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ABSTRACT 

A PKN Hydraulic Fracture Model Study and Formation Permeability Determination. 

 (December 2011) 

Jing Xiang, B.S., China University of Petroleum 

Chair of Advisory Committee: Dr. Ahmad Ghassemi 

Hydraulic fracturing is an important method used to enhance the recovery of oil 

and gas from reservoirs, especially for low permeability formations. The distribution of 

pressure in fractures and fracture geometry are needed to design conventional and 

unconventional hydraulic fracturing operations, fracturing during water-flooding of 

petroleum reservoirs, shale gas, and injection/extraction operation in a geothermal 

reservoir.  Designing a hydraulic fracturing job requires an understanding of fracture 

growth as a function of treatment parameters.  

There are various models used to approximately define the development of 

fracture geometry, which can be broadly classified into 2D and 3D categories. 2D 

models include, the Perkins-Kern-Nordgren (PKN) fracture model, and the 

Khristianovic-Geertsma-de. Klerk (KGD) fracture model, and the radial model. 3D 

models include fully 3D models and pseudo-three-dimensional (P-3D) models. The P-

3D model is used in the oil industry due to its simplification of height growth at the 

wellbore and along the fracture length in multi-layered formations.  
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In this research, the Perkins-Kern-Nordgren (PKN) fracture model is adopted to 

simulate hydraulic fracture propagation and recession, and the pressure changing history. 

Two different approaches to fluid leak-off are considered, which are the classical 

Carter’s leak-off theory with a constant leak-off coefficient, and Pressure-dependent 

leak-off theory. Existence of poroelastic effect in the reservoir is also considered. 

By examining the impact of leak-off models and poroelastic effects on fracture 

geometry, the influence of fracturing fluid and rock properties, and the leak-off rate on 

the fracture geometry and fracturing pressure are described. A short and wide fracture 

will be created when we use the high viscosity fracturing fluid or the formation has low 

shear modulus. While, the fracture length, width, fracturing pressure, and the fracture 

closure time increase as the fluid leak-off coefficient is decreased. 

In addition, an algorithm is developed for the post-fracture pressure-transient 

analysis to calculate formation permeability. The impulse fracture pressure transient 

model is applied to calculate the formation permeability both for the radial flow and 

linear fracture flow assumption. Results show a good agreement between this study and 

published work. 
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NOMENCLATURE 

a          =   the crack half length 

A         =    the vertical cross-sectional area 

c          =   the reservoir diffusivity coefficient 

fDC      =   the dimensionless fracture conductivity 

lC
       =   fluid leak-off coefficient  

pC        =   the compressibility of the pore and pore fluid system 

wc         =   the ‘diffusivity coefficient’ 

E        =  the Young's modulus of the material 

'E        =  
2(1 )E ν−  

erf      =   the error function 

1( )E x   =   the exponential integral 

( )f t∗
 =    an evolutional function 

G         =   the shear modulus 

fh
       =   the fracture height 

k         =    the permeability 

K         =    the constitutive constant for a power law fluid 

fk        =   the fracture permeability 
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IcK      =   the fracture toughness for mode I  

IIcK      =   the fracture toughness for mode II  

IIIcK    =   the fracture toughness for mode III  

L          =   the fracture half length 

L∆      =   the small segment length 

L�          =   the length change rate 

DL        =   dimensionless fracture length 

eL        =   the equivalent fracture length 

kL        =   the fracture length at time 
kt  

kL�        =    the change rate of the fracture length at time 
kt  

1kL +
     =   the fracture length at time 

1kt +
 

1k

L
+

i

     =   the change rate of the fracture length at time 
1kt +
 

mL
       =   the maximum length 

cM      =   the fracture compliance 

pm
       =   the slope of G-function curve 

n          =   the power law index /the number of source segments 

N        =   the number of point nodes 

p          =   the net stress 

p∆        =   the net pressure 
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Dp        =   dimensionless fracture pressure 

fp        =   the fluid pressure 

k
ip        =   the fracture pressure at point iθ

 at time kt  

1 k
ip +

   =   the fracture pressure at point iθ
 at time 

1kt +
 

ip         =   the intercept pressure 

0p
       =   the virgin pore pressure 

q          =   the average flow rate per unit height of fracture 

1
2

k

i
q

+
   =    the average flow rate at point 1/2iθ + at time kt  

1
1/2

k
iq +
+    =   the average flow rate at point 1/2iθ + at time 

1kt +
 

0Q
       =   the injection rate 

r          =   the radial distance 

t           =    the time since pumping starts 

t∆        =   the post-fracture closure time 

t∗
        =    a dimensionless fracture surface exposure time since the fluid arrival 

ct          =   the fracture closure time 

ct∆
     =   the critical time step 

Dt          =   dimensionless time 

ht          =   the line source Horner time 
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Ht          =   the Horner time 

1kt +∆     =   the time step at time
1kt +
 

pt          =   shut-in time 

st          =   pumping (shut-in) time 

u          =   the fluid leak-off velocity accounting for both of the fracture walls 

k
iu        =   the fluid leak-off velocity at point 1/2iθ + at time kt  

1k
iu +      =    the fluid leak-off velocity at point 1/2iθ + at time 

1kt +
 

1k
cv +

     =   the fracture volume (per unit height) at time
1kt +
 

 
1k

lv +

    =   the leak-off volume at time
1kt +
 

1k
injv +

     =   the volume of fluid injected at time
1kt +
 

w          =   the average width of the fracture 

w�          =   the width change rate 

Dw        =   dimensionless fracture width 

ew        =   the fracture width controlled by net stress 

mw
       =   the maximum fracture width 

pw        =   the fracture width controlled by net pressure 

1k
iw +

    =   the fracture width at point iθ at time 
1kt +

 

k
iw        =   the fracture width at point iθ at time kt  
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fx        =   fracture half length 

β           =   shape factor 

lβ         =   the ratio of fluid loss area to fracture area 

1kβ +
    =   shape factor at time 

1kt +
 

sβ        =    
2 2

2 3

n

n

+
+

 

γ        =   the surface energy per unit area of the crack 

η          =   poroelastic coefficient 

θ          =   the moving coordinate 

κ          =   the mobility coefficient 

µ          =   the viscosity 

ν          =   the Poisson’s ratio 

cσ        =   the critical stress 

0σ
       =   the minimum in-situ stress 

aτ          =   the fracture tip arrival time at a point A  

dτ          =   the fracture closure time at pointA  

1k
iτ +

     =   the fracture tip arrival time at point iθ at time 
1kt +

 

( ')o xτ
  =   the total fracture exposure time at the location 'x  

( )xτ    =   the fracture tip arrival time at the location x  

φ          =   the porosity of the rock 
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ψ          =   the coefficient depending on the fracture cross section geometry 

2∇        =   Laplace’s operator 
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1. INTRODUCTION 

1.1 Hydraulic Fracturing 

Hydraulic fracturing is a well stimulation treatment routinely performed on oil 

and gas wells in low-permeability layers to increase productivity. Special fracturing 

fluids are pumped at high pressure into the reservoir intervals to be treated, causing a 

vertical fracture to open. The wings of the fracture extend away from the wellbore in 

opposite directions according to the original stresses within the formation. Proppant, 

such as sands of a particular size, is mixed and pumped together with treatment fluid into 

the fracture to keep it open after the treatment is complete. Hydraulic fracturing creates 

high-conductivity channel within a large area of formation and bypasses any damage 

that may exist in the near-wellbore area (Schlumberger Oilfield Glossary).  

The technique of hydraulic fracturing has been widely used in the oil industry 

during the last 50 years. Two of the most important applications of this technology are 

hydrocarbon well stimulation to increase oil and gas recovery (Economides and Nolte 

2000; Veatch 1983a, 1983b) , and geothermal reservoir stimulations (Legarth et al. 2005; 

Murphy 1983; Nygren and Ghassemi 2006).  More than 70% of gas wells and 50% of oil 

wells in North America are stimulated using hydraulic fracturing (Valko and 

Economides 1995). Mini-Hydraulic fracturing can also be applied to estimate the in situ 

stress (Roegiers et al. 1989), leak-off coefficient (Nolte 1979; Nolte and Economides 

1989), and formation permeability (Abousleiman et al. 1994; Gu et al. 1993).  

   
This thesis follows the style of SPE Journal. 
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It is important to control the propagation of induced fracture because the cost of 

hydraulic fracturing operation is high. Fracture should be restrained in the target layers, 

by preventing them from expanding to adjacent formation. Therefore, it is necessary to 

simulate the fracture propagation to provide an estimate of fracture geometry before the 

real operation.  

During the process of a hydraulic fracturing, the pumping rate is maintained at a 

higher rate than the fluid leak-off rate, and the newly created fracture will continue to 

propagate and grow in the formation until shut-in. 

Geertsma (Geertsma and Klerk 1969) considered the potential of poroelastic 

effects for influencing hydraulically-driven fracture propagation. Cleary (Cleary 1980) 

suggested that poroelastic effects can be expressed as “back-stress”. Settari included 

poroelastic effects through a similar approximation (Settari 1980). 

Abousleiman derived the pressure-dependent leak-off equation (Abousleiman 

1991) instead of the Carter’s leak-off theory, and simulated the PKN hydraulic fracturing 

history based on the Detournay’s previous work. 

Boone, Detournay and Abousleiman evaluated the effects of poroelasticity and 

the stress intensity factor at fracture tip by the influence function f(t*) (Abousleiman 

1991; Boone and Detournay 1990; Detournay et al. 1990 ). 

Abousleiman and Gu et al. developed the post-fracture pressure-transient theory 

to calculate the formation permeability (Abousleiman 1991; Abousleiman et al. 1994; 

Gu et al. 1993), based on the foundation done by Carslaw and Jaeger (Carslaw and 

Jaeger 1956).  It’s a procedure known as “impulse fracture test”, which is an 
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injection/falloff test designed for determining the formation permeability. The test 

consists of the injection of a small amount of fluid into the formation to create a short 

fracture, and then the valve is shut off with the fluid locked in. And the pressure falloff 

data is monitored beyond the fracture closure to estimate the formation permeability. 

1.2 Mechanics of Hydraulic Fracturing 

Hydraulic fracturing operation is complicated as it involves fluid and solid 

mechanics, fluid flow in fracture and diffusion processes (fluid and thermal), and 

fracture propagation. Furthermore, all of the responses are coupled and depend on each 

other. 

1.2.1 Fluid Leak-off 

The type of fracturing fluids used in different fracturing jobs may vary greatly in 

components, which alters their mechanical properties. In this thesis, Newtonian and 

Power Law fluid will be used in modeling.  

Fracturing fluid in opened fractures is in direct contact with fracture surfaces, and 

the pressure that is exerted on a formation forces the fracturing fluid into the reservoir 

through the fracture surfaces. The fluid may flow into the pore spaces in the rock or open 

new cracks and propagate it into the formation under the fluid flow pressure. 

The standard industry leak-off theory was developed by Carter and Settari 

(Carter 1957; Settari 1985). This approach uses a constant fluid leak-off coefficient lC
 

to characterize the fluid leak-off rate. However, the fluid spurt loss is not taken into 
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account. Furthermore, the rate of fluid leak-off into a formation is considered 

independent of the pressure on fracture/reservoir face and only is a function of time 

since the beginning of pumping and the fracture arrival time at a location. In this thesis, 

the pressure dependent leak-off  situation derived from the theory proposed by Carslaw 

and Jaeger and used by (Abousleiman 1991) is used. 

1.2.2  Linear Elastic Fracture Mechanics 

Fracture mechanics deals with the stability of preexisting cracks and their 

propagation. Historically, Griffith (Griffith 1921, 1924) laid a foundation for fracture 

mechanics; he applied the energy balance theory to fracture propagation, considering 

that the total energy consumed in various parts of the fracturing process is constant. For 

the opening mode crack (I), Griffiths' theory predicts that the critical stress cσ , which is 

applied remotely in direction perpendicular to fracture length (Fig. 1.1), needed to 

propagate the crack is given by the following equation: 

2

 c

E

a

γσ
π

= ……………………………………………………………….(1.1) 

where E is the Young's modulus of the material, γ is the surface energy per unit area of 

the crack, and a is crack half length. The quantity aσ π is postulated as a material 

parameter called ‘fracture toughness’. The mode I fracture toughness is defined as 

Ic cK aσ π= …………………………………………………………….....(1.2) 
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which is determined experimentally. Similar quantities of KIIc and KIIIc can be 

determined for mode II and mode III loading conditions. 

 

Fig. 1.1 Model (I) crack of a half length in a material. 

1.3 Fracture Propagation Models  

Several key papers published in the last 50 years laid a foundation for hydraulic 

fracture modeling on condition of different assumptions, such as two-dimensional 

fracture model (Abé et al. 1976; Geertsma and Klerk 1969; Khristianovitch and Zheltov 

1955; Nordgren 1972; Perkins and Kern 1961) and three dimensional models (Settari 

and Cleary 1986; Simonson et al. 1978; Warpinski and Smith 1989).  
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1.3.1  PKN Model 

Perkins and Kern (Perkins and Kern 1961) developed equations to compute 

fracture length and width with a fixed height. Later Nordgren (Nordgren 1972) improved 

this model by adding fluid loss to the solution, hence, this model is commonly called 

PKN model. The PKN model assumes that fracture toughness could be neglected, 

because the energy required for fracture to propagate was significantly less than that 

required for fluid to flow along fracture length, and the plane strain behavior in the 

vertical direction, and the fracture has a constant height, and propagates along the 

horizontal direction (Fig. 1.2). 

From the aspect of solid mechanics, when the fracture height, hf , is fixed and is 

much smaller than its length, the problem is reduced to two-dimensions by using the 

plane strain assumption. For the PKN model, plane strain is considered in the vertical 

direction, and the rock response in each vertical section along the x-direction is assumed 

independent on its neighboring vertical planes. Plain strain implies that the elastic 

deformations (strains) to open or close, or shear the fracture are fully concentrated in the 

vertical planes sections perpendicular to the direction of fracture propagation. This is 

true if the fracture length is much larger than the height.  
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Fig. 1.2 PKN fracture schematic diagram. 

From the aspect of fluid mechanics, fluid flow problem in PKN model is 

considered in one dimension in an elliptical channel. The fluid pressure, fp , is assumed 

to be constant in each vertical cross section perpendicular to the direction of 

propagation.  

1.3.2 KGD Model 

KGD model was developed by Khristianovitch and Zheltov (Khristianovitch and 

Zheltov 1955) and Geertsma and de Klerk (Geertsma and Klerk 1969). It considers 

fracture mechanics effects on the fracture tip, and simplifies the solution by assuming 

that the flow rate in the fracture is constant and the pressure is also constant along the 

majority of the fracture length, except for a small region close to the tips. In this model, 
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plane strain is assumed to be in horizontal direction i.e., all horizontal cross sections act 

independently. This holds true only if fracture height is much greater than fracture 

length. Also, since it assumes that the fracture width does not change along the fracture 

face all section are identical. The model also assumes that fluid flow and fracture 

propagation are in one dimension (Fig.1.3). 

 

Fig. 1.3 KGD fracture schematic diagram. 

In summary, KGD model has six assumptions: 1) the fracture has an elliptical 

cross section in the horizontal plane; 2) each horizontal plane deforms independently; 3) 

fracture height, hf , is constant; 4) fluid pressure in the propagation direction is 

determined by flow resistance in a narrow rectangular, vertical slit of variable width; 5) 

fluid does not flow through the entire fracture length; and 6) cross sections in the vertical 
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plane are rectangular (fracture width is constant along its height) (Geertsma and Klerk 

1969).  

1.3.3  Penny-Shaped or Radial Model 

In this model, the fracture is assumed to propagate within a given plane and the 

geometry of the fracture is symmetrical with respect to the point at which fluids are 

injected (Fig. 1.4). A study of penny-shaped fracture in a dry rock mass was carried out 

by Abé et al. (Abé et al. 1976). In their study, they assumed a uniform distribution of 

fluid pressure and constant fluid injection rate.  

 

Fig. 1.4 Geometry of a penny-shaped or radial model. 

1.3.4 Comparison between 2D Models 

The following Table 1.1 makes comparison of the three types of 2D hydraulic 

fracture models. 
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Table 1.1 Comparison between traditional 2D hydraulic fracture models 
Model Assumptions Shape Application 

PKN Fixed Height, 
Plain Strain in vertical direction 

Elliptical Cross Section Length »Height 

KGD Fixed Height, 
Plain Strain in horizontal direction 

Rectangle Cross 

Section 

Length «Height 

Radial Propagate in a given plane, 

Symmetrical to the wellbore 

Circular Cross Section Radial 

 

1.3.5 Three-dimensional and Pseudo Three-dimensional Models 

The 2D fracture models discussed in the previous sections have been reasonably 

successful in practical simulation with a simplified calculation. However, they have 

limitations in that it is required to specify fracture height and/or assume radial fracture 

geometry to perform them. To solve that problem, pseudo-3D models are formulated by 

removing the assumption of constant and uniform height (Morales 1989; Settari and 

Cleary 1986). Instead, the height in pseudo-3D models is a function of position along the 

fracture and simulation time. Different from 2D models, a vertical fluid flow component 

is added in pseudo-3D models, and fracture lengths must be much greater than fracture 

heights. The even more complex fully 3D models are introduced to handle fractures of 

arbitrary shape and orientation by removing the assumptions in Pseudo-3D models. 
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1.4 Poroelasticity 

During the propagation of a hydraulic fracture, fracturing fluids loss into the 

permeable formation causing the pore pressure to increase in the reservoir matrix, which 

in turn will cause dilation of the rock around the fracture (Fig. 1.5). This will, in turn, 

reduce the width of the fracture. Rock deformation also causes pore pressure to increase. 

Often the design of hydraulic fracturing and the stress analysis must take into account 

the influence of pore pressure increase caused by leak off. The first detailed study of the 

coupling between fluid pressure and solid stress fields was described by Biot (Biot 1941). 

In poroelastic theory, a time dependent fluid flow is incorporated by combining the fluid 

mass conservation with Darcy's law; the basic constitutive equations relate the total 

stress to both the effective stress given by deformation of the rock matrix and the pore 

pressure arising from the fluid. Biot’s theory of poroelasticity has been reformulated by 

a number of investigators (Geertsma 1957; Rice and Cleary 1976). 

Geertsma(Geertsma and Klerk 1969) considered the potential of poroelastic 

effects on hydraulically-driven fracture propagation. However, Geertsma concluded that 

these effects were not significant in practical situations. Cleary suggested that 

poroelastic effects can be expressed as “back-stress” (Cleary 1980). Settari included 

poroelastic effects through a similar approximation (Settari 1980). Ghassemi and 

Roegiers (Ghassemi et al. 1996) presented a coupled poroelastic model using the 3D 

displacement discontinuity method. 

A poroelastic PKN hydraulic fracture model based on an explicit moving mesh 

algorithm was developed by Boone, Detournay, and Abousleiman et al. (Abousleiman 
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1991; Boone and Detournay 1990; Detournay et al. 1990 ). In the latter two, the 

poroelastic effects, induced by leak-off of the fracturing fluid, were treated in a manner 

consistent with the basic assumptions of the PKN model. This model is formulated in a 

moving coordinates system and solved by using an explicit finite difference technique.  

Abousleiman derived the pressure-dependent leak-off equation(Abousleiman 

1991) instead of the Carter’s leak-off theory, and simulated the PKN hydraulic fracturing 

history based on the Detournay’s previous work. 

Boone, Detournay and Abousleiman evaluated the effects of poroelasticity and 

the stress intensity factor at fracture tip by the influence function f(t*) (Abousleiman 

1991; Boone and Detournay 1990; Detournay et al. 1990 ). 

Abousleiman and Gu et al. developed the post-fracture pressure-transient theory 

to calculate the formation permeability (Abousleiman 1991; Abousleiman et al. 1994; 

Gu et al. 1993) , based on the foundation done by Carslaw and Jaeger (Carslaw and 

Jaeger 1956).  It’s a procedure known as “impulse fracture test”, which is an 

injection/falloff test designed for determining the formation permeability. The test 

consists of the injection of a small amount of fluid into the formation to create a short 

fracture, and then the valve is shut off with the fluid locked in. And the pressure falloff 

data is monitored beyond the fracture closure to estimate the formation permeability. 

This thesis builds on the numerical modeling by Jun Ge (Jun 2009) who 

developed a poroelastic PKN model for the propagation phase without pressure 

dependent leakoff.  
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Fig. 1.5 Mechanics of poroelasicity. 

1.5 Post-fracture Pressure-Transient Analysis 

Pressure transient analysis has been used successfully to estimate reservoir and 

fracture properties. Early studies concerning the pressure transient behavior of vertically 

fractured wells include Muskat who used an analytic fractured well model that assumes 

steady-state flow conditions to investigate pressure distributions and fluid entry patterns 

in the vicinity of a vertical fracture (Muskat 1937); van Pollen et al. (Poollen et al. 1958) 

and Prats (Prats 1961) assumed steady-state conditions considering the response of both 

finite and infinite conductivity fractures (defined as equation (1.3)).. Prats also 

introduced the concepts of dimensionless fracture conductivity and effective wellbore 

radius for vertically fractured wells. The dimensionless fracture conductivity is defined 

as: 
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k w
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kx
= …………………………………………………………………...(1.3) 

where fk  is the fracture permeability, w  is fracture width, k is the reservoir 

permeability, and fx is the fracture half length. 

The theory for post-fracture pressure-transient analysis was proposed by 

Abousleiman and Gu et al. 1994 based on the work by (Abousleiman 1991; 

Abousleiman et al. 1994; Gu et al. 1993). The methodology is used to interpret an 

impulse fracture test (an injection/falloff test) to determine the formation permeability 

and reservoir pore pressure. In this test, a small volume fluid around 10 m3 injected to 

the formation to create a short fracture, and then the well is shut-in and pressure is 

recorded. The pressure falloff after closure is used to derive formation permeability and 

reservoir pressure. The advantage of this test is that a hydraulic fracture can pass the 

near wellbore damaged area, so the true formation is exposed to flow transients. 

Consequently, the permeability and reservoir pressure determined using this theory is 

potentially much more accurate.  

This analysis of this test is based on the distribution of sources of variable 

intensity along the fracture trajectory. It calculates the formation permeability and 

reservoir pressure by analyzing the pressure transient during both the linear fracture flow 

regime in early time, and the radial flow regime at a long time. 

1.6 Research Objectives  

The objectives of this study are: 
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1) To model 2D hydraulic fracturing propagation history by coupling fluid flow 

and rock mechanics, as well as the poroelastic effects on fracture geometry 

and pressure distribution inside the fracture. 

2) To study the influence of pressure inside the fracture on fluid leak-off rate 

and further on fracture propagation history. 

3) To analyze post-fracture pressure-transient curve and then to estimate the 

formation permeability. 

1.7   Sign Convention  

Most published papers concerning poroelasticity consider tensile stress as 

positive. However, in rock mechanics, compressive stresses are generally considered as 

positive for the convenience of engineering use. In this thesis, in order to be consistent 

with the rock mechanics literature, all equations are presented using the compression 

positive convention. This sign convention is adopted for the remainder of this thesis 

unless otherwise specified. 
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2. A PKN HYDRAULIC FRACTURE SIMULATION WITH CONSTANT 

LEAKOFF COEFFICIENT 

2.1 Introduction 

The Perkins-Kern and Nordgren hydraulic fracture model (PKN) is widely used 

in the oil and gas industry to design fracture treatments. Its vertical plane strain 

assumption is physically more acceptable than other models for height-contained 

fractures, where the fracture length is considerably greater than the fracture height. In 

this thesis, I developed a PKN model based on the work published by Detournay et al. 

1990, which considered poroelasticity with constant leakoff coefficient using moving 

coordinate scheme. Then, I extended it to consider pressure dependent leak-off similar to 

Abousleiman (Abousleiman 1991). And finally develop algorithms for reservoir 

permeability determination using the results of a mini-frac test. 

2.2 Governing Equations 

In accordance with PKN model, the fracture has a constant height H, elliptic 

vertical cross-section with the maximum width wm at the center. And it propagates in 

horizontal x direction (see Fig. 1.2). Given the injection rate (Qo) at the wellbore, the 

fluid properties, the mechanical properties of the rock, the magnitude of the minimum 

in-situ stress (σo), the virgin pore pressure of the formation (po), and the leak-off 

coefficient Cl, it is required to determine the pressure history in the borehole (fracture 

inlet), as well as the fracture width and length history over time. The mathematical 
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model for this problem is described below. 

2.2.1 Fluid Momentum  

The fluid pressure in a fracture is assumed to be uniform over the cross sections 

of the fracture, varying only in horizontal direction along with fracture propagation. The 

momentum equation for laminar flow of a power fluid is shown as following: 

1

2 1

2
n

f

n n

Kq qp

x wψ

−

+

∂
= −

∂
…………………………………………………………....(2.1) 

where fp
 is the fluid pressure in the fracture, /q Q H=  is the average flow rate per unit 

height of fracture, /w A H=  is the average width of the fracture, A is the vertical cross-

sectional area, K is the constitutive constant for a power law fluid, n is the power law 

index and ψ is the Shape factor dependents on the geometry of the fracture cross section 

(Nolte 1979): 

2 1

/2

/2
( )

2(2 1)

n

nH y

H

wn
dy

n H w
ψ

+
+

−
=

+ ∫ ………………………………………………(2.2) 

 where yw is the width of the fracture at the vertical coordinate y.  For an elliptic cross 

section, the equation is shown as following (Detournay et al. 1990 ): 

3 2
4 1

( ) 22 ( )
5 12(2 1) ( )

2

n

n

n
n n

nn
n

ψ
π

+
+Γ

= ++ Γ
……………………………………….........(2.3) 
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2.2.2  Local Fluid Mass Balance  

Considering fluid leak-off, fracture volume change, and fluid injection, the local 

fracturing fluid mass balance is written as (described in Appendix (A.2)): 

0
q w

u
x t

∂ ∂+ + =
∂ ∂

……………………………………………………………….(2.4) 

where u is the fluid leak-off velocity accounting for both sides of the fracture walls. 

2.2.3 Leak-off Equation  

The classical Carter leak-off theory (Howard and Fast 1957) is adopted here 

2

( )
lC

u
t xτ

=
−

…………………………………………………………………(2.5) 

where Cl is the leak-off coefficient, t is the time since pumping starts, and τ is the arrival 

time of fracture tip at location x. 

2.2.4 Pressure-width Relation  

The fracture width w consists of two components: we which is controlled by net 

stress f op p σ= −
, and wp which is controlled by net pressure f op p p∆ = −

. fp
is fluid 

pressure, σo is the minimum in situ stress, and po is the virgin pore pressure. 

e pw w w= + …………………………………………………………………..(2.6) 

The net stress effect is approximated as being purely elastic (Boone and 

Detournay 1990; Detournay et al. 1990 ): 

( )e
c f ow M p σ= −  …………………………………………………………...(2.7) 
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where 
(1 ) / 4cM H Gπ ν= −

 is the fracture compliance, and ν is the Poisson’s ratio, G is 

the shear modulus, or else Mc should be found from an elastic analysis in plane strain. 

The net pressure controlled poroelastic effect can be described as (Boone and Detournay 

1990; Detournay et al. 1990 ): 

2 ( )p
cw pM f tη ∗= − ∆ …………………………………………………………(2.8) 

where η is a poroelastic coefficient whose theoretical value ranges from 
10 2η≤ ≤

, and 

f(t*) is an evolutional function which varies between 0 and 1 as t* approaching 0 and 

∞respectively (Fig. 2.1), used to evaluate the effects of poroelasticity. The symbol t* 

denotes as a dimensionless fracture surface exposure time since the fluid arrival which is 

defined as : 

2

4 [ ( )]c t x
t

H

τ∗ −= ……………………………………………………………….(2.9) 

where c is the diffusivity coefficient. For PKN model, the evolutional function f(t*) is 

generally dependent on the elastic contrast between permeable and impermeable layers. 

In case of identical elastic properties existing in the reservoir and barriers, the following 

expression for f(t*) was derived (Boone and Detournay 1990) as :  

0

4
( ) ( ) ( )

2

y
f t erfc g y dy

tπ

∞
∗

∗
= ∫ ……………………………………………….(2.10) 

where  

2( ) 1 4
2

y
g y y y= − + − …………………………………………………(2.11) 
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Fig. 2.1 Poroelastic evolutional function. 

By substituting (2.7) and (2.8) into (2.6), the pressure-width equation is obtained: 

2 ( )p
c

w
p f t

M
ηλ ∗= +  ……………………………………………………….(2.12) 

2.2.5 Global Mass Balance Equation  

The foregoing equations apply in the range of 0 x L≤ ≤ . The fracture length L is 

a function of time, which can be derived from a global mass balance consideration. The 

basic principle of the global mass balance equation is that, the volume of the fracture is 



21 

 

 

 

equal to the volume of fluids pumped into the fracture minus the volume of cumulative 

leak-off fluid: 

'( ) ( )
' ' ' '

0

0 0 0 0

( , ) ( , ) ( )
L t L tt t

w x t dx u x t dxdt q t dt+ =∫ ∫ ∫ ∫  ………………………………...(2.13) 

2.2.6 Initial and Boundary Conditions 

The boundary conditions used to solve the above equation system indicate the 

flow state at two fracture end points. At the fracture inlet, the flow rate is equal to the 

injection rate; and at the fracture tip, the ‘net stress’ is zero. They are expressed as the 

following equation:  

(0, ) ( ); 0

( , ) 0; 0
oq t q t t

p L t t

= >
= >

………………………………………………………..(2.14) 

And the initial conditions indicate the initial state at time 0t = . Both fracture 

length and fracturing pressure are zero at time 0t = . They are expressed as the 

following equation: 

( )0 0, (0, 0) 0L p= = ……………………………………………...……..(2.15) 

2.3 Moving Coordinate System 

The governing partial differential equations described in the preceding section 

are defined on a range of 0 ( )x L t≤ ≤ , which varies during fracture growth. An 

algorithm based on usual spatial discretization (used by Qiang Zhang (Qiang 2001) 

needs be adjusted every time step because of the changing fracture length during 
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simulation. However, one can use a moving coordinate, θ to make the re-meshing 

unnecessary. The moving coordinate is expressed as: 

/ ( )x L tθ = …………………………………………………………………..(2.16) 
 
which has a range of [0, 1]. This algorithm allows one to use a constant number of nodes 

to discretize the variable fracture length throughout the solution procedure. Nilson and 

Griffiths (Nilson and Griffiths 1983) implemented the moving coordinate system and a 

finite difference scheme to solve a KGD fracture model. The PKN fracture model is 

based on an explicit finite difference scheme, which is coupled with an adaptive 

technique for calculating the optimum time step. 

To convert the parameter from x to θ with the foregoing transformation (2.16), 

spatial and time derivatives transformation are required  (Nilson and Griffiths 1983): 

1

t tx L θ
∂ ∂=
∂ ∂

………………………………………………………………..(2.17) 

and  

x t

L

t t Lθ

θ
θ

∂ ∂ ∂= −
∂ ∂ ∂

�

 ……………………………………………………….(2.18) 

where the length change rate /L dL dt=� . 
 

Using the transformation described above, the equations (2.1), (2.4), (2.5), an 

(2.12) are reformulated as the following equations:  

1

2 1

21
n

n n

Kq qp

L wθ ψ

−

+

∂ = −
∂

…………………………………………………………(2.19) 

1L w q
w u

L L

θ
θ θ

∂ ∂= − −
∂ ∂

�

� ……………………………………………………….(2.20) 
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2
( , )

( , )
lC

u t
t t

θ
τ θ

=
−

…………………………………………………………(2.21) 

2

4 ( ( , ))
( , ) 2 ( )p

c

w c t t
p t f

M H

τ θθ ηλ −= + ……………………………………….(2.22) 

since ( )x L tθ= and ( )dx L t dθ=  , equation (2.13) is written as : 

1 1
' ' ' ' '

0

0 0 0 0

( , ) ( ) ( , ) ( )
t t

L w t d L t u t d dt q t dtθ θ θ θ+ =∫ ∫ ∫ ∫ …………………………….(2.23) 

with boundary and initial conditions as the following 

( )0, ( ); (1, ) 0; 0

0;  0;  at 0
oq t q t p t t

L p t

= = >
= = =

……………………………………………….(2.24) 

The five equations above contain five unknowns p(θ,t), q(θ,t), w(θ,t), L(t) and 

u(θ,t). In addition, the fracture arrival time τ(θ,t) at a moving point ( )x L tθ=  is 

unknown. However, it can be computed from the inverse of fracture length-time 

relation, ( )1( , ) ( )t L L tτ θ θ−=
 (described in the Appendix (A. 4)).  

Attention should be paid to mesh discretization, in which 10 to 15 grid points are 

acceptable for this problem (Abousleiman 1991), and the nodes are distributed according 

to a geometric progression (described in the Appendix (A. 3)), which increases their 

density at both ends of the fracture, near the fracture tip and the wellbore to account for 

the high pressure gradients in propagation as well as in fracture recession (see Fig. 2.2). 

A system of 1n −  auxiliary mid-nodes 
1
2i +

 is also introduced to calculate the flux q to 

avoid infinite flux values at the fracture tip. In the following section, the discrete values 

are denoted by a subscript corresponding to the nodal number and a superscript 
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corresponding to the time-step. Such as, ( , )k k
i iw w tθ= , 1 2 1 2( , )k k

i iq q tθ+ +=
, ( )k kL L t= , 

etc. 

 

 
 

Fig. 2.2 Mesh discretization. 

2.4 Discrete Equations 

Using finite difference scheme, the governing equations are expressed in terms of 

discrete variables. With the forward Euler difference (see Fig. 2.3) in time, the local 

fluid mass balance equation (2.20) can be written as: 

 

 

Fig. 2.3 The explicit forward finite difference scheme at time step k. 
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1 1 1 1/2 1/2

1 1 1

2
; 2, -2

k k k k k
k k k ki i i i i
i i ik k

i i i i

L w w q q
w w t u i N

L L

θ
θ θ θ θ

+ + + + −

+ + −

    − −= + ∆ − − =    − −    

�

….(2.25) 

where 
1 1k k kt t t+ +∆ = − . Note that an upwind differentiation scheme is adopted 

for 1

1

k k
i i

i i

w ww

θ θ θ
+

+

−∂ =
∂ −

, in order to reduce the ‘advection error’ associated with the moving 

mesh. At node 1n −  the forward difference formula for 

w

θ
∂
∂  is unstable during 

simulation and a backward difference formula is used instead: 

1 1 1 1 2 1/2 3/2
1 1 1

1 2 2

2
; -1

k k k k k
k k k kN N N N N
N N Nk k

N N N N

L w w q q
w w t u i N

L L

θ
θ θ θ θ

+ + − − − − −
− − −

− − −

    − −= + ∆ − − =    − −    

�

 

……………………………………………………………………………….(2.26) 

At the first and the last node, equation (2.25) is specialized as 

1 1 3/2
1 1 1

2

2 k k
k k k ko

k

q q
w w t u

L θ
+ +  −= − ∆ + 

 
………………………………………..(2.27) 

1 0k
Nw + = ……………………………………………………………………...(2.28) 

For a receding fracture, the derivative at node i should be replaced by the 

backward difference form

1

1

k k
i i

i i

w ww

θ θ θ
−

−

−∂ =
∂ − (described in Appendix (A.8)):   

1 1 1 1/2 1/2

1 1 1

2
; 2, -1

k k k k k
k k k ki i i i i
i i ik k

i i i i

L w w q q
w w t u i N

L L

θ
θ θ θ θ

+ + − + −

− + −

    − −= + ∆ − − =    − −    

�

…..(2.29) 

The equation (2.29) is specialized for the first and last node during recession, 

which is the same as equation (2.27) and (2.28). 

The pressure-width equation (2.22) becomes 
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1 1 1
1

2

4 ( )
2 ( ); 1,  

k k k
k i i
i p

c

w c t
p f i N

M H

τηλ
+ + +

+ −= + =  ……………………………....(2.30) 

In which the fracture arrival time is evaluated as (described in the Appendix 

(A.4)) 

1 1( )k k
i iL Lτ θ+ −= ……………………………………………………………...(2.31) 

The fluid momentum equation (2.18) is discretized as  

( ) ( )
1/2 11 1 1 1

11 1 1 1
1/2 1 2 2

1

sign ; 1, 1
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nnk k k k
i ik k k i i

i i i n k
i i

w w p p
q p p i N

KL
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θ θ

++ + + +
++ + + +

+ + +
+

 + − = − = −
 −
 

 

……………………………………………………………………………….(2.32) 

where sign () denotes the sign of argument.  

The leak-off equation (2.21) becomes 

1

1 1

2
; 1, 1k l

i k k
i

C
u i N

t τ
+

+ +
= = −

− ……………………………………………….(2.33) 

For a propagating fracture the leak-off velocity at the fracture tip is infinite 

according to equation (2.33) because
1 1k k

n tτ + += . For the purpose of evaluating the fluid 

leak-off volume lost by the tip element (as needed in (2.23)), the average fluid leak-off 

between nodes 1 2N −  and N  is assigned to the last node. 

1

1 1
1/2

4
,k l

N k k
N

C
u i N

t τ
+

+ +
−

= =
−

…………………………………………………..(2.34) 

To update the fracture length L , we will examine the global mass balance 

equation (2.23).  At 1k + time step it is written as 
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1 1 1k k k
c l injv v v+ + ++ =  ……………………………………………………………..(2.35) 

1k
cv +

 stands for fracture volume (per unit height), 
1k

lv +

is leak-off volume, and 
1k

injv +

 is the 

volume of fluid injected, at time
1kt +
. The fracture volume is evaluated as 

1 1 1 1
1

k k k k
cv w Lβ+ + + += …………………………………………………………...(2.36) 

where β  is a shape factor, which is used to calculate the volume of a fracture: 

1 11
1 1 1 1 12

1 1
2 1 1

( ) (1 )

2 2 6

k kN
k i i i N N

k k
i

w w

w w

θ θ θθβ
+ +−

+ + − − −
+ +

=

− −= + −∑ ……………………………...(2.37) 

The volume of fluid injected 
1k

injv +

 is the summation of fluid volume injected 

during every time step, and the volume of fluid lost to the formation 
1k

lv +

 is the 

summation of the fluid leak-off volume along the entire fracture length during every 

time step, and they are respectively calculated as: 

1
1 1 1

0 0
1

k
k j j k k k
inj inj

j

v q t v q t
+

+ + +

=

= ∆ = + ∆∑ …………………………………………….(2.38) 
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∑∑

∑
……………………………………………...(2.39) 

In equation (2.39) central difference is applied, special attention should be paid 

to the summation at the first and last node, as they occupy only half a cell. So it can be 

expressed as: 

1 1
1 1 1 1

1 1 2 1 1 1
2

( ) ( ) ( )
2

k k N
k k k k k
l l i i i N N N

i

t L
v v u u uθ θ θ θ θ θ

+ −
+ + + +

+ − −
=

∆  = + − + − + − 
 
∑ …….(2.40) 
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The fracture length 
1kL +
 can be derived from equation (2.35) and (2.36) as  

1 1
1

1 1
1

k k
inj lk

k k

v v
L

wβ

+ +
+

+ +

−
= …………………………………………………………….(2.41) 

Finally the change rate of the fracture lengthL
i

, as needed in (2.25), can be 

updated using the backwards difference equation as: 

1
1 1( ) /

k
k k kL L L t

+
+ += − ∆

i

……………………………………………………...(2.42) 

2.5  Stability Criterion 

A popular method developed by Von Neumann analyzes the conditions of 

unstable propagation of a perturbation on a finite difference grid with time (Press et al. 

1989). The following is the approach derived by Detournay et al. 1990 for the 

calculation of the time step:  rewriting the PKN equations in the form of a diffusion-type 

equation of w , by substituting equation (2.19) and (2.22) into (2.20) and ignoring the 

leak-off and poroelastic terms, we get the following diffusion-type equation for w : 

2
2

2

(2 1)
( )w

w

n cw w L w
w c

w L

θ
θ θ θ

+∂ ∂ ∂= + +
∂ ∂ ∂

�

� …………………………………….(2.43) 

where the ‘diffusivity coefficient’ wc  is given by 

12 1
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2
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−+

+

∂=
− ∂

…………………………………………...(2.44) 

Note that for Newtonian fluids ( 1n = ) wc
 reduces to 

3

3 2

4

(1 )
w

Gw
c

v HLπ µ

=

−

…………………………………………………………(2.45) 
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Apparently, the differential equation (2.43) is highly nonlinear, as w
c

 is a function 

of w .  We assume that the stability condition can be assessed by ignoring the second and 

third term (to satisfy the nonlinear stability) in the right-hand side of the equation (2.43), 

so it is expressed as: 

2

2w

w
w c

θ
∂=
∂

� …………………………………………………………………..(2.46) 

According to the Von Neumann stability analysis (also known as Fourier stability 

analysis), the stability requirement to the one-dimensional heat equation (2.46) is: 

2

1

2
wc t

θ
∆ ≤

∆
…………………………………………………………………….(2.47) 

and calculating cw from the previous time step. The critical time step, ct∆
 at 

1kt +
 is then 

computed at each iteration according to the general stability criterion for heat equation 

2
1 min ; 1, 1

2( )
k i
c k

w i

t i N
c

θ+  ∆∆ = = − 
 

…………………………………………….(2.48) 

In fact, based on a dimensional analysis, it can be shown for a PKN geometry 

without leak-off that (Nolte and Economides 1989) 

1 (2 3)

(2 2) 2 3

n

n n

w L

L t

+

+ +

∼

∼

………………………………………………………………..(2.49) 

Consequently,  

1
wc t−
∼ ………………………………………………………………………(2.50) 

which implies that ct∆
increases linearly with time when there is no fluid leak-off. 
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2.6 Solution Procedure and Time-stepping 

The numerical solution must start with any initial state. It’s impossible to start at 

0L =  at 0t = ; hence an artificial initial condition based on an approximate solution is 

necessary. Here we impose the approximate solution (Nolte and Economides 1989) in 

order to calculate the initial length, width, pressure, etc at a small initial time. With the 

nodal quantities,
k
iw , 

k
ip , 

1
2

k

i
q

+
, 

k
iu ,  

kL  and 
kL�  at time 

kt , the solution is advanced to 

the next time 
1kt +
 using the following the procedure: 

1. The magnitude of the next time step, 
1kt +∆ . In the case of constant fluid leak-off 

coefficient, 
1kt +∆  is calculated using the stability criterion (2.48).  

2. The fracture width, 
1k

iw +

, is calculated using the local mass balance equation 

(2.25) when the fracture propagates; and equation (2.29) when the fracture 

recedes. 

3. The ‘net stress’, 
1k

ip +

, is estimated from equation (2.30).  

4. The flow rate,
1

1/2
k
iq +
+ , is updated from equation (2.32). 

5. The fluid leak-off rate,
1k

iu +

, is evaluated using (2.33) and (2.34). 

6. Finally the fracture length 
1kL +
 and its change rate

1k

L
+

i

 are updated from (2.41) 

and (2.42), respectively. 
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2.7 The Program Flow Chart  

According to the solution procedure described above, a flow chart of the program 

is made (Fig. 2.4). First step is to determine whether the poroelastic effect of the 

formation is to be considered or not. The poroelastic coefficient is set to be zero when 

assuming the formation is elastic; otherwise it is a non-zero value ranges from 0 to 0.5. 

The next step is to input the other parameters, and initialize a small starting time, and 

calculate the initial fracture length, pressure, width, etc. Then start the loop according to 

the solution procedure, if the simulation time is less than the input shut-in time, the 

fracture is propagating. In this case, after adjust the initial values at the first time loop, 

and then calculate the values for next time step in the order of the solution procedure. 

During shut-in phase, i.e., when the simulation time is larger than the shut-in time, 

injection is ceased and fracture recedes. This is done by setting the injection rate to be 

zero. Calculate the parameters in the same order as in the propagation section 

(
1

1 1 1 1 1 1
1/2

k
k k k k k k

i i i it w p q u L L
+

+ + + + + +
+∆ ⇒ ⇒ ⇒ ⇒ ⇒ ⇒

i

), until the fracture width or pressure 

or length is small enough or is zero.   

 



32 

 

 

 

 

Fig. 2.4 The flow chart of the program. 

2.8 Verification of Solution 

Assuming one simple case when a fracture is driven in impermeable rocks (no 

fluid leak-off) by a Newtonian fluid pumped at a constant rate, based on the argument of 

self-similarity, the dimensionless length, width,  pressure, and time corresponding to the 

fracture length, maximum width and pressure at the inlet and simulation time, are 

expressed below as derived by Nordgren (Nordgren 1972). 
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 …………………………………………………..(2.52) 

Table 2.1 Input data for verification 
Fluid viscosity, µ  75.6 10−×  MPa·s 

Injection rate, 0Q  
34 10−×  m3/s 

Poisson’s ratio, ν  0.2  

Shear modulus, G 41 10× MPa 

Fracture height, H  10 m 

Injection time, t  1000 sec 
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Fig. 2.5 Fracture length history-no leakoff. 
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Fig. 2.6 Fracture width history-no leakoff.  
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Fig. 2.7 Fracture pressure history-no leakoff.  

Note that to be consistent with Nordgren’s notation, Dw
 is defined with respect to 

the maximum fracture width (see Fig. 1.2), which is related to the average width 

by
4 /mw w π=

. This problem is simulated by the numerical model with the same 

assumption as the Nordgren solution (Table 2.1), without leak-off and Newtonian fluid. 

The fracture length, width and pressure figures (Fig. 2.5), (Fig. 2.6) and (Fig.2.7) show a 

close agreement between the two solutions. 
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2.9 Case Study 

To compare with the results of previous work by Detournay, et al. (Detournay et 

al. 1990 ), the PKN fracture model with a constant fluid leak-off coefficient is simulated 

by injecting at the constant flow rate 0Q  for 1000s, and then the well is shut in (Table 

2.2). After the shut in of the well, the fracture pinching is analyzed without fluid flow 

back. Poroelastic effect is included by considering the function (2.6) and adding the 

aperture due to ‘net pressure’. 

Table 2.2 Input data for constant leak-off coefficient simulation 
Power law constitutive constant, K  75.6 10−×  MPa·s0.8 

Power law fluid index, n  0.8 

Injection rate, 0Q  
34 10−×  m3/s 

Poisson’s ratio, ν  0.2  

Shear modulus, G 41 10× MPa 

Fracture height, H  10m 

Leak-off coefficient, lC  
56.3 10−× m/s0.5 

Interface pressure, pλ  1.7 MPa 

Poroelastic coefficient, η  0.25 

Diffusivity coefficient, c  0.4  m2/s 

Injection time, t  1000 sec 
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Fig. 2.8  Fracture length change with time, with and without poroelastic. 
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Fig. 2.9 Fracturing pressure change with time, with and without 
poroelastic. 
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Fig. 2.10 Maximum fracture width change with time, with and without 
poroelastic. 
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Fig. 2.11 G-function during fracture recesion. 

The fracture length as shown in Fig. 2.8 will continue to propagate beyond the 

point of shut-in, which is due to the continued fluid flow in the fracture driven by the 

existing pressure gradient. However, Figs.2.9 and 2.10 show that both the fracturing 

pressure and maximum width increase with time during injecting fluid, and decline since 

shut-in. The poroelasticity causes a significant increase in fracturing pressure and a 
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slight reduction in fracture width, without affecting the fracture length. And the G-

function curve in Fig. 2.11 is used a lot to calculate the leak-off coefficient. 

To verify the results of this study, the plots are compared with the results of 

Detournay et al. (Detournay et al. 1990 ). It turned out that the simulation results of the 

net fracturing pressure, the fracture length, and maximum width are close (described in 

the Appendix (A.5)), with the differences less than 5%. The good agreement between 

my work and Detournay further validated the simulation results of both studies. 

2.10 Summary 

From the study, the effects of poroelasticity on fracture propagation can be 

summarized as the following: 

1 Poroelasticity causes a significant increase in fracturing pressure 

2 The fracture length is unaffected; 

3 The fracture width is slightly reduced. 

Consequently, this study suggests that poroelastic effects can cause a significant 

increase of the fracturing pressure, but have little influence on the geometry of the 

fracture. This is a direct consequence of assuming a constant leak-off coefficient: the 

fracture volume (shown as fracture length and width) is controlled by the difference 

between the injected fluid volume and the leak-off volume, both of which are pressure 

independent, leading to the fracture volume is unaffected by the poroelasticity. It can be 

expected that for pressure dependent leak-off, the prediction of both fracture geometry 

and pressure will be different. Since the pressure response is under strong influence of 
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poroelasticity, ignoring poroelastic effects can lead to an erroneous interpretation of 

parameters such as minimum in situ stress, leak-off coefficient, when determining of the 

state of the formation during an actual treatment.  
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3. A PKN HYDRAULIC FRACTURE SIMULATION WITH PRESSURE-

DEPENDENT LEAKOFF 

3.1 Introduction 

The Carter’s leak-off theory as described in equation (2.5) indicates that the fluid 

leak-off rate at any point along the fracture at time t is related to a constant leak-off 

coefficient lC
. However, it does not consider the influence of time variable fluid 

pressure inside the fracture. It is easy to imagine that, the fracture pressure goes up 

during injection, which pushes much more fluid into the surrounding formation. While 

the fluid pressure inside the fracture goes down after well shut-in, a lower fluid leak-off 

rate along the fracture should be observed, until the fracture closes at the time fluid 

pressure equals to the reservoir pressure.  

The horizontal cross-section of PKN fracture model with constant height H  (Fig. 

1.2) is shown in Fig. 3.1, a 2L  length fracture propagates in the horizontal direction x , 

and the flow of the fracturing fluid into the porous formation is assumed to be linear and 

perpendicular to the face of the fracture iny direction, under the influence of fluid 

pressure fp
 in the fracture. 
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Fig. 3.1 A fluid-pressurized stationary fracture. 

3.2 Governing Equation 

3.2.1 Pressure Dependent Leak-off Equation  

It can be shown that leak-off effect can be separated into two parts: one part is 

the in situ effective stress neglecting the rock strength and thus the toughness in tension; 

and the other part is the ‘net stress’, which changes with time (Abousleiman 1991). The 

pressure dependent leak-off equation is (described in Appendix (A.6)): 

( )

2 ( ) 2 ( , ') 1
'

'( ( )) '

t
o o

x

p p x t
u dt

tc t x c t tτ

κ σ κ
π τ π

− ∂= +
∂− −∫ ……………………………...(3.1) 

where u is the fluid leak-off rate, κ is the mobility coefficient defined as the ratio of the 

permeability k to the viscosityµ , c is the diffusivity coefficient defined as 
p

c
C

κ
φ

= , and 

φ is the porosity of the rock, pC is the compressibility of the pore and pore fluid system, 

t is the time since pumping start, ( )xτ is the arrival time of the fracture tip at location x  



46 

 

 

 

(described in Appendix (A.4)), oσ is the minimum in situ stress, op is the virgin pore 

pressure, p is the ‘net stress’ defined as f op p σ= − , and fp is the flow pressure in the 

fracture. 

3.2.2 Pressure-width Relation 

The pressure-dependent leak-off will change the fluid leak-off rate to 

surrounding formation, since p
w

is the reduced fracture width caused by fluid loss into 

the permeable formation and induced a dilation of the surrounding rock. Consequently, 

the pressure-dependent leak-off changes the pw
formula from (2.8) to the following 

expression (Detournay and Cheng 1991): 

2
( )

( , ') 4 ( ')
2 ( ) ( ) 2 ( ) '

'

t
p

c o o c

x

p x t c t t
w M p f t M f dt

t Hτ

η σ η∗ ∂ −= − − −
∂∫ ……………..(3.2) 

in which η is the poroelasticity coefficient, cM is fracture compliance, H the fracture 

height. pw
 also consists of two parts’ effects: the first term on the right of the equation is 

the effect of the in situ effective stress neglecting the rock strength and thus the 

toughness in tension; the second term is the effect of the ‘net stress’. 

Combining equation (2.6), (2.7) and (3.2) 

2
( )

( , ') 4 ( ')
2 ( ) 2 ( ) '

'

t

p
c x

w p x t c t t
p f t f dt

M t Hτ

ηλ η∗ ∂ −= + +
∂∫ ………………………...(3.3) 

Translating equations (3.1) and (3.3) into a moving coordinate system, according 

to (2.17) and (2.18) 
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Discrete equations (3.4) and (3.5) using an explicit finite-difference scheme: 
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and  

( , ') ( , ') ( ') ( , ')
( , ')

' ' ( ')

p x t p t L t p t
h t

t t L t

θ θθ θ
θ

∂ ∂ ∂= = −
∂ ∂ ∂

�

……………………………...(3.9) 

Comparing to the previous section, these two models have the same fluid 

momentum, local fluid mass balance, global mass balance theory, and initial and 

boundary conditions. The difference is that they apply different leak-off theories, which 

leads to different width-pressure equation. Same solution procedure to previous 

simulations will be used in this one.  
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3.3 Stability Criterion   

For pressure dependent leak-off, the time-stepping algorithm is the same during 

fracture propagation. It is also estimated by equation (2.48). While during fracture 

recession, the size of the time step is limited to a preset maximum change of width 

between time steps. 

3.4 Case Study 

3.4.1 The Input Data 

The PKN fracture model with pressure-dependent fluid leak-off rate is simulated 

by injecting fracturing fluid at a constant rate for 1000 seconds, and then shut-in the well 

to let the fracture recedes (Table 3.1). 
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Table 3.1 Input data for the pressure-dependent leak-off simulator 
Power law constitutive constant, K  75.6 10−×  MPa·s 

Power law fluid index, n  1 

Injection rate, 0Q  
34 10−×  m3/s 

Poisson’s ratio, υ  0.2  

Shear modulus, G 41 10× MPa 

Fracture height, H  10m 

Mobility coefficient for reservoir 

fluid, K A P P A  

68.36 10−×  m2/ MPa·s 

Interface pressure, pλ  1.7 MPa 

Poroelastic coefficient, η  0.15 

Diffusivity coefficient, c  0.4  m2/s 

Injection time, t  1000 sec 

 

The following plots show how the fracture length, width and pressure change 

during fracture propagation.  
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Fig. 3.2 Fracture length change history with pressure-dependent leak-off. 
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Fig. 3.3 Maximum fracture width change with time, with pressure-
dependent leak-off. 
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Fig. 3.4 Net fracturing pressure change history with time, with pressure-
dependent leak-off. 
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Fig. 3.5 The G-function curve. 
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Fig. 3.6 The fracture, injection and leakoff fluid volume history without 
poroelasticity.  
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Fig. 3.7 The fracture, injection and leakoff fluid volume history with 
poroelasticity. 

Comparing with Figs.2.8, 2.9 and 2.10, similar conclusion could be drawn from 

Figs.3.2, 3.3 and 3.4 shown above: fracture length, maximum width and fracturing 

pressure increase during the period of injection; fracture width and pressure decline 

sharply after shut-in; fracture length continues to increase after shut-in because it is 

continuously driven by the fluid pressure even after the fluid supply has stopped;  and 

finally, they all decline gradually to zero when the fluid leak-off dominates the process.  
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In Figs. 3.2-3.4 the fracturing pressure increases with poroelastic effect in both 

the propagation and recession stages. While in Figs. 3.2 and 3.3, we observe that it will 

produce a smaller fracture length and width when poroelastic effect is included. Since 

the pumping time and the fluid injection rate in both simulations are the same, it is 

concluded that the poroelastic effect will force more fluid to the formation. And these 

conclusions are similar to the work done by Abousleiman 1991 (described in Appendix 

A.7). The effects of poroelasticity are expressed in the following aspects: poroelasticity 

causes a significant increase in the fracturing pressure and also causes a smaller fracture 

volume with smaller maximum fracture length and width. The G-function plot in Fig. 

3.5 is used a lot in the industry. The fluid leaks into formation faster as the pressure is 

higher in the fracture with poroelasticity, comparing Fig. 3.6 with 3.7 that the fracture 

closure time is shorter in Fig. 3.7. 
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4. SENSITIVITY ANALYSIS OF FLUID AND FORMATION PROPERTY 

4.1 Introduction 

In oil and gas industry, in order to get maximum fracture conductivity and to 

produce hydrocarbon out of the underground as much and fast as possible, it’s necessary 

to optimize the process of hydraulic fracturing of a specific kind of reservoir according 

to both the fluid and formation character.  

In this section, the sensitivity of mechanics properties of fluid and rock to the 

fracture geometry and fracturing pressure is analyzed according to the simulator 

described in the previous sections.  The effects of fluid viscosity, shear modulus of rock, 

and the fluid leak-off coefficient on fracture geometry and pressure are studied. To 

clearly show these effects, the simulator described in section 2 with elastic formation is 

applied. 

4.2 Fluid Viscosity 

The effects of fluid viscosity on the fracture geometry and fracturing pressure is 

modeled by taking into account the same kind of formation, and inputting the power law 

constitutive constant to be 95.6 10−× MPa·s0.8, 83.08 10−× MPa·s0.8, 85.6 10−×  

MPa·s0.8, 73.08 10−×  MPa·s0.8, 75.6 10−×  MPa·s0.8, 63.08 10−×  MPa·s0.8, 65.6 10−×  

MPa·s0.8, 53.08 10−×  MPa·s0.8,and 55.6 10−×  MPa·s0.8 (Table 4.1) and running these cases 

respectively: 
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Table 4.1 Input data to examine the effect of fluid viscosity 
Power law constitutive constant, K  9 8 8 7

7 6 6 5

5.6 10 ,3.08 10 ,5.6 10 ,3.08 10 ,

5.6 10 ,3.08 10 ,5.6 10 ,3.08 10

− − − −

− − − −

× × × ×
× × × ×

 

MPa·s0.8 

Power law fluid index, n  0.8 

Injection rate, 0Q  
34 10−×  m3/s 

Poisson’s ratio, υ  0.2  

Shear modulus, G 41 10× MPa 

Fracture height, H  10m 

Leak-off coefficient, lC  
56.3 10−× m/s0.5 

Interface pressure, pλ  1.7 MPa 

Poroelastic coefficient, η  0.25 

Diffusivity coefficient, c  0.4  m2/s 

Injection time, t  1000 sec 
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Fig. 4.1 Fracture maximum width changes with different fluid viscosity. 
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Fig. 4.2 Fracture length changes with different fluid viscosity. 
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Fig. 4.3 Fracture geometry changes with different fluid viscosity. 
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Fig. 4.4 Fracturing pressure changes with different fluid viscosity. 

  

 

 

 

 



63 

 

 

 

Fig. 4.1 and Fig. 4.2 show that the fracture width increases with increasing of the 

fluid viscosity and the fracture length decreases with the increasing of fluid viscosity. 

Fig. 4.3 indicates that a wider and shorter fracture will be produced with higher fluid 

viscosity and a narrower and longer fracture will be produced with lower fluid viscosity.  

Fig. 4.4 tells that a higher pumping pressure is required to deal with higher viscosity 

fracturing fluid under the same formation and operation conditions. These results are in a 

good agreement with the industry practice.  

4.3 Formation Shear Modulus 

Considering different types of reservoirs, we examined the effect of formation 

shear modulus on the fracture geometry and fracturing pressure, while keeping the 

pumping fracturing fluid and operation conditions unchanged. Inputting the shear 

modulus to be 31 10× MPa, 41 10× MPa and 51 10× MPa (Table 4.2) and running these cases 

respectively, we get the following result: 

 

 

 

 

 

 

 

 



64 

 

 

 

Table 4.2 Input data to examine the effect of rock shear modulus 
Power law constitutive constant, K  75.6 10−×  MPa·s0.8 

Power law fluid index, n  0.8 

Injection rate, 0Q  
34 10−×  m3/s 

Poisson’s ratio, υ  0.2  

Shear modulus, G 31 10× , 41 10× , 51 10× MPa 

Fracture height, H  10m 

Leak-off coefficient, lC  
56.3 10−× m/s0.5 

Interface pressure, pλ  1.7 MPa 

Poroelastic coefficient, η  0.25 

Diffusivity coefficient, c  0.4  m2/s 

Injection time, t  1000 sec 
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Fig. 4.5 The effect of shear modulus on fracture length, without 
poroelasticity. 
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Fig. 4.6 The effect of shear modulus on maximum fracture width, without 
poroelasticity. 
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Fig. 4.7 The effect of shear modulus on fracturing pressure , without 
poroelasticity. 

Figs. 4.5 and 4.6 express that a shorter and wider fracture will be generated when 

the formation is soft with low shear modulus, while a longer and narrower fracture will 

be produced when the formation is hard with high shear modulus, using the same kind of 

fracturing fluid and operation conditions. And also as displayed in Fig. 4.7, higher 

fracturing pressure is required to fracture harder reservoirs. 
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4.4 Fluid Leak-off Coefficient 

Fluid leak-off coefficient is a parameter dependent on both fluid and formation 

properties.  Here the effect of fluid leak-off coefficient on the fracture geometry and 

fracturing pressure is examined by keeping the fluid and rock properties unchanged. 

Inputting the leak-off coefficient to be
52.3 10−× , 

56.3 10−× and 41.3 10−× m/s0.5 (Table 

4.3) and running these cases respectively, the following results are obtained: 

Table 4.3 Input data to examine the leak-off coefficient 
Power law constitutive constant, K  75.6 10−×  MPa·s0.8 

Power law fluid index, n  0.8 

Injection rate, 0Q  
34 10−×  m3/s 

Poisson’s ratio, υ  0.2  

Shear modulus, G 41 10× MPa 

Fracture height, H  10m 

Leak-off coefficient, lC  
52.3 10−× , 56.3 10−× , 41.3 10−× m/s0.5 

Interface pressure, pλ  1.7 MPa 

Poroelastic coefficient, η  0.25 

Diffusivity coefficient, c  0.4  m2/s 

Injection time, t  1000 sec 
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Fig. 4.8 The effect of leak-off coefficient on fracture length, without 
poroelasticity. 
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Fig. 4.9 The effect of leak-off coefficient on maximum width, without 
poroelasticity. 
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Fig. 4.10 The effect of leak-off coefficient on fracturing pressure, without 
poroelasticity.  

As is shown in Figs. 4.8, 4.9, and 4.10, the fracture length, width, fracturing 

pressure, and the fracture closure time increased as the leak-off coefficient decreased.  

The leak-off coefficient has different effect from the fracturing fluid viscosity and 

formation shear modulus in that, small leak-off coefficient produces long and wide 

fractures with high fracturing pressure, while large leak-off coefficient produces short 

and narrow fractures with low fracturing pressure. 



72 

 

 

 

5. FORMATION PERMEABILITY DETERMINATION BY MICRO OR MINI 

HYDRAULIC FRACTURING 

5.1 Introduction 

Pressure transient derived from well tests in oil/gas reservoirs is a valuable piece 

of information to estimate the reservoir characteristics. This study presents a theory and 

analysis for a post fracture pressure transient test, which is known as the impulse 

pressure test (Gu et al. 1993). A program is developed based on their work to interpret 

the pressure decay response after shut-in. The analysis is an injection/falloff test used to 

determine formation permeability, by injecting a small amount of fluid into the 

formation to create a short fracture and then shutting in with the fluid locked in the 

formation. This kind of fracture is able to pass through the damaged near wellbore zone 

and expose a large formation area to the flow, so the permeability determined using this 

method should be more close to the actual permeability of the reservoir than other 

conventional pressure transient tests. On the other hand, fracturing might be difficult to 

avoid during injection into low permeability formations. In addition, this theory can be 

used to interpret the pressure data. 

The present impulse fracture theory is based on the distribution of the source 

solution of the diffusion equation. The fracture is driven as a hydraulic fracture and then 

shut in. The source is distributed along the actual trajectory of the fracture with its 

intensity prescribed by the fracturing fluid leak off rate.  
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For simplicity, the fracture created in the test is considered to be a PKN model 

fracture, and it employs the previous hydraulic fracture simulator which records the 

fracture trajectory and the leak off history for both fracture propagation and recession 

stages. The sources are distributed accordingly until the fracture closes at the wellbore 

and no more fluid leak-off into the formation takes place. Then the pressure falloff is 

continuously simulated until the reservoir pressure is approached. This numerically 

simulated pressure transient data provides important information to determine the 

formation permeability, using the type-curve-analysis of the asymptotic behavior during 

intermediate and large times (see Fig. 5.1 for the hydraulic fracture flow regimes).  

 

 

 

Small time linear flow 

 

Fig. 5.1 Hydraulic fracture flow regimes. 
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Intermediate time elliptical flow 

 

 

Large time radial flow 

Fig. 5.1 Continued. 
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5.2 Impulse Fracture Pressure Transient Model 

Considering a homogeneous pay zone bounded by two impermeable ones, both 

the wellbore section and the created PKN model fracture are assumed to extend to the 

full height of this formation. This geometry allows for the use of the two-dimensional (in 

horizontal directions) diffusion equation in the formation 

2 1 p
p

c t

∂∇ =
∂

…………………………………………………………………..(5.1) 

where p is the ‘net pressure’, f op p p= − , and fp is the flow pressure, op is the 

hydrostatic virgin pore pressure ;2∇ is Laplace’s operator in two dimensions, and c is the 

reservoir diffusivity coefficient.  

For this problem, it is postulated that the effect of hydraulic fracturing upon the 

reservoir pressure is equivalent to the distribution of fluid sources at the fracture surfaces 

with their strength characterized by the fluid leak off rate. A schematic fracture 

propagation history is shown in Fig. 5.2. The vertical axis represents the fracture length, 

and the horizontal one is the elapse time since the initiation of pumping. The fracture is 

zero in length at time 0t = . The length increases over time before pumping ceases at 

time pt by shutting off the valve to lock the fluid in the down hole. The fracture will 

continue to propagate for a short while until it reaches a maximum lengthm
L

. Then it 

starts to recede, and eventually closes at the wellbore at timect . 
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Fig. 5.2 The schematic fracture length history. 

As shown in Fig. 5.2, it assumes that as the fracture arrives at point A at 

time at τ=
, an injection source is turned on at that location and that time. During 

fracture recession, the fracture is closed at pointA at time dt τ=
, and the injection source 

is turned off. At the fracture closure time ct t=
, the fracture is closed at the wellbore and 

the entire volume of injected fluid is lost into the formation. For formation permeability 

determination, we are interested in the pressure behavior during the post-closure time. 

The pressure diffusion at that time can take place both in the porous medium and the 

‘closed’ fracture.  For simplicity, however, we assume that the closed fracture has zero 
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conductivity. This assumption is necessary for two reasons: it is difficult to estimate the 

conductivity of a closed fracture, and more simple theories can be derived (Abousleiman 

et al. 1994), which lead to graphical procedures for parameters determination that are 

most useful for field engineers. Based on the ‘straight line methods’, the conventional 

type-curve analysis yields some traditional behaviors, such as the -1slope; and also new 

behaviors, such as -2 and +1 slopes, when plot the pressure versus normalized time. 

Without the complication of fracture conductivity, the post closure pressure 

behavior can be simulated by the distribution of fluid sources with known intensity 

(which must be calculated beforehand by the previous numerical simulator). Considering 

an instantaneous point source with a unit fluid volume injection, the influence of 

pressure on the reservoir is given by the following equation (Carslaw and Jaeger 1956): 

2

4
1

( , )
4

r
ctp r t e

tπκ
−

= ………………………………………………………......(5.2) 

wherer  is the radial distance, t is the elapsed time since injection, and kκ µ= is the 

mobility coefficient, with k  is the formation permeability andµ  is the fluid viscosity.  

Equation (5.2) satisfies the diffusion equation (5.1). The point source can be distributed 

over the fracture trajectory during the time interval of the fracture exposure (from the 

arrival of the fracture tip ataτ  to its departure time atdτ ), at the strength of the leak off 

velocity u . The influence of the sources on the reservoir pressure at any point (x , y ) in 

the domain, at a time ct t≥ , is obtained by applying Duhamel's principle of superposition 

as expressed in the following equation: 
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r
c t tL x
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τπκ

−
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−
=

−∫ ∫  …………………………...(5.3) 

where 2 2( ') ( ')r x x y y= − + − . Notice that bothaτ and dτ are functions of the location'x  

along the fracture, and the fluid leak-off velocity u  is a function of both the location 'x  

and the time 't  between aτ  and dτ , and that the integration is performed from mL− to 

mL+ to take care of the two wings of the fracture.  

The leak off intensityu  can be obtained from Carter's leak off theory which is a 

traditional industry model same to the one adopted in the previous PKN fracture 

simulator and shown as following equation: 

2
( ', ')

' ( ')
l

a

C
u x t

t xτ
=

−
……………………………………………………......(5.4) 

in which lC is Carter's  leak-off  coefficient.  

Since the pressure during the post-fracture-closure time will examined, 

ct t t∆ = − ……………………………………………………………………...(5.5) 

it is more convenient to rewrite (5.3) by shifting the time frame to ct . In addition, in this 

study we are only interested in the solution at the origin (0, 0), where the borehole is 

located, because this is the only location where fracturing pressure is observable in 

reality. Equation (5.3) becomes  

2

1

'
4 ( ( ') ')

( ')

0 0
1

1
( ) ( ') ' '

2 ( ') '
m o

x
c t x t

L x e
p t u t dt dx

t x t

τ

πκ

−
−

∆ =
−∫ ∫ ……………………………….(5.6) 

in which 
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( ') ( ') ( ')o d ax x xτ τ τ= − ………………………………………………………...(5.7) 

is the total fracture exposure time at the location'x ,  and  

1( ') ( ')c at x t t xτ=∆ + − ………………………………………………………..(5.8) 

is the time measured since the arrival of the fracture aτ  (see Fig. 5.2). The leak-off is 

given as 

2
( ')

'
lC

u t
t

= …………………………………………………………………....(5.9) 

we noticed that in (5.6) the integration is performed only over one wing  by taking 

advantage of the character of symmetry.  Equations (5.6) and (5.9) now form the basis of 

our analytical solution.  

In Equation (5.6), the fracture arrival and departure time can be determined by 

the previous numerical simulator according to the inverse function
1( ) ( )L Lτ τ−= . For the 

PKN model simulation, the ( )L t record is given in a digitized form. ( )a xτ and ( )d xτ can 

be easily extracted by interpolation.  

Once the length history is available, we can read the maximum lengthmL  from 

the record. The length is then subdivided into a number of segments with a size ofL∆ . 

If the segment L∆ is small enough, we can treat the line source approximately as a point 

source located at the center of the segment ix , with the strength of  the source given by 

( ')u t L∆ . This approximation turns the integration with respect to 'x in (5.6) into a 

summation expressed as following:  
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∆∆ =
−∑∫ …………………………………..(5.10) 

where n is the number of source segments. Equation (5.10) is then numerically 

integrated by Gaussian quadrature, which can therefore predicts decline of the pressure 

happened after fracture closure in the wellbore.  

5.3 Radial Flow Theory  

Radial flow pattern in well testing has been observed and investigated by many 

researchers (Agarwal et al. 1974; Horner 1951; Soliman 1986). Useful type-curve 

procedures have been devised. Radial flow takes place naturally in a borehole injection 

or production.  It is demonstrated that the radial pattern also appeared in fractured wells 

(Economides and Nolte 1989; Gringarten and Ramey 1974) after a long time 

development. 

5.3.1 Large Time Asymptotic Behavior 

This research shows that the radial flow behavior is retrievable in the induced 

hydraulic fracturing operation. A large time range is necessary to observe this behavior. 

It is noticed that as ( )t t→ ∞ ∆ → ∞ , 1t  in (5.8) behaves as 1( ')t x t≈∆ , and also 

1 't t t− ≈∆ , because as t  increases, onlyt∆ will increase with all the other quantities 

remain bounded. As a consequence, the exponential term in (5.6) approaches to 1 and 

the equation can be simplified as: 
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m oL x

p t u t dt dx
t

τ

πκ
∆ ≈

∆ ∫ ∫ …………………………………………(5.11) 

Notice that t∆ is removed from the integrand since it is independent of the 

parameters 'x and 't . Considering that the entire volume of fluid injected is lost into the 

formation at the fracture closure (zero fracture volume at that time), it is found that 

( ')

0
( ') ' '

m o

m

L x o p

L

Q t
u t dt dx

H

τ

−
=∫ ∫ …………………………………………………(5.12) 

where oQ is the constant injection rate at the wellbore. Combining equations (5.11) and 

(5.12), the asymptotic pressure transient law is obtained: 

1( )
4

o pQ t
p t t

Hπκ
−∆ ≈ ∆    as t → ∞ …………………………………………….(5.13) 

The foregoing equation suggests that the -1 slope should appear at large time on 

the plot of p versus t∆ on a log-log scale. It is of interest in this research to compare the 

result in (5.13) with the point source solution of (5.2).  It is noted that at 0r =  and 0t > , 

equation (5.2), which corresponds to a unit volume injection, reduces to 

1
(0, )

4
p t

tπκ
= ………………………………………………………………(5.14) 

It is realized that equation (5.13) is essentially the point source solution, which is 

characterized by a radial flow. It can be surmised that: the late-time pressure behavior 

after fracture closure is like that of an instantaneous source solution, whether the 

formation is fractured or not during the injection.  

To confirm the foregoing conjecture and to grasp upon the implication of ‘large 

time’, the foregoing asymptotic theory is tested on three hydraulic fracturing cases with 
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their parameters summarized in Table 5.1.  Case 1 follows the example in the study by 

Detournay et al. (Detournay et al. 1990 ). Case 2 is created by perturbing the parameters 

so the final treated fracture length is about twice of the length in the first case.  Case 3 is 

based on the actual parameter used and/or estimated in a field experiment. Using the 

previous PKN simulator, the fracture propagation histories are calculated and displayed 

in Fig. 5.3.  Some crucial results are listed in Table 5.2.  

Table 5.1 Parameters for three hydraulic fracture treatment cases 
parameters Case 1 Case 2 Case 3 

µ (MPa·s) 75.6 10−×  75.6 10−×  91.0 10−×  

n  1.0 1.0 1.0 

κ (m2/ MPa·s) 51.0 10−×  65.0 10−×  71.0 10−×  

c (m2/s) 0.4  0.4  0.0017 

lC (m/s0.5) 
56.3 10−×  54.0 10−×  52.49 10−×  

ν  0.2  0.2  0.2  

G(MPa) 41.0 10×  41.0 10×  38.6 10×  

oQ (m3/s) 0.008 0.011 0.00266 

H (m) 10.0 10.0 15.24 

pt (s) 1000 1000 120 

pλ (MPa)  1.7  1.7  1.7  
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Fig. 5.3 Simulated fracture propagation histories. 

Table 5.2 Summary of PKN fracture simulation 
Results Case 1 Case 2 Case 3 

pt (s) 1000 1000 120 

ct (s) 1698.95 2459.45 185.52 

mL (m) 47.18 82.33 9.52 
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The pressure transients in the wellbore after fracture closure for the three cases 

are presented respectively in the blue lines in Figs. 5.4 to 5.6 asp versus a normalized 

time in log-log scales. Figs. 5.4 and 5.6 are presented by normalizing t∆ by fracture 

closure time ct . However, since ct is obtained from the numerical simulation, this 

information may not be available in field operations. In these cases, it is easier to 

normalize t∆  by the pumping time pt .  Fig. 5.6 is normalized in this way just to 

demonstrate the flexibility of the theory.  

In the same diagrams, we also plot the pressure derivatives taken equation (5.13) 

with respect of  t∆  

( ) ( )

ln

dp t dp t
t

d t d t

∆ ∆− = −∆
∆ ∆

……………………………………………………...(5.15) 

in green lines. The same large time characteristics are observed, since 

1( )

4
o pQ tdp t

t t
d t Hπκ

−∆−∆ = ∆
∆

…………………………………………………...(5.16) 

 and the converging point of the two curves seems to mark the beginning of the -1 slope 

behavior.  
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Fig. 5.4 Pressure transient for case 1, large time radial flow theory. 
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Fig. 5.5 Pressure transient for case 2, large time radial flow theory. 
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Fig. 5.6 Pressure transient for case 3, large time radial flow theory. 

In Figs. 5.4 to 5.6, the -1 slope is observed around / 10ct t∆ = for cases 1 and 2, 

whereas a much larger around / 120pt t∆ =  time is needed for case 3. Furthermore, if we 

extend the straight line backward to intersect the / 1ct t∆ =  or the / 1pt t∆ = axis, and read 

the pressure interceptip  ( ip = 3.6, 7.5 and 125 MPa are, respectively, read in these 

cases), the mobility coefficient can be estimated for cases 1 and 2 as follows:  
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Q t

Hp t
κ

π
= ………………………………………………………………....(5.17) 

and for  case 3 

4
o

i

Q

Hp
κ

π
= …………………………………………………………………..(5.18) 

Based on the values in Tables 5.1 and 5.2, we calculated the mobilityκ as 

51.04 10−× , 64.75 10−× , and  71.1 10−×  m2/ MPa·s, respectively for the three cases. Then 

we get the estimated permeability through function /k κ µ= . These mobility values are 

compared with the input ‘true’ values 51.0 10−× , 65.0 10−× , and 71.0 10−×  m2/ MPa·s. A 

good agreement between them is observed.  

5.3.2 Horner Plot 

Horner published his work on permeability estimates from pressure  data buildup 

analysis in 1951 (Horner 1951). Similar type of work was available to ground-water  

hydrologists earlier, known as the recovery test (Theis 1935; Todd 1980). In the 

recovery test, a well is injected or produced at a constant rate for a time pt , and then the 

pump is shut off.  The Horner plot, is the plot of the pressure decline (or buildup) versus 

the logarithm of ‘Horner time’, which is a time function used to specifically analyze 

buildup test data. Horner time is defined as the special case of superposition (radial) 

time, for a single and constant rate flow period followed by a shut-in (i.e. a buildup), 

( ) /H pt t t t= +∆ ∆ .  
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In this model, it is expected that the finite injection interval effect will still be felt 

at a somewhat intermediate time, which leads to a Horner-type theory. As an 

approximation, it is assumed that the total fluid volume used in the treatment,o pQ t , is 

evenly injected  during  the  period ct over  the  thicknessH   in the form of a radial flow 

pattern (point source). For continuous injection intensity /o p cQ t Ht , the pressure influence 

function is (Carslaw and Jaeger 1956) 

2

1( , ) ( )
4 4

o p

c

Q t r
p r t E

Ht ctπκ
= …………………………………………………...(5.19) 

where 1( )E x is the exponential integral (Abramowitz and Stegun 1972). 

For injection lasting for the durationct and then shut off, the post-fracture 

pressure at ct t>  is 

2 2

1 1( , )
4 4 ( ) 4

o p

c c

Q t r r
p r t E E

Ht c t t c tπκ
     ∆ = −    + ∆ ∆    

 ………………………...(5.20) 

For small arguments (large time), the exponential integral has a logarithmic 

behavior as expressed as: 

1( ) lnE ξ ξ γ ξ= − − + +⋅⋅⋅…………………………………………………...(5.21) 

where 0.57722γ = is Euler's constant. By taking the first two terms in (5.21) and 

substituting into equation (5.20), the large time post-fracture pressure at the wellbore 

( 0r = ) is expressed as: 

( ) ln
4

o p c

c

Q t t t
p t

Ht tπκ
+ ∆∆ ≈
∆

…………………………………………………...(5.22) 
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The foregoing asymptotic expression suggests that if the pressure is plotted 

against the Horner time ( ) /H ct t t t= +∆ ∆ ( ( ) /H pt t t t= +∆ ∆ for case 3) on a semi-log plot, 

a straight line should appear.  However, when the pressure data for three cases are 

plotted in Figs. 5.7 to 5.9, the straight lines almost could not be observed. 
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Fig. 5.7 The Horner plot for case 1. 
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Fig. 5.8 The Horner plot for case 2. 
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Fig. 5.9 The Horner plot for case 3. 

This phenomenon can be explained as the following: since the original injection 

pattern is linear fracture, it may take a few folds of ct (the equivalent injection period) for 

the radial flow to manifest. If it is assumed that the radial flow pattern is established at 

5ct t∆ > ( 5 pt t∆ > for case 3), with the corresponding Horner time 1.2Ht < , the entire 

‘large time range’, which is supposed to exhibit a straight line behavior, is bounded 
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between 1.0 1.2Ht< < . The straight line behavior is invisible under this scale in Figs. 

5.7 to 5.9. Therefore, the Horner plot is inefficient to analyze the large time post-fracture 

pressure transient data.        

However, if the inefficiency can be somewhat tolerated, a tangent line of the 

curve can be draw at 1.0Ht = . Reading the pressure intercept at 10Ht = ip ( 8.0ip = , 

16.15and 250.0MPa respectively for the three cases), the mobility κ  can be expressed 

as  

0(ln10)

4
p

i c

Q t

Hp t
κ

π
= ……………………………………………………………...(5.23) 

Using this equation, we can back calculateκ as 51.08 10−×  m2/ MPa·s for case 1 

( 51.0 10−× m2/ MPa·s), 65.08 10−×  m2/ MPa·s for case 2 ( 65.0 10−× m2/ MPa·s), and 

70.83 10−×  m2/ MPa·s for case 2 ( 71.0 10−× m2/ MPa·s). These comparisons are satisfied. 

5.4 Linear Fracture Theory  

As observed in the preceding section, the radial flow regime takes quite a relative 

long time to develop for injections taking place in the form of hydraulic fracturing. As a 

consequence, it is more reasonable to approximate the flow as a linear fracture pattern. 

Excellent work about the linear fracture flow regime has been done to identify the flow 

regimes and to estimate reservoir parameters using type curve matching techniques 

(Cinco-Ley et al. 1989; Neal and Mian 1989). In these models, the fracture conductivity 

is an added complexity as people try to estimate the formation permeability. The art of 

matching a family of type curves might be quite tricky when a semi-empirical estimation 
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of the fracture conductivity is needed. This inconvenience is resulted from a finite 

conductivity fracture in which proppant agents are entrapped to create pathway for fluid 

after fracture closure.  

In the impulse fracture test, a fracture is created using fluid without proppant 

agent. When the fracture closes, the cakes built on the fracture surfaces are compressed 

to fill the gap between the fracture walls. Therefore the fracture is considered with zero 

conductivity. Under this assumption, several asymptotic theories are developed in the 

following sections.  

5.4.1 Instantaneous Line Source Theory     

To study the source geometry effect in earlier times, it is assumed that the 

injection occurs as an instantaneous line source with a uniform intensity and an 

‘equivalent length’ eL . This equivalent length generally does not coincide with the actual 

fracture maximum lengthmL , but it can serve as the first-order estimation of mL .  

The influence function of a line source located atL x L− ≤ ≤ and 0y = with unit 

intensity is given by (Carslaw and Jaeger 1956). 

2 2[( ') ]
41

( , , ) '
4

x x yL
ct

L
p x y t e dx

tπκ
− − +

−
= ∫ ………………………………………..(5.24) 

If the observation point is at the origin 0x y= = , the pressure expression is 

simplified as: 

1
(0,0, ) ( )

2 4

c L
p t erf

t ctκ π
= ……………………………………………….(5.25) 
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where erf is the error function. Taking the total injection volume into consideration, 

the pressure at wellbore for the current problem is 

0( ) ( )
4 4

p e

e

Q t Lc
p t erf

HL t c tκ π
∆ =

∆ ∆
…………………………………………..(5.26) 

For small argument (large time), the error function can be expanded as 

32
( ) ( )

3
erf

ξξ ξ
π

= − +⋅⋅⋅  …………………………………………………..(5.27) 

By keeping the first two terms in formula (5.27), we obtain from (5.26) the 

following equation: 

2
1( ) (1 )

4 12
o p e

Q t L
p t t

H c tπκ
−∆ ≈ − ∆

∆
……………………………………………...(5.28) 

The difference between the instantaneous point source solution (5.13) and the 

current line source solution (5.28) is 

 
2

2( )
48

o p eQ t L
p t t

Hcπκ
−∆ ∆ ≈ ∆ ……………………………………………………..(5.29) 
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Fig. 5.10 The instantaneous line source for case 1. 
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Fig. 5.11 The instantaneous line source for case 2. 
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Fig. 5.12 The instantaneous line source for case 3. 

The equation above suggests that if we find the differences between the -1 slope 

straight line and the actual pressure record in Figs. 5.4, 5.5 and 5.6, and show them in 

log-log plots, a -2 slope straight line should be observed when the linear fracture 

geometry is still dominant at an intermediate time. These plots are presented in Figs. 

5.10, 5.11, and 5.12.  There are -1 slope straight lines right after fracture closure. Since 
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the pressure for equivalent radial flow is thousands of times larger than the actual 

pressure records in Figs. 5.4, 5.5 and 5.6 at small time, this -1 slope lines in Figs. 5.10, 

5.11 and 5.12 represent the equivalent radial flow in early times. The -2 slope lines stand 

for the linear fracture flow before it changes to radial flow. Extending the -2 slope 

straight line to find the pressure interceptipwith the / 1ct t∆ = axis ( 1.3ip = , 5.0MPa) 

for cases 1 and 2, and the estimation of the following quantity is:  

2 248
o p

e i c

Q tc

L Hp t

κ
π

= ……………………………………………………………...(5.30) 

For case 3, which uses pt to normalize, the formula is slightly changed as 

 2 48
o

e i p

Qc

L Hp t

κ
π

= ……………………………………………………………..(5.31) 

and the -2 slope straight line pressure intercept ip  is 5000MPa at / 1pt t∆ = . The 

foregoing equations can be used in several ways. Firstly, with known diffusivity 

coefficient c and fracture length mL , κ can be estimated; and secondly, with a 

knownκ andc , an equivalent fracture lengtheL can be evaluated.  

In the present cases, substitute the known c  andκ values, respectively, to 

calculate the equivalent lengths 53.2eL = m,91.1m, and 9.4m. The maximum lengths as 

simulated from the previous PKN model are 47.18m, 82.33m, and 9.52m (Table 5.2). 

The predictions are quite reasonable considering that they are the first-order 

approximation.  
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5.4.2  Finite Interval Line Source Theory 

The analysis in this section is similar to the recovery test conducted for Horner's 

plot, assuming that this theory is applicable to some intermediate time intervals.  The 

pressure influence function for a continuous line source at the wellbore is (Gringarten 

and Ramey 1974). 

 
2

1

4
(0,0, ) [ ( ) ( )]

4 4 4
o p e e

c e

Q t L Lct
p t E erf

Ht ct L ct

π
πκ

= + ………………………….(5.32) 

For a finite interval injection with time duration ct , the corresponding pressure 

expression is  

 

2 2

1 1( )
4 4 ( ) 4

4 ( ) 4

4 ( ) 4

o p e e

c c

c e e

e ec

Q t L L
p t E E

Ht c t t c t

c t t L Lc t
erf erf

L Lc t t c t

πκ

π π

    ∆ = − +    + ∆ ∆   

 + ∆ ∆  −   + ∆ ∆     

……………….(5.33) 

Expanding the foregoing expression for larget∆ by keeping the first three terms 

in (5.21) and first two terms in (5.27), we find the approximation  

 
2 2

( ) ln
4 12 ( ) 12

o p c e e

c c

Q t t t L L
p t

Ht t c t t c tπκ
 + ∆∆ = + − ∆ + ∆ ∆ 

……………………….(5.34) 

Once again looking for the difference between the finite interval line source 

solutions (5.34) and the point source solution (5.22), we obtain  

 
2

2
( ) ( )

48
o e p c c

c c

Q L t t t
p t

Hct t t tπκ
∆ ∆ = −

∆ + ∆
………………………………………….(5.35) 

Plotting the pressure difference between the tangent fit and the actual pressure 

record in the Horner plot (Figs. 5.7, 5.8, 5.9), versus the dimensionless time 
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c c
h

c

t tt t t t= −∆ + ∆  for case 1 and 2 on log-log scale ( p p
h

p

t t
t t t t= −∆ + ∆  for case 3), 

we should expect a +1 slope line at some intermediate time (see Figs. 5.13 to 5.15). 

Checking the intercept ip( 0.98ip = , 4.0, 3000 MPa respectively for the three cases) at 

1ht = , we are able to utilize the formula 5.29 for case 1 and 2, and 5.30 for case 3 to 

estimate the equivalent lengths. 
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Fig. 5.13 The line source Horner plot for case 1. 
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Fig. 5.14 The line source Horner plot for case 2. 
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Fig. 5.15 The line source Horner plot for case 3. 

The equivalent lengths computed according to the foregoing formula are, 

respectively, 46.2 m, 81.5 m, and 7.4 m for cases 1 to 3, which also compare very well 

with the simulated maximum lengths in Table 5.2.  
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5.5 Conclusion 

In this section, we present the theory and analysis of post-fracture pressure 

transient test. The important things to conclude are: 

1) A program based on a theory of distribution of sources along the fracture with 

varying intensity for PKN fracture geometry is developed. It numerically 

simulates the pressure decline behavior in the wellbore after fracture closure. 

2) Several asymptotic theories were use from which the type curve technique can 

be used to estimate the formation permeability (in section 5.3) and fracture 

equivalent length (in section 5.4). 

 3) It confirmed the type curve theories based on numerically simulated data. 
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6. CONCLUSIONS 

 

In the present study, several important stages of hydraulic fracturing are 

discussed using the poroelastic PKN fracture model as described in the literature. Firstly 

hydraulic fracturing propagation, recession, and pressure changing history are simulated 

with two different approaches to fluid leak-off theory. And then the sensitivity of 

fracture geometry and pressure to fluid and formation properties is analyzed. Thirdly, 

based on previous simulator, the post-fracture pressure-transient analysis is carried out to 

determine the formation permeability. 

6.1 Summary 

In Section 2, an existing PKN fracture model (Detournay et al. 1990 ) is 

modified. The major points in this part of research are: 

1) The Carter’s leak-off theory with a constant fluid leak-off coefficient is 

adopted. 

2) Both elastic and poroelastic formation effects are included, and poroelaticity 

causes significant increase in fracturing pressure. 

In Section 3, the PKN fracture model was simulated by applying a pressure-

dependent leak-off rate. The following have been addressed: 

1) The influence of poroelaticity on fracture geometry and pressure is greater 

than it is in previous model. The poroelaticity causes a smaller fracture 

volume with smaller maximum fracture length and width. 
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2) The pressure-dependent leak-off model leads to fast fluid loss into the 

formation during injection; it lowers the fluid leak-off rate after shut-in, thus 

it takes a longer time before the fracture closes. 

In Section 4, the effects of fluid viscosity, shear modulus of rock, and the fluid 

leak-off coefficient on fracture geometry and pressure are discussed and the following 

arguments can be made: 

1) A wider and shorter fracture will be produced with higher fluid viscosity and a 

narrower and longer fracture will be produced with lower fluid viscosity with 

all other conditions unchanged. 

2) A shorter and wider fracture will be generated when the formation is soft with 

low shear modulus, while a longer and narrower fracture will be produced 

when the formation is hard with high shear modulus with all other conditions 

unchanged. 

3) The fracture length, width, fracturing pressure, and the fracture closure time 

increase with decreasing of the leak-off coefficient. 

In Section 5, the post-fracture pressure-transient analysis is conducted to 

determine the formation permeability, using the type-curve-analysis of the asymptotic 

behavior during intermediate and large times. The results show a good agreement with 

published results, which enhanced  the validity of both studies (Abousleiman et al. 

1994). 
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6.2 Future Work 

This study addressed certain questions and problems in hydraulic fracturing 

modeling. However, this technique is far from perfect and more questions need to be 

answered to improve future models. Based on this study, the following aspects could be 

significant questions in hydraulic fracture modeling for future study: 

1) To apply the model developed in this study to simulate fracture network 

generation.  

            2) Taking formation temperature change into consideration in future modeling.  

3) Analyzing small time pressure behavior in the post-fracture pressure-transient 

test to determine the formation permeability. (We just discussed the 

intermediate and large time solution in Section 5). 
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APPENDIX 

A. 1 Poroelasticity Property 

There are two parameters that arise commonly when dealing with poroelastic 

materials: First, the poroelastic constant, α, is independent of the fluid properties and is 

defined as (Rice and Cleary 1976):  

3( )
1

(1 2 )(1 )
u

u s

K

B K

ν να
ν ν

−= = −
− +

  ………………………………………………(A.1) 

where B is Skempton pore pressure coefficient, vu is undrained Poisson ratio, v is drained 

Poisson ratio, K is drained bulk modulus of elasticity, and Ks bulk modulus of solid 

phase. The range of poroelastic constant is 0 to 1, but most rocks fall in the range of 0.5 

to 1 (Rice and Cleary, 1976). 

The second parameter is poroelastic stress coefficient, usually expressed with 

symbol η, and defined as (Detournay and Cheng 1993): 

  
(1 2 )

2(1 )

νη α
ν

−=
−

  ……………………………………………………………...(A.2) 

The range of η is 0 to 0.5, and it is independent of the fluid properties. 

A. 2 Derivation of Local Fluid Mass Balance Equation 

The following is a fracture element with elliptical cross section, whose area is A1  

and A2 in both ends. Fracture propagates in x direction, with length dx , height H and 

maximum fracture width mw . 
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Fig. A.1 A fracture element. 

For dx 0→ , A1=A 2 = A = 
4

Hπ
wm(x,t). ( , )q x t H⋅  is the volume rate of flow 

through a cross-section (x=constant) of the fracture. And u H dx⋅ ⋅ is the fluid 

volume leak-off rate. ( , )q x t is the average flow rate per unit height of fracture, 

and u is the fluid leak-off velocity accounting for both walls. 

For the conservation of volume: 

( ) ( ) ( ) 0
4 m

x
q H t v A u H dx t q H t H w u H dx t

t

π− ∂⋅ ⋅∆ +  + ⋅ ⋅ ⋅∆ = ⋅ ⋅∆ + ⋅ ⋅ + ⋅ ⋅ ⋅ ∆ =
∂

 

…………………………………………………………………...……(A.3)   

0
4

mwq
u

x t

π ∂∂∴ + + =
∂ ∂

………………………………………………….(A.4) 

Since the average fracture width is 
4 mw w
π= , equation (A.4) is simplified 

as: 
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0
q w

u
x t

∂ ∂∴ + + =
∂ ∂ ………………………………………………………(A.5) 

A. 3 The Moving Coordinate System 

For this type of mesh, the moving coordinate θ is expressed as / ( )x L tθ = , 

which has a range of [0, 1]. This algorithm allows one to use a constant number of nodes 

to discretize the variable fracture length throughout the solution procedure. The nodes 

are distributed according to a geometric progression, increasing their density both near 

the fracture tip and fracture inlet, because of the high pressure and width gradient during 

fracture propagation and recession. The coordinate iθ of node i for the first half of the 

fracture / 2L is therefore 

1

1
0.5

1

N N i

i N

r r

r
θ

− −

−

−=
−

………………………………………………………….. (A.6) 

while the node distribution for the other half is1 iθ− , where r is the ratio of the 

progression. 

And for this program, 10 to 15 nodal points will be good enough, since too many 

nodal points don’t increase the accuracy that much, and also that will request much 

longer computing time. To contrast, this paper ran two cases with 11 and 50 nodal points 

respectively, based on the same input data as listed in Table 2.1. The case with 11 nodal 

points ran within 30 seconds, while the other one was more than 30 minutes. The results 

are shown as the following: 
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Fig. A.2 Fracture length history with 11 and 50 nodal points. 
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Fig. A.3 Fracturing pressure history with 11 and 50 nodal points. 
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Fig. A.4 Fracture maximum width history with 11 and 50 nodal points. 

A. 4 The Fracture Arrival Time 

 The fracture arrival time ( )xτ  is the time when fracture tip arrives at location 

x . It is the inverse function of fracture length ( )x L tθ= . Since there is a corresponding 

fracture length at every time step; inverse, these time steps, which are the fracture arrival 

times, corresponding to different fracture lengths. In the moving coordinate system, it is 

discrete as: 
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( )1( , ) ( )t L L tτ θ θ−=
…………………………………...……………………..(A.7) 

In finite-difference scheme,
1 1( )k k

i iL Lτ θ+ −= is evaluated corresponding to 
kL , 

since the current length 1kL + is unknown, by interpolating method based on the fracture 

arrival time in previous time stepkiτ . 

 

 

Fig. A.5 Calculation of fracture arrival time by interpolation. 

 If 1 1
' ' 1

k k k
i i iL L Lθ θ θ− −

+≤ ≤ , 1k
iτ + is linearly interpolated between '

k
iτ and ' 1

k
iτ + : 

1 1' 1 '
' '1 1

' 1 '

( )
k k

k k k ki i
i i i ik k

i i

L L
L L

τ ττ τ θ θ
θ θ

+ −+
− −

+

−= + −
−

………………………………....... (A.8) 

 If 1k k k
iL L Lθ− < < , 1k

iτ + is linearly interpolated between 
kt and

1kt +
: 

1
1 1

1
( )

k k
k k k k
i ik k

t t
t L L

L L
τ θ

+
+ −

−

−= + −
−

……………………………………………..(A.9) 

A. 5 Comparison with Published Results for Constant Jeak-off Coefficient Model 

To compare the results of this study with the results of Detournay et al. 1990, the 

plots from the published paper are listed in the following:  
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Fig. A.6 Variation of fracture length with time(Detournay et al. 1990). 

 

Fig. A.7 Variation of net fracturing pressure with time(Detournay et al. 
1990). 
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Fig. A.8 Variation of maximum fracture width with time(Detournay et al. 
1990). 

The following table shows the comparison between the plots above with the Figs. 

2.8, 2.9 and 2.10. 
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Table A.1 Summary of the results from this study and published 
paper(constant leak-off coefficient) 

cases Maximum 

fracture 

length (m) 

Maximum (0, )mw t  

(m) 

Maximum 

(0, )p t  

(MPa) 

Fracture 

closure time 

(sec) 

0.25η =
 

0η =
 

0.25η =  0η =  0.25η =
 

0η =
 

0.25η =
 

0η =  

This 

study 

50.0  50.0 0.00358 0.00358 4.95 4.5 1533 1533 

Published 

paper 

52.0 52.0 0.0036 0.0036 5.2 4.5 1550 1550 

 

From Table A.1, it shows that the simulation results of the net fracturing 

pressure, the fracture length, maximum width and the fracture closure time are close to 

the published paper, with the differences less than 5%. 

A. 6 Pressure Dependent Leak-off Equation 

The flow of the fracturing fluid (assumed Newtonian and incompressible) into 

the porous formation (fluid leakoff) is assumed to be linear and perpendicular to the face 

of the fracture. The local volumetric rate response of the fracture to a unit step pressure 

on an element dz along the fracture height H , and accounting for the two sides of the 

fracture from Carslaw and Jaeger (Carslaw and Jaeger 1956) is written as: 

2
''( ( ))

( ( ))

dz
v t x

c t x

κτ
π τ

− =
−

………………………………………………...(A.10) 
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where κ  is the mobility coefficient defined as the ratio of the permeability k  to the 

viscosity µ , t  is the time at which the volume rate response is evaluated, and ( )xτ  is the 

time at a given location x  on the fracture face at which the pressure step was applied. 

The diffusivity coefficient c  can be approximated by the known expression: 

p

c
C

κ
φ

= ……………………………………………………………………..(A.11) 

where φ  is the porosity of the rock, and pC  is the compressibility of the pore and pore 

fluid system. Since we assume that the PKN fracture propagates at a constant height 

(confined between the barriers), then H is independent of time t . The total fluid volume 

( )v t  contributed by an element dz  is obtained as: 

( )

2 ( ')
( ) '

( ')

t

x

p dz
v t d

c tτ

κ τ τ
π τ

=
−∫ …………………………………………………..(A.12) 

where ( ')p τ  is the history of uniform pressures applied on the surface of the fracture 

between time ( )xτ  and t  and where ( , ) ( , )f op x t p x t σ= −  

Integrating by parts the above integral, we obtain: 

( ) ( )

2
( ) 2 ( ') ' 2 '( ') ' '

tt
x x

v t p dz t p dz t d
c

τ τ

κ τ τ τ τ τ
π

 = − − + −
  ∫ ……………...(A.13) 

( )

2
( ) 2 ( ( )) ( ) 2 '( ') ' '

t

x
v t p x dz t x p dz t d

c τ

κ τ τ τ τ τ
π

 = − + −
  ∫ ……………..(A.14) 

The local value of the flow rate, l
q

, that corresponds to the rate at which the fluid 

is invading the reservoir, can be written as: 
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l

dv
q

dt
= ……………………………………………………………………....(A.15) 

and we can write 

( ) ( )( )

2 ( ( )) 2 '( ')
'

( ) '

t

l x

p x dz p dz
q d

c t x c tτ

κ τ κ τ τ
π τ π τ

= +
− −∫ …………………………………...(A.16) 

Since ( )xτ  is the time at a given location x , this is equivalent to the arrival time 

of the fracture tip at that section of the formation, the pressure at that point needed for 

the fracture opening is equal to the in situ effective stress (assuming rack strength and 

thus toughness in tension as negligible) 

( ( )) o op x pτ σ= − …………………………………………………………...(A.17) 

In this case the fracture is assumed to open along the formation height 

instantaneously, and the individual pressure histories for each element dz  is assumed to 

start at the same time ( )xτ . The summation of the element dz along the fracture height 

(to calculate the total fluid leakoff at a given cross section), will result in replacing dz  

by H  in the above expression and we define the fluid leakoff velocity 
lqu H=

 as 

follows 

( )

2 ( ) 2 ( , ') 1
'

'( ( )) '

t
o o

x

p p x t
u dt

tc t x c t tτ

κ σ κ
π τ π

− ∂= +
∂− −∫ ……………………………(A.18) 

where p  is the ‘net stress’ defined as f op p σ= − , oσ  is the minimum in situ stress, op  

is the virgin pore pressure. 
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A. 7 Comparison with Published Results for Pressure-dependent Leak-off 

To compare the results of this study with the results of Abousleiman 1991, the 

plots from his dissertation are listed in the following:  

 

Fig. A.9 Variation of fracture length with time(Abousleiman 1991). 
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Fig. A.10 Variation of net fracturing pressure with time(Abousleiman 1991). 

 

Fig. A.11 Variation of maximum fracture width with time(Abousleiman 
1991). 
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Fig. A.12 The G-function for pressure dependent leak-off 
case(Abousleiman 1991). 

Compare the plots above with the Figs. 3.2, 3.3 and 3.4, and the results are listed 

as follow: 
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Table A.2 Summary of the results from this study and published 
paper(pressure-dependent leak-off) 

cases Maximum 

fracture 

length (m) 

Maximum (0, )mw t  

(m) 

Maximum 

(0, )p t (MPa) 

Fracture 

closure time 

(sec) 

0.15η =
 

0η =
 

0.15η =  0η =  0.15η =
 

0η =  0.15η =
 

0η =  

This 

study 

55.3 59.2 0.00453 0.00474 6.97 5.98 4436 6981 

disserta- 

tion 

61.5 66.0 0.00475 0.00481 6.37 6.21 2800 3550 

 

From Table A.2, it shows that the simulation results of the net fracturing 

pressure, the fracture length, and maximum width are different from Abousleiman’s 

dissertation, with the differences around 10%.  I got smaller fracture length and width 

for both with and without poroelasticity effect simulation, and the maximum fracturing 

pressure difference between these two situations is larger. While the fracture closure 

time is much larger than Abousleiman’s result.  

A. 8 Upwind Scheme Used for Width Discrete Equation 

In computational fluid dynamics, upwind schemes denote a class of numerical 

discretization methods for solving hyperbolic partial differential equations. Upwind 

schemes use an adaptive or solution-sensitive finite difference stencil to numerically 

simulate more properly the direction of propagation of information in a flow field. The 
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upwind schemes attempt to discretize hyperbolic partial differential equations by using 

differencing biased in the direction determined by the sign of the characteristic speeds. 

Historically, the origin of upwind methods can be traced back to the work of Courant, 

Isaacson, and Rees who proposed the CIR method (Courant et al. 1952). 

To illustrate the method, consider the following one-dimensional linear wave 

equation: 

0
u u

a
t x

∂ ∂+ =
∂ ∂

……………………………………………………………….(A.19) 

The first-order upwind scheme of the above equation is: 

1
1

1
1

(1) 0 0

(2) 0 0

n n n n
i i i i

n n n n
i i i i

u u u u
a for a

t x

u u u u
a for a

t x

+
−

+
+

− −  + =     >
∆ ∆

− −  + =     <
∆ ∆

…………………………………....(A.20) 

similarly, equation (2.20) would be written as: 

1
0

w L w q
u

t L L

θ
θ θ

∂ ∂ ∂− + + =
∂ ∂ ∂

i

………………………………………………...(A.21) 

During the fracture propagation, according to the upwind scheme, since 0
L

L

θ >
i

, 

equation (A.21) can be expressed as: 

1
1 1/2 1/2

1
1 1 1

1 1 1 1/2 1/2

1 1 1

2
=0; 2, - 2

2
; 2, - 2

k k k k k k k
ki i i i i i i
ik k k

i i i i

k k k k k
k k k ki i i i i
i i ik k

i i i i

w w L w w q q
u i N

t L L

L w w q q
w w t u i N

L L

θ
θ θ θ θ

θ
θ θ θ θ

+
+ + −

+
+ + −

+ + + + −

+ + −

   − − −− + + = ⇒   ∆ − −   

    − −= + ∆ − − =    − −    

�

�
…(A.22) 

At node 1n −  the forward difference formula for 

w

θ
∂
∂  is unstable during simulation and 
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a backward difference formula is used instead: 

1 1 1 1 2 1/2 3/2
1 1 1

1 2 2

2
; -1

k k k k k
k k k kN N N N N
N N Nk k

N N N N

L w w q q
w w t u i N

L L

θ
θ θ θ θ

+ + − − − − −
− − −

− − −

    − −= + ∆ − − =    − −    

�

 

………………………………………………………………………………(A.23) 

At the first node, equation (A.23) is simplified as 

1 1 3/2
1 1 1

2

2 k k
k k k ko

k

q q
w w t u

L θ
+ +  −= − ∆ + 

 
…...…………………………………..(A.24) 

and the last node, it’s assumed that 

1 0k
Nw + = ……………………………………………………………………..(A.25) 

For a receding fracture, since 0
L

L

θ <
i

, equation (A.21)  can be expressed as: 

1
1 1/2 1/2

1
1 1 1

1 1 1 1/2 1/2

1 1 1

2
=0; 2, -1

2
; 2, -1

k k k k k k k
ki i i i i i i
ik k k

i i i i

k k k k k
k k k ki i i i i
i i ik k

i i i i

w w L w w q q
u i N

t L L

L w w q q
w w t u i N

L L

θ
θ θ θ θ

θ
θ θ θ θ

+
− + −

+
− + −

+ + − + −

− + −

   − − −− + + = ⇒   ∆ − −   

    − −= + ∆ − − =    − −    

�

�
….(A.26) 

The equations of the first and last node during recession are the same as 

equation (A.24) and (A.25). 
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