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ABSTRACT

Estimation ofE. coli Concentrations from Non Point Sources Using GAaigist 2011)
Kyna Ellen McKee, B.S., Texas A&M University

Co-Chairs of Advisory Committee: Dr. Raghupathytkikeyan
Dr. Patricia Smith

When developing a Watershed Protection Plan (WoPR)Total Maximum Daily
Load (TMDL), it is often difficult to accurately asss the pollutant load for a watershed
because not enough water quality monitoring dataagailable. According to the Texas
Commission on Environmental Quality (TCEQ), there 274 bacteria impairments in
Texas water bodies out of 386 impaired water bodiRzcteria water quality data are
often more sparse than other types of water quaditg, which hinders the development
of WPPs or TMDLs. The Spatially Explicit Load Esitiment Calculation Tool
(SELECT) was used to develop watershed protectimmsgdor four rural watersheds in
Texas that are impaired dueHocoli bacteria. SELECT is an automated Geographical
Information System (GIS) tool that can assess ggthdoads in watersheds using spatial
factors such as land use, population density, aitdype. WPPs were developed for
four rural Texas watersheds: Buck Creek, Lampasas Hive sub watersheds of the
Little Brazos River, and Geronimo Creek. A spawatershed model was developed to
simulate bacteria concentrations in streams reguftom non point sources using
SELECT combined with a simple rainfall-runoff mo@eld applied to the Geronimo

Creek watershed. The watershed model appliestalairiven loading function to the



potentialE. coliloads calculated by the output of SELECT. Theusated runoff
volumes and. coliconcentrations from the model were compared taahchonthlyE.
coli data collected at two sampling sites near the batla subwatershed.

The results show how SELECT methodology was appbexhch watershed and
adapted based on stakeholder concerns and dalatalitgi The highest potential
contributors were identified and areas of conceenevhighlighted to more effectively
apply best management practices (BMPs). The rwmdfimes were predicted with very
good agreement (E = 0.95, RSR = 0.21to 0.22) ftn bampling sites. The predicted
coli concentrations did not agree with measured coratgons for both sites using eight
different methods. The results indicate thatrttoelel does not include significant
factors contributing to the transportf coli bacteria but can be modified to include

these factors.
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CHAPTER |

INTRODUCTION

1.1. Introduction

Bacteria are the most common reason for impairmoenexas water bodies
(TCEQ, 2008). According to the Texas CommissiorEarironmental Quality (TCEQ),
there are 274 bacteria impairments in Texas watdiels out of 386 impaired water
bodies (TCEQ, 2008). Bacterial impairment is uuaésessed by measuring the actual
concentra+ttion of an indicator organism. Whendbecentration of the indicator
organism exceeds the regulatory standards, thenstieconsidered impaired due to
fecal contamination. In the State of Texascoliis considered an indicator organism of
fecal contamination. While addressing the issuleacteria impairment in Texas water
bodies, a need has emerged for an accurate antesimoplel that would simulate
bacterial transport when developing a WatersheteBtion Plan (WPP) or Total
Maximum Daily Load (TMDL).

Implementing and developing a TMDL project is cgstAccording to the
United States Environmental Protection Agency (USERhe national average cost of
developing TMDLs per water body is estimated t@beut $52,000, but can typically
range from under $26,000 to over $500,000 depenatintpe number of TMDLSs, their

level of difficulty and the extent to which impasrgvaters are clustered together for

This thesis follows the style of Journal of Envinoental Management.



TMDL development” (USEPA, 2001b). A considerabhecant of time and money is
spent while developing a TMDL to allocate pollutérad and to identify potential
sources. Usually, TMDL development is done by ggrtensive water quality models
that require a significant amount of resourcestand.

Rainfall is an important driving factor in watershieydrology and water quality
(Haan et al., 1994). Bacteria fate and transgdoelieved to be considerably influenced
by surface runoff resulting from rainfall (Haanaét 1994). Curriero et al. (2001)
estimated more than half of the waterborne diseai@eaks were preceded by
precipitation events in the last 50 years in thé&¢hStates. They also found that
extreme wet-weather events play an important rolaicrobial fate and transport
(Curriero et al., 2001). The subsequent runofinfr@infall events carries pathogens
from the surrounding land surfaces into the streassing outbreaks of waterborne
diseases such as giardiasis, diarrhea, cryptospsisdetc.

Accurately including rainfall as a parameter imadel is difficult because rain
gauges are only able to precisely measure theathatfthe point the rain gauge is
located and not over an entire field or watershRedinfall can be spatially distributed
over an area using multiple point rain gauges aatia interpolation with GIS. Spatial
interpolation can be done with many different metthoThe most popular methods used
in distributed hydrologic models include the Neaidsighborhood (NN) and Inverse
Distance Weighted (IDW) methods (Zhang and Srirama2009). Schuurmans and

Bierkens (2006) illustrated different spatial disition techniques and the applications



to a hydrological model. The results show thahgsi single rain gauge can produce
inaccurate results and differences in the spaisatibution of rainfall can considerably
affect the model results.

Models such as Soil and Water Assessment Tool (SyéAd Hydrological
Simulation Program- FORTRAN (HSPF) have been usedibdeling bacteria
transport. Other simplistic microbial models sashthe potential non point pollution
index (PNPI) and a Spatially Explicit Delivery MODOSEDMOD), and Spatially
Explicit Load Enrichment Calculation Tool (SELECTHpave been developed to rank the
potential pollution impacts of areas from nonpaotirces primarily utilizing land use,
geomorphology, and potential sources in the wagel@fraser et al., 1998; Munafo et
al., 2005; Teague et al., 2009).

One commonly used watershed-scale model is SWATIGhndimulates long
term sediment yield and hydrologic processes oailg ime step. SWAT was
developed for use in large ungauged basins amdesded as a long term planning tool
to predict the impacts of management on waterjenttrand sediment yield (Arnold et
al., 1998). SWAT utilizes geographically referethciata for input parameters (Parajuli
et al., 2009). A microbial sub-model was incorpedan SWAT 2005 (Sadeghi and
Arnold, 2002). It contains functional relationghifor bacteria die-off and regrowth
rates that can cover a range of pathogenic bact&éha model allows for risk evaluation
associated with agricultural practices of nutriepethogens, and sediment loadings

(Sadeghi and Arnold, 2002).



The SWAT microbial sub-model requires the modddeacalibrated to improve
the model performance. Benham et al. (2006) catidok SWAT for bacterial
contamination in a watershed using more than tvavsyef daily flow values. Manual
calibration was performed by adjusting one paranata time and comparing simulated
and observed hydrographs (Benham et al., 2006)deMmalibration was also necessary
in a study done by Parajuli et al. (2009) becahseS\WAT default parameters had low
model efficiency for daily flow (Parajuli et al.09). In small Texas watersheds, data
are frequently not available for model calibratiorhe historical data collected are often
sporadic and more frequent monitoring data for@deqgaate time period is not available
until a WWP or TMDL project is ending. While degping TMDLs, the model is often
run before collecting additional monitoring data.

Another frequently used hydrologic model is HSRiade available through the
U.S. Geological Survey (USGS). ltis able to siat@lhydrologic and water quality
processes on pervious and impervious surfacesigarss, and well-mixed
impoundments for extended periods of time (USG3020Bicknell et al. (2001)
describes the use of HSPF, to simulate hydrologicgsses and the related water
quality constituents on pervious and imperviousllaarfaces in streams. The input data
required to run HSPF for watershed water qualityusation include meteorologic
records of precipitation, estimates of potentiamtranspiration, air temperature, wind,
humidity, point sources and other physical measergs(USGS, 2010).

HSPF requires extensive monitoring data as inpta tr model calibration

because the model relies on empirical relationstupsalculations (Borah and Bera,



2004). HSPEXP, the expert system for the calibratif HSPF, interactively allows the
user to change model parameters to optimize cébioréPaul et al., 2004). Paul et al.
(2004) calibrated HSPF using historical daily meaeam flow data from a USGS
gauge station for the simulation period. The imata required to run and calibrate
HSPF effectively requires the utlization of a US@fsige station located in the
watershed. This is problematic when the modeéeded to represent ungauged
watersheds such as many of the impaired watershé@dsas. Surrogate parameters
from a similar watershed must be used to defindntfigology of the watershed in order
to run the model for an ungauged watershed (USGH))2

The SELECT methodology was developed to charaetEricoli sources from
point and non-point pollution in watersheds wheaetbrial contamination is a concern
for WPP or TMDL development (Teague et al., 200@utomated SELECT provides a
graphical user interface (GUI) within ArcGIS 9.Rroject parameters can be adjusted
by the user for pollutant loading scenarios spetdia watershed. SELECT simulates
potential bacterial loading by source and areaaattarization for different management
scenarios (Riebschleager et al., 2011).

The pollutant connectivity factor (PCF) is anothemponent of SELECT. The
PCEF utilizes the potential total pollution resultitom SELECT and weighs the
influence of driving forces of contamination. Ti@sults from the PCF are a ranking of
the potential contribution which can be used tosstite areas in the watershed that are
vulnerable to contributing bacteria to water boqR®bschleager et al., 2011). The

PCF is only able to indicate “hot spots” within thatershed and does not include



complete fate and transport processes in the we@rsSELECT is able to estimate
potential bacterial loadings and indicate vulnegadbeas but is unable to determine
actual bacterial loads in the water bodies. SELE&Tbe combined with a fate and
transport model to estimate the actual bacteradilgs in the water bodies.

In ungauged watersheds, historical bacteria datpassely available. It is
expensive to collect monitoring data. The USEP#mestes a cost of approximately $17
million a year for water quality monitoring to suppthe development of all national
TMDL projects (USEPA, 2001b). Current bacteria mlsdequire extensive monitoring
data within the watershed for calibration or thapmot predict actud. coli
concentrations in the water body. A simple motat predicts actual bacteria
concentrations in a water body is needed in o@eéetelop TMDLs or WWPs within
the State of Texas. Also, this model should inocafe stakeholder inputs while
developing TMDLs and WPPs. Typically the stakekolgroup consists of farmers,
ranchers, common public, administrators, and exteargersonnel living in the
watersheds.

1.2. Objectives

The overall objective of this research project wadevelop a conceptual model
in ArcGIS 9.3 utilizing the potentid. coliload estimated by SELECT to simul&e
coli concentrations occurring in a rural Texas stretrias presumed that precipitation
is the main driving factor for the transporti&fcoli bacteria from sources to the stream.
Also the affects of temperature were negligiblacsiin Texas watersheds the monthly

normal daily mean temperatures do not vary from thném month by more than 10 °F.



The specific objectives were:

(1) To apply the SELECT methodology for different watexds in Texas
incorporating stakeholder inputs;

(2) To apply SELECT to the Geronimo Creek watershedgusiakeholder inputs
concerning thé. colisources and the population densities;

(3) To develop an automated rainfall-runoff model irt@&tS 9.3 utilizing rain
gauges located in and around the Geronimo Creedrsteed and to estimate the

E. coliconcentrations in the creek.



CHAPTER Il
APPLYING SELECT METHODOLOGY TO THE BUCK CREEK, LITOE BRAZOS

RIVER, AND LAMPASAS RIVER WATERSHEDS

2.1. Introduction

Accurately assessing the pollutant load for a vedied, for the development of a
Total Maximum Daily Load (TMDL) or Watershed Prdtiea Plan (WPP) is difficult
because generally not enough water quality monigodiata is available. A WPP is a
stakeholder driven process to restore or protectter quality of a specific water
body. The most common reason for the impairmemtaiérbodies in Texas and across
the United States is bacteria (TCEQ, 2008; USERA82. Out of a total of 386
impaired water bodies in Texas, 274 are impairegltdibacteria (TCEQ, 2008). The
development of bacteria WPPs or TMDLSs can be hedielue to the spare availability
of bacteria water quality data.

SELECT is an automated Geographic Information 3y<telS) tool that can be
applied to assess potential coliloads in a watershed based on spatial factorsasich
land use, population density, and soil type (Teagtial., 2009). SELECT is able to
calculate a potentid. coliload and highlight areas of concern for best mamamnt
practices (BMPs) to be implemented. The poteftialoliload in SELECT is
calculated by distributing the contributing sourspatially over the entire watershed.
When applying SELECT, the population densitiesateptial contributors are

determined with stakeholder input to accuratelyesent the watershed. However, it



should be noted that potentkl coliloads generated using SELECT are the worst case
scenario because the tool the largest amount afibation possible from individual
sources.
2.2. Study Areas

Three impaired watersheds in Texas, the Little BseRiver watershed, the Buck
Creek watershed, and the Lampasas River wateraleed,selected to apply SELECT

methodology to predict potentigl coliloads resulting from various sources.

Buck Creek

Little Brazos River

Lampasas River

Figure 2.1. Spatial locations of Buck Creek, Lilazos River, and Lampasas River
watersheds in Texas.
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2.2.1. Buck Creek Watershed

Buck Creek (Figure 2.1) is a small, unclassifieda that originates southwest
of Hedley, Texas in Donley County and flows 10®kiketers (68 miles) across the
Oklahoma border to its confluence with the Prdregy Town Fork of the Red River.
Buck Creek is classified as an impaired water bahaly to bacterial contamination under
the EPA Clean Rivers Act 303 (d). The study ardg mtludes the portion of the
watershed located in Texas which encompasses aroar@,851 hectares (184,960
acres). Buck Creek is located across Donley Co@tiydress County, and
Collingsworth County in the Texas Panhandle. Th&vshed is mostly agricultural
populated with a few rural towns.
2.2.2. Little Brazos River Watershed

The Little Brazos River watershed (Figure 2.1) tedan the central Brazos
River basin consists of one classified water bod@llyis watershed contains five
tributaries impaired for bacteria; located withery close proximity of each other in
Robertson County, the subwatersheds share sirafdrdse and water quality
characteristics. The five impaired tributarieshdf Little Brazos River watershed are
Campbells Creek, Mud Creek, Pin Oak Creek, Spriregk; and Walnut Creek. The
watershed area containing the watersheds of thatdéries encompasses 84,693 hectares
(209,280 acres) that lies almost entirely withirbBidson County. The land use in the
area is primarily agricultural consisting of rareged pastureland with mixed areas of

forested lands and several small towns and commanit
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2.2.3. Lampasas River Watershed

The Lampasas River watershed is located in souttradel exas and begins in
Hamilton County and flows 121 kilometers (75 milédgpugh Lampasas, Burnet, and
Bell Counties. The study area only includes timglle of the Lampasas River until it is
dammed and forms Stillhouse Hollow Lake. Includinigutaries the Lampasas River
watershed encompasses 322,320 hectares (796,489.athe land use for the
Lampasas River watershed is primarily agriculteaitaining rural towns with the
exception of the lower portion of the watershedahihsontains a portion of the Fort
Hood-Killeen area.
2.3. Methodology

The Spatially Explicit Load Enrichment Calculatidool (SELECT)
methodology developed by Biological and AgriculttEagineering Department and
Spatial Sciences Laboratory at Texas A&M Universms used to independently
characterize potenti&. coli sources and estimate daily potenEakoliloads for the
Buck Creek watershed, the Lampasas River watersimeideach of the five Little Brazos
River tributary watersheds. SELECT is an analytaggdroach for developing an
inventory of potential bacterial sources, partidylaonpoint source contributors, and
distributing their potential bacterial loads basadand use and geographical location.

A thorough understanding of the watershed andnpi@lecontributors that exist
IS necessary to estimate and assess bacteriahipais. Land use classification data and
data from state agencies, municipal sources, aral stakeholders on the number and

distribution of pollution sources are used as ispata Geographical Information
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Systems (GIS) software format. The watershed igldd/into multiple smaller
subwatersheds based on elevation changes alontatids and the main segment of the
water body. Pollutant sources in the landscapeltambe identified and targeted where
they are most likely to have significant effectsvaster quality, rather than looking at
contributions on a whole-watershed basis. Typicallgtakeholder group consists of
farmers, ranchers, common public, administratord,extension personnel living in the
watersheds. The role of a stakeholder group wpetymg SELECT to a watershed is
to review inputs into SELECT. Individual stakeheisl apply personal knowledge of the
watershed to make those inputs as accurate af@ssi

The land use was verified by stakeholders and & suggested that the land use
categorized as crop land should be categorizedeasged pasture for the Little Brazos
River watershed and an additional land use typeaddsd to crop land for the Buck
Creek and Lampasas River watersheds. Visual aituhe program allow a decision
maker or stakeholder to easily identify areas whgershed with the greatest potential
for contamination contribution and enable the denisnaker to use that information to
help formulate management strategies to inclugeWPP or TMDL implementation

plan.
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2.3.1 PotentiaE. coli Load Estimation

Sources potentially contributing to a watershexldatermined by stakeholders.
Identified sources were: cattle, goats, sheep gsoronfined animal feeding operations
(CAFOs), poultry operations, deer, feral hogs, dogssite wastewater treatment
systems (OWTSSs), and wastewater treatment fasilftd/VTFs). The analysis was
conducted at a 30 meter by 30 meter spatial rasalufor each source, it is first
distributed to the suitable areas in the watersimetithen th&. coliload was calculated
using the equations in Table 2.1. The fecal pradncates for the sources were
calculated using the highest in the range of vailu¢ise EPA guidance (USEPA, 2001a)
for all of theE. colisources. After the potentil coliloads are calculated, the results
are aggregated at the subwatershed level to ehistlgguish areas of concern.
2.3.2. PotentiaE. coli Sources in the Buck Creek Watershed

Cattle, feral hogs, and deer were identified aemteal fecal contributors in the
Buck Creek watershed. These were determined tpobential fecal contributors by

state agencies, stakeholders, and the capabditigée model.
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Table 2.1. Calculation of potentigl coliloads from various sources.

Source E. coli Load Calculation

Cattle EC = # Cattle * 10 * 1¢° cfu/day * 0.5
Horses EC = # Horses * 4.2 * 19cfu/day * 0.5
Sheep and goats EC = # Sheep * 1.2 * IO cfu/day * 0.5

Confined Animal Feeding EC = # Permitted Head * 10 * 1B cfu/day* 0.2 * 0.5
Operations

Poultry Operations EC = Maximum Amount of Litter Utilized On-Site
*44,000 cfu/gram
Deer EC = # Deer * 3.5 * 10 cfu/day* 0.5
Feral hogs EC = # Hogs * 1.1 * 18cfu/day * 0.5
Dogs
On-site Wastewater . #
Treatment Systems ! $%
& )* +&, - $%
(
Wastewater Treatment -2 #
Facilities - $ /01 $% /01

+&, - $%
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Open Water

Il Ceveloped, Roads
Developed, Low Intensity
Developed, Medium Intensity
Barren Land

I Mixed Forest

I Riparian Forest
Rangeland

Il Cultivated Land
Managed Pasture

] Watershed Segments

Figure 2.2. Buck Creek watershed land use.

2.3.2.1 Cattle

Populations of cattle in the Buck Creek watershatbist of those grazed on
rangeland and those grazed on managed pasturedZdl). Using an average NRCS
stocking rate for rangeland of 10 ha/animal (2&uaichal) and for managed pasture of 3
ha/animal (8 ac/animal) in Childress, Collingswaatid Donley counties, the total
watershed population of cattle is currently estedadt 6,640 head (454 kg animal units).

Rangeland cattle accounted for 3,664 head and ewerdy distributed in the rangeland,



16

mixed forest, and riparian forest land uses, (F@dliR) while the remaining (2,976)
managed pasture cattle were evenly distributedemtanaged pasture land use. These
cattle numbers and distributions were verified witlitershed stakeholders and
determined to be representative of the Buck Crestienshed. The potenti&l coli
loads were calculated (Table 2.1) separately fogeaand pasture cattle and added
together to create the total potentalcoli loads resulting from cattle.
2.3.2.2 Deer

Deer populations estimated in Buck Creek comprefeghite-tailed and mule
deer. The SELECT methodology is not able to distisiy between separate deer
species, therefore combining the two populatiots ame was the most feasible
scenario. The Texas Parks and Wildlife Departm€&RtW{D) study conducted by
Lockwood (2005) provided initial population estimstand associated animal densities
for areas as near to Buck Creek as possible. Ukiagnformation as a starting point,
stakeholders were asked to provide input on theeaml distribution of the deer herds in
the watershed. In total, approximately 5,143 d880(Mule deer and 4,153 White-tails)
were assumed to reside in the watershed and wphe@pver contiguous areas of
rangeland, managed pasture, mixed forest, ripéoi@st and cultivated land uses
(Figure 2.2) at an average rate of 15 hectarea¢Bs) per animal. Using the equation

from Table 2.1, daily potenti&. coliloads resulting from deer were estimated.



17

2.3.2.3 Feral Hogs

No accurate estimate of feral hog numbers in thekBireek watershed exists.
All stakeholders were asked to provide input remeyderal hog numbers in Buck
Creek.Using this feedback, an acceptable popula&stimation of 7,310 animals was
determined. Stakeholders also indicated that tte¢ feg population should be
distributed across rangeland, barren land, manpgstire, cultivated land, mixed forest,
and riparian forest land uses (Figure 2.2) withikD@ meter buffer around streams.
Applying this population estimate to these landsussulted in a population density of
10 hectares (25 acres per animal) for the entitensfaed area. Then, daily poten&al
coli loads resulting from feral hogs were estimatedl@2.1).
2.3.3. Little Brazos River Watershed PotenHatoli Sources

The following potentiaE. coli sources were considered in estimating total
potentialE. coliloads resulting from each subwatershed. To simgié modeling
purposes, the stocking rates for livestock, wikglénd feral hogs were consistently

applied for all five subwatersheds.
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Figure 2.3. Land use of Little Brazos River watexsifive tributary watersheds.

2.3.3.1. Livestock —Cattle
The cattle population was calculated as two sepanainagement practices,
pasture cattle and range cattle to account foditfierent stocking rates associated with

the different types of cattle management. Forysestattle, the stocking rate of 0.8
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hectares (two acres) per animal unit was appligidiumly over the managed pasture
lands (Figure 2.3) in each subwatershed. DailgmiadlE. coliloads resulting from
pasture cattle were estimated using the equatoon frable 2.1. For range cattle, the
stocking rate of two hectares (five acres) per ahumit was applied uniformly over the
rangeland, mixed forest, and riparian forest (Feg2u3) in each subwatershed. The
pasture cattle and range cattle results were ttldacatogether spatially to create the
resulting potential loadings from cattle for eacitevshed.
2.3.3.2. Wildlife - Deer

For deer, a density of 15 hectares (37 acres)mparah unit was applied over
contiguous areas of the rangelands, managed pdata® mixed forest, and riparian
forests (Figure 2.3) in each subwatershed. Thebenwf deer estimated using this
density and the equation from Table 2.1 were usexdlculate the daily potentigl coli
load resulting from deer.
2.3.3.3. Feral Hogs

For feral hogs, a density of 8 hectares (20 agesanimal unit was applied
uniformly across range lands, managed pasture |amaed forest, and riparian forests
(Figure 2.3) within a 100 m buffer around the stne@etwork of each subwatershed.
Daily potentialE. coliloads resulting from feral hogs were estimatedgitihe density
and the equation from Table 2.1.
2.3.3.4. Poultry Operations

For poultry operations, the maximum litter to b#ize¢d on-site in tons per day

was applied uniformly over the subwatershed whigeepbultry operation is located.
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Since poultry litter is not applied consistentlyatighout the year and is applied only
once annually, thE. coliload calculated is for the day that the litteajpplied. This
demonstrates the worst case scenario in the watbdilring that particular day. Thke
coli concentration used was 44,000 CFU per gram ofdrrdter. Using the maximum
litter to be utilized on-site and. coli concentration in broiler litter, potentigl coli
loads resulting from poultry litter application one particular day were estimated.
2.3.3.5. On-site Wastewater Treatment Systems (/TS

For on-site wastewater treatment systems (OWTBs[.tcoliload was
calculated using the formula from Table 2.1. Thenber of systems was the number of
homes from the 2000 Census Blocks with the honmasved from areas falling within
urban areas. The failure rate was calculated ftenSeptic Drainfield Limitation Class
using the SSURGO soil database. The failure mtedch limitation class is as follows:
very limited as 15%, somewhat limited as 10%, shglmited as 5%, and not rated as
15%. The people per home were the average houssizel from the 2000 census
blocks. This resulted in daily potentkl coliload resulting from septic systems.
2.3.3.6. Wastewater Treatment Facilities (WWTFs)

For wastewater treatment facilities (WWTFs), thexmmaum permitted discharge
rate and thé&. coliconcentration of 126 CFU/100 mL (Table 2.1) wagliag to the
subwatershed in which the WWTFs were located. dhare three WWTFs located in
the Little Brazos Watersheds, two located in thedNMueek Watershed and one located

in the Walnut Creek Watershed.
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2.3.4 Lampasas River Watershed Potetiatoli Sources

To estimate potentid. coliloads in the Lampasas River Watershed, domestic,
livestock, and wildlife sources were considered disttibuted on appropriate land use
(Figure 2.4). Potential domestic contributors inedd OWTSs, dogs, and WWTFs.
Livestock included horses, goats, sheep, cattké canfined animal feeding operations
(CAFOs). Deer and feral hogs were identified a&swviidlife contributing to the

contamination that could be feasibly modeled.

Figure 2.4. Lampasas River watershed land use.
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2.3.4.1. On-site Wastewater Treatment Systems

The potentiaE. coliload for OWTSs was calculated using the equatiom f
Table 2.1. For OWTSs, spatially distributed palata of each household was collected
from residential 911 address data and householtiswCertificate of Convenience and
Necessity (CCN) areas were removed to not includeséholds being serviced by a
WWTF. The people per home were the average holdslze from the 2000 census
blocks. A constant discharge of 265 liters (70ayed) per person per day was used in
the calculations. A failure rate was determinadifie OWTSs using SSURGO soll
limitation classes to calculate the percentage.afoli contributing to the watershed due
to septic failure.
2.3.4.2. Dogs

The potentiaE. coliload resulting from dogs was calculated usingeitpeation
from Table 2.1. A density of one dog per househwdd applied to the residential 911
addresses resulting in an estimated dog populafidg,775.
2.3.4.3. Wastewater Treatment Facilities

The Lampasas River watershed contained two WWT¢atdd in separate
subwatersheds. For wastewater treatment faci(M@&/TFs), the maximum permitted
discharge and thE. coli concentration of 126 CFU/100 mL was applied to the
subwatershed in which the WWTFs were located.
2.3.4.4. Livestock

The population for livestock was estimated ushmy2007 Census of Agriculture

by considering only the number of animals locatethe watershed for each county.
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The percentage of the watershed located in eadftyeas calculated and that
percentage was used to determine the number ofgimthe watershed for each
county from the total county population. Goatsey and cattle were evenly
distributed amongst the range, forest, and manpgstlire land uses (Figure 2.4) and
had estimated populations of 11,162; 7,311;and3B48spectively, for the entire
watershed area (USDA-NASS, 2007). Horses werelgwkistributed on rangelands
(Figure 2.4) and had an estimated population @8 ghimals (USDA-NASS, 2007).
2.3.4.5. Confined Animal Feeding Operations (CAFOSs)

Three confined animal feeding operations (CAFOsdenNocated in the
Lampasas River watershed. For CAFOs, the permiti@sber of head of cattle was
used to determine the potentialcoliload for the subwatershed where the CAFOs are
located. ThéE. coli production rate of 14 CFU per animal per day was applied with an
assumed treatment efficiency of 80% resulting ifEanoliload of 2 x 18° CFU per
animal being applied.
2.3.4.6. Deer

Wildlife management associations (WMAS) are lodateareas around the
Lampasas River watershed shown in Figure 2.5 ane papulation density estimations
for deer located in these specific areas. The deesities within the WMAs were
applied uniformly over the entire area of the WMAh®eut considering land use types.
For the areas not within a WMA, a density of 10@rdeger 405 hectares (1000 acres)

was applied over the entire area of the watershtéut considering land use types. An
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estimated population of 84,739 deer was used Wwéhetjuation from Table 2.1 to

estimate the potenti#d. coliload resulting from deer for the watershed.

Figure 2.5. WMAs area locations in the Lampasa®Rivatershed with deer population
density estimations.

2.3.4.7. Feral Hogs
For feral hogs, a density of 13 hectares (32 agves)animal unit was applied
uniformly across forest, range, barren, crop, arahaged pasture lands (Figure 2.4)

within a 100 m buffer around the stream networkhaf watershed. An estimated total
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population of 24,263 feral hogs was used with eqnatrom Table 2.1 to estimate the
daily potentialE. coliloads resulting from feral hogs.
2.4. Results and Discussion

The spatial watershed analyses done using SELE@hTidints subwatersheds
that had the highest potential to contribbtecoliloads into a waterbody based on land
use characteristics and pollutant contributor pajpamhs.
2.4.1. Spatially ExpliciE. coli Load Estimation for the Buck Creek Watershed

Cattle are potentially the largest contributorsEof coli bacteria in the Buck
Creek watershed while deer contribute the lowEstcoli load (Table 2.2). Best
management practices should be applied for catite faral hogs since these are the

largest potential contributors in the watershed.

Table 2.2. Source specific potenttalcoliload ranges for the Buck Creek watershed.

Potential E. coli sources Range of Daily PotentigE. coli
Load (CFU/day)
Cattle (Pasture and Range Cattle) 2.23% 104.20 x 16
Deer 1.69 x 16 t0 1.06 x 16"

Feral Hogs 5.31 x 1to0 4.10 x 1¢
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Figure 2.6. Total daily potenti&. coliload resulting from various sources in the Buck
Creek watershed.
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Figure 2.6 illustrates the total potential loadhe combined load which includes
loading potentials from cattle, deer and feral h&swatersheds colored in red indicate
areas with the highest potential tor coli contributions to the creek while the darkest
green areas represent areas with the lowest palteiiine spatial analysis & coli
sources shown in Figure 2.6 and the following feguare largely determined by the
dominant land use in each subwatershed. For exathplee areas dominated by
cropland will have a lower potential f&: coliload than subwatersheds that are
dominated by riparian forests or rangeland.

2.4.2. Spatial Distribution dE. coli Sources in the Little Brazos River Watershed

Table 2.3 illustrates that cattle are the highestrdbutors for all five of the Little
Brazos tributary watersheds. Feral hogs are thenskhighest contributing potential
source across all of the watersheds. Poultry dipesaare a higher contributor than feral
hogs in the watersheds they are located in. @nvsiistewater treatment systems are a
significant contributor in the subwatersheds whérere are hot spots for on-site
wastewater treatment systems. Deer and wastewaggment plants are the lowest

contributing potential sources with wastewaterttrest plants being the lowest.
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Table 2.3. Source specific potentialcoliload ranges for the five tributaries of the
Little Brazos River watershed.

Watershed PotentialE. coli sources Range of Daily PotentidE. coli Load
(CFU/day)
Walnut Creek Cattle 2.30 x 1t 3.36 x 1¢'
Deer 1.05 x 10to 8.97 x 1¢
Feral Hogs 0t05.78 x 0
Poultry Operations 1to 6.37 x'f0
OWTSs 9.69 x 100 5.41 x 18
WWTFs 1t0 1.05 x 10
Mud Creek Cattle 1.30 x 1o 2.55 x 1¢f
Deer 3.68 x 1 t0 7.37 x 1&
Feral Hogs 2.22 x 1bto 3.98 x 16
Poultry Operations 1t0 9.37 x'f0
OWTSs 6.15 x 10to 2.53 x 1&f
WWTFs 1t01.43 x 10
Pin Oak Creek Cattle 1.73 x'1@0 1.09x 16
Deer 6.29 x 1bto 3.33 x 1¢f
Feral Hogs 7.73 x 1bto 2.08 x 16
OWTSs 2.25 x 1t0 4.63 x 18
Spring Creek Cattle 3.58 x f@o 7.40x 1&°
Deer 1.37 x 16 t0 2.99 x 1&
Feral Hogs 9.70 x 1bto 1.79 x 16
OWTSs 6.07 x 1§10 2.67 x 1&'
Campbells Cattle 4.80 x 151t0 6.64 x 16°
Creek Deer 1.81 x 1%t0 2.70 x 1¢
Feral Hogs 1.31 x 1bto 2.05 x 1&

OWTSs 4.25 x 10t0 1.72 x 18
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The subwatersheds of Walnut Creek Watershed habpotentialE. coliloads
between the “medium” and “high” ranges (Figure 2.This is mainly because of the
size of the Walnut Creek Watershed and the amduwsuitable areas of various
contributing sources in comparison to the otheevwsiteds in the Little Brazos
Watershed. The subwatersheds of the Mud Creek Weadrhad total potenti&l. coli
load between “medium” and “high” range(Figure 2.With the size of the watershed
being smaller, these results indicate Mud Creek laigh potential contributor of
bacterial contamination to the Little Brazos Riirecomparison with these five
watersheds. The subwatersheds of Pin Oak Cree&rg¥iad had total potentiél coli
loads between “low” and “medium” range (Figure 2TMese results indicate Pin Oak
Creek as a low potential contributor of bacter@tamination to the Little Brazos River
in comparison with these five watersheds. Allshbwatersheds of Spring Creek
Watershed had total potenttl coliloads in “medium” range (Figure 2.7). These result
indicate Spring Creek as a significant potentiaitabutor of bacterial contamination to
the Little Brazos River in comparison with theseefivatersheds. The subwatersheds of
Campbells Creek Watershed had total potefialoli loads between “very low” and
“medium” range (Figure 2.7). These results indichgebacterial contribution of
Campbells Creek into the Little Brazos River benegy low. However, the smaller size
of the subwatersheds in Campbells Creek in compats the subwatersheds in the
other five watersheds may skew the results somelbdaztuse there is a lesser amount of

area to be considered suitable for potential couators
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Figure 2.7. Total daily potenti&. coliload resulting from various sources in the five
tributary watersheds of the Little Brazos River evahed.
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2.4.3. Total Daily Potentidt. coli Loads Resulting from Various Sources in the
Lampasas River Watershed as Predicted by SELECT

Table 2.4 illustrates the source spedticcoliranges which can help to
determine the amount each source is contributinggavatershed. The largest
contributor for the Lampasas River watershed ig8ecatith feral hogs being the second
largest contributor. OWTSs and dogs are also bagitributors. CAFOs contribute
more than feral hogs in the subwatersheds wheyeateepresent. Goats, sheep, and
deer are not significant contributors and they gbate E. coliloads in close ranges.
The least contributors are horses and WWTFs. Bastagement practices (BMPSs)
should be applied for cattle, feral hogs, and cwdianimal feeding operations because

they are the largest contributorskafcoliloads in the watershed.

Table 2.4. Source specific potentialcoliload ranges for the Lampasas River
watershed.

Potential E. coli sources Range of Daily Potentigk. coli
Load (CFU/day)
Cattle 6.09 x 10 to 3.91 x 16
Horses 8.36 x o 8.47 x 1&f
Goats 1.83 x 10t0 9.56 x 16
Sheep 1.31 x 16t0 8.18 x 1/
Deer 1.04 x 15 to 4.04 x 1&
Feral Hogs 4.65 x 16to0 1.86 x 1&°
On-site Wastewater Treatment Systems 3.24'%tb01.24 x 16
Wastewater Treatment Facilities 0to 1.19 X*10
Dogs 2.25 x 18 to 1.06 x 1&’

Confined Animal Feeding Operations 0 to 3.26°10
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Figure 2.8 illustrates the Total Potential Loadhe combined load which
includes loading potentials from all of the contrtibg sources applied for the model.
Subwatersheds colored in red indicate areas wilhihest potential fd. coli
contributions to the creek while the darkest graesas represent areas with the lowest
potential. The subwatershed considered to beifiest contributor in the Lampasas
River watershed as predicted by SELECT is mostyilae to the large size of the

subwatershed in comparison to the other subwatgsshe

Figure 2.8. Total daily potenti&. coliload resulting from various sources in Lampasas
River watershed.
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2.5. Conclusions

The SELECT methodology was applied to three ruralewsheds: Buck Creek,
Little Brazos River, and Lampasas River that acated in different regions of Texas.
The SELECT methodology was able to be adapted &h evatershed individually
based on perceived potential contributing sources$ @data availability. Cattle were
considered the highest contributor for all threetersheds and best management
practices should be implemented to reduce theecatthtribution to the waterbodies.
The SELECT methodology was able to not only hiditligshich contributing sources
are of most concern but to also highlight the amddgghest concern to more effectively
apply these best management practices. The SELBEhodology can be easily

adapted and applied to watersheds to reflect stdttehknowledge and concerns.



34

CHAPTER 1lI
ESTIMATING E.COLICONCENTRATIONS FROM NON POINT SOURCES FOR

GERONIMO CREEK

3.1. Introduction

When developing a Watershed Protection Plan (WPR)Tmtal Maximum Daily
Load (TMDL), it is often difficult to accurately ssss the pollutant load for a watershed
as a result of inadequate water quality monitodata. Bacteria are the most common
reason for impairment of Texas water bodies. Adicgy to the Texas Commission on
Environmental Quality (TCEQ), there are 274 baeatenipairments in Texas water
bodies out of 386 impaired water bodies (TCEQ, 20D&ta on bacteria in water bodies
is often more sparse than other types of watertguddta, which hinders the
development of WPPs or TMDLs.

In order to develop WPPs or TMDLs, additional datavaterborne bacteria
must be collected which is costly and time consgmilhe bacteria load analysis for a
watershed cannot begin until the water quality rfayimg data collection is completed.
Generally, water quality data can take anywhermfaoyear to multiple years to collect
for a substantial dataset. The U.S. EPA estimaster quality monitoring of all
TMDLs nationally, “The cost of water quality monitag to support the development of
TMDLs is expected to be approximately $17 millicar year” (USEPA, 2001b). A

considerable portion of developing a TMDL is taatte pollutant loads and to identify
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potential sources. This can be done with modeiihigh can be costly and require a
significant amount of input data.

Models such as Soil and Water Assessment ToolABVénd Hydrological
Simulation Program- FORTRAN (HSPF) have been usebddcterial modeling
(Benham, et al., 2006; Sadeghi & Arnold, 2002) he&dtsimplistic microbial models
such as, the potential non-point pollution indeX ) and a Spatially Explicit Delivery
MODel (SEDMOD) have been developed to rank themakpollution impacts of
areas from nonpoint sources primarily utilizingdarse and geomorphology (Fraser, et
al., 1998; Munafo, et al., 2005).

SELECT is an automated Geographic Information 3y<telS) tool that can
assess potentiéd. coliloads in a watershed based on spatial factors asitdnd use,
population density, and soil type (Teague, et28l09). SELECT is able to calculate a
potentialE. coliload and highlight areas of concern for best mamamt practices
(BMPs) to be implemented. The potentalcoliload in SELECT is calculated by
distributing the contributing sources spatially othee entire watershed. The population
densities of potential contributors are determiwgti stakeholder input to accurately
represent the watershed; however, SELECT is a wass scenario model and assumes
the largest amount of contribution possible froalividual sources.

Current bacteria models either require extensivaitaong data within the
watershed for calibration or are not able to preglatualE. coli concentrations in the
waterbody. A simple model that is able to predtual bacteria concentrations in a

waterbody is needed in order to develop TMDLs or R8MWithin the State of Texas.
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The objective of this study was to develop a madkial would estimate the runoff
volume and th&. coliconcentration contributed by surface runoff adgling site
drainage area outlet.
3.2. Study Area

Located in the Guadalupe River basin, the Gerordrezk watershed is located
across Comal and Guadalupe Counties in south td@mtxas (Figure 3.1). The
Geronimo Creek watershed consists of Geronimo Caiedkts tributary, Alligator
Creek. Alligator Creek is an intermittent stredratttypically only has flow after a
rainfall event. Geronimo Creek is a tributary lé tGuadalupe River which is used for
recreation by local residents and tourists. Theergaed is 17,868 hectares (44,152
acres) and is primarily agricultural with some urlmeear the towns of Seguin and New
Braunfels (Dictson, 2009).
Geronimo Creek was chosen as the study site bedasdisted as a bacterially
impaired waterbody on the 303(d) list (TCEQ, 2008)WPP for Geronimo Creek is
also being developed by the Texas AgriLife Extensservice — Department of Soil and
Crop Sciences through a Texas State Soil and \Wateservation Board project with
the Clean Water Act 319(h) Non Point Source Graagfam. SELECT modeling was
performed to assess the potenatoliloads to develop the load allocation portion of

the WPP.
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The WPP project enables us to receive crucial slath as potential sources, population
densities of animals, and what areas or land ysestwhere the sources would be
present from a local stakeholder group consistirgffected and owners and citizens.
3.2.1. Samples

Historical and routine stream flow a&d coli concentration sampling data
ranging from 1996 to 2010 were obtained from thadalupe Brazos River Authority
(GBRA). The SH 123 and Haberle Road sampling sitesoth historical sites while
the other 13 samplings sites in the watershed bsgeupling in September 2008.
Haberle Road samples were taken on a monthly bagisning in September 2003 and
ending in December 2010 resulting in 84 samplew.tite SH 123 sampling site,
monthly sampling began in October 1996 and endédigust 2003, but then resumed
on September 2008 until August 2010. Out of the d&a points taken at the SH 123
sampling site only 5 coincided with precipitatiodduced runoff. Only 12 data points out
of the 84 for the Haberle Road site samples wéw@ntavhen precipitation induced

runoff occurred.
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Figure 3.1. Geronimo Creek watershed study ardaM@DC rain gauges and water
guality sampling sites.

3.3. Methodology
E. coliconcentrations were calculated using a modifidivelsy factor originally
developed by McElroy et al. (1976) for pollutanadiing from livestock facilities:
3% 153 ! )5 (3.1)
where,
C = concentration oE. coliat sampling site (CFU/mL)
Y = daily loading rate oE. coliat sampling site (CFU)

D = delivery factor (dimensionless)
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a = unit conversion factor (2.54 10%) — to convert from inefhto mL

R = daily runoff at sampling site (in)

A = grid cell area (f)

Equation 3.1 was intended for livestock facilitieg was applied to multiple
non-point sources for this research calculatedguSEBLECT and ArcGIS 9.X (McElroy
et al., 1976). The variable concentration of palhitin runoff C) was calculated using
the equation above to determine the concentrafi@ ooliin Geronimo Creek. The
loading rate Y) was calculated in SELECT for livestock, wildlifepd domestic sources.
McElroy et al. (1976) acknowledged that the quardftpollutants discharged depends
mostly on runoff volume. The runoff volumB)(was calculated with an automated
program developed in ArcGIS 9.3. using the SCSeunmber approach with daily
precipitation data.

3.3.1. Runoff Q)

Daily precipitation data was obtained at 5 sitesnydn Dam, Kingsbury, New
Braunfels, San Marcos, and Seguin, from the NatiGfimatic Data Center (NCDC) for
1996 to 2010. The NCDC rain gauges shown in Fi§utevere utilized to develop a
daily precipitation grid using inverse distance gieed (IDW) interpolation over the
entire watershed area with a grid cell size of 3@ars. The cell size of 30 meters was
used to maintain a constant cell size with the SELEesults. There are rain gauges
located in the watershed from the Guadalupe-Bldiger Authority (GBRA) but these
were not used because the data was not consisigmtas only available from 2004 to

2008.
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The minimum rainfall needed to produce runoff waklated using the SCS
curve number approach by first calculating the équdor the maximum soil water
retention parametef;

76 8 (3.2)
where,

S= maximum soil water retention parameter (in)

CN = area weighted curve number for the Geronimo ICvesgershed

Smultiplied by 0.2 is the minimum amount of rainfe@quired in the watershed
to produce runoff. This rainfall amount was usedetermine the days where runoff
precipitation and a sampling event occurred simeitaisly in the watershed. These days
were the days where the model was run to prevemimg the model on days where no
runoff was generated. A custom land use classifiogFigure 3.2) was provided by the
Texas A&M University Spatial Sciences Laborator$s($ using 2008 National
Agriculture Imagery Program (NAIP) imagery and apiTexas Parks and Wildlife
(TPWD) Classification. The watershed curve numbet @-igure 3.3) was developed in
ArcGIS 9.X. by intersecting the Soil Survey GeodniadSSURGO) hydrologic soil
group with the land use type and using an NRCS €Muwmber Lookup Table (Soil

Conservation Service, 1986).



Figure 3.2. Geronimo Creek watershed land useifitzgson.
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Figure 3.3. Curve number grid.
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Table 3.1. NRCS curve number lookup table.
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Land Use Type

Hydrologic Soil Group

Curve Number

Open Water

100
100
100
100

Forest

25
55
70
77

Urban

89
92
94
95

Rangeland

39
61
74
80

Managed Pasture

49
69
79
84

Cultivated Crops

COwW>P0ON0®®>POON0®®>TOND>POONO®PONOT >

65
75
82
86




44

The curve numbers (Table 3.1, Figure 3.3) useder\IRCS lookup table (Soill
Conservation Service, 1986) were determined basdbdeoassumption of a normal
antecedent moisture condition, i.e AMC ILI.

The area weighted curve number for the GeronimelCYgatershed was
calculated as 82. The minimum rainfall neededréapce runoff calculated using the
area weighted curve number was 0.44 inches.

If one of the five rain gauges measured precigitagjreater than the minimum
rainfall to induce runoff, a precipitation grid wdsveloped using the ArcGIS Spatial
Analysis Extension on each day that rouihecoli samples were taken at the Geronimo
Creek sampling sites. Interpolation was done byEW technique for rainfall depths
across the watershed; inverse distance weightisignass that observations closer to one
another are more alike than ones farther apartn@8aSrinivasan, 2009).

The runoff volume at a sampling site was calculdtech the precipitation grid
(Figure 3.4). An automated tool was programmed AcGIS to calculate a runoff grid
with the input of a rain gauge shapefile with theasured amounts of rainfall for each
rain gauge as fields in the attribute table an® gnid calculated from the curve number

grid.



Figure 3.4. Flow chaitlustrating the calculaon of accumulated runoff volum@) Subtract 0.2S from rainfall grid, (
Convert negative values to zero, (c) Square cardegtid, (d) Add 0.8S to rainfall grid (e) Divideidcreated from (c) k grid
created from (d) then nitiply result by 900 square meters to create affurmume grid, (f) Computflow direction from
DEM grid, (9 Compute flow accumulation from flow direction @tiising the runoff volume id as the accumulation weig
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The runoff volume grid (Figure 3.4(a-e)) was caftet using the SCS curve

number approach with the equation:
9 3.8 - 563<, 5) (3.3)

where,

Q = runoff volume (in-m)

P = precipitation (in)

S=the maximum soil water retention parameter (in)

A = area of a grid cell (fin

The curve number grid is calculated intoSgrid using equation 3.2. Equation
3.3 requires tha® must exceed 02before any runoff is generated; therefore, when
cells in Figure 3.4(a) resulted in negative valdlesy are given a value of zero (Figure
3.4 (b)) so that runoff was not calculated fors@lith P less than 0.2 The result of
Figure 3.4 (b) was then squared creating the nuwwreod Equation 3.3(Figure 3.4 (c)).
The denominator of equation 3.4 was calculateddolyray 0.&to P (Figure 3.4(d)).
The numerator (Figure 3.4(c)) was then dividedh®ydenominator (Figure 3.4(d))
which calculated the runoff depth in inches forrgwgrid cell in the entire watershed.
Runoff depth was then converted to a runoff volyraegrid cell by multiplying by the
cell area, 900 A(Figure 3.4(e)).

An additional part of the Arc GIS 9.3. tool was dise automatically calculate
the runoff volume accumulation grid for the wat@dishown in Figure 3.4(f-g). The
inputs to the tool were the previously generatemfivolume grid and a Digital

Elevation Model (DEM) over the watershed area wlhiad a 30 X 30 meter grid cell
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size provided by the Texas A&M University SSL. Tresult of the flow accumulation
is the total amount of runoff volume going througbpecific grid cell. The runoff
volume at each sampling site was estimated by ifgerg the runoff volume value at
each sampling site drainage area outlet.

3.3.2. PotentiaE. coli Load (¥) Estimation Using SELECT

PotentialE. coliloads for Geronimo Creek were predicted using SELENd
input from stakeholders for stocking rates and pdssources. A custom land use
classification (Figure 3.4) provided by the TexasMUniversity SSL was used to
distribute animals on land use types that wererdated to be suitable for a specific
animal or source.

Twenty-one subwatersheds were delineated usin§\W&T model. The stream
channel was determined with the SWAT model as ustig the DEM. In the
Geronimo Creek watershed, it was determined thastock sources for the watershed
are goats, horses, and cattle. Wildlife sourceslaer and feral hogs. Domestic sources
consist of dogs and on-site wastewater treatmestésys (OWTSs). The fecal
production rates used in the model from the EPAlguce are in fecal coliform
(USEPA, 2001a). These rates then need to be deaMeom fecal coliform tde. coli.

A conversion of 0.63 fecal coliform . coliwas used in the model. The conversion
factor of 0.63 was decided using the USEPA'’s reguyastandards for fecal coliform
andE. coliin recreational waters. The regulatory standarddcal coliform was 200

organisms per 100 mL and is 126 organisms per 10€mE. coli (USEPA, 2003)
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The conversion factor was determined by taking#ie of these two regulatory
standards.

For livestock and wildlife, the number of animadseistimated with animal
densities and stakeholder input. For cattle, thkeholders determined stocking rates of
8 and 4 hectares (20 and 10 acres) per animalghbeuhpplied to Comal and Guadalupe
Counties, respectively, and should be appliededdhd use types of rangeland, forest,
and managed pasture which were determined as kultabitats for cattle in this area.

A density for horses was determined to be 53 hest@dr32 acres) per animal over the
entire watershed with a total watershed populadioh?4 horses with a suitable habitat
of rangeland. The animals are distributed evealgss suitable habitats and a fecal
production rate is then applied per animal. Sowats are typically raised on goat
farms, stakeholders determined that 200 goatsfdtedotal watershed population of
750 animals should be distributed evenly in theewsdited on rangeland, forest, and
manage pasture land use types. The remaining Enweae concentrated to specific
watersheds which contained known goat farms fqregified number of animals. The
potentialE. coliload for the subwatersheds containing goats wasleted per
subwatershed by multiplying the number of anima&isgubwatershed by the fecal
production rate per animal. White-tailed deer hambpulation density of 4 hectares (10
acres) per animal (Lockwood, 2005). The suitalleitat determined for deer were
forest and rangeland with at least 8 hectares ¢g&&saof contiguous terrain available.
Feral hogs had a population density of 11 hect@@scres) per animal and were only

distributed on suitable habitat within 100 metdrthe main stem of Geronimo Creek
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which is perennial. Feral hogs were not distridiaeound Alligator Creek because it is
an intermittent creek and is an unsuitable habotaferal hogs. The suitable habitats
for feral hogs as determined by stakeholders wanest, rangeland, managed pasture,
and cultivated crops.

For dogs, the 2000 census data was used to cadbkatontribution by using a
dog density of 1 dog per household. The poteftiaoliload for OWTSs was
calculated by Espey Consultants. For OWTSs, dpatisstributed point data of each
household was collected from 911 address data anseholds within Certificate of
Convenience and Necessity (CCN) areas were rentoveat include households being
serviced by a wastewater treatment facility. CC&ha are on city sewer lines and
therefore, the waste is treated at a WWTF and y@WTSs. A failure rate was
determined for the OWTSs using SSURGO soil limitattlasses and the age of the
system to calculate the percentag& o€oli contributing to the watershed due to septic
failure. A fecal production rate was then applie@&ach household for dogs and
OWTSs. Since SELECT divides the watershed intaster grid with a 30 X 30 meter
cell size, the potential load is calculated overentire watershed at a 30 X 30 meter cell
size. The individual raster files for each sowapethen added together spatially to
create a total load raster (Figure 3.5) for theewgdted that is divided into 30 X 30 meter

grid cells.



50

Figure 3.5. Total potenti&. coliload calculated using SELECT for the Geronimo
Creek watershed.



Figure 3.6. Flow chart illustrating the calculaticf the contributinge. coliload.(a) Convert runoff values greater than zer
one (b) Multiply converted runoff and SELECT loadcompute contributing load (¢) Compute flow direst(d) Compute
flow accumulation using flow direction with contuling load as accumulation weight.
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The total load raster (Figure 3.5) estimates therg@lE. coliload for the entire
watershed based on a worst case scenario assumiegtire load calculated reaches the
water body. Another part of the tool programmediioGIS 9.X. was to calculate tlie
coli load actually reaching a specific grid cell in thatershed (Figure 3.6).

The inputs to the tool were the previously caledatunoff grid, the total load
raster from SELECT, and the DEM. The first stepveh in Figure 3.6 to estimate tke
coli load reaching the sampling site was to only carsideE. coliload grid cells that
have runoff generated. The runoff volume grid gatesl from each precipitation event
was converted to a Boolean runoff grid, where the cglls with values greater than 0
were converted to 1. A runoff SELECT grid (Fig@.é(b)) was estimated for each
runoff event by multiplying the SELECT grid by tBeolean runoff grid, so that the
cells with no runoff generated had a contributthgoliload of zero. The load
accumulation was calculated using the runoff SELE@d as an input weight and the
DEM shown in Figure 3.6 (c-d). The output of flaecumulation would then represent
the amount oE. coliload that would flow through each cell considerihg upslope
cells. The flow accumulation at a sampling siteusldadhen estimate the. coliload
reaching that site.

3.3.3. Calculation of Observed and Predicted Rudoftimes

The observed instantaneous stream flows corresgpgtal the time eack. coli
sample was taken were converted to runoff volures flow duration curves (FDCs)
were developed for each site, Haberle Road andZ3tdne from instantaneous

monthly samples (Figure 3.7 and Figure 3.8) andther from SWAT simulated daily
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flow rates (Figure 3.9 and Figure 3.10). For S33 and Haberle Road, the FDCs were
developed using daily SWAT simulated flowrates frb@98 to 2009. The FDCs
developed for SH 123 and Haberle Road using instaous flowrates from 1996 to

2003 with a break in sampling until 2008 to 2008 &oem 2003 to 2009, respectively.

Figure 3.7. Haberle Road FDC developed using insterous flows.



Figure 3.8. SH 123 FDC developed from instantaadiows.

Figure 3.9. Haberle Road FDC developed from SWAusated flows.

54
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Figure 3.10. SH 123 FDC developed from SWAT sinmeddtows.

Three methods were used for each site to add lmged the predicted runoff
volume: adding the 75% exceedence flow calculataah the FDC developed using
instantaneous flows, the 75% exceedence flow catledlfrom the FDC developed using
SWAT simulated flows, and the 100% exceedence fleweloped using instantaneous
flows. Flow duration curves were developed forghepling sites SH 123 and Haberle
Road using SWAT simulated flow rates ranging frd®@®8 to 2009. The 75%
exceedence flow using instantaneous flows werefa.for SH 123 and 8.1 cfs for
Haberle Road. The FDCs developed using SWAT sitedl#iows for the 75%
exceedence flow were 11.35 cfs and 14.29 cfs fol 38land Haberle Road,
respectively. The 100% exceedence flow for SHdr&B Haberle Road were 1.0 cfs and
3.4 cfs, respectively. All of the exceedence flavese converted to volumes using the

same method and time as the observed flows.
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The stream flow (cfs) was converted to a runofimeé (nf) by multiplying by
time and conversion factors. The times were caledlasing multiple methods shown in
Table 3.2: SWAT calculated time of concentratiow/AT calculated lag time, manually
calculated lag time, and manually calculated timheomcentration. These times were
used to more accurately determine the amount céndimiwing through a sampling site
from a rainfall event rather than assuming 24 hoditse SWAT calculated time of
concentration was calculated for each hydrologiesponse unit (HRU). All of the
HRUs in a subbasin were then averaged togetheth@nalverage time of concentration
calculated for the subbasins containing the maeast channels of Geronimo and
Alligator Creek were added together from the upgetion of the watershed until SH
123 or Haberle Road. The SWAT calculated lag tivas converted from a time of
concentration by using a method for lag time esimmadeveloped by the SCS (Haan et
al., 1994):

2", (3.4)
where,

t. = lag time (hrs)

t. = time of concentration (hrs)
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Table 3.2. Various times used to estimate runoffimes in the Geronimo Creek
watershed.

Sampling Site Method Time (hrs)
Lag Time Manually Calculated from Alligator Creek 7.2
SH 123 Time of Concentration Manually Calculated from g#ior Creek 12.0
Time of Concentration SWAT Calculated from Alligatoreek 6.9
Lag Time Manually Calculated from Alligator Creek 9.2
Time of Concentration SWAT Calculated from Alligatoreek 7.8

Haberle Road Lag Time Manually Calculated from SH 123 2.9

Time of Concentration SWAT Calculated from SH 123 0.97
Lag Time SWAT Calculated from SH 123 0.58

The manually calculated lag time used the SCSihag €quation based on
natural watersheds (Haan, 1994):

" %@8< 52BC 4 @D (3.5)
where,

L = hydraulic length of the sampling site drainageagft)

S= average maximum soil water retention parameétér (

Y = average land slope of the sampling site drairaga (%)

The SH 123 hydraulic length. was determined by measuring the longest
distance along the SWAT delineated stream chaprtbketdrainage area outlet. The
stream length included the entire length of AllgyaCreek and the length of Geronimo
Creek from its confluence with Alligator Creek teetdrainage area outlet. The
manually calculated time of concentration was deiieed using equation 3.4. Although
the Haberle Road sampling site is located downstrelaSH 123, there is a log jam

located at SH 123 which may be inhibiting flow frapstream of SH 123 to Haberle
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Road. Times of concentration and lag times weleutated for Haberle Road for the
entire upstream portion of the watershed and atbpfoom SH 123.
3.3.4. Delivery Factor})

The delivery factor is back calculated from equat8.1 using observed
Guadalupe Blanco River Authority (GBRA) coli concentration data taken from each
of the SH 123 and Haberle Road sampling sites. dEligery factor represents all
factors influencing movement of the potentalcoliload into the creek with the
exception of surface runoff. Two separate delivfactors were calculated, one using
observed runoff volume, and the other calculatethfthe model predicted simulated
runoff volume.

A delivery factor was calculated for each measiedbli sample using both the
observed and simulated runoff volumes for each dtt& each site, the individual
delivery factor values were averaged using botlathematical mean and a geometric
mean. This resulted in the calculation of eiglffedent delivery ratios (Table 3.3) to be

applied to the data.

Table 3.3. Different delivery factors used Ercoli concentration calculation.

Sampling Site Average Observed Runoff Volume Predied Runoff Volume
SH 123 Mean 0.752 0.942
Geomean 0.015 0.015
Mean 0.480 0.316

Haberle Road
Geomean 0.065 0.059
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3.3.5. Statistics

The accuracy of the model was evaluated using #shfbutcliffe efficiencyK),
root mean square errdRiSEB, and RMSE-observations standard deviation ré&eH.
According to Nash and Sutcliffe (1970) tBevalue is an index of agreement or
disagreement between observed and predicted vallre=t value evaluates how
consistently the predicted values agree with theenked values by applying linear
regression analysis (Nash and Sutcliffe, 19)s computed with equation 3.6 (Nash
and Suttcliffe, 1970):

8: ES,3 8. H6EE,3 8 J5= (3.6)

where,

O; = observed values

P = predicted values

J = mean of the observed values

n = number of samples

TheE value ranges from negative infinity to 1, whergaigve values are
considered a biased model and values between ®laack considered an unbiased
model (McCuen, et al., 2006). Model efficienciesrgvclassificed similar to Moriasi et
al. (2007) and Parajuli et al. (2009) as very g(®d 0.75 to 1), goodH = 0.5 to 0.74),
fair (E = 0.25 to 0.49), pooie{= 0 to 0.24) and unsatisfactoy € 0.0).

RMSEis an error index used in model evaluation andilsable because the
error is indicated in the units of the constituehinterest (Moriasi, et al., 2007).

Legates and McCabe (1999) recommend includingaat kene relative error measuke (
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or R%) and at lease one absolute error measRiISEor mean absolute error) for a
complete assessment of model performaf@MEvalues close to 0 indicate a perfect
fit but values half the standard deviation ard stihsidered low (Singh, et al., 2004).

The equation foRMSEis:

1/ KEZ,3 8. &5 6( (3.7)
RSRis a model evaluation statistic that standardREISE (Equation 3.7) with
the observed data standard deviation (Moriasil. e2@07). Moriasi et al. (2007)
developedRSRto fill the need of an error index with additiomadlormation provided for
usingRSMEwith the standard deviation recommended by LegatesMcCabe (1999).

TheRSRis computed using equation 3.8 (Moriasi, et alQ70

' L KEE,3 (8. 5M®EE,3 (8 J5P (3.8)

The value oRSRranges from 0, which is the optimal value andaatis a
perfect model, to a large positive value (Moriasial., 2007). Model efficiences are
classified by Moriasi et al. (2007) as very goo&fR= 0.00 to 0.50), good (RSR =0.51
to 0.60), satisfactory (0.61 to 0.70), and unsetiifey (RSR > 0.70).

Moriasi et al. (2007) states that the model evadnaguidelines for botlk and
RSRvalues given apply to a continuous, long-term $ation for a monthly time step.
The guidelines should be adjusted based on a omldtiof factors including quality and
guantity of measured data, single-event simulageajution time step, model
calibration procedure, and project scope and magdei{Moriasi, et al., 2007). Moriasi

et al. (2007) continues to say that when a completasured time series does not exist,
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such as when only a few grab samples per yeawarkhle, that the data may not be
sufficient for analysis using the recomended diasis
3.4. Results and Discussion

The runoff volumes were simulated for both the 23 and Haberle Road
sampling sites and compared to the instantaneaexwdd flows converted to a volume.
For both SH 123 and Haberle Ro&d coliconcentrations were simulated using
equation 3.1 with both predicted simulated andaintstneous observed runoff volumes.
3.4.1. Outlier Testing

The model assumes that the runoff transportindethmli to the stream is
generated by the rainfall occurring on the sametdaysample is taken. An ideal sample
would be a sample where either there was no raimfahere was not enough rainfall to
induce runoff from any site the day before the darmas taken. Eleven out of the 17
sites fit these guidelines and were considered &iaples. Five of the other samples
had runoff generated from one or more sites thebaédfgre the sample was taken, but the
cumulative rainfall of all sites was less for treeydefore than the day the actual sample
was taken. For the two cases where runoff wasrgetefrom multiple sites, the
cumulative rainfall for the day the sample was tel@s at least 4.5 times greater than
the cumulative rainfall of all sites the day beftne sample was taken. Itis assumed
that these 16 samples would therefore, not imgechtodel significantly because a
majority of the rainfall impacting runoff is occurg on the same day the sample is
taken. One sampling day, 3/3/05, for the HabedadRsite did not follow these

guidelines. The cumulative rainfall of all theesitfor the day before was higher at 51
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millimeters (2.01 inches) than the day the same taken at 29 millimeters (1.13
inches). Precipitation grids were computed fohladys and the grid generated from
the precipitation from 3/3/05 had lower minimum,ximaum, and mean statistics for the
grid cells over the entire watershed area thampteeipitation grid generated for 3/2/05.

The 3/3/05 sampling day appeared to be an oditlie¢he dataset because it did
not belong to the Haberle Road population where demfall is generated from the day
before the sample is taken. The Dixon-Thompsanwas applied to test the sampling
point as an outlier for runoff volume. The Dixohdmpson test is suitable for sample
sizes as small as three and can be applied tddstand high outliers (McCuen, 2003).
Since, the 3/3/05 data point was the second lagjessirved runoff volume and the
Dixon-Thompson test only tests for the largestrakéest value, the highest runoff
volume was not included in the test and a sampke i 11 was used instead of 12. The
equation for the Dixon-Thompson High Outlier TettiStic for sample sizes of 11 is
(McCuen, 2003):

' Q y 8Q 6Q 8Qr (3.9)

where,

Xn = the data are ranked from smallest to largestla@dubscript indicates the

rank of the value from smallest to largest.

Assuming a normal population, the test statistigu@ion 3.9) was larger than all
of the critical values at 5%, 2.5%, and 1% for $henple size of 11. Therefore, the
largest runoff volume was rejected and consideredudlier by the Dixon-Thompson

test. The point 3/3/05 was then removed from thbdfle Road data set.
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3.4.2. Runoff Volume

The model was able to predict the runoff volum#éatSH 123 sampling site
outlet with very good to unsatisfactory agreemeidding base flow using the 75%
exceedence flow from the FDC developed using SWiAlukated flows resulting in an
unsatisfactory agreement for both the E and RSRega|Table 3.4) for all times. Base
flow added using the 75% exceedence flow from B€ [eveloped using
instantaneous flows resulted in a very good agreéfoe both E and RSR values (Table
3.4) across all of the times. The E and RSR vata&silated from volumes calculated
by adding 100% exceedence flow from an FDC develafsing instantaneous flows
resulted in a satisfactory to very good agreemé&he lag time manually calculated
from Alligator Creek resulted in the best performaifTable 3.4) for the baseflow added
using exceedence flows from an FDC developed ub@agnstantaneous flows with the
time of concentration calculated using SWAT frontigiitor Creek performing

similarly.
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Table 3.4. Model performance for predicting runaffume at SH 123.

Time Statistic 75% Exceedence 100% Exceedence
SWAT Instantaneous Instantaneous
Lag Time E -1.83 0.95 0.83
Manually RSR 1.68 0.22 0.41
Calculated RMSE 6217 813 1506
from Alligator Observed Average 4496 4496 4496
Creek Observed Standard Deviation 4128 4128 4128
Time of E -1.11 0.78 0.63
Concentration RSR 1.45 0.47 0.61
Manually
Calculated RMSE 8931 2902 4488
from Alligator Observed Average 7495 7495 7495
Creek Observed Standard Deviation 6882 6882 6882
Time of E -1.95 0.94 0.84
Concentration RSR 1.72 0.25 0.40
SWAT
Calculated RMSE 6072 872 1405
from Alligator Observed Average 4307 4307 4307
Creek Observed Standard Deviation 3955 3955 3955

The model was able to predict runoff volumes fabkrle Road with very good
to unsatisfactory agreement. The travel timesutaled manually and with SWAT from
Alligator Creek performed with poor to unsatisfagtagreement for E and RSR values
(Table 3.5). This implies that there is somethiagpening in the watershed to prevent
stream flow from above SH 123 to reach Haberle Rddtkere was a log jam during the
simulation period SH 123 which might have causadrsation at that site and
prohibiting flow from reaching downstream. Thisyrexplain why a time of
concentration or lag time needs to be calculatech f6H 123 to Haberle Road instead of
for the entire watershed from Alligator Creek. Tgeformances of the different

baseflow methods will only be based upon the ticadsulated from SH 123 and not
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from Alligator Creek. The time of concentrationmually calculated from Alligator
Creek performed the poorest. Baseflow added u&g exceedence flow determined
from a FDC developed using SWAT simulated flowdganed with very good to
unsatisfactory agreement for E and RSR values éTald)). The E and RSR values
(Table 3.5) calculated using baseflow added usb¥%) éxceedence flow and 100%
exceedence flow from an FDC developed using ingtadus flows performed with very
good to unsatisfactory agreement.

The lag time SWAT calculated from SH 123 perfornise best with very good
agreement for E and RSR values (Table 3.5) usirthrale methods of adding baseflow.
The time of concentration SWAT calculated from S*3 performed with very good to
good agreement for all baseflows. The manuallgutated lag time performed with fair
to unsatisfactory agreement for E and RSR valuablél3.5). Runoff volumes
calculated using the SWAT calculated lag time fi8hh 123 and the 75% exceedence

flow from a FDC developed using instantaneous flperdormed the best (Table 3.5).
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Table 3.5. Model performance for estimating runafiume at Haberle Road.

Time Statistic 75% Exceedence 100% Exceedence
SWAT Instantaneous Instantaneous
Lag Time E 0.09 -0.05 -0.25
Manually RSR 0.95 1.03 1.12
Calculated RMSE 21473 23145 25205
from Alligator Observed Average 17368 17368 17368
Creek Observed Standard Deviation 23669 23669 23669
Time of E 0.12 -0.03 -0.22
Concentration RSR 0.94 1.01 1.11
SWAT
Calculated RMSE 18184 19613 21383
from Alligator Observed Average 14881 14881 14881
Creek Observed Standard Deviation 20279 20279 20279
Lag Time E 0.35 0.23 0.05
Manually RSR 0.81 0.88 0.97
Calculated from RMSE 5685 6188 6857
SH 123 Observed Average 5423 5423 5423
Observed Standard Deviation 7390 7390 7390
Time of E 0.82 0.77 0.66
Concentration RSR 0.42 0.47 0.59
SWAT
Calculated RMSE 1011 1133 1401
from SH 123 Observed Average 1837 1837 1837
Observed Standard Deviation 2504 2504 2504
Lag Time E 0.92 0.95 0.89
SWAT
Calculated RSR 0.28 0.21 0.33
from SH 123 RMSE 401 317 476
Observed Average 1100 1100 1100
Observed Standard Deviation 1499 1499 1499

The runoff volumes for the SH 123 site were undaereged for three events and

overestimated for two events (Figure 3.11 and [E@ut2). A gap in measuring

streamflow andE. colidata at SH 123 occurred between the years 2002Gi@ No

data was collected in 2001 where runoff occurrathi@tsame time as a measukeaoli
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sample. Runoff volumes measured at SH 123 onlydacthe fall and winter seasons
with only one sample collected in the spring. Thisy skew the data distribution
because the data do not include the summer sedsoh is typically the driest season
for the watershed. Figure 3.11 shows that the fdatainoff volumes for SH 123

followed the general trend of the observed runoftimmes and were in close agreement.

Figure 3.11. Predicted runoff volumes comparedaseoved runoff volumes using the
best performing method for SH 123 for estimatingoffivolumes using a time and
baseflow.

For the Haberle Road sampling site, simulated fwamtimes were mostly
underestimated with the exception of one event shiowrigure 3.12. This data point
may have been overestimated because it was takemydine driest season in a year (in
August) whereas; the other data were taken in wettaths. The dataset does not

include any data points taken in the fall monthst@@er and November); September is
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not considered a fall month because the weattstillisimilar to the summer weather
for this region. The dataset also has a gap 2009 year where no samples collected
had contributing runoff occurring at the same tindis was due to 2009 being an

extremely dry year.

Figure 3.12. Predicted runoff volumes comparedaseoved runoff volumes for the
Haberle Road sampling site using the best perfagmiathod for estimating runoff
volumes using a time and baseflow.

The spatial watershed model developed from thisaneh was able to predict
runoff volumes as well as continuous process masleth as SWAT and HSPF were
able to predict stream flow. Coffey et al. (208@ye able to validate daily flows using
a calibrated SWAT model from January 2004, to Faty, 2005 with a very good
performance rating fd€ of 0.78 in Irish catchments. Parajuli et al. (20@ere able to

calibrate the SWAT model in the Upper Wakarusa vegaied for mean daily flow of a
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subwatershed with very good agreemé&nt(0.83) and validate in two subwatersheds
belonging to the same watershed as the calibratedatershed with very good
agreementl = 0.83 ancE = 0.76). SWAT was also run for a watershed witlitiple
karst features such as multiple springs, sinkhaled,losing streams (Baffaut and
Benson, 2009). Baffaut and Benson (2009) validdtaly stream flow values from
2001 to 2007 witle values ranging from 0.24 to 0.56 for five statioi@hin et al.

(2009) predicted daily and monthly averaged flowdond experimental watershed from
1996 to 2002 using both SWAT and HSPF. SWAT was tbpredict monthly and
daily flows with very goodE = 0.88) for monthly flows to goode(= 0.65) for daily
flows agreement. HSPF predicted both monthly amly dows with very good
agreementl = 0.89 for monthly an& = 0.87 for daily). Paul et al. (2004) simulated
daily mean flow using HSPF in the Salado Creek wgated for a calibration period from
1991 to 1993 with good agreemeht= 0.55). The model from this work estimating
runoff volumes from two stations performed simyad these previously mentioned
studies which were chosen because they also peddictcoli or fecal coliform bacteria
as well as flow rates, that generally had very gmoglood agreement using tBevalues.
More data points are needed to calibrate and \alithe® model properly to show if it is
able to consistently and accurately predict rumoftimes. The runoff volumes
estimated with the method that performed the beséwsed to calculate coli

concentrations.
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3.4.3.E. coli Concentrations

For both the Haberle Road and SH 123 sampling, shesnodel predicteH.
coli concentrations with unsatisfactory agreement @8 and Table 3.7) for all four
methods of delivery factor calibration for bd&randRSRvalues. Th&RMSEvalues for
both sites using all four methods, were higher ti@observed standard deviations and
observed averages (Table 3.6) indicating an urigettsy agreement between the
observed and predictdfl coli concentrations. The delivery factor estimatednftbe
geometric mean of simulated runoff volumes perfatriine best for Haberle Road while
the geometric mean of observed runoff volume paréat the best for SH 123. The
Haberle Road site consistently performed better tha SH 123 site with thHe andRSR
values of -4 and 3 (Table 3.7) for the Haberle Reiteland value of -44 and 7 (Table

3.6) for the SH 123 site, respectively, estimatsidgithe best performance values.

Table 3.6. Model performance f&t coliconcentrations at SH 123.

Concentration Statistic Simulated Delivery Ratio  Olserved Delivery Ratio
Calculation Geomean Average Geomean Average
E -90 -441687 -44 -281054
RSR 10 665 7 530
Observed Flow RMSE 8 526 5 419
Observed Average 1.8 1.8 1.8 1.8
Observed Standard Deviation 0.9 0.9 0.9 0.9
E -142 -656256 -71 -417698
RSR 12 810 8 646
Simulated S 9 5
Flow RMSE 41 7 511
Observed Average 1.8 1.8 1.8 1.8

Observed Standard Deviation 0.9 0.9 0.9 0.9
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Table 3.7. Model performance for estimatigcoli concentrations at Haberle Road.

Concentration Statistic Simulated Delivery Ratio  Olserved Delivery Ratio
Calculation Geomean Average = Geomean Average
E -56 -1641 -67 -3800
RSR 8 41 8 62
Observed Flow RMSE 121 653 133 994
Observed Average 8 8 8 8
Observed Standard Deviation 17 17 17 17
E -4 -154 -5 -362
. RSR 2 12 2 19
S'E‘é'@ted RMSE 36 200 40 307
Observed Average 8 8 8 8
Observed Standard Deviation 17 17 17 17

The SWAT and HSPF models have been applied togiredcoli concentrations
in watersheds with mixed success. Coffey et @102 was able to prediéi. coli
concentrations for Irish catchements using SWAMmfigrab samples taken monthly
from September 2005 to September 2006 resultiig iobserved samples after
removing one outlier. The predict&d coli concentrations were in good agreement with
the observed concentrations havingeawalue of 0.59. Parajuli et al. (2009) estimated
fecal coliform bacteria concentrations using theAAWnodel with unsatisfactory to fair
agreement for calibration, validation, and verifica watersheds. The calibration
watershed was in poor agreement witlzaralue of 0.20 and the validation watershed
had arkE value of 0.31 which resulted in a fair agreemértie verification watershed
had an unsatisfactory agreement witlearalue of -2.2 (Parajuli, et al., 2009). Baffaut
and Benson (2009) ran the SWAT model to predialfecliform bacteria

concentrations calibrated and validated from magntinibi-monthly grab sample
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concentrations for the James River basin whicloisiclered a karst watershed. The
SWAT model was calibrated for four different samplsites having values ranging
from -6 to 0.11(Baffaut and Benson, 2009). Chiale{2009) predicted fecal coliform
bacteria concentrations using both the SWAT andH®Bdels for an experimental
watershed. SWAT performed better than HSPF witk aalue of 0.73 compared to an
E value of 0.33 for HSPF. Paul et al. (2004) ditlcadibrate the HSPF model due to a
lack of observed fecal coliform bacteria data. HSRs able to simulate in-stream fecal
coliform concentrations with good agreement but wable to capture extreme
concentrations (Paul, et al., 2004).

Observed and simulatégl coli concentrations predicted using the geometric
mean observed and simulated delivery factor folSHel23 sampling site are presented
in Figures 3.13, 3.14, 3.15, and 3.16. The obskEveoli concentrations had values
ranging from 1.12 to 3.2 CFU/mL. The method ofdacéng E. coli concentrations that
had the closest range of concentrations (0.014® GFU/mL) to the observed
concentration range was estimated using a delfaetygr calculated from the geometric
mean of the observed runoff volumes and with theceatration calculated using the
observed runoff volumes (Figure 3.19. coli concentrations predicted using the
concentrations calculated from the observed ruvalfimes (Figure 3.15 and Figure
3.16) had better results than the concentratioedigted using the concentrations

calculated from the simulated runoff volumes (Feg8rl3 and Figure 3.14).
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" #

Figure 3.13. Predictef. coliconcentrations compared to obserizedoli
concentrations for SH 123 using instantaneous gbddtow delivery factor and the
simulated runoff volume.

I"#

Figure 3.14. Predicted. coliconcentrations compared to obsertedoli
concentrations for SH 123 using simulated flow sy factor and simulated runoff
volume.
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Figure 3.15. Predictefl. coliconcentrations compared to obserizedoli
concentrations for SH 123 using instantaneous gbddtow delivery factor and
observed runoff volume.

"#

Figure 3.16. Predicted. coli concentrations compared to obsertedoli
concentrations for SH 123 using simulated flow sy factor and observed runoff
volume.
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The prediction oE. coliconcentrations for the SH 123 sampling site wasgro
than the prediction for the Haberle Road samplitegy sSThe SH 123 sampling site
followed similar trends as the Haberle Road sang@ite. For Haberle Road the
delivery factors computed using the simulated rtmoflumes performed better than the
delivery factors computed using the observed runoliimes. Concentrations calculated
using the simulated runoff volumes performed bédtten concentrations calculated
using the observed runoff volumes. Figures 3.1118,33.19, and 3.20 contain the scatter
plots comparing the observed and simuld&edoli concentrations for Haberle Road
using the geometric mean observed and simulatégedgfactors. The range for the
observecE. coliconcentrations was from 0.46 to 57 CFU/mL. Eaeoli
concentrations predicted using the delivery faegimmated using the geometric mean of
simulated runoff volumes with a concentration ckdted using the simulated runoff
volumes had the closest range from 0.17 to 96 CEWhpredicted concentrations to
the observed concentrations. Haberle Road pretlicteoli concentrations more
accurately than SH 123. This could be because ftaBead had more samples to

calibrate the model.
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Figure 3.17. Predicted. coli concentrations compared to obsertedoli
concentrations for Haberle Road using instantanebasrved flow delivery factor and
simulated runoff volume.

O

I"#

Figure 3.18. Predictel. coliconcentrations compared to obsertedoli
concentrations for Haberle Road using simulated flelivery factor and simulated
runoff volume.
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Figure 3.19. Predictel. coli concentrations compared to obsertedoli
concentrations for Haberle Road using instantanebasrved flow delivery factor and
observed runoff volume.

I"#

Figure 3.20. Predicted. coli concentrations compared to obsertedoli
concentrations for Haberle Road using simulated flelivery factor and observed
runoff volume.
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3.4.4. Uncertainty

Uncertainty is an important issue regarding watelity modeling because
models are increasingly used to guide decisionardagg water resource policy,
management, and regulation (Beck, 1987; Sharplai;,2002; Harmel et al., 2006;
Parajuli et al., 2009). Uncertainty in measuredewguality data is introduced during
streamflow measurement, sample collection, sammgleegpvation/storage, and laboratory
analysis (Harmel et al., 2006). Modeling bacté&aasport might have one of the
highest probable errors and least confidence coadpaith modeling surface hydrology,
sediment, and nutrients (Novotny, 2003; Parajudilet2009; Coffey et al., 2010). One
source of potential uncertainty in the model resa#tn be due to the GIS data inputs
(Parajuli et al., 2009). In this study, we useglltlest available data as inputs into the
model including stakeholder input for land use aadtributing bacteria source animal
numbers and distribution in the watershed. Thero®iS inputs including the DEM,
soils, and climate data used were the best availddtia. Harmel et al. (2006)
determined the cumulative probable uncertaintystoamflow data ranging from3-42%
for best case to worst case scenerios. Uncertaimdyvariability surrounds bacteria
modeling and can lead to large discrepancies inetmegults (Coffey et al., 2010).
3.4.5. Potential Causes for Inaccuratecoli Bacteria Modeling Results

The assumption that the SELEET coliload is a constant is the most significant
reason for the large discrepancy between the obdemd simulated. coli
concentrations. ThE. coliload generated using SELECT is based on the ddtcted

from the stakeholders regarding the densities@ttntributing sources as well as the
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distribution of those sources for 2010. The desitollected, especially regarding
livestock stocking rates and livestock distribut@nland use types, vary greatly
seasonally and from year to year. The land uséhandehold data determining the
distribution of sources is also valid for 2010. eéJpossible reason for the poor
performance of the model applied to the SH 123 $ampite is that most of the data for
the SH 123 sampling site was collected between 192802. On the other hand, the
Haberle Road sampling site had data collected £066# to 2010, nearer to the time that
source data was determined. Ehecoliloads generated using SELECT for 2010 may
be more accurate for the Haberle Road samplindbsitause less change would have
occurred between the earliest sampling date in 20042010, the date of the source
data determination. One solution to improve thelehevould be to run SELECT for
different years with land use and contributing seuttensities varying from year to year.
Accurate data for contributing source densitiesesly for wildlife and livestock can
be difficult to obtain for past years. A compromtis increase accuracy but still obtain
accurate data would be to run SELECT for diffeissgdsons and vary the land use and
contributing source densities for the differentssses.

Another reason for the discrepancies betweenlikerged and predictdsgl coli
concentrations is because the model does not acfmypoint sources contributirg.
coli directly to the stream. Direct deposition of flematerial by livestock and wildlife
is not considered in the model becakseoliis considered to be contributing to the
stream only through surface runott. coliis still being contributed to the stream during

low flow conditions. Load Duration Curves (LDCsgre calculated for both the
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Haberle Road and SH 123 sampling site using hesttaia and low flow conditions
were determined as a percent exceedence rangmg/do 100%. The&. coli
concentrations for the Haberle and SH 123 samiiteg ranged from 44 to 330
CFU/100 mL and 0 to 438 CFU/100 mL, respectivelytfoth sites for low flow
conditions. E. coli bacteria occuring in the stream are likely causedirect depostion
or other unknown factors.

The model also does not account for bacteria ffiarml re-growth occurring in
the stream, soil, and in the fecal material its&luring a rainfall event, sediment located
in the stream containing bacteria can be stirredngfurther contribute to tHe coli
concentration occuring in the sample. Coffey e{2010) elaborates that there are
unknown spatial and temporal sources of contananatontributing bacteria and the
ability to accurately account for all of these tastis debateable.

3.5. Conclusions

A watershed model was developed in ArcGIS to estnthe volume of water
from runoff and thde. coli concentrations contributing at a sampling sitevo Bampling
sites for the Geronimo Creek watershed were challeough there was a lack of
observed hydrologic and water quality data coimgydwvith runoff events. Observed
streamflow was converted into a runoff volume byoging baseflow and multiplying
by the sampling site outlet lag time. A modelloadtion using four different methods
was applied using a delivery factor for the prestidE. coli concentrations.

The model results for the runoff volume were imywvgood agreemeng(= 0.95,

RSR= 0.21) for the Haberle Road sampling site aneety good agreemenkE (= 0.95,
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RSR=0.22) for the SH 123 sampling site. The RMSkiegawere less than half of the
standard deviation showing a good agreement bettireenbserved and predicted runoff
volumes. ThéE. coliconcentration results were in unsatisfactory agesd for both
samping sites using all methods. The concentratattalated with the geometric mean
delivery factor performed the best for both sit&he Haberle Road sampling site
performed consistently better for all methods tthenSH 123 sampling site.

The model was unable to accurately predict&heoli concentrations occuring in
stream. One potential reason for the model inawes for predicting. coli
concentrations is applying tle coliload resulting from SELECT as a constant. This
may be overcome by varying the SELEETcoliloads for different years and/or
seasons. Direct deposition is not consideredamibdel althougk. coliis contributing
into the stream during periods where there areflow conditions. Bacteria die-off and
re-growth occuring in the stream, soil,and fecatamal is not considered in the model
and if it were it could potentially increase the@@cy of the model at predictiig coli
concentrations. There are other unknown fact@asdbontribute tde. coli bacteria
contamination in streams which make predictihgoli concentrations with a model
difficult. Although the model did not accuratelsegdictE. coli concentrations, it can be
modified in multiple ways to increase the modeluaacy by varying th&. coli
concentration yearly and seasonally, accountinglif@ct deposition, and accounting for

die-off and regrowth.
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CHAPTER IV
CONCLUSIONS
4.1. Conclusions
1. The SELECT methodology was applied to three waegtsiBuck Creek, the five
tributaries of the Little Brazos River, and LammaBaver to support the
development of watershed protection plans (WPR$)an easily be adapted to
different watersheds and reflect the potential sesirstakeholder concerns, and
data availability of the watershed.
2. An automated watershed model was developed to cotineE. coliloads
resulting from SELECT analysis into &n coli concentration occurring in the
stream. The tool was automatically able to cateutanoff volumes resulting at
a drainage area outlet for a rainfall event.
3. The runoff volumes were predicted with very goodé@d agreement for both
the SH 123 and Haberle Road sampling sites in #rertdmo Creek watershed.
4. E. coliconcentrations were predicted with unsatisfacegneement for both the
SH 123 and Haberle Road sampling sites using fibi@reint methods of
delivery factor calibration.
4.2. Recommendations

The model can be improved by not appling the SELECGoliloads as a
constant developed from the most recent data ¢etldor land use and contributing
sources. Land use and contributing source desshtieuld be collected for individual

years and seasons and the SELECT methodology shewdplied for the differing
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years and seasons. The SELHEToliloads input into the model should be varied for
different years and/or seasons to better accduheahanges influencing contributing
sources. A baseflo®. coliconcentration should be determined or a methaaltulate
the E. coli contribution into the stream due to direct deposishould considered and
incorporated into the model. Bacteria die-off aedjrowth occuring in the stream,
soil,and fecal material should be explored and thearporated into the model to better
represent the fate and transport of bacteria mgstream. Other unknown factors that
contribute tcE. coli bacteria contamination in streams should be censtor

accounted for in the model through an additionatlehparameter. Although the model
did not accurately predi. coli concentrations, it can be modified in multiple way

improve the model predictions.
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