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ABSTRACT

A PKN Hydraulic Fracture Model Study and FormatiRermeability Determination.
(December 2011)
Jing Xiang, B.S., China University of Petroleum

Chair of Advisory Committee: Dr. Ahmad Ghassemi

Hydraulic fracturing is an important method usecditdance the recovery of oil
and gas from reservoirs, especially for low pernigglformations. The distribution of
pressure in fractures and fracture geometry arelatkdo design conventional and
unconventional hydraulic fracturing operations,cfueing during water-flooding of
petroleum reservoirs, shale gas, and injectiordeityrn operation in a geothermal
reservoir. Designing a hydraulic fracturing jolmuees an understanding of fracture
growth as a function of treatment parameters.

There are various models used to approximatelyndethe development of
fracture geometry, which can be broadly classified 2D and 3D categories. 2D
models include, the Perkins-Kern-Nordgren (PKN) ctuae model, and the
Khristianovic-Geertsma-de. Klerk (KGD) fracture nebdand the radial model. 3D
models include fully 3D models and pseudo-threeetisional (P-3D) models. The P-
3D model is used in the oil industry due to its @hification of height growth at the

wellbore and along the fracture length in multidesd formations.



In this research, the Perkins-Kern-Nordgren (PKidrture model is adopted to
simulate hydraulic fracture propagation and recessfand the pressure changing history.
Two different approaches to fluid leak-off are adesed, which are the classical
Carter’'s leak-off theory with a constant leak-ofiefficient, and Pressure-dependent
leak-off theory. Existence of poroelastic effecthe reservoir is also considered.

By examining the impact of leak-off models and mdastic effects on fracture
geometry, the influence of fracturing fluid and kqaroperties, and the leak-off rate on
the fracture geometry and fracturing pressure asertbed. A short and wide fracture
will be created when we use the high viscosityttrang fluid or the formation has low
shear modulus. While, the fracture length, widtlacfuring pressure, and the fracture
closure time increase as the fluid leak-off coedfit is decreased.

In addition, an algorithm is developed for the pioatture pressure-transient
analysis to calculate formation permeability. Tinepulse fracture pressure transient
model is applied to calculate the formation pernigglboth for the radial flow and
linear fracture flow assumption. Results show adgagreement between this study and

published work.
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NOMENCLATURE

a = the crack half length

A = the vertical cross-sectional area

¢ = the reservoir diffusivity coefficient

Co = the dimensionless fracture conductivity

G = fluid leak-off coefficient

Cp = the compressibility of the pore and pituiel system
o = the ‘diffusivity coefficient’

E = the Young's modulus of the material

e =E@-)

erf = the error function

E(X) = the exponential integral

f(tD) = an evolutional function

G = the shear modulus

h, = the fracture height

k = the permeability

K = the constitutive constant for a povasv fluid

K = the fracture permeability



viii

K. = the fracture toughness for made
K. = the fracture toughness for made
Kue = the fracture toughness for moge
L = the fracture half length
AL = the small segment length
L = the length change rate
Ly = dimensionless fracture length
= the equivalent fracture length
L« = the fracture length at tinke
L« = the change rate of the fracture Ierzragﬂiimetk
L = the fracture length at tinie™
ksl .
+1
L = the change rate of the fracture length at time
L = the maximum length
M, = the fracture compliance
™ = the slope of G-function curve
n = the power law index /the number ofrsetsegments
N = the number of point nodes
p = the net stress

Ap = the net pressure



o} = dimensionless fracture pressure

P; = the fluid pressure
K
3 = the fracture pressure at pofhat timet*
pk+1 = the fracture pressure at poitat timet™
R = the intercept pressure
R = the virgin pore pressure
q = the average flow rate per unit hegffracture
qk
%2 = the average flow rate at poifdt,,at timet*

qksz = the average flow rate at poiff,,at timet“™”

Q = the injection rate

r = the radial distance

t = the time since pumping starts

At = the post-fracture closure time

t = adimensionless fracture surface expoBme since the fluid arrival
L = the fracture closure time

At = the critical time step

ty = dimensionless time

the line source Horner time

=
I



t,

At k+1

the Horner time
the time step at tire ™

shut-in time

pumping (shut-in) time

the fluid leak-off velocity accountifigr both of the fracture walls
the fluid leak-off velocity at poirfl,,,at timet

the fluid leak-off velocity at poirfl,,,at timet""™

the fracture volume (per unit height)imettk+l
the leak-off volume at tinte"

the volume of fluid injected at tirfhe "
the average width of the fracture

the width change rate

dimensionless fracture width

the fracture width controlled by neest

the maximum fracture width
the fracture width controlled by netgsere

the fracture width at poinflat timet "™

the fracture width at poiftat timet



X; = fracture half length
B = shape factor
5 = the ratio of fluid loss area to fraetarea
B = shape factor at tim&"”
B _ 2n+2
2n+3
% = the surface energy per unit area of the crack
n = poroelastic coefficient
6 = the moving coordinate
K = the mobility coefficient
U = the viscosity
v = the Poisson'’s ratio
(o = the critical stress
% = the minimum in-situ stress
[ = the fracture tip arrival time at a mioh
I = the fracture closure time at pdint
Tik+l = the fracture tip arrival time at poir@at timet*™

I(X) = the total fracture exposure time at the |mrati

r(x) = the fracture tip arrival time at the locati®

7 = the porosity of the rock

Xi



the coefficient depending on the fuaetcross section geometry

Laplace’s operator

Xii
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1. INTRODUCTION

1.1 Hydraulic Fracturing

Hydraulic fracturing is a well stimulation treatnenoutinely performed on oll
and gas wells in low-permeability layers to inceegsoductivity. Special fracturing
fluids are pumped at high pressure into the resermtervals to be treated, causing a
vertical fracture to open. The wings of the fraetextend away from the wellbore in
opposite directions according to the original stesswithin the formation. Proppant,
such as sands of a particular size, is mixed antppd together with treatment fluid into
the fracture to keep it open after the treatmembisplete. Hydraulic fracturing creates
high-conductivity channel within a large area ofnfi@ation and bypasses any damage
that may exist in the near-wellbore area (Schlugdxe®ilfield Glossary).

The technique of hydraulic fracturing has been Widesed in the oil industry
during the last 50 years. Two of the most importgpplications of this technology are
hydrocarbon well stimulation to increase oil and gacovery (Economides and Nolte
2000; Veatch 1983a, 1983b) , and geothermal resesthmulations (Legarth et al. 2005;
Murphy 1983; Nygren and Ghassemi 2006). More #@¥ of gas wells and 50% of oil
wells in North America are stimulated using hydmaufracturing (Valko and
Economides 1995). Mini-Hydraulic fracturing cancatse applied to estimate the in situ
stress (Roegiers et al. 1989), leak-off coefficiéMblte 1979; Nolte and Economides

1989), and formation permeability (Abousleimanlei94; Gu et al. 1993).

This thesis follows the style &PE Journal.



It is important to control the propagation of indddracture because the cost of
hydraulic fracturing operation is high. Fractur@sld be restrained in the target layers,
by preventing them from expanding to adjacent fdaioma Therefore, it is necessary to
simulate the fracture propagation to provide amege of fracture geometry before the
real operation.

During the process of a hydraulic fracturing, thenping rate is maintained at a
higher rate than the fluid leak-off rate, and tlesvly created fracture will continue to
propagate and grow in the formation until shut-in.

Geertsma (Geertsma and Klerk 1969) considered titenpal of poroelastic
effects for influencing hydraulically-driven fractupropagation. Cleary (Cleary 1980)
suggested that poroelastic effects can be expressethack-stress”. Settari included
poroelastic effects through a similar approximai8ettari 1980).

Abousleiman derived the pressure-dependent lealegifation (Abousleiman
1991) instead of the Carter’s leak-off theory, aidulated the PKN hydraulic fracturing
history based on the Detournay’s previous work.

Boone, Detournay and Abousleiman evaluated thectsffef poroelasticity and
the stress intensity factor at fracture tip by thfuence functionf(t’) (Abousleiman
1991; Boone and Detournay 1990; Detournay et &1019

Abousleiman and Gu et al. developed the post-fragiwessure-transient theory
to calculate the formation permeability (AbousleimE991; Abousleiman et al. 1994,
Gu et al. 1993), based on the foundation done bgl@a and Jaeger (Carslaw and

Jaeger 1956). It's a procedure known as “impulssctéire test”, which is an



injection/falloff test designed for determining tliermation permeability. The test
consists of the injection of a small amount ofdlumto the formation to create a short
fracture, and then the valve is shut off with thadf locked in. And the pressure falloff

data is monitored beyond the fracture closure tinese the formation permeability.
1.2 Mechanicsof Hydraulic Fracturing

Hydraulic fracturing operation is complicated asinvolves fluid and solid
mechanics, fluid flow in fracture and diffusion pesses (fluid and thermal), and
fracture propagation. Furthermore, all of the reses are coupled and depend on each

other.
1.2.1 Fluid L eak-off

The type of fracturing fluids used in differentdtaring jobs may vary greatly in
components, which alters their mechanical propertia this thesis, Newtonian and
Power Law fluid will be used in modeling.

Fracturing fluid in opened fractures is in direghtact with fracture surfaces, and
the pressure that is exerted on a formation fotikedracturing fluid into the reservoir
through the fracture surfaces. The fluid may flomoithe pore spaces in the rock or open
new cracks and propagate it into the formation utite fluid flow pressure.

The standard industry leak-off theory was developgdCarter and Settari

(Carter 1957; Settari 1985). This approach usesnatant fluid leak-off coefficieng

to characterize the fluid leak-off rate. Howevedre tfluid spurt loss is not taken into



account. Furthermore, the rate of fluid leak-offtoina formation is considered
independent of the pressure on fracture/resename fand only is a function of time
since the beginning of pumping and the fracturevartime at a location. In this thesis,
the pressure dependent leak-off situation derfveah the theory proposed by Carslaw

and Jaeger and used by (Abousleiman 1991) is used.
1.2.2 Linear Elastic Fracture Mechanics

Fracture mechanics deals with the stability of pigteng cracks and their
propagation. Historically, Griffith (Griffith 19211924) laid a foundation for fracture
mechanics; he applied the energy balance theofyatture propagation, considering
that the total energy consumed in various partheffracturing process is constant. For

the opening mode crack)( Griffiths' theory predicts that the critical asJ,, which is

applied remotely in direction perpendicular to frae length (Fig. 1.1)nheeded to

propagate the crack is given by the following etpmat

2Ey

g =, [—

whereE is the Young's modulus of the materiais the surface energy per unit area of

the crack, anda is crack half length. The quantityv 7R is postulated as a material

parameter called ‘fracture toughness’. The modadtéire toughness is defined as

Km=QME5m”m”m_mm”m”m”m“m”m”mm“m”m_MMJLa



which is determined experimentally. Similar quaest of K and K can be

determined for modd and modell loading conditions.

Flaw

--—34>|

Fig. 1.1 Model (I) crack of a half length in a material.

1.3 Fracture Propagation Models

Several key papers published in the last 50 yeagisal foundation for hydraulic
fracture modeling on condition of different assuimps$, such as two-dimensional
fracture model (Abé et al. 1976; Geertsma and KI&®&9; Khristianovitch and Zheltov
1955; Nordgren 1972; Perkins and Kern 1961) andetltimensional models (Settari

and Cleary 1986; Simonson et al. 1978; Warpins#i @amith 1989).



1.31 PKN Mode

Perkins and Kern (Perkins and Kern 1961) developgdations to compute
fracture length and width with a fixed height. Laordgren (Nordgren 1972) improved
this model by adding fluid loss to the solutionnbe, this model is commonly called
PKN model. The PKN model assumes that fracture hnegs could be neglected,
because the energy required for fracture to prdpagas significantly less than that
required for fluid to flow along fracture lengthndathe plane strain behavior in the
vertical direction, and the fracture has a constagight, and propagates along the
horizontal direction (Fig. 1.2).

From the aspect of solid mechanics, when the fradteight,hy, is fixed and is
much smaller than its length, the problem is reduietwo-dimensions by using the
plane strain assumption. For the PKN model, pldaransis considered in the vertical
direction, and the rock response in each vertieetien along the x-direction is assumed
independent on its neighboring vertical planes.inPkrain implies that the elastic
deformations (strains) to open or close, or shearfracture are fully concentrated in the
vertical planes sections perpendicular to the doacof fracture propagation. This is

true if the fracture length is much larger thanleght.



Fig. 1.2 PKN fracture schematic diagram.

From the aspect of fluid mechanics, fluid flow pesh in PKN model is
considered in one dimension in an elliptical chanhke fluid pressurg);, is assumed

to be constant in each vertical cross section pelipalar to the direction of

propagation.

132 KGD Mode

KGD model was developed by Khristianovitch and Zdwel(Khristianovitch and
Zheltov 1955) and Geertsma and de Klerk (Geertsnth Kerk 1969). It considers
fracture mechanics effects on the fracture tip, snaplifies the solution by assuming
that the flow rate in the fracture is constant #mel pressure is also constant along the

majority of the fracture length, except for a smaljion close to the tips. In this model,



plane strain is assumed to be in horizontal dioectie., all horizontal cross sections act
independently. This holds true only if fracture digi is much greater than fracture
length. Also, since it assumes that the fracturdtlwdoes not change along the fracture
face all section are identical. The model also mesuthat fluid flow and fracture

propagation are in one dimension (Fig.1.3).

Fig. 1.3 KGD fracture schematic diagram.

In summary, KGD model has six assumptions: 1) thetire has an elliptical
cross section in the horizontal plane; 2) eachziootal plane deforms independently; 3)
fracture height,h; , is constant; 4) fluid pressure in the propagatdirection is
determined by flow resistance in a narrow rectaagulertical slit of variable width; 5)

fluid does not flow through the entire fracturedém and 6) cross sections in the vertical



plane are rectangular (fracture width is constdmnaits height) (Geertsma and Klerk

1969).

1.3.3 Penny-Shaped or Radial Model

In this model, the fracture is assumed to propaggtt@n a given plane and the
geometry of the fracture is symmetrical with regpecthe point at which fluids are
injected (Fig. 1.4). A study of penny-shaped freetun a dry rock mass was carried out
by Abé et al. (Abé et al. 1976). In their studyeythassumed a uniform distribution of

fluid pressure and constant fluid injection rate.

Wellbore

e -7 Frac tip
Fig. 1.4 Geometry of a penny-shaped or radial model.
1.3.4 Comparison between 2D Models

The following Table 1.1 makes comparison of thee¢htypes of 2D hydraulic

fracture models.
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Table 1.1 Comparison between traditional 2D hydraulic fracture models

Model Assumptions Shape Application
PKN Fixed Height, Elliptical Cross Section Length »Height
Plain Strain in vertical direction
KGD Fixed Height, Rectangle Cross Length «Height
Plain Strain in horizontal direction
Section
Radial Propagate in a given plane, | Circular Cross Section Radial

Symmetrical to the wellbore

1.3.5 Three-dimensional and Pseudo Three-dimensional M odels

The 2D fracture models discussed in the previous@es have been reasonably
successful in practical simulation with a simpbfiealculation. However, they have
limitations in that it is required to specify fraceé height and/or assume radial fracture
geometry to perform them. To solve that probleneud®-3D models are formulated by
removing the assumption of constant and uniforngiite{Morales 1989; Settari and
Cleary 1986). Instead, the height in pseudo-3D rsodea function of position along the
fracture and simulation time. Different from 2D net&l a vertical fluid flow component
is added in pseudo-3D models, and fracture lengiinst be much greater than fracture
heights. The even more complex fully 3D modelsiateduced to handle fractures of

arbitrary shape and orientation by removing theimggions in Pseudo-3D models.
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1.4 Porodasticity

During the propagation of a hydraulic fracture,ctuming fluids loss into the
permeable formation causing the pore pressurectease in the reservoir matrix, which
in turn will cause dilation of the rock around thiacture (Fig. 1.5). This will, in turn,
reduce the width of the fracture. Rock deformattso causes pore pressure to increase.
Often thedesign of hydraulic fracturing and the stress aialynust take into account
the influence of pore pressure increase causedakydff. The first detailed study of the
coupling between fluid pressure and solid stredddiwas described by Biot (Biot 1941).
In poroelastic theory, a time dependent fluid flswncorporated by combining the fluid
mass conservation with Darcy's law; the basic d¢mtiste equations relate the total
stress to both the effective stress given by dedtion of the rock matrix and the pore
pressure arising from the fluid. Biot’s theory adrpelasticity has been reformulated by
a number of investigators (Geertsma 1957; RiceGadry 1976).

Geertsma(Geertsma and Klerk 1969) considered thenpal of poroelastic
effects on hydraulically-driven fracture propagatilowever, Geertsma concluded that
these effects were not significant in practicaluaitons. Cleary suggested that
poroelastic effects can be expressed as “backsst{€eary 1980). Settari included
poroelastic effects through a similar approximati(®ettari 1980). Ghassemi and
Roegiers (Ghassemi et al. 1996) presented a coygemklastic model using the 3D
displacement discontinuity method.

A poroelastic PKN hydraulic fracture model basedaonexplicit moving mesh

algorithm was developed by Boone, Detournay, andualeiman et al. (Abousleiman
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1991; Boone and Detournay 1990; Detournay et a@01® In the latter two, the
poroelastic effects, induced by leak-off of thecfraing fluid, were treated in a manner
consistent with the basic assumptions of the PKNlehdl'his model is formulated in a
moving coordinates system and solved by using ahaidinite difference technique.

Abousleiman derived the pressure-dependent leakegtiation(Abousleiman
1991) instead of the Carter’s leak-off theory, amdulated the PKN hydraulic fracturing
history based on the Detournay’s previous work.

Boone, Detournay and Abousleiman evaluated thectsffef poroelasticity and
the stress intensity factor at fracture tip by thfluence functionf(t’) (Abousleiman
1991; Boone and Detournay 1990; Detournay et &019

Abousleiman and Gu et al. developed the post-fragiuessure-transient theory
to calculate the formation permeability (AbousleimE991; Abousleiman et al. 1994,
Gu et al. 1993) , based on the foundation done émsl@wv and Jaeger (Carslaw and
Jaeger 1956). It's a procedure known as “impulsectéire test”, which is an
injection/falloff test designed for determining tHermation permeability. The test
consists of the injection of a small amount ofdlumto the formation to create a short
fracture, and then the valve is shut off with thadf locked in. And the pressure falloff
data is monitored beyond the fracture closure tinese the formation permeability.

This thesis builds on the numerical modeling by Js@ (Jun 2009who
developed a poroelastic PKN model for the propagatphase without pressure

dependent leakoff.
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Reservoir

Fig. 1.5 Mechanics of poroelasicity.

1.5 Post-fracture Pressure-Transient Analysis

Pressure transient analysis has been used sudbessfastimate reservoir and
fracture properties. Early studies concerning ttesgure transient behavior of vertically
fractured wells include Muskat who used an analfyictured well model that assumes
steady-state flow conditions to investigate presslistributions and fluid entry patterns
in the vicinity of a vertical fracture (Muskat 193van Pollen et al. (Poollen et al. 1958)
and Prats (Prats 1961) assumed steady-state amsddonsidering the response of both
finite and infinite conductivity fractures (defineds equation (1.3)).. Prats also
introduced the concepts of dimensionless fractwrdactivity and effective wellbore
radius for vertically fractured wells. The dimend&ss fracture conductivity is defined

as:
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where K; is the fracture permeabilityw is fracture width,k is the reservoir

permeability, andX; is the fracture half length.

The theory for post-fracture pressure-transientlyasa was proposed by
Abousleiman and Gu et al. 1994 based on the work (Ayousleiman 1991,
Abousleiman et al. 1994; Gu et al. 1993). The mdthmgy is used to interpret an
impulse fracture test (an injection/falloff test) determine the formation permeability
and reservoir pore pressure. In this test, a snedlime fluid around 10 finjected to
the formation to create a short fracture, and ttienwell is shut-in and pressure is
recorded. The pressure falloff after closure isdusederive formation permeability and
reservoir pressure. The advantage of this tedtdas d@ hydraulic fracture can pass the
near wellbore damaged area, so the true formasomexposed to flow transients.
Consequently, the permeability and reservoir pressietermined using this theory is
potentially much more accurate.

This analysis of this test is based on the distidouof sources of variable
intensity along the fracture trajectory. It caldek the formation permeability and
reservoir pressure by analyzing the pressure gahduring both the linear fracture flow

regime in early time, and the radial flow regimeadbng time.
1.6 Research Objectives

The objectives of this study are:
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1) To model 2D hydraulic fracturing propagation higtbly coupling fluid flow
and rock mechanics, as well as the poroelastictsfifen fracture geometry
and pressure distribution inside the fracture.

2) To study the influence of pressure inside the €nacon fluid leak-off rate
and further on fracture propagation history.

3) To analyze post-fracture pressure-transient cung then to estimate the

formation permeability.

1.7  Sign Convention

Most published papers concerning poroelasticity sm®r tensile stress as
positive. However, in rock mechanics, compresstvesses are generally considered as
positive for the convenience of engineering usethls thesis, in order to be consistent
with the rock mechanics literature, all equations presented using the compression
positive convention. This sign convention is addpter the remainder of this thesis

unless otherwise specified.
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2. APKNHYDRAULIC FRACTURE SIMULATION WITH CONSTANT

LEAKOFF COEFFICIENT

2.1 Introduction

The Perkins-Kern and Nordgren hydraulic fracturedeldPKN) is widely used
in the oil and gas industry to design fracture ttremts. Its vertical plane strain
assumption is physically more acceptable than othedels for height-contained
fractures, where the fracture length is considgrgpéater than the fracture height. In
this thesis, | developed a PKN model based on thik wublished by Detournay et al.
1990, which considered poroelasticity with constiaikoff coefficient using moving
coordinate scheme. Then, | extended it to congitessure dependent leak-off similar to
Abousleiman (Abousleiman 1991). And finally devel@bgorithms for reservoir

permeability determination using the results ofiai+frac test.

2.2 Governing Equations

In accordance with PKN model, the fracture has mastamt heightH, elliptic
vertical cross-section with the maximum width, at the center. And it propagates in
horizontal x direction (see Fig. 1.2). Given thgation rate Q,) at the wellbore, the
fluid properties, the mechanical properties of tbek, the magnitude of the minimum
in-situ stress 4;), the virgin pore pressure of the formatign)( and the leak-off
coefficientC, it is required to determine the pressure historthe borehole (fracture

inlet), as well as the fracture width and lengtlstdiy over time. The mathematical
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model for this problem is described below.
221 Fluid Momentum

The fluid pressure in a fracture is assumed torb®um over the cross sections
of the fracture, varying only in horizontal direati along with fracture propagation. The

momentum equation for laminar flow of a power fliscshown as following:

|n—l

op, 2Kajq
T (2.1)

where Py is the fluid pressure in the fractur‘é,:Q/ H is the average flow rate per unit

height of fracture W= AlH s the average width of the fractukejs the vertical cross-
sectional areaK is the constitutive constant for a power law fluidis the power law
index andy is the Shape factor dependents on the geomethedfacture cross section

(Nolte 1979):

2n+1
n I+H/2 W, n

w :m (Wy) dy ...................................................... (22)

-H/2

whereW is the width of the fracture at the vertical cooatey. For an elliptic cross

section, the equation is shown as following (Detayret al. 1990 ):

4n+
o TG e
2n

W e (2.3)
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2.2.2 Local Fluid Mass Balance

Considering fluid leak-off, fracture volume changed fluid injection, the local

fracturing fluid mass balance is written as (ddseuliin Appendix (A.2)):

whereu is the fluid leak-off velocity accounting for bosides of the fracture walls.
2.2.3 Leak-off Equation

The classical Carter leak-off theory (Howard andtA®57) is adopted here

TGy

whereC, is the leak-off coefficient, is the time since pumping starts, and the arrival

time of fracture tip at locatiorn
2.2.4 Pressure-width Relation

The fracture widthw consists of two components® which is controlled by net

stress® ~ Pt _00, andwP which is controlled by net pressuArgz Pe =P Pris fiuid

pressureg, is the minimum in situ stress, apglis the virgin pore pressure.

The net stress effect is approximated as being ypwekastic (Boone and

Detournay 1990; Detournay et al. 1990 ):

WESM_(Pf = 0,) coiiiiiiie e e e (2.7)
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whereMe =7L-V)H /4G

is the fracture compliance, amds the Poisson’s rati@ is
the shear modulus, or el8& should be found from an elastic analysis in plsiain.
The net pressure controlled poroelastic effectlmdescribed as (Boone and Detournay

1990; Detournay et al. 1990 ):

WP ==200PM_ T (7)., (2.8)

wherey is a poroelastic coefficient whose theoreticaliealanges fromosns%, and
f(t') is an evolutional function which varies betweemr@l 1 ag~ approaching 0 and
wrespectively (Fig. 2.1), used to evaluate the &fed poroelasticity. The symbol
denotes as a dimensionless fracture surface exptasu since the fluid arrival which is
defined as :

o2 Adt=1(3)]

wherec is the diffusivity coefficient. For PKN model, trevolutional functiorf(t’) is
generally dependent on the elastic contrast betweemeable and impermeable layers.
In case of identical elastic properties existinghia reservoir and barriers, the following

expression fof(t') was derived (Boone and Detournay 1990) as :

oy 4T y
f(t") =—|erf Y o0 (2,10
(t) { 0(2 Tm)g(y) y (2.10)

where

g(y)=1—\/g\/\/4+ Y2 =Y e (2011)



20

1 —
08}
0.6
= |
0.4}
02}
IHHHI | IHHHI | IHHHI | IHHHI | IHHHI | IHHHI | IHHHI | IHHHI
90“‘ 10° 10° 10t 10° 10 10° 10° 10*
t*

Fig. 2.1 Poroelastic evolutional function.

By substituting (2.7) and (2.8) into (2.6), thegmeare-width equation is obtained:

p:Mﬂ+2/7/1pf(tD) e (212)

Cc

2.25 Global MassBalance Equation

The foregoing equations apply in the rangddefx< L. The fracture length is
a function of time, which can be derived from abglbmass balance consideration. The

basic principle of the global mass balance equatiahat, the volume of the fracture is
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equal to the volume of fluids pumped into the fuaetminus the volume of cumulative
leak-off fluid:

L(t) t L(t) t

jw(x,t)dx+j [ uet )t = oy ()t oo (2.13)

2.2.6 Initial and Boundary Conditions

The boundary conditions used to solve the abovaterusystem indicate the
flow state at two fracture end points. At the fraetinlet, the flow rate is equal to the
injection rate; and at the fracture tip, the ‘neéss’ is zeroThey are expressed as the

following equation:

q(0,t)=q,(t);it>0
p(L,t)=0;t>0

And the initial conditions indicate the initial staat timet =0. Both fracture

length and fracturing pressure are zero at tire0. They are expressed as the

following equation:

L(0)=10,p(0,0)= Oureeovviieiiiiiie e enn(2.15)

2.3 Moving Coordinate System

The governing partial differential equations ddsed in the preceding section

are defined on a range F=xs< L(t), which varies during fracture growth. An
algorithm based on usual spatial discretizatiorequby Qiang Zhang (Qiang 2001)

needs be adjusted every time step because of taegicly fracture length during
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simulation. However, one can use a moving coordin@atto make the re-meshing
unnecessary. The moving coordinate is expressed as:

2 I () TP (2.16)
which has a range of [0, 1]. This algorithm allosvee to use a constant number of nodes
to discretize the variable fracture length throughibhe solution procedure. Nilson and
Griffiths (Nilson and Griffiths 1983) implementeldet moving coordinate system and a
finite difference scheme to solve a KGD fracturedelo The PKN fracture model is
based on an explicit finite difference scheme, Whis coupled with an adaptive
technique for calculating the optimum time step.

To convert the parameter frormto 6 with the foregoing transformation (2.16),

spatial and time derivatives transformation areimegl (Nilson and Griffiths 1983):

o) _19] e (2.17)
ox, Ladg|

and
0| _0] _yLo e (2.18)
at), o, Lod

where the length change rate=dL/ dt .
Using the transformation described above, the emumt(2.1), (2.4), (2.5), an

(2.12) are reformulated as the following equations:

n-1
10p  2Kalq
Ijgsjmﬁfmmmmmwmmmmmmmmmwmmmm@w)
_6Low 14dq
W T = e (2.20)
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p(6.t) :Mﬂc+ 1, 1 (w .............................................. (2.22)
sincex=46L(t)anddx = L(t)dg , equation (2.13) is written as :
Lj.w(e,t)d¢9+j|'L(t')iu(e,t')dé?dt' :j'qo(t')dt' e (2.23)
0 0 0 0
with boundary and initial conditions as the followi
A0t =0, O p@)=0t> 0 (224

L=0;p=0; att=0
The five equations above contain five unknova@@t), q(4,t), w(é,t), L(t) and

u(@,t). In addition, the fracture arrival timegd,t) at a moving pointngL(t) is

unknown. However, it can be computed from the isgepof fracture length-time

relation,r(e’t) =L (HL(t))

(described in the Appendix (A. 4)).

Attention should be paid to mesh discretizationwhich 10 to 15 grid points are
acceptable for this problem (Abousleiman 1991), iednodes are distributed according
to a geometric progression (described in the Appe(d. 3)), which increases their

density at both ends of the fracture, near thetdractip and the wellbore to account for

the high pressure gradients in propagation as ageih fracture recession (see Fig. 2.2).

o i+
A system ofl -1 auxiliary mid-nodes 2 s also introduced to calculate the flfixo
avoid infinite flux values at the fracture tip. tine following section, the discrete values

are denoted by a subscript corresponding to thealnadmber and a superscript
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— k k —_ k k — k
corresponding to the time-step. Such \g@,—\/\(@,t ), Gy = (6Lt ), L =L( ),

etc.

93’2 95;’2 9?.-’2 gx—jﬂ 9»—3"2 9—13’2
Ll L | { e s = s = = = a w | 1 | |
91 92 % 9-1 9?4—3 9:!—2 gx—l 9:!

Fig. 2.2 Mesh discretization.

24 Discrete Equations

Using finite difference scheme, the governing eiguatare expressed in terms of
discrete variables. With the forward Euler diffeszen(see Fig. 2.3) in time, the local

fluid mass balance equation (2.20) can be writen a

® ;r+1
[ ® L
i-1k ik i+14k

Fig. 2.3 The explicit forward finite difference scheme at time step k.
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'k _ k _ K
I+1 i i+1 -1

where A" =t"—=t“  Note that an upwind differentiation scheme is mdd

K K
30 _6—6;’ in order to reduce the ‘advection error’ ass@dawith the moving
i1

ow
mesh. At nodeN~1 the forward difference formula foP€ is unstable during

simulation and a backward difference formula isdusstead:

wer :V\/lil—l+Atk+l|:£0N_lLk V\/k,_l_th—zj_E[qlﬁl—uz_qlﬁl—slzJ_ k } i=N-1

Uy
L GN—l_gN—Z L HN _HN—Z "
cereeenennn(2.26)
At the first and the last node, equation (2.25pecialized as
k _ ~k
WE = —Atk+l[%M+ u;} ............................................... (2.27)
2
+
WS =0 (2.28)

For a receding fracture, the derivative at node 7 should be replaced by the

QJ|Q)
=

6 =81 (described in Appendix (A.8))

'k _ k _ K
W = K +Atk+1{(%%j_%(%j—uﬁ} 1=2,N-1.....(2.29)
i i-1 i+1 i-1

backward difference form

The equation (2.29) is specialized for the first and last nodeirth recession,
which is the same as equation (2.27) and (2.28).

The pressure-width equation (2.22) becomes
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pl V\}<+ . 2,7/1 f (4C(tk+1 k+1)

C

YA ZLN e (2.30)

In which the fracture arrival time is evaluated as (described in the Appendix

(A.4))

T =M AL) e (2.30)

The fluid momentum equation (2.18) is discretized as

1/n
k+1 k+1
[ + W k+1 k+1
(wi+ i)™ -

k+1 k+1 H
1, =Sign s " =1,N-1
ql 1/2 g (p p l)l/l 22n ZKLk 9i+l el ‘
...(2.32)
wheresign () denotes the sign of argument.
The leak-off equation (2.21) becomes
= =N -

For a propagating fracture the leak-off velocitythé fracture tip is infinite

=t

according to equation (2.33) because . For the purpose of evaluating the fluid
leak-off volume lost by the tip element (as neete(®.23)), the average fluid leak-off

between nodesi -1/2 and N is assigned to the last node.

U 2 G N e (2.34)

k+1 k+1
t TN—l/Z

To update the fracture length, we will examine the globamass balance

equation (2.23). AK*1iime step it is written as
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Vo SV e 0(2.35)

inj

Vk+1 Vk+1 k+1
¢ stands for fracture volume (per unit height), is leak-off volume, ana/'nJ is the

volume of fluid injected, at time ™. The fracture volume is evaluated as
V= B I, (2.36)

where g is a shape factor, which is used to calculate the volafreefracture:

k+l §+N 1( +1 | 1)VVk+l (1 0N 1)Vvk+1
2 = 6vvf+1 ....................................

k+1
The volume of fluid |njectea/'”I is the summation of fluid volume injected

k+1
during every time step, and the volume of fluidtlds the formation!  is the

summation of the fluid leak-off volume along thetien fracture length during every

time step, and they are respectively calculated as:

k+1
vt = quAt' SV F Oy AT, (2.38)
1k N o
__ZZ( i+1 _gi—l)uijAtJ
= e (2.39)
. Atk+1|_k N ™
=Vt 5 Z(gi+1_ U
i=1

In equation (2.39) central difference is appligoe®al attention should be paid
to the summation at the first and last node, ag tlweupy only half a cell. So it can be

expressed as:

k+l — k Atk+l Lk

N-1
v {Z( AU+ (6, 01)u5”+(9N—9N_1)uh”} ....... (2.40)
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The fracture IengtH-k+1 can be derived from equation (2.35) and (2.36) as

k+1 k+1
a_ Vi~V
Lt = ﬂlm e 0 (2.41)

Finally the change rate of the fracture lengthas needed in (2.25), can be

updated using the backwards difference equation as:

. k+1

Lo o= (L =) At e (2.42)

25 Stability Criterion

A popular method developed by Von Neumann analythes conditions of
unstable propagation of a perturbation on a fidifeerence grid with time (Press et al.
1989). The following is the approach derived by ddebay et al. 1990 for the
calculation of the time step: rewriting the PKNuatjons in the form of a diffusion-type
equation ofW, by substituting equation (2.19) and (2.22) in2a2Q) and ignoring the

leak-off and poroelastic terms, we get the follagvihffusion-type equation foy:

0°w (2n+1)cw( ) el;a\_/v

\/'v:qNag2 1 69(243)
where thédiffusivity coefficient’ G, is given by

cW:[mnz((ff’;‘)"’;:Lm%VH]J/“...................................................(2.44)

Note that for Newtonian fluidsr(zl) G reduces to

c :st(us)

(1 —v)uHL
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Apparently, the differential equation (2.43) isHignonlinear, asv is a function
of W. We assume that the stability condition can lsessed by ignoring the second and
third term (to satisfy the nonlinear stability)time right-hand side of the equation (2.43),

So it is expressed as:

According to the Von Neumann stability analysisgaknown as Fourier stability

analysis), the stability requirement to the one&hsional heat equation (2.46) is:

At _1
S 247
AG? 2 ( )

and calculating,, from the previous time step. The critical timws%tc att“™ is then

computed at each iteration according to the gerséahility criterion for heat equation

k
w /i

2
Atf*l:min{z?e‘ };i TN = Lottt et et (2.48)

In fact, based on a dimensional analysis, it carshmvn for a PKN geometry

without leak-off that (Nolte and Economides 1989)

1 Y(2n+3)
w-L e (2.49)
L~t(2n+2)/21+3
Consequently,
Gy~ e e (2.50)

which implies thatAtC increases linearly with time when there is no fli@ak-off.



30

2.6 Solution Procedureand Time-stepping

The numerical solution must start with any inis&te. It's impossible to start at

L =0 att=0: hence an artificial initial condition based on approximate solution is
necessary. Here we impose the approximate sol(hoite and Economides 1989) in

order to calculate the initial length, width, pness etc at a small initial time. With the

k
K k :
nodal quantitiesv,\r, R : q%, U , L andL* at timetk, the solution is advanced to
the next timet“™ using the following the procedure:
1. The magnitude of the next time sté}i,kﬂ. In the case of constant fluid leak-off

coefficient, At s calculated using the stability criterion (2.48)

+1
2. The fracture width, " , is calculated using the local mass balance emuati

(2.25) when the fracture propagates; and equat®bR9) when the fracture

recedes.

k+1
3. The ‘net stress’,pi , Is estimated from equation (2.30).

k+1
4. The flow rate,qﬂi?, is updated from equation (2.32).

k+1

5. The fluid leak-off rate",% , IS evaluated using (2.33) and (2.34).

Jk#
6. Finally the fracture Iengtl’ork+l and its change rate are updated from (2.41)

and (2.42), respectively.
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2.7 TheProgram Flow Chart

According to the solution procedure described abavieow chart of the program
is made (Fig. 2.4). First step is to determine Wweetthe poroelastic effect of the
formation is to be considered or not. The poroalastefficient is set to be zero when
assuming the formation is elastic; otherwise & ison-zero value ranges from 0 to 0.5.
The next step is to input the other parameters,iaitidlize a small starting time, and
calculate the initial fracture length, pressureltj etc. Then start the loop according to
the solution procedure, if the simulation time é@sd than the input shut-in time, the
fracture is propagating. In this case, after adjnstinitial values at the first time loop,
and then calculate the values for next time stefhénorder of the solution procedure.
During shut-in phase, i.e., when the simulationetila larger than the shut-in time,
injection is ceased and fracture recedes. Thi®me dy setting the injection rate to be

zero. Calculate the parameters in the same ordemathe propagation section

. k+1
(A" > W= p'= g, = u = = L), until the fracture width or pressure

or length is small enough or is zero.
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Fig. 2.4 The flow chart of the program.

2.8 Vaerification of Solution

Assuming one simple case when a fracture is drisempermeable rocks (no
fluid leak-off) by a Newtonian fluid pumped at anstant rate, based on the argument of
self-similarity, the dimensionless length, widthressure, and time corresponding to the
fracture length, maximum width and pressure at itlet and simulation time, are

expressed below as derived by Nordgren (Nordgré&2)19



L, (t,) =1.56,%°

Wo (0,8 )= 1.0, %

P, (0,t, )= 0.85%."°

And

LD :E[Lir L
4| (1-v)uQ,

1 G 3
W, == —— | W,
4{(1-V)/~1Qj

_1{(1—1/) H } )

Po =16 G uQ,

1

_1 GQ P

tD__ _ 2113 t
16| (1-v Y u’H
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e (2.50)

e (2.52)

Table 2.1 Input data for verification

Fluid viscosity, 4

5.6x 10" MPas

Injection rate,Q, 4x10° m’/s
Poisson’s ratioy 0.2

Shear modulusG 1x10'MPa
Fracture heightn 10m
Injection time,t 1000 sec
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Fig. 2.5 Fracture length history-no leakoff.
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Fig. 2.7 Fracture pressure history-no leakoff.

Note that to be consistent with Nordgren’s notatiWh is defined with respect to

the maximum fracture width (see Fig. 1.2), whichrétated to the average width

w, =4w/ T
by

. This problem is simulated by the numerical mod&h the same
assumption as the Nordgren solution (Table 2.1thout leak-off and Newtonian fluid.
The fracture length, width and pressure figureg.(Ei5), (Fig. 2.6) and (Fig.2.7) show a

close agreement between the two solutions.



37

2.9 Case Study

To compare with the results of previous work bydbdenay,et al. (Detournay et

al. 1990 ), the PKN fracture model withcenstant fluid leak-off coefficient is simulated
by injecting at the constant flow ra€g, for 1000s, and then the well is shut in (Table

2.2). After the shut in of the well, the fracturmghing is analyzed without fluid flow
back. Poroelastic effect is included by considettihg function (2.6) and adding the

aperture due to ‘net pressure’.

Table 2.2 Input data for constant leak-off coefficient simulation

Power law constitutive constarx, 5.6x 107 MPas’¢
Power law fluid indexn 0.8

Injection rate,Q 4x10° m’s
Poisson’s ratioy 0.2

Shear modulusG 1x10' MPa
Fracture heightH 10m

Leak-off coefficient,G 6.3x10° m/g**
Interface pressure']p 1.7MPa
Poroelastic coefficienty 0.25
Diffusivity coefficient, ¢ 0.4 m%s
Injection time,t 1000 sec
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Fig. 2.8 Fracture length change with time, with and without poroelastic.
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Fig. 2.11 G-function during fracture recesion.

The fracture length as shown in Fig. 2.8 will cong to propagate beyond the
point of shut-in, which is due to the continueddldlow in the fracture driven by the
existing pressure gradient. However, Figs.2.9 ardd 2how that both the fracturing
pressure and maximum width increase with time duimpecting fluid, and decline since

shut-in. The poroelasticity causes a significardrease in fracturing pressure and a
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slight reduction in fracture width, without affenfj the fracture length. And the G-
function curve in Fig. 2.11 is used a lot to caltalthe leak-off coefficient.

To verify the results of this study, the plots a@mpared with the results of
Detournay et al. (Detournay et al. 1990 ). It turroit that the simulation results of the
net fracturing pressure, the fracture length, amimum width are close (described in
the Appendix (A.5)), with the differences less tH&#. The good agreement between

my work and Detournay further validated the simuolaresults of both studies.

2.10 Summary

From the study, the effects of poroelasticity oacfure propagation can be

summarized as the following:

1 Poroelasticity causes a significant increase ictfméng pressure

2 The fracture length is unaffected;

3 The fracture width is slightly reduced.

Consequently, this study suggests that poroelafftects can cause a significant
increase of the fracturing pressure, but haveelitifluence on the geometry of the
fracture. This is a direct consequence of assuraimgnstant leak-off coefficient: the
fracture volume (shown as fracture length and widashcontrolled by the difference
between the injected fluid volume and the leakvaffume, both of which are pressure
independent, leading to the fracture volume is fecédd by the poroelasticitit can be
expected that for pressure dependent leak-offptRdiction of both fracture geometry

and pressure will be different. Since the pressesponse is under strong influence of
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poroelasticity, ignoring poroelastic effects caadeto an erroneous interpretation of
parameters such as minimum in situ stress, leake#fficient, when determining of the

state of the formation during an actual treatment.
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3. APKNHYDRAULIC FRACTURE SIMULATION WITH PRESSURE-

DEPENDENT LEAKOFF
3.1 Introduction

The Carter’s leak-off theory as described in equm(R.5) indicates that the fluid

leak-off rate at any point along the fracture atetis related to a constant leak-off

coefficientq . However, it does not consider the influence onfetivariable fluid
pressure inside the fracture. It is easy to imagireg, the fracture pressure goes up
during injection, which pushes much more fluid itb@ surrounding formation. While
the fluid pressure inside the fracture goes dovier afell shut-in, a lower fluid leak-off
rate along the fracture should be observed, unélftacture closes at the time fluid
pressure equals to the reservoir pressure.

The horizontal cross-section of PKN fracture masligh constant heighti  (Fig.
1.2) is shown in Fig. 3.1, & length fracture propagates in the horizontal dioecX ,
and the flow of the fracturing fluid into the posoformation is assumed to be linear and

perpendicular to the face of the fractureYidirection, under the influence of fluid

pressurepf in the fracture.
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Fig. 3.1 A fluid-pressurized stationary fracture.

3.2 Governing Equation
3.2.1 Pressure Dependent L eak-off Equation

It can be shown that leak-off effect can be sepdratto two parts: one part is
the in situ effective stress neglecting the roc&rggth and thus the toughness in tension;
and the other part is the ‘net stress’, which cleangith time (Abousleiman 1991). The

pressure dependent leak-off equation is (desciibédgpendix (A.6)):

_ 2k(0,-p,) , 2« fop(xth) 1

u_\/nc(t—r(x)) Jme g, ot -t

whereu is the fluid leak-off ratexis the mobility coefficient defined as the ratiotbé

permeabilityk to the viscosity,, c is the diffusivity coefficient defined as=i, and
P

@is the porosity of the rocl«Cpis the compressibility of the pore and pore flydtem,

tis the time since pumping start(x) is the arrival time of the fracture tip at locatian
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(described in Appendix (A.4))J,is the minimum in situ stres§),is the virgin pore

pressurepis the ‘net stress’ defined g3= P; —J,, and p;is the flow pressure in the

fracture.
3.2.2 Pressure-width Relation

The pressure-dependent leak-off will change theidflleak-off rate to

surrounding formation, sincePis the reduced fracture width caused by fluid lwge

the permeable formation and induced a dilationhef gurrounding rock. Consequently,

the pressure-dependent leak-off changesVYHE)rmula from (2.8) to the following

expression (Detournay and Cheng 1991):

__ _ oy _ [ Op(x,t) . Act-t)
W' ==21M (0, = Po) F (1) - 27M, [ = f

7(X)

N (RTUTRRIT (3.2)

in which , is the poroelasticity coefficientVl, is fracture compliances the fracture

W . : : o
height. P also consists of two parts’ effects: the firsttewn the right of the equation is
the effect of the in situ effective stress neglegtithe rock strength and thus the
toughness in tension; the second term is the effeitte ‘net stress’.

Combining equation (2.6), (2.7) and (3.2)

. fop(xt), Act-t), .,
p:l\‘/’l"c+2,7;|pf(t)+2qj p((;t(l Iy f_'z Dt e (3.3)

7(X)
Translating equations (3.1) and (3.3) into a mowagrdinate system, according

to (2.17) and (2.18)
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a7

__ 2@, p) 2 MOy 3.4
u(é,t) \/m(t_r(at))+ﬁ !t) = =t (3.4)
)+2qj ap((;t(t)f(t £ "o (3.5)

7(X)

Discrete equations (3.4) and (3.5) using an exgliute-difference scheme:

kot _ g, ~ P, h(@,t)

| 5 S0 G =1 N Lo 3.6
Y \/_ /k+1 k+1 .[ /k+1 T (3.6)
k+1= 2K 2(0 po) 3
= k+11) e (B.T)
o =" 20, - n)f(u)wﬂjh(e't)f(““(t Oy
............................................................................................. (3.8)
hot)=POt) _0p@.L)_LE)op@Ly g

at’ ot Lt) 06

Comparing to the previous section, these two modhalge the same fluid

momentum, local fluid mass balance, global masanoa& theory, and initial and

boundary conditions. The difference is that theghaplifferent leak-off theories, which

leads to different width-pressure equation. Sambitisa procedure to previous

simulations will be used in this one.
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3.3 Stability Criterion

For pressure dependent leak-off, the time-stepplggrithm is the same during
fracture propagation. It is also estimated by equaf(2.48). While during fracture
recession, the size of the time step is limitedatpreset maximum change of width

between time steps.

3.4 Case Study

34.1 Thelnput Data

The PKN fracture model with pressure-dependent fleak-off rate is simulated
by injecting fracturing fluid at a constant rate 1®00 seconds, and then shut-in the well

to let the fracture recedes (Table 3.1).



Table 3.1 Input data for the pressure-dependent leak-off simulator
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Power law constitutive constark,

5.6x10° MPas

Power law fluid indexn

Injection rate,Q, 4x10° m’/s
Poisson’s ratioy 0.2

Shear modulusG 1x10 MPa
Fracture heightH 10m

Mobility  coefficient  for  reservoil 8.36x 10° m% MPas
fluid, KAPPA

Interface pressurel, 1.7MPa
Poroelastic coefficienty 0.15

Diffusivity coefficient, c 0.4 m?ls

Injection time,t 1000 sec

The following plots show how the fracture lengthdin and pressure change

during fracture propagation.
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Fig. 3.2 Fracture length change history with pressure-dependent leak-off.
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dependent leak-off.
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Fig. 3.5 The G-function curve.
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Fig. 3.7 The fracture, injection and leakoff fluid volume history with
poroelasticity.

Comparing with Figs.2.8, 2.9 and 2.10, similar dosion could be drawn from
Figs.3.2, 3.3 and 3.4 shown above: fracture lengtaximum width and fracturing
pressure increase during the period of injectioactiire width and pressure decline
sharply after shut-in; fracture length continuesirtorease after shut-in because it is
continuously driven by the fluid pressure evenrafie fluid supply has stopped; and

finally, they all decline gradually to zero wher ttuid leak-off dominates the process.
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In Figs. 3.2-3.4 the fracturing pressure increasi#s poroelastic effect in both
the propagation and recession stages. While in Bigsand 3.3, we observe that it will
produce a smaller fracture length and width whero@astic effect is included. Since
the pumping time and the fluid injection rate inttb@imulations are the same, it is
concluded that the poroelastic effect will forcermdluid to the formation. And these
conclusions are similar to the work done by Abonséa 1991 (described in Appendix
A.7). The effects of poroelasticity are expressethe following aspects: poroelasticity
causes a significant increase in the fracturingsuree and also causes a smaller fracture
volume with smaller maximum fracture length and tWidThe G-function plot in Fig.
3.5 is used a lot in the industry. The fluid leaki® formation faster as the pressure is
higher in the fracture with poroelasticity, compariFig. 3.6 with 3.7 that the fracture

closure time is shorter in Fig. 3.7.
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4. SENSITIVITY ANALYSISOF FLUID AND FORMATION PROPERTY
4.1 Introduction

In oil and gas industry, in order to get maximuracfure conductivity and to
produce hydrocarbon out of the underground as mandhfast as possible, it's necessary
to optimize the process of hydraulic fracturingao$pecific kind of reservoir according
to both the fluid and formation character.

In this section, the sensitivity of mechanics prtipe of fluid and rock to the
fracture geometry and fracturing pressure is ama@yaccording to the simulator
described in the previous sections. The effecttual viscosity, shear modulus of rock,
and the fluid leak-off coefficient on fracture geetny and pressure are studied. To
clearly show these effects, the simulator describezkction 2 with elastic formation is

applied.
4.2 Fluid Viscosity

The effects of fluid viscosity on the fracture gexing and fracturing pressure is
modeled by taking into account the same kind ainftiton, and inputting the power law
constitutive constant to bé&.6x10° MPas™®, 3.08x10° MPas’® 5.6x10°
MPas™® 3.08x 107 MPas’® 5.6x107 MPas’® 3.08x10° MPas’® 5.6x10°
MPas’® 3.08x 10° MPas>®and5.6x 10° MPas’® (Table 4.1) and running these cases

respectively:
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Table 4.1 Input data to examine the effect of fluid viscosity

Power law constitutive constark,

5.6x10°,3.0% 10 ,5.8 16 ,3.68 10
5.6x107,3.0% 10 ,58 10 ,3.68 10

MPas>®
Power law fluid indexn 0.8
Injection rate,Q, 4x10° m’/s
Poisson’s ratioy 0.2
Shear modulus(s 1x10'MPa
Fracture heightH 10m

Leak-off coefficient,G

6.3x10°m/&*

Interface pressure], 1.7MPa
Poroelastic coefficient; 0.25

Diffusivity coefficient, c 0.4 m¥s
Injection time,t 1000 sec
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Fig. 4.1 Fracture maximum width changes with different fluid viscosity.
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Fig. 4.1 and Fig. 4.2 show that the fracture widttlreases with increasing of the
fluid viscosity and the fracture length decreasé$ the increasing of fluid viscosity.
Fig. 4.3 indicates that a wider and shorter fractwill be produced with higher fluid
viscosity and a narrower and longer fracture walldgsoduced with lower fluid viscosity.
Fig. 4.4 tells that a higher pumping pressure gquired to deal with higher viscosity
fracturing fluid under the same formation and operaconditions. These results are in a

good agreement with the industry practice.

4.3 Formation Shear Modulus

Considering different types of reservoirs, we exaadi the effect of formation
shear modulus on the fracture geometry and fraxgupgressure, while keeping the
pumping fracturing fluid and operation conditionachanged. Inputting the shear
modulus to bgx10°MPa, 1x10 MPa and x10° MPa (Table 4.2) and running these cases

respectively, we get the following result:



Table 4.2 Input data to examine the effect of rock shear modulus
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Power law constitutive constark,

5.6x 107 MPas*¢

Power law fluid indexn 0.8

. . 3
Injection rate,Q, 4x10° m/s
Poisson’s ratioy 0.2

Shear modulus(s

1x10°,1x10",1x10°MPa

Fracture heightH

10m

Leak-off coefficient,G

6.3x10°m/&*

Interface pressure], 1.7MPa
Poroelastic coefficienty 0.25

Diffusivity coefficient, c 0.4 m¥s
Injection time,t 1000 sec
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Fig. 4.5 The effect of shear modulus on fracture length, without
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Fig. 4.7 The effect of shear modulus on fracturing pressure , without
poroelasticity.

Figs. 4.5 and 4.6 express that a shorter and Viideture will be generated when
the formation is soft with low shear modulus, whalédonger and narrower fracture will
be produced when the formation is hard with highashmodulus, using the same kind of
fracturing fluid and operation conditions. And alae displayed in Fig. 4.7, higher

fracturing pressure is required to fracture hardservoirs.
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4.4 Fluid Leak-off Coefficient

Fluid leak-off coefficient is a parameter dependemtboth fluid and formation
properties. Here the effect of fluid leak-off ch@ént on the fracture geometry and

fracturing pressure is examined by keeping thedflamd rock properties unchanged.

Inputting the leak-off coefficient to Fe3%10° 6.3x10°and1.3x 10 m/P° (Table

4.3) and running these cases respectively, theviollg results are obtained:

Table 4.3 Input data to examine the leak-off coefficient

Power law constitutive constark,

5.6x 107 MPas’¢

Power law fluid indexn 0.8
Injection rate,Q 4x10° m’s
Poisson’s ratioy 0.2

Shear modulusG 1x10' MPa
Fracture heightH 10m

Leak-off coefficient,G

2.3x10%,6.3x 10°,1.3x 10* m/&*

Interface pressure'lp 1.7MPa
Poroelastic coefficienty 0.25

Diffusivity coefficient, ¢ 0.4 m%s
Injection time,t 1000 sec
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Fig. 4.10 The effect of leak-off coefficient on fracturing pressure, without
poroelasticity.

As is shown in Figs. 4.8, 4.9, and 4.10, the fractiength, width, fracturing
pressure, and the fracture closure time increasetthea leak-off coefficient decreased.
The leak-off coefficient has different effect frothe fracturing fluid viscosity and
formation shear modulus in that, small leak-off flioeent produces long and wide
fractures with high fracturing pressure, while k&rgak-off coefficient produces short

and narrow fractures with low fracturing pressure.
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5. FORMATION PERMEABILITY DETERMINATION BY MICRO OR MINI

HYDRAULIC FRACTURING

5.1 Introduction

Pressure transient derived from well tests in af/geservoirs is a valuable piece
of information to estimate the reservoir charasters. This study presents a theory and
analysis for a post fracture pressure transiertt tggich is known as the impulse
pressure test (Gu et al. 1993). A program is deezldased on their work to interpret
the pressure decay response after shut-in. Thgsama an injection/falloff test used to
determine formation permeability, by injecting a almamount of fluid into the
formation to create a short fracture and then sigutih with the fluid locked in the
formation. This kind of fracture is able to passotigh the damaged near wellbore zone
and expose a large formation area to the flowhsgoermeability determined using this
method should be more close to the actual permabil the reservoir than other
conventional pressure transient tests. On the dthed, fracturing might be difficult to
avoid during injection into low permeability fornmas. In addition, this theory can be
used to interpret the pressure data.

The present impulse fracture theory is based ondibibution of the source
solution of the diffusion equation. The fracturaliszen as a hydraulic fracture and then
shut in. The source is distributed along the acttagkctory of the fracture with its

intensity prescribed by the fracturing fluid ledk @te.
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For simplicity, the fracture created in the testomsidered to be a PKN model
fracture, and it employs the previous hydraulicctiae simulator which records the
fracture trajectory and the leak off history fortbdracture propagation and recession
stages. The sources are distributed accordingly tinet fracture closes at the wellbore
and no more fluid leak-off into the formation tak@lace. Then the pressure falloff is
continuously simulated until the reservoir pressigeapproached. This numerically
simulated pressure transient data provides imporiaiormation to determine the
formation permeability, using the type-curve-anslys the asymptotic behavior during

intermediate and large times (see Fig. 5.1 fohyyaraulic fracture flow regimes).

Small time linear flow

l

Fig. 5.1 Hydraulic fracture flow regimes.



Large time radial flow

Fig. 5.1 Continued.
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5.2 Impulse Fracture Pressure Transient Model

Considering a homogeneous pay zone bounded bympermeable ones, both
the wellbore section and the created PKN modetdracare assumed to extend to the
full height of this formation. This geometry allofi the use of the two-dimensional (in

horizontal directions) diffusion equation in therfation

2P = o (B
P=_5 (5.1)

where p is the ‘net pressure’P=p; —p,, and p;is the flow pressurep,is the

hydrostatic virgin pore pressurg?is Laplace’s operator in two dimensions, anigd the
reservoir diffusivity coefficient.

For this problem, it is postulated that the effetchydraulic fracturing upon the
reservoir pressure is equivalent to the distributdfluid sources at the fracture surfaces
with their strength characterized by the fluid leeK rate. A schematic fracture
propagation history is shown in Fig. 5.2. The wattiaxis represents the fracture length,

and the horizontal one is the elapse time sincenttiation of pumping. The fracture is

zero in length at timé=0. The length increases over time before pumpingesat
.t : I .
time Pby shutting off the valve to lock the fluid in tld®wn hole. The fracture will
continue to propagate for a short while until iackes a maximum Ieng&'h“. Then it

starts to recede, and eventually closes at théorellat timéﬁ.
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Fig. 5.2 The schematic fracture length history.

As shown in Fig. 5.2, it assumes that as the frac@rrives at pointA at

timet_ra, an injection source is turned on at that locatsom that time. During
fracture recession, the fracture is closed at |¢3><1j|mtimet =Tq , and the injection source

is turned off. At the fracture closure tithle:tC, the fracture is closed at the wellbore and
the entire volume of injected fluid is lost inteetformation. For formation permeability
determination, we are interested in the pressuhaber during the post-closure time.
The pressure diffusion at that time can take plaath in the porous medium and the

‘closed’ fracture. For simplicity, however, we asg that the closed fracture has zero
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conductivity. This assumption is necessary for re@sons: it is difficult to estimate the
conductivity of a closed fracture, and more sintpleories can be derived (Abousleiman
et al. 1994), which lead to graphical proceduresparameters determination that are
most useful for field engineers. Based on the ightaline methods’, the conventional
type-curve analysis yields some traditional behayieuch as the -1slope; and also new
behaviors, such as -2 and +1 slop@sen plot the pressure versus normalized time
Without the complication of fracture conductivitthe post closure pressure
behavior can be simulated by the distribution afidfl sources with known intensity
(which must be calculated beforehand by the pressimumerical simulator). Considering
an instantaneous point source with a unit fluidumed injection, the influence of

pressure on the reservoir is given by the folloneggation (Carslaw and Jaeger 1956):

—i _r%ct
p(r,t)—4nKte PN (- 1973

wherer is the radial distancejs the elapsed time since injection, amd:%is the

mobility coefficient, withk is the formation permeability apdis the fluid viscosity.

Equation (5.2) satisfies the diffusion equatiorl)5The point source can be distributed

over the fracture trajectory during the time intdref the fracture exposure (from the
arrival of the fracture tip dj to its departure time &), at the strength of the leak off
velocity u. The influence of the sources on the reservoisque at any pointx(,y ) in
the domain, at a timé=t_, is obtained by applying Duhamel's principle gbstposition

as expressed in the following equation:
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2
-r
Td(X) / t-t)

p(X, yt)_—j j ‘U t)4dt AX " eeeeeeeeeiee e e (5.3)

wherer :\/(x—x')2 +(y-y"?. Notice that botff,andZ;are functions of the locatiot
along the fracture, and the fluid leak-off velocityis a function of both the locatiox

and the timet’ betweenZ, and 7y, and that the integration is performed frorh,, to

+L,, to take care of the two wings of the fracture.

The leak off intensity can be obtained from Carter's leak off theory Whica
traditional industry model same to the one adoptedhe previous PKN fracture

simulator and shown as following equation:

in whichG is Carter's leak-off coefficient.
Since the pressure during the post-fracture-closome will examined,

it is more convenient to rewrite (5.3) by shiftitige time frame td,. In addition, in this

study we are only interested in the solution atdhgin (0, 0), where the borehole is
located, because this is the only location wheagtfiring pressure is observable in

reality. Equation (5.3) becomes

() _Xyc(tl(x) -t)
p(At)_—j [ ()W £ AX e e (5.6)

in which
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T(X) =T (X)) =T,(X) e l(BUT)
is the total fracture exposure time at the locatiprand

LX) =D+, =T, (X) 1 (B.8)

is the time measured since the arrival of the ina&ct, (see Fig. 5.2). The leak-off is

given as

u(t’) :% ............................................................................... (5.9)

we noticed that in (5.6) the integration is perfednonly over one wing by taking
advantage of the character of symmetry. Equa{idry and (5.9) now form the basis of
our analytical solution.

In Equation (5.6), the fracture arrival and departime can be determined by
the previous numerical simulator according to theeise functio(L) =L7(7) . For the
PKN model simulation, thé (t) record is given in a digitized fornT,(X) andZ,(X) can
be easily extracted by interpolation.

Once the length history is available, we can rdsdrhaximum length., from

the record. The length is then subdivided into miper of segments with a sizexaf .

If the segmeni L is small enough, we can treat the line source aqmately as a point
source located at the center of the segmgenwith the strength of the source given by

u(t)AL . This approximation turns the integration with pest toxXin (5.6) into a

summation expressed as following:
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Vi

AL & enx) e /4060

At)=—— () e — | 5.10
p(At) Zm;jo (t) T (5.10)

where n is the number of source segments. Equation (5.80jhen numerically
integrated by Gaussian quadrature, which can thexgdredicts decline of the pressure

happened after fracture closure in the wellbore.
5.3 Radial Flow Theory

Radial flow pattern in well testing has been obsdrand investigated by many
researchers (Agarwal et al. 1974; Horner 1951;nsati 1986). Useful type-curve
procedures have been devised. Radial flow takesepiaturally in a borehole injection
or production. It is demonstrated that the ragattern also appeared in fractured wells
(Economides and Nolte 1989; Gringarten and Ramey4)jl%fter a long time

development.
5.3.1 LargeTimeAsymptotic Behavior

This research shows that the radial flow behaworetrievable in the induced

hydraulic fracturing operation. A large time rangenecessary to observe this behavior.

It is noticed that ag — o(At —» ), U in (5.8) behaves a§(X)=At , and also

t —t'=At, because asincreases, onlt will increase with all the other quantities

remain bounded. As a consequence, the exponeetial in (5.6) approaches to 1 and

the equation can be simplified as:
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L

L (7o (X) ] . ,
2nmtjo [P Ut ax e (B.11)

p(At) =

Notice thatAtis removed from the integrand since it is indepandaf the
parameters<andt'. Considering that the entire volume of fluid irtt is lost into the

formation at the fracture closure (zero fracturkigme at that time), it is found that

b (200 o L Qi
j_Lmjo u(t')ot"dx' = e (5.12)

where Q,is the constant injection rate at the wellbore. Gimimg equations (5.11) and

(5.12), the asymptotic pressure transient law taiabd:

t
p(At)zél?W;:’_'At_l ASE 0 00 ceeitt et et et e e e e e (5.13)

The foregoing equation suggests that the -1 slopeld appear at large time on

the plot of p versudit on a log-log scale. It is of interest in this reséao compare the

result in (5.13) with the point source solution(8f2). It is noted that at=0 andt >0,
equation (5.2), which corresponds to a unit volumjection, reduces to

1
LR SR (X

It is realized that equation (5.13) is essentitily point source solution, which is
characterized by a radial flow. It can be surmiteat: the late-time pressure behavior
after fracture closure is like that of an instaetams source solution, whether the
formation is fractured or not during the injection.

To confirm the foregoing conjecture and to grasprughe implication of ‘large

time’, the foregoing asymptotic theory is testedtloree hydraulic fracturing cases with
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their parameters summarized in Table 5.1. Cas®ldwis the example in the study by
Detournay et al. (Detournay et al. 1990 ). Case @eated by perturbing the parameters
so the final treated fracture length is about tvatéhe length in the first case. Case 3 is
based on the actual parameter used and/or estinrat@dield experiment. Using the
previous PKN simulator, the fracture propagatiostdries are calculated and displayed

in Fig. 5.3. Some crucial results are listed ib[€eb.2.

Table 5.1 Parameters for three hydraulic fracture treatment cases

parameters Case 1 Case 2 Case 3
u (MPas) 5.6x 107 5.6x 107 1.0x 107
n 1C 1C 1C
Kk (m*/ MPas) 1.0x10° 5.0x 10° 1.0x107
c (m79) 0.4 0.4 0.0017
G (m/s®®) 6.3x10° 4.0x10° 2.49x 10°
v 0.2 0.2 0.2
G(MPa) 1.0x 1¢ 1.0x 1¢ 8.6x 10
Qmds) 0.00¢ 0.011 0.0026¢
H (m) 10.0 10.0 15.24
t,(9) 100C 100C 120
A, (MPay) 1.7 1.7 1.7
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Fig. 5.3 Simulated fracture propagation histories.

Table 5.2 Summary of PKN fracture simulation

Results Case 1 Case 2 Case 3
tp(s) 1000 1000 120

t (s) 1698.95 2459.45 185.52
C

|_m(m) 47.18 82.33 9.52




84

The pressure transients in the wellbore after dr&ctlosure for the three cases

are presented respectively in the blue lines irs.Fig4 to 5.6 agversus a normalized
time in log-log scales. Figs. 5.4 and 5.6 are presk by normalizind\t by fracture
closure timet,. However, sincel_ is obtained from the numerical simulation, this
information may not be available in field operasorin these cases, it is easier to
normalize At by the pumping timd,. Fig. 5.6 is normalized in this way just to

demonstrate the flexibility of the theory.
In the same diagrams, we also plot the pressureatiees taken equation (5.13)

with respect of At

_ dp(AY) =-At dp(Ay)

ceverrernnn(5.15)
dinAt dAt
in green lines. The same large time characteriatie®bserved, since
t
P _ Qo D e, (5.16)

dat  4rxH
and the converging point of the two curves seemmadrk the beginning of the -1 slope

behavior.
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Fig. 5.4 Pressure transient for case 1, large time radial flow theory.
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Fig. 5.5 Pressure transient for case 2, large time radial flow theory.
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Fig. 5.6 Pressure transient for case 3, large time radial flow theory.

In Figs. 5.4 to 5.6, the -1 slope is observed aid¥int, =1Cfor cases 1 and 2,

whereas a much larger aroui/t, =120 time is needed for case 3. Furthermore, if we
extend the straight line backward to intersect&hét, =1 or the/At/ t, =laxis, and read

the pressure interceft( B =3.6, 7.5 and 125 MPa are, respectively, read isethe

cases), the mobility coefficient can be estimatedtchses 1 and 2 as follows:
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t
4rHpt,
and for case 3
Q
B s 5.18
4rHp (5.18)

Based on the values in Tables 5.1 and 5.2, we leddcl the mobility as
1.04x 10°,4.75x 10°, and 1.1x 107 m? MPas, respectively for the three cases. Then
we get the estimated permeability through functkonx / 1. These mobility values are
compared with the input ‘true’ value®x 10°,5.0x 10°, andL.0x 107 m% MPas. A

good agreement between them is observed.
5.3.2 Horner Plot

Horner published his work on permeability estimdtem pressure data buildup
analysis in 1951 (Horner 1951). Similar type of kavas available to ground-water

hydrologists earlier, known as the recovery teshe{ 1935; Todd 1980). In the
recovery test, a well is injected or produced abastant rate for a timg, and then the
pump is shut off. The Horner plot, is the plotlé pressure decline (or buildup) versus
the logarithm of ‘Horner time’, which is a time fction used to specifically analyze
buildup test data. Horner time is defined as thecsp case of superposition (radial)
time, for a single and constant rate flow periotlofeed by a shut-in (i.e. a buildup),

t, =(t, +A)/ At
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In this model, it is expected that the finite injen interval effect will still be felt

at a somewhat intermediate time, which leads to @neéf-type theory. As an

approximation, it is assumed that the total flu@luwme used in the treatmeQ,tp, is

evenly injected during the peridgover the thickness in the form of a radial flow

pattern (point source). For continuous injectidmzrirsity(%%/ Ht., the pressure influence

function is (Carslaw and Jaeger 1956)

Qot P
47k Ht,

_ i
p(r,t) = 1 5ore FOT N (X

whereE (X) is the exponential integral (Abramowitz and Ste@ai2).
For injection lasting for the duratidpand then shut off, the post-fracture

pressure at >, is

_ Qt, re _ r?
p(r’m)_4mHtC{E1[4c(tc+At)} EILCAJ} N (- 9210)

For small arguments (large time), the exponentiaégral has a logarithmic

behavior as expressed as:

E@)=-Iné=p+&+M..........coiiiiiiiie e (5221)

wherey =0.57722is Euler's constant. By taking the first two termns (5.21) and
substituting into equation (5.20), the large tinwstpfracture pressure at the wellbore
(r =0) is expressed as:

QL Int°+At

erieen(5.22)
ArmHt, At

p(At) =
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The foregoing asymptotic expression suggests th#he pressure is plotted
against the Horner timt, =(t, +At)/ At (t, =(t, +At)/ Atfor case 3) on a semi-log plot,

a straight line should appear. However, when tresqure data for three cases are

plotted in Figs. 5.7 to 5.9, the straight lines @étncould not be observed.

10—
8Kk ——— tangent
B ——tf——— pressure
~—~ 61~
© B
o
2 | = — = —
= B
4 e
2 -
0 \\\\\Hl \\\\\Hl \\\\\Hl \\\\\Hl
10° 10 10° 10° 10*
(At+t )/At

Fig. 5.7 The Horner plot for case 1.
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Fig. 5.8 The Horner plot for case 2.
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Fig. 5.9 The Horner plot for case 3.

This phenomenon can be explained as the followsigee the original injection
pattern is linear fracture, it may take a few fobdd, (the equivalent injection period) for
the radial flow to manifest. If it is assumed thia radial flow pattern is established at
A>T (At>5 for case 3), with the corresponding Horner tifpe<1.2, the entire

‘large time range’, which is supposed to exhibisteaight line behavior, is bounded



93

betweenl.O<t, <1.z The straight line behavior is invisible understlsicale in Figs.

5.7 to 5.9. Therefore, the Horner plot is ineffiti¢o analyze the large time post-fracture
pressure transient data.

However, if the inefficiency can be somewhat tdieda a tangent line of the
curve can be draw df, =1.0. Reading the pressure intercepttac10p (p =8.0,

16.1%and 250.CMPa respectively for the three cases), the mob#ityan be expressed

as

IN10)Q,t

Using this equation, we can back calculaasl.08x 10° m?/ MPas for case 1

(1.0x10° m% MPas), 5.08x 10° m?/ MPas for case 2 %.0x10°m% MPas), and

0.83x 107 m?/ MPas for case 21.0x 107 m? MPas). These comparisons are satisfied.
54 Linear Fracture Theory

As observed in the preceding section, the radmav flegime takes quite a relative
long time to develop for injections taking placete form of hydraulic fracturing. As a
consequence, it is more reasonable to approxirhatédldaw as a linear fracture pattern.
Excellent work about the linear fracture flow regifnas been done to identify the flow
regimes and to estimate reservoir parameters usig curve matching techniques
(Cinco-Ley et al. 1989; Neal and Mian 1989). Insthenodels, the fracture conductivity
is an added complexity as people try to estimatefohmation permeability. The art of

matching a family of type curves might be quitekyi when a semi-empirical estimation
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of the fracture conductivity is needed. This incemence is resulted from a finite
conductivity fracture in which proppant agents anérapped to create pathway for fluid
after fracture closure.

In the impulse fracture test, a fracture is creaismhg fluid without proppant
agent. When the fracture closes, the cakes buitherfracture surfaces are compressed
to fill the gap between the fracture walls. Therefthe fracture is considered with zero
conductivity. Under this assumption, several asytpttheories are developed in the

following sections.
54.1 InstantaneousLine Source Theory

To study the source geometry effect in earlier §mi¢ is assumed that the

injection occurs as an instantaneous line sourad wai uniform intensity and an

‘equivalent lengthl,, . This equivalent length generally does not coiaaidgth the actual

fracture maximum length,,, but it can serve as the first-order estimationof
The influence function of a line source locatedlak X< L andy = Owith unit

intensity is given by (Carslaw and Jaeger 1956).

“[(x-x)2+y?]
p(x,y,t):i - e y%C‘dx'
47kt J-L

If the observation point is at the origin= y=0, the pressure expression is

simplified as:
1 |c L
0,0t)=—, /—e&f =) oo (D225
p( )2/( - (m) (5.25)
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whereerf is the error function. Taking the total injectionlwme into consideration,

the pressure at wellbore for the current problem is

Qot C L
At) = P ‘/— f ) e e e (DL26
P(AY 4k HL, lﬂter( 4CAt) ( )

For small argument (large time), the error funcittan be expanded as

orf ({):%T(f—%mmn e B2D

By keeping the first two terms in formula (5.27)e wbtain from (5.26) the

following equation:

~ Qotp _ Li\ -1
p(At) 4ﬂKH(l 12CAt)At e (5.28)

The difference between the instantaneous pointcsosolution (5.13) and the

current line source solution (5.28) is

t L2
Ap(At) = %At‘z .............................................................. (5.29)
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Fig. 5.10 The instantaneous line source for case 1.
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Fig. 5.11 The instantaneous line source for case 2.
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Fig. 5.12 The instantaneous line source for case 3.

The equation above suggests that if we find thiemdihces between the -1 slope
straight line and the actual pressure record irs.Fag4, 5.5 and 5.6, and show them in
log-log plots, a -2 slope straight line should Heserved when the linear fracture
geometry is still dominant at an intermediate timibese plots are presented in Figs.

5.10, 5.11, and 5.12. There are -1 slope strdiiges right after fracture closure. Since
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the pressure for equivalent radial flow is thousamd times larger than the actual
pressure records in Figs. 5.4, 5.5 and 5.6 at sima#, this -1 slope lines in Figs. 5.10,
5.11 and 5.12 represent the equivalent radial floearly times. The -2 slope lines stand

for the linear fracture flow before it changes #wial flow. Extending the -2 slope
straight line to find the pressure intercBptith the/At/t, =laxis (p =1.3, 5.0MPa)
for cases 1 and 2, and the estimation of the faligwuantity is:

KC Qit

For case 3, which usdgto normalize, the formula is slightly changed as

L (5.31)

L2 487Hpt,
and the -2 slope straight line pressure interq@ps 500CMPa atAt/t,=1. The

foregoing equations can be used in several waystli with known diffusivity

coefficientc and fracture lengttl,,, x can be estimated; and secondly, with a

knownk andc , an equivalent fracture lengthcan be evaluated.
In the present cases, substitute the knawmndx values, respectively, to
calculate the equivalent lengths=53.2m,91.1m, and9.4m. The maximum lengths as

simulated from the previous PKN model are 47.188h38m, and 9.52m (Table 5.2).
The predictions are quite reasonable consideringt tthey are the first-order

approximation.
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5.4.2 Finitelnterval Line Source Theory

The analysis in this section is similar to the ey test conducted for Horner's
plot, assuming that this theory is applicable tmeadntermediate time intervals. The
pressure influence function for a continuous linerse at the wellbore is (Gringarten

and Ramey 1974).

_ Qt, L2 | 4t L,
p(0,0.t)= - Ht [Elf ) f(m)]...............................(5.32)

e

For a finite interval injection with time duratidp, the corresponding pressure

expression is

= E e[k
e ArHL {El[“c(tc’fﬂt)} El[4cAJ+
\/merfl: L, }_ 4ncAterf[ L }}

L JAc(t, +At) L JVAcht

e e

(5.33)

Expanding the foregoing expression for lafjby keeping the first three terms

in (5.21) and first two terms in (5.27), we fingetApproximation

Q.t 2 2
p(At) = Q P IIn t, +At + L - S D (5.34)
4k Ht, At 12c . +At) 12ZAt

Once again looking for the difference between timéef interval line source

solutions (5.34) and the point source solutionZ}p.&e obtain

QL b —t—) ................................................. (5.35)

Ap(At) =
P(AY) = A8rkHct? "At  t_+ At

Plotting the pressure difference between the tanfieand the actual pressure

record in the Horner plot (Figs. 5.7, 5.8, 5.9),rsus the dimensionless time
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_t./ _t, _ L/t
th = %at AJrAt for case 1 and 2 on log-log scalg £ 7/, %+At for case 3),

we should expect a +1 slope line at some intermedime (see Figs. 5.13 to 5.15).
Checking the intercep( B =0.9€, 4.0, 3000 MPa respectively for the three cases) a

t.=1, we are able to utilize the formula 5.29 for cdsand 2, and 5.30 for case 3 to

estimate the equivalent lengths.
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Fig. 5.13 The line source Horner plot for case 1.
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Fig. 5.14 The line source Horner plot for case 2.
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Fig. 5.15 The line source Horner plot for case 3.

The equivalent lengths computed according to theegiming formula are,
respectively, 46.2 m, 81.5 m, and 7.4 m for casts 3, which also compare very well

with the simulated maximum lengths in Table 5.2.
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55 Conclusion

In this section, we present the theory and analg$ipost-fracture pressure
transient test. The important things to conclude ar

1) A program based on a theory of distribution @frses along the fracture with
varying intensity for PKN fracture geometry is dieyed. It numerically
simulates the pressure decline behavior in thebesdl after fracture closure.

2) Several asymptotic theories were use from wthehtype curve technique can
be used to estimate the formation permeabilitysgetion 5.3) and fracture
equivalent length (in section 5.4).

3) It confirmed the type curve theories based emerically simulated data.
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6. CONCLUSIONS

In the present study, several important stages yafraulic fracturing are
discussed using the poroelastic PKN fracture madealescribed in the literature. Firstly
hydraulic fracturing propagation, recession, arespure changing history are simulated
with two different approaches to fluid leak-off drg. And then the sensitivity of
fracture geometry and pressure to fluid and foromaproperties is analyzed. Thirdly,
based on previous simulator, the post-fracturegurestransient analysis is carried out to

determine the formation permeability.

6.1 Summary

In Section 2, an existing PKN fracture model (Detay et al. 1990 ) is
modified. The major points in this part of reseaacé:
1) The Carter’s leak-off theory with a constantidlueak-off coefficient is
adopted.
2) Both elastic and poroelastic formation effeats iacluded, and poroelaticity
causes significant increase in fracturing pressure.
In Section 3, the PKN fracture model was simulabgdapplying a pressure-
dependent leak-off rate. The following have beelresked:
1) The influence of poroelaticity on fracture gedmeand pressure is greater
than it is in previous model. The poroelaticity sesl a smaller fracture

volume with smaller maximum fracture length andtid
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2) The pressure-dependent leak-off model leadsatt fluid loss into the
formation during injection; it lowers the fluid le®ff rate after shut-in, thus
it takes a longer time before the fracture closes.

In Section 4, the effects of fluid viscosity, sh@andulus of rock, and the fluid
leak-off coefficient on fracture geometry and ptessare discussed and the following
arguments can be made:

1) A wider and shorter fracture will be producedhahigher fluid viscosity and a
narrower and longer fracture will be produced watWer fluid viscosity with
all other conditions unchanged.

2) A shorter and wider fracture will be generatdtew the formation is soft with
low shear modulus, while a longer and narrowerténac will be produced
when the formation is hard with high shear moduwiith all other conditions
unchanged.

3) The fracture length, width, fracturing presswuand the fracture closure time
increase with decreasing of the leak-off coeffitien

In Section 5, the post-fracture pressure-transi@malysis is conducted to
determine the formation permeability, using theetgpirve-analysis of the asymptotic
behavior during intermediate and large times. Tdsilts show a good agreement with
published results, which enhanced the validityboth studies (Abousleiman et al.

1994).
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6.2 FutureWork

This study addressed certain questions and problamsydraulic fracturing
modeling. However, this technique is far from petfand more questions need to be
answered to improve future models. Based on thidystthe following aspects could be
significant questions in hydraulic fracture modglior future study:

1) To apply the model developed in this study tmudate fracture network

generation.

2) Taking formation temperature chaimge consideration in future modeling.

3) Analyzing small time pressure behavior in thetgoacture pressure-transient

test to determine the formation permeability. (Westj discussed the

intermediate and large time solution in Section 5).
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APPENDI X
A. 1 Poroelasticity Property

There are two parameters that arise commonly wleadind) with poroelastic
materials: First, the poroelastic constantjs independent of the fluid properties and is
defined as (Rice and Cleary 1976):

_ 3Ww,v) :1—£
Bl-2v)1+v,) K

e (AD)

s
whereB is Skempton pore pressure coefficietis undrained Poisson ratijs drained
Poisson ratioK is drained bulk modulus of elasticity, akd bulk modulus of solid
phase. The range of poroelastic constant is O butliost rocks fall in the range of 0.5
to 1 (Rice and Cleary, 1976).

The second parameter is poroelastic stress camfficusually expressed with

symboly, and defined as (Detournay and Cheng 1993):

_ )

e (A2)
The range of; is 0 to 0.5, and it is independent of the fluidgerties.
A. 2 Derivation of Local Fluid Mass Balance Equation

The following is a fracture element with ellipticaioss section, whose areaAis

and A; in both ends. Fracture propagatesxidirection, with lengthdx, heightH and

maximum fracture widthy,,.
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Fig. A.1 A fracture element.

Fordx - 0, A=A, = A= %Wm(x,t). q(x,t)H is the volume rate of flow

through a cross-sectiorxsconstant) of the fracture. And[H [dxis the fluid
volume leak-off rateq(x,t) is the average flow rate per unit height of fraefur
andu s the fluid leak-off velocity accounting for botvalls.

For the conservation of volume:

qUH [At+Vv A+u{H [@x) (At = qH MM+%EQ§H [, ) +u [{H [iix) (At =0

.................................................................................... (A.3)
a—q+7—TaW”‘+u:0 .......................................................... (A.4)
ox 4 ot

Since the average fracture Widthvk;gwm, equation (A.4) is simplified

as:
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A.3TheMoving Coordinate System

For this type of mesh, the moving coordin&as expressed a8 = x/ L(t),

which has a range of [0, 1]. This algorithm allosvee to use a constant number of nodes
to discretize the variable fracture length throughiive solution procedure. The nodes
are distributed according to a geometric progressiacreasing their density both near

the fracture tip and fracture inlet, because ofttigl pressure and width gradient during
fracture propagation and recession. The coordiffatenodeifor the first half of the

fracture L/ 2is therefore

while the node distribution for the other halflis@, wherer is the ratio of the

progression.

And for this program, 10 to 15 nodal points will g@od enough, since too many
nodal points don'’t increase the accuracy that macti also that will request much
longer computing time. To contrast, this papertvam cases with 11 and 50 nodal points
respectively, based on the same input data asdl list€able 2.1. The case with 11 nodal
points ran within 30 seconds, while the other oms wiore than 30 minutes. The results

are shown as the following:
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Fig. A.2 Fracture length history with 11 and 50 nodal points.
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Fig. A.3 Fracturing pressure history with 11 and 50 nodal points.
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Fig. A.4 Fracture maximum width history with 11 and 50 nodal points.

A.4TheFractureArrival Time

The fracture arrival time(x) is the time when fracture tip arrives at location
x. It is the inverse function of fracture length= L(t) . Since there is a corresponding

fracture length at every time step; inverse, these steps, which are the fracture arrival
times, corresponding to different fracture lengthsthe moving coordinate system, it is

discrete as:
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r(6,t)=L(6L(t))

k+1 -1 k
In finite-difference schemgi, =L(EL) is evaluated corresponding {o

since the current length*is unknown, by interpolating method based on thaetére

arrival time in previous time sté’ﬁ .

=1
M
al

™

i~

ot
[
Wik ,
I~
+
j—1

L;‘: i 1_;64-%, tn:-n

Fig. A.5 Calculation of fracture arrival time by interpolation.

If QL <gL <@, 1/"is linearly interpolated betweef andr},; :

wiopry_ DTl ge g A8
' =1, 7 |_k‘1—9|_k‘1(‘ L) (A.8)
i'+1 i

If " <@L <L, 7is linearly interpolated betwednandt" " :

tk+l _tk
k+l _ ¢k
Ti =+ Lk _ Lk—l

(L =L ) e, (A.9)
A. 5 Comparison with Published Resultsfor Constant Jeak-off Coefficient M odel

To compare the results of this study with the ssod Detournay et al. 1990, the

plots from the published paper are listed in tHvang:
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Fig. A.6 Variation of fracture length with time(Detournay et al. 1990).
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Fig. A.8 Variation of maximum fracture width with time(Detournay et al.
1990).

The following table shows the comparison betweenpllots above with the Figs.

2.8, 2.9 and 2.10.
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Table A.1 Summary of the results from this study and published
paper(constant leak-off coefficient)

cases Maximum Maximum W (Ot) | Maximum Fracture
fracture 0,t closure time
(m) p(0,t)
length (m) (MPa) (sec)
n=025n=0|n=025 | n=0 n=025|n=0 n7=025|n=0
This 50.0 50.0 | 0.00358 | 0.00358 |4.95 4.5 | 1533 1533
study
Published | 52.0 52.0 | 0.0036 0.0036 5.2 4.5 | 1550 1550
paper

From Table A.1, it shows that the simulation resulif the net fracturing

pressure, the fracture length, maximum width aredfthcture closure time are close to

the published paper, with the differences less 8%n

A. 6 Pressure Dependent L eak-off Equation

The flow of the fracturing fluid (assumed Newtoniand incompressible) into

the porous formation (fluid leakoff) is assumed®linear and perpendicular to the face
of the fracture. The local volumetric rate respookthe fracture to a unit step pressure

on an elementizalong the fracture height , and accounting for the two sides of the

fracture from Carslaw and Jaeger (Carslaw and 3d€%®) is written as:

2kdz

oo (AL10)
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where x is the mobility coefficient defined as the ratib the permeabilityk to the

viscosity 4, t is the time at which the volume rate responseatuated, and (x) is the

time at a given locatiox on the fracture face at which the pressure step applied.

The diffusivity coefficientc can be approximated by the known expression:

T e (A1)

where g is the porosity of the rock, arﬂ) Is the compressibility of the pore and pore

fluid system. Since we assume that the PKN frachrogpagates at a constant height
(confined between the barriers), thenis independent of time The total fluid volume

v(t) contributed by an elemewlz is obtained as:

2« p(r )dz i

N et (A12)

where p(7"') is the history of uniform pressures applied on sbeface of the fracture

V(t) = .[:(x)

between timer (x) andt and wherep(x,t) = p; (X,t)- g,

Integrating by parts the above integral, we obtain:

v(t) :% :—2 Pt '], 20 X t-r tr } .................. (A13)
v(t) = 2K _2 p(r(X))dzy/t —7(x) + 2J't p'( Yzvt—-rdr } _________________ (A.14)
Jmcl ()

The local value of the flow ratg,, that corresponds to the rate at which the fluid

is invading the reservoir, can be written as:
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dv
s (AL
4= (A.15)

and we can write

= 26PNz et 2KPEZ e e A.16
a \/m(t—r(x))+If(X)\/nc(t—r') ‘ ( )

Since” (X) is the time at a given locatioh, this is equivalent to the arrival time
of the fracture tip at that section of the formatithe pressure at that point needed for
the fracture opening is equal to the in situ effecstress (assuming rack strength and

thus toughness in tension as negligible)
PT(X)) =0, =)o (AVLT)
In this case the fracture is assumed to open aliveg formation height
instantaneously, and the individual pressure hiestdior each elemerflZ is assumed to
start at the same time&*) . The summation of the elemeﬂ%along the fracture height

(to calculate the total fluid leakoff at a giveross section), will result in replacin‘if;Z

-q
by H in the above expression and we define the fluakdé velocityu A as

follows

t

= 2K(G,mP) 26 OpOGt) L g A.18
u \/nt:(t—r(x))+\/ETg[) ot’ \/t—t'OIt (A19)

where p is the ‘net stress’ defined §3= P; —0,, T, is the minimum in situ stresg),

is the virgin pore pressure.
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A. 7 Comparison with Published Resultsfor Pressure-dependent L eak-off

To compare the results of this study with the tssaf Abousleiman 1991, the

plots from his dissertation are listed in the faling:

70
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Fig. A.9 Variation of fracture length with time(Abousleiman 1991).
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Fig. A.10 Variation of net fracturing pressure with time(Abousleiman 1991).
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Fig. A.11 Variation of maximum fracture width with time(Abousleiman
1991).
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Fig. A.12 The G-function for pressure dependent leak-off

case(Abousleiman 1991).

Compare the plots above with the Figs. 3.2, 3.3%aAdand the results are listed

as follow:



Table A.2 Summary of the results from this study and published
paper(pressure-dependent leak-off)
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cases Maximum Maximum W (O,t) | Maximum Fracture
fracture (m) p(0,t)(MPa) |closure time
length (m) (sec)
n=0.15n7=0|n=0.15 | n=0 n=015n7n=0|7n7=0.15n=0

This 55.3 59.2 | 0.00453 | 0.00474 |6.97 5.98 | 4436 6981

study

disserta- | 61.5 66.0 | 0.00475 | 0.00481 |6.37 6.21 | 2800 | 3550

tion

From Table A.2, it shows that the simulation resulif the net fracturing
pressure, the fracture length, and maximum width different from Abousleiman’s
dissertation, with the differences around 10%. ot gmaller fracture length and width
for both with and without poroelasticity effect sifation, and the maximum fracturing
pressure difference between these two situatiorarger. While the fracture closure

time is much larger than Abousleiman’s result.

A. 8 Upwind Scheme Used for Width Discrete Equation

In computational fluid dynamics, upwind schemesadera class of numerical
discretization methods for solving hyperbolic partdifferential equations. Upwind
schemes use an adaptive or solution-sensitiveefiditference stencil to numerically

simulate more properly the direction of propagatidnnformation in a flow field. The
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upwind schemes attempt to discretize hyperbolitigdadifferential equations by using
differencing biased in the direction determinedtly sign of the characteristic speeds.
Historically, the origin of upwind methods can laced back to the work of Courant,
Isaacson, and Rees who proposed the CIR methoddtaet al. 1952).

To illustrate the method, consider the followingeatimensional linear wave

equation:
U a0 o (A9)
ot 0x

The first-order upwind scheme of the above equation

n+l n n n

D Y U % Y o0 for a> 0
At AX

e (AL20)

n n

R =0 for a<0
AX

n+l n

u™ -y U
2) — —+a
C—

similarly, equation (2.20) would be written as:

OW _OLOW 100 o e (AL21)

ot L 06 Lo&

During the fracture propagation, according to tpavind scheme, sino%>o,

equation (A.21) can be expressed as:

K+l _ KooKk kK  _ 4k
W Wf_(é’iL Wi, vvi]+2[qi+y2 qi_l,szik:o;i:z,N_b

At¢? L 8,-6 1~ 8.,-6_, (A22)
» B Kk A
Wik+1 :Wik +Atk+1|:(9iTI|:V\9,ik+1 _\g’ikj_%(qi;/z_g—llzj_uik} i=2,N-2
i+1 i i+1 i-1
ow

At node N ~1 the forward difference formula f € is unstable during simulation and
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a backward difference formula is used instead:

erfltll :V\l:i‘_l+Atk+{(gN_lLk WkN—l_erfl—ZJ_E(qtl—llz_qh—?,/zj_uh_l} i=N-1

X 8,.,-6.) '\ 8,-6.
e (A23)
At the first node, equation (A.23) is simplified as
wlk”:wlk—Atk”[%%+uf}...............................................(A.24)
and the last node, it's assumed that
W =0 e e (A25)

For a receding fracture, sincee—LL<O, equation (A.21) can be expressed as:

WikJrl_Wik _[gil;k Wlk _M‘1J+£(qit1’2_qik‘”2J+u‘k:0'i =2N -1=

Atk+1 Lk gl _ gi_l Lk 9i+1 _ Hi_l (A 26)
» B . A
Wik+1 = Wlk +Atk+l{(gil__||:ng_;Vik—lJ_%(Qig/z_g—m}_uik} i=2.N -1
i i-1 i+1 Yi-1

The equations of the first and last node during recession are the same as

equation (A.24) and (A.25).
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