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ABSTRACT 

 

Mid-Cretaceous Palynoflora From Central Mid-Pacific Ocean. (August 2011) 

Shih-Yi Hsiung, B.S., National Taiwan Normal University 

Co-Chairs of Advisory Committee: Dr. Anne Raymond 
                                                Dr. John Firth 

 

Albian (late Early Cretaceous) pollen and spores were used to reconstruct the 

floral history of Allison Guyot in the Albian period to better understand pollen and spore 

distributions on mid-oceanic islands, to investigate whether Allison Guyot supported 

land plants in the Albian, and to test previous hypotheses about the development of the 

guyot. Albian spores found in Allison Guyot sediments from ODP (Ocean Drilling 

Program) Leg 143 Site 865 include: Laevigatosporites ovatus, Cyathidites minor, 

Cicatricosisporites sp., Baculatisporites comaumensis, Ceratosporites equalis, 

Gleicheniidites senonicus, Leptolepidites verrucatus, Retitriletes circolumenus, 

Lycopodiacidites dettmannae, Osmundacidites wellmanii, Cicatricosisporites hughesii, 

Impardecispora excavate, and others. Albian pollen from these samples include 

Callialasporites dampieri, Ephedra, and others. The high abundance of terrestrial 

palynomorphs in these samples suggests that Allison Guyot was exposed in the Albian 

and supported land plants.  The high frequency of spores (more than 90 percent) reflects 

a flora dominated by ferns. 
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CHAPTER I 

INTRODUCTION 

Terrestrial palynomorphs in marine environments have been used for 

biostratigraphy (Loboziak, Melo, Quadros, and Streel, 1997), to investigate the 

paleoecology of adjacent land masses, and to investigate current and wind directions 

(Hooghiemstra, 1988). The source of pollen and spores in marine sediments is usually 

plants on continents or islands, which are close to those marine localities. Rivers, winds, 

and ocean currents, including both surface currents and turbidity currents deliver 

palynomorphs, pollen and spores, from parent plants to the shore and sometimes to the 

open ocean, miles away from land (Cross et al., 1966; Traverse and Ginsburg, 1966; 

Farley, 1987; Ogg, 1992; Sun et al., 1999). The concentration of pollen and spores is 

related to the distance between the parent plants and depositional locations. Shallow 

marine sediments adjacent to continents (~200 km) commonly contain abundant 

terrestrial palynomorphs. Vanderkaars and De Deckker (2003) found terrestrial pollen 

and spores, Asteraceae, Chenopodiaceae, Acacia, and others, in 38 cores taken offshore 

Western Australia. Muller (1959) (Orinoco Shelf Expedition) found Anacardiaceae, 

Pteridaceae, Cyatheaceae, and other terrestrial pollen and spores, more than 30 species, 

in the sediments of the Gulf of Paria and on the outer shelf north and east of Trinidad.  

Terrestrial palynomorphs in near shore marine sediments have been used to 

reconstruct sea level, and to investigate ancient climates. Woodroffe and Gridrod (1991)  
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used the global distribution of mangrove pollen to trace sea-level fluctuations during the 

Quaternary. Hooghiemstra (1988) used palaeo-isopollen maps to provide evidence for 

the latitudinal position of the northeast trade winds and the African Easterly Jet and for 

the average northernmost and southernmost position of the intertropical convergence 

zone during the last glacial-interglacial transition. Luo, Sun, and Jian (2005) used the 

frequency of pollen rain to trace Millankovitch cyclicity in sediments.  

Terrestrial palynomorphs are abundant near the shore, but rare in open ocean 

sediments. Koreneva (1968) reported on the pollen and spores recovered from marine 

sediments and cores collected during the 26th voyage of the Vityaz in the South Pacific 

Ocean, from the Marshall Islands (~ 100 km north) to New Zealand (~ 500 km south) 

(Fig. 1). Koreneva (1968) is the English translation of a longer paper published by this 

author in the journal of the Geological Institute of Moscow (Geologischeskiy Institut, 

Moscow, Trudy) in 1964.   In it, Koreneva (1968) reported the concentration of 

palynomorphs per gram of sediment, which she determined by weighing sediment 

samples prior to processing, mounting the entire sample, and counting all the pollen and 

spores on all of the slides.  She found abundant terrestrial pollen and spores, over 400 

grains per 10 g of sediment, in a marine core approximately 200 km to the east of New 

Zealand. Conversely, she found ten or fewer terrestrial palynomorph grains per 10 g of 

sediment in a marine core and a surface sample of marine sediment collected 

respectively, approximately 80 km to the west, and approximately 230 km to the west of 

New Zealand (Koreneva, 1968). The prevailing wind direction in New Zealand, which is 

from the west, appears to control the abundance of terrestrial palynomorphs in these 
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oceanic sediments. The core to the east and downwind of New Zealand contains 

abundant terrestrial palynomorphs; cores to the west and upwind contain few terrestrial 

palynomorphs.   

Koreneva (1968) recorded the abundance of terrestrial palynomorphs along a 

north to south transect from the Marshall Islands to New Zealand. Aside from the 

samples and cores collected close to New Zealand, most of the terrestrial palynomorphs 

found in marine sediments along the transect were spores. Along the transect, only one 

marine surface sediment sample (Sample 3851), which lay at approximately 18.3°S, 171°

E, about 300 km east of Vanuatu (the former New Hebrides) contained abundant 

terrestrial spores (approximately 90 grains per 10 g sediment). Koreneva found no 

terrestrial palynomorphs in Core 3852 that lay north of Sample 3851, approximately 375 

km from Vanuatu. Similarly, she found no terrestrial palynomorphs in Core 3850 that 

lay to the south of Sample 3851, approximately 200 km from Vanuatu. Prevailing winds, 

which may have carried pollen from Viti Levu, the southern Fiji Island to Sample 3851, 

might explain the enigmatic distribution of terrestrial palynomorphs at these three sites. 

No islands lie to the west of Core 3850 and prevailing winds from Vanua Levu, the 

northern Fiji Island, may have missed Core 3852. The only other marine cores or 

sediment sample along the Vityaz transect that contained terrestrial spores was Sample 

3859, which contained 10 spores in 10 g of sediment (Koreneva, 1968). 

Koreneva (1968) is unique in its focus on terrestrial pollen in an open ocean 

setting.  Recent investigations of terrestrial pollen and spores in the South China Sea 

(Sun et al., 1999) and Java and Banda Seas, north of Australia (van der Kaars, 2001) 
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found significantly higher concentrations of terrestrial pollen and spores in marine 

sediments.  However, these authors investigated ocean sediments from sites that were 

closer to the continental shelf than sites in Koreneva’s (1968) study. Sun et al. (1999) 

reported extremely high concentrations of terrestrial pollen and spores from the lower 

continental slope of southern China (400,000 grains per 1 g of sediment) and the 

Luconia shoals, on the northern edge of the continental shelf of Borneo (40,000 grains 

per 1 g sediment).  Sun et al. (1999) reported extremely low terrestrial palynomorph 

concentrations from deep ocean settings south of China; however the lowest pollen 

concentration reported in their study, < 1000 grains per 1 g sediment, is much higher 

than the highest concentration reported by Koreneva (1968: > 40 grains per 1 g 

sediment).  It is difficult to compare van der Kaars (2001) pollen concentrations with 

those of Koreneva and Sun et al. (1999) because van der Kaars (2001) standardized his 

concentrations using volume rather than weight.  Nonetheless, van der Kaars (2001) 

reported pollen concentrations of  > 1000 grains per cm3 of sediment, and fern spore 

concentrations of  > 1000 grains per cm3 of sediment.  

Because terrestrial pollen and spores are rare in marine sediments, few workers 

report their absence. The scientific party of DSDP Leg 17 noted that no terrestrial pollen 

and spores were recovered in cores from Site 167 on the Magellan Rise, which is at least 

700 km from the closest island, Howland Island, although they did recover a few poorly 

preserved dinoflagellate cysts. Significant studies based on terrestrial palynomorphs in 

DSDP, ODP, and IODP cores include:  

(1) Mudie (1989) found that the pollen-spore concentrations from Leg 104 (Site 
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642 to 644) show cyclical variations which appear to correspond to climate 

fluctuations in Pliocene and younger sediments.  

(2) Mohr (1990) used terrestrial palynomorphs to date ODP Leg 113 (Site 693) as 

early Albian; Mutterlose and Wise (1990) also reported terrestrial spores from 

ODP Leg 113 (Site 692, 693).  

(3) Gee and Mohr (1992) used palynology to date Upper Jurassic and Lower 

Cretaceous sediments from ODP Leg 120.  

(4) Ogg (1992) found Cretaceous palynomorphs at ODP Leg 129 (Valanginian to 

Campanian). 

(5) Heusser and Van de Geer (1994) found a diverse and abundant palynomorph 

assemblage in the upper 40 m of DSDP Site 594, 200 km from the east shore of 

South Island, New Zealand. Koreneva (1968) also found abundant terrestrial 

palynomorphs in oceanic sediments on the east side of South Island, New 

Zealand. 

(6) Leroy and Dupont (1994) used pollen record of ODP Leg 108 Site 658 to find a 

strong aridification of the climate of northwestern Africa, which occurred 

during 3.26 Ma. 

(7) Jolley (1998) found that the rich terrestrial component of the pollen and spore 

flora from ODP Leg 152 (East Greenland Margin) is consistent with the Eocene 

temperature maximum.  

(8) Haberle and Maslin (1999) studied ODP Leg 155 Site 932 and found that the 

Amazon Basin forests were not extensively replaced by savanna vegetation 
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during the glacial period. The results also contradicted the refugia hypothesis. 

(9) Pisias, et al. (2004) studied pollen record from ODP Leg 202 Site 1233 and the 

results suggest that climate variability during the past 75kyr in the Southeast 

Pacific is tightly coupled at periods longer than 3000 years. 

Pollen and spores concentrations in marine sediments appear to be controlled by 

the mechanism of transportation from parent plants to the location of the sample, which 

includes wind and water. Terrestrial palynomorphs are rarely found in deep sea 

sediments unless there is a large island or continent nearby in the direction of prevailing 

winds or currents. In general, the abundance of palynomorphs in marine sediments 

decreases with increasing distance from islands and continents (Koreneva, 1968). Both 

the structure and shape of pollen and spores influence their long distance transport, 

deposition, and preservation in marine sediments. For example, Koreneva (1968) 

suggested that pollen was deposited closer to shore than spores.  Turbidites carry pollen 

and spores both to continental shelves and to the deep sea (Ogg, 1992; Heusser, 1988; 

Baudouin et al., 2004).  Baudouin et al. (2004, and references therein) gives an overview 

of pollen in turbidites on continental shelves sourced by deltaic fans. Ogg (1992) 

suggested that turbidity currents transported Cretaceous and Cenozoic pollen to Site 802; 

the source of Cretaceous pollen at this site may have been emergent seamounts on the 

Darwin Rise discussed by McNutt et al., (1990). 

In this study, we investigate terrestrial palynomorphs from Albian sediments of 

Allison Guyot, in the central Mid-Pacific Mountains (ODP Leg 143, Site 865). This 

guyot has a thick limestone cap enclosed by a perimeter reef, indicating that it could 
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have included islands in the mid Cretaceous (Sager, Winterer, Firth, et al., 1993). It 

probably originated in the southern hemisphere between 12° and 17°S (Sager, Winterer, 

Firth, et al., 1993). Firth et al. (2009) discovered vertebrate teeth, including a saltwater 

crocodile, and terrestrial palynomorphs in mid-Cretaceous sediments from Allison 

Guyot. There are two principal hypotheses entertained for Pacific carbonate platforms 

including Allison Guyot: (1) “Death-by-Emergence-and-Submergence”, which supposes 

that the platforms became exposed due to a short-term drop in relative sea level, and 

then drowned by relatively rapid deepening of sea level that outpaced subsequent 

carbonate production. (Winterer and Sager, 1995; Winterer and others, 1995; Jenkyns 

and Wilson, 1999); (2) “Death-in-the Tropics”, which supposes that the northward 

conveyor-belt motion of the Pacific Plate brought the platforms into peri-equatorial 

waters, which were unfavorable to skeletal and inorganic carbonate production (Larson 

and others, 1995; Wilson and others, 1998; Jenkyns and Wilson, 1999). Shallow-water 

carbonate facies, indicative of both lagoonal and open marine conditions, that date to the 

Early Albian, suggest that Allison Guyot may have been periodically exposed 

throughout the Albian (Shipboard Scienctific Party, 1993).  The guyot drowned near the 

end of the Albian (Röhl and Ogg, 1998):  the uppermost shallow-water carbonate 

sediments of Allison Guyot date to the Albian/Cenomanian boundary (Jenkyns and 

Wilson, 1999). Jenkyns and Wilson (1999) found evidence for meteoric water in the 

calcite cements of some Central Pacific guyots (e.g. Site 886, Resolution Guyot, which 

is near Allison Guyot). However, clear evidence of meteoric water was not found on 
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Allison Guyot because there were so few clear calcite cements in the top 150 m of 

Allison Guyot sediments.  

The remarkable calcrete sediments on Resolution Guyot provide evidence for a 

meteoric water system on this guyot.  The presence of woody roots and traces of coal 

indicate the presence of land plants on Allison Guyot in the Albian (Shipboard Scientific 

Party, 1993). The abundance of terrestrial pollen and spores in Allison Guyot sediments 

supports the presence of land plants on Allison Guyot. The composition of this flora, 

which is dominated by spores, but also contains pollen from gymnosperm shrubs 

(Ephedripites) and trees (Callialasporites), suggests the presence of a meteoric water 

system on Allison Guyot. Similarities between the fern assemblage of Allison Guyot and 

the Albian fern flora of New Zealand suggest that Allison Guyot originated in the 

Southern Hemisphere. 
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CHAPTER II 

LOCALITY AND STUDY MATERIAL 

Locality 

Flat-topped Cretaceous seamounts, most of which lie between 1 and 2 km below 

sea level, indicate the presence of ancient islands in the Pacific Ocean. These flat-topped 

seamounts were named “guyots” by Hess (1946). Presently, 80% to 90% of all Pacific 

guyots lie north of the Equator (Menard, 1964; Vogt, 1989, Jenkyns and Wilson, 1999). 

Hamilton (1956) reported shallow-water limestones of Cretaceous age on the top of 

certain guyots, which he interpreted as erosionally truncated volcanic islands. 

Subsequent drilling demonstrated the common presence of Cretaceous shallow-water 

facies and fossils above the volcanic base of many guyots. (Heezen and others, 1973; 

Winterer, Ewing, and others, 1973; Matthews and others, 1974; Winterer and Metzler, 

1984; Grötsch and Flügel, 1992; Lincoln, Pringle, and Premoli Silva, 1993; Winterer and 

Sager, 1995; Flood, 1998; Jenkyns and Wilson, 1999) Generally, Pacific guyots are 

thought to have similar geological evolution throughout past time. 

Allison Guyot, which is one of biggest Pacific guyots, has a thick limestone cap 

that reflects a sequence of ponded lagoonal sediments enclosed by a perimeter reef 

(Sager, et al., 1993). The first samples in the research were from Leg 143 Site 865 

located at 18°26.41'N, 179°33.34'W, at 1518 m water depth and atop Allison Guyot in 

the central Mid-Pacific Mountains (Fig. 2). Allison Guyot has a thick limestone cap that 

reflects a sequence of ponded lagoonal sediments enclosed by a perimeter reef (Sager, 

Winterer, Firth, et al., 1993) (Fig. 3). It is speculated to have originated in the southern 
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hemisphere between paleolatitudes 12° and 29°S, probably between 12° and 17°S (Sager, 

Winterer, Firth, et al., 1993), and between paleolongitudes 123° and 127° W (Winterer 

and Sager, 1995). (Fig. 4) Allison Guyot was chosen for drilling because it has pelagic 

limestone overlying shallow water limestone, and the age of reefal drowning could be 

constrained. In addition, the limestone cap was thin enough that the oldest, deepest 

lagoonal sediments could be cored (Sager, Winterer, and Firth, 1993). The total 

thickness of the shallow-water carbonate section of Allison Guyot is around 700 m. 

Basalt is below the carbonate section.  

The age of the top of the shallow-water carbonate section of Allison Guyot, based 

on the Sr-isotope curve, is close to the Albian-Cenomanian boundary (Jenkyns et al., 

1995). In addition, latest Albian planktonic foraminifera, Rotalipora appenninica, were 

found in the shallow-water carbonate section (Grötsch and Flügel, 1992; Winterer et al., 

1993; Jenkyns and Wilson, 1999). The age of the oldest igneous rocks drilled on Allison 

Guyot is 110.7± 1.2 Ma (early Albian: Pringle and Duncan, 1995). According to Sager et 

al. (1993), Allison Guyot has a substantial pelagic cap, consisting of 140m of Paleocene-

lower Oligocene nannofossil ooze to sand. The cross section of Allison Guyot is shown 

in Figure 5. The cessation of carbonate-platform sedimentation prior to the deposition of 

the pelagic cap indicates the drowning of Allison Guyot. 

Based on foraminifera and strontium-isotope ratios, the age of the cores that 

contain terrestrial palynomorphs is Early Albian, close to the Aptian/Albian boundary 

(Sliter, 1995; Jenkyns et al., 1995). Sliter (1995) identified foraminifera from core 

interval 143-865A-79R as the Hedbergella praetrocoidea-H. trocoidea lineage or 
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perhaps juvenile H. trocoidea, which lived near Aptian/Albian boundary. Jenkyns et al. 

(1995) dated the core interval 700 to 800 mbsf depth as Early Albian; the samples used 

in this study came from the core interval 680 to 870 mbsf. 

Study Material 

In order to learn more about the Albian terrestrial flora of Allison Guyot, twenty 

three samples from the Leg 143 Site 865, Allison Guyot, were selected for this study. 

Samples were taken from cores 74, 78, 81, 85, 86, 87, 88, 89, 90, 92, and 94, which were 

close to a root in growth position (Section 143-865A-89R-3) and coalified woody 

material (Section 143-865A-89R-5) (Table 1). 

(1) Core interval 143-865A-74R, 679.7 to 689.4 mbsf depth, 1 sample, wackestone 

with some dark gray clay seams, stylolites, compacted burrows, leached zones 

infilled by probable dolomite.  

(2) Core interval 143-865A-78R, 718.3 to 728.1 mbsf depth, 1 sample, mudstone and 

wackestone with clayey sediment, foraminifers (miliolids) and gastropods, 

burrows infilled with rhombic crystals of dolomite, common stylolites. 

(3) Core interval 143-865A-81R, 747.4 to 757.1 mbsf depth, 2 samples, packstone 

and wackestone with foraminiferal and other molds, some dolomite, disseminated 

organic matter, mm-cm-size black pebbles, and black clayey seams with pyrite. 

(4) Core interval 143-865A-85R, 786.2to 795.8 mbsf depth. 1 sample, clayey 

limestone with appearance of peloids, foraminifers, and replaced gastropod shells, 

some with dolomite.  

(5) Core interval 143-865A-86R, 795.8 to 805.4 mbsf depth, 2 samples, white to 
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gray clayey limestone (packstone) with foraminifers, bivalves, and gastropods.  

(6) Core interval 143-865A-87R, 805.4 to 815.1 mbsf depth, 2 samples, gray to 

white intensively bioturbated, laminated clayey limestone with benthic 

foraminifers.  

(7) Core interval 143-865A-88R, 815.1 to 824.8 mbsf depth, 2 samples, bioturbated 

clayey limestone (packstone), white to gray, with benthic foramminifers, 

gastropods, bivalves, ostracods, and sponge spicules, intercalated with thin, dark 

clayey layers.  

(8) Core interval 143-865A-89R, 824.8 to 831.8 mbsf depth, 6 samples, parallel to 

wavy laminated clayey limestone, very dark grayish brown to light gray, with 

peloids, foraminifers, gastropods, bivalve fragments (mostly oyster), arthopods 

(rare), volcanic clasts, and coal layers.  

(9) Core interval 143-865A-90R, 831.8 to 841.1 mbsf depth, 4 samples, clayey 

limestone (packstone), large gastropods, peloids, foraminifers, abundant sponge 

spicules, and finely disseminated organic matter and pyrite.  

(10) Core interval 143-865A-92R, 847.2 to 853.4 mbsf depth, 1 sample, black 

claystone, pyritic and locally green and laminated on a mm scale.  

(11) Core interval 143-865A-94R, 863.1 to 870.9 mbsf depth, 1 sample, bioturbated 

clayey limestone, abundant carbonaceous particles, numerous gastropods, bivalves, 

some woody pieces replaced by pyrite, and few benthic foraminifers.
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Methods 

First 10 samples, weighing between 16.70 g to 20.88 g, from cores 143-865A-89R, 

-90R, -92R, and -94R (labeled 1-1 to 1-10, from youngest to oldest, Table 1) and Second 

13 samples, weighing between 10.08 g to 10.89 g, from 143-865A-74R to 143-865A-

89R (labeled 2-1 to 2-13, from youngest to oldest, Table 1), were processed for pollen 

extraction using the procedure in 'Palynological techniques-processing and microscopy' 

(Wood et. al, 1996). A solution of 10% potassium hydroxide (KOH) was used to remove 

humic compounds and make the material easier to view. This also helped to disperse 

some forms of consolidated organic materials to disperse. HCl was also used to remove 

carbonates. The silicate component was removed by soaking the samples in hydrofluoric 

acid (HF) overnight. The acetolysis process, which involved soaking samples in nine 

parts acetic anhydride and one part sulphuric acid, helped to remove cellulose. 

After weighing, samples from 1-1 to 1-10 and from 2-1 to 2-13 were soaked in 

hydrochloric acid (37.5% HCl) until the reaction stopped. One tablet of tracer spore 

“Lycopodium”, containing 12,500 spores of “Lycopodium”, were added into each sample 

1-1 to 1-5 with the HCl. Tablets of tracer spores were added to the first five samples in 

order to determine the abundance of spores in samples from Site 865 at the beginning of 

the research. I did not add tracer spores in the remaining 18 samples because Cretaceous 

reticulate and spinose spores of Lycopodium were found in the first five samples. 

Although I was able to differentiate Cretaceous and modern Lycopodium spores in these 

five samples, adding Lycopodium tracer spores to the remaining 18 samples might have 

complicated identification of Cretaceous Lycopodium in these samples. Samples were 
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washed in water three times and sieved with a stainless steel screen of 150 microns to 

remove coarse inorganic materials and debris during washing. The residue (silt) at the 

bottom of beakers was discarded after decanting the liquid following the last wash. The 

remaining liquid sat for more than 4 hours, allowing the palynomoprhs to settle to the 

bottom of the beaker. The liquid in the beakers was siphoned off and discarded. HF was 

added to beakers to cover the samples and beakers sat overnight.  The next morning, the 

beakers were filled with samples with water and allowed to sit for three hours, after 

which the water was discarded. The step of filling the beaker with water and allowing 

the sample to sit for three hours was repeated. A solution 37.5% HCl and water (half and 

half) was used to rinse each sample into a 50 ml tube. Tubes were spun in a centrifuge 

for one minute and the liquid was discarded. Tubes were refilled with 37.5% HCl and 

the residue was completely mixed with the acid. Tubes were spun for 30 to 40 seconds 

and the liquid discarded. This step was repeated until the spun liquid became clear.  The 

tubes were spun again and the HCl was discarded. Water was added to the tube, and 

mixed with the residue.  Tubes were spun for tubes for 1 minute and the water discarded. 

This step was repeated one more time, and the residue was checked under the 

microscope.   

Residue was moved to 15 ml tubes, and glacial acetic acid (CH3COOH) was 

added up to the 10 ml mark. Tubes were caped and vortexed to mix residue and liquid. 

Tubes were then spun and the liquid discarded, and vortexed a second time. Wearing 

protective dress and working in a hood, a mixture of acetic anhydride and sulphuric acid 

was prepared by measuring nine parts acetic anhydride into a dry graduated cylinder, 
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using a clean pipet to add one part sulphuric acid. The ratio of acetic anhydride and 

sulphuric acid is 9:1.  Into each sample tube, 5 ml acetolysis mixture was added and the 

sample was stirred with a stick. The sample tubes were placed in a heating block, which 

had been preheated for more than 30 minutes). Samples were heated for 5 to 8 minutes 

and stirred three times during  heating, taking care to use a separate stick for each sample 

and to remove the wooden sticks after each stirring. Sample tubes were removed from 

the heating blocks and 1 to 2 ml of glacial acetic acid added. Tubes were capped and 

spun and the liquid decanted. Tubes were filled to the 7.5 ml mark with glacial acetic 

acid, capped, and vortexed. Water was added to the tubes and the tubes were spun. 

Following this, the liquid was decanted and the sample vortexed.  The procedure of 

adding water, vortexing the samples to mix the water with the residue, followed by 

spinning the samples and decanting the liquid was repeated at least two times. Finally 

samples were vortexed and 1 to 3 drops of Safranin-0 were added into each tube and 

water was added to fill the tube. Tubes were spun and the liquid decanted. The step of 

adding water to fill the tube, spinning the tube and decanting the liquid was repeated. 

Then ZnBr2 was added into each tube to the 4 ml mark. Tubes were stirred completely 

and water was carefully added such that it ran down the inside of the tube filling the tube 

to the 7 ml mark.  Extreme care was used not to mix this water with the sample. Tubes 

were spun at the lowest speed for 5 minutes and then at speed 80 for 5 minutes. At this 

point in the process, the sample tubes had three layers of liquid.  The upper two layers 

were siphoned off into 15 ml beakers. A 95% solution of ETOH was used to wash the 

residue and liquid into 1.5 ml tubes. These tubes were spun and the ETOH was decanted 
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and discarded. Four to five drops of glycerine was added to the sample and the sample 

was and stirred. Following this step, samples were allowed to sit for 24 hours for the 

ETOH to evaporate.  

Due to the difficulty of disaggregating samples 1-1 to 1-10, by KOH, ultra 

sonication for 10 seconds was used in processing samples 1-5, 1-6, 1-7, and 1-9. Despite 

treatments with HCl and KOH, and repeated rinsing of samples, samples 1-5, 1-6, 1-7, 

and 1-9 retained a large amount of organic debris. This debris may be lignin.  

In order to completely sample this site, 13 additional samples were requested from 

Leg 143 Site 865. Processing of these samples included HCl, HF, and acetolysis as 

described above. Sample 2-4, 2-5, 2-12, and 2-13 were processed with one drop of 

bleach for less than 10 seconds to remove organic matter.  

After processing, we observed samples in a compound microscope at 40X, 60X 

and 100X and took photographs for our records and to verify identifications. In 

identifying specimens, we used Mildenhall (1994) and comparison of our specimens 

with specimens in slides from Ogg’s (1992) study lent to us by the author.  For the most 

part, we followed the systematic usage of Mildenhall (1994). However, we follow 

Pocock and Vasanthy (1988) in assigning plicate pollen with straight plicae to 

Ephedripites rather than Equisetosporites. Takahashi et al. (1995) reserved 

Equisetosporites for monoporate, spirally plicate pollen with psilate exine ribs. 
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CHAPTER III 

RESULTS 

Pollen and Spore Recovery 

Samples 1-1 to 1-4, 1-6, 1-7, 2-11 and 2-12 have the highest recovery of 

terrestrial palynomorphs. Samples 1-5, 1-8, 2-3, 2-8, and 2-10 contain few terrestrial 

palynomorphs. Of these, 1-8 and 1-5 lay close to basalt layers. Samples 2-8 and 2-10 

come from an interval (from sample 2-4 through 2-10) with abundant microforams and 

leiospheres, but few terrestrial palynomorphs; however other of the samples from this 

interval contain more terrestrial palynomorphs. Sample 2-3 contains a low abundance of 

microforams, leiospheres and terrestrial palynomorphs. 

Pollen Assemblage 

13 pollen types, 28 spore types, 2 dinoflagellates, and leiospheres are found in 

samples (Table 2 and 3, Plate 1-6). The palynomorphs can be related to plant taxa: 

Filicopsida, including Cyatheaceae, Dicksoniaceae, Schizaeaceae, Osmundaceae, 

Gleicheniaceae, Hymenophyllaceae, and Aspleniaceae; Bryophyta; Lycopodiaceae; 

Selaginellaceae; and conifers including Araucariaceae and possibly, Podocarpaceae. 

(Plate 1-6) The most common spore type is Cyathidites minor (Cyatheaceae). The 

second abundant spore type is Gleicheniidites senonicus (Gleicheniaceae). Rare 

palynomorphs, such as Callialasporites dampieri, Cicatricosisporites hughesii, and 

Impardecispora excavate, occur only in one or two samples. The highest diversity of 

palynomorphs occurs in samples 1-4 and 2-2 (25 species). Microforaminifera and 
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leiospheres are abundant in samples 2-4 to 2-10. The description of pollen and spore 

types is shown below. 

Systematic Description 

Plate 1  Pollen Types 
Fig. 1 
Callialasporites dampieri, Balme (1957), Mildenhall (1994) 50 µm × 50 µm 
Outline subcircular, with inner circle. Monosaccate, with narrow, continuous, radially 
folded saccus. No pores and colpi. Exine is etectate and psilate. 
 
Fig. 2 
Callialasporites segmentatus, Balme (1957), Mildenhall (1994) 53 µm × 50 µm 
Outline subcircular, with inner circle. Monosaccate, with subcircular amb and narrow 
segmented, intensely radially folded saccate. Exine is etectate and psilate. 
 
Fig. 3 
? Podosporites, Schrank (2010) 30 µm × 20 µm 
Outline elongate elliptical body, with two semi-circles on the two sides of the long axis. 
Bisaccate, with two sacs. Exine is intectate and reticulate (parts of pattern are 
pentagonal). 
 
Fig. 4, 5 
Unknown-1, 25 µm × 20 µm 
Outline elliptical, with 4 straight, smooth ridges with thin crests. Stephanocolpate, with 4 
colpi located between ridges. Exine is etectate and psilate. 
 
Fig. 6, 7  
Unknown-2 (? Picea), 135 µm × 87.5 µm 
Outline elongate elliptical body, with two semi-circles on the two sides of the long axis. 
Bisaccate, with two saccus. Exine is intectate and reticulate. Body surface is smoother 
than saccus surface. Reticulation is denser on body surface than on saccus surface. 
 
Fig. 8 
Unknown-3, 40 µm × 20 µm (body), 22.5 µm × 12.5 µm (sacci) 
Outline elongate elliptical body, with two small flat elliptical saccus on the two sides of 
the long axis. Bisaccate, with two saccus. Exine is intectate and reticulate.  
 
Fig. 9, 10 
Unknown-4, 52.5 µm × 45 µm (body), 42.5 µm × 20 µm (sacci) 
Outline elongate subelliptical body (bullet-like), with two small elongate elliptical 
saccus on the two sides of the short axis. Bisaccate, with two saccus shrinking under 
body part. Exine is intectate and reticulate. Body surface is smoother than saccus surface.  
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Fig. 11, 12 
Unknown-5, ~52.5 µm × 42.5 µm (body), ~37.5 µm × 22.5 µm (sacci) 
Outline elongate subelliptical to rhombic body, with two small elongate elliptical saccus 
on the two sides of the long axis. Bisaccate, with two saccus. Exine is intectate and 
reticulate. Surface is rougher than surface of Unknown-4. 
 
Fig. 13, 14 
Unknown-6, 47.5 µm (body-length), 32.5 µm (sacci-length) 
Outline elongate subelliptical body, with two small elongate subelliptical saccus on the 
two sides of the long axis. Bisaccate, with two saccus. Exine is intectate and reticulate. 
 
Fig. 15, 16, 17 
Unknown-7, ~37.5 µm × 32.5 µm (body), ~32.5 µm × 15 µm (sacci) 
Outline elongate subelliptical body, with two small elongate subelliptical saccus on the 
two sides of the long axis. Bisaccate, with two saccus. Exine is intectate and reticulate. 
 
Fig. 18, 19 
Unknown-8, 37.5 µm × 27.5 µm (body); 20 µm × 20 µm (saccus) 
Outline elongate elliptical body, with two semi-circles on the two sides of the long axis. 
Bisaccate, with two saccus. Exine is intectate and reticulate. Body surface is smoother 
than saccus surface. Reticulation is denser on body surface than on saccus surface. 
 
Plate 2  Spore Types 
Fig. 1 
Baculatisporites comaumensis, Cookson (1953), Potonie (1956) 37 µm × 25 µm 
Outline circular. Trilete, with three laesura connecting to each other at one point and 
located on the same surface. Exine is intectate and verrucate to baculate. 
 
Fig. 2 
? Biretisporites potoniaei, Delcourt and Sprumont (1955) 38 µm × 38 µm 
Outline subcircular, with one sharp apex. Trilete, with three laesura connecting to each 
other at one point. Exine is etectate and psilate (laevigate). 
 
Fig. 3, 4 
Ceratosporites equalis, Cookson and Dettmann (1958) 20 µm × 18 µm 
Outline circular. Trilete, with three laesura connecting to each other at one point. Exine 
is intectate and baculate (~2 µm length). 
 
Fig. 5, 6 
Cicatricosisporites hughesii, Dettmann (1963), Mildenhall (1994) 55 µm × 55 µm 
Outline subtriangular, with convex sides. Trilete, with wide lumina between the narrow 
muri running parallel to the interradial margins of the spore. Exine is intectate and striate. 
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Fig. 7 
Cicatricosisporites sp., Vajda and Raine (2003) 35 µm × 30 µm 
Outline circular, with reticulate pattern. Trilete, with three laesura. Exine is intectate and 
striate. 
 
Fig. 8 
Cyathidites minor, Couper (1953) 20 µm × 20 µm 
Outline subtriangular with round apexes and concave sides. Trilete, with three wide 
opening laesura connecting to each other at one point. Exine is etectate and psilate 
(laevigate). 
 
Fig. 9 
? Foveosporites canalis, Balme (1957) 38 µm × 38 µm 
Outline circular. Trilete, with three laesura connecting to each other at one point and 
diverging at the other ends. Exine is etectate and psilate (laevigate). 
 
Fig. 10, 11, 12, 13 
Gleicheniidites senonicus, Ross (1949) 30 µm × 30 µm 
Outline subtriangular, with concave sides and laterally expanded apices. Tetrahedral 
trilete, with three protruding laesura connecting to each other at one point and extending 
to the equator. Exine is etectate and psilate (laevigate). 
 
Fig. 14 
Impardecispora excavate, Ravn (1995) 10 µm × 10 µm 
Outline subtriangular, with two round apexes and think wall on three apexes. Trilete, 
with three laesura connecting to each other at one point. Exine is etectate and psilate 
(laevigate). 
 
Fig. 15 
Laevigatosporites ovatus, Wilson and Webster (1946) 26 µm × 21 µm 
Outline elliptical. Monocolpate, with one colpus located along the long axis. Exine is 
etectate and psilate (laevigate). 
 
Fig. 16, 17 
Leptolepidites verrucatus, Couper (1953) 48 µm × 40 µm 
Outline subtriangular, with round apexes and convex sides. Trilete, with three laesura 
connecting to each other at one point. Exine is intectate and verrucate (5µm diameter). 
 
Fig. 18 
Lycopodiacidites dettmannae, Burger (1980) 30 µm × 25 µm 
Outline circular, with spot pattern. Trilete, with three laesura connecting to each other at 
one point. Exine is intectate and baculate to echinate (spinose). 
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Fig. 19 
Retitriletes circolumenus, Cookson and Dettmann (1958), Backhouse (1978) 30 µm × 25 
µm 
Outline circular, with reticulate pattern. Exine is intectate and reticulate. 
 
Fig. 20 
Ruffordiaspora australiensis, Cookson (1953), Dettmann and Clifford (1992) 50 µm × 
37.5 µm 
Outline triangular. Trilete, with three laesura connecting to each other at one point and 
located on the same surface. Exine is intectate and striate (1.5µm width). 
 
Plate 3  Spore Types 
Fig. 1, 2 
Osmundacidites wellmanii, Couper (1953) 50 µm × 50 µm 
Outline subcircular to subtriangular. Trilete with three protruding laesura. Exine is 
intectate and echinate (1.25µm length) (apiculate). 
 
Fig. 3 
? Stereisporites antiquasporites, Wilson and Webster (1946), Dettmann (1963) 17.5 µm 
× 17.5 µm 
Outline subtriangular, with convex sides. Trilete, with wide opening laesura. Exine is 
etectate and psilate (laevigate). 
 
Fig. 4 
Unkown-2, 24 µm × 24 µm 
Outline triangular, with three concave apexas (the end of three laesura) and a concave 
center. Trilete, with three protruding laesura connecting to each other at one point and 
located on the same surface and contact each other. Exine is etectate. 
 
Fig. 5, 6 
Unkown-3, 27 µm × 26 µm 
Outline circular, with a chain-like outer frame. Trilete, with three laesura connecting to 
each other at one point. Exine is intectate and verrucate (2 µm width). 
 
Fig. 7 
Unknown-4, 23 µm × 23 µm 
Outline circular. Trilete, with three wide opening laesura connecting to each other at one 
point. Exine is etectate and psilate (laevigate). 
 
Fig. 8 
Unknown-5, 22.5 µm × 17.5 µm 
Outline elliptical, with hairy structure on the surface. Exine is intectate and echinate 
(spinose). 
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Fig. 9, 10 
Unknown-6, 30 µm × 30 µm 
Outline subtriangular, with round apexes and concave sides. Trilete, with three 
protruding laesura connecting to each other at one point and extending to the equator. 
Exine is tectate and reticulate. 
 
Fig. 11, 12 
Unkown-7, 27 µm × 21 µm 
Outline circular, with radial wall pattern. Trilete, with three wide opening laesura 
connecting to each other at one point and extending to the equator. Exine is intectate and 
striate (0.1µm). 
 
Fig. 13 
Unknown-8, 60 µm × 60 µm 
Outline subcircular to subtriangular, with round apexes and convex sides. Trilete, with 
three laesura connecting to each other at one point and extending to the equator. Exine is 
etectate and psilate (laevigate). Wall is thick (3.3 µm). 
 
Fig. 14 
Unknown-9, 26.7 µm × 18.3 µm 
Outline elliptical, with one concave side. Monolete, with one laesura aligned along the 
long axis. Exine is etectate and psilate (laevigate). 
 
Fig. 15 
Unknown-10, 38.3 µm × 38.3 µm  
Outline subtriangular, with convex sides. Trilete, with three protruding laesura. Exine is 
intectate and striate. 
 
Fig. 16 
Unknown-11, 60 µm × 60 µm 
Outline subcircular to subtriangular, with one sharp and folded apex. Trilete, with three 
laesura connecting to each other at one point. Exine is etectate and psilate (laevigate). 
 
Fig. 17 
Unknown-12, 26.7 µm × 26.7 µm 
Outline elliptical to circular. Trilete, three laesura connecting to each other at one point. 
Exine is etectate and psilate (laevigate). Inxine is concave at the three points connecting 
to laesura.  
 
Fig. 18 
Unknown-13, 36.7 µm × 36.7 µm 
Outline triangular. Trilete, with three laesura connecting to each other and extending to 
the equator. Exine is etectate and psilate (laevigate). 
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Fig. 19, 20 
Unknown-14, 37.5 µm × 37.5 µm 
Outline subtriangular, with round apexes and concave sides. Trilete, with triangular 
broken shape. Exine is etectate and psilate (laevigate). Wall is thick (2.5 µm). 
 
Plate 4  Spore Types 
Fig. 1, 2, 3 
Unknown-15, 33.3 µm × 33.3 µm 
Outline subtriangular, with round apexes and concave sides. Trilete, with three laesura 
connecting to each other at one point. Exine is tectate and verrucate to baculate. 
 
Fig. 4 
Unknown-16, 40 µm × 27.5 µm 
Outline subelliptical. Trilete, with three laesura connecting to each other at one point and 
extending to the equator. Exine is etectate and psilate (laevigate). Outer part surrounded 
by wrinkled structure.  
 
Fig. 5 
Unknown-17, 32.5 µm × 32.5 µm 
Outline subtriangular. No laesura. Three protruding elongated parts connecting to each 
other as a triangular shape. Exine is etectate and psilate (laevigate). 
 
Plate 5  Dinoflagellate, Microforaminifera 
Fig. 1, 2, 3 
Diconodinium, Helby and McMinn (1992) 80 µm × 42.5 µm 
Outline fusiform and biconical. Unilayered cyst with two horns-one apical, the other 
antapical. The antapical horn close to the longitidinal axis and is spinelike. Cingulum 
wide and located in the middle of the cyst. 
 
Fig. 4, 5 
Unknown-17 (dinoflagellate),  
Outline elliptical. Bilayered cyst with no clear horns. Aperture located on the     part. 
Cingulum aligned along the short axis. 
 
Fig. 6 
Unknown-18 (microforaminifera) 
Outline whorl and staphylococcus-like. Seven linked spheral chambers, with broken thin 
walls. 
 
Fig. 7 
Unknown-19 (microforaminifera) 
Outline subcircular. Six chambers. Five of them linked together and surround one 
chamber in the center. Wall thick.  
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Fig. 8 
Unknown-20 (microforaminifera) 
Outline whorl ellipses. More than eleven chambers, with sequentially small to big size 
from center to outer part. Biggest chamber is subtriangular, with convex sides and cracks 
on the wall. Wall thick. 
 
Fig. 9 
Unknown-21 (microforaminifera) 
Outline subcircular. More than nine linked chambers, with subtriangular plate-like 
shapes. Wall thick. 
 
Fig. 10 
Unknown-22 (microforaminifera) 
Outline whorl ellipses. More than ten chambers, with sequentially small to big size from 
center to outer part. The wall of biggest chamber is thinner than other chambers. 
 
Fig. 11, 12 
Unknown-23 (microforaminifera) 
Outline chain-like. Five chambers linked together Hole in the center. Wall thin.  
 
Fig. 13, 14 
Unknown-24 (microforaminifera) 
Outline chain-like. Five chambers linked together Hole in the center. Elongate structure 
at the end and outer side. Wall thin. 
 
Fig. 15 
Unknown-25 (microforaminifera) 
Outline chain-like. Five chambers linked together Hole in the center. Elongate structure 
at the end and outer side. Wall thin. 
 
Fig. 16, 17, 18 
Unknown-26 (microforaminifera) 
Outline chain-like. Five chambers linked together Hole in the center. Elongate structure 
at the end and outer side. Wall thin. 
 
Fig. 19 
Unknown-27 (fragment of microforaminifera) 
Outline subtriangular. Two linked chambers. Cracks on walls. Triangular pattern on the 
lateral sides. Wall thick. 
 
Plate 6 Leiosphere 
Fig. 1, 2 
Unknown-28, 65 µm × 55 µm 
Outline circular to subcircular. Thin. Bilayered wall (3.75µm), without pylome. Center 
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lain by irregularly ridged, without a definite ridge pattern. 
 
Fig. 3 
Unknown-29, 92.5 µm × 87.5 µm 
Outline circular to subcircular. Thin. Bilayered wall (<3.75µm), without pylome. Center 
folded.  
 
Fig. 4 
Unknown-30, 87.5 µm × 82.5 µm 
Outline circular to subcircular. Thick. Bilayered wall (10µm), with concave center. 
 
Fig. 5 
Unknown-31, 70 µm × 70 µm 
Outline circular. Thick. Bilayered wall (7.5µm).Center with one convex ridge aligning 
along central axis.  
 
Fig. 6 
Unknown-32, 70 µm × 70 µm 
Outline circular. Thin. Bilayered wall (1.25µm), with two or more pylomes. Inner layer 
irregularly ridged, without a definite ridge pattern. excystment is by mean of a rounded 
pylome, bordered with an elevated rim. 
 
Fig. 7 
Unknown-33, 70 µm × 55 µm 
Outline subelliptical. Thin. Bilayered wall (1.25µm), with one pylomes. Inner layer 
irregularly ridged, without a definite ridge pattern. Excystment is by means of a rounded 
pylome. 
 
Fig. 8 
Unknown-34, 40 µm × 40 µm 
Outline subcircular. Thin. Monolayered wall, without pylome, with two protruding 
crescent. 
 
Fig. 9 
Unknown-35, 125 µm × 110 µm 
Outline subelliptical. Thin. Bilayered wall (1.25µm), without pylome. Outer layer folded. 
Inner layer irregularly ridged, without a definite ridge pattern.  
 
Fig. 10 
Unknown-36, 77.5 µm × 77.5 µm 
Outline circular. Thin. Bilayered wall (1.25µm), without pylome. Rough surface, with 
spots. Layer irregularly ridged, without a definite ridge pattern. 
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Fig. 11 
Unknown-37, 85 µm × 65 µm 
Outline subelliptical. Thin. Bilayered wall (2.5µm), with one pylome. Excystment is by 
means of an irregular pylome. 
 
Fig. 12 
Unknown-38, 65 µm × 65 µm 
Outline circular. Thin. Bilayered wall (5µm). Layer irregularly ridged, without a definite 
ridge pattern. Outer layer broken in the center.  
 
Fig. 13 
Unknown-39, 50 µm × 50 µm 
Outline circular. Thin. Monolayered wall (1.25µm), without Pylome. Layer irregularly 
ridged, without a definite ridge pattern.  
 
Fig. 14 
Unknown-40, 87.5 µm × 65 µm 
Outline circular. Thin. Bilayered wall (<1.25µm), without Pylome. Layer irregularly 
ridged, without a definite ridge pattern.  
 
 
Plate 7 Palynomorphs from Leg 129 Site 802 (Ogg, 1992) 
Fig. 1, 2 
Callialasporites trilobatus, Balme (1957); Dev (1961) 45 µm × 35 µm (Fig. 1); 37.5 µm 
× 47.5 µm (Fig. 2) 
Outline subcircular, with inner subcircle to subtriangular. Trisaccate, without apertures 
and colpi. Exine is etectate (psilate) or intectate (granulate). 
 
Fig. 3 
Cyathidites minor, Couper (1953) 40 µm × 40 µm 
Outline subtriangular with round apexes and concave sides. Trilete, with three wide 
opening laesura connecting to each other at one point. Exine is etectate and psilate 
(laevigate). 
 
Fig. 4, 5 
Cicatricosisporites australiensis, Cookson (1953); Potonié (1956) 35 µm × 32.5 µm 
Outline circular, with reticulate pattern. Trilete, with three laesura. Exine is intectate and 
striate. 
 
Fig. 6 
Gleicheniidites spp., 22.5 µm × 22.5 µm 
Outline subtriangular, with concave sides and laterally expanded apices. Tetrahedral 
trilete, with three protruding laesura connecting to each other at one point and extending 
to the equator. Exine is etectate and psilate (laevigate). 
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Fig. 7 
Concavissimisporites punctatus, Delcourt and Sprumont (1955); Brenner (1963), 42.5 
µm × 42.5 µm 
Outline subtriangular with round apexes and concave sides. Center concave. Trilete, 
with three wide opening laesura connecting to each other at one point. Exine is intectate 
and verrucate. 
 
Fig. 8 
?Foraminisporis asymmetricus, Cookson and Dettmann (1958); Dettmann (1963), 45 
µm × 45 µm 
Outline subtriangular with round apexes and concave sides. Trilete, with three laesura 
connecting to each other at one point and located on the same surface.The edge of 
laesura thick protuding. Exine is intectate and verrucate to baculate. 
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CHAPTER IV 

DISCUSSION 

Evidence for Freshwater Plants on Allison Guyot in the Albian 

The presence of in-situ roots and traces of lignite in Allison Guyot cores indicates 

the presence of land plants growing on Allison Guyot in the Early Albian. In the 

Cretaceous, the closest emergent land to Allison Guyot was probably Resolution Guyot 

(Site 866), which lay approximately 675 km to the north (Koppers et al., 1998; Winterer 

and Sager, 1995). Since the direction of prevailing winds would have been from the 

south and east, Resolution Guyot probably did not contribute terrestrial palynomorphs to 

Allison Guyot sediments due (Fig. 5). 

Both distance from shore and the prevailing wind and current direction influence 

the distribution of terrestrial palynomorphs in marine sediments (Muller, 1959; 

Koreneva, 1968; Farley, 1987). Koreneva (1968) found a high diversity and great 

abundance (> 400 grains/ 10 g sediment) of terrestrial palynomorphs in marine 

sediments off shore from the southeast coast of New Zealand, in the downwind direction. 

She found very few terrestrial palynomorphs to the northwest of New Zealand, in the 

upwind direction.  Farley (1987) reported that the direction of prevailing currents (wind 

and water) influenced the diversity and abundance of terrestrial palynomorphs in marine 

sediments in the Caribbean Basin. 

Terrestrial palynomorphs rarely occur in marine sediments far from continents 

and islands. Koreneva (1968) found almost no pollen in sediments from the ocean floor 

which lay north of New Zealand between Vanuatu and the Fiji Islands.  Sample 3848, 
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the single exception was core, which lay approximately 300 km from Vanuatu and 

approximately 600 km from the Fiji Islands (Fig. 1). This core contained almost 100 

terrestrial palynomorphs per 10 g of sediment. The source of these palynomorphs may 

have been the Fiji Islands, which lay to the east of the core, such that prevailing winds 

could have transported palynomorphs from Fiji to the core site. However, Koreneva’s 

core 3852, which appears to lie in the path of prevailaing winds from the northern large 

Fiji Island, Vanua Levu, contains no terrestrial palynomorphs. Although Koreneva (1968) 

contains a comprehensive discussion of terrestrial palynomorphs in open ocean 

sediments, she did not report the latitudinal coordinates of her samples and cores, and 

the map of sampling localities included in the translation of her paper is schematic, 

which makes detailed interpretation of her results difficult.    

In contrast to the low concentration of pollen and spores in the open ocean 

sediments in Koreneva’s research, the concentration of terrestrial pollen and spores in 

samples from Allison Guyot was higher than 30 grains per 10g, indicating that this 

palynomorph assemblage derived from plants growing on Allison Guyot. Due to the 

long distance between Allison Guyot and other continents and islands (more than 675 

km), it seems unlikely that Allison Guyot palynomorphs were transported from other 

land masses. Tropical heavy, and often daily, rainfall tends to wash the air clear of dust 

and pollen, restricting the long-distance transport of terrestrial palynomorphs, especially 

in the rainy season (Muller, 1959).  

The terrestrial palynomorph assemblage of Allison Guyot consists of tree ferns 

(Cyatheaceae), forked ferns (Gleicheniaceae), club mosses (Lycopodiaceae) and 
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gymnosperm shrubs (Ephedra), and probably represents a fresh water plant community 

(Table 2). These four families are the most abundant spores and pollen in Allison Guyot 

samples and specimens from one of these four groups occur in almost all of the samples.  

Ogg (1992) reported a similar assemblage from ODP Leg 129, Site 802 near the 

western Mid-Pacific mountains (Plate 7 and Table 4). This site is located in the Mariana 

Basin and the sediments consist of shallow water carbonates and woody fragments 

derived from nearby seamounts (approximate 300 km from Site 802). Core intervals 

129-802-56 and 129-802-56 -57 were dated as late Aptian to Albian. This core interval 

consisted of 1) brown claystone, calcareous claystone, radiolarian limestone; and 2) 

volcaniclastic turbidites with wood fragments (Shipboard Scientific Party, 1990). Both 

of these facies are similar to facies encountered at Allison Guyot. Pollen and spores from 

Aspleniaceae, Araucariaceae, Cyatheaceae, Gleicheniaceae, Lycopodiaceae, 

Schizaeaceae, and Selaginellaceae, which occur in samples from Allison Guyot, also 

occured in Albian sediments from Leg 129 Site 802. Ogg (1992) suggested that the 

abundance of terrestrial palynomorphs and woody materials from Leg 129 Site 802 

(Albian) represented vegetation growing on exposed land masses, which were nearby 

seamounts. Comparing with Leg 129 Site 802, the similar terrestrial palynomorphs 

appeared at Allison Guyot and the similar carbonate facies at Allison Guyot may also 

reflected an existence of an island during the Early Albian. Both the diversity and the 

abundance of spores and pollen in sediments from Allison Guyot and Leg 129, Site 802 

argue for the presence of islands with freshwater vegetation. 
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Pollen in Allison Guyot Samples 

Ninety percent of the terrestrial palynomorphs from Allison Guyot were spores.  

Allison Guyot samples did not yield Cretaceous angiosperm pollen. The remaining 

palynomorphs were gymnosperm pollen belonging to Ephedra, Callialasporites, and 

Podocarpus. Modern Ephedra is a gymnosperm shrub belonging to the Gnetopsida; 

most species grow in arid and semi-arid regions in the temperate zone, and are wind 

pollinated (Yang, et al., 2005). Hooghiemstra et al. (1986) argued that distribution 

patterns of two Ephedra pollen types, E. fragilis and E. distachya, in marine surface 

sediments closely matched the average wind flow pattern of the trade winds. Ancient 

Ephedra pollen first appears in the Triassic and is widespread in Lower Cretaceous 

palynomorph assemblages (Crepet, 1991). Ephedra pollen occurs 15 samples from 

Allison Guyot, and the quantity of Ephedra pollen is more than 10 grains per 10 g in 

some samples, suggesting that this species grew on Allison Guyot.   

 Callialasporites and Podocarpus pollen derived from gymnosperm trees belong 

to the Pinopsida; the parent plant of Callialasporites is extinct. Ogg (1992) also found 

Callialasporites, and Podocarpus at ODP Leg 129, Site 802, which is close to the 

western Mid-Pacific Mountains. Although saccate pollen such as Callialasporites, which 

is monosaccate in Allison Guyot samples, and Podocarpus, which is bisaccate in Allison 

Guyot samples, could have been transported from a far distant location by wind or water, 

the presence of these two pollen genera at both Allison Guyot and ODP Leg 129, Site 

802, suggests that their parent trees were part of the mid-Pacific island flora of the 

Cretaceous.  
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Most reviews of Early Cretaceous phytogeography focus primarily on the 

distribution of pollen (Srivastava, 1981; Herngreen and Jimenez, 1990; Herngreen et al., 

1996). For example, Herngreen et al. (1996) outlined 4 palynofloral provinces for the 

Early Cretaceous: a North Polar Cerebropollenites province; an Equatorial Elaterates 

province consisting of equatorial South America, Africa, and the middle East; an eastern 

Equatorial Schizaeoisporites province in Central and East Asia, which was apparently 

more arid than the Elaterates province; and a South Polar Trisaccates province which 

included Antarctica, Australia, New Zealand, India, as well as the tip of South America 

and the tip of Africa. Because most of the palynomorphs that distinguish these provinces 

are pollen, it is difficult to assign the Early Cretaceous spore-dominated floras of the 

mid-Pacific to a particular floral province.  

Three pollen genera occur in mid-Cretaceous sediments from Allison Guyot:  

Ephedra, a gnetalean gymnosperm shrub; the conifer Podocarpus, which belongs to 

Podocarpaceae; and Callialasporites, an extinct member of Araucariaceae. Ephedra was 

globally distributed in the Albian, as were the Podocarpaceae (Herngreen and Jimenez, 

1990; Jameossanai and Lindsley-Griffi, 1993; Dettmann, 1994; Mildenhall, 1994; Ravn, 

1995; Coa, 1999).  

However, Callialasporities may provide evidence for a Southern Hemisphere 

derivation of the Albian flora of Allison Guyot. The Early Cretaceous of New Zealand 

has two species of Callialasporites, C. dampieri and C. seqmentatus, both of which 

occur at Allison Guyot. In addition, Callialasporites pollen occurs in the Une Formation 

in Colombia, South America. In the Early Cretaceous, Colombia lay at approximately 1° 
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N in the Equatorial Elaterates province of Herngreen et al. (1996). Otherwise, 

Callialasporites occurs in the Klamath River Conglomerate and unnamed conglomerates 

at Pythian Cave, in California, western North America, in allocthonous terranes from the 

Paleo-Pacific Ocean (Jameossanai and Lindsley-Griffi, 1993).  

 Instead of pollen, I used the spores present in Early Cretaceous palynofloral 

provinces to determine the phytogeographic affiliation of mid-Pacific terrestrial pollen 

assemblages. In comparison with palynomorphs from Albian formations in North 

America, Africa, southeastern China, Europe, New Zealand, and Australia, the 

assemblage at Allison Guyot appears most similar to the palynomorph assemblage in 

New Zealand and Australia (Herngreen and Jimenez, 1990; Jameossanai and Lindsley-

Griffi, 1993; Dettmann, 1994; Mao el at., 2006; Mildenhall, 1994; Ravn, 1995; Coa, 

1999).  

Depending on the microfossil records in Australia (Dettmann, 1994), there are 

seven similar groups in the records and in our samples. These groups are Podocarpaceae, 

Schizaecea, Gleicheniaceae, Osmundaceae, Araucariaceae, Lycopodiaceae, and 

Stereisporites. The pollen and spore types in the Albian formation, the Une Formation in 

Colombia, South America, include four groups, Impardecispora, Leptolepidites, 

Callialasporites dampieri, Cyathidites, which are the same as the groups in our samples 

from Allison Guyot. Gymnospermous pollens (Callialasporites) were common in 

Colombia in Albian (Herngreen and Jimenez, 1990).  We found fewer than 10 grains of 

Callialasporites, which is a monosaccate pollen, in our samples.  Monosaccate pollen 

may be transported great distances by wind or water currents, and Callialasporites might 
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have been transported by wind or water to Allison Guyot.  However, Ogg (1992) 

interpreted Callailasporites in marine turbidites from ODP leg 129, Site 802 as having 

grown with the other plants represented in her palynomorph assemblage.  Likewise, 

Callailasporites may have been growing on Allison Guyot in the Albian. In Zhejiang 

Formation (Mid-eastern China, Albian) (Cao, 1999), only two pollen and spore groups, 

Selaginellites and Araucariaceae, are similar to our samples. The Albian Dakota 

Formation in northeastern Nebraska, USA, contains only one fern family, Schizaeceae 

(Cicatricosisporites venustus) (Ravn, 1995), which occurs in our samples. In comparison 

the Albian palynomorph assemblages from around the globe, the palynomorph 

assemblage of Allison Guyot is closest to that of New Zealand and Australia. 
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CHAPTER V 

CONCLUSIONS 

The resource of pollen and spores in marine sediments usually comes from plants 

on continents or islands, which are close to those marine terrains. The concentration of 

pollen and spores is related to the distance between the parent plants and depositional 

locations. Therefore, terrestrial palynomorphs are abundant near the shore, but rare in 

open ocean sediments; unless there is a large island or continent nearby. The abundance 

of palynomorphs in marine sediments decreases with increasing distance from islands 

and continents. And the distribution of terrestrial palynomorphs in marine sediments is 

influenced by both distance from shore and the prevailing wind and current direction.  

There were many terrestrial palynomorphs reported from IODP, ODP, and DSPS 

cores. Samples in this research were from ODP cores (Leg 143 Site 865), Allison Guyot. 

Twenty two samples contain terrestrial palynomorphs, but 1 sample which was close to 

an intrusive basalt contains no palynomorphs. Thirteen pollen types, 28 spore types, 2 

dinoflagellates, and leiospheres were found in Allison Guyot samples. The 

palynomorphs can be related to plant taxa: Bryophyta; Filicopsida, including 

Cyatheaceae, Dicksoniaceae, Schizaeaceae, Osmundaceae, Gleicheniaceae, 

Hymenophyllaceae, and Aspleniaceae; Lycopsida including Lycopodiaceae and 

Selaginellaceae; and gymnosperms, including Ephedraceae and Araucariaceae, and 

possibly Podocarpaceae. The most common spore type is Cyathidites minor 

(Cyatheaceae). The second abundant spore type is Gleicheniidites senonicus 

(Gleicheniaceae). Both the diversity and the abundance of spores and pollen in Allison 
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Guyot sediments argue for the presence of an island with a freshwater table. The high 

quantity (more than 30 grains per 10 g) and continuity of appearance (presented almost 

in all samples) of these four families indicate endemic vegetation at Allison Guyot. 

Marine turbidites from Leg 129 Site 802, contain a terrestrial palynomorph assemblages 

similar to that of Allison Guyot. Both the diversity and the abundance of spores and 

pollen in sediments from Allison Guyot and Leg 129, Site 802 argue for the presence of 

mid-Pacific islands with freshwater vegetation. 

The terrestrial palynomorph assemblage of Allison Guyot consists of tree ferns 

(Cyatheaceae), forked ferns (Gleicheniaceae), club mosses (Lycopodiaceae) and 

gymnosperm shrubs (Ephedra), and probably represents a fresh water plant community. 

The vegetational assemblage on Allison Guyot was similar to the vegetation of New 

Zealand and Australia in the Albian, and shares few plant groups with palynomorph 

assemblages in Albian sediments from North America, South America, eastern Asia, 

Africa, Australia, and New Zealand. These terrestrial palynomorphs from Allison Guyot 

derived from vegetation growing on an exposed island. 
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APPENDIX A  

TABLES 

Table 1. Depth and lithology of samples from Allison Guyot 
 

Core Section Interval Interval weight (g) Label Major lithology 

74 1 109 111 10.08 2-1 
wackestone with some dark gray clay seams, stylolites, 
compacted burrows, leached zones infilled by probable 
dolomite. 

78 1 52 54 10.36 2-2 
mudstone and wackestone with clayey sediment, 
foraminifers (miliolids) and gastropods, burrows infilled 
with rhombic crystals of dolomite, common stylolites 

81 1 21 23 10.17 2-3 
packstone and wackestone with foraminiferal and other 
molds, some dolomite, disseminated organic matter, mm-
cm-size black pebbles, and black clayey seams with pyrite 

81 2 30 32 10.5 2-4 
packstone and wackestone with foraminiferal and other 
molds, some dolomite, disseminated organic matter, mm-
cm-size black pebbles, and black clayey seams with pyrite 

85 1 117 120 10.16 2-5 clayey limestone with appearance of peloids, foraminifers, 
and replaced gastropod shells, some with dolomite 

86 3 36 40 10.5 2-6 white to gray clayey limestone (Packstone) with 
foraminifers, bivalves, and gastropods 

86 3 65 68 10.21 2-7 white to gray clayey limestone (Packstone) with 
foraminifers, bivalves, and gastropods 

87 1 113 115 10.89 2-8 gray to white intensively bioturbated, laminated clayey 
limestone with benthic foraminifers 

87 2 67 69 10.27 2-9 gray to white intensively bioturbated, laminated clayey 
limestone with benthic foraminifers 

88 1 47 49 10.19 2-10 

bioturbated clayey limestone (packstone), white to gray, 
with benthic foramminifers, gastropods, bivalves, 
ostracods, and sponge spicules, intercalated with thin, dark 
clayey layers 

88 2 36 38 10.26 2-11 

bioturbated clayey limestone (packstone), white to gray, 
with benthic foramminifers, gastropods, bivalves, 
ostracods, and sponge spicules, intercalated with thin, dark 
clayey layers 

89 1 20 23 10.41 2-12 

parallel to wavy laminated clayey limestone, very dark 
grayish brown to light gray, with peloids, foraminifers, 
gastropods, bivalve fragments (mostly oyster), arthopods 
(rare), volcanic clasts, and coal layers 

89 3 36 38 10.71 2-13 

parallel to wavy laminated clayey limestone, very dark 
grayish brown to light gray, with peloids, foraminifers, 
gastropods, bivalve fragments (mostly oyster), arthopods 
(rare), volcanic clasts, and coal layers 

89 2 7 11 17 1-1 

parallel to wavy laminated clayey limestone, very dark 
grayish brown to light gray, with peloids, foraminifers, 
gastropods, bivalve fragments (mostly oyster), arthopods 
(rare), volcanic clasts, and coal layers 

89 5 64 66 18.55 1-2 

parallel to wavy laminated clayey limestone, very dark 
grayish brown to light gray, with peloids, foraminifers, 
gastropods, bivalve fragments (mostly oyster), arthopods 
(rare), volcanic clasts, and coal layers 

89 5 66 69 18.56 1-3 

parallel to wavy laminated clayey limestone, very dark 
grayish brown to light gray, with peloids, foraminifers, 
gastropods, bivalve fragments (mostly oyster), arthopods 
(rare), volcanic clasts, and coal layers 

89 6 13 15 16.82 1-4 

parallel to wavy laminated clayey limestone, very dark 
grayish brown to light gray, with peloids, foraminifers, 
gastropods, bivalve fragments (mostly oyster), arthopods 
(rare), volcanic clasts, and coal layers 

90 1 109 111 20.82 1-5 
clayey limestone (packstone), large gastropods, peloids, 
foraminifers, abundant sponge spicules, and finely 
disseminated organic matter and pyrite 

90 3 37 41 20.61 1-6 
clayey limestone (packstone), large gastropods, peloids, 
foraminifers, abundant sponge spicules, and finely 
disseminated organic matter and pyrite 

90 3 98 99 19.4 1-7 
clayey limestone (packstone), large gastropods, peloids, 
foraminifers, abundant sponge spicules, and finely 
disseminated organic matter and pyrite 
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Table 1. Continued 
 

Core Section Interval Interval weight (g) Label Major lithology 

90 3 130 132 20.19 1-8 
clayey limestone (packstone), large gastropods, peloids, 
foraminifers, abundant sponge spicules, and finely 
disseminated organic matter and pyrite 

92 2 43 44 20.02 1-9 black claystone, pyritic and locally green and laminated on 
a mm scale 

94 3 70 73 20.4 1-10 
bioturbated clayey limestone, abundant carbonaceous 
particles, numerous gastropods, bivalves, some woody 
pieces replaced by pyrite, and few benthic foraminifers 

 
 
Table 2. Taxa and affinity of terrestrial palynomorphs from Allison Guyot 
 

Pollen or Spore type Affinity Homosporous/

Heterosporous

Distribution in core 

Callialasporites dampieri Araucariaceae Gymnosperm 143-865-87-2 

Callialasporites 

segmentatus 

Araucariaceae Gymnosperm 143-865-78-1, 86-3, 88-2, 89-

2 

Ephedra Ephedraceae Gymnosperm 143-865-78-1, 81-1, 86-3, 87-

1, 88-2, 89-1, 89-3-2, 89-3, 

89-5, 89-6, 90-1, 90-3, 92-2, 

94-3 

Podocarpus sp. Podocarpus Gymnosperm 143-865-81-2, 85-1, 86-3, 87-

2, 88-2, 94-3 

Baculatisporites 

comaumensis 

Osmundaceae Homosporous 143-865-81-2, 86-3, 89-1 

? Biretisporites potoniaei Hymenophyllaceae Homosporous 143-865-81-2 

Ceratosporites equalis Selaginellaceae Heterosporous 143-865-88-2, 89-1, 89-3 

Cicatricosisporites 

hughesii 

Schizaeacea Homosporous 143-865-89-5 

Cicatricosisporites sp. Schizaeacea Homosporous 143-865-85-1, 89-5 

Cyathidites minor Cyatheaceae or 

Dicksoniaceae 

Homosporous 143-865-74-1, 78-1, 81-1, 81-

2, 85-1, 86-3, 87-1, 87-2, 88-

2, 89-1, 89-2, 89-3, 89-5, 89-

6, 90-1, 90-3, 92-2, 94-3 

? Foveosporites canalis Lycopodiaceae Homosporous 143-865-85-1, 89-2, 90-3 

Gleicheniidites senonicus Gleicheniaceae Homosporous 143-865-74-1, 85-1, 86-3, 88-

2, 89-1, 89-2, 89-3, 89-5, 89-
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6, 90-1, 92-2, 94-3 

Impardecispora excavate Unkown Unkown 143-865-89-5 

Laevigatosporites ovatus Aspleniaceae Homosporous 143-865-78-1, 89-3, 89-5, 89-

6, 90-1, 90-3, 92-2 

Leptolepidites verrucatus Pteridaceae Homosporous 143-865-89-1, 90-3 

Lycopodiacidites 

dettmannae 

Lycopodiaceae Homosporous 143-865-74-1, 78-1, 86-3, 88-

2, 89-1, 89-2, 89-5, 89-6, 90-

1, 94-3 

Retitriletes circolumenus Lycopodiaceae Homosporous 143-865-86-3, 87-2, 88-2, 89-

2, 89-5, 89-6 

Ruffordiaspora 

australiensis 

Schizaeacea Homosporous 143-865-78-1, 81-2, 86-3, 88-

2, 89-5, 89-6, 92-2 

Osmundacidites 

wellmanii 

Osmundaceae Homosporous 143-865-85-1, 87-2, 88-2, 89-

1, 89-3, 94-3 

? Stereisporites 

antiquasporites 

Sphagnaceae Bryophyta 143-865-88-2 
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Table 3. A list of taxa of terrestrial palynomorphs from Allison Guyot 
 

Core Section Interval Interval weight 
(g) Label Lycopodiacidites 

dettmannae 
Cyathidites 

minor 
Gleicheniidites 

senonicus 
Retitriletes 

circolumenus
Ruffordiaspor
a australiensis

Laevigatosporite
s avatus 

Callialasporites 
dampieri 

Podocarpus 
sp. 

Osmundacidite
s wellmanii 

Ceratosporite
s equalis 

Basculatisporites 
comaumensis 

74 1 109 111 10.08 2-1 1 16 1 0 0 0 0 0 0 0 0 

78 1 52 54 10.36 2-2 3 14 0 0 1 1 0 0 0 0 0 

81 1 21 23 10.17 2-3 0 5 0 0 0 0 0 0 0 0 0 

81 2 30 32 10.5 2-4 0 14 0 0 2 0 0 1 0 0 1 

85 1 117 120 10.16 2-5 0 5 1 0 0 0 0 5 1 0 0 

86 3 36 40 10.5 2-6 0 6 4 0 0 0 0 1 0 0 0 

86 3 65 68 10.21 2-7 2 10 2 1 3 0 0 0 0 2 

87 1 113 115 10.89 2-8 0 4 0 0 0 0 0 0 0 0 0 

87 2 67 69 10.27 2-9 0 6 0 2 0 0 1 2 1 0 0 

88 1 47 49 10.19 2-10 0 0 0 0 0 0 0 0 0 0 0 

88 2 36 38 10.26 2-11 30 24 7 1 3 0 0 1 11 3 0 

89 1 20 23 10.41 2-12 9 35 6 0 0 0 0 0 5 1 2 

89 3 36 38 10.71 2-13 0 10 2 0 0 2 0 0 2 2 0 

89 2 7 11 17 1-1 6 17 18 1 0 0 0 0 0 0 0 

89 5 64 66 18.55 1-2 2 56 33 0 13 0 0 0 0 0 0 

89 5 66 69 18.56 1-3 1 55 12 2 11 1 0 0 0 0 0 

89 6 13 15 16.82 1-4 7 24 21 2 4 5 0 0 0 0 0 

90 1 109 111 20.82 1-5 1 8 1 0 0 1 0 0 0 0 0 

90 3 37 41 20.61 1-6 2 38 27 0 0 6 0 0 0 0 0 

90 3 98 99 19.4 1-7 5 28 10 0 0 27 0 0 0 0 0 

90 3 130 132 20.19 1-8 0 0 0 0 0 0 0 0 0 0 0 

92 2 43 44 20.02 1-9 0 15 14 0 2 3 0 0 0 0 0 

94 3 70 73 20.4 1-10 2 19 3 0 0 0 0 1 5 0 0 
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Table 3. Continued  
 

Cicatricosisporites 
hughesii Cicatricosisporites sp. Impardecispora 

excavate 
Leptolepidites 

verrucatus Ephedra ?Foveneosporites 
canalis 

Callialasporites 
segmentatus 

?Stereisporites 
antiquasporites 

?Biretisporites 
potoniaei 

Unknown 
spores and 

pollen 
Leiosphere Summary 

0 0 0 0 0 0 0 0 0 1 2 21 

0 0 0 0 9 0 1 0 0 18 2 49 

0 0 0 0 3 0 0 0 0 0 5 8 

0 0 0 0 0 0 0 0 3 1 51 22 

0 1 0 0 0 1 0 0 0 2 2 16 

0 0 0 0 0 0 0 0 0 2 5 13 

0 0 0 0 3 0 1 0 0 6 1 31 

0 0 0 0 1 0 0 0 0 1 1 7 

0 0 0 0 0 0 0 0 0 4 26 16 

0 0 0 0 0 0 0 0 0 2 2 4 

0 0 0 0 2 0 2 1 0 2 1 96 

0 0 0 2 4 0 0 0 0 3 5 72 

0 0 0 0 1 0 0 0 0 0 3 22 

0 0 0 0 3 2 2 0 0 2 1 52 

0 1 1 0 4 0 0 0 0 0 2 112 

1 0 0 0 2 0 0 0 0 0 14 99 

0 0 0 0 12 0 0 0 0 17 21 92 

0 0 0 0 8 0 0 0 0 0 7 19 

0 0 0 5 18 1 0 0 0 0 1 98 

0 0 0 0 3 10 0 0 0 0 1 84 

0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 2 0 0 0 0 0 0 36 

0 0 0 0 0 0 1 0 0 0 0 31 
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Table 4. Comparison of terrestrial palynomorphs from Allison Guyot and Leg 129 Site 
802 
 

Pollen or Spore type from 

Allison Guyot 

Pollen or Spore type from 

Leg 129 Site 802 (Ogg, 1992) 
Callialasporites dampieri Alisporites sp. 

Callialasporites segmentatus Araucariacites australis  

Ephedra Callialasporites dampieri  

Podocarpus sp. Callialasporites trilobatus  

Baculatisporites comaumensis Ceratosporites equalis  

? Biretisporites potoniaei Cicatricosisporites australiensis  

Ceratosporites equalis Cicatricosisporites minor  

Cicatricosisporites hughesii Concavissimisporites pulcher  

Cicatricosisporites sp. Concavissimisporites punctatus  

Cyathidites minor Crybelosporites sp. 

? Foveosporites canalis Cyathidites australis  

Gleicheniidites senonicus Cyathidites minor  

Impardecispora excavate Dictyophyllidites sp. 

Laevigatosporites ovatus Foraminisporis asymmetricus  

Leptolepidites verrucatus Foveosporites canalis  

Lycopodiacidites dettmannae Gleicheniidites spp. 

Retitriletes circolumenus Klukisporites sp. 

Ruffordiaspora australiensis Laevigatosporites ovatus  

Osmundacidites wellmanii Lycopodiumsporites sp. 

? Stereisporites antiquasporites Osmundacidites wellmanii  

 Podocarpidites sp. 

 Staplinisporites sp. 
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APPENDIX B  

FIGURES 

 
 
Figure 1. Map of the distribution of sediments sampled during the 26th voyage of the 
Vityaz. (Koreneva, 1968; Modified by Hsiung, 2011) 
 
 

 
 
Figure 2. Location of Leg 143 drill sites (Sager, Winterer, Firth, 1993).  Samples used in 
this study came from Site 865. 
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Figure 3. Single-channel seismic profile over the summit of Allison Guyot (Sager, 
Winterer, Firth, 1993). 
 
 

 
 
Figure 4. Present-day (inverted triangle) and original (open inverted triangle) of Sites 
865 calculated by backtracking using the model of Duncan and Clague (1985) of Pacific 
Plate motion relative to the hotspots (Winterer and Sager, 1995). 
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Figure 5. Schematic cross section showing the location of boreholes drilled at Allison 
(ODP Site 865) (Winterer et al., 1995) 
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APPENDIX C  

PLATES 

Plate 1 Pollen Types 
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Plate 2 Spore Types 
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Plate 3 Spore Types 
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Plate 4 Spore Types 
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Plate 5 Dinoflagellate, Microforaminifera 
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Plate 6 Leiosphere 
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Plate 7 Palynomorphs from Leg 129 Site 802 (Ogg, 1992) 
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