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ABSTRACT

Bayesian Joint Modeling of Binomial and Rank Response Data. (August 2011)

Bradley John Barney, B.A., Brigham Young University;

M.S., Brigham Young University

Co–Chairs of Advisory Committee: Dr. Valen E. Johnson
Dr. Simon J. Sheather

We present techniques for joint modeling of binomial and rank response data

using the Bayesian paradigm for inference. The motivating application consists of

results from a series of assessments on several primate species. Among 20 assess-

ments representing 6 paradigms, 6 assessments are considered to produce a rank

response and the remaining 14 are considered to have a binomial response. In order

to model each of the 20 assessments simultaneously, we use the popular technique of

data augmentation so that the observed responses are based on latent variables. The

modeling uses Bayesian techniques for modeling the latent variables using random

effects models. Competing models are specified in a consistent fashion which easily

allows comparisons across assessments and across models. Non-local priors are readily

admitted to enable more effective testing of random effects should Bayes factors be

used for model comparison. The model is also extended to allow assessment-specific

conditional error variances for the latent variables. Due to potential difficulties in cal-

culating Bayes factors, discrepancy measures based on pivotal quantities are adapted

to test for the presence of random effects and for the need to allow assessment-specific

conditional error variances. In order to facilitate implementation, we describe in detail

the joint prior distribution and a Markov chain Monte Carlo (MCMC) algorithm for

posterior sampling. Results from the primate intelligence data are presented to illus-
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trate the methodology. The results indicate substantial paradigm-specific differences

between species. These differences are supported by the discrepancy measures as

well as model posterior summaries. Furthermore, the results suggest that meaningful

and parsimonious inferences can be made using the proposed techniques and that the

discrepancy measures can effectively differentiate between necessary and unnecessary

random effects. The contributions should be particularly useful when binomial and

rank data are to be jointly analyzed in a parsimonious fashion.
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CHAPTER I

INTRODUCTION

There are many types of response data, and each has associated modeling method-

ology with varying levels of sophistication. Binomial data are very common, which

might explain the abundance of available approaches for modeling such data. Rank

response data are also quite common, especially when considering the frequency with

which raw response data are transformed to represent a rank; several nonparametric

methods employ a rank transformation. Sometimes a multivariate response vector

contains different types of responses—some data might be continuous, some count

data, some binomial data, etc. In such instances, it is essential that the modeling

techniques are flexible enough to model each response appropriately.

We present techniques for joint modeling of binomial and rank response data

using the Bayesian paradigm for inference. The motivating application consists of

results from a series of assessments on several primate species. Among 20 assessments,

6 are considered to produce a rank response and the remaining 14 are considered to

have a binomial response. In order to model each of the 20 assessments simultaneously,

we use the popular technique of data augmentation so that the observed responses

are based on latent variables. Not only does this accommodate joint modeling, it

does so in a coherent fashion which easily allows comparisons across assessments. We

allow the latent variables to be influenced by random effects. Discrepancy measures

based on pivotal quantities are used to test for random effects.

The novel modeling uses Bayesian techniques because, as many have argued, they

This dissertation follows the style of the Journal of the American Statistical

Association.
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are especially appealing for naturally incorporating uncertainty in prior information

and in posterior inference. In order to facilitate implementation, we describe in detail

the joint prior distribution and a Markov chain Monte Carlo (MCMC) algorithm for

posterior sampling.

The remainder of this dissertation focuses on the following contributions:

• Introduction of a random effects model for joint analysis of rank and binomial

data, including a unique approach to ensure model identifiability in a parsi-

monious fashion that conveniently admits a non-local prior density on selected

parameters;

• Details of an MCMC algorithm for posterior sampling;

• Use of an existing discrepancy measure to test for random effects and its adap-

tation to test for nonconstant variance; and

• Results of the model application to primate intelligence data.

Chapter II consists of a literature review to highlight particularly relevant re-

search. Chapter III introduces the joint model, gives details of the MCMC algorithm,

and discusses use of discrepancy measures for hypothesis testing and model compari-

son. Chapter IV presents results from the primate intelligence application, including

model comparison results and sensitivity to modest changes in the prior distribution

or the exclusion of some data. Chapter V discusses the contributions made in this

paper as well as potential extensions of the methodology and computer program to

fit these models.
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CHAPTER II

RELEVANT LITERATURE

In this chapter relevant literature and techniques are summarized. The summary is

divided into several sections. Section A briefly summarizes a Bayesian technique for

analysis of binomial data. Section B highlights a Bayesian technique for analysis of

rank data. Section C discusses Bayes factors and discrepancy measures for model

selection. Section D explains non-local priors. Finally, Section E discusses literature

on intelligence testing and assessment in primates because of the relevance to the

desired application.

A. Bayesian Analysis of Binomial Data

There is an abundance of binomial data, and this has likely contributed to a wide

variety of available tools for their analysis. One particularly popular approach to

analyzing binomial data is logistic regression. Another related approach is probit re-

gression, which uses the standard normal cumulative distribution as the link function

in a generalized linear model. In the context of Bayesian analyses, Albert and Chib

(1993) made a landmark contribution to probit regression with their use of data aug-

mentation. The idea behind data augmentation, popularized in Bayesian analyses by

Tanner and Wong (1987), is to supplement the observed data with latent data and

thus form the complete data; its power comes from situations where analysis of the

complete data is straightforward but the observed data alone is not. The application

of this to probit regression by Albert and Chib (1993) is now described. Let yi denote

a Bernoulli response. It is assumed that yi has an associated latent variable zi, which

some authors (e.g., Fahrmeir and Raach 2007) also refer to as an underlying variable.

It is also assumed that there is a threshold, or cutpoint, parameter τ ; Albert and Chib
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(1993) assumed τ ≡ 0 but this restriction can be relaxed if an informative prior is

placed on each zi. The relationship between yi and zi can be understood by treating

yi as an indicator of whether zi exceeds the threshold. That is, yi = 1(zi > τ).

The power of this approach can be understood by considering models for zi. A

particularly convenient model is to assume that zi has a conditionally normal disti-

bution which can depend on covariates. Let xTi be a vector of covariates associated

with observation i. Assume zi|xTi ,β, σ2 ∼ N(xTi β, σ
2) and that the zi’s are condition-

ally independent. Then with a normal-inverse gamma prior on (β, σ2), all complete

conditionals are conveniently sampled using either a normal, truncated normal, or

inverse gamma distribution. This makes the posterior distribution especially easy to

sample through Gibbs sampling while allowing covariates to affect the probability of

a success.

The data augmentation technique for Bernoulli responses can also be adapted for

modeling ordinal, nominal, or binomial outcomes. Albert and Chib (1993) presented

the extension to ordinal and nominal outcomes with more than two possible responses.

Binomial data can be modeled by using multiple Bernoulli variables. For example, yi

successes out of T trials for subject i can be modeled by yit, t = 1, . . . , T . If the result

of each trial is available, each yit is known. If only the summary statistic yi is known,

it can be assumed that the first yi Bernoulli variables equal 1 and the remaining T−yi

Bernoulli variables equal 0. This is justifiable because binomial data arise as the sum

of independent and identically distributed Bernoulli random variables, so without loss

of generality it can be assumed successes occurred first.

Joint modeling of ordinal and continuous data has been done with data aug-

mentation (e.g., Quinn 2004; Fahrmeir and Raach 2007). The latent variables for

continuous data are redundant in that they equal the observed value, and they do

not have associated thresholds but do have free variances. The latent variables for
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ordinal data with K categories have constrained variances and K− 1 free thresholds.

B. Bayesian Analysis of Rank Data

Rank data typically arise in one of two situations. The first situation occurs when only

an ordering (or partial ordering) can be made without any quantitative measurement

as to the degree of superiority. The second situation occurs when there are available

quantitative measurements, but because of other considerations it is preferred to use

the rank transformation. For example, nonparametric procedures often employ a

rank transformation to increase model robustness by reducing the potential impact

of outliers.

Some classical techniques for analysis of rank data were reviewed by Marden

(1995). Marden devoted an entire chapter to a summary of considerations for data

with ties, partial orderings, and incomplete rankings (ch. 11). Such possibilities can

greatly complicate what might otherwise be a simple rank-based analysis (Johnson

et al. 2002, p. 16).

Johnson et al. (2002) applied the data augmentation strategy to develop a model

for analyzing rank data while allowing for explicit modeling of the probability that

two given observations are tied. This approach, using the Bayesian perspective, is

now restated with some changes to notation in the simplified case where data are

only available from one assessment.

Suppose that I subjects are ranked based on an assessment, with yi denoting

the rank of the ith subject, i = 1, . . . , I. Unlike Johnson et al. (2002), assume that a

higher value of the rank denotes better (rather than worse) performance. Regardless

of this change, assume that each observed rank variable yi has an associated latent

variable zi. If no ties are permitted in rankings, y and z are linked through the
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condition that yi < yi′ ⇔ zi < zi′ ∀i 6= i′. Thus, the ordering of the latent variables

corresponds to the ordering of the observed ranks. As with Bernoulli data, the latent

variables z can be modeled as conditionally independent and conditionally normally

distributed.

When ties for observed ranks are permitted, Johnson et al. (2002) explicitly

modeled the probability that two observations are tied based on the scaled distance

between the latent variables, with the scale determined by a parameter κ. Specifically,

they assumed that

Pr(yk = yk′ |zk, zk′ , κ) = exp(−|zk − zk′|/κ)

and that

Pr(yk < yk′ |zk, zk′ , κ) = (1− Pr(yk = yk′|zk, zk′ , κ))1(zk < zk′).

These formulas are used to define the likelihood of an observed set of rankings based

on quantities of the form p(i)(κ), i = 1, . . . , I − 1, defined as

p(i)(κ) =


exp(−(z(i+1) − z(i))/κ), if y(i) = y(i+1)

1− exp(−(z(i+1) − z(i))/κ), if y(i) < y(i+1)

(2.1)

where y(i) (z(i)) is the ith smallest observed value (latent variable) for i = 1, . . . , I (see

Johnson et al. 2002, eq. 2).

Then the entire likelihood can be summarized as

f(y|z, κ) =
I−1∏
i=1

[
p(i)(κ)

I∏
i′=i+1

1({zi′ ≤ zi ∩ yi′ ≤ yi} ∪ {zi′ ≥ zi ∩ yi′ ≥ yi})

]
(2.2)

(compare with Johnson et al. 2002, eq. 3). The inner product is necessary to ensure

that the ordering of the observed variables is consistent with the ordering of the latent
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variables.

This work can be extended by jointly modeling binomial and rank data, a pur-

suit of particular importance in the motivating application: primate intelligence. In

addition, changes to conventional techniques for modeling of the latent variables z,

specifically in how their scale is established, can be made to allow harmonious model

comparison. Generally in a Bayesian probit regression analysis it is assumed that the

variance of the error terms, conditional on the fixed effects, is fixed at 1. Johnson

et al. (2002) established scale in their analysis of rank data by fixing the variance

for a particular effect at 1. Either of these approaches leads to different marginal

variability in models with different numbers of random effects. The proposed joint

analysis establishes scale in such a manner that the marginal variability of z is 1,

regardless of the number of random effects. See Chapter III for further details.

C. Bayes Factors and Discrepancy Measures

Kass and Raftery (1995) described the use of Bayes factors in performing Bayesian

hypothesis tests. The Bayes factor for comparing two models is equal to the ratio of

marginal likelihoods under each model. As is widely known, the marginal likelihood

can be difficult if not impossible to calculate because it requires integration of the

likelihood with respect to the prior distribution on model parameters. The integral

might not have a closed form or might be highly dimensional, and therefore many

methods have been proposed to approximate Bayes factors or variations of Bayes

factors such as the pseudo-Bayes factor (see, e.g., Gelfand and Dey 1994; Kass and

Raftery 1995). Lopes and West (2004) compared many techniques in a simulation

study involving selection of the number of factors in a factor analysis. One of the

techniques that performed well in their study can be useful in many classes of mod-
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els. This approximation to the marginal likelihood, due to Gelfand and Dey (1994),

uses the technique of importance sampling with draws coming from the posterior

distribution.

Specifically, let θA represent all of the parameters in model MA, and let f(y|θA)

represent the likelihood under MA. Gelfand and Dey (1994) noted that for an arbi-

trary density h(θA) with the same support as the posterior distribution, π(θA|y), the

marginal likelihood can be expressed as the inverse of∫
ΘA

h(θA)

f(y|θA)π(θA))
π(θA|y)dθA

(p. 511). Using B draws from the posterior distribution, say θA,1, . . . , θA,B (which

might be obtained via MCMC), the marginal likelihood can be estimated by(
1

B

B∑
b=1

h(θA,b)

f(y|θA,b)π(θA,b)

)−1
(2.3)

(eq. 27).

Applying the approximation in Equation 2.3 to each model under consideration

yields an estimated marginal likelihood for each model. The Bayes factors compar-

ing any two models are then readily estimated by the ratio of estimated marginal

likelihoods.

However, the approach using Equation 2.3 is not easily used when latent vari-

ables have been introduced (Chib 2001, p. 3627). Suppose that two models for data

y, MA and MB, each involve z, where z consist of latent variables, parameters, or

both. One possibility for computing the Bayes factor between model A and model

B is to average the quantities m(y, zb|MA)/m(y, zb|MB) for each iteration b, where

zb is the bth posterior draw of z from model B (Raftery 1993). It is often simple

to construct these quantities with a Laplace approximation or through other meth-
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ods (Kass and Raftery 1995, p. 780). However, this method might be ineffective if

approximation of m(y, zb|MA)/m(y, zb|MB) for each b is not very fast, owing to the

large number of approximations that must be performed. It is also possible that the

Laplace approximation might not be very accurate either.

Another alternative for estimation of marginal likelihoods was proposed by Chib

(1995). This approach is based on a clever use of Bayes’ Theorem. If the likelihood

function of data y depends on a parameter vector θ, then Bayes Theorem establishes

that π(θ|y) = p(y|θ)π(θ)/m(y), and solving for the marginal likelihood m(y) is

trivial. After taking the natural logarithm of both sides of the equality, it is evident

that log(m(y)) = log(p(y|θ) + log(π(θ)) − log(π(θ|y)). The truthfulness of this

identity holds for any θ0 that is in the support of the posterior (and thus naturally

the prior as well). After obtaining this formulation for log(m(y)), Chib proposed

estimation of the log marginal likelihood by estimating/evaluating each of the three

summands separately and then adding them. It is often straightforward to evaluate

the prior density and the likelihood for a particular value of θ0. An estimate of the

posterior density at θ0 is gotten, and then each of the quantities needed to estimate

the log marginal likelihood is in place.

Chib (1995) discussed approaches to estimation of the posterior at a given point

when all full conditionals are known. Later, Chib and Jeliazkov (2001) extended

the approach to the case where full conditionals are known only up to a normalizing

constant factor. These approaches can accommodate latent variables. All latent

variables might be integrated out when evaluating the likelihood (Chib and Jeliazkov

2001, p. 272). Alternatively, some of the latent variables may be combined with θ0 if

it is too difficult to evaluate the likelihood otherwise (Chib 1995, p. 1316). However,

neither of these approaches is satisfactory in dealing with rank data because (1) there

are at least as many latent variables as observations and (2) they are not able to be
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integrated out in closed form except perhaps in overly simplistic models that do not

allow ties.

In situations where approximation of the Bayes factor is not practical or not

reliable, an alternative for model comparison between nested models is to use dis-

crepancy measures based on pivotal quantities. Johnson (2007) demonstrated how

useful discrepancy measures based on pivotal quantities can be for assessing model

assumptions. The basic idea starts with choosing a pivotal quantity that allows model

assumptions to be checked with quantities that have a known distribution when the

model is correct. Johnson proved, under some mild conditions, that if the model

is correct then the pivotal quantity will have an identical distribution whether it is

computed using the true model parameters or a posterior draw (pp. 720–721). This

result is very powerful because while the true parameters are unknown, posterior

draws might be obtained using direct sampling or an MCMC algorithm.

For example, if it is assumed that y|{X,β, σ2} ∼ N(Xβ, σ2I), then the vector of

standardized residuals r ≡ (y−Xβ)/σ is assumed to follow the ∼ N(0, I) distribution

(p. 728). The known joint distribution of the standardized residuals does not depend

on any model parameters and thus any function of these standardized residuals will

be a pivotal quantity if the model is correct.

In a typical Bayesian Monte Carlo approach to posterior inference, many draws

from the posterior distribution are required. It might seem disconcerting, then, that

there are possibly as many unique values of the pivotal quantity corresponding to

these draws as there are draws themselves! Rather than arbitrarily choosing one of

them, all of them should be used. This is delicate because, as Johnson noted, the

pivotal quantities are interrelated in that they are all based on the same observed

data. Nonetheless, Johnson applied results from other authors to obtain an upper

bound on the prior-predictive-posterior (PPP) p-value, a p-value that can be used
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in assessing Bayesian models. Let F−1(·) be the quantile function associated with

a pivotal quantity where larger values are expected when the model is wrong. Out

of n evaluations of the pivotal quantity (at each of n posterior draws), let PQ(m),n

represent the mth largest. For u ∈ (0, 1),

Pr(PQ(m),n > F−1(u)) ≤ min(1, (n− nu)/(n−m+ 1)), (2.4)

and so (for u not too close to 1) if n is large, m/n is bounded under 1, PQ(m),n >

F−1(u), and (1 −m/n) >> (1 − u), there is an indication that the model is flawed

(p. 724).

D. Non-local Priors

A key contribution of the proposed work, in addition to the methodological innovation

of jointly modeling binomial and rank data, is the parsimonious use of non-local priors

on the variance parameters of random effects. Johnson and Rossell (2010) define local

and non-local alternative priors in a Bayesian hypothesis test. Consider testing for

the presence of a random effect due to the P th factor, where σ2
P denotes the variance of

this random effect. Under the simpler model, say M0, the prior distribution for σ2
P is

degenerate at 0. A local alternative prior for M1 would have a prior distribution that

is positive at the point σ2
P = 0. A non-local alternative prior for M1 would vanish to

(equal) 0 as σ2
P approaches (equals) 0. A compelling rationale for employing non-local

priors in hypothesis testing is that they can be used to prevent inordinate imbalances

in the rate of accumulation of evidence for or against a simpler model (Johnson and

Rossell 2010, p. 148).

One difficulty with using non-local priors is that they might preclude the use of

certain techniques for calculating Bayes factors. For example, Verdinelli and Wasser-
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man (1995) proposed estimating the Bayes factor using the product of estimates of the

Savage-Dickey density ratio and a correction term, but their approach requires that

the parameter space for one model be nested in that of the other (p. 618). Meng and

Wong (1996) introduced the technique of bridge sampling to estimate Bayes factors;

the technique is characterized by sampling from each of the two models considered

as well as a collection of intermediate models. However, this approach is not advised

for the proposed methodology because it is suited for comparing models with over-

lapping parameter spaces (e.g., local priors). By construction, non-local priors use

mutually exclusive parameter spaces. While some Bayes factor estimating techniques

are therefore precluded, discrepancy measures may still be used because the proposed

methodology compares models which may be seen as reductions or extensions of other

models although they are not strictly nested. Discrepancy measures provide a viable

alternative as they can examine models for the need of a particular extension.

E. Primate Intelligence

Aside from the more statistically oriented discussion of the previous sections, some

brief comments about the study of primate intelligence are in order because of the

motivating application for the present work.

Spearman (1904) combined information from various assessments to understand

“general intelligence” in humans. This work is credited with introducing the widely

used statistical technique of factor analysis. A tremendous amount of research has

been devoted to studying intelligence since then, not to mention the research preceding

and concurrent to Spearman’s seminal work.

The study of intelligence has also been applied to other species, and in particular

we note such studies in non-human primates. Among the possible purposes of animal
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research are comparisons between primate orders (Harlow and Mears 1979, p. 1).

The great apes and monkeys have been studied using a variety of assessments, or

procedures , which correspond to different paradigms (Johnson et al. 2002) of what

we loosely refer to as intelligence but might properly be termed cognition, learning,

inhibition, memory, or something else entirely, depending on the particular paradigm.

Primate intelligence studies have not only been used to make comparisons be-

tween species but have also tried to determine plausible explanations for them. For

example, Amici et al. (2008) found an association between inhibitory ability and

fission-fusion prevalence—the degree to which primates form and disband in different

group structures.

Still more work addresses the question of whether there is one general intelligence

construct or paradigm-specific intelligences. For example, Riopelle and Hill (1973)

claimed that intelligence cannot be represented by one trait in humans nor in animals

(p. 541). However, Johnson et al. (2002) found little to no evidence of significant

genus-paradigm interactions in their meta-analysis of non-human primate intelligence

data.
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CHAPTER III

METHODOLOGY

This chapter presents the proposed methodology for joint modeling of binomial and

rank data. Section A presents the likelihood and prior distributions for the model

allowing an arbitary number of random effects. Section B presents details of a

Metropolis-within-Gibbs MCMC algorithm that may be used for inference on the

posterior distribution. Section C presents an extension of the model to allow for

assessment-specific conditional error variances, including the minor differences in the

prior distribution and the MCMC algorithm. Section D discusses model comparison,

giving special attention to the use of discrepancy measures based on pivotal quan-

tities. The proposed methodology is applied in Chapter IV to primate intelligence

data.

A. Model Specification

The modeling entails a substantial amount of notation, which is now presented.

Suppose that data come from I subjects. Suppose also that data are available

from J distinct assessments, with each assessment having either a binomial outcome

or a rank outcome. If assessment j has a binomial outcome, let Tj denote the number

of trials for the outcome; if assessment j has a rank outcome Tj ≡ 1. Then the

response data can be characterized as a collection of yijt values with i = 1, . . . , I for

the subject number, j = 1, . . . , J for the assessment number, and t = 1, . . . , Tj for the

trial number. When referring to rank assessments only, the t subscript is sometimes

omitted for simplification (e.g., yij instead of yijt). Rank data are assumed to be

ordered so that higher values of yij reflect better—not worse—performance.

In order to distinguish assessments involving ranks from those involving binomial
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outcomes, let B(j) = 1 if assessment j has a binomial response and B(j) = 0 if it has

a rank response. Furthermore, for each assessment j such that B(j) = 0, let C(j) be

the number of animals with nonmissing response for that assessment.

1. Likelihood

A key feature in joint modeling of binomial and rank outcomes is the use of latent

variables to facilitate modeling. As discussed in Chapter II, it is possible to model

binomial data using multiple latent variables, and if the latent variables have a con-

ditionally normal distribution, then posterior inference on parameters affecting the

probability of success can be quite convenient. Similarly, rank data can be modeled

using latent variables with conditionally normal distributions that conveniently allow

the probability of any given ranking to depend on parameters.

Recall the definition of the quantity p(i)(κ) in Equation 2.1. This is a simplifica-

tion of the the quantity p(i,j)(κ) that was originally proposed by Johnson et al. (2002,

eq. 2) to allow for multiple assessments with the subscript j. If z(i),j (y(i),j) is the ith

largest latent (observed) variable for rank response assessment j, then

p(ij)(κj) =


exp(−(z(i+1),j − z(i),j)/κj) if y(i+1),j = y(i),j

1− exp(−(z(i+1),j − z(i),j)/κj) if y(i+1),j > y(i),j.

(3.1)

Equation 3.1 differs from the original formulation by Johnson et al. (2002) in that it

uses an assessment-specific value of κ and therefore is appropriate when the propor-

tion of ties is quite different across assessments. In a multiple-assessment situation,

rank data might be missing for some assessments; the z(i),j’s and y(i),j’s use only the

nonmissing yij’s and the corresponding zij’s.

For both binomial and rank data, the likelihood for the observed responses yijt de-

pends on the associated zijt. In addition, the likelihood depends upon the assessment-
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specific cutpoint parameters τj for binomial responses and the assessment-specific

parameters κj that influence the probability of ties for rank responses. To accom-

modate missing responses, let wijt = 1 if yijt is observed and 0 otherwise. Note that

the likelihood, defined in Equation 3.2, is not affected by any zijt values for which

wijt = 0.

f(y|z, τ ,κ) =

 ∏
j:B(j)=1

I∏
i=1

Tj∏
t=1

(1({yijt = 0 ∩ zijt ≤ τj} ∪ {yijt = 1 ∩ zijt > τj}))wijt


×

 ∏
j:B(j)=0

C(j)−1∏
i=1

p(ij)(κj)

 I∏
i=1

∏
i′:zi′j<zij

(1(yi′j ≤ yij))
wijwi′j


(3.2)

The first part of the likelihood is for binomial data (see Albert and Chib 1993) and

the second is for rank data (see Johnson et al. 2002, eq. 3). The ability of the

joint likelihood to handle missing data that are assumed to be missing completely at

random stems from the ability to handle them in each of the response types using

existing techniques. This novel combination of likelihoods for these two response

types is significant because it means both rank response and binomial response data

depend on latent variables z.

2. Hierarchical Model Priors

A principal advantage afforded by the latent variables zijt is that they may be modeled

in the same manner regardless of whether they correspond to rank or binomial data.

Higher values of yijt are better for each data type, and the form of the likelihood

ensures that the same is true of the latent data. Thus, a data set of mixed response

type can seamlessly be used to assess questions of primary interest, such as whether

a random effect influences the latent variables and therefore the responses.
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The latent variables must have their location and scale established through in-

formative priors, if not exact constraints. It is well known that the likelihood of

binomial data, as in the first part of Equation 3.2, is invariant to (a) adding a con-

stant to each zijt and to each τj, and (b) multiplying each zijt and each τj by any

positive constant. In addition, the likelihood of the rank data, as in the latter part

of Equation 3.2, is also invariant to (a) a location transformation of each zijt and (b)

a scale transformation of each zijt and each κj.

Although the location and scale of the latent variables is not inherently estab-

lished, various possibilities exist to ensure identifiability of the model parameters.

Among these many options, it is preferable that each latent variable have the same

marginal mean and marginal variance under the prior distribution to aid in inter-

pretability and comparison of model parameters. Throughout this dissertation, un-

less stated otherwise the marginal mean and marginal variance refer to the mean and

variance of the marginal distribution of zijt under the prior . Among the simplest

of models for z satisfying the condition of common marginal means and marginal

variances, suppose

π(z) =
I∏
i=1

J∏
j=1

Tj∏
t=1

(2π)−1/2 exp(−z2ijt/2). (3.3)

In Equation 3.3, the prior implies that each latent variable is a priori independent

with a standard normal distribution. Of course, if this prior is used it is advisable

that the priors on each κj and τj not be too peaked as the model would otherwise

be far too rigid. In particular, the common practice of constraining τj ≡ 0 would be

inappropriate unless it is desired to assume that the posterior predictive probability

of a success must be exactly one-half, hardly a tenable assumption.

It is possible to extend the model for z in Equation 3.3 while still allowing
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each latent variable to have the same marginal distribution. This can be accom-

plished through hierarchical modeling. Consider first a simple extension involving

one subject-specific random effect, u1,i. Assume

zijt = u1,i + εijt

with u1 ∼ N(0, σ2
u,1I), ε ∼ N(0, σ2

ε I), and u1 and ε conditionally mutually indepen-

dent. Conditional on u1, σ
2
u,1, and σ2

ε ,

π(z|u1, σ
2
u,1, σ

2
ε ) =

I∏
i=1

J∏
j=1

Tj∏
t=1

(2πσ2
ε )
−1/2 exp(−(zijt − u1,i)2/2σ2

ε ).

Marginalizing over the random effects u1, it is easily seen that z|{σ2
u,1, σ

2
ε} ∼ N(0,Σ),

where each diagonal element of Σ equals σ2
u,1+σ2

ε . Requiring that σ2
u,1+σ2

ε = 1 ensures

that each zijt has the same marginal distribution (standard normal).

In the same manner, it is possible to include an arbitrary number of random

factor effects. Suppose that there are P random effects, and the pth random effect

has Lp levels. An explicit notation might use up,l(p,i,j) to represent the pth random

effect at level l, which level l might depend on the random effect, subject, assessment,

or some combination thereof. The random effects model for the latent variables zijt

with P random effects is straightforward.

zijt =
P∑
p=1

up,l(p,i,j) + εijt (3.4)

Assume that ε|σ2
ε ∼ N(0, σ2

ε I), that up|σ2
u,p ∼ N(0, σ2

u,pI) for p = 1, 2, . . . , P , and that

all random effects and error terms are conditionally mutually independent. These

conditions, together with Equation 3.4, define the distribution of each latent variable
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conditional on the variance parameters but marginalized over the random effects.

zijt|{σ2
ε , σ

2
u,1, . . . , σ

2
u,P} ∼ N(0, σ2

ε +
∑
p

σ2
u,p)

The constraint σ2
ε +

∑
p σ

2
u,p = 1 ensures that the scale is established, with all latent

variables having the same marginal expectation and the same marginal variance.

We emphasize that the common marginal mean and marginal variance across

models is advantageous, particularly with the constraint that the marginal variance

equal the arbitrary value of 1. Each random effect’s variance parameter can then

be interpreted as the prior proportion of total variability in z that is attributed to

that random effect. Also, by fixing the scale across models with differing numbers

of random effects, it is more sensible to choose a prior density for each κj and each

τj that does not depend on the model inasmuch as these parameters are tied to the

scale of z. Comparison of elements in z is likewise aided by the common marginal

mean and marginal variance as they are readily comparable across models and across

assessments.

Unfortunately, the introduction of fixed effects (i.e., Xβ) or random coefficients

(i.e., Wu where W contains continuously measured values) can considerably impact

the proposed identification of location and scale. Suppose that Z|X,β,Σ ∼ N(Xβ,Σ)

and β|Σ ∼ N(µβ, Sβ). Then z|Σ, µβ, Sβ ∼ N(Xµβ, XSβX
′+Σ). In general, the latent

variables might have different marginal scales—particularly ifX contains continuously

measured covariates—and might have different marginal means. Different marginal

scales will generally result when random coefficients models are used, as well. When

working with binomial data in a fixed effects model, it is common to induce identi-

fiability of the latent variables by assuming that diag(Σ) = 1 and τj = 0 for each

assessment, while sometimes also assuming the prior on β is uniform (e.g., Albert
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and Chib 1993, p. 671). However, the proposed methodology considers only models

involving random factor effects because such models can easily enforce a common

scale in the latent variables. As mentioned earlier, the advantages of the common

scale are manifest in elication of the prior distribution, comparison of models, and

interpretation of random effects.

Using the generalized form for the random effects model, the joint prior density

is denoted by

π(z,u1, . . . ,uP , σ
2
u,1, . . . , σ

2
u,P , σ

2
ε , τ ,κ). (3.5)

The remainder of the prior specification will assume that Equation 3.5 may be factored

as

π(z|u1, . . . ,uP , σ
2
ε )π(u1|σ2

u,1) · · · π(uP |σ2
u,P )π(σ2

u,1, . . . , σ
2
u,P , σ

2
ε )π(τ )π(κ).

As implied by Equation 3.4 and the surrounding text,

π(z|u1,u2, . . . ,uP , σ
2
ε ) =

I∏
i=1

J∏
j=1

Tj∏
t=1

(2πσ2
ε )
−1/2 exp(−(zijt −

∑
p

up,l(p,i,j))
2/2σ2

ε )

(3.6)

and

π(up|σ2
u,p) =

Lp∏
l=1

(2πσ2
u,p)
−1/2 exp (−u21,p/2σ2

u,p), ∀p = 1, . . . , P. (3.7)

These priors for the latent variables and random effects are particularly convenient

for use in posterior sampling, as is further explained in Section B.

A Dirichlet prior is chosen for the prior distribution of the variance parameters.

By so doing, the constraint that the variances sum to 1 is enforced. Furthermore, the

Dirichlet density can readily be used as a non-local prior. Let σ ≡ (σ2
ε , σ

2
u,1, . . . , σ

2
u,P )

and let ασ ≡ (αε, αu,1, . . . , αu,P ). The prior density of σ is 0 unless each of the

variances is nonnegative and the variances sum to 1; subject to these conditions, the
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density is

π(σ) =
Γ(αε + αu,1 + · · ·+ αu,P )

Γ(αε)Γ(αu,1) · · ·Γ(αu,P )
(σ2

ε )
αε−1(σ2

u,1)
αu,1−1 · · · (σ2

u,P )αu,P−1. (3.8)

Inspection of this density reveals that for any variance with associated parameter

α > 1, the prior density approaches (equals) 0 as the variance approaches (equals)

0, thus demonstrating its usefulness as a non-local prior. Testing the need for a

particular random effect is equivalent to testing the hypothesis that the variance

parameter for that random effect is positive. By using a non-local prior on σ, a

correct null hypothesis that a random effect is not present is better able to gain

support from the data.

While generally the priors to this point have been chosen because of their con-

venience in interpretation or in posterior sampling, no obviously advantageous priors

are apparent for either the κj’s nor the τj’s. Let κ be the collection of κj’s for all

assessments j with rank response, and let τ be the collection of τj’s for all assessments

j with binomial response. A reasonable choice for a prior on κ is to assume that the

κj are mutually independent with a Gamma(aj, bj) distribution. The multivariate

gamma prior ensures that none of the κj values are negative. If the κj are considered

exchangeable, aj and bj could be replaced by a and b.

π(κ) =
∏

j:B(j)=0

bj
aj(Γ(aj))

−1κj
aj−1 exp(−bjκj)1(κj > 0) (3.9)

A sensible prior for τ is to assume that each is a priori independent and has a

Cauchy(mj, s
2
j) distribution. The relatively thick tails characteristic of the Cauchy

distribution are desirable if the prior is intended to be somewhat informative but

not overly restrictive. If the τj are considered exchangeable, mj and s2j should have
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common values across assessments.

π(τ ) =
∏

j:B(j)=1

(2π(s2j)
1/2(1 + (τj −mj)

2/s2j))
−1 (3.10)

The form of the joint model for binomial and rank data is now completely speci-

fied. All that remains is determining which random effects will be used and selecting

values for all hyperparameters—the α values in the prior for σ, the aj and bj val-

ues in the prior for κ, and the mj and s2j values in the prior for τ . Selection of

the hyperparameters requires care, and ideally is application-specific and based on

subject knowledge. Model selection strategies can be considered to evaluate which

random effects should be included in the model. For example, to perform a Bayesian

hypothesis test that a random effect is needed in the model, the Bayes factor might

be computed to compare the models with and without the random effect. As stated

earlier, a non-local prior should be used on the variance of the questioned random

effect, which is achieved by selecting the corresponding α to be strictly greater than 1.

Discrepancy measures based on pivotal quantities are recommended if computation

of Bayes factors proves difficult, which is likely to be the case in large samples.

Hyperparameter and model selection is described in Chapter IV for analysis of

primate intelligence data.

B. Posterior Inference Using Markov Chain Monte Carlo

In the Bayesian paradigm, inference on model parameters is made using the posterior

distribution. For this model, the posterior distribution (up to a normalizing constant)

is given by Equation 3.11.

p(y|z,κ, τ )π(z|u1, . . . ,uP , σ
2
ε )π(σ2

ε , σ
2
u,1, . . . , σ

2
u,P )π(κ)π(τ )

P∏
p=1

π(up|σ2
u,p) (3.11)
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Table I. Overview of the Metropolis-within-Gibbs sampling algorithm

Step Action

0 Initialize all unknown values (latent variables, parameters) in support

1 Update τ , z using modified Cowles’ (1996) algorithm and

Metropolis-Hastings

2 Update κ using Metropolis-Hastings

3 Update σ using Metropolis-Hastings

4 Update random effects using complete conditionals

5 Return to Step 1 until sufficiently large number of iterations drawn

This model is too complex to analytically determine the exact posterior distribution

of the parameters and latent variables because of the unknown normalizing constant

implicit in Equation 3.11. As a result, model inferences could be based on samples

from the posterior distribution. An exact sampling technique is not readily available,

but a Markov chain Monte Carlo (MCMC) algorithm can be implemented to produce

a series of correlated draws with limiting distribution equal to the exact posterior.

The algorithm employed uses a Metropolis-within-Gibbs sampling technique.

With one exception, the algorithm updates parameters and latent variables by sam-

pling from full conditional distributions exactly or with the Metropolis-Hastings al-

gorithm. The choice of priors mentioned in Section A was made with an eye towards

making updates easy. An overview of the MCMC algorithm appears in Table I, while

the details are contained in the remainder of this section.

In each of the updating steps, the algorithm uses the current values of various

parameters/latent variables. Any quantity that is conditioned on is implicitly using

the most recent value of that quantity unless stated otherwise. When it is necessary to
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distinguish between the current value and the proposed value of an arbitrary quantity

ξ, ξc will represent the current value and ξ∗ will represent the proposed value. When

it is important to identify the iteration number, ξ(m) represents the value of ξ at the

end of the mth iteration. At the end of each iteration, ξ(m) must equal ξc because ξc

is updated whenever ξ changes.

The iterative MCMC algorithm requires that the chain first be initialized. The

level of sophistication used to do so may vary, but a straightforward (if inefficient)

initialization might be done as follows:

1. Set τ
(0)
j = mj for each j : B(j) = 1.

2. Set κ
(0)
j = aj/bj for each j : B(j) = 0.

3. Set u
(0)
1 = 0, . . . ,u

(0)
P = 0.

4. Set (σ2
ε )

(0) = (σ2
u,1)

(0) = · · · = (σ2
u,P )(0) = 1/(P + 1).

5. Set each z
(0)
ijt .

• For assessments such that B(j) = 1, set z
(0)
ijt = τ

(0)
j + 0.5 if yijt = 1, set

z
(0)
ijt = τ

(0)
j − 0.5 if yijt = 0, and set z

(0)
ijt=0 if yijt was not observed.

• For assessments such that B(j) = 0, set z
(0)
ijt = [2yijt − (1 + C(j))]/C(j).

Because the methodology assumes that rank data is ordered from worst

(yijt = 1) to best, the initialized values will be between −1 and 1 and obey

the posterior ordering constraints. If yijt was not observed, set z
(0)
ijt = 0.

This initialization of the latent variables is underdispersed because an overdispersed

initialization might get stuck. Certainly the overall initialization might be refined,

but the preceding can serve as a default method.
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Different techniques are used to update z, depending on whether the latent vari-

ables correspond to binomial or rank data. First, consider binomial data. There is

an intricate relationship between the cutpoint parameters τ and the latent variables

z. It is possible to update each cutpoint parameter using its full conditional (a trun-

cated Cauchy). Then the latent variables for binomial data can be updated using

their full conditionals (truncated normals). These full conditionals are now stated;

for convenience, parameters and latent variables not appearing in the functional form

of the full conditionals are not explicitly stated.

π(τj|z,y) ∝ Cauchy(mj, s
2
j)1(τj ∈ (lcj , u

c
j)), ∀j : B(j) = 1 (3.12)

π(zijt|τj,u1, . . . ,uP , σ
2
ε ,y) ∝ N(u1,l(1,i,j,t) + · · ·+ uP,l(P,i,j,t), σ

2
ε )

× 1(zijt ∈ (Lcijt, U
c
ijt)) ∀i, t, j : B(j) = 1

(3.13)

The truncation regions are dependent on the current values of z or τ .

lcj = max(−∞,max
i,t
{zcijt : yijt = 0})

ucj = min(∞,min
i,t
{zcijt : yijt = 1})

Lcijt =


−∞ if yijt = 0 or is missing

τ cj if yijt = 1

U c
ijt =


τ cj if yijt = 0

∞ if yijt = 1 or is missing

It is conceptionally easy to update these cutpoint parameters and latent variables.

However, the approach of updating τ and z with Gibbs sampling in separate blocks

is problematic because it tends to mix poorly (see Cowles 1996, p. 104).

Such recognized inefficiency led Cowles (1996) to explore an alternative strategy
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for MCMC sampling of ordinal probit models, which is equally applicable to the spe-

cial case of binomial data when the cutpoint is not fixed. Cowles proposed that instead

of updating the cutpoint parameters and the latent variables in separate blocks, they

be updated in one block. However, instead of simultaneously sampling both z and

τ from π(z, τ | all else), this step was split into sampling from π(τ |all else except z)

and then from π(z| all else). The implication is that by marginalizing over z in the

full conditional of τ , exact sampling is no longer practical. Cowles used a Metropolis-

Hastings step to simultaneously update the multiple cutpoints in her ordinal probit

setting, and then updated the latent variables only if the proposed cutpoint draws

were accepted.

Unlike the scheme proposed by Cowles (1996), the following sampling scheme

updates the latent variables regardless of whether or not the proposed cutpoint draws

were accepted and thus matches the implementation of Cowles’ algorithm explained

by (Johnson and Albert 1999, pp. 135–136).

1. Update τ by individually updating each τj with a Metropolis step using a

normal distribution as the proposal distribution.

2. Regardless of whether τj was accepted in the previous step, update each zijt :

B(j) = 1 using its complete conditional.

A potential advantage of updating zijt in every instance is better chain mixing. Al-

though this mandatory update is not required for the algorithm to be valid, the

consequences of less frequent updating of the latent variables might involve poorer

mixing of other model unknowns, such as the random effects.

The details for updating each τj with a Metropolis step are adapted from Cowles’

approach. Let uijt ≡
∑

p up,l(p,i,j) be the sum of the random effects, and let f(τj) be
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the unnormalized full conditional of τj after integrating over the latent variables z.

f(τj) = (1 + (τj −mj)
2/s2j)

−1

×
I∏
i=1

Tj∏
t=1

[
(Φ ((τj − uijt)/σε))1−yijt (1− Φ ((τj − uijt)/σε))yijt

]wijt (3.14)

As usual, Φ(·) represents the cdf of the standard normal. To set τ
(m)
j , the proposed

value τ ∗j is sampled from the N(τ cj , v
2
j ) distribution, where v2j is a tuning parame-

ter. Note that this proposal distribution is symmetric; the transition kernel q has

the property that q(τ ∗j |τ cj ) = q(τ cj |τ ∗j ). Thus, the Metropolis ratio implies that the

acceptance probability is min(1, f(τ ∗j )/f(τ cj )). With this probability, set τ
(m)
j = τ ∗j ,

and otherwise set τ
(m)
j = τ cj .

After updating τ , each zijt for binomial data is updated using its full conditional

(Equation 3.13). This is conceptionally straightforward because the full conditional

is in each case a truncated normal distribution. Actual implementation might use

rejection sampling or evaluation of the quantile function at a randomly chosen point.

• Sample from the N(uijt = u1,l(1,i,j) + · · ·+uP,l(P,i,j), σ
2
ε ) distribution until a draw

is found in (Lcijt, U
c
ijt). For regions where draws are rarely accepted consider the

algorithm of Robert (1995), which uses rejection sampling with draws generated

from an exponential distribution.

• Let F (·) be the cumulative distribution function and F−1(·) the quantile func-

tion of the N(uijt, σ
2
ε ) distribution. Use F−1(s), where s is sampled from the

Uniform(F (lcijt), F (ucijt)) distribution.

An updating procedure for τ and the latent variables for binomial data has been

detailed; we now demonstrate how the latent variables for rank data may be updated.

The first part of the procedure is given by Johnson et al. (2002). A Metropolis-
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Hastings update is used, with each zijt : B(j) = 0 being individually updated. Recall

that the t is optional for rank data because then t ≡ 1. The proposal distribution for

zij is the N(u1,l(1,i,j) + · · ·+ uP,l(P,i,j), σ
2
ε ) distribution, truncated to the region(

max(−∞, max
i′:yi′j<yij

zi′j),min(∞, min
i′:yi′j>yij

zi′j)

)
. (3.15)

If yij is missing, zij does not affect the proposal distribution’s truncation region for

any of the latent variables, and also the truncation region for updating zij is defined as

(−∞,∞). To calculate the acceptance probability, let zc be the collection of current

values of zijt, and let z∗ be the collection of candidate (proposed) values. Note that

because the zijt are individually updated, zc and z∗ will differ by at most a single

element. Furthermore, upon updating each zij, both zc and z∗ are also updated. Let

p(ij)(κj)
c be p(ij)(κj) when using the values of κcj and zc, and let p(ij)(κj)

∗ be p(ij)(κj)

when using the values of κcj and z∗. The acceptance probability for z∗ij : B(j) = 0 is

min

1,

C(j)∏
i=1

p(ij)(κj)
∗

C(j)∏
i=1

p(ij)(κj)
c

−1 . (3.16)

If yij is missing then the acceptance probability for zij is always one.

Because latent variables are individually updated, it might be difficult for a

group of latent variables with the same observed response to effectively traverse the

support. For example, consider the possibility that two observations, say y1j and y2j,

are tied for being the worst in assessment j, but the proportion of ties is low because

of a very small value of κj. In an overdispersed initialization, it is possible that z
(0)
(1)j

and z
(0)
(2)j are both much lower than z

(0)
(3)j. Suppose they are -5.1, -5.09, and -1.8. If

the proposal distribution for z
(1)
1j is very concentrated around, say, -2.0, the proposed

value might be unlikely to be accepted because a value near -2.0 would make p(1j)(κ
(0)
j )

very small. But likewise, if the proposal distribution for z
(1)
2j is concentrated around
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-2.0, a proposed value near -2.0 would again cause p(1j)(κ
(0)
j ) to be very small. The

conundrum, then, is that the proposal distributions might favor values of z1j that are

far from z2j (and vice versa) but the likelihood might be dramatically smaller if z1j

and z2j are not close. This would make it difficult for either z1j or z2j to move. This

problem can persist throughout any finite run of the MCMC algorithm.

To circumvent this difficulty, we add an extra step to the procedure given by

Johnson et al. (2002) for updating the zij’s associated with rank data. This step

allows shifts in zij values from assessment j that have the same yij values. The extra

step is not essential for the algorithm to be valid and so it may be omitted. However,

it is recommended to help with chain mixing. Let yj be a unique observed value of

the assessment j responses. After updating each individual zij for which yij = yj

(and thus each such zcij), an additive shift of δ is proposed for the collection of such

zij’s.

∀i, z∗ij =


zcij + δ, if yij = yj

zcij, otherwise

Care is taken in choosing δ’s proposal distribution to prevent a proposed shift that

is inconsistent with the observed rankings. The proposal distribution is a normal

distribution with mean 0 and variance given by tuning parameter v2, truncated to

the region that ensures appropriate ordering on the latent variables. The lower and

upper limits, given by Equation 3.17 and Equation 3.18, are denoted by LLcyj and

ULcyj to emphasize that they are dependent on the current values of all zij’s with

observed rankings below or above the unique yj value being considered.

LLcyj =

(
max

i′:yi′j<yj
zci′j − min

i′:yi′j=yj
zci′j

)
(3.17)

ULcyj =

(
min

i′:yi′j>yj
zci′j − max

i′:yi′j=yj
zci′j

)
(3.18)



30

The Metropolis-Hastings ratio used in the acceptance probability also depends on

LL∗yj and UL∗yj, which are analagously defined. The acceptance probability for the

collection {z∗ij : yij = yj} is the minimum of one and the result of Equation 3.19.(∏C(j)−1
i=1 p(ij)(κj)

∗
)(∏I

i=1 exp(−(z∗ij − u1,l(1,i,j) − · · · − uP,l(P,i,j))2/2σ2
ε )
)

(∏C(j)−1
i=1 p(ij)(κj)c

)(∏I
i=1 exp(−(zcij − u1,l(1,i,j) − · · · − uP,l(P,i,j))2/2σ2

ε )
)

×
[
Φ(ULcyj/vj)− Φ(LLcyj/vj)

][
Φ(UL∗yj/vj)− Φ(LL∗yj/vj)

]
(3.19)

A new value of δ is proposed for each unique yj of each rank assessment j.

Each κj can be updated using a Metropolis-Hastings step because it is not con-

venient to sample directly from its full conditional distribution. As recommended by

Johnson et al. (2002), a lognormal distribution depending on a tuning parameter c2j

is used for the proposal distribution of κ∗j given the current state κcj.

q(κ∗j |κcj) =
exp(−(log(κ∗j)− log(κcj))

2/(2c2j))

κ∗j

√
2πc2j

1(κ∗j > 0)

The lognormal distribution is appealing as a proposal distribution because it is easy to

sample from and obeys the restriction that κj be positive. The acceptance probability

for setting κ
(m)
j = κ∗j is

min

1,

C(j)−1∏
i=1

p(ij)(κ
∗
j)/p(ij)(κ

c
j)

 (κ∗j/κ
(m−1)
j )aj exp(−bj(κ∗j − κcj))

 . (3.20)

Recall that σ ≡ (σ2
ε , σ

2
u,1, . . . , σ

2
u,P ). The prior for σ is a Dirichlet density, but

the full conditional is much more complicated. A Metropolis-Hastings step is used to

update these variance parameters. The Dirichlet family of distributions can be used

for the proposal distribution. One advantage is that each proposal will satisfy the

modeling constraint that the sum of these variance parameters must equal 1. The
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transition kernel depends on two tuning parameters, aMH > 0 and bMH ≥ 0.

q(σ∗|σc) = Dirichlet[σ∗; aMHσ
c + bMH1]

The shorthand notation Dirichlet[x;α] is used to represent the pdf of the Dirichlet

distribution as a function of x and having parameter vector α. The general idea is

for the proposal distribution to have a mean that is close to the current value. The

larger the value of aMH is, the tighter the proposal distribution is. Positive values

of bMH essentially shrink each proposed value towards 1/(P + 1), with the shrinkage

more pronounced as bMH increases.

The acceptance probability for σ∗ is quite involved, so the convention previously

undertaken of explicitly stating the acceptance probability in a specific form is now

interrupted. The acceptance probability is the minimum of one and the quantity

given by Equation 3.21.

q(σc|σ∗)π(σ∗)π(z|u1, . . . ,up,σ
∗)
∏P

p=1 π(up|σ∗)
q(σ∗|σc)π(σc)π(z|u1, . . . ,up,σc)

∏P
p=1 π(up|σc)

. (3.21)

The random effects can be individually updated using their complete conditional

distributions. For each level of each random effect, u
(m)
p,l(p,i,j) is sampled from the

normal distribution with mean µ and variance σ2, where

σ2 =

1/σ2
u,p +

∑
i′,j′,t′:l(p,i′,j′)=l(p,i,j)

1/σ2
ε

−1 (3.22)

and

µ =
∑

i′,j′,t′:l(p,i′,j′)=l(p,i,j)

(σ2/σ2
ε )

(
zi′j′t′ −

∑
p′ 6=p

up′,l(p′,i′,j′)

)
. (3.23)

An alternative is to update all random effects in a block using the complete

conditional distribution, a multivariate normal. This approach might be preferrable

if the complete conditional of the random effects block indicates substantial corre-
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lation among the random effects. On the other hand, a block update might not be

advisable if the dimensionality of the random effects block is fairly large because of

computational difficulties with using large covariance matrices.

Although the structure for the MCMC algorithm has been discussed, there are

several implementation considerations that merit attention. Gelman et al. (2004, ch.

10–11) discussed posterior sampling issues and provided many useful hints, which we

recommend to the interested reader. We now discuss some of these considerations as

they apply to the proposed model. They include selecting the length of the burn-in

period, the total number of iterations, and the tuning parameters for the Markov

chain.

The burn-in period is an initial fraction of the overall MCMC run that is not

used for inference because draws from the Markov chain might not yet be reasonable

representations of draws from the actual posterior distribution (see Gelman et al.

2004, p. 295). The burn-in period be sufficiently large. One simple way to make this

judgment involves examining trace plots of model parameters and latent variables.

The trace plots should reflect stationary behavior beyond the burn-in period if the

chain is mixing well.

The total number of iterations should be sufficiently large that posterior infer-

ence is not overly dependent on the actual run used (see Gelman et al. 2004, p. 277).

Provided the chain mixes well and all parameters are identifiable, a large number of

iterations should yield relatively little variability due to the Monte Carlo approxima-

tion of the true posterior. If the chain does not mix well, even more iterations will

be necessary. Subsampling methods on an initial chain or parallel chains can be used

to inform decisions on the number of draws necessary to achieve a desired reduction

in Monte Carlo variability. Informally, autocorrelation function plots can be used to

see at what lag parameters and latent variables no longer have any correlation worth
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noting. This lag might serve as an indication of the minimum number of iterations

needed between two draws for quasi-independence of the draws to be a reasonable

assumption.

Most of this model’s Metropolis or Metropolis-Hastings update steps involve one

or more tuning parameters, with z being the lone exception. Unlike model parameters,

the tuning parameters are of no interest other than on the algorithm’s behavior.

The parameters affect acceptance rates for the proposal distributions and thus are

influential. If the tuning parameters are not suitable, the acceptance rates might

be too high or too low, both of which can have detrimental effects on chain mixing.

We suggest choosing tuning parameters that will yield acceptance rates of 35–45% for

each τj and κj. We also suggest choosing tuning parameters that will yield acceptance

rates of 20–30% for σ. This is not unlike the recommendation by Gelman et al. (2004,

p. 307) to target 20% acceptance for vector updates and 40% for scalar updates. It is

difficult to specify at the outset which tuning parameter values will give the desired

acceptance rates. Running the algorithm many times, each time adjusting the tuning

parameters, can help in identifying appropriate values for the tuning parameters.

Alternatively, the algorithm may be run one time with tuning parameters initially

updated through some part of the burn-in period and then left constant (p. 307).

Unfortunately, the joint binomial and rank response model has several charac-

teristics that predispose the chain to poor mixing. For example, Johnson et al. (2002)

used a coupling scheme to determine that in their application of a rank response model

posterior draws were quasi-independent if they were 40,000 draws apart, though the

authors noted that this number was likely larger than necessary (p. 12). The latent

variables for rank data tend to mix poorly if many subjects are ranked because they

are subject to order constraints and are not updated as a single block. Despite the

use of a modified version of Cowles’ (1996) algorithm, the cutpoint parameters still
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appear to mix very slowly if there are many random effects. Because of this, the burn-

in period and total number of iterations should both be very large. Given the large

number of iterations required, thinning of the posterior draws might be necessary if

the latent variables are to be saved.

C. Model Extension Allowing Assessment-specific Error Variances

Although the model from Section A is flexible in that it can accommodate an arbitrary

number of random effects, it makes a strong assumption in assuming that the variance

of the error terms, σ2
ε , is the same across assessments. Because each latent variable

has a marginal variance of 1, σ2
ε represents the proportion of the total marginal

variance attributable to error. The constant error variance implies that the relative

contribution of the random effects to the total (marginal) variability is assumed to be

identical across assessments. This assumption would be in doubt if some assessments

are believed to be more strongly related to the random effects than others are.

An extension of the joint binomial and rank response model presented earlier

assumes each assessment j has its own error variance σ2
j . The extension can be han-

dled quite seamlessly. The specifications of the extended model are now briefly noted.

Because of its large overlap with the original model, fewer explanory statements are

included. The likelihood is completely unchanged from Equation 3.2. The prior

distribution is assumed to factor as

π(z,u1, . . . ,uP ,σ, σ
2
1, . . . , σ

2
J ,κ, τ ) = π(z|u1, . . . ,uP ,σ, σ

2
1, . . . , σ

2
J)π(u1, . . . ,uP |σ)

× π(σ2
1, . . . , σ

2
J |σ)π(σ)π(τ )π(κ).

(3.24)

A Dirichlet prior is still assumed on σ, which has the same elements as in the previous

model: (σ2
ε , σ

2
u,1, . . . , σ

2
u,P ). The assumed prior for z|{u1, . . . ,uP ,σ, σ

2
1, . . . , σ

2
J} is
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nearly identical to Equation 3.6, with the only difference being that σ2
j is substituted

for every instance of σ2
ε . The prior distributions for {u1, . . . ,uP}|σ (Equation 3.7)

and σ (Equation 3.8) are unchanged.

Before discussing the priors for κ and τ in the extended model, it is important

to consider the σ2
j ’s. The prior should be chosen so that E(σ2

j |σ) = σ2
ε because this

condition may be used to help constrain the marginal variance of each zijt to equal 1,

exactly as it does in the original model, provided that the marginal variance is finite.

This is easily demonstrated using two well known identities for the marginal mean

and marginal variance in terms of conditional means and conditional variances (see,

e.g., Gelman et al. 2004, p. 23–24). First note that zijt|{σ, σ2
j} ∼ N(0,

∑
p σ

2
u,p + σ2

j ).

Equations 3.25 and 3.26 hold if each component quantity exists and is finite.

E(zijt) = E(E(zijt|σ, σ2
j )) = E(0) = 0 (3.25)

V ar(zijt) = E(V ar(zijt|σ, σ2
j )) + V ar(E(zijt|σ, σ2

j ))

= E(
∑
p

σ2
u,p + σ2

j ) + V ar(0) = E(
∑
p

σ2
u,p + σ2

ε + (σ2
j − σ2

ε )) = 1
(3.26)

The last equality in Equation 3.26 follows because the Dirichlet prior on σ implies

E(
∑

p σ
2
u,p + σ2

ε ) = 1 and because the assumed prior on σ2
j |σ implies E(σ2

j − σ2
ε ) = 0.

It is worth emphasizing that for both the original and extended models, E(zijt) = 0

and V ar(zijt) = 1, thus facilitating comparisons between models. However, in the

original model the marginal prior distribution of zijt is normal, while it is nonnormal

in the extended model.

We model the assessment-specific error variances using the inverse gamma dis-

tribution for convenience in posterior inference and because it is easy to specify a

sufficient condition for the marginal variance of each zijt to equal 1. The σ2
j |σ are

assumed to be independent and identically distributed with an IG(b+ 1, bσ2
ε ) distri-
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bution.

π(σ2
1, σ

2
2, . . . , σ

2
J |σ) =

J∏
j=1

(
(bσ2

ε )
b+1(σ2

j )
−(b+2) exp(−bσ2

ε/σ
2
j )/Γ(b+ 1)

)
(3.27)

For any choice of b > 0, the conditional mean of σ2
j |σ will equal σ2

ε and, of

ultimate importance, the marginal variance of zijt (using the entire model framework)

will equal 1. For example, in the case where no random effects are present in the model

and thus σ2
ε ≡ 1, the marginal prior distribution of zijt is t2b+2(0, s

2 = b/(b + 1))

when using Equation 3.27 to specify the prior distribution of the assessment-specific

conditional error variances. While the marginal mean and marginal variance will

equal 0 and 1, respectively, for any b > 0, we recommend that the prior not be too

dispersed to limit the nonnormality of the marginal distribution of the latent variables

and to make posterior inferences across different assessments more comparable. A

recommendation for selecting the value of b is to choose it so that Pr(2/3 < (σ2
j/σ

2
ε ) <

3/2) equals a desired (large) probability, such as 0.8 (b=9.782) or 0.9 (b=16.082).

The assumed prior distributions for κ and τ have the same form as previously

(Equations 3.9 and 3.10). Though not recommended due to the increased model

complexity, these priors could be changed because the marginal distribution of each

zijt is now nonnormal. The original priors may be justified in the extended model by

noting that a peaked prior on the assessment-specific variances limits the degree of

nonnormality, and the marginal location and scale of each zijt are unchanged.

The MCMC algorithm for posterior sampling is only mildly affected by the sug-

gested model extension to allow assessment-specific error variances. Updating (τ , z)

uses the same approach as for the original model, but replaces σ2
ε with σ2

j in each of

Equations 3.13, 3.14, and 3.19, and in the proposal distribution described immediately

before Equation 3.15. Updating κ requires no changes to the approach described for
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the original model. Updating σ in the extended model has the same procedure as in

the original model, but the acceptance probability is now the minimum of one and

the quantity given by Equation 3.28.

π(σ∗)π(σ2
1, . . . , σ

2
J |σ∗)

∏P
p=1 π(up|σ∗)q(σc|σ∗)

π(σc)π(σ2
1, . . . , σ

2
J |σc)

∏P
p=1 π(up|σc)q(σ∗|σc)

(3.28)

An additional step is then added to update each σ2
j using its full conditional, which

is an IG(acj, b
c
j).

acj = b+ 1 +
I∑
i=1

Tj∑
t=1

1/2

bcj = bσ2
ε +

I∑
i=1

Tj∑
t=1

(zijt − u1,l(1,i,j) − · · · − uP,l(P,i,j))2/2

Finally, the random effects are updated using a normal distribution with variance and

mean as in Equations 3.22 and 3.23 but with each occurrence of σ2
ε replaced by σ2

j .

D. Model Comparison

To this point, it has been assumed that both the number of random effects (P )

and the levels of each (l(p, i, j)) are known. Nonetheless, primary interest often

centers on identifying which random effects are needed in the model. In addition,

one may wish to determine if the assumption of a common error variance for all

assessments is reasonable or if it should be relaxed. Ideally Bayes factors would be

used to compare all models. The difficulty in computing Bayes factors may prohibit

their usage, especially because of the large number of latent variables in the model.

However, the models have been constructed so that pivotal quantities may be used

to compare them. The pivotal quantities considered are not explicit functions of

the data, but because they are functions of unknown quantities with a completely

specified nominal distribution we refer to them as pivotal quantities.
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As in Yuan and Johnson (2011), we consider discrepancy measures formed by bin-

ning appropriately standardized residuals into one of B partitions of the real number

line. Let each standardized residual rijt be defined as

rijt ≡
zijt − u1,l(1,i,j) − u2,l(2,i,j) − · · · − uP,l(P,i,j)

σj
(3.29)

with restrictions made on terms as necessary. For example, σj ≡ σε if a model does

not allow assessment-specific error variances, and up,l(p,i,j) ≡ 0 if a model does not

allow for the pth random effect. Note that the standardized residuals are computed

for each MCMC iteration after the burn-in period using the iteration-specific values of

each unknown. For each model considered, the standardized residuals from any given

MCMC iteration after convergence are independent and identically distributed as

standard normals assuming the model is correct. Thus, these standardized residuals

can be conveniently used in forming a discrepancy measure to assess model adequacy.

Like Yuan and Johnson (2011), we bin standardized residuals to get observed and

expected counts and then form a discrepancy measure based on Pearson’s goodness-

of-fit statistic. We suggest choosing as bin thresholds (Φ−1((b − 1)/B),Φ−1(b/B)],

b = 1, . . . , B so that each bin is equally likely if the model is correct. In order to find

a model weakness, observed bin counts are compared with expected bin counts, but

the comparisons must be done so as to give the discrepany measure a good chance

to be large if an important random effect is not included or if the conditional error

variances are incorrectly assumed to be constant across assessments.

First consider that the pth random effect is important but has been omitted from

the model (or equivalently, up,l(p,i,j) has been constrained to equal zero for each level

l). Following the logic explained by Yuan and Johnson (2011), the absence of this

effect should make the standardized residuals for the lth level of this effect tend to

be more (less) than zero as the true effect up,l(p,i,j) is positive (negative). Recall that
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Lp represents the number of levels in the pth random effect, and define Op,l,b as the

observed number of standardized residuals for the lth level of the pth random effect

that are in bin b. Likewise, define Ep,l,b as the expected number in the bin. The

discrepancy measure Dp systematically compares the observed and expected counts

at each level of the random effect and is properly viewed as an adaptation of the

discrepancy measure proposed by (Yuan and Johnson 2011, p. 9).

Dp ≡
Lp∑
l=1

B∑
b=1

(Op,l,b − Ep,l,b)2

Ep,l,b
(3.30)

This type of discrepancy measure is a pivotal quantity that has an approximate

χ2(Lp(B − 1)) nominal distribution when all expected counts are sufficiently large

(p. 9). We emphasize that the discrepancy measure is computed separately for each

post-burn-in MCMC iteration.

Similarly, to check the assumption that σ2
j ≡ σ2

ε for each assessment, let Oj,b

(Ej,b) be the observed (expected) number of residuals from the jth assessment that

are in the bth bin. The discrepancy measure DV AR, defined in Equation 3.31, has

an approximate χ2(J(B − 1)) distribution if the model is correct and each Ej,b is

sufficiently large.

DV AR ≡
J∑
j=1

B∑
b=1

(Oj,b − Ej,b)2

Ej,b
(3.31)

An alternative is to group the squared standardized residuals into bins with thresholds

taken from quantiles of the χ2(1) distribution, which is similar to DV AR but ignores

the sign of the standardized residual.

Choice of the number of bins should be governed by the ability to have an

adequate expected count in each bin. For random effects with many levels, this

might mean it is necessary to use fewer bins. However, if the number of bins is too

small, the discrepancy measure might not have adequate ability to detect a model



40

violation. We recommend four or five bins, depending on the number of residuals

that will be binned. In an unbalanced design, it is possible that some of the inner

sums in DP or DV AR involve expected counts that are too small for the selected

number of bins. One consideration would be to have the number of bins vary across

levels/assessments, but if the number of bins would be too small it might be advisable

to simply ignore the sum for levels/assessments where the chi-square approximation

is in doubt. Of course, either the decision to let the number of bins vary or to

exclude particular summands would affect the degrees of freedom for the discrepancy

measure’s approximate distribution.

Another important choice is which quantiles to use from the reference distribu-

tion and the collection of post-burn-in discrepancy measures; the reference quantile

and sample quantile are both used in bounding the PPP p-value. For the reference

quantile, we recommend using (only) the 99th percentile for the reference distribution

because if a lower percentile is used then the upper bound on the PPP p-value cannot

be less than 0.01. This is not absolutely necessary though; because it is an upper

bound on the p-value and not the p-value itself it is reasonable to consider other val-

ues than, say, 0.01 or 0.05 as indicating model inadequacy (see (Yuan and Johnson

2011, pp. 11-12)). Johnson (2007) noted that care must be taken when using very

large quantiles if the reference distribution is only an approximation to the true dis-

tribution. For this reason, we recommend that the theoretical quantile not exceed the

99th percentile. For a given reference quantile, the procedure of Yuan and Johnson

(2011) would select the sample quantile from the collection of discrepancy measures

by choosing the smallest one that still exceeds the reference quantile. We recommend

this same approach to selecting the sample quantile.
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CHAPTER IV

APPLICATION

This chapter applies the previously described model to data on primate intelligence.

Section A contains information on the data. Among many candidate models for

these data, one is selected based on fitting progressively more complex models until

the model is deemed adequate. Such a determination relies on comparing pivotal

quantities designed to pick up deviations from the model for the latent variables in z.

The model selection is described in Section B. Detailed results for the selected model

are presented in Section C. Section D investigates sensitivity of the selected model to

modest changes in the prior distribution and to the exclusion of some data. Section E

discusses the conclusions in the context of previous research on primate intelligence.

A. Primate Intelligence Data

Primate intelligence has been studied with the goals of identifying which species are

most intelligent and plausibly explaining characteristics of species that might explain

their intelligence. Because intelligence is a latent trait that is not directly measured,

various tests have been constructed to assess intelligence. In light of this, Spearman

(1904) investigated “general intelligence” in humans; his analysis is widely credited

with introducing the use of factor analysis as a method to understand one or more

latent traits based on a multivariate response vector.

Many different tests have been used for studying primate intelligence. These tests

have been referred to as procedures, and a group of related procedures comprise what

is called a paradigm (Johnson et al. 2002). Because of the diversity in procedures

and paradigms, it is plausible to suppose that more than one latent trait might be

appropriate to explain performance.
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A collaborator, Federica Amici, has personally collected primate data on many

assessments; other data were generously shared with us (see the Acknowledgments im-

mediately preceding the Table of Contents). We use the term assessments rather than

procedures or even tasks because the assessments differ in level of uniqueness; some

are quite unrelated to all others while some are only different conditions of a common

task. The data comprise performance results of 100 primates, distributed unevenly

across seven species: chimpanzees, bonobos, gorillas, orangutans, spider monkeys,

capuchin monkeys, and long-tailed macaques. Twenty assessments were used rep-

resenting six (narrowly defined) paradigms. Some assessments were not performed

among all species. Table II contains the classifications used for each assessment’s

response type and paradigm. Table III contains counts of the number of animals

assessed from each species.

The first paradigm concerns inhibition and encompasses the first five assessments

of Table II. For the first two assessments, performance was scored using the ratio

of the percentage of correct trials in the experimental condition to the percentage of

correct trials in the control condition. The use of the ratio does not lend itself to a

binomial response, so the rank of the ratio is used as the response. The third assesse-

ment was the number of correct trials in two trials and was modeled as a binomial

response. The fourth assessment was a measurement in seconds of the amount of time

the animal was able to delay gratification, and because of potential skewness in the

data it was sensible to treat the data in terms of their ranks. The fifth assessment

was the number of correct trials out of ten and was modeled as a binomial response.

The data from these five assessments for monkeys (spider monkeys, capuchin mon-

keys, and long-tailed macaques) and great apes (chimpanzees, bonobos, gorillas, and

orangutans) were previously analyzed by Amici et al. (2008). The monkey data for

these five assessments were collected by Amici et al. (2008), as were the great ape data
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Table II. The 20 assessments used for studying primate intelligence. Further informa-

tion on most assessments can be found in earlier published work, as described

in the text.

No. Assessment Description Modeled Paradigm

1 A not B (1 trials exp., 1 control) Rank Inhibition

2 Middle Cup (2 trials exp., control) Rank Inhibition

3 Plexiglas (2 trials) Binomial Inhibition

4 Delay Gratification Rank Inhibition

5 Swing Door (10 trials) Binomial Inhibition

6 Memory Task 30 Seconds (3 trials) Binomial Memory

7 Memory Task 30 Minutes (3 trials) Binomial Memory

8 Transposition Single Condition (2 trials) Binomial Transposition

9 Transposition Double Condition (2 trials) Binomial Transposition

10 Transposition Reversed Condition (1 trial) Binomial Transposition

11 Transposition Unbaited Condition (1 trial) Binomial Transposition

12 Support Cloth Side (6 trials) Binomial Support

13 Support Cloth Ripped (6 trials) Binomial Support

14 Support Cloth Bridge (6 trials) Binomial Support

15 Support Wool Broken (6 trials) Binomial Support

16 Support Wool Onto (6 trials) Binomial Support

17 Support Wool Touch (6 trials) Binomial Support

18 Gaze Following Ceiling Rank Gaze Following

19 Gaze Following Barrier Rank Gaze Following

20 Reversed Contingency Rank Rev. Contingency
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Table III. The number of animals from each species observed for each assessment. One

hundred unique animals were observed in the combined data set.

Number of Animals Assessed

Long-

Assessment Chim- Orang- Spider Capuchin tailed

(Paradigm) panzee Bonobo Gorilla utan Monkey Monkey Macaque

1 (1) 7 4 7 6 15 19 12

2 (1) 7 4 7 6 17 19 12

3 (1) 8 4 6 6 14 16 12

4 (1) 5 5 4 8 12 12 12

5 (1) 6 4 6 7 18 28 12

6 (2) 11 5 8 10 14 12 12

7 (2) 7 5 4 8 14 12 12

8 (3) 7 4 7 6 13 12 12

9 (3) 7 4 7 6 13 12 12

10 (3) 7 4 7 6 13 12 12

11 (3) 7 4 7 6 13 12 12

12 (4) 18 5 5 5 12 12 12

13 (4) 18 5 5 5 12 12 12

14 (4) 18 5 5 5 12 12 12

15 (4) 17 5 5 5 12 12 12

16 (4) 17 5 5 5 12 12 12

17 (4) 17 5 5 5 12 12 12

18 (5) 0 0 0 0 13 12 0

19 (5) 0 0 0 0 13 12 0

20 (6) 0 0 0 0 12 12 12

Overall 19 5 8 10 18 28 12
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from the first three assessments and the gorilla and orangutan data from the fourth

assessment. The bonobo and chimpanzee data for the fourth assessment were from

Rosati et al. (2007). All great ape data for the fifth assessment were from Vlamings

et al. (2010).

The second paradigm involves memory and used two assessments, one involving

three trials with a 30 second period and the other involving three trials with a 30

minute period. Both of these were modeled as binomial responses. Data on monkeys

were collected and analyzed by Amici et al. (2010), while data on great apes were

collected and analyzed by Barth and Call (2006) and Amici et al. (2010).

The third paradigm tests the ability to deal with transposition. Four assessments

were used, each corresponding to a different condition for the same task. Each assess-

ment consisted of either one or two trials and was modeled as a binomial response.

As with data used in the second paradigm, data on monkeys were originally collected

and analyzed by Amici et al. (2010); data on great apes were collected and analyzed

by Barth and Call (2006) and also analyzed by Amici et al. (2010).

The fourth paradigm consists of assessments designed to test the ability to per-

ceive connections. Six assessments were used, each corresponding to a different condi-

tion of a common task. Each assessment used six trials and was modeled as a binomial

response. Data on monkeys were collected by Amici, with the cloth conditions having

been analyzed by Amici et al. (2010). Data on great apes were collected and analyzed

by Herrmann et al. (2008) and also analyzed by Amici et al. (2010).

The fifth paradigm is represented by two assessments dealing with gaze following,

each assessment using a different experimental and control condition of a particular

task. The outcome for these two assessments used the ratio of looks at a particular

area in the assessment’s experimental condition to the combined number of looks

in the assessment’s experimental and control conditions. The ratios were modeled
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in terms of their ranks. Data are only available on spider monkeys and capuchin

monkeys; the data were collected and analyzed by Amici et al. (2009).

The sixth paradigm is represented by a single assessment because of its unique-

ness compared to the other nineteen assessments. The original response for this

assessment consisted of the percent of correct responses in the experimental condi-

tion. However, the number of trials differed across animals and was dependent on

performance. The percentages were converted to ranks for modeling purposes. We

prefer the rank modeling for this assessment in part because the number of trials was

related to performance, but also because the number of trials might have been much

larger than for any other assessment making this assessment very influential. Amici

collected these data on the three aforementioned monkey species, but these data have

not yet been used in published results.

All of the memory, transposition, and support assessments could be considered

to come from a single paradigm, but we split them up because there are a sufficient

number of assessments in each component to model them separately and because if

combined there are very few paradigms with which to assess paradigm-specific effects.

The results suggest that this split is justified because there are difference between rel-

ative species performance that are not consistent across these three narrowly defined

paradigms.

B. Model Comparison

The primate intelligence data served as a motivating application for developing the

joint model while allowing for random effects. The data set is especially informative

because it permits investigation of several important questions.

• Is there substantial interanimal variability in intelligence after accounting for
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species effects? If so, how does interanimal variability compare to interspecies

variability (on a latent scale)?

• Do assessments from different paradigms yield different conclusions in compar-

ing intelligence between or within species?

• Does the relative contribution of error (i.e., the component of latent perfor-

mance variables not explained by species- or animal-related effects) differ across

assessments?

The data have both rank and binomial assessments, so the joint model from

Chapter III is used. Many models are considered, but before discussing the differences

between various models we lay the framework common to these models using the

notation from Chapter III. Several subscripts are used: i = 1, . . . , 100 represents

the subject, or animal, number; j = 1, . . . , 20 represents the assessment number; and

t = 1, . . . , Tj represents the trial number for (binomial) assessment j. The observed

response yijt is binary for binomial assessments with yijt = 1 denoting a success for

the trial. The observed response for rank assessments is in the interval [1, C(j)],

with yijt = 1 representing the worst performance among the C(j) subjects ranked for

assessment j and with yijt = C(j) the best (if unique). This ranking is in the opposite

direction of what might have been expected, but it was chosen so that higher values

of yijt are better regardless of whether assessment j has binomial or rank responses.

The value of B(j) is binary and equal to one if assessment j uses a binomial response,

while it is equal to zero if assessment j uses a rank response.

The likelihood for the data depends on a vector of latent variables z, cutpoint

parameters τ , and parameters influencing the probability of two rankings being tied

κ. For convenience, part of the likelihood is defined using the function p(ij)(κj) stated

in Equation 4.1. This function is used only for rank data. The notation z(i),j (y(i),j)



48

represents the ith smallest latent variable (observed rank) for the C(j) animals ranked

in assessment j. Any animal not ranked for assessment j is ignored.

p(ij)(κj) =


exp(−(z(i+1),j − z(i),j)/κj) if y(i+1),j = y(i),j

1− exp(−(z(i+1),j − z(i),j)/κj) if y(i+1),j > y(i),j.

(4.1)

It is possible to model each yijt, i = 1, . . . , 100, j = 1, . . . , 20, t = 1, . . . , Tj by

assuming that there is no systematic pattern to the missingness of y. Chapter III

illustrates how this is done. Such an implementation would be inefficient because there

are many missing values of yijt, and the missing values do not affect the likelihood. We

modeled only observed yijt values. However, we present the likelihood (Equation 4.2),

prior, and MCMC algorithm in the more general form to avoid complexities in product

and summation index ranges for missing data. The variable wijt is an indicator of

whether yijt was observed (wijt = 1) or not (wijt = 0).

f(y|z, τ ,κ) =

 ∏
j:B(j)=1

100∏
i=1

Tj∏
t=1

(1({yijt = 0 ∩ zijt ≤ τj} ∪ {yijt = 1 ∩ zijt > τj}))wijt


×

 ∏
j:B(j)=0

C(j)−1∏
i=1

p(ij)(κj)

 100∏
i=1

∏
i′:zi′j<zij

(1(yi′j ≤ yij))
wijwi′j


(4.2)

The form of the likelihood is unchanged for all models considered, so the real

differences between models are introduced by assuming different prior distributions

for the latent variables z. Up to four random effects are considered: species effects,

animal effects, species*paradigm effects, and animal*paradigm effects. Eschewing

the generic but easily generalized notation of Chapter III for random effects (i.e.,

up,l(p,i,j), p = 1, . . . , P ), the random effects considered are denoted in a more easily
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distinguished fashion. Because the species is an animal characteristic, s(i) = 1, . . . , 7

can be used to represent the species of animal i and θs(i) can be used to repre-

sent the species effect. The values of s(i) from s(i) = 1 to s(i) = 7 correspond to

chimpanzees, bonobos, gorillas, orangutans, spider monkeys, capuchin monkeys, and

long-tailed macaques, respectively. The animal effect for animal i is represented by

γi. Each assessment belongs to one of six paradigms, so g(j) = 1, . . . , 6 can be used

to represent the paradigm for assessment j. The values of g(j) from g(j) = 1 to

g(j) = 6 correspond to inhibition, memory, transposition, support, gaze following,

and reversed contingency, respectively. The species*paradigm effect is represented by

ωs(i),g(j). The animal*paradigm effect is represented by ηi,g(j).

The random effects combine with the assessment error variance to parameterize

the prior distribution for the latent variables. The most complex model that we

considered assumes that the latent variables comprising z have assessment-specific

error variances σ2
j : j = 1, . . . , 20 and that conditional on the error variances and

random effects the zijt are mutually independent with a N(θs(i) + γi + ωs(i),g(j) +

ηi,g(j), σ
2
j ) distribution. Modifications of this model consist of removing random effects

and forcing the error variances to be common across models (i.e., σ2
ε in place of σ2

j ).

The models considered appear in Table IV.

Although many of the models appear to be nested within other models, this is

often not the case because non-local priors are used on the variance parameters of

the random effects. Nonetheless, it is clear that each model can be considered as

an extension of the simplest model M0,0. Likewise, each model can be considered a

simplification of the most complex model MSPAP,J . Before stating the prior specifica-

tion for these models, the rationale for considering them is presented. Model M0,0 is

the simplest model that could be considered as it has no random effects (and conse-

quently the conditional variance is set to equal one). The most natural extension to
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Table IV. Models under consideration for the conditional mean and variance of the

latent variable zijt. In each model the zijt’s are assumed to be conditionally

independent and have conditionally normal distributions.

Latent Variables

Model Conditional Mean Conditional Variance

M0,0 0 1

MS,0 θs(i) σ2
ε

MSA,0 θs(i) + γi σ2
ε

MSP,0 θs(i) + ωs(i),g(j) σ2
ε

MSPAP,0 θs(i) + γi + ωs(i),g(j) + ηi,g(j) σ2
ε

MS,J θs(i) σ2
j

MSA,J θs(i) + γi σ2
j

MSP,J θs(i) + ωs(i),g(j) σ2
j

MSPAP,J θs(i) + γi + ωs(i),g(j) + ηi,g(j) σ2
j
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the model is to allow for species effects. Model MS,0 represents a model with species

effects and can be compared with M0,0 to check for differences in intelligence between

species. Model MS,J also allows for species effects, but relaxing the assumption of

common conditional error variance allows the species effect to vary in relative im-

portance across assessments. Models MSA,0 and MSA,J are particularly interesting

because they can be used not only to test for species and animal effects but also pro-

vide an indication of the relative importance of each. If animal effects were found to

be as or more important than species effects, this could have enormous implications

on the interpretation of previous research and the conduct of future research. The

combined primate intelligence data set is remarkable because of its large number of

observations on the animal level and its inclusion of great apes and monkeys.

Instead of adding an animal effect, another modest extension of the species-effect

model might add a species*paradigm interaction effect. Some early model fits sug-

gested this model might be preferable. The 20 assessments used can be grouped into

6 paradigms, and it is possible that the paradigms assess different aspects of intelli-

gence. Johnson et al. (2002) used a similar modeling approach (that served as the

basis of our modeling of rank data) with a meta-analysis of primate intelligence rank

data and investigated the evidence for genus*paradigm interactions. The compari-

son of MSP,0 with MS,0 (or MSP,J with MS,J) assesses the need for species*paradigm

effects.

Finally, the species effect model can be extended by allowing species*paradigm

and animal effects. In this case, it is sensible to also allow for animal*paradigm

effects. The models MSPAP,0 and MSPAP,J include all of these random effects.

The generic form of the prior for the most complex model, MSPAP,J , is stated in

Equation 4.3; recall that the general prior structure is discussed in detail in Chap-
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ter III.

π(z,θ,γ,ω,η,σ, σ2
1, . . . , σ

2
20,κ, τ )

= π(τ )π(κ)π(z|θ,γ,ω,η, σ2
1, . . . , σ

2
J)π(σ)

× π(θ|σ)π(γ|σ)π(ω|σ)π(η|σ)π(σ2
1, . . . , σ

2
20|σ)

(4.3)

Rather than restate the joint prior distribution for every model considered, we note

that this prior specification can be applied to every model if the component prior

densities are appropriately chosen.

The vector σ contains the variance parameter σ2
ε followed by the variance of

any random effects in the model. For example, with MSPAP,J , σ is defined as

(σ2
ε , σ

2
θ , σ

2
γ, σ

2
ω, σ

2
η). For each model it is assumed that σ ∼ Dirichlet(α1). The

common hyperparameter α means that a priori each variance parameter in σ has

the same marginal distribution. The Dirichlet prior requires that these variance pa-

rameters must sum to 1 so that the scale of the latent variables will be established

parsimoniously.

To penalize models for including unnecessary random effects, we restrict attention

to values of α that are greater than one. Thus, the prior density is zero whenever any

of these variance parameters are zero and the prior is non-local. The exact value of

α is selected so that there is a small chance any given element of σ is well below the

average value of the variance parameters, the idea being that if one of the variance

parameters is atypically small then the corresponding random effect is not important

for the model and could be excluded, so the model is penalized for its inclusion.

The specific rule used for the primate intelligence analysis is to choose α so that

Pr(σ2
θ < E(σ2

θ)/25) = 0.01. Note that this rule implies that the value of α depends

only on the length of σ because the expected value of each element is the inverse of
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Table V. Values of the hyperparameter α in the prior distribution σ ∼ Dirichlet(α1)

to satisfy the condition that Pr(σ2
θ < E(σ2

θ)/25) = 0.01. For the model with

only one variance parameter, the prior is degenerate at one.

No. of

Elements in σ Models α

1 M0,0 1

2 MS,0, MS,J 1.240

3 MSA,0, MSA,J , MSP,0, MSP,J 1.350

5 MSPAP,0, MSPAP,J 1.425

the number of elements. Because in a given model each variance parameter in σ has

the same marginal distribution, the criterion could equivalently have been to require

that Pr(σ2
ε < E(σ2

ε )/25) = 0.01. The obvious exception to this rule is that for M0,0,

the only element of σ (σ2
ε ) has been fixed at one, which means that any value of α

may be chosen and that the criterion will never be satisfied, but that is immaterial.

Table V denotes the values of α that were used for each model.

Figure 1 shows the marginal density for an arbitrary element of σ. Note that the

marginal density when there is a single variance parameter is not depicted because it

is degenerate at 1.

Whenever present in the model, we assume all of the random effects are con-

ditionally independent and have the following prior distributions: θ|σ ∼ N(0, σ2
θI);

γ|σ ∼ N(0, σ2
γI); ω|σ ∼ N(0, σ2

ωI); η|σ ∼ N(0, σ2
ηI). On the other hand, for any of

these effects that are not included in the model, the prior distribution for that effect

is degenerate at 0.
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Fig. 1. Marginal distribution of each variance parameter in σ as a function of the

number of variance parameters. Each variance parameter has a beta marginal

distribution. The non-local nature of the prior is apparent from the marginal

density going to zero as the variance goes to zero.
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If the model has assessment-specific conditional error variances, we assume that

conditional on σ the σ2
j ’s are iid IG(b + 1, bσ2

ε ). The hyperparameter b is chosen

to be 9.782 so that each assessment has an 80% chance under the prior distribution

that σ2
j/σ

2
ε ∈ (2/3, 3/2). While the prior mean of each error variance is the same

regardless of b > 0, the prior is informative with this value of b because we do not

desire dramatic variations among assessments. The scale of the latent variables zijt is

not inherently established by the data, and in our view a very small value of b would

only weakly identify the scale of the latent variables, especially if the model’s random

effects are relatively unimportant. If the model does not have assessment-specific

conditional error variances, the prior distribution of each σ2
j |σ is degenerate at σ2

ε .

The conditional prior distribution of the latent variable vector z is given by

Equation 4.4.

π(z|θ,γ,ω,η, σ2
1, . . . , σ

2
J)

=
100∏
i=1

20∏
j=1

Tj∏
t=1

(2πσ2
j )
−1/2 exp(−(zijt − θs(i) − γi − ωs(i),g(j) − ηi,g(j))2/2σ2

j )
(4.4)

This prior is in the form of MSPAP,J but by properly constraining the σ2
j ’s and the

random effects it also applies to every model considered.

The final step in setting up the models is to choose the priors for κ and τ . The

priors selected are the same across models. The κj for rank assessments are assumed

to be mutually independent and have a Gamma(1, 1) (or Exp(1)) distribution. The

τj for binomial assessments are assumed to be mutually independent and have a

Cauchy(0, 0.52) distribution. Both of these priors were chosen based partially on the

actual data set, which is not particularly problematic because (a) these are nuisance

parameters, (b) they are common to all models considered, and (c) the priors were

still chosen somewhat vaguely in that they are not assessment specific, even though
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the posterior distributions would support assessment-specific priors.

In the interest of full disclosure, the process of selecting the values is now stated.

Recognizing that every model considered implies E(zijt) = 0 and V ar(zijt) = 1, the

prior for τ was selected to be centered at 0 and to be consistent with the range of

observed success proportions across the 14 binomial assessments (0.044–0.885). Note

that the (1− 0.5)/14 and (14− 0.5)/14 quantiles of the Cauchy(0, 0.52) distribution

are ±4.44, which contain virtually all of the probability for a standard normal random

deviate. Thus, the prior did not seem overly restrictive because both very small and

very large success proportions could reasonably come from such a prior. However,

a scale of 0.5 is still an arbitrary choice, even when using observed proportions as a

guideline for selecting the scale. In retrospect, we would have preferred a larger value

of the scale hyperparameter.

We also informally used observed characteristics of the data to choose the prior

for τ . We wanted to find values of κ that would be consistent with the observed

proportion of rank values that were unique. There was widespread variation in these

proportions. Initially we used prior-predictive simulation under model M0,0 to try

to approximately reproduce the correct number of ties. The number of animals as-

sessed affects the observed proportion of unique rankings in all models because the

order statistics used in determining model tie probabilities tend to become closer to

each other when more animals are included, so we randomly drew 20 animals from

each assessment, looked at the observed proportions of unique values, and tried to

reproduce them. While not precise, we concluded that a value of κ near 1 would suit

our purposes, so we chose a Gamma(2, 2) for κj’s prior distribution. However, early

model fits indicated that some κ were very close to zero and some were bigger than

1, so we changed the prior on the κj’s to be more dispersed but still have mean 1.
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Posterior inference used MCMC sampling with the algorithm described in Chap-

ter III. Different alternatives were employed for chain initialization.

Formal assessment of the competing models would ideally use Bayes factors, but

computation of the Bayes factors is particularly challenging. The estimator proposed

by Gelfand and Dey (1994) (see Equation 2.3) can be difficult to successfully imple-

ment because of the difficulty in finding an appropriate importance sampling function

that is not dominated by a very small number of values.

Each model in Table IV is fitted to the primate intelligence data set. Model

comparison is accomplished by computing discrepancy measures based on pivotal

quantities and by comparing posterior inferences from different models. The discrep-

ancy measures as adapted from Yuan and Johnson (2011) were presented generally

in Chapter III, and their motivation and characteristics as provided by these au-

thors were also restated there. We turn our attention to specifying the discrepancy

measures in a specific form given the candidate models considered. Discrepancy mea-

sures are computed for all but the most complex model. For each model, define the

standardized residuals rijt as follows.

rijt ≡
zijt − θs(i) − γi − ωs(i),g(j) − ηi,g(j)

σj
(4.5)

Restrictions must be made on terms as necessary. For example, σj ≡ σe if the model

does not allow task-specific error variances, and γi ≡ 0 if the model does not allow for

animal effects. Recall that for each model, the standardized residuals are independent

and identically distributed as standard normals assuming the model is correct, and

thus functions of the rijt are pivotal quantities.

In order to have an effective discrepancy measure for use in model comparison,

it is important that the discrepancy measure be sensitive to model misspecification.

It is therefore useful to select model-specific discrepancy measures that are designed
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to pick up features that could be explained by a more general candidate model.

If the error variances are incorrectly assumed to be common across assessments,

the standardized residuals for some assessments should have more or less variance

than the standardized residuals for other assessments. An appropriate discrepancy

measure to detect this misspecification involves binning residuals on an assessment-

by-assessment basis. Let Eb,j be the expected number of residuals for assessment j

in bin b, where b = 1, 2, . . . , B. The bins are defined such that Eb,j is the same for

each bin b by choosing bin cutpoints of −∞ = z0, z1/B, z2/B, . . . , zB/B =∞, where zα

is the lower (100α)th percentile of the standard normal distribution.

DV AR =
J∑
j=1

[
B∑
b=1

(Ob,j − Eb,j)2

Eb,j

]
(4.6)

The inner sum in Equation 4.6 has an approximate χ2
B−1 distribution for each j

provided each expected count Eb,j is sufficiently large and the assumed model is

correct. Furthermore, if the model is correct the approximate distribution of the

overall discrepancy measure is χ2
J(B−1). Conversely, if the model is incorrect because

there are large task-to-task differences in error variability, the inner sums would tend

to be larger than B − 1 and the overall discrepancy measure would tend to be larger

than J(B − 1). We used five bins for this discrepancy measure and excluded any

quantities with Eb,j less than six because we wanted the chi-square approximation

to be reasonable at the 99th percentile of the reference distribution. This meant

assessments 18 and 19 were excluded, and the approximate reference distribution is

χ2
72.

Because DV AR considers the sign of a standardized residual, it might not be as

suited to pick up non-constant error variances. A related discrepancy measure which

only considers the magnitude of the standardized residuals, or equivalently considers
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the squared value of the standardized residuals, has the same functional form as

in Equation 4.6. The only difference is that bin cutpoints are quantiles from the

χ2
1 distribution, the reference distribution for each r2ijt. The expected and observed

bin counts by assessment for the squared residuals would take the place of Eb,j and

Ob,j in Equation 4.6. We refer to this alternative discrepancy measure as DV AR,2.

Again using five bins that each have the same expected count, and again excluding

assessments with expected bin counts of less than six, the approximate reference

distribution for DV AR,2 is also χ2
72.

The remaining discrepancy measures also excluded any summand based on an

expected bin count less than six.

A discrepancy measure for detecting the need for an omitted random effect can

be formed by binning residuals according to the levels of the omitted random effect.

To assess the need for a species effect to be added to M0,0, the discrepancy measure

is based on the quantities Eb,s and Ob,s, which are the expected and observed number

of standardized residuals in bin b for measurements from species s.

DS =
S∑
s=1

[
B∑
b=1

(Ob,s − Eb,s)2

Eb,s

]

Five bins were used for this discrepancy measure, and each of the seven species had

an expected count in each bin of at least six. The approximate reference distribution

is χ2
28.

To assess the need for an animal effect, the discrepancy bins residuals on a per

animal basis.

DA =
I∑
i=1

[
B∑
b=1

(Ob,i − Eb,i)2

Eb,i

]
Five bins were used, but 32 of the 100 animals did not have expected counts of at

least six standardized residuals in each bin. The approximate reference distribution
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is χ2
272.

In assessing the need for a species*paradigm effect, the discrepancy measure uses

expected and observed counts of residuals in bin b, grouped by species s and paradigm

g.

DSP =
S∑
s=1

G∑
g=1

[
B∑
b=1

(Ob,sg − Eb,sg)2

Eb,sg

]
Four bins were used, and 30 of the 42 species*paradigm combinations had expected

counts of at least six standardized residuals. The approximate reference distribution

is χ2
90.

A discrepancy measure for testing the need to include animal*paradigm effects

could be similarly constructed. However, the data were considered too sparse to

reliably test for such an effect. We did not consider any model extensions where the

only effect added was an animal*paradigm random effect.

Table VI contains upper bounds on the PPP p-values for testing that the variance

for particular random effects is nonzero and that for at least one assessment, σ2
j 6= σ2

ε .

The tests were implemented using various discrepancy measures, but in each case the

99th percentile of the reference distribution was used in identifying the upper bound

on the p-value. Thus, the minimum upper bound that could be obtained is 0.01. The

lower of the PPP p-value bounds resulting from DV AR and DV AR,2 is reported for

detection of non-constant error variance. Because none of the models suggest a need

for the error variances across assessments to differ, the discussion of these models will

focus on the models assuming a common error variance.

Each of the models that were considered was fitted using 100,000 burn-in iter-

ations and then 1,500,000 more iterations. Beginning at the simplest model, M0,0,

it is obvious from Table VI that the model is inadequate because the discrepancy

measure designed to pick up species effects tends to be much larger than would be
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Table VI. Tests of model inadequacies for the models considered. The bounds on PPP

p-values are based on discrepancy measures using pivotal quantities and are

upper bounds. The tests are to detect species effects (σ2
θ > 0); animal ef-

fects (σ2
γ > 0); species*paradigm effects (σ2

ω); and assessment-specific error

variances (σ2
j 6= σ2

ε ). When testing the need for assessment-specific error

variances, the lower of the bounds resulting from DV AR and DV AR,2 is re-

ported; in every case this was the bound from DV AR,2. Each model was

fitted using 100,000 burn-in iterations followed by 1,500,000 iterations.

Potential Bound on Potential Bound on Potential Bound on

Model Violation p-value Violation p-value Violation p-value

M0,0 σ2
θ > 0 0.01

MS,0 σ2
γ > 0 0.26 σ2

ω > 0 0.01 σ2
j 6= σ2

ε 0.73

MS,J σ2
γ > 0 0.18 σ2

ω > 0 0.01

MSP,0 σ2
γ > 0 0.82 σ2

j 6= σ2
ε 0.61

MSP,J σ2
γ > 0 0.90

MSA,0 σ2
ω > 0 0.01 σ2

j 6= σ2
ε 0.68

MSA,J σ2
ω > 0 0.01

MSPAP,0 σ2
j 6= σ2

ε 0.63

MSPAP,J
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expected if there were no such effects. However, MS,0 is also inadequate. While there

is at least marginal evidence of animal effects (recall that the values in Table VI are

upper bounds), there is a very strong indication that species*paradigm interaction

effects are also needed. The model with species and species*paradigm effects does not

appear to need an animal effect, while the model with species and animal effects does

need species*paradigm effects. Thus, the preferred model is MSP,0. Not only do none

of the models appear to need assessment-specific error variances, but whether or not

this assumption is relaxed, the conclusions about which random effects need to be in

the model are unaltered. Obviously there are other models that could be considered,

and even different discrepancy measures that could be used on the models that were

considered. Nevertheless, the sequences of models we tested and fitted suggest that

model MSP,0 appears adequate.

While the evidence supporting model MSP,0 might seem compelling, there are

several reasons to temper any conclusions from these results alone. One potential

drawback of the discrepancy measures used is that they might not be particularly

adept at detecting model violations. Furthermore, it is possible that the upper bounds

are much too conservative. And perhaps there are simply not enough data to detect

relatively small effects. In order to alleviate any concerns that might exist, posterior

summaries on variance parameters are provided for all models in Table VII. The

omission of animal and animal*paradigm interaction effects seems justified as they are

relatively minor when included; together they explain on average less than 4% of the

total variability. Figure 2 displays gaussian-kernel density estimates for the marginal

posterior density of σ2
γ and of σ2

η under MSPAP,0. The kernel density estimates are

only graphed for nonnegative values of the variance. The actual estimates incorrectly

suggest that the posterior densities do not pass through the origin and that negative

values lie in the support. Regardless, the densities are concentrated near 0, again
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Table VII. Variance parameter summaries for all models considered.

Model σ2
ε σ2

θ σ2
γ σ2

ω σ2
η

M0,0 1.00 (—)

MS,0 0.88 (0.07) 0.12 (0.07)

MS,J 0.87 (0.07) 0.13 (0.07)

MSP,0 0.68 (0.07) 0.15 (0.08) 0.18 (0.05)

MSP,J 0.68 (0.08) 0.15 (0.08) 0.17 (0.05)

MSA,0 0.88 (0.06) 0.11 (0.06) 0.012 (0.007)

MSA,J 0.85 (0.07) 0.13 (0.07) 0.016 (0.009)

MSPAP,0 0.67 (0.07) 0.13 (0.07) 0.0050 (0.004) 0.17 (0.05) 0.022 (0.01)

MSPAP,J 0.68 (0.07) 0.13 (0.07) 0.0056 (0.005) 0.16 (0.05) 0.030 (0.01)

confirming their relative unimportance when included in the model.

C. Results from Selected Model

The preferred model has species effects, species*paradigm effects, and assumes con-

stant error variance across assessments. The model fit is now described in more

detail, including comments on mixing and convergence of the Markov chain as well

as posterior summaries.

Some attention was given to examining convergence and mixing in the prelim-

inary MCMC runs of various models under consideration, but the convergence and

mixing should be more rigorously examined for any models on which inferences are to

be made. In addition to the preliminary run of the selected model, two much longer

runs of the MCMC algorithm were used with different starting points. For each of
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Fig. 2. Kernel density estimates of the marginal posterior distributions for σ2
γ and σ2

η

under MSPAP,0. The kernel density estimation does not enforce the constraints

that the posterior density of σ2
γ and of σ2

η at 0 must be 0, but the concentration

of both densities near zero is nonetheless apparent, particularly for the animal

effects.
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these runs, there was a lengthy burn-in period (200,000 or 250,000 iterations) and

an additional large number of iterations (6,000,000 or 7,500,000). The latter run is

used for final inferences, but the former lengthy run suggests good agreement between

the two runs and thus suggests that the runs have converged to the target (poste-

rior) distribution. All iterations after the burn-in period were used for estimating the

posterior mean and posterior standard deviation of selected model parameters. How-

ever, because of computer memory limitations, the sequences were thinned by using

every 500th iteration for most graphical displays, for 95% central credible intervals,

and for the posterior mean and posterior standard deviation of combined species and

species*paradigm effects.

Appendix A contains trace plots of various parameters and information on tuning

parameters to get the target acceptance rates. While this is important information

for practical purposes and to justify validity of the subsequent model inferences,

the detailed information is relegated to the Appendix because it is not of principal

interest. It is important to note, however, that the chain appears to converge rather

quickly although it mixes poorly. The thinned chain appears to mix well, but it is

unsettling that the chain must be drastically thinned in order to appear to mix well.

The large number of iterations offsets somewhat the effects of thinning, but it also

implies a greater computational burden.

This model has random effects for both species and species*paradigm effects,

so naturally one of the first questions of interest is the relative importance of each.

Recall that the model has been constructed so that the prior predictive distribution

of a latent variable zijt has a variance of exactly one by requiring that σ2
ε + σ2

θ +

σ2
ω = 1. Thus, each variance parameter in σ can be interpreted as the proportion

of total variability in a predictive distribution (for a new animal and species) that

is explained by the corresponding effect. Figure 3 displays several contours of the
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posterior distribution of σ. While σ2
ε is not depicted, it is implicit because of the

prior constraint.

Posterior inference on σ suggests that the species and species*paradigm effects

have fairly similar variability. However, the error variability tends to be the primary

source of variability in z, accounting for more than two-thirds of the total variability

on average. Table VIII contains posterior summaries of the the model’s nuisance

parameters, κ and τ . It is interesting to note that the prior density for τ (each τj iid

Cauchy(0, 0.52)) seems to have been inappropriate for τ5 and τ11. Section D contains

results from a sensitivity analysis which uses less informative priors on κ and τ .

Besides the variance parameters, other model quantities of note are the random

effects. Rather than interpret them individually, we focus on the combined effects (i.e.,

θs(i)+ωs(i),g(j)) for each paradigm. Table IX and Table X contain numerical summaries

of these combined effects, while Figure 4 graphically depicts the estimated marginal

posterior distributions. There is dramatic variation in the standard deviations of

these combined effects across paradigms. This is not surprising because both the

number of trials in binomial assessments and the number of assessments per paradigm

varied substantially. Furthermore, for the last two paradigms none of the apes were

observed, and the gaze following paradigm also did not include any observations from

long-tailed macaques.

Figure 5 has six image plots. Each plot focuses on one of the paradigms. The

plot regions are shaded according to the probability that the species in the row has a

larger combined effect θ + ω than the species in the column. The color of each grid

box is determined by the posterior probability that the combined effect for the species

listed in the grid’s row is larger than that of the the species in the grid’s column.

The colors range from dark blue to white and then to dark red as the probabilities

change from 0 to 0.5 and then to 1. A dark blue box indicates a posterior probability
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Fig. 3. Posterior distribution of the variance parameters σ2
θ (for species effects), σ2

ω

(for species*paradigm effects), and σ2
ε ≡ 1 − σ2

θ − σ2
ω (for error terms). The

posterior density is defined as zero outside of the demarcated triangular region.
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Table VIII. Posterior summaries of model nuisance parameters.

Parameter Posterior Mean Posterior SD 95% Credible Interval

κ1 1.79 0.91 (0.63, 4.04)

κ2 1.46 0.73 (0.54, 3.33)

τ3 -0.23 0.21 (-0.64, 0.16)

κ4 0.035 0.010 (0.019, 0.056)

τ5 1.66 0.21 (1.23, 2.05)

τ6 -0.43 0.20 (-0.83, -0.05)

τ7 -0.06 0.19 (-0.45, 0.30)

τ8 -0.23 0.19 (-0.61, 0.14)

τ9 -0.10 0.19 (-0.48, 0.26)

τ10 -0.27 0.21 (-0.71, 0.12)

τ11 -0.99 0.27 (-1.53, -0.48)

τ12 -0.18 0.14 (-0.47, 0.09)

τ13 0.05 0.14 (-0.23, 0.32)

τ14 -0.16 0.14 (-0.44, 0.12)

τ15 -0.12 0.14 (-0.40, 0.15)

τ16 0.05 0.14 (-0.22, 0.32)

τ17 -0.01 0.14 (-0.29, 0.26)

κ18 0.22 0.10 (0.09, 0.46)

κ19 1.97 1.06 (0.62, 4.69)

κ20 0.015 0.007 (0.005, 0.033)
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Table IX. Posterior summaries from the first three paradigms of the combined species

and species*paradigm random effects. These summaries are based on the

thinned sequences after burn-in. The 95% credible intervals are equal-tailed.

Posterior Quantity

Paradigm Species Mean SD 95% Credible Interval

Inhibition Chimpanzee 0.57 0.22 (0.13, 0.98)

Bonobo 0.47 0.24 (-0.01, 0.92)

Gorilla 0.05 0.23 (-0.41, 0.48)

Orangutan 1.05 0.21 (0.62, 1.46)

Spider monkey 0.03 0.21 (-0.39, 0.42)

Capuchin monkey -0.31 0.21 (-0.73, 0.09)

Long-tailed macaque -0.70 0.23 (-1.16, -0.27)

Memory Chimpanzee 0.77 0.24 (0.30, 1.23)

Bonobo 0.88 0.28 (0.34, 1.43)

Gorilla 0.18 0.23 (-0.28, 0.64)

Orangutan 0.01 0.22 (-0.43, 0.43)

Spider monkey 0.30 0.21 (-0.10, 0.71)

Capuchin monkey -0.31 0.21 (-0.73, 0.09)

Long-tailed macaque -0.30 0.21 (-0.72, 0.11)

Transposition Chimpanzee 0.85 0.25 (0.37, 1.34)

Bonobo 1.10 0.33 (0.49, 1.79)

Gorilla 0.41 0.23 (-0.05, 0.85)

Orangutan 0.29 0.23 (-0.17, 0.75)

Spider monkey -0.20 0.20 (-0.61, 0.19)

Capuchin monkey -0.45 0.21 (-0.87, -0.05)

Long-tailed macaque -0.02 0.20 (-0.43, 0.37)
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Table X. Posterior summaries from the last three paradigms of the combined species

and species*paradigm random effects. These summaries are based on the

thinned sequences after burn-in. The 95% credible intervals are equal-tailed.

Posterior Quantity

Paradigm Species Mean SD 95% Credible Interval

Support Chimpanzee 0.20 0.14 (-0.07, 0.46)

Bonobo 0.23 0.15 (-0.06, 0.52)

Gorilla 0.09 0.15 (-0.21, 0.38)

Orangutan 0.19 0.15 (-0.11, 0.48)

Spider monkey 0.61 0.14 (0.33, 0.88)

Capuchin monkey 0.24 0.14 (-0.04, 0.50)

Long-tailed macaque -0.02 0.14 (-0.30, 0.25)

Gaze following Chimpanzee 0.43 0.48 (-0.54, 1.35)

Bonobo 0.49 0.48 (-0.50, 1.41)

Gorilla 0.14 0.46 (-0.77, 1.04)

Orangutan 0.28 0.47 (-0.66, 1.19)

Spider monkey -0.09 0.35 (-0.80, 0.60)

Capuchin monkey 0.09 0.35 (-0.61, 0.79)

Long-tailed macaque -0.19 0.46 (-1.07, 0.72)

Reversed Chimpanzee 0.44 0.48 (-0.52, 1.36)

contingency Bonobo 0.49 0.48 (-0.48, 1.43)

Gorilla 0.14 0.46 (-0.79, 1.05)

Orangutan 0.28 0.47 (-0.66, 1.17)

Spider monkey -0.36 0.33 (-1.01, 0.28)

Capuchin monkey 0.41 0.33 (-0.23, 1.07)

Long-tailed macaque -0.22 0.33 (-0.85, 0.42)
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Fig. 4. Kernel density estimates of the marginal posterior distributions for

θs(i) +ωs(i),g(j) by paradigm. The line color/species associations are red—chim-

panzees, orange—bonobos, purple—gorillas, yellow—orangutans, blue—spider

monkeys, gray—capuchin monkeys, and green—long-tailed macaques.
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Fig. 5. Image plots of the posterior probability that the listed row species is better

than the listed column species for the specified paradigm. A dark blue box

indicates a posterior probability of at most 0.01, a light blue indicates posterior

probability in (0.01, 0.10], a faint blue indicates (0.10,0.25], a white indicates

(0.25,0.75), a faint red indicates [0.75,0.90), a light red indicates [0.90,0.99),

and a dark red indicates a posterior probability of at least 0.99. The diagonal

boxes are artificially white to divert attention away from them because the

comparison is meaningless (i.e., comparing each species with itself).
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of at most 0.01. A light blue box indicates a posterior probability in (0.01, 0.10]. A

faint blue box indicates a posterior probability in (0.10,0.25]. A white box indicates

a posterior probability in (0.25,0.75) or the meaningless comparison of a species with

itself. A faint red box indicates a posterior probability in [0.75,0.90). A light red box

indicates a posterior probability in [0.90,0.99). Finally, a dark red box indicates a

posterior probability of at least 0.99 that the listed row species has a larger combined

effect than the species in the column. Note that the diagonal boxes are artificially

white (rather than dark blue) to divert attention away from them because comparing

each species with itself is completely uninformative.

For each plot in Figure 5, a row with only dark red (dark blue) boxes off the

diagonal suggests strong evidence that the species listed in that row is better (worse)

on average than the other species for that paradigm. Note that these comparisons

cannot be performed using only the summary measures in Table IX and Table X,

owing to the correlation in posterior draws of the combined effects.

Several aspects of Figure 5 suggest why the species*paradigm interactions seem

to be so important for the model. First, orangutan performance in the inhibition

paradigm (paradigm 1) is much better relative to the other species than might have

been expected based on any other paradigm. Similarly, spider monkeys excelled

relative to the other species in the support paradigm (paradigm 4) but were generally

average in the other paradigms.

Other notable findings include the similarity of chimpanzees and bonobos in each

of the six paradigms. Only the transposition paradigm (paradigm 3) is even mildly

suggestive of a difference between the paradigm-specific intelligence of these species.

Also, the great apes as a group performed better than the monkeys in the first three

paradigms. Other than exceptionally good (poor) performances by spider monkeys

(long-tailed macaques), there were not great differences for paradigm 4.
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The final two paradigms must be interpreted with caution; while there is not

strong posterior evidence of differences between most pairs of species, this might rea-

sonably be attributed to two factors. First, no great apes were observed for any

assessments from either of these paradigms, and paradigm 5 only used observations

from two monkey species. Second, the paradigms consisted of either (a) only two

assessments, each with only two trials involved in the binomial response; or (b) only

one assessment, having rank response. Therefore, it not surprising that species com-

parisons for these paradigms are rather inconclusive.

D. Model Sensitivity

In order to assess the robustness of these findings, results from several alternative

modeling strategies are now considered. The changes may be summarized as either:

(a) using somewhat more vague priors on the nuisance parameters τ and κ; or (b)

excluding the last two paradigms.

In order to examine the effect of the selected hyperparameter values, the selected

model was refitted after making some modest changes to have less informative priors.

Specifically the priors were changed as follows.

• τj ∼ Cauchy(0, 12) instead of τj ∼ Cauchy(0, 0.52)

• κj ∼ Gamma(0.5, 0.5) instead of κj ∼ Gamma(1, 1)

Also, because the observed data for the fifth and sixth paradigms are limited to

only two or three monkey species and one or two assessments, these paradigms were

excluded to gauge their effect on model fit.

Posterior inference is affected somewhat by the new prior specification and with

the exclusion of the last three assessments. Table XI reports the posterior mean and
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standard deviation for several quantities of interest for MSP,0 with the original analy-

sis, alternate prior, and omission of the last two paradigms. The alternate prior lead

to a downward shift of roughly 0.1 in the species effects and the threshold parame-

ters. This change is not surprising because 13 of the 14 binomial assessments (and

the majority of the total number of observed binomial trials) had a negative posterior

mean for the assessment’s threshold. Increasing the scale of the prior distribution on

τ diminishes the shrinkage of these parameters to zero, and since nearly all of the τj’s

were negative the cumulative effect of the species and species*paradigm effects also

drops. What is somewhat surprising is that this change seems to have affected the

species effects more than the species*paradigm effects. The alternate prior also has

values of κ that tend to be further away from one (the prior mean) than the values

were in the original analysis.

Omitting the last two paradigms (assessments 18–20) generally had very little

effect compared to the original modeling with data from all six paradigms. The

primary difference is that the species effects for spider monkeys (species 5) and ca-

puchin monkeys (species 6) changed somewhat. That they changed is not surprising

because these are the only two species that were represented in the gaze-following

paradigm (paradigm 5) and they are two of the three species represented in the

reversed-contingency paradigm (paradigm 6). The species*paradigm interaction ef-

fects have adjusted by roughly the opposite amount as the species adjustments for

spider monkeys and capuchin monkeys, indicating that the combined species and

species*paradigm effects (θs(i)+ωs(i),g(j)) for the first four paradigms have not changed

much by excluding the last two paradigms.

Figure 6 and Figure 7 can be compared with Figure 4 to understand the sensitiv-

ity of the combined random effects to the prior and the last two paradigms. Figure 8

and Figure 9 can be compared with Figure 5 to gauge the impact of such changes on
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Table XI. Posterior summaries under original model and variations.

Posterior Mean (SD)

Model Original Alternate Omit 5th, 6th

Quantity Analysis Prior Paradigms

σ2
ε 0.68 (0.08) 0.70 (0.07) 0.67 (0.08)

σ2
θ 0.15 (0.08) 0.12 (0.07) 0.17 (0.09)

σ2
ω 0.17 (0.05) 0.18 (0.05) 0.16 (0.05)

θ1 0.44 (0.23) 0.34 (0.22) 0.46 (0.22)

θ2 0.49 (0.24) 0.39 (0.23) 0.52 (0.23)

θ3 0.14 (0.20) 0.06 (0.20) 0.15 (0.20)

θ4 0.28 (0.21) 0.19 (0.21) 0.30 (0.21)

θ5 0.04 (0.18) -0.04 (0.19) 0.16 (0.20)

θ6 -0.04 (0.18) -0.12 (0.19) -0.15 (0.20)

θ7 -0.19 (0.19) -0.26 (0.20) -0.19 (0.20)

ω1,1 0.13 (0.26) 0.14 (0.26) 0.12 (0.25)

ω2,1 -0.02 (0.27) -0.01 (0.27) -0.03 (0.26)

ω3,1 -0.09 (0.25) -0.10 (0.25) -0.08 (0.24)

ω4,1 0.77 (0.25) 0.78 (0.25) 0.76 (0.24)

ω5,1 -0.01 (0.23) -0.03 (0.23) -0.11 (0.23)

ω6,1 -0.27 (0.23) -0.29 (0.24) -0.15 (0.24)

ω7,1 -0.52 (0.25) -0.55 (0.26) -0.50 (0.25)

κ1 1.79 (0.91) 2.11 (1.26) 1.78 (0.91)

κ2 1.46 (0.73) 1.63 (0.94) 1.46 (0.73)

κ4 0.035 (0.010) 0.034 (0.009) 0.035 (0.010)

τ3 -0.23 (0.21) -0.33 (0.22) -0.21 (0.21)

τ5 1.66 (0.21) 1.59 (0.22) 1.67 (0.21)

τ6 -0.43 (0.20) -0.55 (0.21) -0.42 (0.20)
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interspecies comparisons for each paradigm.

E. Discussion of Results

The combined primate intelligence data set was very exciting because of its abil-

ity to address questions regarding the necessity and relative importance of species,

species*paradigm, animal, and animal*paradigm random effects on non-human pri-

mate assessments from different paradigms of intelligence testing. Several key findings

in the data analysis are that there are substantial species main effects and similarly

important species*paradigm interaction effects. That is, intelligence seems to system-

atically differ across species of great apes and monkeys, but a reduction to a general

intelligence latent trait is not adequate.

Johnson et al. (2002) did not find strong evidence of genus*paradigm interac-

tions in their meta-analysis of primate intelligence tests (though genus effects were

included). While it is difficult to identify the exact nature of this seemingly contra-

dictory finding, there are several possible explanations. Among these are differences

in assessments, paradigms, and species across the studies. Another possible reason

is that the current data set contains mostly assessments using binomial responses,

and with several of them having six or more trials there is arguably more information

than if all of the binomial outcomes had been converted to rank responses. Perhaps

in this sense the current study is better suited to pick up effects.

Yet another explanation is that there are key differences in interpretation of

random effects between the proposed methodology and the rank data methodology

introduced by Johnson et al. (2002). In particular, consider a model where the latent

variable is the sum of a random species effect and an error term. The rank methodol-

ogy of the aforementioned authors would establish scale by constraining the variance
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Fig. 6. Kernel density estimates of the marginal posterior distributions for

θs(i) + ωs(i),g(j) by paradigm when the prior distribution is less informative.

The line color/species associations are red—chimpanzees, orange—bonobos,

purple—gorillas, yellow—orangutans, blue—spider monkeys, gray—capuchin

monkeys, and green—long-tailed macaques.
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Fig. 7. Kernel density estimates of the marginal posterior distributions for

θs(i)+ωs(i),g(j) by paradigm when data from the last two paradigms are excluded .

The line color/species associations are red—chimpanzees, orange—bonobos,

purple—gorillas, yellow—orangutans, blue—spider monkeys, gray—capuchin

monkeys, and green—long-tailed macaques.
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Fig. 8. Image plots of the posterior probability that the listed row species is better

than the listed column species for the specified paradigm when the prior distri-

bution is less informative. A dark blue box indicates a posterior probability of

at most 0.01, a light blue indicates posterior probability in (0.01, 0.10], a faint

blue indicates (0.10,0.25], a white indicates (0.25,0.75), a faint red indicates

[0.75,0.90), a light red indicates [0.90,0.99), and a dark red indicates a poste-

rior probability of at least 0.99. The diagonal boxes are artificially white to

divert attention away from them because the comparison is meaningless (i.e.,

comparing each species with itself).
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Fig. 9. Image plots of the posterior probability that the listed row species is better

than the listed column species for the specified paradigm when data from the

last two paradigms are excluded . A dark blue box indicates a posterior proba-

bility of at most 0.01, a light blue indicates posterior probability in (0.01, 0.10],

a faint blue indicates (0.10,0.25], a white indicates (0.25,0.75), a faint red in-

dicates [0.75,0.90), a light red indicates [0.90,0.99), and a dark red indicates a

posterior probability of at least 0.99. The diagonal boxes are artificially white

to divert attention away from them because the comparison is meaningless (i.e.,

comparing each species with itself).
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of one of the species random effects to equal one and would let each assessment have

its own error variance; thus, V ar(zijt|σ2
j , σ

2
θ ≡ 1) = 1 + σ2

j . As σ2
j increases, the

relative importance of the species effects diminishes. If error variances differ system-

atically across paradigms, this implies different relative contributions of the species

effect across paradigms, and in a sense implies a species*paradigm interaction. On

the other hand, the current methodology establishes scale in the latent variables z

by constraining their prior marginal variance to equal 1, regardless of the number

of random effects involved. When each error variance is constrained to equal σ2
ε , as

in MS,0, the relative contribution of the random species effect is assumed to be the

same across paradigms. And even when the error variance is allowed to differ across

assessments, as in MS,J , the σ2
j parameters are modeled hierarchically around σ2

ε with

informative priors and thus tend to be close together.

If species*paradigm interactions are important for distinguishing the degree of

separation between species for each paradigm but do not change the ordering, the

aforementioned methodology might not be able to pick this up, while model MS,0

would be better able and even MS,J might be able to do so. However, this explana-

tion seems unsatisfactory because the present model had little evidence to support

assessment-specific error variances and more importantly because the ordering of

the combined species and species*paradigm effects changed, sometimes dramatically,

across paradigms.

Whatever the correct explanation may be, the finding is that intelligence is

paradigm specific, or at least that different paradigms tend to yield different con-

clusions regarding interspecies intelligence comparisons. This is consistent with con-

clusions by, for example, Riopelle and Hill (1973, p. 541).

There is little evidence from the current study to support the presence of consid-

erable animal or animal*paradigm effects unless species*paradigm effects are ignored.
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Together, the animal and animal*paradigm effects explained on average less than 4%

of the total variability in the latent variables. On the other hand, the species and

species*paradigm effects together explained roughly ten times as much of the vari-

ability as the animal-related effects. This suggests that there is substantially more

systematic interspecies variation than systematic intraspecies variation, at least for

the types of animals tested. This finding may not hold in studies with greater vari-

ation in animal age, different assessments and paradigms, or different species. Care

must be taken in interpreting the results.
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CHAPTER V

CONCLUSIONS AND POSSIBLE EXTENSIONS

Both binomial response and rank response data can be analyzed using latent vari-

ables to form augmented data. We used the augmentation approach to jointly model

binomial and rank data using a random effects model for the latent variables. We

also used Dirichlet priors to establish scale for the latent variables and readily admit

non-local priors for random effects. We detailed a Metropolis-within-Gibbs MCMC

algorithm that can be used for posterior sampling, with an innovation that enables

the Markov chain to mix better by allowing for simultaneous shifts in latent variables

associated with tied rankings. Finally, we demonstrated model comparison using

discrepancy measures based on pivotal quantities because estimation of Bayes fac-

tors can be especially challenging in large data sets with many latent variables and

non-local priors.

The primate intelligence application helped to answer several questions and

demonstrated the usefulness of the methodology. In particular, the discrepancy mea-

sures appeared to effectively detect needed random effects while not flagging effects

that were not strongly supported by the data, suggesting both sensitivity and speci-

ficity.

We extended the model to allow for assessment-specific error variances using a

hierarchical model. Further work could relax the assumption that all levels of a given

random effect have the same variability. In addition, future work could involve a

more general and user-friendly computer program to implement posterior sampling

and calculation of discrepancy measures. We wrote a custom program in C++ using

the GNU Scientific Library (Galassi et al. 2009) to fit the primate intelligence models

and compute discrepancy measures, but the program still requires more user modifi-
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cation than desirable for general use. Because R (R Development Core Team 2010)

was used to provide input data to the C++ program and for summarizing the output

information, it would be ideal to provide an R wrapper that would make fitting these

types of models and obtaining useful summaries even more automatic for practition-

ers. However, creating such an R wrapper is challenging because of memory allocation

issues. Meanwhile, a direct R implementation of the MCMC algorithm would likely

be too slow to be of practical use. For the primate intelligence application, the C++

implementation only obtained about 200K iterations/hour and yet an attempt to use

R was about two orders of magnitude slower.

Another possible avenue for future work is to allow continuous effects and fixed

factor effects in the hierarchical modeling of latent variables. In particular, age and

sex might be important in modeling primate intelligence data. The inclusion of these

explanatory variables would require a fundamental change in the modeling approach

to establish scale of the latent variables.

Finally, other methods of approximating Bayes factors could be explored. Dis-

crepancy measures can be very useful, as demonstrated by the analysis of Chapter IV,

but there are reasons to prefer the Bayes factor in model selection techniques. One

of these reasons is that the discrepancy measures based on pivotal quantities ignored

some data to avoid a poor chi-square approximation when expected counts were low.

Another is that while the discrepancy measures were used to determine a bound on

the PPP p-value, having a bound is, in general, certainly less desirable than having

the actual PPP p-value.

The techniques of the previous chapters and their application to primate intel-

ligence testing represent an important step forward even without the possible exten-

sions just stated. Not only does the modeling approach allow inference using both

binomial and rank data, but it also emphasizes parsimony by constraining the prior
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distribution of the latent variables in z to have a common marginal mean (0) and

marginal variance (1) regardless of the number of random factor effects that are in-

cluded. This consistency is desirable to simplify prior elicitation, interpretation of

random effects, and comparisons across models.
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APPENDIX A

APPENDIX

Posterior sampling using MCMC depends on the chain converging to the target

(posterior) distribution and on adequate mixing of the chain. The selected model for

primate intelligence has species effects, species*paradigm effects, and assumes that the

variance of the error terms is constant across assessments. Inference from the selected

model uses a longer run of the MCMC algorithm than was used for preliminary

analyses to choose a model because more precision is required for posterior inferences

and comparisons across species. Two lengthy runs were used to check that each

arrived at the same distribution when initialized at different points of the parameter

space. The latter run was used for inference, and consisted of a burn-in period of

250,000 iterations and an additional run of 7,500,000 iterations after burn-in.

Trace plots are now included for select model quantities using the longest run.

Only every 1000th iteration is shown, starting from initialized values. The unthinned

sequences often exhibit extremely strong autocorrelation and persistent dependence

and consequently we used a long MCMC run. However, as demonstrated in the

plots, the thinned chain appears to behave as desired, with the trace plots suggesting

stationary behavior with little autocorrelation remaining.

Tuning parameters were allowed to change through the first 200,000 runs of a

total burn-in period of 250,000 runs. After initialization of the tuning parameters, ac-

ceptance rates from each consecutive block of 300 runs were calculated, and moderate

adjustments were made to increase or decrease the tuning parameters, as appropri-

ate, if the block had too many or too few acceptances. For updates of individual

parameters, the target rate was 35–45%, and for the vector of variance parameters
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Fig. 10. Trace plots for each κj from a rank response assessment. Each depicted se-

quence has been thinned to include every 1000th iteration of the original se-

quence. The final 7500 iterations represent those after the burn-in period.
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σ the target rate was 22-28%. Table XII shows the initial and final values for the

tuning parameters. Two tuning parameters, bMH and v2, were given initial values

but not allowed to change because inference should not be particularly sensitive to

reasonable choices for their values.
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Table XII. Values used for tuning parameters in the MCMC algorithm for ultimate

inference on the selected model. After 200,000 iterations, the tuning pa-

rameters were no longer allowed to change. Target acceptance rates for

each τj and each κj were 35–45%, while the target acceptance rate for σ

was 22–28%. Two tuning parameters, v2 and bMH , were not permitted to

change during the algorithm run.

Tuning Parameter Initial Final Tuning Parameter Initial Final

(Quantity Affected) Value Value (Quantity Affected) Value Value

aMH (σ) 300. 203. v210 (τ10) 0.64 0.16

bMH (σ) 0.05 0.05 v211 (τ11) 0.64 0.27

v2 (z) 0.09 0.09 v212 (τ12) 0.64 0.02

c21 (κ1) 0.16 1.59 v213 (τ13) 0.64 0.02

c22 (κ2) 0.16 2.11 v214 (τ14) 0.64 0.02

v23 (τ3) 0.64 0.06 v215 (τ15) 0.64 0.02

c24 (κ4) 0.16 0.29 v216 (τ16) 0.64 0.02

v25 (τ5) 0.64 0.05 v217 (τ17) 0.64 0.02

v26 (τ6) 0.64 0.05 c218 (κ18) 0.16 0.98

v27 (τ7) 0.64 0.05 c219 (κ19) 0.16 2.11

v28 (τ8) 0.64 0.09 c220 (κ20) 0.16 0.83

v29 (τ9) 0.64 0.07
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