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ABSTRACT 

 

Reliability Engineering Approach to Probabilistic Proliferation Resistance Analysis of 

the Example Sodium Fast Reactor Fuel Cycle Facility. (August 2011) 

Lillian Marie Cronholm, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. John Poston 

 

International Atomic Energy Agency (IAEA) safeguards are one method of proliferation 

resistance which is applied at most nuclear facilities worldwide.  IAEA safeguards act to 

prevent the diversion of nuclear materials from a facility through the deterrence of 

detection.  However, even with IAEA safeguards present at a facility, the country where 

the facility is located may still attempt to proliferate nuclear material by exploiting 

weaknesses in the safeguards system.  The IAEA’s mission is to detect the diversion of 

nuclear materials as soon as possible and ideally before it can be weaponized.  Modern 

IAEA safeguards utilize unattended monitoring systems (UMS) to perform nuclear 

material accountancy and maintain the continuity of knowledge with regards to the 

position of nuclear material at a facility.  This research focuses on evaluating the 

reliability of unattended monitoring systems and integrating the probabilistic failure of 

these systems into the comprehensive probabilistic proliferation resistance model of a 

facility. 

 

To accomplish this, this research applies reliability engineering analysis methods to 

probabilistic proliferation resistance modeling.  This approach is demonstrated through 

the analysis of a safeguards design for the Example Sodium Fast Reactor Fuel Cycle 

Facility (ESFR FCF). 
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The ESFR FCF UMS were analyzed to demonstrate the analysis and design processes 

that an analyst or designer would go through when evaluating/designing the proliferation 

resistance component of a safeguards system.  When comparing the mean time to failure 

(MTTF) for the system without redundancies versus one with redundancies, it is 

apparent that redundancies are necessary to achieve a design without routine failures. 

 

A reliability engineering approach to probabilistic safeguards system analysis and design 

can be used to reach meaningful conclusions regarding the proliferation resistance of a 

UMS.  The methods developed in this research provide analysts and designers alike a 

process to follow to evaluate the reliability of a UMS. 
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CHAPTER I 

INTRODUCTION 

 

Probabilistic analysis of the proliferation resistance of nuclear energy systems and 

facilities is an active area of research in the field of international safeguards and non-

proliferation.  Methodologies and tools that support both the qualitative and/or 

quantitative analysis are continually being developed and improved.  At present, no 

single approach, model, or method has emerged as a standard for either general or 

specific systems or facilities. 

  

Previous studies on the topic of probabilistic approaches to proliferation resistance focus 

on the identification, analysis, and mitigation of proliferation pathways by the 

assignment of probabilities to each proliferation pathway.  This research develops a 

method to model the proliferation pathway segment associated with the hardware failure 

of the International Atomic Energy Agency’s (IAEA) unattended monitoring systems 

(UMS).  This method applies probabilistic reliability engineering modeling to IAEA 

UMS installed at a facility and relates the probability of individual component failures to 

the probability of a system failure.  A UMS failure would represent an opportunity for 

proliferation. 

 

In general, probabilistic approaches to analyze diversion or misuse pathways are very 

difficult to analyze because they rely on the assignment of probabilities to the series of 

events that must happen to divert material from a nuclear facility or misuse of a nuclear 

facility.  With no past data on successful covert or clandestine attempts at nuclear 

material diversion (because we would not know of the attempt if it was successful) and 

very little data on unsuccessful attempts, the probabilities would have to be estimated  

 

____________ 

This thesis follows the style of Health Physics. 
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based on best available information and/or expert judgment.  The objective of this 

research is to offer a reliability engineering approach for incorporation into overall 

probabilistic proliferation resistance modeling.  Reliability engineering is the area of 

study concerned with a system or component to perform satisfactorily over a given 

period of time. 

 

International Atomic Energy Agency (IAEA) Safeguards is one method of proliferation 

resistance, which is applied at most nuclear facilities worldwide.  IAEA safeguards act to 

prevent the diversion of nuclear materials from a facility through the deterrence of 

detection.  However, even with IAEA Safeguards present at a facility, the country where 

the facility is located may still attempt to proliferate nuclear material by exploiting 

weaknesses in the safeguards system.  The IAEA’s mission is to detect the diversion of 

nuclear materials as soon as possible and ideally before it can be weaponized.  Modern 

IAEA safeguards utilize unattended monitoring systems (UMS) to perform nuclear 

material accountancy and maintain the continuity of knowledge with regards to the 

position of nuclear material at a facility.  This research focuses on evaluating the 

reliability of unattended monitoring systems and integrating the probabilistic failure of 

these systems into the comprehensive probabilistic proliferation resistance model of a 

facility. 

 

To accomplish this, the research applies reliability engineering analysis methods to 

probabilistic proliferation resistance modeling.  This approach is demonstrated through 

the analysis of a safeguards design for the Example Sodium Fast Reactor Fuel Cycle 

Facility (ESFR FCF).  The analysis demonstrates the probability of safeguards system 

failure which would result in the loss of the continuity of knowledge of nuclear material 

at this facility.  This failure probability of the UMS is then integrated into an overall 

proliferation resistance model of the facility.  A detailed proliferation resistance model 

of the ESFR FCF is outside the scope of this research. 
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A UMS design for the ESFR FCF is presented in this research to facilitate demonstration 

of the reliability analysis process; the design itself is not emphasized.  This UMS design 

for the ESFR FCF is in contrast to other designs which are proposed in the literature.  

Many of the safeguard designs proposed assume infinite financial resources, manpower, 

legal authorities, and futuristic technologies not currently available or in use by the 

IAEA.  This research presents a UMS design for the ESFR FCF using currently available 

technology and a reasonable number of systems to safeguard the facility. 

1.1 SCOPE OF WORK 

This research applies quality engineering concepts to safeguards system analysis and 

design.  A process is developed to calculate the probability of safeguards system failure 

from a probabilistic model of a network of unattended monitoring systems.  This process 

is then applied to the design of a safeguards system for the ESFR FCF. 

 

In Chapter II, the reader is introduced to IAEA Safeguards with an emphasis on the role 

of Unattended Monitoring Systems and the ESFR facility. In Chapter III, a general 

process for the analysis and/or design of the reliability of a safeguards system is 

developed.  In Chapter IV, this process is applied to the ESFR FCF.  In Chapter V, the 

reliability process how it relates to proliferation resistance analysis is discussed. 

 

The beneficiaries of this research are the IAEA, international safeguards and non-

proliferation (IS&NP) community and the proliferation resistance and physical 

protection (PR&PP) community.  This research demonstrates a process that the IAEA 

and the IS&NP community can use to analyze existing safeguards systems and design 

future safeguards systems.  Researchers in the area of PR&PP will be able to utilize the 

probabilistic modeling developed and apply it in a broader sense to more facilities and 

integrate it into broader probabilistic proliferation resistance methods and models. 
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CHAPTER II 

BACKGROUND AND LITERATURE REVIEW 

 

This chapter discusses modern approaches to IS&NP with references to governing 

documents and IAEA safeguards.  This is followed by a literature review which includes 

previous work in proliferation resistance approaches.  Finally, the IS&NP and PR&PP 

literature specific to the ESFR is discussed. 

2.1 IAEA INTERNATIONAL SAFEGUARDS 

The International Atomic Energy Agency (IAEA) is the intergovernmental body which 

administers international safeguards in accordance with the Non-Proliferation Treaty 

(NPT).  The IAEA is an independent United Nations (UN) Organization; it draws 

independent conclusions and reports these conclusions to the UN Security Council.  

Every country in the world with the exception of Israel, Pakistan, India and North Korea 

participates in the NPT. 

2.1.1 OBJECTIVES 

The objective of IAEA Safeguards is defined to be, “the timely detection of diversion of 

significant quantities of nuclear material from peaceful nuclear activities to the 

manufacture of nuclear weapons or of other nuclear explosive devices or for purposes 

unknown, and deterrence of such diversion by the risk of early detection.” (International 

Atomic Energy Agency 1972)  
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The timeliness criteria is defined to be, “where there is no additional protocol in force or 

where the IAEA has not drawn and maintained a conclusion of the absence of 

undeclared nuclear material and activities in a State, the timeliness detection goals are as 

follows: 

 

• One month for unirradiated direct use material, 

• Three months for irradiated direct use material, 

• One year for indirect use material. 

 

Longer timeliness detection goals may be applied in a State where the IAEA has drawn 

and maintained a conclusion of the absence of undeclared nuclear material and activities 

in that State” (International Atomic Energy Agency 2001). 

 

A significant quantity is defined to be, “the approximate amount of nuclear material for 

which the possibility of manufacturing a nuclear explosive device cannot be excluded. 

Significant quantities take into account unavoidable losses due to conversion and 

manufacturing processes and should not be confused with critical masses. Significant 

quantities are used in establishing the quantity component of the IAEA inspection goal” 

(International Atomic Energy Agency 2001).  Significant quantity values currently in 

use are given in Table 1. 
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Table 1. Significant quantities 

Material Significant Quantity (SQ) 

Direct use nuclear material  

     Pu
a
 8 kg 

     
233

U 8 kg 

     HEU (
235

U ≥ 20%) 25 kg 

Indirect use nuclear material  

     U (
235

U < 20%)
b
 75 kg 

235
U 

(or 10 ton natural U 

or 20 ton depleted U) 

     Th 20 tons  

a
 For Pu containing less than 80% 

238
Pu. 

b
 Including low enriched, natural and depleted uranium. 

 

2.1.2 APPROACHES 

As part of the treaty verification regime, the IAEA must determine that the facility has 

not been altered for the purpose of misuse and nuclear material has not been diverted.  

The design information verification (DIV) is performed for each facility as necessary to 

verify that the facility design has not been altered such to perform undeclared activities.  

A physical inventory verification (PIV) is performed as necessary to verify the presence 

of declared materials and the absence of undeclared materials. 

 

One safeguards method to verifying the presence of material is through “nuclear material 

accountancy” (NMA).  This method establishes “Material Balance Areas” (MBAs) 

through which nuclear material flows.  General mass balance equations are applied to 

the special nuclear materials which flow in and out of a MBA as well as materials which 
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are created or destroyed.  In general, MBAs are selected based on the design 

characteristics of the facility and the points in the process area which permit the optimal 

balance between the maximization of materials verification (i.e., minimization of 

measurement uncertainties) and the minimization of inspection resource requirements.   

The locations that the nuclear material is in a form that can be measured for material 

flow or inventory are called key measurement points (KMP).   KMPs are, but not limited 

to, the inputs and outputs of MBAs (International Atomic Energy Agency 2001). Other 

methods of NMA include item counting and item balances for situations which are not 

suitable for mass balances.  For some facilities, significant amounts of materials may be 

in the process lines inside the MBA.  Additionally, some “hold up” may occur where 

materials are permanently deposited in the process lines.  During an inspection, it may 

be necessary for the facility operator to clear the process lines in order for the inspector 

to perform the material balance.  For the occasions where there is more than a significant 

quantity of material in the hold up, the inspector will directly measure the material 

deposited in the process lines in the process area.  A material balance period is 

established for each MBA and/or facility based on the uncertainties inherent in the 

safeguards measurement techniques as well as the timeliness criteria. 

 

The nuclear material measured at KMPs can either be in bulk form or item form.  

Materials in item form are items that are easy to identify and account for.  Examples of 

item form material includes fuel assemblies and fuel pins.  Bulk material is liquids, gas 

or powder.  Bulk material also includes pellets or pebbles that cannot be individually 

identified for NMA (International Atomic Energy Agency 2001). 

 

Another verification method is Containment and Surveillance (C/S).  This method 

utilizes the continuous monitoring or “continuity of knowledge” (CoK) of items or 

materials to verify their presence.  Specifically, surveillance cameras are used to monitor 

the presence of material until it can be placed in an IAEA sealed container.  IAEA seals 

can be generally understood as a tamper indicating locks.  The C/S method is usually 
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applied to safeguarded materials which are difficult to verify by quantitative 

measurements, such as irradiated nuclear fuel assemblies.   

 

Attended, Unattended, and Remote Monitoring Systems (AMS/UMS/RMS) are 

deployed at facilities to assist the inspectors carrying out their mission.  AMS are either 

portable or resident at a facility and require an IAEA inspector to operate them.  These 

are devices such as handheld radiation detectors and physical seals.  UMS are resident at 

a facility and do not require an inspector to operate them.  These include devices such as 

detectors, cameras, and electronic seals in process and transport areas.  Data are 

collected by these systems continuously.  Conditions regarding the inspector’s 

authorities to review, collect, and remove data from a facility depend upon individual 

agreements between the IAEA and the facility established through the Comprehensive 

Safeguards Agreement (International Atomic Energy Agency 1972) and the Model 

Additional Protocol (International Atomic Energy Agency 1997).  Data restricted to the 

facility must be evaluated during an inspection by an inspector at the facility and either 

erased after use or left behind at the facility.  Data released from the facility may be 

retrieved physically by an inspector via a data storage device.  RMS are UMS using a 

remote monitor (RM) which can collect data remotely via the internet and are used to 

reduce the burden of inspection for both the IAEA inspector and the facility operator. 

2.1.3 UNATTENDED AND REMOTE MONITORING SYSTEMS 

UMS generally consist of a detector, detector electronics, data acquisition system, data 

storage system, and backup power supply.  RMS includes all these with the addition of a 

remote monitor (RM) such as a modem or other connectivity devices.  Redundancies of 

components are required to ensure that there are no system failures or loss of data.  

Individual component failures occur and must be anticipated in the system design stages.  

For UMS/RMS systems which focus on maintaining the CoK, a system failure may 

result in the loss of the CoK, if there is data loss.  If loss of the CoK occurs, inspectors 

must perform a PIV to be performed to regain the CoK.  A UMS/RMS failure also 

triggers an unscheduled maintenance where a technician is dispatched immediately to 
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replace/repair the failed system.  Both the PIV and maintenance are manpower intensive 

and consume significant IAEA and operator resources.  Thus, UMS/RMS reliability is 

very important to the optimization of safeguards. 

2.1.4 CURIUM-PLUTONIUM RATIO (Cm-Pu Ratio) 

The Cm-Pu ratio technique is where the Cm-Pu ratio is multiplied by either the singles 

or doubles neutron count rate to obtain the concentration of plutonium in the measured 

material.  The neutrons from 
244

Cm are a dominant source of neutrons in spent fuel and 

fresh fuel that still contains major actinides.  Once the 
244

Cm is measured by neutron 

detectors the concentration of plutonium in the spent fuel or fresh fuel can be calculated 

based on the ratio (Rinard et al. 1996).  The fresh fuel from the ESFR pyroprocessing 

facility leaves the actinides, including 
244

Cm, in the fuel.    

2.2 RELIABILITY ENGINEERING 

The proliferation weaknesses of a system with respect to UMS reliability can be 

determined by identifying the least reliable component or subsystem in the system. 

 

Reliability engineering is the analysis of the reliability and failure characteristics of 

individual components or a system of components.  Reliability is defined to be “the 

probability of a product performing its intended function for a stated period of time 

under certain specified conditions” (Mitra 1998).  The reliability of a component can be 

modeled statistically using time-independent or time-dependent failure probability 

distributions and measurable parameters, such as the component mean-time-to-failure 

(MTTF).  Time-independent models, such as the exponential distribution, are used to 

model random chance-failures with a constant, time-independent failure-rate.  Time-

dependent models, such as the Weibull distribution, are used to model random chance-

failures with a variable, time-dependent failure-rate (Mitra 1998).  Time-dependent 

models are particularly useful for modeling the debugging or wear-out of components 

while the time-independent models are useful for modeling normal operation.  System 

reliability can be calculated from the reliability models for each of the individual system 
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components.  These reliability engineering models must be applied to a problem to 

produce results. For this work, the ESFR has been adopted as the model to demonstrate 

these methods. 

2.3 EXAMPLE SODIUM FAST REACTOR (ESFR) 

The Example Sodium Fast Reactor (ESFR) is a hypothetical Generation IV (GenIV) 

nuclear reactor; it is not an operating facility and will presumably never be built.  This 

hypothetical sodium-cooled fast reactor and pyroprocessing facility were designed by 

Argonne National Laboratory (ANL) for the purpose of facilitating discussion on the 

subject of fast reactor and pyroprocessing safeguards in the absence of a safeguards 

confidential design and processing information from an operating facility.   

 

Sodium fast reactors are one of the GenIV facilities that would possibly have a co-

located nuclear fuel reprocessing facility included in the design.  Nuclear material 

pyroprocessing is a type of dry reprocessing that uses molten salts as solvents as 

opposed to aqueous reprocessing e.g. PUREX process (Plutonium 

and Uranium Recovery by Extraction) that uses water and organic compounds.  The 

ESFR pyroprocessing facility never separates the plutonium from the actinides; therefore 

the fresh fuel contains actinides.  Nuclear fuel reprocessing facilities are of particular 

concern when it comes to proliferation resistance.  Having the co-located facility 

increases the attractiveness of the site to potential proliferators due to the presence of 

bulk nuclear material and the ability to acquire plutonium in a form easier to convert to a 

weapon. 

 

The ESFR design includes four 800 MWth (300 MWe) reactors (Argonne National 

Laboratory 2006) and an on-site pyroprocessing fuel cycle facility (FCF), which 

includes fuel fabrication, as shown in Fig. 1 (Argonne National Laboratory 2006).  The 

fuel used at the ESFR is metallic fuel containing U and Pu.  
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Figure 1. Example Sodium Fast Reactor (ESFR) layout 

  

The pyroprocessing facility layout is shown in Fig. 2 (Argonne National Laboratory 

2006).  The basic, high-level materials flow for the pyroprocessing facility is described 

below.  More information on the pyroprocessing facility and the material flow can be 

found in Appendix A.  The material in the pyroprocessing facility is processed in batches 

and does not flow through pipes. 
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Figure 2. ESFR pyroprocessing facility layout 

 

The below process areas are seen in Fig. 2. 

• Assembly Disassembling (AD) 

The irradiated fuel assemblies are received from the fuel storage pit and disassembled. 

The fuel pins are passed into the argon filled process cell to be chopped.  Assembly 

hardware that does not contain nuclear material is disposed.  On average 0.57 fuel 

assemblies are processed per day over the entire year.  The nuclear fuel being 

processed is from the co-located fast reactor which uses metallic fuel.  Additionally, 

the fuel has been cooled for 7-8 years before it is sent to the pyroprocessing facility. 

 

• Element Chopper (EC) 

The element chopper converts the irradiated fuel pins into ¼-inch long pieces.  One 

hundred and fifty four pins are chopped each day.  The chopped fuel pins are moved to 

the electro-Refiner (ER) in an anode basket.  Four anode baskets are sent to the ER per 

day.  Each anode basket contains about 10 kg of Pu within the irradiated fuel pieces. 
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• Electro-Refiner (ER) 

The purpose of the ER unit is to electrochemically separate uranium from other spent 

fuel constituents. During normal ER operation, essentially all of the uranium dissolves 

in the medium and electrochemically transports and deposits on the cathode as 

uranium metal. The uranium metal on the cathode is transferred to the uranium product 

processing (UP) unit.  Undissolved cladding pieces, known as hulls, and noble metal 

fission products remain in the anode basket and are transferred to metal waste 

processing (MW).  During normal ER operation, effectively all of the plutonium and 

other transuranic (TRU) elements dissolve in the salt phase. The salt from the ER 

containing dissolved U, TRU and fission products (FP) is sent to U/TRU 

Extraction/Recovery (TR).   

 

Two cathodes containing uranium metal are sent to uranium product processing (UP) 

per day.  One container per day of salt is sent to the U/TRU Extraction/Recovery (TR).  

 

• Uranium Product Processing (UP) 

The cathode from the ER is sent to the UP.  The uranium metal from the ER is cast 

into ingots.  The ingots are sent to the product prep injection caster furnace (IC).  One 

container every three days is sent to the IC with twenty four 3.7 kg uranium (and small 

amounts of TRU) ingots.  The adhering salt is recycled back to the ER. 

 

• U/TRU Extraction/Recovery (TR) and U/TRU Product Processing (TP) – Two-Stage 

Electrolysis Option 

One container of salt per day from the ER is sent to the U/TRU Extraction/Recovery 

(TR).  Each container has 260 kg of salt.  The salt from the ER contains dissolved 

TRU (about 10.4 kg of Pu per container), reactive fission products, small amounts of 

cladding and small amounts of uranium.  The U/TRU is removed from the salt in a 

two-stage process by electrochemical reduction.  During the first stage, 100% of the U 

and 86% of the TRU is assumed to be removed.  During the second stage, 86% of the 
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TRU is again extracted from what is left.  This results in approximately 98% TRU 

extraction from the salt via the two electrolysis stages.  

 

In the U/TRU product processing the U/TRU metal is formed into ingots.  The ingots 

are sent to the product prep injection caster furnace (IC).  

 

• Product Prep Injection Caster (IC) 

In the product prep unit, metal ingots from UP and TRU/U product processing are 

melted above 1200 ºC to serve as feed for fuel fabrication.  Metal ingots are melted, 

mixed, and cast into TRU/U metal slugs.  

 

• Pin Fabrication/Pin Processing (PP) 

TRU/U metal slugs from the IC are sent to the pin fabrication/pin processing (PP).  

The slugs are put into metal cladding with bond sodium to fill the gap between the 

TRU/U and the cladding.  Each fuel pin is sealed, tested for leaks and sent to assembly 

fabrication (AF). 

 

• Assembly Fabrication (AF) 

The 154 fuel pins per day from PP are sent to the assembly fabrication (AF).  In the 

air-filled shipping and receiving cell, the pins are assembled into fuel assemblies.  On 

average 4 assemblies per week are assembled. 

2.4 PREVIOUS WORK 

2.4.1 APPROACHES TO PROLIFERATION RESISTANCE 

Success Tree Model Approach 

Golay (2001) used the success tree representation as the framework to assess 

proliferation success probability.
 
 By determining an overall proliferation success 
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probability for an assessed facility design, comparisons between facility design concepts 

could be made. 

  

Sentell (2002) did a study following the work of Golay that tested the concepts presented 

in Golay's study.  Sentell used the same success tree model that was developed by Golay 

to compare a typical UO2 fuelled pressurized water reactor (PWR), a PWR with 

thorium-oxide fuel, and a pebble bed modular reactor (PBMR).  The probabilities used 

by Sentell for his success tree were based on his expert judgment. 

Integrated Methodology for Quantitative Assessment of Proliferation Resistance of 

Advanced Nuclear Systems Using Probabilistic Methods 

This study used a probabilistic approach with event-trees and fault-trees to model 

diversion from the spent fuel storage of a modular pebble bed reactor system (MPBR).  

An integrated evaluation methodology was used.  The methodology includes 

proliferation competition model development, model input evaluation, and pathway 

assessment.  Expert elicitation was used for evaluation of key model inputs.  The results 

of the study demonstrate the probabilistic approach to assessing the proliferation 

resistance of an advanced nuclear energy system (Ham 2005). 

Safeguards Logic-Trees 

Cojazzi, Renda and Contini (2004) elaborated on the safeguards logic-trees developed 

by Hill (1998).   This investigation demonstrated the application of the fault-tree 

technique to the assessment of the proliferation resistance.  The study identified possible 

acquisition pathways in a given nuclear fuel cycle and their quantification in terms of 

non-detection probability. 

Multi-Attribute Utility (MAU) Analysis 

MAU analysis has been used since the late 1970's to rank the attractiveness and risk 

factors associated with different proliferation pathways.  In 2000, Ko, Kim, Yang and 

Park used MAU theory and an electrical circuit representation to model proliferation 
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resistance in a quantifiable way (Ko et al. 2000).  In 2007, Charlton and his colleagues 

developed an additive, multi-attribute utility analysis (MAUA) method for proliferation 

resistance assessment for the U.S. Department of Energy’s Advanced Fuel Cycle 

Initiative (AFCI) program (Charlton et al. 2007). 

 

MAU analysis is applicable to a wide variety of nuclear energy systems and can identify 

strengths and weaknesses in a system.  MAU analysis uses attributes (e.g., weight 

fraction of Pu in target material) that are weighted by importance to determine a 

proliferation resistance measure for each step.  Each attribute is assigned a utility 

function via expert knowledge or a physical characteristic of the attribute.  MAU allows 

ranking of various options and non-technical components can be considered.  The values 

given to the attributes and weighting factors use objective (measurable) and/or subjective 

types of determinations. 

A Practical Tool to Assess the Proliferation Resistance of Nuclear Systems: the SAPRA 

Methodology 

A “simplified approach for proliferation resistance assessment” (SAPRA) was 

developed by AREVA for analysis of proliferation resistance of their reactor designs.  It 

is based on an evaluation of the efficiency of material-related, technical, or institutional 

barriers against diversion or misuse by a country possessing civilian nuclear material or 

having developed technologies on its own territory or abroad.  It was not a sophisticated 

method but rather a crude quantitative attempt to index or “measure” the proliferation 

resistance of a civilian nuclear fuel cycle at each of its steps (Greneche 2008). 

2.4.2 PROLIFERATION RESISTANCE APPROACHES APPLIED TO THE ESFR 

PR&PP Evaluation: ESFR Full System Case Study Final Report 

This study applies the proliferation resistance and physical protection (PR&PP) 

methodology to the ESFR pyroprocessing fuel cycle facility (Generation IV 

International Forum Proliferation Resistance and Physical Protection Evaluation 



 17

Methodology Working Group 2009).  Targets, target material, and potential proliferation 

pathways of the material in the pyroprocessing facility are outlined for the ESFR.  

Proliferation pathways for each material balance area (MBA) were analyzed 

qualitatively based on technical difficulty, cost, time, detection probability, fissile 

material type, and detection resource efficiency. The analysis focused on diversion (vs. 

misuse and abrogation/break-out).  This study was an overview of the pathway as a 

whole.  Further study would open up the possibility of analyzing the specific pathway 

segments (or steps the proliferators would take).  Expert elicitation was used for the 

qualitative analysis in this case study. 

Application of the Event-Tree/Fault-Tree Modeling Approach to the Evaluation of 

Proliferation Resistance 

This study by Coles and Zentner (2007) used the PR&PP methodology to perform a 

fault-tree analysis of an attempted diversion scenario from the pyroprocessing facility at 

the ESFR.  This diversion would result in the diversion of one significant quantity (SQ) 

of material in one year.  The study focused on pathway analysis of a protracted diversion 

from the external uranium container. 

Markov Model Approach to Proliferation-Resistance Assessment of Nuclear Energy 

Systems 

Scientists at Brookhaven National Laboratory used a Markov model approach to assess 

the proliferation resistance of the ESFR for a protracted diversion (Yue et al. 2008).  

Their quantitative assessment modeled uncertainty, false alarms, concealment, and 

human performance.  The PR&PP methodology also was incorporated into the model 

framework. 
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CHAPTER III 

RELIABILITY DESIGN PROCESS 

 

For existing safeguards systems, the proposed method can be used to determine the 

reliability (or probability of failure) of installed systems.  For future systems, it would be 

used to design a safeguards system to a specified reliability. 

 

System reliability is related to the probability of system failure.  An analyst/designer can 

integrate this failure probability into more comprehensive probabilistic PR&PP models.  

Both the analysis and design processes are proposed in this chapter and demonstrated in 

the next chapter. 

3.1 ANALYSIS AND DESIGN PROCESS – OVERVIEW 

Fig. 3 shows the reliability design process.  First, the reliability criteria for a system or 

facility are chosen and the initial safeguards design is laid out.  The safeguards design 

reliability is analyzed to determine if it meets the reliability criteria.  If it does the 

safeguards can be finalized and installed; otherwise, the safeguards design is revised and 

redundancies are added. 
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Figure 3. Design process for safeguards systems with respect to reliability criteria 

 

3.2 RELIABILITY CRITERIA 

The reliability criteria are user defined.  The goal is to have the highest reasonable 

reliability criteria for a system.   

 

Unattended systems which maintain the continuity-of-knowledge (CoK) require a high-

level of reliability as system failure would result in the loss of the CoK.  The cost 

associated with regaining the continuity-of-knowledge (if it is possible at all) is 

generally very high. 
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3.3 SAFEGUARDS DESIGN 

The safeguards design consists of an overarching conceptual design of how the 

safeguards system will work at a given facility.  The safeguards approach is generalized 

by facility type but varies significantly from facility to facility.  A detailed discussion of 

safeguards system design is outside the scope of the current research.   

3.4 RELIABILITY ANALYSIS 

The reliability analysis focuses on determining the reliability of a safeguards system 

design.  From the system analyst’s and designer’s prospective - there are two methods to 

acquiring appropriate reliability model parameters: 

 

(1)  Estimate system reliability from the data generated by past experience. 

(2)  Estimate system reliability from the individual component reliabilities stated by the 

manufacturer. 

 

For method (1), the IAEA would be able to collect data on component failures and 

replacements over time.  Proper failure reporting and archiving generates the reliability 

data necessary to determine the best model (either exponential or Weibull) and to 

estimate model parameters.  For method (2), as previously discussed, system reliabilities 

can be estimated from individual component reliabilities. 

 

Most products go through three distinct phases from product inception to wear-out.  Fig. 

4 shows a typical life-cycle curve for which the failure rate (λ) is plotted as a function of 

time (Mitra 1998).  This curve consists of the debugging phase, chance-failure phase, 

and wear-out phases.    The debugging phase represents the initial problems identified 

and corrected during prototyping and exhibits a decrease in the failure rate.  The chance-

failure phase represents the useful life of the product and exhibits failures which occur 

randomly and independently.  The wear out phase represents the end of the product’s 

useful life as parts age, wear out and exhibit an increase in the failure rate. 
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Figure 4. General equipment failure rate over the equipment lifetime 

 

Some basic concepts in reliability engineering are the mean time to failure (MTTF), the 

mean time to detection (MTTD), the mean time to repair (MTTR), and the mean time 

between failures (MTBF).  The MTTF is the average (or expected) time interval between 

when a product is initially functional until it fails.  The MTTD is the average (or 

expected) time interval between when a product failure occurs and is detected.  The 

MTTR is the average (or expected) time interval between when a product failure is 

detected until it is repaired.  The MTBF is the average (or expected) time between 

failures.  The relationship between the these concepts is 

 

 .MTBF MTTF MTTD MTTR= + +       (3.1) 

 

If time to detection is instantaneous or minimal (e.g., through remote monitoring) then 

MTBF is 
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0.MTBF MTTF MTTR where MTTD= + ≈      (3.2) 

 

If the time to detection is minimal and time to repair is short or minimal compared to the 

time to failure, then: 

 

      where .MTBF MTTF MTTD MMTR MTTF≈ + ≪     (3.3) 

 

3.4.1 MODELING COMPONENT RELIABILITY 

A component’s reliability is represented by a distribution.  Described below are two 

common distributions used to model reliability. 

Exponential Distribution 

For components with a failure rate that is constant and independent of time, failures are 

exponentially distributed.  As seen in Fig. 4, the exponential distribution would be 

applied to the chance-failure phase of the component’s lifetime.  For example, if you had 

some number of identical components, N, and each began operating at time t = 0, and 

each component is expected to fail to fail randomly over time,  the probability that a 

component will fail by time t will be exponentially distributed as shown in Fig. 5. 
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Figure 5. Failure function F(t) or CDF for the exponential distribution, 0.2λ =  

 

For the chance-failure phase of a component’s life (Fig. 4), the time until failure of a 

component with a constant failure rate can be modeled by the exponential distribution.  

These are in contrast to the debugging and wear out phases of a component discussed in 

the next sublevel.  These phases have decreasing and increasing failure rates, 

respectively, which may be modeled by the Weibull family of distributions (Mitra 1998). 

 

For exponentially distributed failures, the probability that a component fails at or before 

time, t, given a constant failure rate, λ, is represented by F(t), the failure function or the 

cumulative distribution function (CDF) for the exponential distribution: 

 

 '

0

( ) ' 1 ,   0.

t

t tF t e dt e tλ λλ − −= = − ≥∫       (3.4) 

   

( ) 1 tF t e λ−= −



 24

The failure function F(t) is related to the probability density function (PDF), f(t):   

 

( )
( ) ,   0.

dF t
f t t

dt
= ≥         (3.5) 

 

For the exponential distribution, the PDF is: 

 

 ( ) ,  0.tf t e tλλ −= ≥         (3.6) 

 

The MTTF for the exponential distribution is constant and is the reciprocal of the failure 

function and equal to the expected value E(T):  

 

0 0

( ) [1 ( )] ( ) .E T F t dt R t dt MTTF

∞ ∞

= − = =∫ ∫      (3.7) 

 

For repairable equipment where the failure detection and component repair times are 

short relative to the MTTF, the MTTF is also equal to the mean time between failures 

(MTBF). 

 

The probability that failure does not occur at or before time t  is represented by ( )R t , the 

reliability function, and is the compliment of the CDF: 

 

( ) 1 ( ).R t F t= −         (3.8) 

 

For the exponential distribution, the reliability function is: 

 

 ( ) tR t e λ−=          (3.9) 

 

and is shown in Fig. 6. 
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Figure 6. Reliability function R(t) for the exponential distribution, 0.2λ =  

 

In general, the failure-rate function, r(t), is given by the ratio of the PDF, f(t), to the 

reliability function, R(t); 

 

( )
( ) .

( )

f t
r t

R t
=          (3.10) 

 

For the exponential failure distribution: 

 

 ( ) ,
t

t

e
r t

e

λ

λ

λ
λ

−

−= =         (3.11) 

 

which implies a constant failure rate, which is consistent with the earlier statement. 
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Weibull Distribution 

For components with a variable failure rate, i.e., time-dependent, failures can often be 

modeled by the Weibull distribution.  This is a three-parameter distribution whose PDF, 

f(t), is given by: 

 

 

1 ( )
( )

( ) ,   

t
t

f t e t

ββ γ
αβ γ

γ
α α

− − −  − = × × ≥  
    (3.12) 

 

and the CDF or failure function, F(t), is:  

 

 

( )

( ) 1 ,   .

t

F t e t

βγ
α γ
− −  = − ≥       (3.13) 

 

The parameters are a location parameter ( )γ γ−∞ < < ∞ , a scale parameter ( 0)α α > , and 

a shape parameter ( 0)β β > , however, the γ  parameter always equals zero when applied 

to reliability modeling (Mitra 1998).  The location parameter determines the location or 

shift of the distribution.  The scale parameter determines the spread of the distribution.  

The shape parameter affects the shape of the distribution (e.g. normal distribution, 

exponential distribution, etc).  The PDFs for 0γ = , 1α =  and several values of 

( 0.5,1, 2, 4)β β =  are shown in Fig. 7 (Mitra 1998).   
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Figure 7. Weibull probability density functions (PDF) for 0γ = , 1α = , 0.5,1,2,4β =  

 

The reliability function, R(t), for the Weibull distribution is given by: 

 

( )
( )

t

R t e

β

α−=         (3.14) 

 

and the MTTF is: 

 

 
1

,
1

MTTF α
β
 

= ×Γ + 
       (3.15) 

 

where Γ  is the gamma function which is expressed by 
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 1

0

( ) .x tt e x dx

∞
− −Γ = ×∫         (3.16) 

 

The failure-rate function, r(t), for the Weibull time-to-failure probability distribution is  

 

 
1( )

( ) .
( )

f t t
r t

R t

β

β

β
α

−

= =         (3.17) 

 

Fig. 8 shows the shape of the failure rate function for the Weibull distribution, for values 

( 0.5,1,3.5)β β = and 1α = . 

 

 

Figure 8. Failure-rate functions r(t) for the Weibull distribution for 0γ = , 1α = and 0.5,1,3.5β =  
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For 0γ = , 1α = , 1β = , the failure rate is constant with time and the Weibull distribution 

becomes the exponential distribution (Fig. 8).  If 0γ = , 1α = and 0.5β = , the failure 

rate decreases with time and can be used to model components in the debugging phase 

(Fig. 8).  And if 0γ = , 1α = and 3.5β = , the failure rate increases with time and can be 

used to model components in the wear-out phase.  In this case, the Weibull function 

approximates the normal distribution (Fig. 8). 

3.4.2 MODELING SYSTEM RELIABILITY 

Most systems are made up of a number of components.  The reliability of each 

component and the configuration of the components which make up the system 

determine the system reliability.  To increase the reliability of a system, redundancies 

can be added by placing components in parallel.  As long as one of the parallel 

components operates, the system operates.  Described here are the methods to determine 

a system’s reliability based on the reliability of the individual system components for 

systems with components configured in series, parallel, and a combination of the two.  In 

Chapter IV these will be used to calculate the system reliability of unattended 

monitoring systems which consist of a detector, data collect computer, and modem in 

series with redundancies in parallel.  The exponential distribution will be used to model 

the components. 

Systems with Components in Series   

Fig. 9 shows a system with three components (A, B, and C) in series. 
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Figure 9. System with components A, B and C in series 

 

For the system to operate, each component must operate.  If one component fails, the 

entire system will fail.  It is assumed that the components operate independently of each 

other (that is, the failure of one component has no influence on the failure of any other 

component).  In general, if there are n components in series, where the reliability of the 

ith  component is denoted by iR , the system reliability, SR  is 

 

1 2 ... .S nR R R R= × × ×         (3.18) 

 

For the components in Fig. 9 the system reliability is 

 

S A B CR R R R= × ×         (3.19) 

 

where RA, RB, RC are the reliability of components A, B, and C, respectively. 

 

The system reliability decreases as the number of components in series increases.  

Although over-design in each component improves reliability, its impact would be offset 

by the number of components in series.  Manufacturing capabilities and resource 

limitations restrict the maximum reliability of any given component.  Product redesign 

that reduces the number of components is a viable alternative. 
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If the system components can all be assumed to have a time-to-failure given by the 

exponential distribution, i.e., each component has a constant failure rate; we can 

compute the system reliability, failure rate, and mean time to failure.  As noted earlier, 

when the components are in the chance-failure phase, the assumption of a constant 

failure rate could be justified. Suppose the system has n components in series, each with 

an exponentially distributed time-to-failure with failure rates 1 2, ,..., nλ λ λ .  The system 

reliability, RS, is found as the product of the component reliabilities: 

 

 
11 2 ... .

n

i

in

t
tt t

SR e e e e
λ

λλ λ =

 
−  −− −  
∑

= × × × =      (3.20) 

 

This implies that the time-to-failure of the system is exponentially distributed with an 

equivalent failure rate, Sλ , of  

 

 
1

.
n

S i

i

λ λ
=

=∑          (3.21) 

 

Therefore, if each component that fails is replaced immediately with another that has the 

same failure rate, the mean-time-to-failure for the system, MTTFS, is given by 

 

 

 

1

1 1
.S n

S
i

i

MTTF
λ λ

=

= =

∑
        (3.22) 

 

Systems with Components in Parallel 

System reliability can be improved by placing components in parallel.  Since 

components are redundant and independent of each other; the system operates as long as 
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at least one of the components operates.  The only time the system fails is when all the 

parallel components fail.  Fig. 10 shows an example for a system with three components 

(A, B, and C) in parallel.  All components are assumed to operate simultaneously.   

 

 

Figure 10. System with components A, B and C in parallel 

 

Suppose we have n components in parallel, with the reliability of the ith  component 

denoted by ,  1, 2,...,iR i n= .  Assuming that the components operate randomly and 

independently of each other, the probability of failure of each component is given 

by 1i iF R= − .  Now, the system fails only if all the components fail.  Thus, the 

probability of system failure, FS, is  

 

1 2

1

(1 ) (1 ) ... (1 ) (1 ).
n

S n i

i

F R R R R
=

= − × − × × − = −∏     (3.23) 

 

For the components in Fig. 10 the system failure, FS, is 
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(1 ) (1 ) (1 )S A B CF R R R= − × − × −       (3.24) 

 

where RA, RB, RC is the reliability of component A, B, and C, respectively. 

 

The reliability of the system, RS, is the complement of FS and is given by 

 

 
1

(1 ) 1 (1 ).
n

S S i

i

R F R
=

= − = − −∏        (3.25) 

 

If the time-to-failure of each component can be modeled by the exponential distribution, 

each with a constant failure rate ,  1, 2,...,i i nλ = , the system reliability (RS), assuming 

independence of component operation, is given by 

 

 
1 1

1 (1 ) 1 (1 ).i

n n
t

S i

i i

R R e
λ−

= =

= − − = − −∏ ∏       (3.26) 

 

The time-to-failure distribution of the system is not exponentially distributed.  Therefore, 

the mean time to failure (MTTF) for the system with n identical components in parallel, 

assuming that each component is immediately replaced by an identical component, is 

given by 

 

 1 1 1 1(1 ... ).
2 3

MTTF
nλ= + + + +       (3.27) 

 

Systems with Components in Series and in Parallel 

Complex systems often consist of components that are both in series and in parallel.  

Reliability calculations are based on the previously discussed concepts, assuming that 

components operate independently. For the complex system shown in Fig. 11 
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Figure 11. Complex system with components in series and in parallel 

 

 

1S A B CR R R R= × ×         (3.28) 

 

where  

 

1 2 3 4

1 2 3

1 (1 )(1 ) and

(1 )(1 )(1 ).

A A A A A

B B B B

R R R R R

R R R R

= − − × − ×

= − − −
     (3.29) 

 

RA is the reliability of components A1, A2, A3, and A4.  The same applies for RB.  RA1 is 

the reliability of component A1, etc.  If the time to failure for each component can be 

assumed to be exponentially distributed, the system reliability and mean time to failure 

can be calculated under certain conditions using the previously discussed procedures. 

 

Systems with Standby Components 

In a standby configuration, one or more parallel components wait to take over operation 

upon failure of the currently operating component.  Here, it is assumed that only one 

component in the parallel configuration is operating at any given time.  Because of this 

the system reliability is higher than for comparable systems with components in parallel.  
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In parallel systems discussed previously, all components are assumed to operate 

simultaneously.  Fig. 12 shows a standby system with a basic component and two 

standby components in parallel.  Typically a failure-sensing mechanism triggers the 

operation of a standby component when the currently operating component fails. 

 

 

Figure 12. System with one main component and two standby components 

 

If the time to failure of the components is assumed to be exponential with failure rate λ , 

the number of failures in a certain time t adheres to a Poisson distribution with the 

parameter tλ .  Using the Poisson distribution, the probability of x failures, P(x), in time 

t is given by 

 

 
( )

( ) .
!

t xe t
P x

x

λ λ− ×
=         (3.30) 

 

For a system that has a basic component in parallel with one standby component, the 

system will be operational at time t, as long as there is no more than one failure.  In this 

situation the system reliability, R(t), is 



 36

 ( ) .t tR t e e tλ λ λ− −= + ×         (3.31) 

 

For a system that has a basic component and two standby components (Fig. 12) the 

system will be operational if the number of failures is less than or equal to 2.  The 

system reliability is  

 

 
2( )

( ) .
2!

t t t t
R t e e t eλ λ λ λ

λ− − −= + × + ×       (3.32) 

 

In general, if there are n components on standby along with the basic component (for a 

total of n+1 components in the system), the system reliability is given by 

 

 
2 3( ) ( ) ( )

( ) 1 ... .
2! 3! !

n
t

s

t t t
R t e t

n

λ λ λ λ
λ−  

= + + + + + 
 

    (3.33) 

 

The mean time to failure for such a system is  

 

 
( 1)

.s

i

n
MTTF

λ
+

=         (3.34) 

 

3.4.3 SIMULATION 

Direct calculations can be performed to determine the reliability of simple systems.  

However, simulations are better suited for the analysis of complex systems with various 

component models and/or complex distributions.  Simulations are relatively simple to 

understand and easy to implement.  A random number generator is used to simulate 

random failures given a representative failure distribution for each component.  First, a 

random number, T, is generated uniformly between 0 and 1.  Second, the reliability 
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function is set equal to T.  Third, the equation is inverted for the time, ft , which 

represents the time of the random failure. 

 

 1( ) ( ).f fR t T t R T−= ≥ =        (3.35) 

 

For the exponential distribution, 

 

( ) ft
R t T e

λ−= =         (3.36) 

 

where 

 

ln( )
,f

T
t

λ
−

=          (3.37) 

 

which is shown in Fig. 13. 
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Figure 13. Simulation example for failure function exponential distribution 

 

For the Weibull distribution, 

 

( ) , and

ft

R t T e

β

α
 
−  
 = =        (3.38) 

 

1

ln( ) .t T
f

βα= − ×         (3.39) 

 

The repair distribution is coupled to the failure distribution to complete the simulation 

model.  The simulation should be run a sufficient number of times to reduce the variance 

of the MTTF of the system.  Alternatively, the model can be run for the lifetime of the 

facility to include scheduled maintenance, upgrades, etc. 

 

 



 39

3.5 RELIABILITY DESIGN 

A system designer iteratively improves the reliability of the components most likely to 

fail the fastest in the system one at a time while minimizing costs.  After the addition of 

each component, the designer should repeat the reliability analysis of the updated design 

and compare the updated MTTF for the system with the value stated in the reliability 

criteria.  If the updated MTTF is greater than the specified reliability criteria, the design 

has acceptable reliability.  If the MTTF is less than the specified value, additional 

redundancies or more reliability components are necessary in the design and the design 

process is iterated again. 

 

The approach to adding redundancies varies depending on additional design constraints, 

such as cost.  For example, on each iteration of the design process a component is added.  

Without consideration of the cost of the added component, the designer would simply 

add a redundancy with the goal of minimizing components.  Therefore, the design is 

optimized to maximize the improvement-per-component-added.  However, if cost is 

considered, the designer would add a redundancy in the most cost efficient manner.  

Thus, the design is optimized to maximize the improvement-per-cost-added. 

 

In Fig. 14, a designer with the choice of system A, B or C would choose system B 

because it meets the minimum reliability criteria and does not exceed the maximum cost 

for the system.  
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Figure 14. Reliability vs. cost 

 

3.6 SUMMARY 

This chapter discussed the methods and distributions used to analyze the reliability of 

systems and design systems with target reliabilities.   The modeling of components in 

series, parallel and in complex systems was additionally reviewed. 
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CHAPTER IV 

ANALYSIS 

 

4.1 OBJECTIVE 

Chapter IV demonstrates the safeguards reliability decision process using the ESFR 

pyroprocessing facility.  Basic unattended monitoring components with associated 

failure rates will be applied to the ESFR fuel cycle facility (FCF) and analyzed for 

overall reliability. 

4.2 SAFEGUARDS DESIGN FOR ESFR PYROPROCESSING FACILITY 

A hypothetical and basic safeguards system design for an ESFR pyroprocessing facility 

is presented here.  The “hypothetical” refers to the fact that an actual facility of this type 

does not exist, thus the custom attended and unattended monitoring systems which 

would be used by the IAEA to safeguard this facility also do not exist.  The “basic” 

refers to the fact that the presented design only considers the basic UMS component of 

the safeguards system design and therefore does not include the detail of a complete 

safeguards design for this facility.  A complete safeguards design would include 

directional monitoring of the fuel, in-process monitoring of the pyroprocessing, 

containment and surveillance, and in-core operational monitoring. 

 

Many of the UMS systems proposed in the literature for use at the ESFR FCF suggest 

using technology that is either not available or not approved for use by the IAEA.  Since 

the purpose of this design is to facilitate the demonstration of the reliability analysis, the 

design presented here only includes currently available technology in use by the IAEA; 

the design itself is not emphasized. 

 

The UMS used in the current design are discussed in terms of the UMS technologies 

used to measure the particular nuclear material form because, as mentioned previously, 

the exact UMS equipment would be of a custom design using technology available to the 
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IAEA.  The UMS technology used at each measurement point is described in the design 

and not a specific system.  The appropriate reliability models and parameters associated 

with each UMS technology is estimated from information available in the literature for 

similar UMS equipment or a reasonable parameter is approximated.  Clearly, it is not 

appropriate to publish actual IAEA UMS reliability values for confidentiality reasons 

and, consequently, the values used here are not meant to imply accuracy but to be 

reasonable estimates.  Again, the objective is demonstration of the reliability analysis 

process. 

4.2.1 MATERIAL BALANCE AREAS AND PORTALS 

Nuclear material accountancy (NMA) is performed by applying material balance areas 

(MBA) to the fuel cycle facility (FCF) of the ESFR and monitoring the flow of materials 

in and out of the MBAs.  These MBAs are shown in Fig. 15.  MBAs are based on the 

convenience of the measurement of the nuclear material at the entrances and exits of 

these areas.   The primary movement of materials is through Portal 1, to Portal 2, to 

Portal 7, and through Portal 8 last.  At these locations the materials are in the form of 

spent fuel assemblies, spent fuel elements, fresh U/TRU elements, and fresh U/TRU fuel 

assemblies, respectively. Potentially there are additional convenient measurement points 

inside the process area, such as the U/TRU ingots, but without specific details, such as 

ingot size and shape, no meaningful assumptions about measurements will be made in 

this exercise. 
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Figure 15. MBAs, for ESFR pyroprocessing facility 

 

MBA 1 contains the assembly disassembly (AD) area.  Spent fuel assemblies pass 

through Portal 1 from the spent fuel storage to AD.  Spent fuel pins exit the AD through 

Portal 2 to the element chopper (EC). Portal 9 is used to move fuel handling equipment 

between MBA 1 and MBA 3. 

 

MBA 2 includes the element chopper, electro-refiner (ER), uranium product processing 

(UP), U/TRU extraction/recovery (TR), U/TRU product processing (UP), injection 

caster furnace (IC), pin processing (PP), oxidant production (OP) and metal waste 

processing (MW).   MBA 2 is also referred to as the process cell (PC) and is a hot cell 

and filled with argon. 

 

MBA 3 contains only the assembly fabrication.  Fresh fuel pins enter the MBA through 

portal 7 and fresh fuel assemblies exit MBA 3 through portal 8.  
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MBA 4 contains the ceramic waste processing (CW) and waste form temporary storage 

(WS).  Salt waste enters MBA 4 through Portal 3.  The vitrified waste canisters exit the 

CW through Portal 4 into the WS.  Portal 5 is used when the vitrified waste will be 

removed from the site. 

 

Portal 1.  The spent fuel assemblies are passed through multiple, ring-type neutron 

counters upon entering MBA1.  The measured total neutron and gamma counts should 

be consistent with Monte Carlo n-Particle (MCNP) and burn-up calculations which 

utilize operator declarations and in-core monitoring, if any. 

 

Portal 2.  Spent fuel pins pass through Portal 2 from the assembly disassembly (AD) area 

to the element chopper (EC). 

 

Portal 3.  Spent salt passes through Portal 3 from the process cell to MBA 4.  This portal 

will not be considered in the safeguards design due to its infrequent use. 

 

Portal 4.  Vitrified waste canisters pass through Portal 4 from ceramic waste processing 

(CW). This portal will not be considered in the safeguards design due to its infrequent 

use. 

 

Portal 5.  Vitrified waste canisters pass through Portal 5 from the waste form temporary 

storage.   

 

Portal 6.  Make-up TRU and uranium pass through Portal 6 from an external source.  

 

Portal 7.  Fresh fuel pins pass through Portal 7 from pin processing (PP) in the process 

cell to assembly fabrication (AF). 
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Portal 8.  Fresh fuel assemblies pass through Portal 8 from assembly fabrication (AF) to 

fresh fuel storage. 

 

Portal 9.  Fuel handling equipment passes through Portal 9 back and forth between 

assembly disassembly and assembly fabrication. 

4.2.2 SIMPLIFYING ASSUMPTIONS FOR ANALYSIS 

To facilitate the analysis of the ESFR FCF, some simplifying assumptions were made.  

 

● MBA 4, Portal 4 and Portal 5 were not considered in this analysis since the waste 

portion of the facility would be in use much less often than MBA 1, MBA 2 and 

MBA 3.  MBA 4 is where waste is processed and it is assumed it will only 

operate once a large quantity of waste has accumulated to be vitrified. 

● Portal 3 was not considered in the analysis.  It is assumed Portal 3 is under IAEA 

safeguards seal and not used unless an inspector is present with attended 

monitoring.  This is because the waste transferred through Portal 3 is assumed to 

be infrequent. 

● Portal 6 was not considered in the analysis.  Portal 6 is under IAEA safeguards 

seal and is not used unless an inspector is present with attended monitoring.  This 

portal is to add makeup material to the fuel as needed and the portal will not need 

to be used frequently. 

● Portal 9 was not considered in the analysis as a simplifying assumption and 

because nuclear material does not pass through this portal. 

● Transfer hatches 1 and 2 were not considered in the analysis.  They are used to 

move equipment into a hot area for repair and will be assumed to also be used 

infrequently and under IAEA safeguards seal. 

 

After the above assumptions are applied, only MBA 1, MBA2, MBA 3, Portal 1, Portal 

2, Portal 7 and Portal 8 in will be considered for analysis (see Fig. 16). 
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Figure 16. Simplified MBAs and portals for ESFR pyroprocessing facility 

 

4.2.3 UNATTENDED MONITORING SYSTEM TECHNOLOGIES 

The following assumptions were made for unattended monitoring systems: 

 

1. No dual-use equipment where the facility and the IAEA share equipment. 

2. Integrated safeguards, where the equipment and data collected are both utilized by the 

IAEA and the operator, was not considered. 

3. Only technologies currently in use by the IAEA or similar was considered. 

4. Only the key equipment needed for the Cm-Pu balance was considered.  Peripherals 

such as directional flow monitoring were not considered in this analysis. 

5. No components will be modeled as stand-by components.  The IAEA currently does 

not implement stand-by for UMS. 
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At each portal there are certain data to be collected.  Below in Table 2 are the basic 

systems that would be needed to implement Cm-Pu accountancy.  This is based on the 

ESFR safeguards in Option 1 of Budlong Sylvester et al. (2003). 

 

Table 2. Safeguards equipment for ESFR simplified design layout 

Measurement 

Point 

Nuclear 

Material Form 

Measurement 

Technique 
Measurement Technology 

Portal 1 Spent Fuel 

Assembly 

Gamma + Neutron 

Gross Counts → 

Burnup → Cm → Pu 

1 Fission Chambers 

1 Ionization Chambers 

Portal 2 Spent Fuel 

Element 

Gross Neutron →   Cm 

→ Pu 

He-3 Collar, Passive 

Portal 7 Fresh U/TRU 

Fuel Element 

Gross Neutron →   Cm 

→ Pu 

He-3 Collar, Passive 

Portal 8 Fresh U/TRU 

Fuel Assembly 

Gross Neutron →   Cm 

→ Pu 

He-3 Collar, Passive 

 

At Portal 1 the burnup (BU) of the spent fuel assembly is determined.  One fission 

chamber and the one ionization chamber are used to count total neutrons and total 

gammas. These measurements are used to confirm the declared burnup of the spent fuel 

assembly.  At Portal 2 the neutron activity is measured to determine the 
244

Cm in the 

spent fuel pin which is used to determine the concentration of plutonium using the Cm-

Pu ratio.  Similarly at Portals 7 and 8 the 
244

Cm is being counted using a He-3 Collar.  

The recycled fuel exiting Portals 7 and 8 still has 
244

Cm and long-lived actinides in the 

fuel. 

4.3 RELIABILITY CRITERIA 

Safeguards components have a goal of being designed with a minimum MTBF of 150 

months (Doyle 2008).  Assuming MTTR is very small compared to MTTF and MTTD is 

instant, a MTBF of 150 months can be assumed to be equal to a MTTF of 150 months.  

When a MTTF for a component is not available a 150 month MTTF will be assumed.  
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For the overall system, a goal of 2 years or 24 months MTTF will be the user defined 

reliability criteria.  The overall system consists of Portal 1, Portal 2, Portal 7, and Portal 

8 as depicted in Fig. 16. 

4.4 RELIABILITY ANALYSIS 

The overall system reliability is modeled by assuming the probabilistic reliability of each 

system is independent of the probabilistic reliability of every other system, as if the 

subsystems for Portals 1, 2, 7, and 8 are in series.  If any one subsystem fails, then the 

whole system fails.  This is calculated using Eq. 4.1 where RT(t) is the reliability for all 

portal subsystems, R1(t) is the reliability for Portal 1 subsystem, R2(t) is the reliability for 

Portal 2 subsystem, R7(t) is the reliability for Portal 7 subsystem, and R8(t) is the 

reliability for Portal 8 subsystem.  The reliability of the system is 

 

1 2 7 8( ) ( ) ( ) ( ) ( ).TR t R t R t R t R t= × × ×       (4.1) 

 

The individual subsystems are first modeled with the minimum equipment needed and 

without redundancies in equipment.  The MTTF for each component and each “link” in 

the chain are analyzed to identify the weakest points in the “chain”.  To demonstrate the 

design process, the reliability is improved by adding redundancies until the overall 

system reliability meets the specified reliability criteria. 
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Figure 17. Overall system -- portal subsystems in series 

 

Fig. 17 represents the overall safeguards system considered in this analysis.  The remote 

monitor (RM) is pictured for completeness but is not considered a critical component 

and therefore is not included in the reliability analysis of each subsystem.  The data 

acquisition (DAQ) component would continue to receive and store information even if 

the RM was inoperable.   

4.4.1 PORTAL 1 SUBSYSTEM 

To calculate and confirm the reported burnup, total neutrons and total gammas are 

counted for the spent fuel assemblies entering Portal 1.  A minimum subsystem for 

Portal 1 consists of one fission chamber, one ionization chamber and one DAQ unit in 

series. 
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Figure 18. Portal 1 subsystem -- no redundancies 

 

Fig. 18 does not represent the physical arrangement of the detectors; rather it illustrates 

that the failure of one detector or DAQ unit would constitute a failure or loss of 

knowledge for the subsystem.  The MTTF for a fission chamber is 2556.75 days or 84 

months, which equates to a FCλ  of 0.000391122 chance of failure per day.  This number 

is based on a 7 year lifetime of fission chambers as reported by PHOTONIS (2007).  The 

MTTF of an ionization chamber is 2435 days or 80 months, which also equates to a ICλ  

of 0.000410678 chance of failure per day based on a 15% failure rate per year reported 

in (Emel’yanov et al. 1977).  The MTTF for a DAQ unit is reasonably estimated to be 

4565.625 days or 150 months as discussed in 4.3.  The DAQλ  for a 150-month MTTF of 

the DAQ unit is 0.000219028 chance of failure per day.  Eq. 4.2 is used to calculate the 

reliability of the Portal 1 subsystem, R(t)Portal1: 

 

( ) ( ) ( ) ( ) ** *

1
;DAQFC IC

tt t

Portal FC IC DAQ
R t R t R t R t e e e

λλ λ −− −= × × = × ×   (4.2) 

       

( )1 1

0

 .Portal Portal
MTTF R t dt

∞

= ∫        (4.3) 

    

R(t)FC is the reliability of the fission chamber, the R(t)IC is the reliability of the ionization 

chamber and the R(t)DAQ is the reliability of the DAQ unit.  The MTTF for Portal 1 

subsystem is 979.60 days or 32.18 months and is calculated by Eq. 4.3.   
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4.4.2 PORTAL 2, PORTAL 7, PORTAL 8 SUBSYSTEMS 

Portals 2, 7, and 8 subsystems all use the same technology; a neutron detector using He-

3 tubes and a DAQ unit.  The He-3 collar and DAQ unit are set up in series as shown in 

Fig. 19.  An He-3 collar has one complete ring of He-3 tubes and is represented by the 

“He-3 Collar” box in Fig. 19. 

 

 

Figure 19. Portal 2 subsystem -- no redundancies 

 

Eq. 4.4 shows the R(t)Portal2 for the Portal 2 subsystem and also is equivalent to the Portal 

7 and 8 subsystems.  In future equations results for Portal 2 subsystem will only be 

calculated but are equivalent to the results for Portal 7 and Portal 8.  The MTTF for a 

He-3 collar is assumed to be 150 months, which equates to a 3Heλ  of 0.000219028 

chance of failure per day.   The MTTF for a DAQ unit is estimated to be 150 months or 

4565.625 days.  The DAQλ  for a 150-month MTTF of the DAQ unit is 0.000219028 

chance of failure per day.  The reliability of Portal 2 is:   

 

( ) ( ) ( ) 3
**

 2 3
  ,DAQHe

tt

Portal He DAQ
R t R t R t e e

λλ −−= × = ×     (4.4)

    

and 

 

( )2 2

0

 .Portal Portal
MTTF R t dt

∞

= ∫        (4.5) 

 

R(t)He3 is the reliability of the He-3 collar.  The MTTF for Portal 2 (also Portal 7 and 

Portal 8) subsystems is 2282.81 days or 75 months and is calculated using Eq. 4.5.    
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4.4.3 SUMMARY OF INITIAL ANALYSIS 

Each subsystem must function for the entire system to function; thus, the reliability of 

the entire system is modeled as the probability of occurrence of four independent events 

in series. 

 

The entire system (Fig. 20) reliability, RT(t), can be calculated as 

 

1 2 7 8( ) ( ) ( ) ( ) ( ).TR t R t R t R t R t= × × ×              (4.6)

  

As before, the reliability of the system is determined by 

 

( )
0

 .system system
MTTF R t dt

∞

= ∫        (4.7) 

 

 

Figure 20. Entire system in series 

          

For the values previously presented, the overall MTTF for all the entire system is 428.27 

days or 14.07 months.  This combines Portal 1, 2, 7 and 8 in series as seen in Fig. 17 and 

Fig. 20. The overall MTTF does not meet the goal of 24 months for the entire system. 

Following the process outlined in Sublevel 3.1, redundancies must be added to meet the 

reliability criteria.  

 

 

Portal 1 
 

Portal 8 
 

Portal 7 
 

Portal 2 



 53

4.5 RELIABILITY DESIGN – EQUIPMENT REDUNDANCIES 

To meet the overall reliability criteria goal of 24 months for the system, redundancies in 

equipment must be added.  In the absence of cost information, redundancies are added so 

that the number of overall components in a system is minimized, as opposed to the 

highest improvement-per-cost added.  This cycle is iterated until the desired system 

reliability is met.   

4.5.1 PORTAL 1 SUBSYSTEM 

The Portal 1 subsystem consists of four redundant subsystems (Fig. 21).   

 

 

Figure 21. Portal 1 with four redundant subsystems in parallel 

 

Eqs. 4.8 and 4.9 are used to calculate the reliability of the four subsystems in parallel:   

 

( ) ( ) ( ) ( ) ( )
 1 1 2 3 4

 1- 1 1  1  1  ,
Portal Set Set Set Set

R t R t R t R t R t       = − × − × − × −         (4.8) 

 

and 
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( ) ( ) ( ) ( )1 2 3 4* * * *( ) 1 1 1 1 1 .Set Set Set Sett t t tR t e e e eλ λ λ λ− − − −= − − × − × − × −   (4.9) 

            

The reliability of Set 1, R(t)Set1, is equal to the reliability of the Portal 1 subsystem 

calculated in Sublevel 4.4.1.  R(t)Set1 and  R(t)Set2 ,R(t)Set3 and R(t)Set4 are identical and the 

reliability calculated in Sublevel 4.4.1 can be used for all subsystem sets: 

 

( )1 1

0

 .Portal Portal
MTTF R t dt

∞

= ∫        (4.10) 

    

The MTTF for Portal 1 subsystem is 2040.83 days or 67.05 months and is calculated 

using Eq. 4.10.  The MTTF of Portal 1 with four redundant subsystems is about double 

the previous MTTF of 32.18 months. 

4.5.2 PORTAL 2, PORTAL 7, PORTAL 8 SUBSYSTEMS 

Portal 2, 7, and 8 subsystems consist of two redundant subsystems.  Portal 2 is pictured 

in Fig. 22.  

   

 

Figure 22. Portal 2 with two redundant subsystems in parallel 

  

Eq. 4.11 and 4.12 are used to calculate the reliability of two subsystems in parallel for 

Portal 2, R(t)Portal2:   

 

( ) ( ) ( )
 2 1 2

 1- 1 1  ;
Portal Set Set

R t R t R t   = − × −        (4.11) 
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( ) ( ) ( )1 2* *

2
 1 1 1 ;Set Sett t

Portal
R t e eλ λ− −= − − × −      (4.12) 

 

( )2 2

0

 .Portal Portal
MTTF R t dt

∞

= ∫        (4.13) 

 

The MTTF for Portal 2, 7 and 8 subsystems is 3424.22 days or 112.5 months and is 

calculated using Eq. 4.13. The MTTF of Portal 2, 7 and 8 with two redundant subsystems 

is 1.5 times the previous MTTF of 75 months. 

4.5.3 SUMMARY OF ANALYSIS WITH EQUIPMENT REDUNDANCIES 

Again, each subsystem must function for the entire system to function; thus, the 

reliability of the entire system is modeled as the probability of occurrence of four 

independent events in series:  

 

1 2 7 8( ) ( ) ( ) ( ) ( ).TR t R t R t R t R t= × × ×       (4.14)

   

As before, the reliability of the system is determined by: 

 

( )
0

 .system system
MTTF R t dt

∞

= ∫        (4.15) 

         

For the values previously presented, the overall MTTF for the entire system is 732.01 

days or 24.05 months.  This combines Portals 1, 2, 7 and 8 in series as originally seen in 

Fig. 17. The MTTF of 24.05 months meets the design goal of 24 months MTTF for the 

entire system. 

4.6 EVALUATION 

Table 3 summarizes the calculation results for the designs with and without 

redundancies. 
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Table 3. Results summary 

Subsystem Component Group 

MTTF without 

Redundancies 

(months) 

MTTF with 

Redundancies 

(months) 

Portal 1 Fission Chamber 84 84 

 Ionization Chamber 80 80 

 DAQ 150 150 

 Overall 32.18 67.05 

Portal 2/7/8 He3 Detector 150 150 

 DAQ 150 150 

 Overall 75 112.5 

Overall System  14.07 months 24.05 months 

 

From Table 3, it is clear that Portal 1 represents the least reliable link in the system and 

hence, in the proliferation resistance model, a weakness.  By adding a redundancy of 

four subsystems to Portal 1, this subsystem is made more reliable by a factor of 

approximately 2.   By adding a redundancy of two subsystems to Portal 2, 7 and 8, each 

portal is made more reliable by a factor of 1.5.  The entire system is made more reliable 

by a factor of 1.7.  After adding sufficient redundancies, the design criteria of 24 months 

MTTF was met and the design accepted. 

 

Obviously cost, space and other constraints limit the number of redundancies which can 

be installed; hence, an actual system would be designed to achieve the desired system 

reliability at the minimum cost.  Instead, the approach used here, in the absence of cost 

information, was simply to minimize the number of components.  This is only one 

safeguards design that meets the reliability criteria but was the design that had the fewest 
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components and met the reliability criteria.  Appendix B shows other possible 

combinations of redundancies for the overall system. 

4.7 DISCUSSION  

This reliability process only considers reliability and not other considerations such as 

cost.  It is clear that the system has doubled the number of components and therefore 

doubles the cost of the components but did not double the reliability.  This is a 

consideration safeguards designers will need to make as they design a system. 

 

Also, designs that focus safeguards on main material entrances and exits could be part of 

the design criteria.  For the ESFR, a designer could add more redundancies to Portal 1 

and Portal 8.  While every portal presents an opportunity for proliferation, it is up to the 

safeguards designer to decide if one portal would require more redundancy than another.  

 

During analysis it may be determined that component cost becomes a dominating factor.  

Additionally, it may be discovered that spending more money for a more reliable part (or 

cost-benefit) would reduce the number of redundancies needed in a system. 
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4.8 SUMMARY 

The UMS for the ESFR FCF was initially designed with no redundancies.  Upon 

performing the reliability analysis of that design, it was identified that the reliability 

criteria were not met.  The design process used here was to iteratively add a redundancy 

to minimize components but reach the reliability criteria and then repeat the analysis to 

identify the new MTTF for the system.  Eventually, when the desired MTTF was met by 

the design, the iteration was stopped and the design accepted.  This approach does not 

consider the cost of components.  Alternatively, a system designer with cost information 

may choose to add redundancies based on an improvement-per-unit-cost basis as 

opposed to simply the improvement-per-component basis used here. 
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CHAPTER V 

USE OF THE RELIABILITY PROCESS IN PROLIFERATION 

RESISTANCE ASSESSMENT 

 

Proliferation resistance studies as discussed in Sublevel 2.4 can be qualitative and/or 

quantitative.  Many proliferation resistance studies and methods rely on expert judgment.  

The proliferation resistance assessments that use fault-tree, logic-tree or success-tree 

analysis (e.g. Golay 2001; Cojazzi et al. 2004; Coles and Zentner 2007) attempt to move 

away from qualitative analysis and toward quantitative analysis.  

 

As demonstrated in Chapter IV, the reliability process yields a quantitative result in the 

form of a MTTF for the system.  In the fault-tree modeling the different proliferation 

pathways for specific diversions are modeled (Coles and Zentner 2007).  One of the 

basic events in fault-tree models for proliferation pathways is the chance that the IAEA 

safeguards (e.g. detectors) are not operating and have failed due to random chance 

during the nuclear material diversion.  This reliability process provides a way for 

analysts to find a quantitative answer to this basic event.  The reliability process also 

offers a way to do a time-dependent fault-tree analysis. 

 

The reliability process was demonstrated on the ESFR for detectors and DAQ units.  

This process could additionally be applied to containment and surveillance (C/S).  For 

various proliferation pathways the chance that different IAEA safeguards are not 

operating need to be known for the analysis.   The quantitative result from the reliability 

process would be an improvement versus an expert judgment derived number. 
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Many proliferation resistance studies look at a Nation or State covertly diverting 

material from an IAEA safeguarded facility.  Another consideration is for a State to 

prevent other States or individuals from diverting or stealing nuclear material from their 

facility.  To detect and deter this, States use their own detectors, surveillance and 

physical protection of the facility.  The reliability process demonstrated in this research 

can be applied to the equipment and sensors used for the physical protection of a facility.  

This equipment is important to a facility and analyzing its reliability would help a 

nuclear facility improve its protection. 

 

Overall there are many areas the reliability process demonstrated in this research can be 

applied to proliferation resistance studies.  
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CHAPTER VI 

CONCLUSIONS AND RECOMMENDATIONS 

 

6.1 CONCLUSIONS 

A reliability engineering approach to probabilistic safeguards system analysis and design 

can be used to reach meaningful conclusions regarding the proliferation resistance of a 

UMS.  The methods developed in this research provide analysts and designers alike a 

process to follow to evaluate the reliability of a UMS. 

 

A UMS was created for the ESFR FCF to facilitate demonstration of the new approach.  

The UMS emphasized the technologies and generalized hardware expected to be present 

at key measurement points but exact hardware specification was outside the scope of this 

study.   

 

The ESFR FCF UMS was analyzed to demonstrate the analysis and design processes 

that an analyst or designer would go through when evaluating/designing the proliferation 

resistance component of a safeguards system.  When comparing the MTTF for the 

system without redundancies, it is apparent that redundancies were necessary to achieve 

a design without routine failures. 

6.2 RECOMMENDATIONS 

Quality engineering concepts and the approach developed here should be integrated into 

broader probabilistic proliferation resistance models for facilities utilizing UMS and 

RMS. 

 

Specific safeguards system reliability data are not and should not be published in the 

open literature but should be available to the IAEA for reliability analysis.  

Approximations or publicly available failure rates should be used in published research 

instead. 
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6.3 FUTURE WORK 

Extensions to this work could include additional detail in the reliability modeling, 

improvement on the safeguards design considered for the ESFR FCF, and the discussion 

of the method with respect to additional facilities to be built or already operating and 

using UMS. 

 

The IAEA and the international safeguards and non-proliferation (IS&NP) community 

could incorporate the reliability engineering approach to UMS design for upcoming fast 

reactor safeguards system designs.  The approach developed here suffices as a primer for 

an IAEA engineer designing UMS in general and for pyroprocessing. 
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APPENDIX A 

 

In Fig. 23 on the next page, is a detailed material flow sheet for the ESFR 

pyroprocessing facility.  In the figure HM refers to heavy metal and refers to U and TRU 

combined. 

 



 
6

6
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APPENDIX B 

 

The table below gives all possible combinations of redundancies for the overall system.  

Each portal has the minimum of one subsystem up to a maximum of four redundant 

subsystems.  P1 is Portal 1; P2 is Portal 2, etc.  Tot# is the total number of components 

for that particular system.  Highlighted in yellow are systems that meet the 24 month 

reliability criteria goal.  The system used in this research has a box around it signifying it 

has the least number of components while still meeting the reliability criteria goal. 

 
Table 4. Number of redundancies at each portal 

P1 P2 P3 P4 Tot# MTTF (months) 

1 1 1 1 9 14.07035176 

1 1 1 2 11 15.00893389 

1 1 1 3 13 15.38205427 

1 1 1 4 15 15.59135793 

1 1 2 1 11 15.00893389 

1 1 2 2 13 16.08168475 

1 1 2 3 15 16.51081065 

1 1 2 4 17 16.75220039 

1 1 3 1 13 15.38205427 

1 1 3 2 15 16.51081065 

1 1 3 3 17 16.96346613 

1 1 3 4 19 17.21837521 

1 1 4 1 15 15.59135793 

1 1 4 2 17 16.75220039 

1 1 4 3 19 17.21837521 

1 1 4 4 21 17.48106218 

1 2 1 1 11 15.00893389 

1 2 1 2 13 16.08168475 

1 2 1 3 15 16.51081065 

1 2 1 4 17 16.75220039 

1 2 2 1 13 16.08168475 

1 2 2 2 15 17.31958763 

1 2 2 3 17 17.81834544 

1 2 2 4 19 18.09980751 

1 2 3 1 15 16.51081065 

1 2 3 2 17 17.81834544 

1 2 3 3 19 18.34668079 

1 2 3 4 21 18.64522152 

1 2 4 1 17 16.75220039 

1 2 4 2 19 18.09980751 

1 2 4 3 21 18.64522152 

1 2 4 4 23 18.9536388 

1 3 1 1 13 15.38205427 

1 3 1 2 15 16.51081065 

1 3 1 3 17 16.96346613 

1 3 1 4 19 17.21837521 
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1 3 2 1 15 16.51081065 

P1 P2 P3 P4 Tot# MTTF (months) 

1 3 2 2 17 17.81834544 

1 3 2 3 19 18.34668079 

1 3 2 4 21 18.64522152 

1 3 3 1 17 16.96346613 

1 3 3 2 19 18.34668079 

1 3 3 3 21 18.9073051 

1 3 3 4 23 19.2245275 

1 3 4 1 19 17.21837521 

1 3 4 2 21 18.64522152 

1 3 4 3 23 19.2245275 

1 3 4 4 25 19.55257612 

1 4 1 1 15 15.59135793 

1 4 1 2 17 16.75220039 

1 4 1 3 19 17.21837521 

1 4 1 4 21 17.48106218 

1 4 2 1 17 16.75220039 

1 4 2 2 19 18.09980751 

1 4 2 3 21 18.64522152 

1 4 2 4 23 18.9536388 

1 4 3 1 19 17.21837521 

1 4 3 2 21 18.64522152 

1 4 3 3 23 19.2245275 

1 4 3 4 25 19.55257612 

1 4 4 1 21 17.48106218 

1 4 4 2 23 18.9536388 

1 4 4 3 25 19.55257612 

1 4 4 4 27 19.89201478 

2 1 1 1 12 16.47058824 

2 1 1 2 14 17.77150917 

2 1 1 3 16 18.2970297 

2 1 1 4 18 18.59394369 

2 1 2 1 14 17.77150917 

2 1 2 2 16 19.29555896 

2 1 2 3 18 19.91665469 

2 1 2 4 20 20.26896596 

2 1 3 1 16 18.2970297 

2 1 3 2 18 19.91665469 

2 1 3 3 20 20.57906459 

2 1 3 4 22 20.9554221 

2 1 4 1 18 18.59394369 

2 1 4 2 20 20.26896596 

2 1 4 3 22 20.9554221 

2 1 4 4 24 21.34580199 

2 2 1 1 14 17.77150917 

2 2 1 2 16 19.29555896 

2 2 1 3 18 19.91665469 

2 2 1 4 20 20.26896596 

2 2 2 1 16 19.29555896 

2 2 2 2 18 21.10552764 

2 2 2 3 20 21.85085921 
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2 2 2 4 22 22.27565236 

P1 P2 P3 P4 Tot# MTTF (months) 

2 2 3 1 18 19.91665469 

2 2 3 2 20 21.85085921 

2 2 3 3 22 22.65075993 

2 2 3 4 24 23.10754847 

2 2 4 1 20 20.26896596 

2 2 4 2 22 22.27565236 

2 2 4 3 24 23.10754847 

2 2 4 4 26 23.58313993 

2 3 1 1 16 18.2970297 

2 3 1 2 18 19.91665469 

2 3 1 3 20 20.57906459 

2 3 1 4 22 20.9554221 

2 3 2 1 18 19.91665469 

2 3 2 2 20 21.85085921 

2 3 2 3 22 22.65075993 

2 3 2 4 24 23.10754847 

2 3 3 1 20 20.57906459 

2 3 3 2 22 22.65075993 

2 3 3 3 24 23.51145038 

2 3 3 4 26 24.00399027 

2 3 4 1 22 20.9554221 

2 3 4 2 24 23.10754847 

2 3 4 3 26 24.00399027 

2 3 4 4 28 24.5176081 

2 4 1 1 18 18.59394369 

2 4 1 2 20 20.26896596 

2 4 1 3 22 20.9554221 

2 4 1 4 24 21.34580199 

2 4 2 1 20 20.26896596 

2 4 2 2 22 22.27565236 

2 4 2 3 24 23.10754847 

2 4 2 4 26 23.58313993 

2 4 3 1 22 20.9554221 

2 4 3 2 24 23.10754847 

2 4 3 3 26 24.00399027 

2 4 3 4 28 24.5176081 

2 4 4 1 24 21.34580199 

2 4 4 2 26 23.58313993 

2 4 4 3 28 24.5176081 

2 4 4 4 30 25.05368647 

3 1 1 1 15 17.55986317 

3 1 1 2 17 19.04631029 

3 1 1 3 19 19.65121225 

3 1 1 4 21 19.99411429 

3 1 2 1 17 19.04631029 

3 1 2 2 19 20.80768653 

3 1 2 3 21 21.53176946 

3 1 2 4 23 21.94412955 

3 1 3 1 19 19.65121225 

3 1 3 2 21 21.53176946 

3 1 3 3 23 22.30806374 

3 1 3 4 25 22.75099967 

3 1 4 1 21 19.99411429 
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3 1 4 2 23 21.94412955 

P1 P2 P3 P4 Tot# MTTF (months) 

3 1 4 3 25 22.75099967 

3 1 4 4 27 23.21188127 

3 2 1 1 17 19.04631029 

3 2 1 2 19 20.80768653 

3 2 1 3 21 21.53176946 

3 2 1 4 23 21.94412955 

3 2 2 1 19 20.80768653 

3 2 2 2 21 22.9280397 

3 2 2 3 23 23.81034187 

3 2 2 4 25 24.31561884 

3 2 3 1 21 21.53176946 

3 2 3 2 23 23.81034187 

3 2 3 3 25 24.76326604 

3 2 3 4 27 25.3102607 

3 2 4 1 23 21.94412955 

3 2 4 2 25 24.31561884 

3 2 4 3 27 25.3102607 

3 2 4 4 29 25.88196628 

3 3 1 1 19 19.65121225 

3 3 1 2 21 21.53176946 

3 3 1 3 23 22.30806374 

3 3 1 4 25 22.75099967 

3 3 2 1 21 21.53176946 

3 3 2 2 23 23.81034187 

3 3 2 3 25 24.76326604 

3 3 2 4 27 25.3102607 

3 3 3 1 23 22.30806374 

3 3 3 2 25 24.76326604 

3 3 3 3 27 25.79564489 

3 3 3 4 29 26.3897457 

3 3 4 1 25 22.75099967 

3 3 4 2 27 25.3102607 

3 3 4 3 29 26.3897457 

3 3 4 4 31 27.01185715 

3 4 1 1 21 19.99411429 

3 4 1 2 23 21.94412955 

3 4 1 3 25 22.75099967 

3 4 1 4 27 23.21188127 

3 4 2 1 23 21.94412955 

3 4 2 2 25 24.31561884 

3 4 2 3 27 25.3102607 

3 4 2 4 29 25.88196628 

3 4 3 1 25 22.75099967 

3 4 3 2 27 25.3102607 

3 4 3 3 29 26.3897457 

3 4 3 4 31 27.01185715 

3 4 4 1 27 23.21188127 

3 4 4 2 29 25.88196628 

3 4 4 3 31 27.01185715 

3 4 4 4 33 27.66400805 

4 1 1 1 18 18.21019771 

4 1 1 2 20 19.81381306 

4 1 1 3 22 20.46928721 



 71

4 1 1 4 24 20.84160381 

P1 P2 P3 P4 Tot# MTTF (months) 

4 1 2 1 20 19.81381306 

4 1 2 2 22 21.72713478 

4 1 2 3 24 22.51783881 

4 1 2 4 26 22.96922853 

4 1 3 1 22 20.46928721 

4 1 3 2 24 22.51783881 

4 1 3 3 26 23.36826771 

4 1 3 4 28 23.85476476 

4 1 4 1 24 20.84160381 

4 1 4 2 26 22.96922853 

4 1 4 3 28 23.85476476 

4 1 4 4 30 24.36194896 

4 2 1 1 20 19.81381306 

4 2 1 2 22 21.72713478 

4 2 1 3 24 22.51783881 

4 2 1 4 26 22.96922853 

4 2 2 1 22 21.72713478 

4 2 2 2 24 24.0494732 

4 2 2 3 26 25.02202516 

4 2 2 4 28 25.58063992 

4 2 3 1 24 22.51783881 

4 2 3 2 26 25.02202516 

4 2 3 3 28 26.07655142 

4 2 3 4 30 26.68381413 

4 2 4 1 26 22.96922853 

4 2 4 2 28 25.58063992 

4 2 4 3 30 26.68381413 

4 2 4 4 32 27.32003469 

4 3 1 1 22 20.46928721 

4 3 1 2 24 22.51783881 

4 3 1 3 26 23.36826771 

4 3 1 4 28 23.85476476 

4 3 2 1 24 22.51783881 

4 3 2 2 26 25.02202516 

4 3 2 3 28 26.07655142 

4 3 2 4 30 26.68381413 

4 3 3 1 26 23.36826771 

4 3 3 2 28 26.07655142 

4 3 3 3 30 27.22387215 

4 3 3 4 32 27.88642619 

4 3 4 1 28 23.85476476 

4 3 4 2 30 26.68381413 

4 3 4 3 32 27.88642619 

4 3 4 4 34 28.58203415 

4 4 1 1 24 20.84160381 

4 4 1 2 26 22.96922853 

4 4 1 3 28 23.85476476 

4 4 1 4 30 24.36194896 

4 4 2 1 26 22.96922853 

4 4 2 2 28 25.58063992 

4 4 2 3 30 26.68381413 

4 4 2 4 32 27.32003469 

4 4 3 1 28 23.85476476 
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4 4 3 2 30 26.68381413 

P1 P2 P3 P4 Tot# MTTF (months) 

4 4 3 3 32 27.88642619 

4 4 3 4 34 28.58203415 

4 4 4 1 30 24.36194896 

4 4 4 2 32 27.32003469 

4 4 4 3 34 28.58203415 

4 4 4 4 36 29.31323283 
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