end 

of the creeping section. If correct, the deformation features present can provide a record 

of the off-fault damage produced during a long history of coseismic slip and interseismic 

creep, and of damage recovery by a number of healing processes.  

The goal of this study is to quantify the microstructural characteristics of 

particles in representative subsidiary faults cutting the arkosic sandstone in the western 

damage zone to determine the role of cataclasis, dissolution, and neomineralization 

during the earthquake cycle and better understand the origin of off-fault damage and the 

earthquake energy budget.   
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2. BACKGROUND 

 

During an earthquake rupture event, radiated energy is released in the form of 

seismic waves generating potentially destructive ground motion, the quantification of 

which is crucial to sound earthquake hazard assessment. Estimating the magnitude of 

radiated energy requires multiple assumptions and leaves a large margin of error 

[Kanamori, 2004]. The energy available for radiation as seismic waves can be 

determined from the total earthquake energy budget that, to first order, defines the 

transformation of the elastic strain energy to radiated energy, fracture energy, and 

frictional heat [Kanamori, 2004]. The latter two terms can be constrained to some extent 

by quantifying fracture and frictional energy within the core and damage zone of an 

active fault [e.g., Chester et al., 2005; Wilson et al., 2005; Ma and Archuleta, 2006]. 

Detailed meso- and micro-structural characterization of the entire fault zone is required 

to estimate these parameters. The evolution of cataclastic fault rock textures within the 

fault zone by fragmentation, grinding, and compaction [e.g., Storti et al., 2003] results in 

grain shape and size data that can provide critical information needed to constrain the 

timing and magnitude of fracture and friction energy of the earthquake budget. One key 

component of this characterization is an estimate of the total surface area of all fractured 

grains within the subsidiary faults cutting the damage zone [e.g., Chester et al., 2005]. 

Total fracture surface area has been estimated from PSDs, often with the 

assumption that all grain surfaces in fault gouge represent brittle failure associated with 

earthquake rupture events at low temperature and pressure conditions and moderately 
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high strain rates [e.g., Sibson, 1977; Biegel and Sammis, 2004; Chester et al., 2005; 

Wilson et al., 2005]. The size and shape of particles in fault rocks, however, also can 

reflect interseismic processes including subcritical cracking, neomineralization, and 

mineral alteration resulting from fluid-rock reactions [e.g., Evans and Chester, 1995]. 

Chemical and physical changes that occur during interseismic periods should not be 

included in estimates of fracture surface energy associated with the breakdown in 

strength during rupture [Kanamori, 2004; Chester et al., 2005; Tinti et al., 2005]. 

Numerous previous studies have measured and analyzed PSDs and the shapes of 

grains of natural fault rocks and of rocks deformed in the laboratory [e.g., Engelder, 

1974; Olgaard and Brace, 1983; Sammis et al., 1987; Biegel et al., 1989; Marone and 

Scholz, 1989; Blenkinsop, 1991; An and Sammis, 1994; Mair, 2002; Storti et al., 2003; 

Heilbronner and Keulen, 2006; Billi, 2007; Keulen et al., 2007; Bjørk et al., 2009]. 

Many of these studies observe that for a limited range of grain sizes, particles display a 

fractal geometry [Mandelbrot, 1982] and are best described by a power law relationship 

 

 N(S) ≈ S
-n

, (1) 

 

where N(S) represents the number of particles of size S, and n is related to the fractal 

dimension. In (1), the value of n depends on the type of distribution (i.e., frequency, 

density, or cumulative) and how the data are binned (i.e., linear or logarithmic) [Bonnet 

et al., 2001]. For a cumulative distribution, (1) may be written as 
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 C(d) = ad
-D

, (2) 

 

where C(d) is the cumulative number of particles greater than size d, a is a constant, and 

the exponent, D, is equal to the fractal dimension. From measurements of particle size, D 

may be determined from the slope of the best-fit line to data plotted as log C(d) versus 

log d [e.g., Sammis and Biegel, 1989; Blenkinsop, 1991; Turcotte, 1992; Bonnet et al., 

2001; Storti et al., 2003]. The fractal dimension (D) may be used to compare PSDs 

determined by different methods and in different topological dimensions, and to interpret 

the fragmentation processes [e.g., Marone and Scholz, 1989; Sammis and Biegel, 1989; 

Blenkinsop, 1991].  

Several different methods have been employed to measure PSDs, including the 

automated technique using a laser particle analyzer and the traditional pipette-sieve 

method using a pipette rack [Sammis et al., 1986; Billi, 2004; Wilson et al., 2005; 

Rockwell et al., 2009]. These techniques are best suited for 3-D characterizations of 

naturally disaggregated materials and for loosely or poorly cemented materials, and can 

be used to measure particles ranging in size from 0.07 mm to greater than 1 cm. 

Measurement of particles less than 0.07 mm in diameter may result in biased data 

because of bonding effects between small particles [Krumbein and Pettijohn, 1990; Billi, 

2007; Rockwell et al., 2009]. Primary disadvantages associated with the sieve technique 

are that 1) spatial relationships are lost along with any information that these 

relationships could provide, and 2) for cohesive materials there is the expectation that 
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disaggregation will be incomplete or create artificial fracture surfaces [Sammis et al., 

1987]. 

For cohesive rocks, analysis of 2-D images is the technique of choice [Sammis et 

al., 1986; Billi, 2004; Heilbronner and Keulen, 2006; Rockwell et al., 2009]. Image 

analysis techniques maintain geometrical and spatial relationships and may also be used 

to explore particle shape and surface topography [e.g., Storti et al., 2007]. One 

disadvantage of the 2-D imaging technique is the possible misrepresentation of large 

particles associated with the limited sample area captured by imaging [Sammis et al., 

1987; Billi, 2007]. Rawling and Goodwin [2003] compare sieve and imaging techniques 

for disaggregated materials and explain that the sieve method, as a first order 

approximation, measures intermediate particle axes, whereas imaging methods measure 

both intermediate and long axis dimensions and thus gives more information about 

particle size. An additional problem associated with measurements made from random 

2-D slices through solids is that most particles are sliced off-center and thus the analysis 

of images tends to underestimate particle dimensions, and that there is a greater 

probability of intersecting large particles, causing an underrepresentation of the small 

particle size fraction [e.g., Blenkinsop, 1991]. It is possible to correct for these effects, 

particularly if particles tend toward spherical shapes [Underwood, 1968; Exner, 1972; 

Falconer, 1985; Sammis et al., 1987].  

The value of D depends on the topological dimension of the measurement, i.e., 

volume- or mass-based determinations (e.g., sieving) result in larger values of D when 

compared with area-based determinations (e.g., image slices). Based on the fractal 
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theory defined by Falconer [1985], most conclude that if particles tend towards spherical 

shapes then the volume-based D is greater than the area-based D by a value of 1 

[Sammis et al., 1987]. We follow this rule to convert reported values of D between 

topological dimensions, and in this paper all values of D are given in terms of a 

topological dimension of 2.  
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3. GEOLOGICAL OBSERVATIONS 

 

3.1. Geology of the San Andreas Fault at SAFOD 

The SAF is an active, right-lateral continental transform fault that forms the 

active boundary between the North American and Pacific plates [Catchings et al., 2002]. 

SAFOD is located at the southernmost portion of the central creeping (aseismic) zone, 

just northwest of the Parkfield segment (Figure 1). At this location, displacement on the 

fault primarily occurs by aseismic creep and repeating microseismic events. Seven M6 

earthquakes have occurred on the Parkfield segment since 1857; the most recent taking 

place in 2004 [Zoback et al., 2011]. The SAF juxtaposes Cretaceous granitic rocks of the 

Salinian block on the southwest, and Jurassic through Cretaceous rocks of the Franciscan 

complex and Great Valley Sequence on the northeast, throughout most of central 

California. Tertiary through Pleistocene sedimentary rocks locally cover the Salinian 

rocks in the vicinity of SAFOD [Dickinson, 1966; Page, 1981; Kistler and Champion, 

1986; Catchings et al., 2002; Blythe et al., 2004; McPhee et al., 2004]. The Salinian 

rocks were transported along the fault approximately 300 km from their place of origin 

as part of the southern Sierra Nevada batholith [e.g., Blythe et al., 2004; McPhee et al., 

2004]. In the vicinity of SAFOD, the fault zone is approximately 5km wide at depth and 

is composed of several subparallel fault traces [e.g., Rymer et al., 2003].  

Phase 1 of the SAFOD borehole penetrated Tertiary sediments overlying the 

Salinian granite in the vertical portion of the borehole. At ~1.5 km depth, the borehole 

was deviated 59 degrees from vertical and crossed the Buzzard Canyon Fault, a large 
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subsidiary fault of the San Andreas system that places Salinian granite against arkosic 

sedimentary rocks. Cuttings recovered when the borehole was extended, during Phase 2 

drilling, indicate that the arkosic sedimentary sequence extends to 3157 m MD. At this 

location it is juxtaposed against fine-grain sandstones and mudstones of the Cretaceous 

Great Valley Sequence (Figure 2). This change in lithology marks the boundary between 

terranes associated with the Pacific and North American plates in central California 

[Zoback et al., 2011]. The age and origin of the arkosic sedimentary rocks is uncertain, 

but Draper-Springer et al. [2009] suggest that they are Cretaceous to early Eocene fluvial 

or marine fans that were sourced by Salinian granitic terrains [Clarke and Nilsen, 1973; 

Graham, 1978]. They were transported north to their current location by slip on the 

Buzzard Canyon Fault and the modern day SAF.  

 

3.2. Sample Description  

The arkosic sandstone and siltstone recovered from 2680-3156 m MD contains 

30-60% quartz, 10-40% feldspar (equal amounts of plagioclase and orthoclase), minor 

amounts of chlorite, and a greater percentage of illite and laumontite when compared to 

the shallower arkosic sandstone unit at 1920 to 2530 m MD [Solum et al., 2006; 

Bradbury et al., 2007; Draper-Springer et al., 2009].  

This study focuses on the massively bedded, well-cemented, coarse-grained 

arkosic sandstone section between 3056 and 3062 m MD. This section contains pebble 

size fragments of granite, sandstone, siltstone, and volcanic clasts, and a few cobble size-

clasts. A minor cataclastic fault at approximately 3062 m MD marks the abrupt 
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transition from the coarse-grain sandstone to the fine-grain siltstone found at greater 

depths. The sandstone is cut by numerous mesoscale subsidiary faults, including 

cataclastic shear bands (< 2 cm thick) that are oriented at high angles to the core axis, 

and network of millimeter-thick shear fractures that form a conjugate fracture set. This 

fracture set is defined by a shortening direction that is sub-parallel to the borehole axis 

and therefore is roughly orthogonal to the SAF (132°, 83° SW) at SAFOD (Figure 3) 

[Almeida, 2007].  

 For this microstructural analysis, the subsidiary faults are grouped into three size-

classes: 1) small faults, 1 to 2 mm thick, that record an early stage of fault development, 

2) intermediate-size faults, 2 to 3 mm thick, that show cataclastic grain size reduction 

and flow, extensive cementation, and alteration of host particles, and 3) large subsidiary 

faults that have cemented cataclastic zones up to 10 mm thick. We assume that fault 

thickness scales with fault displacement [Scholz, 1987], so the smallest faults have 

displacments on the order of a centimeter and the particle sizes and shapes represent 

those produced at the earliest stages of fault development. The thickest faults have 

displacements on the order of several decimeters and represent more mature subsidiary 

faults. For each size-class of faults, one representative subsidiary fault was sampled from 

the spot core and sectioned for study (Figure 4). Each petrographic section is oriented 

perpendicular to the fault plane and approximately parallel to the shear direction. 
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3.3. Microstructural Observations 

On the basis of microstructures, five distinct structural units are distinguished in 

the subsidiary fault zones: fractured sandstone (FSS), brecciated sandstone (BSS), 

microbreccia (MB), microbreccia within a distinct shear zone (MBS), and principal slip 

zone (PSZ) (Figures 4 and 5a). Seven regions representing the BSS, MB, and MSB are 

studied in detail. The FSS and PSZ units will be analyzed in a future study. The large 

subsidiary fault is subdivided into sub-regions, each representing a distinct structural 

unit (Figure 5b and c).   

The FSS unit represents the moderately fractured arkosic sandstone host rock. It 

is composed of the original coarse-grains (<1-5 mm) of quartz, oligoclase, and 

orthoclase, and some alteration products including albite, laumontite, and calcite. The 

albite, laumontite, and calcite are the products of laumontization and albitization [e.g., 

Boles and Coombs, 1977; Boles, 1982; Blenkinsop and Sibson, 1992]. Grain boundary, 

intragranular, and transgranular microfractures are present. The fractures are open, 

partially or completely sealed with quartz or other phases, or are healed (i.e., display 

fluid inclusion planes). Transgranular fractures cut across several grains and are oriented 

approximately sub-parallel and sub-normal to the fault zone [Almeida, 2007]. Quartz 

grains often exhibit undulose extinction, and are cut by open, sealed and healed 

fractures. The most common fracture-fill is laumontite. The orthoclase primarily is 

microcline in composition, as evidenced by the presence of tartan twinning [Draper-

Springer et al., 2009]. This phase is relatively unaltered, displaying minor illite 
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replacement, and fractures primarily occur along cleavage. The surviving oligoclase 

grains are partially altered to albite, and less commonly, to muscovite.  

The BSS and MB structural units are similar to the FSS unit; however, alteration 

of oligoclase is more extensive, there is a greater percentage of laumontite and albite, 

and the fracture intensity progressively increases, as reflected by a greater reduction in 

particle size (Figure 6). Fracture intensity is greatest in the feldspar grains, which exhibit 

smaller particle sizes and more alteration than the quartz particles. Orthoclase alteration 

includes minor albite intergrowths, minor albite alteration along cleavage planes, and 

minor illite replacement.  The sub-parallel or sub-normal intragranular fractures extend 

beyond the length of the thin section and are defined as bands of concentrated iron oxide 

cement. The sub-angular clasts of the host rock, and of laumontite and albite occur 

within regions of fine-grained laumontite. These clasts are less than 100 µm to about 3 

mm in diameter. The primary difference between the BSS and the MB is an increase in 

the fine particle size fraction within the MB unit.   

MBS units are defined in the large and intermediate subsidiary faults, adjacent 

the zones of most concentrated shear (i.e., PSZs).  The MBS unit represents a region that 

has undergone extensive shear deformation, experienced a significant reduction in 

particle size, provides evidence of significant dilation in zones that parallel the PSZ, and 

extensive cementation by laumontite (Figure 5b and c). Survivor clasts in the MBS, as in 

the MB unit, are particles of the host-rock and of the alteration reactions, where the 

largest of these are much smaller than those found in the MB unit, typically being less 

than 300 µm. Sub-regions representing different structural units included fine-grained 
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cataclastic zones, and bands of fractured and cataclastic laumontite that surrounds 

particles of the host-rock and alteration products. In some regions these laumontite zones 

contain grain fragments that were derived from the walls of the shear zone, and 

fragments of the same grain that are separated by laumontite, but that do not signs of 

rotation, similar to those described by Blenkinsop and Sibson [1992]. These latter 

features suggest significant dilation has occurred. The quartz grains are larger and more 

angular than particles of orthoclase and oligoclase (< 75 µm). Many of the survivor 

particles are oriented with their long axis parallel to the PSZ.  

The PSZ unit is best developed in the large subsidiary fault zone where it is 

defined by a localized band of extreme particle size reduction that is less than 0.5 mm 

thick (Figure 5). This narrow zone of sub-micron scale material is characterized by 

alternating light and dark bands that are sparsely populated with survivor clasts, most of 

which are quartz. Future work to define the characteristics of this zone will require 

scanning and transmission electron microscopy to define particle size and shape 

distributions.  
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4. PARTICLE SIZE AND SHAPE ANALYSIS METHOD 

 

Using the representative samples of subsidiary faults we quantify the evolution of 

particle size and shape reduction as a function of shear strain and mineralogy for the 

main mineral phases (plagioclase, orthoclase, and quartz) using 1) back-scattered 

electron imaging to distinguish particle size and shape, and elemental mapping to 

distinguish phases, and 2) a combination of manual and automated image analysis 

techniques. 

 

4.1. Phase Determination by Element Mapping 

In some cases it is possible to distinguish mineral phases through automated 

image analysis (e.g., SXM, ImageJ, MATLAB) by filtering and thresholding BSE 

images [e.g., Heilbronner and Keulen, 2006; Keulen et al., 2007]. The plagioclase, 

quartz, and laumontite in the SAFOD samples, however, often display a similar range of 

Z values making automated phase separation unreliable. For this reason, element maps 

are acquired by wavelength-dispersive X-ray spectroscopy (WDS) on a Cameca SX50 

electron microprobe to facilitate mineral identification within the subsidiary faults.  

Element mapping involves positioning the wavelength-dispersive spectrometers 

to measure specific X-ray wavelengths from elements of interest and either moving the 

stage over a square grid of points (stage scanning), or holding the stage stationary and 

scanning the beam over a square grid of points (beam scanning) [Williams et al., 2001]. 

For this study, maps at two scales are collected for the BSS, MB, and MBS structural 
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units in each fault class when present. Large area maps are either 1 x 1 mm, with a 

resolution of 512 x 512 pixels (a pixel size of 2 x 2 µm), or 1 x 2 mm, with a resolution 

of 512 x 1024 pixels. Small area maps are 32 x 32 µm with a resolution of 128 x 128 

pixels (a pixel size of 0.25 x 0.25 µm). The large area maps are collected by the stage-

scanning technique and the small area maps are collected by the beam-scanning 

technique. The maps are acquired with a 15 kV, 20 nA beam with a 15 ms count time at 

each pixel. Si is mapped to resolve quartz; K, Al, and Si are mapped to resolve 

orthoclase; Na, Al, and Si are mapped to resolve albite; Ca, Al, Na, and Si are mapped to 

resolve oligoclase; and Ca, Al, and Si are mapped to resolve laumontite. The element 

maps are stacked using ImageJ to create composite element maps indexed to mineral 

phases by color (Appendix A).  

 

4.2. Particle Size Analysis 

At least three sets of overlapping BSE images (5 to 8 images per set) are taken of 

each structural unit studied. Images are taken at 50X using a petrographic microscope to 

analyze the largest particles. To determine the size of smaller particles, BSE images are 

acquired using a FEI QUANTA A 600 FE scanning electron microscope with a 20 kV 

acceleration voltage at a scan speed of 0.1ms and total acquisition time of 6.2 min/frame. 

Additional images in a few regions are collected at a scan speed of 30 µsec (1.8 

min/frame). The BSE image sets are taken at four magnifications, each increasing by a 

factor of 4, starting at 150X and increasing up to 9600X to produce 16 bit images with a 

resolution of 2048 x 1887 pixels.  The image resolution in each set permits significant 
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image enlargement allowing measurement of particle sizes ranging from 0.2 μm to 400 

μm.  

The colorized phase map composites are superposed onto the BSE images of the 

same area to aid in defining particle phases and particle boundaries (Figure 6). Grain 

boundaries are traced in Adobe Photoshop using a digitizing tablet because, after several 

trial cases, it was determined that the manual digitization technique is the most expedient 

way to ensure accurate delineation of all fracture surfaces in the multiphase rocks. BSE 

images can be enlarged up to 400% before becoming pixelated on most screens, which 

allows more accurate particle boundary identification. For each set of images, all 

resolvable particles that are wholly contained within the image composite are traced. The 

smallest traceable particle size is defined by the BSE limit of resolution for the images 

acquired at 150, 600, and 2400x, and by the resolution of the phase maps (0.25 mm per 

pixel) for images taken at 9600x. In the stacked BSE-mineral phase maps, the phase of 

extremely small particles can be defined if the particle is at least two pixels in size. 

Spurious x-ray counts that are recorded during element mapping and the uncertainty in 

aligning the BSE images and phase maps makes phase and particle identification 

inaccurate for smaller grains. Therefore, in the highly sheared regions where the smallest 

grains exist, the resolution of the phase maps limit the smallest grain size reported in this 

study.   

To determine the role of mineralogy on PSD and magnitude of strain, the particle 

sizes of plagioclase, orthoclase, and quartz grains are analyzed separately. An 8-bit, 

grayscale, binary image of each phase is created. Particle size and shape is determined 
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from the images using ImageJ (http://rsbweb.nih.gov/ij/). Only grains fully contained 

within an image composite are analyzed (Appendix B).  

 ImageJ determines the area, A, of a particle that is calculated from the total 

number of connected pixels that are in contact by at least one pixel edge or pixel corner. 

The particle diameter is calculated assuming that the particle shape is a perfectly circular 

object, such that the equivalent particle diameter, d, is given by d = √(4A/p). The 

equivalent particle diameter assumption provides an objective and reproducible means to 

characterize size [e.g., Bjørk et al., 2009]. Figure 7 shows an example of a log d versus 

C(d) plot where the PSD data, collected at multiple magnifications, are normalized by 

area and combined to give a single PSD curve. The particle diameters determined are 

expressed in millimeters and binned at a log d interval of 0.05 mm. The best-fit line to 

the distribution and fractal dimension, D, are shown. The cumulative number of particles 

(i.e., the number of particles greater than a certain size) at each magnification is 

normalized by the total image area processed to account for the change in imaged area 

with a shift in magnification. The D is determined after identifying the upper and lower 

fractal limits. 

 

4.3. Particle Shape Analysis 

The shape of particles is quantified in terms of circularity, solidity, and 

elongation [e.g., Crompton, 2005] using ImageJ (Appendix B). Circularity (C) measures 

the ratio between the perimeter of a circle with the same area as the particle, (PEAC), by 

the true particle perimeter, (PP) [Cromtpon, 2005; Bjørk et al., 2009], which can be 
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defined in terms of the equivalent circular area of the particle and the true particle 

perimeter 
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 2
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Both the overall form and surface roughness influence circularity (Figure 8). Circularity 

values range from 1.0 for a perfectly smooth circle, to values approaching 0 for 

extremely irregular, elongate shapes. To calculate particle perimeter, ImageJ employs an 

algorithm that gives pixel edges a value of 1 and corners a value of 



2  which produces 

increasingly inaccurate perimeter measurements as particle size decreases, particularly 

for particles defined by a small number of pixels. In this study, we noted obvious 

inaccuracy for particles with d < 5 µm, and thus restrict our analysis to particles greater 

than or equal to this size.  

Solidity (S) quantifies the surface roughness of a particle by dividing the particle 

area by the convex hull area, (ACH),  

 

     



S 
AParticle

ACH
,     (4) 

 

where the convex hull area may be envisioned as the area enclosed by an imaginary 

rubber band that is positioned around the particle [Cromtpon, 2005].  A perfectly smooth 
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particle yields a solidity value of 1.0, which decreases towards 0 with an increase in 

surface irregularity (Figure 8). Unlike circularity, the solidity value is not affected by the 

overall form of a particle and is only a measure of the roughness of a granular surface. 

Bjork et al. [2009] use a similar shape descriptor called convexity to quantify the 

roughness of particle surfaces. Convexity is measurement of the ratio of the convex 

perimeter (perimeter of rubber band enclosing the particle) to the particle perimeter. 

When compared to solidity, convexity is more sensitive to the depth and width of the 

surface indentions. For example, deep, narrow indentions do not change particle area 

significantly, but have a significant influence on the particle perimeter, and therefore on 

the convexity value [Kirk et al., 1995].  

Elongation, E, quantifies the length to width relationship, E = (l – w) / l, having 

values ranging from 0, for perfect circles and squares, to 1, for elongate particles. 

Elongation is an indication of overall form and, unlike circularity, is not affected by 

surface roughness (Figure 8). Particle width and length are measured using the major 

and minor axes of a best-fit ellipse with the same area as the analyzed particle.  

Scatter plots of circularity, solidity, and elongation versus particle diameter, and 

histograms showing the distribution of these shape data are used to compare shape 

characteristics as a function of mineralogy and increasing shear strain.  
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5. RESULTS 

 

5.1. Relative Abundance of Mineral Phases 

The mineral phase maps are used to determine the relative abundance of quartz, 

orthoclase, oligoclase, and laumontite in each structural unit (Table 1). These phases 

constitute 92 to 98% of the total area of each image. Minor phases, including illite, 

epidote, apatite, and Fe-oxide, account for the remaining area. We report the relative 

abundance of the major phases in the following section. The values given for quartz, 

plagioclase, and orthoclase are for individual identifiable grains. The values given for 

laumontite includes fracture-fill that often is highly fractured, new grains of laumontite, 

cataclasized particles of laumontite, altered regions, and vein-fill. 

In the BSS unit, ~77% of the area is taken up by clasts and ~23% of the area by 

laumontite. Plagioclase (oligoclase and albite) constitutes ~35% of the total clast area,  

~35% is orthoclase, and ~30% is quartz. For the MB unit, clasts make up ~71% of the 

total area and the remaining ~29% is laumontite. Relative to the total clast area, ~38% is 

plagioclase, ~31% is orthoclase, and ~31% is quartz. Approximately 34% of the MBS 

area is occupied by clasts while ~66% of the area is laumontite. Plagioclase accounts for 

~44% of the total clast area, orthoclase occupies ~24%, and quartz occupies ~32% of the 

clast area.  

Plagioclase is the most abundant clast phase, displaying a substantial decrease in 

relative abundance from the BSS to the MBS. Quartz and orthoclase particles have 

similar total abundances that do not change with increasing shear, except for a small 
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decrease in orthoclase in the MBS, relative to the MB and BSS. Clasts dominate the total 

area in the BSS and MB, even though the area of clasts decreases slightly from the BSS 

to the MBS. The MBS displays a shift from a clast-dominated to a matrix-dominated 

unit.  

 

5.2. Particle Size Distributions 

The PSDs of quartz, orthoclase and plagioclase are determined for each 

magnification, normalized by the imaged area, and then plotted to illustrate the 

composite PSD for each mineral (Figure 9). The D and fractal limits for each mineral 

phase in each structural unit are reported in Table 2. All particle size distribution curves 

show a significant change in slope at each end (Figure 7). These changes in slope may 

represent a shift in the active mechanism of comminution, or most likely, reflect 

sampling effects [e.g., Bonnet et al., 2001], the implications of which are discussed later. 

In the BSS unit, the particle size range best fit by a power law distribution is 

approximately 6 to 200 μm for plagioclase, 5 to 252 μm for quartz, and 8 to 200 μm for 

orthoclase. The best-fit D for plagioclase and quartz is ~1.1 and is ~1.3 for orthoclase. 

When all mineral phases are combined, D is ~1.1 (Table 2). 

In the MB structural unit, the particle size range best fit by a power-law 

distribution is approximately 1 to 316 μm for plagioclase, 0.5 to 398 μm for quartz, and 

2 to 381 μm for orthoclase. The best-fit Ds for the different areas evaluated range from 

~1.5 to 2.0 for plagioclase, ~1.0 to 1.4 for quartz, and ~1.6 to 2.0 for orthoclase. When 

all phases are combined, the D ranges from ~1.3 to 1.7 (Table 2); this is greater than the 
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D for the combined phases in the BSS, and reflects an overall increase in the relative 

number of small particles in all phases.  

 In the MBS structural unit, the particle size range best fit by a power-law 

distribution is approximately 0.3 to 89 μm for plagioclase, 1.5 to 125 μm for quartz, and 

1 to 80 μm for orthoclase. The best-fit Ds for the different areas evaluated range from 

~1.8 to 2.5 for plagioclase, ~1.5 to 2 for quartz, and ~1.5 to 2.5 for orthoclase. When all 

phases are combined, the D ranges from ~1.7 to 2.1 (Table 2); this is greater than the D 

for the combined phases in the BSS (Table 2), and reflects an overall increase in the 

relative number of small particles in all phases. The Ds for quartz are less than those for 

plagioclase and orthoclase, but similar to the range of Ds determined for the combined 

phases. Overall, the Ds for all phases in the MBS are greater than corresponding values 

in the MB and BSS (Table 2).  

 

5.3. Particle Shape 

Circularity, solidity, and elongation are shown for each mineral as a function of 

grain size and shear strain, by combining all of the shape data for each structural unit 

from the three faults studied (Figure 10). The variation in shape with grain size is shown 

with scatter plots of size versus shape descriptor, and with frequency distribution plots 

for two size bins, 5 to 25 µm (small grain-size fraction) and > 25 µm (large grain-size 

fraction). The statistical descriptors of the frequency distributions for circularity, 

solidity, and elongation are summarized in Tables 3, 4, and 5, respectively.   
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The distributions of particle circularity are fairly symmetric for all phases, grain 

sizes, and degrees of shear strain (Figure 10a). The frequency distributions for orthoclase 

are slightly more symmetric compared to plagioclase and quartz, and show a general 

broadening of the distribution with shear. The mean, skewness and kurtosis of the 

circularity distributions for all mineral phases show very little change for the fine-grain 

fraction with an increase in strain (Table 3). For the coarse-grain fraction, the mean and 

skewness of circularity decrease with strain in quartz and orthoclase, but not in 

plagioclase. In general, the large grain-size fraction produces lower mean circularity 

values when compared to the smaller particle sizes.  

The distributions of particle solidity are distinctly asymmetric for all phases, 

grain sizes, and degrees of shear strain (Figure 10b). The distribution is narrower for 

coarse particles and broadens with a decrease in grain size. The mean, skewness and 

kurtosis of the solidity distributions show little change with shear in the fine-grain 

fraction, but show a slight decrease in the mean and skewness of solidity, particularly for 

quartz, in the coarse-grain fraction (Table 4). Overall, the mean solidity values are 

higher for the large grain-size fraction relative to the small grain-size fraction.  

In general, the distributions of particle elongation are symmetric for all phases, 

grain sizes, and degrees of shear strain (Figure 10c). Minor asymmetry towards lower 

elongation values, however, is observed for quartz and plagioclase in both the BSS and 

MBS structural units, reflecting slightly more rounded particles. For all mineral phases 

in the fine grain-size fraction, there is a slight decrease in the mean elongation, and a 

decrease in the skewness of the distribution for plagioclase and quartz with shear (Table 
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5). The mean of elongation for the coarse-grain fractions of plagioclase and orthoclase 

decreases slightly with shear, but does not show consistent changes for quartz. Overall, 

the large particle size fraction has lower mean elongation values compared to the fine 

particle size fraction. 

For circularity, solidity, and elongation, two grain-size clusters are observed in 

the BSS (most prevalent for orthoclase), and become slightly less obvious in the MB. 

The large grain-size cluster of particles is not observed in the MBS (Figure 10). 

The skewness of the elongation distributions decreases from the BSS to the MB, and 

then increases again for the MBS. This is the case for almost all phases and grain sizes, 

with the exception of a small fraction of quartz. 

5.3.1. Relationships between shape characteristics 

The shape descriptors are not completely independent characteristics. 

Accordingly, the shape descriptors are further investigated through cross plots of 

circularity versus solidity for binned values of elongation (Figure 11 and 12). Elongation 

is grouped into four bins, each with an equal number of particles (Figure 12). In all 

cases, circularity and solidity are positively related, and both show a negative 

relationship to elongation. In general, grains with low elongation also have high solidity 

and circularity, and those with high elongation are defined by low solidity and 

circularity.  

Although all cases show similar trends in circularity, solidity, and elongation, 

there are distinct differences in when mineralogy, shear strain, and grain size are 

considered. Quartz and plagioclase have similar circularity-solidity-elongation 
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relationships in both the BSS and MBS (Figure 12), though quartz tends to have a 

greater percentage of particles with very high circularity and solidity, and low 

elongation, i.e., particles that are smoother and more circular. For these two minerals, the 

solidity values of particles from the most highly sheared regions (MBS) are about 0.04 

less than those for the least sheared region (BSS) (Figure 12).  

Orthoclase shows similar circularity-solidity-elongation trends as quartz and 

plagioclase, but the solidity values are less than those for quartz and plagioclase by about 

0.04 for corresponding shear strains. In addition, the orthoclase particles display 

significantly lower circularity and solidity when compared to quartz and plagioclase 

from the same elongation bin.  

The difference in solidity values between the highly sheared regions and the least 

sheared regions, in part, reflects the fact that there are a relatively large number of large 

particles in the BSS, and that the large particles have high values of solidity (Figure 

11a). The solidity values of the fine-grained fraction of the BSS (Figure 11a) are similar 

to those in the more highly sheared material (Figure 11b), although the comparison is 

difficult to make definitively because of the small number of fine particles in the BSS. 
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6. DISCUSSION 

 

6.1. Fractal Size Distributions and Fractal Limits 

The particle size distributions analyzed for each of the three size-classes of 

subsidiary faults can be described by a power-law relationship for sizes ranging over 3 

orders of magnitude (Table 2). In this study, we define the limits of the power-law 

relationship by the distinct slope changes at the upper and lower extremes of particle 

sizes measured (Figure 7). Although these limits are used to fit the power-law are 

referred to as fractal limits, this does not necessarily mean that the fractal scaling 

relations do not extend to larger and smaller particle sizes. Herein, the limits largely 

reflect sampling errors and resolution limits. 

The lower fractal limit of the PSD at particle sizes of approximately 0.3 µm in 

diameter, predominately is caused by the limited resolution of the mineral phase maps 

constructed by element mapping. The high-resolution X-ray maps were acquired at a 

quarter-micron per pixel resolution. Isolated single or pairs of pixels, however, are not 

used for phase identification because of likely X-ray contamination from underlying 

phases that can occur when the X-ray excitation volume is greater than that of the 

smallest particle size [Gottlieb et al., 2000]. Careful examination of high magnification 

(2400X and 9600X) BSE images, taken in the highly sheared regions, provides proof for 

the existence of submicron particles that are smaller than those resolved by mineral 

phase mapping, and therefore were not included in the phase-specific particle size 

measurements.  
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The bias caused by the limited resolution of the phase maps can only explain a 

change in slope for the small particles.  The following two sampling effects, however, 

can explain the deviation in slope for both ends of the PSD curve. First, regions for 

analysis should be chosen at random, but because of the limited sample area with 

increasing magnification, regions were chosen preferentially to avoid large particles that 

would dominate the field of view, which causes a bias in the distribution of large 

particles [Sammis et al., 1987; Bonnet et al. 2001]. Second, there may be a 

misrepresentation of small particles that are either overlooked or not intersected by the 

thin section [Blenkinsop, 1991]. This bias could work in conjunction with the limited 

resolution of the phase map to generate unreliable PSD data for the finest particles sizes.  

The sampling errors and the limitations imposed by phase resolution, do not 

affect the PSDs in the size ranges sampled within the range of overlapping 

magnifications, which correspond to the portion of the PSD that is demonstrably fractal. 

Thus, the values of D determined are robust and may be used to characterize and 

compare the PSD of the different mineral phases and different structural units, as well as 

with the PSDs determined in other studies. The entire range of D (1-2.5) determined in 

the present study falls within the range of fractal values (0.8-2.6) observed in naturally 

deformed rocks [e.g. Sammis et al., 1987; Blenkinsop, 1991; Storti et al., 2003; Chester 

et al., 2005; Keulen et al., 2007; Bjørk et al., 2009], and 72% of the values of D 

determined are between ~ 1.5 and 2.1, which are the most common values of Ds 

documented in natural fault rocks and produced in experimental shear zones [e.g. 
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Sammis et al., 1987; Biegel et al., 1989; Marone and Scholz, 1989; Sammis and King, 

2007]. 

 

6.2. Comminution Processes 

 Sammis et al. [1987] proposed a constrained comminution model to explain the 

fractal geometry observed for low strain gouge and breccia.  They reasoned that the 

relatively high confining pressure associated with fault formation prevents grains from 

moving freely relative to one another (i.e., grains are constrained), increasing the 

probability that fracture of a particle is controlled by the relative size of neighboring 

particles. For compressive shear of granular material, stress is concentrated and largely 

carried by grain bridges. The conditions that favor bridge failure form locally at the 

contact between two similar-sized particles. During shear the bridges undergo rotation 

and a reduction in normal stress perpendicular to the loaded grain contacts leading to a 

grain-scale uniaxial compressive stress state, and ultimately, tensile failure of one of the 

grains. The end result of repeated bridge formation and fracture is a self-similar gouge 

composed of particles with dissimilar-sized neighbors and a PSD with a D ~ 1.6. In 

contrast, unconstrained comminution occurs when particles can move freely relative to 

one another, promoting the processes of pounding (i.e., impact) and milling (i.e., 

grinding and abrasive wear). For many models of unconstrained comminution, the 

probability of fracture is determined by the presence of starter flaws and pre-existing 

weaknesses [Sammis and King, 2007; Sammis and Ben-Zion, 2008]. To a large extent, 
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the PSD observed here are consistent with comminution under constrained conditions, at 

least at the lower shear strains. 

The PSDs within the BSS unit (Figure 9) are characterized by a low D (~1.1-1.3) 

for particles between the lower limits of 5 to 8 μm and upper limits of 200 to 250 μm 

(Table 2). Particle sizes of ~ 3μm in diameter were successfully analyzed but these 

clearly are fewer in number and below the fractal limit. Mair et al. [2002] and Billi 

[2007] suggest that for PSDs with low D, that small particles volumetrically are rare 

because the fault rocks likely have undergone less comminution overall. Microstructures 

in the less deformed structural units, described herein, are similar to the structures 

described by these workers. The FSS and BSS show similar sized particles in contact in 

addition to many examples of tensile fractures splitting grains. An additional feature of 

the FSS and BSS units is the presence of laumontite cement that surrounds the larger 

particles and limits contact between the smaller clastic particles. The lack of small 

particles in conjunction with the presence of same-size neighbors implies that these 

zones represent early stages of deformation where the magnitude of shear and extent of 

fracture are insufficient to match the assumptions of the constrained comminution model 

or to evolve to a fractal geometry where D ~ 1.6. 

The PSD within the MB unit (Figure 9) yields an average D of ~1.8, ~1.7, and 

~1.3 for orthoclase, plagioclase, and quartz, respectively. These values are greater than 

those measured for the BSS, consistent with the qualitative observation that the MB 

units have a greater number of small particles that extend down to at least 0.5 μm in 

diameter (Table 2). Although the D measured for the different phases in the MB unit 
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does not equal the value of 1.6 predicted by Sammis et al. [1987] for particle size 

reduction by constrained comminution, the average value for all phases combined is very 

close to 1.6. Particles with same-size and same phase neighbors are rare in the MB unit, 

and tensile fractures splitting large grains are common, becoming progressively less 

frequent in the smaller grains (Figure 6b). These observations are consistent with 

repeated bridge-formation, tensile fracturing of grains, and sufficient shear strain to 

produce the PSD characteristic of constrained comminution 

The PSD recorded for the MBS unit (Figure 9) displays fractal geometries for 

particles between the lower limits of 0.03 to 9 μm and upper limits of 22 to 125 μm. 

These distributions are best-fit by a higher D of ~2, ~2, and ~1.8 for orthoclase, 

plagioclase, and quartz, respectively. The full range of Ds recorded for the mineral 

phases in the MBS is much broader, however, extending from ~1.5 to 2.5 (Table 2). The 

greatest values of D measured are for plagioclase and orthoclase in the MBS of the large 

subsidiary fault in Zones 2 and 3, which are highly sheared and contain large amounts of 

laumontite. Observed values of D > 2 are consistent with previously recorded values for 

intensive shear localization in cataclastic rocks [Blenkinsop, 1991; An and Sammis, 

1994; Blenkinsop and Fernandes, 2000; Storti et al., 2003; Heilbronner and Keulen, 

2006; Keulen et al., 2007; Bjørk et al., 2009], as well as in experimental shear zones 

with localization of strain [e.g., Biegel et al., 1989; Marone and Scholz, 1989]. 

Comminution during shear of Westerly Granite [Biegel et al., 1989] and quartz [Marone 

and Scholz, 1989] gouges, produced PSDs defined by a D consistent with constrained 

comminution except in localized shear bands (e.g., Riedel shears), where particle sizes 
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are smaller overall, and D is greater, typically around 2. Both natural and experimental 

high-strain, localized shear zones likely have undergone particle size reduction by either 

selective fracture of large particles [Sammis and King, 2007], or shear-enhanced inter-

particle slip with associated abrasion and wear of the large particles contained within a 

fine-grain matrix [e.g. An and Sammis, 1994; Billi, 2005; Keulen et al., 2007; Storti et 

al., 2003; Blenkinsop, 1991].  

The overall progressive increase in D from ~1.6 to ~ 2.0 with increasing shear 

strain, seen in this (Figures 13 and 14) and previous studies, has been addressed [Sammis 

and King, 2007] by extending the constrained comminution model to include processes 

at larger shear strains. Specifically, under constrained comminution, the occurrence of 

similar-sized, nearest-neighbor particles is greatly reduced; however, with increasing 

shear and flow of particles, the constraint on particle motion is relaxed and same-sized 

particles are brought into contact. Particle fracture then depends on the probability of 

similar-sized particles coming into contact. Sammis and King [2007] conclude that for a 

D less than 2.0, the probability of contact between same-sized neighbors is greater for 

larger particles, and as a result, larger particles are preferentially fractured leading to an 

increase in D with strain.  

An important result from our analysis of the PSD of a polyphase material is that 

the value of D often varies with phase. At all shear strains and in all structural units, the 

D of quartz is less than that of orthoclase and plagioclase (Figure 14). We hypothesize 

that this relation reflects a difference in the material properties of the phases, specifically 

the greater fracture strength of quartz at these conditions and the propensity for cleaving 
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in the feldspars. Bjork et al. [2009] document a relationship between mineralogy and the 

PSD of granodiorite fault rocks, where the D of orthoclase is greater than that of 

plagioclase and quartz combined. This is consistent with our observations; however by 

analyzing quartz and plagioclase independently we demonstrate that the PSD of quartz 

has a lower D when compared to plagioclase (Figure 14). In earlier studies, Evans 

[1988] observed that the average size of feldspar particles is less than that for quartz 

particles in naturally faulted granitic gneisses, and related the size difference to the 

comparatively weaker strength of feldspar, as well as the possibility for cracks in quartz 

to heal at shallow crustal conditions [Evans,1988 and Blenkinsop and Sibson, 1992]. 

The effect of different material properties in a polyphase aggregate can be 

understood in the context of the constrained comminution model [Sammis et al., 1987] 

and other nearest-neighbor models [Sammis and King, 2007]. Assume an aggregate that 

consists of two phases, equal in volume, but different in fracture strength. In this case, 

fracture of a particle of the weaker phase is favored for contacting particles of similar 

size if either one or both of the particles is the weaker phase. Fracture of the stronger 

phase is favored only for the case of two similar-sized, contacting particles of the 

stronger phase. Given the greater frequency for formation of contacting pairs composed 

of at least one particle of the weaker phase, the rate of comminution in the weaker phase 

should exceed that of the stronger phase, resulting in a greater D for the weaker phase.  

In the case of the subsidiary faults in the arkosic sandstones from SAFOD, where the 

volume fraction of feldspar is twice that of quartz, and quartz has greater fracture 



 33 

strength at 3 km depth, the D of the PSDs for quartz should be lower than that of the 

feldspars in all structural units, as observed in this study.  

 

6.3. Insights into Fragmentation Processes from Shape Characteristics  

The PSD data for the clasts in the arkosic sandstone suggest that the FSS and 

BSS units represent early stages of deformation where the magnitude of shear strain and 

extent of fracture are insufficient to match the assumptions of the constrained 

comminution model. However, the constrained comminution model provides a good 

description for deformation in the MB unit of the subsidiary faults at SAFOD. When 

shear strains are high and the D of particles within the fault are greater than the predicted 

value of 1.6, the constrained comminution model no longer explains all of the 

observations. At this point, fracture preferentially occurs in the larger particles as 

suggested by Sammis and King [2007]. 

Data from this study demonstrates that there is a significant mineral phase effect. 

Specifically, quartz tends to break down at a slower rate, relative to the feldspar phases, 

as the deformation processes begin to shift from constrained comminution to more 

distributed shearing and granular flow [e.g., Marone and Scholz, 1989; Sammis and 

King, 2007]. This progressive shift in processes enhances surface wear; abrasion and 

chipping increase in importance as grain-splitting and fragmentation continue [e.g. Storti 

et al., 2003; Billi, 2005; Keulen et al., 2007]. Because the comminution rate of quartz is 

slower than that in feldspar, quartz experiences a greater degree of surface wear between 

grain-splitting events that leads to greater rounding of the grains. 
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 The shape data are consistent with the hypotheses derived from the PSD data. In 

the BSS, the large particles have high circularity and solidity, reflecting shapes that are 

generated during sedimentary processes, i.e., shapes that reflect the breakdown of a 

crystalline rock and separation of grains along phase boundaries during sediment 

transport. Comminution during faulting produces a decrease in solidity and a broadening 

of the elongation distribution. Changes in circularity are much more subtle, likely 

reflecting the fact that circularity depends on surface roughness and overall form 

[Crompton, 2005]. These observations are consistent with the breakdown of particles by 

tensile fracture and fragmentation, processes expected at low shear strains. 

In the MB and MBS, in contrast, the entire particle population experiences a shift 

to lower solidity values and a broader elongation distribution, reflecting the fact that all 

particles by this point have experienced fragmentation to some degree because of the 

higher shear strain. It is notable that orthoclase displays significantly lower solidity in 

the MBS, relative to quartz, consistent with the influence of cleavage that favors particle 

breakdown, and leads to a higher rate of comminution. 

The shape characteristics for plagioclase are more like those of quartz, even 

though plagioclase also has well-defined cleavage similar to orthoclase. This can be 

explained by the fact that although plagioclase does fracture along cleavages, it has a 

much higher propensity for alteration that would tend to occur at a greater rate along 

rougher surfaces, and thus promote more rapid smoothing following cleaving events. 

The MBS is the most highly sheared unit investigated in this study. Particles 

within this unit should display the greatest degree of abrasion, chipping, and rounding of 
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particles. In addition, because of its relative resistance to fracture and greater residence 

times between splitting events, quartz, in particular, should demonstrate a mineral phase 

affect, if one exists. This hypothesis is supported by a comparison of the shape 

characteristics of quartz to orthoclase (Figure 12). A much larger fraction of quartz 

particles have high circularity, solidity, and elongation when compared to orthoclase. 

 

6.4 Origin and Influence of Laumontite 

Feldspars present in the subsidiary fault samples have undergone both physical 

and chemical alteration. Host oligoclase has undergone albitization, where the anorthite 

component is replaced by albite causing the release of Ca
2+

, Al
3+

, and OH
-
 into the 

system. These ions with the addition of silica form a hydrated zeolite called laumontite 

[Blenkinsop and Sibson, 1992; Evans and Chester, 1995]. Laumontite may also form by 

the direct alteration of oligoclase to laumontite. Blenkinsop and Sibson [1992] observe 

dilatant textures in plagioclase grains that are caused by the 60% molar volume increase 

that occur as a result of the direct alteration of plagioclase to laumontite. Although there 

likely is some in situ laumontization, most of the laumontite associated with the shear 

zones appears to be produced by albitization. Abundant laumontite cement seals many 

inter- and intragranular fractures and largely makes up the matrix for each structural unit 

(Figure 6a, b, and c). The observed large quantity of laumontite raises the possibility that 

some laumontite has been introduced by advection. Large fracture pathways in the SAF 

damage zone could provide the opportunity for fluid advection from more distant 

sources, both laterally and from depth [Chester, pers. comm., 2011]. However, a 
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systematic study over the entire 12 m of sedimentary core would be required to provide 

more evidence about the origin of laumontite in this system.  

Understanding the effect of laumontite on particle size reduction processes and 

the resultant Ds is crucial because of the large quantity of laumontite in this system. 

Morrow and Byerlee [1991] use samples from surface outcrops near the locality of the 

Cajon Pass drillhole to study the frictional properties of laumontite. Many of the fault 

zones intersected by the drillhole contain laumontite that appears to be acting as fault 

gouge. The goal of their study is to determine if this fault zone laumontite is causing a 

reduction in the shear strength of these faults, similar to the low-shear strength of clay-

rich fault gouges. Friction studies on the laumontite fault gouge show behavior similar to 

other strong crustal rocks and no effective decrease in shear strength of the fault zone. If 

laumontite in FSS, BSS, MB and MBS units of the subsidiary faults at SAFOD has the 

same mechanical properties described by Morrow and Byerlee [1991], then it is expected 

that laumontite would aid in the comminution of the entrained clasts and display textural 

evidence for brittle deformation features. However, if the laumontite gouge is 

mechanically weak, it is anticipated that laumontite would act as a buffer to 

comminution resulting in smaller amounts of particle size reduction of the enclosed 

clasts. Figure 15 plots percent laumontite as a function of D for each sample region. The 

trend displays a general increase in the percent laumontite with an increase in D. 

However, a few data points (circled in Figure 15) do not appear to be consistent with this 

observation. All four values were measured in the MBS unit for regions characterized as 

sheared dilatant veins. One possible explanation for these outlier Ds, is that the timing of 
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vein formation influences the Ds measured within sheared dilatant veins. The observed 

increase in D with an increase in laumontite abundance, along with microstructural 

evidence from BSE images showing fractured blocks of laumontite (Figure 16), implies 

laumontite is mechanically strong and is likely aiding in the comminution of clasts in the 

arkosic sandstone.    
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7. CONCLUSIONS 

 

We use X-ray maps and BSE images to quantify the evolution of particle size 

and shape, as a function of mineralogy and shear strain, in faulted arkosic sandstone 

samples collected at 3 km depth from the western damage zone of the SAF, 

approximately 130 m west of the SDZ at SAFOD. These data are used to constrain the 

processes of grain size reduction and healing of subsidiary faults cutting the damage 

zone to better understand the evolution of off-fault damage and strength recovery. 

Subsidiary faults from different size-classes and specific structural units within these 

faults provide samples representing different magnitudes shear strain and fault zone 

healing. Particle mineralogy is determined from detailed element maps, while BSE 

images provide a definition of grain boundaries and microfracture geometries. Particle 

shape is characterized in terms of circularity, solidity, and elongation.  

1. The distribution of particle sizes in each structural unit is best described as fractal over 

the particle size range investigated (0.3 μm < d < 400 μm), particularly in the more 

highly sheared units. The fractal dimension, D, of the PSD increases with increasing 

shear strain, where the smallest average D (~1.1-1.3) is found in the brecciated 

sandstone, an intermediate D (~1-2) defines the microbreccia, and the greatest D 

(~1.5-2.5) defines the microbreccia with shears for quartz, orthoclase, and 

plagioclase. 

2. For the quartz, magnitude of D is slightly smaller than that for plagioclase and 

orthoclase reflecting the greater fracture toughness of quartz relative to fracture along 
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cleavage in the feldspars.  

3. The lower fractal limit of the PSDs likely reflects truncation due to limits in resolving 

the mineralogy of particles less than 0.3 µm in diameter.  So the expected change in 

fractal dimension associated with the grinding limit is not explored in this study.    

4. The relations between particle shape characteristics vary with shear strain and grain 

size. Overall, fracture and cleavage at low strains lead to a reduction in solidity and an 

increase in circularity and elongation from the undeformed sedimentary rocks. With 

increasing shear strain and particle size reduction elongation is reduced, and 

circularity and solidity are slightly increased.  

5. The volume fraction of laumontite, which reflects the alteration of oligoclase to albite 

and laumontite, increases with increasing shear strain, and thus with an increase in D. 

The increase in percent laumontite with D reflects repeated episodes of fracture and 

cementation in the subsidiary faults as shape and size of particles evolve.  

6. The overall increase in D and evolution of shape with increasing shear strain reflects a 

progressive change in the relative contribution of comminution mechanisms from 

grain-splitting and crushing (constrained comminution), that dominates at low shear 

strains, to surface abrasion and chipping, that dominate at high shear strains. 
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APPENDIX A 

COMPOSITE ELEMENT MAPS 

 

The following outlines the methods implemented to create the composite element 

maps that are used in this study to separate mineral phases for the particle size 

distribution (PSD) analyses and to define the shape characteristics. 

 

A.1. Creating the Composite Element Map 

Each composite element map is based on twelve single-element (Al, Ba, Ca, Fe, 

K, Mg, Na, P, Si, Sr, Ti, and Zr) X-ray maps and one back-scattered electron (BSE) 

image of the map area. From these, eight X-ray maps of the most abundant elements (Al, 

Ca, Fe, K, Mg, Na, P, and Si) are combined with the BSE image to create the composite 

element map using ImageJ. The grayscale values (0-255), displayed in the single-

element X-ray maps, correspond to element abundance. The bright areas (values closer 

to 0) correspond to regions containing a relatively high concentration of the analyzed 

element.  

A.1.1. Binary Images from Element Maps 

 To create a binary image of a single element map, the following steps are taken: 

1. From the file menu select Image-Adjust-Threshold 

2. Set both the upper and lower threshold scroll bars to 255.  

3. Using the top threshold bar, decrease the threshold value by two histogram 

increments and click Apply. 
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4. For most cases, the element represented by bright pixels in the original X-ray 

map should be black in the thresholded image. If not, and instead the originally 

bright element pixels are white, the image must be inverted. To do this, select 

Edit-Invert. 

5. To make the image binary, select Process-Binary-Make Binary.  

6. Repeat for all eight X-ray maps. 

7. The BSE image is used to define regions of epoxy. Threshold the BSE image so 

that the epoxy is black and everything else is white. The easiest way to do this is 

to open a duplicate image (Image-Duplicate) to track the epoxy and then 

threshold the original image. Remember to select Process-Binary-Make Binary 

after thresholding.   

A.1.2. Creating the Grayscale Composite Element Map 

1. The black pixels in each binary image, which indicate the presence of a particular 

element or epoxy (BSE image), need to be assigned representative grayscale 

values in order to distinguish individual elements after the images are stacked 

together to create the composite map. To do this, open the binary images and, 

one at a time, select Process-Math-Subtract. Input the value that corresponds to 

the element being processed, as indicated by the following: Mg (254), P (253), 

Al (251), Fe (247), Si (239), Ca (223), Na (191), K (127), and BSE (0). The pixel 

values (white, black) of the output binary images are as follows: Mg (0,1), P 

(0,2), Al (0,4), Fe (0,8), Si (0,16), Ca (0,32), Na (0,64), K (0,128), and BSE 

(0,255).  
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2. Next, the subtracted binary images are added together to create a grayscale 

composite map. The value of each pixel composing the composite map is the 

sum of all pixel values for the elements present at that location. Therefore, every 

pixel value represents a specific element combination, which is used to interpret 

the existing mineral phases.  

a. Open two of the subtracted, binary element maps. To keep track of the 

following steps, it is easiest to start with the lowest value binary images 

(Mg and P) and work in sequential order.  

b. Select Edit-Paste Control and choose Add from the drop down Transfer 

Mode box.  

c. Using either the box tool or ctrl-a, select the entire Mg element map area 

and select Edit-Copy or click ctrl-c. 

d. Activate the P element map window and select Edit-Paste or click ctrl-v. 

This will add the two maps together. Save this new image as Mg+P. It is 

important to save a new image file each time an element is added. If 

another image is added without saving, a glitch in the program results in 

inaccurate pixel values.  

e. Close the Mg and P windows. Keep the M+P image open and repeat 

steps c and d for the 6 remaining subtracted binary images and the 

subtracted BSE image.  
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A.2. Composite Element Map Interpretation 

A.2.1. Mineral Phase Determination 

 The composite element maps are interpreted using a spreadsheet (Table 6) that 

displays 255 possible numeric combinations of the gray values assigned to each element 

map (1, 2, 4, 8, 16, 32, 64, and 128).  The Pixel Gray Value column lists the possible 

total pixel values from 0 to 255 that result by summing different combinations of 

elements. The Numeric Combination column shows the combination of pixel values that 

would sum to equal the adjacent total pixel value. The Element Combination column 

lists the elements that correspond to the neighboring numeric combination values. The 

steps to interpret the data using this spreadsheet are as follows: 

1. Return to ImageJ and open the composite element map. 

2. Select Analyze-Histogram and click on the List button at the bottom of the 

histogram window.  

3. The List window contains two columns: value and count. The value column lists 

all pixel values from 0 to 255 and the count column shows the number of pixels 

that correspond to each adjacent pixel value. Copy the count and value columns 

and paste them into the spreadsheet so that the first count value lines up with the 

pixel gray value of 0. The value column is the same as the Pixel Gray Value 

column and therefore can be deleted. 

4. Use the number of counts to determine which numeric/element combinations are 

most abundant. Start by looking at the element combinations for counts greater 
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than or equal to 1000. Study each combination of elements and interpret/assign 

the matching mineral phases. 

A.2.2. Color Indexing the Composite Element Map 

 After identifying the abundant mineral phases, a color is assigned to each gray 

value that represents a certain mineral. This allows easy identification of minerals in the 

composite map and can be done in ImageJ by the following: 

1. Open the grayscale composite element map. 

2. Select Image-Color-Edit LUT. 

3. The lookup table (LUT) window contains 256 boxes with gray values from 0 to 

255. To assign a color, find the box equal to the gray value of one mineral and 

click on that box. A new window appears that allows the RGB color values to be 

adjusted. Change the values to get a desired mineral color and click OK. Repeat 

this for the remaining mineral phases.  

4. Before closing the LUT window, click Save and create a file name for the new 

LUT. This will allow the modified LUT to be reopened and applied to other 

composite maps collected in regions of similar composition, which may only 

require minor adjustments to the previously created LUT. 
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APPENDIX B  

PARTICLE SIZE AND SHAPE ANALYSIS 

 

The following outlines the procedures employed to quantify particle size and 

shape as a function of mineralogy using backscattered electron (BSE) images, composite 

element maps, and image processing software. 

 

B.1. BSE-Composite Element Map Overlay  

  Each overlapping set of five to eight backscattered electron images are merged 

together using Adobe Photoshop (File-Automate-Photomerge). The panoramic BSE 

images and composite element maps are overlain for phase specific grain boundary 

determination. The composite maps with a 2 µm pixel size are superimposed on the low 

magnification BSE images (150X and 600X; Figure 17) and the composite maps with a 

¼ µm pixel size are superimposed on the high magnification BSE images (2400X and 

9600X). This can be done in Adobe Photoshop as follows: 

1. Open the merged BSE image and corresponding element map in Adobe 

Photoshop.  

2. Select the BSE file window and click Image-Mode-RGB color. Changing the 

image mode from grayscale to color allows the composite map to retain the 

color-indexed minerals when it is brought in.  

3. The resolution of the panoramic BSE image is 136 pixels/cm and the panorama 

consists of 5 to 8 overlapped BSE images with pixel dimension of 2048 x 1887. 
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Comparatively, the resolution of the composite map is 28.35 pixels/cm and the 

pixel dimensions are typically 512 x 512 (1 x 1 mm, 2 µm per pixel map). 

Because of the differences in resolution and pixel dimension, it is necessary to 

change the scale of the composite map before it is pasted onto the BSE 

panorama. Select the composite map file window, click Image-Image Size, and 

change the pixel dimensions to 2048 x 2048. Click OK. 

4. Select the composite map using either ctrl-a or the Rectangular Marquee Tool 

and click Edit-Copy. 

5. Select the BSE file window and click Edit-Paste. The layer window should show 

two separate layers containing either the BSE image or the composite map (to 

make the layer window visible, select Window-Layer). If not, and the composite 

map is in the same layer as the BSE image, delete the composite map, create a 

new layer (Layer-New-Layer) and then re-paste the map.  

6. In the layer window, change the opacity to 50% for the composite element map 

layer. 

7. Select the Arrow Tool and align the composite map with the BSE image. To 

create a more accurate alignment, select Edit-Free Transform. Use this tool to 

apply small size and orientation changes to the composite map until the 

superposed images are aligned. 

8. Next, select Layer-Layer Style-Blending Options and change the Blend Mode box 

to Multiply. The multiply blend mode enhances grain boundaries and fractures. 
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B.2. Grain Outlines 

 Grain boundaries are digitized using a Wacom Bamboo Digitizing Tablet. The 

following steps are repeated for all three mineral phases (quartz, orthoclase, and quartz).  

1. Create a new layer (Layer-New-Layer), ordered above the composite map and 

BSE image, in the layer window. Select this layer. 

2. Select the Pencil Tool and change the Brush Diameter to 2 pixels. Single pixel 

brush diameters should not be used to separate grains because diagonal lines 

drawn to separate two particles will leave particles connected by the corners of 

pixels steps. As a result ImageJ will view these particles as one grain during the 

automated analysis.  

3. Choose a color from the swatches window (Window-Swatches) that will stand out 

against the composite map. Next, systematically traverse the BSE-composite map 

and trace all of the visible grains of a single mineral phase.  

4. Select the Line Tool. Use this tool to draw a line on the grain outline layer that is 

equal to the length of the scale bar shown on the BSE Image. Employ the 

Horizontal Type Tool to record the length of the scale bar. Divide the length of 

the scale bar in pixels by the length of the scale bar in microns to get a pixel per 

micron value that will be used later to convert the output data to microns.  

5. Save everything to this point as a separate file. The layer showing the grain 

outlines will be modified in the following steps. It is good to have a file with the 

original grain outlines for ease of editing.   
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6. After saving as a separate file, delete the BSE and composite map layers. Leave 

the grain outline layer. 

7. Create a new layer. Make sure it is ordered below the grain outline layer in the 

layer window. Select the Paint Bucket Tool and color the layer white. Then right 

mouse click the layer and select Merge Layers. This will merge the grain outline 

layer with the white background. 

8. To turn the grain outlines black, select Image-Adjustments-Replace Color. Select 

the Eyedropper Tool, and click the grain outline. Then set the hue to -180, the 

lightness to -100, and the saturation to -100. The grain outlines should now be 

black. Click OK.  

9. The particles need to be filled in with black for the automated particle analysis. 

To do this, select the Paint Bucket Tool and choose black from the Swatches 

window. Color the white background black leaving all the grains white and then 

click ctrl-z or Edit-Undo. Repeat this step several times and watch each time to 

see if any particles disappear when the background is colored black. If a particle 

disappears, it has a discontinuous grain boundary. Locate and fix the space or 

spaces in the grain boundary before proceeding to the next step. 

10. Once the background is black and all of the particles are white, select Image-

Adjustments-Invert. Now the particles should be black, floating in a white 

background.  

11. Change the image to 8-bit, grayscale by selecting Image-Mode. This is the best 

format for opening the image in ImageJ.  
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12. Save the image as a tiff file.  

 

B.3. Image Area Measurement 

 It is necessary to normalize the cumulative number of particles captured at each 

magnification by the image area. The image area values are entered in the Global 

Variables-Areas (mm^2) cells, which are referred to later in this appendix. The steps 

used to calculate image area include: 

1. Particles that intersect the edge of the image area are not considered in the 

particle size analysis. Therefore, these particles should not be considered in the 

total image area. Open the file showing the particle outlines. This file should 

include the outline layer with scale bar, element composite map layer, and BSE 

layer.  

2. Create a new layer and order it first in the layer window. Then, using the Line 

Tool, replicate the scale bar from the outline layer. Order this scale bar-shape 

layer over the new layer in the layer window. Then, delete the outline layer. 

3. Make sure the new layer is highlighted in the layer window. Using the digitizing 

tablet, Pencil Tool, and a black, 2-pixel-wide line, outline all grains contacting 

the edge of the image. Record all mineral phases cut-off at the edge of the image 

in this one layer. All of the phases contacting the edge of the image will be 

subtracted from the total image area simultaneously.  

4. After all the edge grains are outlined, delete the composite map and BSE image. 
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5. Click the eye in the layer window, next to the scale bar-shape layer, to turn off 

the layer.  

6. Select Layer-New-Layer. Make sure the new layer is ordered last in the layer 

window. Select the Paint Bucket Tool and color the layer white. Then right 

mouse click the layer in the layer window and select Merge Visible Layers. This 

will merge the edge grain outline layer with the white background.  

7. Color the white background black, leaving all the edge grains white. 

8. Turn on the scale bar layer and change the line color to white so it is visible 

against the black background.  

9. Save as a tiff file.  

10. Complete steps 1-9 from the next section of the appendix (Quantification of 

Particle Size and Shape) with the following adjustments to steps 4, 7, and 9. 

a. Step 4: This step is not necessary if the scale bar is wholly contained 

within the black background. Before the analysis is run (step 8e), the 

Include Holes option is selected, which treats any white area contained 

within a black particle as part of the total area.  

b. Step 7: The only measurement box that needs to be selected from the 

Analyze-Set Measurements menu is Area. 

c. Step 9: Use the output Drawing window to make sure that the only object 

outlined is the image area minus the edge grains. If this is the case, there 

should only be one area value in the Results window. This is the desired 

image area in pixels
2
. The previously determined pixel per micron value 
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is used to find the image area in microns by dividing the image area in 

pixels
2
 by the pixel per micron value squared.  

 

B.4. Quantification of Particle Size and Shape 

 Automated particle size and shape measurements, and calculations are completed 

in ImageJ and Microsoft Excel (Table 7) using the following methods: 

1. Open the tiff file in ImageJ.  

2. Select Image-Properties and change the Unit of Length to pixels. Then change 

the Pixel Width, Pixel Height, and Voxel Depth to one. Select Global and click 

OK. 

3. The Straight Line tool can be used as a measurement tool. Select the Straight 

Line from the tool bar and use it to draw a line of equal length to the scale bar at 

the bottom of the image. The pixel length of the new line will appear in the blank 

space just below the icons in the tool bar. Record this number. This is used later 

to convert areas recorded in pixels to microns.  

4. Select the Rectangle Tool from the tool bar, draw a box around the scale bar line, 

and push delete. If the scale bar is not deleted, it will be measured and recorded 

as a particle during the automated analysis. To get rid of the rectangle, select 

Edit-Selection-Select None.  

5. The image should already be an 8-bit image. If it is not, select Image-Type-8-bit. 

6. Before the image can be processed, it needs to be converted to a binary image. 

To do this, select Process-Binary-Make Binary.  
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7. Prior to running the automated analysis, the output parameters need to be set. 

Click Analyze-Set Measurements and check the boxes in front of Area, Shape 

Descriptors, Perimeter, and Fit Ellipse. For this study, these are the only boxes 

that should be selected. Keep the default inputs for the Redirect to box and the 

Decimal places box. Select OK. 

8. Now the automated particle size and shape analysis may be completed. To do 

this, select Analyze-Analyze particles.  

a. The Size (pixels^2) range may be changed, but is kept at 0-Infinity for this 

study.  

b. Check the box next to Pixel Units 

c. The Circularity range may be changed, but is kept at 0.00-1.00 for this 

study. 

d. Change the Show box to Outlines. 

e. Check the boxes next to Display Results, Exclude on Edges, and Include 

Holes and click OK. 

9. Two new windows should open: Use the Drawing of grain outlines window to 

make sure the particles have been accurately separated. Save the Results window 

as a tab delimited text file.  

10.  To calculate equivalent particle diameter, open the Results text file in Excel and 

complete the following steps: 

a. Delete the first, unlabeled column of sequential numbers and the columns 

labeled Angle, AR, and Round. 
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b. Insert six columns in between the A (area) and perimeter columns. 

c. Highlight all data in the spreadsheet: Select Data-Sort, choose Area from 

the sort by drop down menu, check the boxes next to Header row and 

Descending and then click OK. 

d. Label the first empty column (adjacent to the Area column) d for particle 

diameter. Insert =SQRT(4*A2/pi()) into cell B2 and click enter. Fill the 

series down to the last row of data by double clicking on the bottom right 

corner of the cell.  

e. Label columns C and D, A (µm) and d (µm), respectively.  

f. To convert the area values recorded in pixels to microns, use the 

previously recorded pixel per micron value and enter =(A2/(pixel/µm 

value)^2) in cell C2 of the A (µm) column. Fill the series down to the last 

row of data.  

g. To convert the diameter values calculated in pixels to microns, use the 

previously recorded pixel per micron value and enter =B2/(pixel/µm 

value) in cell D2 of the d (µm) column. Fill the series down to the last 

row of data. 

11. The circularity and solidity values are automatically output by selecting the shape 

descriptors measurement option before the particles are analyzed. However, 

elongation is calculated after the analysis using data from the Major (I) and 

Minor (J) columns. These columns are the major and minor axes of the best-fit 

ellipse to the analyzed particle. To calculate elongation insert a new column 
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adjacent to column J and label it Elongation (column K). In cell K2, enter =(1-

(J2/I2)). Fill the series down to the last row of data.  

12. To calculate the log particle diameter for the log-log cumulative PSD plots use 

the diameter values recorded in microns (column D). Select column F and label it 

Log d. In cell F2, enter =log(D2) and then fill the series down to the last row of 

data.  

13. For the next step, the log cumulative number of particles needs to be calculated 

for the log-log cumulative PSD plots. To do this: 

a. Select column E and label the column CN (for cumulative number). Then 

select cell E2 and enter 1. The value of one represents the largest particle, 

and the fact that this is the only particle of that size or greater, giving a 

cumulative number of 1. In cell E3 enter 2. This corresponds to the 

second largest particle, and the fact that there are two particles of this size 

or greater (a cumulative number of 2). In cell E4 enter 3. Highlight cells 

E1to E3 and double click on the bottom right corner of the box to 

sequentially number the series down to the smallest recorded particle. 

b. Next, select column G and label the column Log CN. In cell G2 enter 

=log(G2) and fill the series down to the last row of data. 

 

B.5. Particle Size Distribution (PSD) Plots 

 The final log d verses C(d) plots are created using a PSD normalization 

spreadsheet created to bin the size data and normalize the cumulative number of particles 
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recorded per magnification by the image area at that magnification. The following steps 

are taken from the PSD normalization spreadsheet. An example portion of this 

spreadsheet is shown in Table 7.   

1. Global variables (Blue cells) 

a. Areas (mm^2): Image area (mm^2) analyzed at each magnification is 

needed to calculate Log Cumulative Number per Area (#/mm^2). Enter 

these previously calculated values (Appendix B.4.) for each 

magnification. 

b. Area shift factor: If needed, an additional (subjective) shift can be made 

at magnification, after applying the true area correction, to best align the 

150X, 600X, 2400X, and 9600X curves with the 50X data. This step is 

explained in greater detail in the “Chart for Shift” section of the appendix. 

c.  Plot increment: Insert the desired bin increment for Log d. Note: If the 

increment, shift factor, or area, is changed during the analysis, the data in 

the yellow columns will need to be re-entered (see note below in step 5). 

The plot increment used in this study is 0.05.  

2. Data Columns (White cells): The following two steps are applied for the 50X, 

150X, 600X, 2400X and 9600X data sets:  

a. Copy raw data for Log d (mm) from the spreadsheet used to calculate 

particle diameter (e.g. Table 7) and paste special as values into 

appropriate columns labeled Log d (mm). 



 67 

b. Copy raw data for Log CN (e.g. Table 7) and paste special as values into 

appropriate columns labeled Log CN. 

3. Binned Data Columns (Green cells): The bin log d column bins the Log d (mm) 

data according to the Plot increment entered in the Global Variables column. The 

bin log d (mm) column converts the bin log d data, given in µm, to bin log d data 

expressed in mm, and the log norm # column normalizes the Log CN by the Area 

(#/mm^2) entered in the Global Variables Column.  

a. After entering data into the white columns, fill down the formulas in row 

2 in the three green columns by selecting the three green cells in row 2 

and double clicking in the lower right corner of the right cell. The three 

green columns should all fill with the expression, #VAULE!, down to the 

last row of data in the white columns. The green columns below this row 

should remain blank. 

b. To get the green columns to fill with numerical values, for a Plot 

increment 0.05, look at the bin log d (mm) value in D2 and type the 

appropriate incremented bin log d value (in mm), corresponding to this 

value, in F2. That is, if D2 is 2.65098 (Table 8), then the bin log d value 

for F2 is the 0.05 increment just below that value (i.e., 2.65). Immediately 

change the font color of the F2 value to red to indicate that this was a 

manually entered value. Once 2.65 is entered, hit return. The green 

columns may all fill down with numerical values. If they do not, then go 
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to the next empty cell in column F and repeat the steps, remembering to 

make the font red for all manually entered values.  

4. Chart for Shift (Figure 18): 

a. Initially, this sheet presents a plot of all binned data for each 

magnification, corrected for the areas analyzed. Use this chart to decide 

which data sets need further shifting (Figure 18a).  

b. The 50X data should not be shifted, i.e., the shift factor should remain 

unchanged. 

1. To determine shift value for 150X, compare the overlapping portions 

of the 50X and 150X curves. For a particular x-value, take the difference 

between the two y-values (D[log cum #/area]) and solve for D cum 

#/area (i.e., the shift factor). Enter this value as the shift factor for 150X 

into the appropriate Global Variables column. Repeat this procedure for 

the 600X, 2400X and 9600X data sets if necessary. After the shift factors 

are entered, a modified plot is produced that will represent the area-

normalized and shifted data (Figure 18b). 

5. Sorted Data for Plotting (Yellow Columns):  

Note: If you change any of the Global Variables in the blue shaded column, this 

will change the values in the green columns; therefore you must re-copy and re-

paste the recalculated data into the yellow columns and re-sort. 
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a. Copy the middle and right-most green columns for each magnification 

(bin log d (mm) and log norm #) and paste special as values into the 

neighboring yellow columns.  

b. While these two columns are still highlighted, sort the yellow columns 

with respect to log norm# (i.e., Data-Sort-column J, ascending order, with 

Header row checked). This sorting puts all empty cells (i.e, all zero-

values) at the end so they are not plotted. 

6. Normalization Sheet – Plot (Figure 19a): This graph presents all area-

normalized-shifted data (i.e., data from the yellow columns). To plot selected 

data on this graph: 

a. First make sure that all data from the yellow columns are plotted for each 

magnification. To determine this, click on graph, click on a point from 

one of the data sets and go to appropriate yellow columns and grab the 

upper or lower blue toggle and encompass the desired data. Do this for 

each data set. 

b. Now looking at all plotted-incremented data, pick appropriate upper and 

lower cut-offs for the 150X and 600X data sets, a lower cut-off for the 

50X data set, and an upper cut-off for the highest magnification data set 

(2400X or 9600X). Using the blue toggles, select the points to be 

represented on the plots based on these cut-offs (Figure 19b). 
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Figure 2. Cross section illustrating the SAFOD borehole, geologic units intersected by 
drilling, and cored intervals. The main borehole was completed in three phases of drill-
ing. Spot coring during Phase 1 in 2004 recovered a total of 7 m of granodiorite, and 12 
m of arkosic sandstone, siltstones, and shales from the western damage zone. In 2005, 
Phase 2 drilling and coring produced a suite of 70 sidewall cores through the fault zone, 
and 3 m of siltstone and sandstone at the very base of the borehole. In 2007, during Phase 
3, two multilateral holes were completed off the main borehole. Spot coring during 
Phase 3 retrieved 11 m of arkosic sandstones, siltstones, and shales from the western 
damage zone, 13.6 m of siltstones, shales, cataclasites, and gouge associated with the 
Southwest Deforming Zone (SDZ), and 17.1 m of siltstones, sandstones, and gouge from 
the Central Deforming Zone (CDZ). Samples used in this study are from the arkosic 
sandstone, retrieved during Phase 1 (yellow box), that are ~130 m west of the actively 
creeping SDZ. The Northwest Bounding Fault (NBF) also is shown. Cross section modi-
fied from Chester et al. [2008] and Sills [2010]. 
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Portion of Phase 1 Core with Subsidiary Fault Sample 
Locations: ~ 10029-10049 ft (3057-3063 m) MD
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Figure 3. Wrap around maps of the arkosic sandstone, siltstone, and 
shale spot core from Phase 1, showing mesoscale fractures and faults. 
The three subsidiary faults used in this study are indicated by a star and 
box around the sample number. Figure modified from Almeida [2007].
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Figure 5. Plane light and BSE images of the large subsidiary fault. (a) Plane light image 
showing the five distinct structural units distinguished by color. Boxes outline represen-
tative regions (R) studied. (b) A BSE image of Region 4 at higher magnification indicat-
ing the specific zones (Z) within this region analyzed in detail. 
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(a)

(b)

Figure 6. BSE images and corresponding composite element maps illustrating variations 
in mineralogy, microstructure, and particle size for different structural units. (a)-(c) BSE 
images and composite element maps overlaying these BSE images for the BSS (a), MB 
(b), and MBS (c). Colors correspond to different mineral phases as indicated in key. (d) 
Plane light image of the FSS. 
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Figure 6. Continued
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Figure 7. Example of a composite PSD plot for a 
single mineral phase, showing upper and lower 
cut-offs used to determine best-fit D. Data are 
plotted as log cumulative number per area versus 
log particle diameter. Colors distinguish data 
collected at three magnifications. The cumulative 
number of particles recorded for each magnifica-
tion is normalized by the area analyzed at that 
magnification. Vertical dashed lines mark the 
upper and lower particle-size cut-offs used for 
fitting the power law. Slope of the best-fit line 
and D are shown. Data shown are for orthoclase 
from the MB (Region 2) of the large subsidiary 
fault. 
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Figure 8. Example values of circularity, solidity, and elon-
gation for different particle shapes. Circularity describes the 
overall form and surface roughness of a particle, whereas 
solidity values only distinguish changes in surface rough-
ness. Elongation describes the overall form of a particle, but 
gives no indication of surface roughness. Figure modified 
from Crompton [2005] and Bjork et al. [2009].

Circularity = 1
Solidity = 1
Elongation = 0

Circularity = 0.4
Solidity = 1
Elongation = 0.81

Circularity = 0.79
Solidity = 1
Elongation = 0

Circularity = 0.47
Solidity = 1
Elongation = 0.78

Circularity = 0.25
Solidity = 0.69
Elongation = 0.29

Circularity = 0.13
Solidity = 0.71
Elongation = 0.83
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Phase BSS MB MBS

Albite 16.09 14.95 7.28
Oligoclase 10.62 12.41 7.52
Orthoclase 27.10 21.83 7.96
Quartz 23.41 21.95 10.81
Laumontite 22.78 28.87 66.44

Albite 20.84 21.01 21.69
Oligoclase 13.75 17.44 22.40
Orthoclase 35.09 30.69 23.71
Quartz 30.32 30.86 32.20

With Laumontite

Excluding Laumontite

Table 1. Area Fraction (%)a of Mineral 
Phases Analyzed for Each Structural Unitb

aExcludes area occupied by accessory minerals 
-(2% to 8% of total imaged area) 
bBSS, brecciated sandstone; MB, microbreccia; 
sMBS, microbreccia with shears 
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Brecciated Sandstone
Large Fault

Region 1

Plagioclase
Orthoclase 
Quartz       

D = 1.1
D = 1.3
D = 1.1

Microbreccia
Small Fault

Region 1

Plagioclase
Orthoclase
Quartz       
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D = 1.6
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Large Fault

Region 2

Plagioclase
Orthoclase
Quartz       
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D = 1.4
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Microbreccia w/ Shears
Intermediate Fault
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Plagioclase
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Quartz       

D = 1.8
D = 1.5
D = 1.6

Figure 9. Composite PSD plots for all regions analyzed in the three size-classes of 
subsidiary faults separated by structural unit and mineral phase. Data are plotted as log 
cumulative number per area versus log particle diameter. Data for all magnifications 
analyzed are combined for each mineral (see Figure 7 for details). Orthoclase is shown 
in orange, plagioclase in blue, and quartz in yellow. The best-fit D is indicated. 

-2

-1

0

1

2

3

4

5
Lo

g 
C

um
ul

at
iv

e 
N

um
be

r p
er

 
A

re
a 

(#
/m

m
2 )

Log Diameter (mm)

-2

-1

0

1

2

3

4

5

-2

-1

0

1

2

3

4

5

-4 -3 -2 -1 0-4 -3 -2 -1 0

-2

-1

0

1

2

3

4

5

-4 -3 -2 -1 0

Log Diameter (mm) Log Diameter (mm)

Lo
g 

C
um

ul
at

iv
e 

N
um

be
r p

er
 

A
re

a 
(#

/m
m

2 )
Lo

g 
C

um
ul

at
iv

e 
N

um
be

r p
er

 
A

re
a 

(#
/m

m
2 )

Lo
g 

C
um

ul
at

iv
e 

N
um

be
r p

er
 

A
re

a 
(#

/m
m

2 )

80



Plagioclase
Orthoclase
Quartz

Fault Sample Structural 
Domain

Mineralb D Upper Lower Upper Lower Average D

1.5 251 0.2 158 1
1.6 630 0.2 178 2
1 1120 0.2 178 0.5

Plagioclase 1.1 620 3 200 6
Orthoclase 1.3 815 3 200 8
Quartz 1.1 895 3.4 252 5.5
Plagioclase 1.6 562 2.5 316 5.5
Orthoclase 1.6 446 2.5 381 5.5
Quartz 1.3 891 2.5 398 8
Plagioclase 2 708 0.25 200 1.7
Orthoclase 2 501 0.5 158 2
Quartz 1.4 1122 1 312 6
Plagioclase 1.6 141 0.2 112 1
Orthoclase 2 112 0.28 112 2
Quartz 1.4 178 0.7 89 4
Plagioclase - - - - -
Orthoclase 2.5 32 0.2 32 1
Quartz 1.8 80 1.2 63 3
Plagioclase 2.5 35.5 0.2 35 1
Orthoclase 2.3 50 0.25 45 2
Quartz 1.5 126 0.2 40 3
Plagioclase 1.8 89 0.2 89 1
Orthoclase 2 50 0.5 22 3.5
Quartz 2 125 0.8 125 9
Plagioclase 2 126 0.2 45 1.2
Orthoclase 2 80 0.2 80 2
Quartz 1.9 100 0.2 70 3
Plagioclase 1.8 89 0.2 28 0.3
Orthoclase 1.5 447 0.4 32 2
Quartz 1.6 126 0.4 89 1.5

Small R1 MB
1.3

Large R1 BSS
1.1

Large R2 MB
1.4

Large R3 MB
1.7

Large R4, Z4 MBS
1.8

Large R4, Z1 MB
1.6

Large R4, Z2 MBS
2.1

Particle Size Range (µm) Power Law Cut-offs (µm)

Int. R1 MBS
2

Int. R2 MBS
1.7

Large R4, Z3 MBS
2

Table 2. Summary of the Particle Size Ranges used in the PSD Analysis and the Calculated 
Fractal Dimension Valuesa

aInt, intermediate; BSS, brecciated sandstone; MB, microbreccia; MBS, microbreccia with shears
bPlagioclase refers to the combined data set for albite and oligoclase
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Figure 10. Scatter plots of the three shape descriptors versus particle diameter, and histo-
grams showing the frequency distribution of the shape descriptor, for the individual min-
eral phases as a function of increasing shear strain. The clustered-column frequency 
distributions are plotted for two particle size bins. The light colored columns represent 
the large particle-size fraction (> 25 µm) and the dark colored columns represent the 
small particle-size fraction (5 to 25 µm). Plots show data for (a) circularity, (b) solidity, 
and (c) elongation. 
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Figure 10. Continued

(b)
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Figure 10. Continued
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Structural 
Unit

Particle Size 
Fraction

# of Data 
Points Maximum Minimum Mean Standard 

Deviation Skewness Kurtosis

All 367 0.96 0.15 0.59 0.15 0.74 -0.96
Small 236 0.96 0.15 0.60 0.17 0.32 -1.48
Large 131 0.80 0.18 0.59 0.12 1.28 0.46
All 2520 1.00 0.11 0.59 0.16 0.38 -1.46
Small 2236 1.00 0.17 0.59 0.16 0.34 -1.52
Large 284 0.86 0.11 0.57 0.14 0.71 -0.81
All 1966 1.00 0.06 0.59 0.18 0.14 -1.49
Small 1876 1.00 0.13 0.60 0.18 0.13 -1.52
Large 90 0.81 0.06 0.48 0.18 0.57 -0.33
All 133 0.97 0.14 0.62 0.14 1.45 1.23
Small 65 0.97 0.35 0.65 0.15 1.05 0.32
Large 68 0.81 0.14 0.60 0.12 1.65 1.70
All 1139 0.96 0.13 0.62 0.15 0.79 -0.85
Small 852 0.96 0.13 0.62 0.16 0.77 -0.84
Large 287 0.87 0.19 0.60 0.13 0.83 -0.87
All 871 0.93 0.18 0.62 0.14 0.71 -1.02
Small 786 0.93 0.18 0.63 0.14 0.66 -1.16
Large 85 0.87 0.21 0.58 0.15 1.62 2.12
All 200 0.93 0.25 0.64 0.12 1.39 0.56
Small 61 0.93 0.25 0.63 0.15 0.96 -0.79
Large 139 0.87 0.3 0.65 0.11 1.52 1.06
All 1059 0.93 0.14 0.58 0.14 0.65 -1.18
Small 623 0.93 0.14 0.58 0.14 0.58 -1.27
Large 436 0.84 0.19 0.58 0.14 0.79 -0.82
All 2422 1 0.13 0.6 0.16 0.52 -1.23
Small 2156 1 0.13 0.61 0.16 0.51 -1.27
Large 266 0.82 0.18 0.52 0.16 0.51 -1.04

Plagioclase

BSS

MB

MBS

Table 3. Circularity Distribution Statistics by Mineral, Structural Unit, and Particle Size  a  

Orthoclase 

BSS

MB

MBS

Quartz

BSS

MB

MBS

aAll refers to particles > 5 μm; Small refers to particles ranging from 5 to 25 μm; Large refers to particles > 25 μm
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Structural 
Unit

Particle Size 
Fraction

# of Data 
Points Maximum Minimum Mean Standard 

Deviation Skewness Kurtosis

All 367 0.97 0.53 0.83 0.09 1.49 0.70
Small 236 0.95 0.53 0.80 0.08 1.63 1.55
Large 131 0.97 0.72 0.89 0.06 2.51 6.10
All 2520 0.97 0.50 0.81 0.08 1.81 2.11
Small 2236 0.96 0.50 0.80 0.08 1.87 2.29
Large 284 0.97 0.62 0.87 0.06 2.44 5.04
All 1966 0.95 0.43 0.79 0.09 1.63 1.37
Small 1876 0.95 0.43 0.79 0.09 1.62 1.30
Large 90 0.95 0.65 0.84 0.07 2.33 5.26
All 133 0.97 0.43 0.87 0.08 2.75 7.34
Small 65 0.95 0.65 0.85 0.07 2.11 3.47
Large 68 0.97 0.43 0.88 0.08 3.30 11.23
All 1139 0.98 0.20 0.85 0.07 2.11 3.42
Small 852 0.98 0.42 0.84 0.08 2.04 3.24
Large 287 0.96 0.61 0.88 0.06 2.64 6.08
All 871 0.96 0.53 0.83 0.07 2.43 5.65
Small 786 0.95 0.57 0.83 0.07 2.35 5.06
Large 85 0.96 0.62 0.86 0.06 3.21 11.01
All 200 0.98 0.6 0.88 0.07 2.46 5.88
Small 61 0.93 0.6 0.81 0.07 2.33 5.4
Large 139 0.98 0.71 0.91 0.05 3.2 11.08
All 1059 0.97 0.51 0.84 0.07 2.16 4.11
Small 623 0.94 0.54 0.82 0.07 2.15 3.65
Large 436 0.97 0.51 0.87 0.07 2.56 5.76
All 2422 0.96 0.34 0.83 0.07 2.18 4.22
Small 2156 0.96 0.34 0.83 0.07 2.19 4.26
Large 266 0.95 0.58 0.85 0.07 2.21 4.13

Quartz

BSS

MB

MBS

Table 4. Solidity Distribution Statistics by Mineral, Structural Unit, and Particle Size a  

Orthoclase 

BSS

MB

MBS

Plagioclase

BSS

MB

MBS

aAll refers to particles > 5 μm; Small refers to particles ranging from 5 to 25 μm; Large refers to particles > 25 μm
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Structural 
Unit

Particle Size 
Fraction

# of Data 
Points Maximum Minimum Mean Standard 

Deviation Skewness Kurtosis

All 367 0.88 0.03 0.46 0.19 0.24 -1.21
Small 236 0.88 0.03 0.47 0.19 0.14 -1.01
Large 131 0.76 0.03 0.43 0.18 0.76 -0.25
All 2520 0.90 0.01 0.45 0.18 0.03 -1.63
Small 2236 0.90 0.01 0.46 0.18 0.05 -1.65
Large 284 0.87 0.05 0.42 0.18 0.29 -0.94
All 1966 0.90 0.00 0.44 0.18 0.20 -1.34
Small 1876 0.90 0.00 0.44 0.18 0.18 -1.36
Large 90 0.75 0.04 0.39 0.17 0.54 -0.68
All 133 0.87 0.02 0.42 0.17 0.93 0.23
Small 65 0.79 /08 0.42 0.17 0.89 0.55
Large 68 0.87 0.02 0.42 0.17 1.09 0.07
All 1139 0.99 0.02 0.40 0.16 0.24 -1.59
Small 852 0.99 0.02 0.40 0.16 0.23 -1.63
Large 287 0.79 0.04 0.40 0.17 0.34 -1.31
All 871 0.85 0.02 0.4 0.16 0.36 -1.39
Small 786 0.85 0.03 0.4 0.16 0.36 -1.45
Large 85 0.75 0.02 0.37 0.16 0.8 -0.31
All 200 0.82 0.03 0.42 0.17 0.39 -1.47
Small 61 0.82 0.18 0.51 0.15 0.95 0.49
Large 139 0.78 0.03 0.38 0.16 0.58 -1.26
All 1059 0.9 0.03 0.44 0.18 0.05 -1.26
Small 623 0.83 0.03 0.4 0.18 0.1 -1.31
Large 436 0.9 0.04 0.43 0.19 0.1 -1.1
All 2422 0.91 0 0.4 0.17 0.11 -1.65
Small 2156 0.91 0 0.4 0.18 0.06 -1.69
Large 266 0.81 0.01 0.4 0.16 0.78 -0.4

Quartz

BSS

MB

MBS

Table 5. Elongation Distribution Statistics by Mineral, Structural Unit, and Particle Size  a  

Orthoclase 

BSS

MB

MBS

Plagioclase

BSS

MB

MBS

aAll refers to particles > 5 μm; Small refers to particles ranging from 5 to 25 μm; Large refers to particles > 25 μm
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Figure 11. Cross plots showing the relationship between solidity, 
circularity, and elongation. Elongation values are binned and 
color-coded, where each color represents a specified range of elon-
gation values.  Plots show data for (a) two particle-size fractions in 
the BSS (5 to 25 µm and >25 µm) , and (b) particles from 5 to 25 
µm in the MBS. In (a) the open circles distinguish the large size-
fraction (> 25 µm) and the solid circles distinguish the small size-
fraction (5 to 25 µm). 
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Figure 11. Continued
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Figure 12. Mean circularity versus mean solidity 
for population quartiles based on elongation. Plot 
summarizes the solidity-circularity-elongation 
trends for different minerals and magnitudes of 
shear strain. The data points represent the shape 
data, after it has been sorted by elongation, and 
divided into four bins each containing an equal 
number of particles. Then, for each quartile,  the 
means in circularity, solidity and elongation are 
calculated. Orthoclase is shown in orange, 
plagioclase in blue, and quartz in yellow. 
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Log Particle Diameter (mm)

Brecciated Sandstone Microbreccia Microbreccia with Shears

Figure 13. Composite PSD plots for orthoclase, plagioclase, and quartz for the three 
structural units of the large subsidiary fault. Data are plotted as log cumulative number 
per area versus log particle diameter in order of increasing shear strain. Data for all 
magnifications analyzed are combined for each mineral (see Figure 7 for details). The 
best-fit D is indicated. 
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Figure 14. Plot of D as a function of shear 
strain, mineralogy, and fault size-class. The plot 
shows an increase in D with an increase in shear 
strain and smaller D for quartz compared to 
plagioclase and orthoclase. The dashed grey 
lines indicate structural units not described in 
this study (FSS and PSZ).
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Figure 15.  Plot of D versus area fraction of 
laumontite. The shape of the symbol defines the 
fault size-class, and the color of the symbol 
distinguishes the mineral phase. The circled 
points represent data from sheared dilatant veins; 
the squares represent data for Region 2 of the 
intermediate subsidiary fault, and the circle 
represents data for Region 4, Zone 3 of the large 
subsidiary fault. 
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Figure 14

Fractured 
Laumontite

50µm50µm

Figure 16. BSE image showing fractured laumontite 
particles in the large subsidiary fault (Region 4, Zone 4). 
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Pixel Gray 
Value

Numeric 
Combination

Element 
Combination Mineral ID Color

Composite Map  
Pixel Counts

0 0 none Other White 14
1 1 Mg 0
2 2 P 0
3 1+2 Mg+P 0
4 4 Al 5
5 1+4 Mg+Al 0
6 2+4 P+Al 0
7 3+4 3+Al 0
8 8 Fe Fe oxides Dk Brown 2
9 1+8 Mg+Fe 0
10 2+8 P+Fe 0
11 1+2+8 Mg+P+Fe 0
12 4+8 Al+Fe 5
13 1+4+8 Mg+Al+Fe 0
14 2+4+8 P+Al+Fe 0
15 1+2+4+8 Mg+P+Al+Fe 0
16 16 Si Quartz Lt Yellow 58127
17 1+16 Mg+Si 38
18 2+16 P+Si 0
19 1+2+16 Mg+P+Si 0
20 4+16 Al+Si Lt Pink 3135

Table 6. Example Portion of the Spreadsheet Used to Interpret the Minerals 
Present in the Composite Element Maps

Al-Silicate
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BSE Image of a portion of Region 2
acquired at 600X magnification

BSE Image of Region 2
acquired at 150X magnification
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Figure 17. Plane light and BSE images, and composite element map shown for portions 
of the large subsidiary fault. (a) Plane light image showing the different structural units 
and four representative regions chosen for analysis BSE images and composite element 
map were taken in Region 2 (red box labeled b). (b) BSE image of Region 2 at higher 
magnification (acquired at 150X) showing gray-scale differences for the analyzed min-
eral phases and an example of a region analyzed by element mapping, shown in (c). (c) 
An example of a 1-mm2 composite element map overlying a portion of the BSE image, 
shown in (b), to illustrate the type of image used to define mineral phases and particle 
outlines. (d) BSE image of a smaller portion of Region 2 acquired at 600X. To define 
mineral phases and particle outlines, this image would be underlain a composite element 
map. 
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Table 7. Portion of Spreadsheet used in PSD and Shape Analyses for Orthoclase from the MB (Region 2) 
of the Large Subsidiary Faulta

aA, area; d, diameter; CN, cumulative number; Perim, perimenter; Elong, elongation; Circ, circularity;             
.Solid; solidity
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Table 8. Example Portion of the Normalization Spreadsheet Used to Bin and Area Shift the 
PSD Data and Create the Final Composite PSD Plots
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Figure 18. Example of composite PSD plots before and after the 
global variables – area shift factors are applied.  Data are plotted 
as log cumulative number per area versus log particle diameter. 
Colors distinguish data collected at three magnifications. The 
cumulative number of particles recorded for each magnification 
is normalized by the area analyzed at that magnification. (a) 
Composite PSD plot prior to applying the area shift factors using 
the PSD normalization spreadsheet. (b) Composite PSD plot after 
applying area shift factors for 150X and 600X. The PSD data 
recorded for 150X (995 in column A of Table A2.2) is shifted 0.26 
and the PSD data recorded for 600X (249 in column A of Table 
A2.2) is shifted 0.22. Data shown are for orthoclase from the MB 
(Region 2) of the large subsidiary fault. 
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Figure 19. Example of composite PSD plots before and after 
the cut-offs have been defined for each magnification.  Data are 
plotted as log cumulative number per area versus log particle 
diameter. Colors distinguish data collected at three magnifica-
tions. The cumulative number of particles recorded for each 
magnification is normalized by the area analyzed at that magni-
fication. (a) Composite PSD plot before the cut-offs have been 
defined for each magnification. (b) Composite PSD plot after 
the cut-offs have been defined for each magnification. Slope of 
the best-fit line and D are shown. Data shown are for orthoclase 
from the MB (Region 2) of the large subsidiary fault. 
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