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ABSTRACT 

 

Evaluation of Methods to Assess and Reduce Bacterial Contamination of Surface Water 

from Grazing Lands. (August 2011) 

Kevin Lee Wagner, B.S., Howard Payne University; M.S., Oklahoma State University 

Co-Chairs of Advisory Committee: Dr. Terry Gentry 

                                                            Dr. Larry Redmon 

 

Excessive bacterial levels are a major water quality concern. Better methods are 

needed to quantify the proportion of bacterial loading contributed by various sources, 

and best management practices are needed to restore water quality. This study assessed 

the ability of alternative water supplies and grazing management to reduce E. coli 

loading from cattle and evaluated the ability of quantitative polymerase chain reaction 

analysis of total and bovine-associated Bacteroides markers (AllBac and BoBac, 

respectively) to determine the percentage of bovine-associated fecal contamination. 

Runoff from seven small watersheds, representing ungrazed, properly stocked, and 

overstocked conditions, was analyzed for E. coli, AllBac, and BoBac to assess grazing 

management impacts on E. coli runoff and the effectiveness of Bacteroides markers. To 

determine the effectiveness of alternative water, instream E. coli levels and cattle 

movement were evaluated before and after alternative water was provided. 

The study found that when alternative off-stream water was provided, the amount 

of time cattle spent in the creek was reduced 43% and the direct deposition of E. coli 

into Clear Fork of Plum Creek was estimated to be reduced from 1.11E+07 to 6.34E+06 
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colony forming units per animal unit per day. Observed pre- and post-treatment E. coli 

loads suggested similar reductions; however, this study could not conclusively attribute 

observed E. coli loading reductions to providing alternative water because of the lack of 

statistical significance of these observations, possibly due to decreased streamflow 

during Year 2 (due to drought) and a corresponding increase in E. coli levels.  

The study found that rotational stocking, if timed appropriately, was very 

effective at reducing E. coli runoff. The impact of grazing timing in relation to runoff 

events was more significant than the impact of grazing management (i.e. ungrazed 

properly stocked or overstocked) or stocking rate. When runoff occurred more than two 

weeks following grazing, E. coli levels in runoff were decreased more than 88%. 

Finally, data suggest that AllBac and BoBac markers are good indicators of 

recent fecal contamination from cattle. However, although elevated BoBac/AllBac ratios 

generally aligned well with cattle presence, this ratio appeared to underestimate the 

percentage of bovine-associated fecal contamination. 
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CHAPTER I 

GENERAL INTRODUCTION 

 

1.1 Problem Statement 

Excessive levels of fecal indicator bacteria (e.g. E. coli) are a major cause of 

water quality impairment in Texas (TCEQ 2008a) and other regions (Weidhaas et al. 

2011). Total Maximum Daily Loads (TMDLs), TMDL Implementation Plans (I-Plans), 

and watershed protection plans (WPPs) are being developed to address these 

impairments. However, watersheds can be affected by microbial pollution from a wide 

variety of sources (TCEQ 2008d; Weidhaas et al. 2011). Nevertheless, livestock are 

increasingly under scrutiny (Weidhaas et al. 2011). Grazing cattle are often the most 

abundant livestock species in impaired watersheds in Texas and are frequently identified 

as a source needing reductions (TCEQ 2008b, 2008c). Because of the potential 

regulatory implications of TMDLs, it is critical to accurately differentiate the potential 

bacterial contributions of livestock from those of wildlife or humans (TCEQ 2007c). 

Further, concerns about fecal contamination of water bodies by cattle arise from 

documented human waterborne disease outbreaks associated with animal-impacted 

surface waters (Ferguson et al. 2003). Campylobacter, Salmonella, enterohemorrhagic E. 

coli, Cryptosporidium, Listeria and Giardia have been found in cattle manure.  

 

 

____________ 

This dissertation follows the style of Journal of Soil and Water Conservation.  
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Ingestion of these pathogens can be dangerous to human health and may cause 

gastrointestinal illness, and occasionally, renal failure and death (University of 

Wisconsin 2007a, 2007b). To protect human health, best management practices (BMPs) 

are needed to reduce fecal contamination by cattle. 

1.2 Motivation 

To address bacterial contributions by cattle, (1) analytical methods are needed to 

better assess bacterial loading from cattle and (2) if bacterial loading from cattle is found 

to be excessive, then BMPs are needed to reduce these bacterial loadings.  

Analytical methods are needed to quantify the proportion of bacterial loading 

contributed by livestock versus humans, pets, and wildlife so that appropriate restoration 

goals can be established and restoration efforts targeted. The TMDLs, I-Plans, and WPPs 

being developed to address these impairments require determination of pollutant sources 

and allocation of load reductions to identified sources. Library-dependent bacteria source 

tracking (BST) can assist in these determinations; however, due to the need for library 

development, these methods are burdensome, time-consuming, and costly. Library-

independent methods avoid the need for library development and are less expensive and 

less labor intensive than library dependent methods and can potentially provide results 

within hours of sample collection. As such, investigation of promising library-

independent BST methods is needed (Jones et al. 2009). One such potential BST method 

uses Bacteroides quantitative polymerase chain reaction (qPCR) assays to assess sources 

of bacteria. A method, developed by Layton et al. (2006), simultaneously identifies and 

quantifies Bacteroides markers in water samples and estimates total (AllBac) and 
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bovine-associated (BoBac) fecal pollution in water. However, the ability of this method 

to reliably and correctly determine fecal contributions from cattle in environmental water 

samples has not been thoroughly tested to date. 

Once appropriate goals are established for reductions of bacterial loading from 

cattle, then BMPs are needed to address the livestock contribution. Development and 

implementation of appropriate BMPs to reduce bacterial loadings and concentrations 

from grazing lands is critical to the success of water resource improvement and 

protection efforts in impaired water bodies. Success of TMDLs, I-Plans, and WPPs, and 

willingness of individuals to adopt various control practices and BMPs may be increased 

by scientific studies showing efficacy of various practices under a variety of conditions; 

therefore, such studies are important endeavors (Jones et al. 2009).  

Bacterial contamination of streams can arise through direct deposition of feces 

into streams, surface runoff, and subsurface flows (Collins et al. 2005). Further, the 

extent to which cattle contribute bacteria from grazing lands is generally a function of 

the number and size of cattle, the location of fecal deposits in relation to water bodies, 

characteristics of the deposition site affecting adsorption and runoff, and bacterial 

survival between time of fecal deposition and runoff events (Larsen et al. 1994). A 

number of potential BMPs have been identified to reduce bacterial contributions from 

grazing lands. The primary focus of these BMPs is to protect riparian areas and maintain 

adequate ground cover in order to improve the filtering capacity of the vegetation and 

enhance infiltration of rainfall and runoff (NRCS 2007). Two such BMPs are alternative 

water supplies and prescribed grazing. These BMPs provide benefits to both the 
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producer and the environment; however, published data on E. coli reductions resulting 

from implementation of these practices are sparse and from studies conducted in regions 

much different than Texas. Although this existing information is valuable, it may not be 

universally transferable to Texas. Thus, the research objectives were: 

 To assess the effect of providing an off-stream watering facility (i.e. water 

trough) on the percent time cattle spend in streams and riparian zones and the 

level of bacterial contamination of streams. 

 To assess E. coli concentrations and loads in runoff at the small watershed 

scale from grazed and ungrazed pastures and assess the effect of grazing 

management (e.g. ungrazed, properly stocked, overstocked), timing of 

grazing, and stocking rate on E. coli levels in runoff. 

 To determine the ability of the BoBac marker to assess the quantity of E. coli 

loading originating from cattle at the small watershed scale and to further 

evaluate the relationship between total Bacteroides (AllBac) and E. coli and 

its relevance as a fecal indicator. 

In Chapter II, field experiment results for the alternative off-stream water 

evaluation are presented. Global positioning system (GPS) collar results showing the 

percent time cattle spent instream and within the riparian zone are discussed and 

compared to the instream E. coli measurements observed before and after 

implementation of alternative off-stream water. 

In Chapter III, results for the grazing management assessment are evaluated. E. 

coli levels measured in runoff collected from seven small watersheds are evaluated 
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against timing of grazing and a variety of grazing management scenarios and stocking 

rates, as well as the water quality standards, to assess the efficacy of this best 

management practice (BMP).  

In Chapter IV, the results of an assessment of the utility of qPCR assays for two 

Bacteroides markers are presented. Levels of the total Bacteroides (AllBac) marker and 

bovine-associated Bacteroides (BoBac) marker are compared to differing stocking rates, 

grazing management regimes, and E. coli levels. The use of the BoBac/AllBac ratio is 

evaluated for its ability to determine percent bovine-associated fecal contamination.  

Finally, in Chapter V, the results of the evaluation of alternative water supplies 

and proper grazing management as best management practices for reducing bacterial 

contamination are summarized. Further, a synopsis of the assessment of the utility of 

qPCR assays for total and bovine-associated Bacteroides markers as bacterial pollution 

indicators is provided. 
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CHAPTER II 

EFFECTS OF AN OFF-STREAM WATERING FACILITY ON CATTLE BEHAVIOR 

AND INSTREAM E. COLI LEVELS 

 

2.1 Overview 

Excessive levels of fecal indicator bacteria are the leading cause of water quality 

impairment in Texas. Livestock with direct access to water bodies are identified as a 

significant source of these bacteria. To help address this source, the effect of providing 

alternative off-stream watering facilities to reduce manure, and thus bacterial deposition 

in or near surface waters was evaluated from July 2007 to July 2009 in Clear Fork of 

Plum Creek in central Texas. An upstream-downstream, pre- and post-treatment 

monitoring design was used with off-stream water provided only during the second year 

of the study. Stream samples were analyzed semi-monthly for E. coli and turbidity, and 

flow was determined for each sample event. Cattle movement was tracked quarterly 

using global positioning system collars to assess the effect of providing alternative water 

on cattle behavior. The study found that when alternative off-stream water was provided, 

the amount of time cattle spent in the creek was reduced 43% from 3.0 to 1.7 

min/AU/day. As a result of this, direct deposition of E. coli into Clear Fork of Plum 

Creek was estimated to be reduced from 1.11E+07 to 6.34E+06 cfu/AU/day. Observed 

pre- and post-treatment E. coli loads suggested similar reductions; however, this study 

could not conclusively attribute observed E. coli loading reductions to providing 

alternative water because of the lack of statistical significance of these observations, 



 7 

possibly due to decreased streamflow during Year 2 (due to drought) and a 

corresponding increase in E. coli levels. Drought during Year 2, which reduced flows by 

79% and influenced ranch management decisions to increase stocking rate 34%, may 

explain some of the increase in E. coli levels observed. Other probable factors impacting 

the observed E. coli levels include natural variability, changes in fate and transport due 

to drought, and potential contributions from wildlife.  

Finally, unlike previous studies, this study did not find turbidity to be a good 

predictor of E. coli. Thus, it was concluded that use of turbidity as an indicator must be 

determined on a case-by-case basis and used with caution. 

2.2 Introduction 

Excessive levels of fecal indicator bacteria (i.e. E. coli, Enterococcus, and fecal 

coliforms) are the number one cause of water quality impairment in Texas. According to 

the Texas Commission on Environmental Quality (TCEQ) 2008 Water Quality 

Inventory and 303(d) List, over half of the water quality impairments in Texas (295 of 

the 516 impairments) result from excessive levels of bacteria (TCEQ 2008a). Fecal 

indicator bacteria are common inhabitants of the intestines of all warm-blooded animals, 

including livestock. Livestock having direct access to water bodies are identified as 

significant sources of bacteria in numerous bacterial total maximum daily loads 

(TMDLs) (TCEQ 2007a, 2007b). 

Cattle are drawn to streams and adjacent riparian areas by water, shade, and the 

quality and variety of forage present (Kauffman and Krueger 1984). The length of time 

cattle spend in a stream, however, plays a significant role in fecal contamination (Mosley 
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et al. 1999). When cattle have stream access, a portion of their fecal matter is deposited 

directly into the stream (Larsen et al. 1988) and can be a significant source of 

contamination. Gary et al. (1983) observed cattle spent 5% of the day in or adjacent to 

the stream and 6.7 to 10.5% of defecations were deposited directly in the stream. Feces 

deposited in streams have a greater impact on water quality than that deposited away 

from streams. Larsen et al. (1994) found manure deposited 0.6 m (2 ft.) and 2.1 m (7 ft.) 

from a stream contributed 83% and 95% less bacteria, respectively, than that deposited 

directly in a stream. 

Tiedemann et al. (1987) and Mosley et al. (1999) suggested that animal access to 

streams had a greater impact on stream bacterial levels than stocking density. Thus, 

riparian protection is needed to reduce manure deposition in or near surface waters (Ball 

et al. 2002). Exclusion of livestock from riparian areas by fencing of streams is 

frequently recommended to reduce manure inputs to surface water (Godwin and Miner 

1996; McIver 2004). Numerous studies have shown fencing of streams, alone or in 

combination with other best management practices (BMPs), can reduce E. coli levels by 

37-46% (Meals 2001, 2004), Enterococcus by 57% (Line 2003), and fecal coliforms by 

30-94% (Brenner et al. 1994; Brenner 1996; Cook 1998; Hagedorn et al. 1999; 

Lombardo et al. 2000; Meals 2001; Line 2002; Line 2003; Meals 2004). However, this 

BMP is costly to install and maintain (Godwin and Miner 1996; Sheffield et al. 1997; 

Byers et al. 2005), results in loss of grazing area and ranching income, restricts access to 

reliable water sources, and may be inconvenient and impractical for many ranches. Thus, 

it is opposed by many ranchers (McIver 2004). Other concerns have recently been raised 
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regarding the impact of increasing wildlife populations in fenced riparian zones, 

potentially negating E. coli loading reductions provided by restricting livestock access. 

Another practice available to protect riparian areas and reduce manure deposition 

in or near surface waters is development of alternative watering facilities (FCA 1999; 

Tate et al. 2003; Byers et al. 2005). A permanent or portable off-stream water supply 

(e.g. trough) provides livestock another drinking water source, which can be used alone 

or in conjunction with other practices to reduce the amount of time livestock spend near 

surface waters and in riparian areas. To achieve optimum uniformity of grazing and 

greatest use of alternative water sources, cattle should not have to travel more than 200 

to 300 m (656 to 984 ft) to water (McIver 2004). Alternative water sources benefit 

livestock producers by improving grazing distribution, reducing herd health risks due to 

drinking or standing in contaminated water, decreasing herd injuries from cattle 

traversing steep or unstable streambanks, increasing water supply reliability during 

droughts, and increasing weight gains in beef cattle by 0.1 to 0.2 kg/day (0.2 to 0.4 

lb/day) (Willms et al. 1994; Buchanan 1996; Porath 2002; Willms et al. 2002; Veira 

2003; Dickard 1998). 

Alternative off-stream water supplies can also provide environmental benefits 

including reduced manure deposition and bacterial contamination of surface waters and 

reduced streambank destabilization and erosion due to trampling and overgrazing of 

banks. Previous research has demonstrated that cattle spend 85 to 94% less time in 

streams (Miner et al. 1992; Clawson 1993; Sheffield et al. 1997) and 51 to 75% less time 

within 4.6 m (15 ft.) of streams when an off-stream watering facility was available 



 10 

(Godwin and Miner 1996; Sheffield et al. 1997). As a result, Godwin and Miner (1996) 

deduced that under baseflow conditions, off-stream watering was nearly as effective as 

fencing in reducing manure inputs to surface water, thus reducing water quality impacts 

of grazing cattle at a reduced cost. Sheffield et al. (1997) confirmed this, finding that as a 

result of the reduction in time cattle spent in and near streams, instream fecal coliforms 

concentrations were reduced by an average of 51%. However, results varied among sites 

with statistically significant reductions in fecal coliform levels of 99%, 87%, and 57% 

being observed at three sites and a 53% increase, which was not statistically significant, 

being observed at one site. Further, Byers et al. (2005) found that providing water 

troughs decreased the amount of time cattle spent within 12 m (39 ft.) of a stream but 

that the result was dependent on time of year with a reduction of 40% observed in March 

2002, 96% in December 2002, and approximately 60% in July 2003. Byers et al. (2005) 

also found that although alternative water did not impact stormwater E. coli 

concentrations, median base flow E. coli loads decreased 95% in one pasture and 85% in 

another when water troughs were available. However, streamflow was 51% smaller 

when the troughs were available, thus impacting the load differences. 

With the exception of the study conducted by Byers et al. (2005) which used 

Global Positioning System (GPS) collars, previous studies used light beam counters 

(Godwin and Miner 1996), visual observations (Miner et al. 1992; Sheffield et al. 1997), 

and time-lapse cameras (Clawson 1993) to evaluate cattle behavior during daylight 

hours. However, night time observations can be critical because cattle exhibit bimodal 

grazing patterns (early morning and evening) with certain breeds spending a greater 
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portion of the night grazing as compared to day time (Pandey et al. 2009). The use of 

GPS and Geographic Information System (GIS) technology allows livestock behavior to 

be evaluated with greater spatial and temporal resolution. Animals can be tracked 24 

hours a day using GPS receivers incorporated into collars worn by the animals (Pandey 

et al. 2009). Agouridis et al. (2005) evaluated GPS collars to determine accuracy for 

applications pertaining to animal tracking in grazed watersheds and found the collars 

were accurate within 4 to 5 m (13 to 16 ft) and thus acceptable for most cattle 

operational areas (Pandey et al. 2009). 

Observation periods of these earlier studies were also generally of short duration, 

focusing on specific seasons. These studies also targeted the Pacific Northwest (Miner et 

al. 1992; Clawson 1993; Godwin and Miner 1996), Eastern (Sheffield et al. 1997), and 

Southeastern U.S. (Byers et al. 2005), regions where conditions are different than much 

of Texas and the mid-section of the country where a majority of U.S. cattle production 

occurs. Finally, these studies, with the exception of Byers et al., did not evaluate the 

impacts of off-stream water on E. coli levels (2005). 

The objectives of this study were to assess the effect of providing an off-stream 

watering facility (i.e. water trough) on reducing the percent time cattle spend in streams 

and riparian zones and the level of bacterial contamination of streams. This information 

is needed by stakeholders, natural resource agencies, and others working to improve 

water quality in Texas, the mid-section of the U.S., and other regions around the world 

with similar climates and grazing systems, not only to better understand the effectiveness 
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of alternative water as a water quality BMP, but to improve the predictive capabilities of 

water quality models used for TMDLs and watershed protection plans. 

2.3 Materials and Methods 

2.3.1 Site Description 

This study was conducted on a commercial cow-calf operation located in 

Caldwell County, TX bisected by Clear Fork of Plum Creek. Although the drainage area 

above the ranch is only 26 km
2
 (10 mi

2
), Clear Fork of Plum Creek is typically a 

perennial stream as a result of a number of springs located along it. The creek is 0.3 to 

10.3 m (1.0 to 33.5 ft.) wide and less than 1 m (3.3 ft.) deep. Thus, the creek was 

generally not of sufficient depth for cattle to cool off in. The average slope of the stream 

is 0.3% while the average slope perpendicular to the stream is 5.4%. Clear Fork of Plum 

Creek is a tributary of Plum Creek, which is listed as impaired by excessive levels of E. 

coli on the 303(d) List and is the focus of watershed restoration efforts through a 

watershed protection plan. 

The ranch is in the Texas Blackland Prairies Ecoregion (Omernik 1987) where 

annual precipitation averages 89 cm (35 in). However, as the result of a severe drought 

which began in the spring of 2008, only 56 cm (22 in) of rainfall was received in Year 1 

and 40 cm (15.7 in) received in Year 2. Average annual temperatures were normal [20
o
C 

(68
o
F)] in Year 1 and higher than average [20.6

o
C (69

o
F)] during Year 2. 

The flood plain soils along the creek are dominated by the Tinn series, a very 

deep, moderately well drained, very slowly permeable soil formed in calcareous clayey 
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alluvium. Upgradient of the Tinn soil is the Branyon clay, which like the Tinn soil, is a 

very deep, moderately well drained, very slowly permeable soil. Finally, soils in the 

upland areas of the ranch are comprised of Lewisville soils, very deep, well drained, 

moderately permeable soils on slopes of 0 to 10%. 

The predominant forage in the creek pasture is common bermudagrass (Cynodon 

dactylon L.). Vegetation in the three other pastures is WW-B Dahl Bluestem 

(Bothriochloa bladhii L.), Old World Bluestem [(Bothriochloa ischaemum L.); 

(Dicanthium sp. L.)], and native grasses. Vegetation along the creek consisted primarily 

of common bermudagrass with few trees and other typical riparian vegetation present. 

Less than 5% of the stream and its riparian area were shaded; thus, shade was not a 

major attractant of cattle to the creek and riparian zone. With the exception of the creek 

pasture, most of the operation had been in row crops until 2003 when it was converted to 

pastureland in 2004. 

2.3.2 Pasture Management 

Four pastures, ranging in size from 12 to 15 ha (30 to 37 ac) were utilized during 

the study. Cattle had complete and continuous access to the creek and creek pasture 

throughout the study. Cattle were allowed access to the other pastures as needed. During 

the first year of the study (July 2007 to July 2008), pastures were stocked with 54 

crossbred cows with calves and 2 bulls (57 AUs). During the second year of the study 

(July 2008 to July 2009), the pastures were stocked with 72 cows with calves and 3 bulls 

(76 AUs). The stocking rate was increased in the second year as the cooperating cow-

calf operation consolidated herds from two ranches in response to the severe drought, 
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making it easier to feed, water, and care for the livestock until conditions improved. 

Water troughs supplying well water were present in all pastures but were turned off 

during the first year of the study (with the exception of two weeks in January 2008) 

forcing the cattle to water in the creek only. In January 2008, several calves became ill 

with bovine respiratory disease and water troughs were activated for a period of two 

weeks then turned off again and remained off until July 6, 2008. The troughs were 

turned on for the second year of the study and provided cattle an alternative water 

source. Distance between the water trough and stream in the creek pasture was 

approximately 137 m (150 yd.). 

2.3.3 Global Positioning System (GPS) Tracking of Cattle 

Each quarter throughout the two year study (Appendix A), six to eight randomly 

selected cows were collared with Lotek® GPS 3300LR collars (Lotek Wireless Inc., 

Newmarket, Ontario, Canada). The collar manufacturer reports that, with differential 

correction applied, horizontal accuracies of position readings have errors less than 5 m 

(16 ft). Positional readings were collected at a 5 min fixed interval, providing up to 

6,624 locations by each collar each quarter. Cattle movement was tracked for 21 to 23 

days and then the collars were removed.  

Collar data were downloaded using Lotek host software and differentially 

corrected using data from the National Geodetic Survey (NGS), Continuously Operating 

Reference Stations (CORS) base-station nearest to the location of the trial for the day 

before the start of the trial through the day after the end of the trial. Differentially-
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corrected collar data were then combined with sensor data and converted to database 

files for analysis. 

To analyze positional readings collected from the GPS collars, the ArcView 

(ArcGIS 9, ArcMap Version 9.2, ESRI, Redlands, CA) software package was used. For 

each collar, the number of positional points in the stream (i.e. within 0.6 m or 2 ft of the 

midpoint of the stream) and within 4.6 m (15 ft) of the stream were determined using the 

―Select by Location‖ function. Percent time spent within each distance from the stream 

was determined by dividing the number of positional points within each buffer by the 

total number of positional readings taken. Percent time was then converted to minutes 

per day. 

2.3.4 Instream Sampling Procedures 

Two sites located at the inflow and outflow of Clear Fork of Plum Creek to the 

ranch, PC1 (29°53'35.81"N/97°45'21.06"W) and PC2 (29°53'23.28"N/97°45'2.67"W), 

respectively, were monitored to assess effectiveness of alternative off-stream water 

(Figure 2.1). These sites are approximately 0.8 km (0.5 mi) apart. Grab samples were 

collected and analyzed on a semi-monthly basis at both sampling sites when water was 

flowing. Water samples were collected directly from the stream, midway in the water 

column into sterile Whirl-Pak® bags. Bags were held upstream of the sampler and care 

was exercised to avoid contact with sediment and the surface micro layer of water. After 

collection, samples were placed on ice for transport to the lab where they were stored at 

4
o
C (39

o
F) until analysis. 
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Figure 2.1 

Water sample collection and flow measurement sites at 2S Ranch. 

 

 
 

 

2.3.5 Flow Calculation 

Flow depth was measured bi-monthly in conjunction with water sample 

collection. Measurements were made in a 0.9 m (3 ft.) corrugated metal culvert located 

at a stream crossing 0.16 km (0.1 mi) below PC1 and 0.64 km (0.4 mi) above PC2. 

Manning’s equation (Grant 1991) was used to estimate flow rate for each sampling 

event. The Manning roughness coefficient (n) was determined from field measurements 

of flow depth and velocity and compared to published values by Grant (1991) for 

corrugated metal subdrains. Slope (S) from PC1 to PC2 was determined using field 
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evaluation of slope as well as elevations on Google Earth® Area (A), and hydraulic 

radius (R) was obtained from published values (Grant 1991) based on the observed depth 

(d) in relation to the culvert depth (D). 

2.3.6 Analytical Methods 

Water sample analysis was conducted within six hours of collection. E. coli in 

water samples were isolated and enumerated using EPA Method 1603 (EPA 2006). If 

counts were greater than 200 colonies at the highest dilution, the count was reported as 

too numerous to count (TNTC). Results were reported as colony forming units (cfu) per 

100 mL. Finally, an AquaFluor
TM

 Handheld Fluorometer/Turbidimeter (model 8000-

010, Turner Designs, Sunnyvale, CA) was obtained in February 2008 allowing 

measurement of turbidity throughout the remainder of the study. Turbidity measured in 

water samples was reported in Nephelometric Turbidity Units (NTU). 

Additionally, to approximate deposition of E. coli in the stream before and after 

alternative off-stream water was provided, percent time spent by cattle in the stream as 

determined by the GPS collars was multiplied by published fecal coliform production 

values (5.4E+09 cfu/AU/day—Metcalf and Eddy 1991) and then converted to E. coli 

concentrations by multiplying the result by 0.63 as EPA suggests (Hamilton et al. 2005). 

2.3.7 Evaluation of E. coli Loads 

Flow rate at the time each grab sample was assumed to represent the daily 

average (m
3
/s). These flow rates, along with the E. coli concentrations, were used to 

estimate the daily loads for the upstream and downstream sites, PC1 and PC2, 
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respectively. The daily load contributed by the study watershed was calculated by 

subtracting the upstream load from the downstream load (PC2 – PC1). This was 

converted to an AU basis by dividing the daily loads contributed by the study watershed 

by the number of AUs present in the study watershed during the respective period (i.e. 

57 AUs during Year 1 and 76AUs during Year 2). 

2.3.8 Statistical Analysis: Water Quality Data 

The statistical software, Minitab (Minitab Inc., State College, PA), was used for 

all statistical calculations. Basic statistics and graphical summaries of each dataset were 

created to evaluate means, medians, quartiles, confidence intervals, and normality using 

the Anderson-Darling Normality Test. As a majority of datasets were not normally 

distributed, they were evaluated with nonparametric statistics. The Mann-Whitney 

statistical test was used to assess the differences in median (1) minutes cattle spent per 

day instream and within 4.6 m of the creek; (2) flows; (3) E. coli concentrations; (4) E. 

coli loads; and (5) turbidities observed between sites and periods (i.e. with versus 

without alternative water). An alpha level of 0.05 was used as the level of significance, 

thus results were considered statistically significant when p < 0.05. Regression analysis 

was used to evaluate the relationship between E. coli concentrations at PC1 and PC2, as 

well as between E. coli concentrations and turbidity. Coefficient of determination values 

were used to evaluate the strength of regression equations for E. coli concentrations. 

Finally, analyses of covariance were developed using the Minitab General Linear Model, 

specifying the responses as PC2 turbidity, the model as the treatment period (i.e. with 
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alternative water) or calibration period (without alternative water), and the covariate as 

PC1 turbidity. 

2.4 Results and Discussion 

2.4.1 GPS Tracking of Cattle 

Comparison of the amount of time cattle spent in and near the creek with and 

without alternative water available (Appendix A) indicated providing alternative off-

stream water reduced the time cattle spent in the stream and within 4.6 m (15 ft.) of the 

creek (Figure 2.2).  

 

Figure 2.2 

Time (min/AU/day) that cattle spent in and near (within 4.6 m) Clear Fork of Plum 

Creek with and without alternative off-stream water provided. The boundary of 

the box closest to zero indicates the 25
th

 percentile, the solid line within the box 

represents the median, the dashed line represents the mean, the boundary of the 

box farthest from zero indicates the 75
th

 percentile, the whiskers above and below 

the box indicate the 10
th

 and 90
th

 percentiles, and the circles indicate outliers. 
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Because shade along the riparian zone was limited (< 5%) and stream depth was 

not suitable for cooling, it can be assumed that observed reductions were almost solely 

the result of cattle drinking from the alternative water supply and not the stream. 

Analysis of the GPS collar data (Table 2.1) indicated providing alternative off-stream 

water significantly reduced the median amount of time cattle spent in and near the creek 

(p < 0.01). 

The amount of time cattle spent within 4.6 m of the creek was reduced 52% from 

25 to 12 min/AU/day when provided with off-stream water, compared to the 75% 

reduction from 15 to 4.25 min/AU/day found by Godwin and Miner (1996) and 51% 

reduction from 12.7 to 6.2 min/AU/day found by Sheffield et al. (1997). Although the 

percent reductions from our study were similar to those of Sheffield et al. (1997), the 

amount of time cattle spent near the stream varied substantially between the studies. 

 

Table 2.1 

Descriptive statistics of time (in minutes/day and percent of day) that cattle spent in 

and near Clear Fork of Plum Creek with and without alternative off-stream water 

provided. 

Distance  

from creek Statistic 

No Alt. Water 

min/day (%) 

With Alt. Water 

min/day (%) Percent Reduction 

Instream Mean 3.5 (0.2%) 2.0 (0.1%)  

 sd 2.2 (0.1%) 1.2 (0.1%)  

 Median* 3.0 (0.2%)a 1.7 (0.1%)b 43% 

 Max 10.5 (0.7%) 5.0 (0.3%)  

4.6 m Mean 27 (1.9%) 15 (1.0%)  

(15 ft.) sd 12 (0.8%) 8 (0.6%)  

 Median* 25 (1.7%)a 12 (0.8%)b 52% 

 Max 64 (4.4%) 44 (3.1%)  

* For each site, medians followed by same letter are not significantly different (p < 0.05) 



 21 

Further, our study found that providing alternative off-stream water reduced 

stream use from 3.0 to 1.7 min/AU/day, compared to reductions from 25.6 to 1.6 

min/cow/day (Miner et al. 1992), 4.7 to 0.7 min/AU/day (Clawson 1993), and 6.7 to 0.7 

min/AU/day (Sheffield et al. 1997). Based on the percent time cattle spent in the stream 

(as determined by the GPS collars), along with published fecal coliform loading rates 

(Metcalf and Eddy 1991) and the E. coli conversion factor suggested by EPA (Hamilton 

et al. 2005), we estimated the median daily deposition of E. coli in the stream was 

reduced from 1.11E+07 cfu/AU/day to 6.34E+06 cfu/AU/day when alternative water 

was provided. 

The reduction in the percent time cattle spent in the stream observed by this 

study (43%) was half the reductions of 85 to 94% observed by previous studies (Miner et 

al. 1992; Clawson 1993; Sheffield et al. 1997). Additionally, the amount of time cattle 

spent in the stream varied substantially among studies from 3 min per day in our study to 

almost 26 min per day (Miner et al. 1992) indicating the site specific nature of this 

measurement. Stream width, depth, accessibility, and adjacent shade play a major role in 

the amount of time cattle spend in and near streams and thus the percent reductions 

achievable by providing alternative water. As such, TMDLs and other watershed studies 

that utilize percent time cattle spend in streams for assessing direct deposition rates 

would benefit from GPS collars studies to validate models. For example, it was 

estimated by Orange County, TX, TMDL stakeholders that, on average, cattle drinking 

water from the bayous spend 10 min per day in the stream during June, July, August, or 

September, and 5 min per day in March, April, May, October, and November, but did 
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not stand in the bayous to drink from December through February (TCEQ 2007a). Using 

these assumptions from the TMDL, cattle spend 5.4 minutes/day in the stream on 

average overall throughout the year. Although this estimate is within the range observed 

by previous studies, it is 80% higher than the findings of this study, potentially 

overestimating the bacterial loading allocated to direct deposition from cattle into the 

creek and resulting in additional unnecessary restrictions. Because of this, evaluation of 

the time cattle spend in impaired water bodies using GPS collars or other suitable 

methods is suggested for TMDLs and other watershed planning projects to improve the 

accuracy of associated water quality models. 

2.4.2 Flow 

Median streamflow observed during Year 2 [0.003 m
3
/s] was significantly lower 

(p < 0.001) than that observed during Year 1 (0.014 m
3
/s). In the spring of 2008, the 

region entered a severe drought that continued throughout the remainder of the study 

(Figure 2.3). As a result, during the second year of the study when alternative water was 

provided, flow was reduced 79% compared to that observed during the previous year. 

Flow ceased in the creek for three months during Year 2 (mid-September through 

October 2008 and June 2009 through July 2009).  

This drought not only impacted flow, but also impacted ranch management 

decisions (resulting in the increased stocking rate during Year 2), pasture condition 

(resulting in a decrease from excellent condition at the beginning of the study to poor 

condition in Year 2), and ultimately instream E. coli levels and loading. 
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Figure 2.3 

Discharge (cms) measured in Clear Fork of Plum Creek, July 2007 through July 

2009. Discharge measured on July 26, 2007 of 4.38 cms (154.83 cfs) is not shown. 

 

 

2.4.3 E. coli Levels 

A total of 84 samples were collected from the two water quality stations (PC1 

and PC2), of which 48 were collected during Year 1 (July 2007 to July 2008) and 36 

during Year 2 (July 2008 to July 2009). Fewer samples were collected during Year 2 as a 

result of periods with no streamflow as previously noted (Appendix B). 

E. coli levels at PC2 were correlated with those at PC1 throughout the study (p < 

0.01) indicating that inflowing E. coli levels significantly impacted E. coli levels at the 

downstream site. Further, coefficient of determination values were moderate to high for 

both Year 1 (r
2
=0.58) and Year 2 (r

2
=0.83). However, E. coli levels increased between 

PC1 and PC2 during both years (Figure 2.4) indicating that loading from the study area 

contributed to E. coli concentrations at the downstream site (PC2). During Year 1, 
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median E. coli concentrations increased 73 cfu/100 mL (p = 0.09) from 88 cfu/100 mL at 

PC1 to 161 cfu/100 mL at PC2. During Year 2, the increase of 323 cfu/100 mL from 147 

cfu/100 mL at PC1 to 470 cfu/100 mL at PC2 was significant (p = 0.01).  

 

Figure 2.4 

E. coli concentrations at PC1 and PC2 in Year 1 (no alternative water provided) 

and Year 2 (alternative water provided). 

 
 

This increase during Year 2 when alternative water was provided was unexpected 

and inconsistent with the estimated 43% reduction in direct deposition of E. coli 

calculated based on the GPS collar data. The extreme drought that reduced flows by 79% 

and influenced ranch management decisions to increase stocking rate 34% provide an 

explanation for much of this increase. With more cattle having access to the creek and 

less flow to dilute any direct deposition, it would be expected that concentrations would 

increase, even with the decreased amount of time cattle spent in the stream during Year 

2. Based on Year 1 cattle numbers (56.7 AU), median flow (0.014 cms), and estimated 
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median daily deposition of E. coli in the stream (1.11E+07 cfu/AU/day), it was 

calculated that direct deposition would contribute 52 cfu/100 mL to the median 

inflowing (PC1) concentration (88 cfu/100 mL) thus, inflowing E. coli and direct 

deposition together (140 cfu/100 mL) represent an estimated 87% of the median E. coli 

concentration observed at PC2 during Year 1 (161 cfu/100 mL). Using the same method 

for Year 2, it was calculated that direct deposition would contribute 186 cfu/100 mL to 

the median inflowing (PC1) concentration (147 cfu/100 mL) thus, inflowing E. coli and 

direct deposition (333 cfu/100 mL) represent an estimated 71% of the median E. coli 

concentration observed at PC2 during Year 2 (470 cfu/100 mL). 

This evaluation suggests inflowing E. coli concentrations, direct deposition by 

cattle, and reduced dilution resulting from reduced flow all contribute to the E. coli 

concentrations at PC2; however, they do not fully explain the concentrations observed. 

Approximately 13% of the E. coli during Year 1 and 29% during Year 2 are 

unaccounted for. A portion of the unaccounted E. coli likely results from the variability 

observed in the E. coli concentrations. E. coli concentrations were highly variable, with 

standard deviations greatly exceeding mean E. coli concentrations. Natural variability in 

E. coli concentrations resulting from the complex nature of bacterial deposition, 

survival, and transport is likely a significant factor in determining the observed E. coli 

concentrations (Harmel et al. 2010). Due to the drought and resulting increased stocking 

rate, degraded range condition, and reduced flows during Year 2, significant changes in 

the fate and transport of E. coli occurred making comparisons of the two years difficult.  
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Measurement uncertainty may have also contributed to data variability. 

McCarthy et al. (2008) found that combined uncertainty in discrete E. coli samples 

ranged from 15 to 67% and averaged 33%. However, because the field technician, 

collection methods, lab analyst, and lab methods used were consistent throughout the 

study, this impact is considered to be consistent across sites and years.  

Finally, although not quantified, increased use of the creek by wildlife during the 

drought could have also impacted E. coli concentrations during Year 2. It is logical that 

wildlife would increasingly use the creek as other water sources in the area were 

depleted. Thus, even though use of the stream by cattle as documented by the GPS 

collars decreased significantly when alternative water was provided, increased wildlife 

use likely contributed to the overall increase in E. coli concentrations as well. 

2.4.4 E. coli Loading 

Contrary to the E. coli concentration results, E. coli loading (cfu/AU/day) was 

substantially lower during Year 2 when alternative water was provided (Figure 2.5). The 

median E. coli load in Year 2 (6.15E+06 cfu/AU/day) tended to be 57% lower than that 

observed during Year 1 (1.44E+07cfu/AU/d); however, the observed difference was not 

significant (p = 0.47). Due to the variability in the loading observed during Year 1, a 

99% change in loading or greater would have been required to observe a significant 

difference in the loadings between years. Despite this, these results are remarkably 

similar to the estimated Year 1 and 2 E. coli deposition in the stream of 1.11E+07 and 

6.34E+06 cfu/AU/d, respectively, calculated using the GPS collar data and published 

fecal coliform data. 
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Even though observed E. coli loading and those estimated using GPS collar data 

are remarkably similar and both indicated reductions of more than 40%, this study 

cannot conclusively attribute E. coli loading reductions to the alternative water source 

because of the lack of statistical significance of these observations, the significant 

decrease in flow observed during Year 2, and the observed increase in E. coli levels 

during Year 2. 

 

Figure 2.5 

Estimated and observed instream E. coli loading (cfu/AU/day) during Year 1 (no 

alternative water) and Year 2 (alternative water provided). 

 
 

2.4.5 Turbidity 

Median turbidity levels (Table 2.2) were typically 40% higher at PC1 than at 

PC2 indicating turbidity generally improved as the creek flowed through the ranch; 

however, differences were only significant for Year 1 (p < 0.01). Turbidity levels 

flowing into the study watershed played a greater role in determining the levels at PC2 
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during Year 2. During Year 2, turbidity at PC1 and PC2 were correlated (p = 0.01; 

r
2
=0.36), unlike Year 1 when no correlation between sites was observed (p = 0.98, 

r
2
=0.00). Analysis of covariance between observed turbidities in Years 1 and 2 indicated 

no significant treatment effect resulted from providing alternative water (p = 0.93). 

 

Table 2.2 

Turbidity (NTU) levels measured at PC1 and PC2 during Years 1 and 2. 

Period Statistic PC1 PC2 

Year 1 Mean 35 17 

 sd 20 8 

 Median* 29a 16b 

 Max 62 31 

Year 2 Mean 14 12 

 sd 11 13 

 Median* 10a 6a 

 Max 43 47 

* For each site, medians followed by same letter are not significantly different (α=0.05) 

 

Turbidity was primarily measured to evaluate its use as a predictor of E. coli 

concentration, as streambed sediment disturbance is suspected to influence E. coli levels 

(Jackson et al. 2011). However, regression analysis results indicated turbidity was not a 

good predictor of E. coli concentrations in Clear Fork of Plum Creek (p = 0.51; r
2
=0.01). 

Similarly, McDonald et al. (2006) did not observe a significant correlation between fecal 

enterococci and turbidity. This differs from the findings of Huey and Meyer (2010) that 

turbidity is an effective predictor of E. coli in the upper Pecos River basin in New 

Mexico. Also, Collins (2003) developed a statistical model to determine median E. coli 

concentrations based on turbidity that explained 70% of the observed E. coli variance. 
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Similarly, Brady et al. (2009) found that a model based on turbidity and rainfall 

performed well at predicting E. coli levels (81% correct responses) in the Cuyahoga 

River, Ohio. Thus, turbidity does have utility as a predictor in some watersheds; 

however, this must be determined on a case-by-case basis and used with caution. 

2.5 Summary and Conclusions 

Use of GPS collars was found to be a very useful tool, one that would benefit not 

only future BMP evaluations but also TMDL studies that utilize percent time cattle 

spend in streams for assessing direct deposition rates. Performing GPS collar studies can 

enhance water quality models allowing them to more accurately predict E. coli loading. 

In this study, GPS collars indicated the amount of time cattle spent in the stream could 

be reduced 43% from 3.0 to 1.7 minutes/AU/day by providing alternative off-stream 

water. As a result of this, direct deposition of E. coli into Clear Fork of Plum Creek was 

estimated to be reduced 4.76E+06 cfu/AU/day from 1.11E+07 cfu/AU/day when no 

alternative water was provided to 6.34E+06 cfu/AU/day once alternative water was 

provided. Observed pre- and post-treatment E. coli loads suggested similar reductions; 

however, this study could not conclusively attribute the observed E. coli loading 

reductions to alternative water because of the lack of statistical significance of these 

observations, the decrease in flow observed during Year 2, and the observed increase in 

E. coli levels during Year 2. A drought during Year 2, which reduced flows by 79% and 

influenced ranch management decisions to increase the stocking rate by 34%, may 

explain much of the increase in E. coli levels observed. Other probable factors impacting 
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observed E. coli levels include natural variability, changes in fate and transport due to 

the drought, and potential increased contributions from wildlife. 

Although this study did not provide conclusive evidence of reduced E. coli levels 

resulting from providing alternative off-stream water supplies, this practice is still highly 

recommended due to the significant reductions observed in the time cattle spent in and 

near the stream, the 51% reduction in fecal coliform documented by Sheffield et al. 

(1997), and the 85 to 95% decrease in median base flow E. coli load found by Byers et 

al. (2005). These reductions are comparable to those provided by fencing of streams, 

which reduced E. coli 37 to 46% (Meals 2001, 2004) and fecal coliforms 30 to 94% 

(Brenner et al. 1994; Brenner 1996; Cook 1998; Hagedorn et al. 1999; Lombardo et al. 

2000; Meals 2001; Line 2002; Line 2003; Meals 2004). Further, this study supports 

McIver (2004) who noted alternative water supplies alone would not achieve water 

quality improvements unless implemented in conjunction with good grazing 

management (i.e. appropriate stocking rate, evenly distributed grazing, avoiding grazing 

during vulnerable periods, and providing ample rest after grazing events). As a result of 

the severe drought, these principles were not adhered to and likely confounded 

improvements in water quality that could have been due to the provision of alternative 

water supplies. 

Finally, unlike others, this study did not find turbidity to be a good predictor of 

E. coli. Thus, use of turbidity as an indicator must be assessed on a case-by-case basis 

and used with caution.  
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CHAPTER III 

ASSESSMENT OF CATTLE GRAZING EFFECTS ON E. COLI RUNOFF 

 

3.1 Overview 

Runoff of E. coli and other fecal indicator bacteria from grazing lands has been 

identified as a significant source of bacterial contamination in need of reductions to 

improve water quality. Development of best management practices to address these 

bacterial issues is critical to the success of watershed restoration efforts, where grazing is 

a substantial contributor to the problem. The effect of grazing management was 

evaluated to assess its effectiveness as a best management practice. E. coli levels in 

runoff from grazed and ungrazed rangeland, improved pasture, and native prairie sites 

were monitored from November 2007 through October 2010. 

The study found that rotational stocking, if timed appropriately, was a very 

effective practice for reducing E. coli runoff. The impact of grazing timing in relation to 

runoff events was more significant than the impact of grazing management (i.e. 

ungrazed, properly stocked or overstocked) or stocking rate. When runoff occurred more 

than two weeks following grazing, E. coli levels in runoff were decreased more than 

88%. As a result of these findings, it is recommended that creek pastures and other 

hydrologically connected pastures be grazed during periods when runoff is less likely 

(e.g. summer and winter in much of Texas) and upland sites be grazed during rainy 

seasons when runoff is more likely to occur.  
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Background levels were relatively consistent among sites, with median levels 

ranging from 3,500 to 5,500 colony forming units per 100 mL. These substantial 

background levels should be considered when applying water quality models to develop 

total maximum daily loads and conducting other water quality assessment or 

implementation efforts. Impacts of non-domesticated animals on E. coli runoff were also 

significant, being responsible for over 80% of the loading in 2009 at three sites. Finally, 

although water quality standards are not currently applicable to edge-of-field runoff, it is 

notable that over 90% of samples exceeded Texas Water Quality Standards for E. coli as 

runoff will significantly increase instream concentrations during storm events. Based on 

the findings of this study, it is recommended that exemptions from the current standards 

be made for storm flows and wildlife, or additional research be conducted to accurately 

define bacterial quality for runoff and establish practical water quality standards. 

3.2 Introduction 

Livestock grazing on pasture and rangeland is frequently identified as a source of 

fecal indicator bacteria (i.e. E. coli, Enterococcus, and fecal coliforms) requiring 

reductions to improve surface water quality in Texas (TCEQ 2007c, 2008d). Previous 

studies have documented direct relationships between grazing and increased fecal 

coliform levels in streams and runoff (Doran and Linn 1979; Doran et al. 1981; Gary et 

al. 1983; Tiedemann et al. 1987; EPA 2001; Donnison et al. 2004). Contamination of 

streams can arise through direct deposition of feces, surface runoff, and subsurface 

flows; however, surface runoff is a key process for delivery of E. coli to streams (Collins 

et al. 2005). As such, best management practices (BMPs) which reduce surface runoff of 
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bacteria from grazing lands are critical to the success of water resource improvement and 

protection efforts in impaired water bodies.  

The extent to which bacteria from grazing cattle affect water quality is generally 

a function of the number and size of cattle, the location of fecal deposits in relation to 

water bodies, characteristics of fecal deposition site, and bacterial survival between time 

of fecal deposition and runoff events (Larsen et al. 1994). As stocking rate increases, the 

quantity of manure and bacteria deposited on grazing lands increases (EPA 2003). E. 

coli levels can vary considerably in manure as a result of diet and season (Muirhead et 

al. 2006; Oliver et al. 2010) with E. coli levels in beef cattle feces on grazed pastures 

ranging from 1.0E+05 to 7.9E+05 colony forming units (cfu) per gram wet weight 

(McDowell et al. 2008) and 2.2E+05 to 1.3E+07 cfu/g dry weight (Sinton et al. 2007; 

Van Kessell et al. 2007; McDowell et al. 2008; Oliver et al. 2010). With grazing beef 

cattle excreting from 28 kg (63 lb) to 32 kg (71 lb) wet weight per animal per day 

(McDowell et al. 2008), E. coli deposition rates may be as high as 2.8E+09 to 4.2E+10 

cfu/AU/day. Several studies suggest that instream coliform levels increase with 

increasing grazing intensity (Larsen et al. 1994; Gary et al. 1983); however, published 

fecal coliform levels in runoff do not appear to be significantly related to stocking rate 

(Appendix C).  

The location of fecal deposition relative to variable source areas and water 

courses is an important factor determining potential for E. coli in fecal pats to be 

transported downstream (Tate et al. 2003). Runoff from cattle congregation areas (e.g. 

near watering sites, fences, gates, and bedding areas) can be a significant source of 
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bacteria in nearby streams. However, a more important factor is distance from stream 

with manure deposited 0.6 m (2 ft.) from a stream contributing 83% less bacteria and 

manure deposited 2.1 m (7 ft.) contributing 95% less than that manure deposited directly 

into a stream (Larsen et al. 1994). 

Variability in bacterial levels in runoff results from differences in deposition site 

characteristics including soil type, slope, hydrology and drainage patterns, and 

management (Larsen et al. 1994; FCA 1999; Ferguson et al. 2003) as well as the 

quantity and intensity of rainfall (Ferguson et al. 2003). However, because bacteria are 

living organisms and their transport is complex and impacted by adsorption, straining 

(i.e. filtration), interception, entrapment, and sedimentation, bacterial levels in runoff are 

difficult to predict.  

Further, bacterial levels in runoff and streams are greatly affected by their 

survival and potential re-growth in the environment. As such, timing of fecal deposition 

relative to runoff events impacts the potential for E. coli to be transported downstream 

(Tate et al. 2003). Generally, E. coli concentrations increase an order of magnitude or 

greater during the first 6 to 10 days following deposition, followed by a first order 

decline (Sinton et al. 2007; Van Kessel et al. 2007; Oliver et al. 2010) once moisture 

levels fall below 70% to 75%. However, their fate is not predictable under complex 

natural conditions which can result in disparate growth and survival (Van Elsas et al. 

2011). If nutrients and energy sources are available and critical abiotic conditions are 

favorable, E. coli can survive and even grow in open environments. Even in the decline 

phase, bacterial populations in fecal pats remain metabolically active providing the 
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potential for continued growth should conditions become favorable (Thelin and Gifford 

1983). Because fecal pats contain needed nutrients, E. coli can persist as long as water 

and temperature are suitable (Sinton et al. 2007). Fecal pats form a well-defined crust, 

typically within two days of deposition, which keeps the interior moist allowing E. coli 

to persist. Further, subsequent rainfall can rehydrate the fecal pat and stimulate E. coli 

regrowth (Sinton et al. 2007). As a result, the potential for bacterial contamination of 

water bodies by rainfall runoff can exist for long periods after cattle are removed from a 

site (Thelin and Gifford 1983; Larsen et al. 1994). E. coli has been observed to survive 

30 to 365 days in soil, 10 to 182 days in cattle manure, 99 days in grass, and 35 days in 

water depending on the chemical, physical, and biological composition of feces, soil, 

and water it was deposited in (Crane and Moore 1986; University of Wisconsin 2007a, 

2007b). Not only can E. coli persist in fecal pats for long periods, it can also remain as 

high as 10
4
 cfu/g five months after deposition. Sinton et al. (2007) determined that the 

time to achieve a 90% decrease (T90) in E. coli levels in fecal pats ranged from 38 to 66 

days, depending on season with E. coli being more persistent during spring, summer, and 

fall and less persistent in the winter. As a result of this persistence, instream fecal 

coliform levels may remain elevated for up to nine months following cattle removal 

(Tiedemann et al. 1988). 

Nevertheless, risk of pollution is greatest immediately after deposition of 

manure. Thelin and Gifford (1983) found fecal coliform levels exceeding 10
6
 cfu/100 

mL were released from fecal pats less than 5 days old, while 30 day old fecal pats 

released fecal coliform levels of 4 × 10
4
 cfu/100 mL (96% reduction) indicating 
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downstream water quality is partially dependent on days since grazing ceased. If runoff 

occurred the day of fecal deposition, 58 to 90% of the fecal coliform in the manure may 

be transported in the runoff (Crane et al. 1983, Coyne et al. 1995). Similarly, E. coli 

levels in runoff in pastures actively grazed by sheep may range from 10
5
 to 10

6
 cfu/100 

mL, while levels in runoff occurring 75 days after grazing ranged from 10
3
 to 10

4
 

(Collins et al. 2005). Conversely, if weather conditions are dry and deposition is on well-

drained soils, bacterial runoff is greatly reduced (Ogden et al. 2001). 

Practices aimed at reducing bacterial runoff from grazing lands generally focus 

on maintaining adequate ground cover to filter runoff, enhance infiltration, reduce runoff 

(FCA 1999; Ball et al. 2002; NRCS 2007), and promote soil filtration and the removal of 

bacteria by sorption, inactivation, and predation (Ferguson et al. 2003). Proper grazing 

management is essential to maintaining adequate ground cover and as such is critical to 

addressing bacterial loading from grazing lands (NRCS 2007). Proper grazing 

management begins with using the correct stocking rate and balancing animal demand 

with available forage (Redmon 2002; EPA 2003; Fitch et al. 2003; NRCS 2007), and 

also includes distributing grazing evenly, avoiding grazing during vulnerable periods, 

and providing ample rest after grazing. With careful planning of grazing, forages can be 

maintained or improved while also providing water quality benefits (Larsen et al. 1994).  

Because grazing lands are the largest land use in Texas, watershed scale E. coli 

runoff data from this land use are needed to support ongoing and future TMDL and 

watershed planning activities. Further, data are needed on background E. coli levels in 

runoff, E. coli levels in runoff from grazed sites with varying levels of grazing 
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management and grazing intensity, and impacts of best management practices on these 

levels. Published data on E. coli runoff from grazed pastures are sparse (McDowell et al. 

2008) with much of the existing data being derived from laboratory experiments and 

instream monitoring of grazed watersheds. However, laboratory derived data are not 

sufficient for development of accurate models at the farm and watershed scale (Oliver et 

al. 2010), and monitoring of streams does not allow the discrimination of surface runoff, 

subsurface flows, direct deposition, and resuspension of sediment bound E. coli (Collins 

et al. 2005). Further, most existing research was conducted in the Pacific West and 

Midwest, examined primarily fecal coliform levels, and focused on the detriments of 

grazing on streams instead of assessing BMPs for abating these effects. Although this 

information is valuable, it is not universally transferable to Texas and similar climatic 

regions (Agouridis et al. 2005). The objective of this study was to assess E. coli levels in 

runoff at the small watershed scale from grazed and ungrazed pastures and assess the 

effect of grazing management (e.g. ungrazed, properly stocked, overstocked), timing of 

grazing, and stocking rate on E. coli levels in runoff. 

3.3 Materials and Methods 

3.3.1 Site Descriptions 

Assessment of the effect of grazing on E. coli levels in runoff took place at seven 

sites distributed among three locations in Texas (Table 3.1). 
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Table 3.1 

Locations and characteristics of watershed sites. 

 Site Lat/Long Vegetation Management 

USDA-Agricultural Research Service (ARS) Watersheds, Riesel, TX 

 SW12 31° 28’48‖N / 96° 52’59‖W Native grassland Ungrazed 

 SW17 31° 27’45‖N / 96° 53’14‖W Bermudagrass Properly stocked 

Welder Wildlife Foundation, Sinton, TX   

 WWR1 28° 6'55.97"N / 97°21'20.82"W Native rangeland Ungrazed 

 WWR3 28° 6'52.60"N / 97°21'13.83"W Native rangeland Properly stocked 

Beef Cattle Systems Center, College Station, TX  

 BB1 30° 31'44.3"N / 96°24'58.3"W Tifton 85 bermudagrass Ungrazed 

 BB2 30° 31'47.5"N / 96°24'57.7"W Tifton 85 bermudagrass Properly stocked 

 BB3 30° 31'47.7"N / 96°24'57.9"W Tifton 85 bermudagrass Overstocked 

 

The USDA-ARS Grassland, Soil and Water Research Laboratory in Riesel, TX, 

was the location of two sites. This research site has been one of the most intensively 

monitored hydrological research sites in the country since establishment in the 1930s 

(Harmel et al. 2007). It is located in the Texas Blackland Prairies ecoregion (Omernik 

1987) on the border of Falls and McLennan counties (Figure 3.1).  

Houston Black clay soils dominate the region. This soil is very slowly permeable 

when wet; however, preferential flow associated with soil cracks contributes to high 

infiltration rates when the soil is dry. Mean annual rainfall is approximately 91 cm (36 

in). Thirteen runoff stations are operated at the research site to monitor sub-watersheds 

under both pasture and cropland management. Two 1.2-ha sites were used to evaluate 

grazing management, SW12 and SW17. The average slope of SW12 is 3.8%, while 

slope averages 1.8% at SW17. 
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Figure 3.1 

Riesel watersheds. 

 

The Rob and Bessie Welder Wildlife Refuge is a 3,156 ha (7,800 ac) native 

wildlife refuge 13 km (8 mi) north of Sinton, TX, in the Western Gulf Coastal Plain 

ecoregion of Texas (Omernik 1987) (Figure 3.2). Three 1-ha (2.4 ac) watershed sites 

were established in 2000 to study the effects of shrub management on water quality and 

quantity on rangeland. Berm failure on site WWR2 prevented data collection there 

during the study. 

The Welder has never been cultivated and has historically been managed for 

livestock (Stewart 2003). Precipitation averages 90 cm (36 in) annually. The watershed 

sites are located on chaparral-mixed grass communities on the east and west sides of 

Paloma draw, approximately 6 km (4 mi) from the foundation headquarters. Victoria 

clay (0 to 1% slopes) soils underlay the upper quarter to third of the watershed sites and 

Monteola clay (5 to 8% slopes) soils underlay the remainder. Both are classified as 

Hydrologic Soil Group D soils. 
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Figure 3.2 

Welder Wildlife Refuge watersheds. 

 
 

The final site was the Texas A&M University, Department of Animal Science 

Beef Cattle Systems Center (BCSC) located west of College Station on the Brazos 

River. This site was used primarily for row crop production prior to initiation of this 

study. In October 2007, berms were constructed around three 1-ha watershed sites 

(Figure 3.3), and the slopes modified so each site would drain to the watershed outlet. 

Following berm construction, all sites were established to Tifton 85 bermudagrass. 

These sites are located in the East Central Texas Plains ecoregion (Omernik 1987). 

Annual precipitation averages 102 cm (40 in). Soils within the study area are classified 

as Belk clay, a heavier-textured alluvial soil (Hydrologic Soil Group D) found along the 

Brazos River. Measured slope averages 0.2%. 
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Figure 3.3 

Beef Cattle Systems Center watersheds. 

 
 

3.3.2 Pasture Management 

All sites were fenced so that cattle grazing could be controlled. Three sites were 

ungrazed (SW12, WWR1, BB1), three were properly stocked (SW17, WWR3, BB2), 

and one site, BB3, had double the stocking rate of the properly stocked BB2. Site SW12 

is notable in that this ungrazed native prairie reference site has not been stocked with 

cattle or other livestock since the Riesel Watersheds were established in 1937 (Harmel et 

al. 2006a). Stocked sites were not grazed continuously; instead, six to seven grazing 

events occurred at each site during the study (Table 3.2). Grass height was monitored 

monthly to determine timing of grazing. Properly stocked sites were generally stocked 

once grass height exceeded 6 in, and cattle were removed once grass height was reduced 

to 3 in as recommended by the USDA Natural Resources Conservation Service 

Conservation Practice General Specifications for Prescribed Grazing (Practice Standard 

No. 528).  
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Table 3.2 

Grazing events. 

Locale Site Start End 
Stocking Rate 

(AU/ha)* 

Stocking Rate 

(AUD/ha)† 

Stocking Rate 

ha/AUY (ac/AUY)‡ 

Riesel SW17 9/12/07 11/14/07 1.1 70 2.6 (6.4) 

 SW17 2/25/08 6/2/08 1.1 109 1.7 (4.1) 

 SW17 11/5/08 4/21/09 1.1 185 1.6 (3.9) 

 SW17 5/1/09 6/3/09 1.1 37 1.7 (4.1) 

 SW17 7/15/09 11/6/09 1.1 126 1.1 (2.6) 

 SW17 5/3/10 5/24/10 1.1 23 2.3 (5.6) 

 SW17 7/19/10 8/27/10 1.1 43 2.5 (6.2) 

Welder WWR3 12/1/07 2/13/08 0.4 31 11.6 (28.7) 

 WWR3 4/18/08 4/28/08 2.6 26 6.4 (15.7) 

 WWR3 10/20/08 10/25/08 2.9 15 5.1 (12.5) 

 WWR3 4/27/09 5/1/09 3.4 14 11.7 (29.0) 

 WWR3 6/21/10 6/22/10 2.6 3 140.9 (348.0) 

 WWR3 9/1/10 9/11/10 2.6 26 12.8 (31.6) 

BCSC BB2 1/12/09 1/16/09 4.0 16 22.8 (56.3) 

 BB2 5/22/09 6/5/09 6.1 79 3.8 (9.5) 

 BB2 8/7/09 8/8/09 6.4 6 3.6 (8.9) 

 BB2 8/12/09 8/19/09 6.4 46 2.5 (6.1) 

 BB2 11/12/09 11/17/09 18.4 90 1.5 (3.8) 

 BB2§ 2/1/10 2/8/10 2.5 17 1.5 (3.8) 

 BB2 6/21/10 7/2/10 17.7 194 1.7 (4.3) 

 BB3 1/12/09 1/16/09 8.0 32 11.4 (28.2) 

 BB3 5/22/09 6/5/09 13.4 175 1.8 (4.4) 

 BB3 8/7/09 8/8/09 12.8 13 1.7 (4.1) 

 BB3 8/12/09 8/19/09 12.8 92 1.2 (2.9) 

 BB3 11/12/09 11/17/09 36.8 180 0.7 (1.8) 

 BB3§ 2/1/10 2/8/10 2.5 17 0.8 (1.9) 

 BB3 6/21/10 7/2/10 31.7 346 1.0 (2.5) 

* Animal units per hectare 

† Animal unit days per hectare 

‡ Annual stocking rate in hectares per animal unit and acres per animal unit 

§ Electric fences failed allowing short-term cattle access 

 

 

These grazing events allowed evaluation of the impact of a wide range of 

stocking rates on E. coli runoff. It should be noted that electric fences failed on several 
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occasions at the Beef Cattle Systems Center sites. At BB2 and BB3, electric fences 

failed on February 1 to 8, 2010; however, minimal grazing occurred on the sites during 

this time. At BB1, the electric fence failed on March 11, 2009, November 13, 2009 and 

February 1, 2010 allowing limited cattle access to the site ranging from one to seven 

days per failure. To the extent possible, fecal pats were removed from BB1 once the 

fence was restored. However, from February 1 to 8, 2010, several runoff events occurred 

while cattle had access to the site and are noted in the analysis. 

3.3.3 Edge of Field Sampling Procedures 

As recommended by Harmel et al. (2006b), flow-weighted composite edge-of-

field runoff samples from the seven watershed sites were collected using ISCO 6712 

(ISCO Inc., Lincoln, NE) full-size portable samplers with single bottle configuration into 

surface disinfected polyethylene 15 L (4 gal) round bottles. Flow from each watershed 

site was measured with ISCO 730 Module bubble flow meters. Flow data were 

downloaded at least monthly using an ISCO 581 Rapid Transfer Device (RTD). Sites 

BB1, BB2, BB3, WWR1, and WWR3 were equipped with berms and 90
o
 v-notch weirs 

to aid in collection and measurement of runoff, while SW12 and SW17 were monitored 

using 0.9 m (3 ft) H-flumes. Runoff was monitored for three years, from November 2007 

through October 2010, at WWR1, WWR3, SW12, and SW17. Runoff at sites BB1, BB2, 

and BB3 was monitored for two years, from November 2008 through October 2010. The 

ISCO samplers at sites WWR1, WWR3, BB2, and BB3 enabled when the water level 

exceeded 6 mm (0.02 ft) and then collected 50 mL for every 4.2 m
3
 (150 ft

3
) of runoff. 

The ISCO sampler at BB1 enabled when the water level exceeded 6 mm (0.02 ft) and 
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then collected 25 mL for every 2.1 m
3
 (75 ft

3
) of runoff. The ISCO samplers at SW12 

and SW17 enabled at 60 mm (0.20 ft) and sampled at 16 m
3
 (566 ft

3
) intervals. All ISCO 

samplers were programmed to rinse sample tubing with ambient water prior to collection 

of each sample. Following each event, samples were retrieved as soon as possible 

(typically within 24 hr) from the ISCO samplers and placed on ice in a cooler for 

transport to the lab where they were stored at 4
o
C (39

o
F) until analysis. 

3.3.4 Analytical Methods 

Analysis of water samples for E. coli was conducted within 6 hr of retrieval. E. 

coli were enumerated using EPA Method 1603 (EPA 2006). If counts were greater than 

200 colonies at the highest dilution, the count was reported as too numerous to count 

(TNTC). Results were reported as cfu (colony forming units)/100 mL. 

3.3.5 Statistical Analysis 

The statistical software, Minitab (Minitab Inc., State College, PA), was used for 

all statistical calculations. Basic statistics and graphical summaries of each dataset were 

created to evaluate means, medians, percentiles (10
th

, 25
 th

, 75
 th

, and 90
 th

), and 

normality (using Anderson-Darling Normality Test). As a majority of datasets were not 

normally distributed, all were evaluated with nonparametric statistics. The Mann-

Whitney statistical test was used to assess differences in median concentrations and 

loads observed between sites, cattle presence, years and stocking rate. Regression 

analysis was also used to evaluate E. coli decline rates in runoff. An alpha level of 0.05 
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was accepted as a minimum level of significance; thus, results were considered 

statistically significant when p < 0.05. 

3.4 Results and Discussion 

3.4.1 Comparison of E. coli Concentrations among Sites 

E. coli concentrations were measured in 127 water samples collected from the 

seven sites during the 3 yr study (Appendix D). Observations varied greatly with 

standard deviations exceeding mean values at most sites (Table 3.3). When E. coli 

concentration data from all years at each site were combined and evaluated, potential 

grazing effects on median E. coli levels in runoff were only detected at Riesel. Median 

E. coli concentrations at the ungrazed SW12 were 67% lower than those observed at the 

properly grazed SW17 (p = 0.03). No significant differences were observed in median E. 

coli concentrations between sites at either the BCSC or Welder Wildlife Refuge. 

However, the mean E. coli concentration of the overstocked BB3 greatly exceeded those 

observed at the properly stocked BB2 or ungrazed BB1 at BCSC. 

 

Table 3.3 

Summary statistics for E. coli concentration data (cfu/100 mL). 

Locale Site Grazing Mean sd Min. Q1 Median* Q3 Max. 

BCSC BB1 Ungrazed 27,083 62,494 410 2,250 7,600ab 22,900 261,000 

 BB2 Proper 20,210 42,379 980 2,281 7,100ab 15,107 181,000 

 BB3 Overstock 62,469 170,689 140 2,100 5,591ab 24,000 800,000 

Welder WWR1 Ungrazed 6,286 9,241 330 640 3,700ab 6,480 30,000 

 WWR3 Proper 4,475 3,288 330 1,298 4,750a 7,145 10,300 

Riesel SW12 Ungrazed 5,932 5,737 110 1,200 4,450a 9,775 21,000 

 SW17 Proper 51,548 161,587 20 1,003 13,500b 27,750 800,000 

* For all sites pooled together, medians followed by same letter are not significantly 

different (α=0.05). 
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To better assess the effects of grazing, annual statistics for each site were 

evaluated (Figure 3.4). This assessment revealed considerable spatial and temporal 

variability in the median annual E. coli concentrations at both grazed and ungrazed sites. 

However, as with the combined data, only the Riesel sites (SW12 and SW17) exhibited 

significantly different median annual E. coli concentrations. Interestingly, the highest 

and lowest median annual concentrations were observed at the properly grazed SW17. 

The median E. coli concentration at the ungrazed SW12 was 46% lower than the 

concentration at the grazed SW17 during 2008 (p = 0.01) and 95% lower in 2009 (p < 

0.01). Conversely, the median annual E. coli concentration at the grazed SW17 was 

significantly (96%) lower than those at SW12 in 2010 (p = 0.03). This demonstrated the 

extreme temporal variability observed with E. coli concentrations. 

 

Figure 3.4 

E. coli concentrations in runoff from Beef Cattle Systems Center sites (BB1, BB2, 

BB3), Welder Wildlife Refuge sites (WWR1, WWR3), and Riesel sites (SW12, 

SW17) in 2008 (-08), 2009 (-09), and 2010 (-10). 
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3.4.2 Impact of Non-Domesticated Animals 

It is noteworthy that the second highest median annual E. coli concentration was 

observed at the ungrazed BB1 during 2009. E. coli levels at BB1 were inexplicably high 

in 2009. This was the case at all BCSC sites during October 2009 (Table 3.4). At the 

ungrazed BB1, median E. coli concentrations increased an order of magnitude and the 

maximum observed increased almost three orders of magnitude over levels observed 

throughout the rest of the study. At the two grazed sites, median concentrations 

increased half an order of magnitude, and maximum concentrations were approximately 

an order of magnitude higher than those observed during similar destocked periods 

throughout the rest of the study. There was no grazing during this period, and there had 

not been any since two months prior (i.e. last grazed in early-August 2009). Because E. 

coli concentrations in the first runoff event in October at both grazed sites were 

comparable to those observed during other ungrazed periods and because maximum 

concentrations were not observed until the fourth runoff event in October, it does not 

appear the increase could be attributed to the August 2009 grazing treatment. This was 

confirmed by qPCR analysis of bovine-associated Bacteroides. Thus, this suggests 

sources other than grazing livestock can have a tremendous impact on E. coli runoff 

from grazing lands. Although wildlife and other non-domesticated animal activity were 

not documented at the sites during this period, their presence offers the only plausible 

explanation. Possible sources include feral hogs, which are common along the Brazos 

River floodplain and frequently seen at the BCSC, and migratory birds.  
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Table 3.4 

Comparison of median and maximum E. coli concentrations (cfu/100 mL) at BCSC 

sites during October 2009 to those observed during other ungrazed periods. 

Site Stat 
October 

2009 

Excluding Oct 2009 

& grazed periods 

BB1 Median 49,926a 4,400b 

 Max 261,000 9,800 

BB2 Median* 23,935a 4,150b 

 Max 181,000 12,200 

BB3 Median* 15,000a 3,500b 

 Max 172,500 24,000 

* Medians at each site followed by same letter are not significantly different (α=0.05). 

 

3.4.3 Impact of Cattle Presence during Rainfall Events 

Throughout the study, all sites were rotationally stocked, meaning cattle did not 

graze the sites continuously. This study revealed runoff events occurring while cattle 

were actively grazing and within two weeks of the cattle being removed (period referred 

to as ―stocked‖) generally resulted in the highest E. coli levels in runoff from the grazed 

sites. By two weeks following removal of cattle from a site, E. coli levels in runoff 

decreased substantially and after approximately 30 days, E. coli values had declined to 

background levels. This decline was best observed at BB3 (Figure 3.5) where E. coli 

levels declined from 800,000 cfu/100 mL when cattle were actively grazing to 4,400 

cfu/100 ml 35 days after cattle were removed, and similar observations were made at 

BB2 and SW17. Estimated die-off rates ranged from 0.039/day to 0.142/day and 

averaged 0.090/day. At these rates, the time to achieve a 90% decrease (T90) in E. coli 

levels ranged from 16 to 59 days and averaged 26 days. 
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Figure 3.5 

E. coli levels at BB3 during and following grazing from November 12 to 17, 2009. 

 

 

Median E. coli concentrations were significantly higher when BB2 (p = 0.03), 

BB3 (p < 0.01), and SW17 (p < 0.01) were stocked (Figure 3.6) than when they were 

destocked. At only WWR3 was this relationship not observed (p = 0.06). However, this 

can be easily explained by the very limited stocking that occurred prior to the three 

runoff events at WWR3 while it was stocked. Due to a very severe drought during 2008 

and 2009, this site had not been stocked for over a year and following this drought, it 

was only lightly stocked for a very short duration (i.e. three AU days (AUD) prior to the 

first event and 33 AUD prior to the other two events). As such, WWR3 was not included 

in Figure 3.6 or subsequent analysis. 
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Figure 3.6 

Comparison of E. coli levels at grazed sites when runoff occurred during or within 

two weeks of grazing (Stocked) and more than two weeks after grazing (Destocked). 

Data from October 2009 at BB2 and BB3 were not included in analysis. 

 

 

Results from SW17 are particularly noteworthy. Coincidentally, during 2008 and 

2009, every runoff event occurred while cattle were actively grazing the site except for 

one which occurred less than two weeks after cattle were rotated to another pasture. In 

2010, again by coincidence, every runoff event occurred while the site was destocked. 

This resulted in the median E. coli concentrations at SW17 being significantly higher 

than concentrations observed at the ungrazed SW12 in 2008 and 2009 and SW17 levels 

being significantly lower than SW12 in 2010 as shown in Figure 3.4. This was not 

planned, but it was fortuitous as it offered insight into the effectiveness of rotational 

stocking as a management strategy for reducing E. coli runoff; and more importantly the 

significance of timing of grazing in relation to runoff events. 
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Reductions in E. coli concentrations of 88% at BB2, 98% at BB3, and 99% at 

SW17 were observed when sites were destocked when runoff occurred, thus 

demonstrating the importance of timing of grazing on bacterial levels. Similarly, Lewis 

et al. (2010) found that fecal coliform concentrations and loads in runoff occurring more 

than two weeks after application of dairy manure were 80% lower than those occurring 

within two weeks of application. Meals and Braun (2006) found that E. coli levels in 

runoff from plots receiving 30-day-old dairy manure were 97% lower than those 

receiving fresh manure. Gary et al. (1983) and Tiedemann et al. (1987) also found that 

presence of livestock significantly affected instream bacteria levels. Tiedemann et al. 

(1988) found instream fecal coliform levels were 88% lower when cattle were not 

present than when they were present. 

This finding suggests creek pastures and other hydrologically critical areas would 

benefit from rotational stocking with grazing being deferred on such pastures during 

rainy periods in preference of upland less hydrologically connected sites. More data are 

needed to confirm this finding and evaluate the impacts of this practice on a watershed 

scale. Additionally, work is needed to assess the impacts of continuous stocking on 

runoff. Previous work by Sovell et al. (2000) has shown that in stream fecal coliform 

levels were consistently higher at continuously stocked sites than at rotationally stocked 

sites in southeastern Minnesota. 

3.4.4 Assessment of Background E. coli Levels 

As referenced in the previous section, a relatively consistent ―background‖ level 

of E. coli in runoff was observed at all sites. Once those E. coli concentrations observed 
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during October 2009 at BCSC (attributed to non-domesticated animals) and those 

attributed to grazing events were removed, the remaining concentrations at all sites were 

remarkably similar (Figure 3.7) with means ranging from 5,000 to 6,000 cfu/100 mL and 

median values ranging from 3,500 to 5,500 cfu/100 mL. With the exception of SW17, 

median background E. coli concentrations were not significantly different among sites.  

There are a range of possible sources for this background E. coli, including 

rodents, birds, and other wildlife populations in addition to indigenous E. coli 

populations residing in the soil. For example, Oliver et al. (2010) detected E. coli levels 

ranging from below detection to 10
6
 cfu/g dry soil between fecal pats on grazed sites 

which served as an additional chronic source of E. coli in runoff. 

 

Figure 3.7 

Background E. coli levels observed at each site. Concentrations from October 2009 

at BCSC sites and those attributed to grazing events were removed. 
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Regardless, background E. coli concentrations should be considered when 

developing TMDLs and watershed plans, conducting modeling to support these 

activities, and most importantly, when applying water quality standards to storm flow 

(Harmel et al. 2010). Current models used to assess bacterial loads often do not account 

for background levels, attributing E. coli loads to a relatively limited list of possible 

sources (e.g. human, livestock, wildlife). As such, they potentially over-allocate loads 

and load reductions to these categories without consideration of background levels. 

3.4.5 Comparison of Stocking Rate (SR) and E. coli Concentration 

The annual stocking rate was compared to the E. coli concentration for each 

sampling event (Figure 3.8) as previous studies indicated fecal coliform levels were 

dependent on livestock density (Tiedemann et al. 1987). Annual stocking rate (i.e. the 

average stocking rate for the twelve months immediately preceding the runoff event) 

was selected for this comparison as it is most commonly used in grazing 

recommendations as well as modeling exercises to evaluate E. coli loadings. Stocking 

rates varied substantially at each of the grazed sites throughout the study (Table 3.2). 

When data are evaluated in the context of cattle presence during runoff event, 

background levels, and non-domesticated animal dominated events observed at BCSC in 

2009 (Figure 3.8); it is apparent that stocking rate had some effect. However, presence of 

cattle on the site during or immediately preceding a runoff event had a much greater 

impact. 
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Figure 3.8 

Comparison of annual stocking rate to E. coli levels associated with destocked/ 

background, stocked or recently stocked, and non-domesticated animal (BCSC 

2009) dominated conditions. 

 

 

In general, highest E. coli concentrations were observed when the annual 

stocking rate was heavier than 1.3 hectares per AU year (ha/AUY) (3.2 ac/AUY). In 

comparison, Gary et al. found that instream fecal coliform levels were significantly 

higher when stocking rate was 3.4 ha/AUY (8.4 ac/AUY) or heavier (1983). No 

significant differences in median concentrations were observed between stocking rates 

of 0.7 to 3.1 ha/AUY (1.7 to 7.7 ac/AUY). However, when the stocking rate was 11 

ha/AUY (27 ac/AUY) or lighter, median E. coli levels were significantly lower than 

levels observed at stocking rates of 0.7 to 3.1 ha/AUY (1.7 to 7.7 ac/AUY) and did not 

exceed background levels (based on three observations). Similarly, Gary et al. (1983) 

observed that instream fecal coliform levels did not exceed background levels when 

stocking rates were 6.1 ha/AUY (15.1 ac/AUY) or 13.5 ha/AUY (33.4 ac/AUY). 
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Further, Buckhouse and Gifford (1976) found no significant differences in total or fecal 

coliform concentrations in runoff from ungrazed sites and sites grazed at 2 ha/AUM (i.e. 

24 ha/AUY or 59.3 ac/AUY). Thus, based on these data, pastures stocked heavier than 

3.1 ha/AUY (7.7 ac/AUY) should be the focus of initial implementation efforts when 

addressing bacterial impairments. 

Overall, our results, which failed to find a strong link between E. coli 

concentrations and stocking rate, agree with what is observed in published literature 

(Appendix C). This is likely because at the watershed scale, watershed characteristics 

play a greater role in determining bacterial levels in runoff than number of animals or 

stocking rate (Tiedemann et al. 1987, 1988). 

3.4.6 E. coli Loading 

Annual E. coli loading from ungrazed sites generally ranged from 4.0 to 8.0E+10 

cfu/ha while annual loading from actively grazed sites generally ranged from 8.0 to 

40.0E+10 cfu/ha (Table 3.5). Exceptions were observed at SW17 in 2010, when no 

runoff occurred while cattle were grazing, and the BCSC sites in 2009 – likely due to the 

effects of non-domesticated animals. The effects of non-domesticated animals on the 

annual loadings at the BCSC in 2009 are conspicuous (contributing 80 to 99% of the 

load in 2009), especially when compared to the stocking rate and corresponding loading 

values in 2010. 
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Table 3.5 

Comparison of annual E. coli loading and stocking rate (AU day/ha). 

  AUD/ha  E. coli load (cfu/ha) 

Location Site 2008 2009 2010  2008 2009 2010 

BCSC BB1 — 0 17*  — 6.17E+11 5.02E+10 

 BB2 — 148 302  — 7.89E+11 1.46E+11 

 BB3 — 311 543  — 3.02E+11 4.08E+11 

Welder WWR1 0 0 0  — — 4.19E+10 

 WWR3 83 16 33  — — 8.14E+10 

Riesel SW12 0 0 0  6.96E+10 5.89E+10 8.14E+10 

 SW17 128 354 75  8.35E+10 4.14E+11 7.22E+09 

* Electric fences failed allowing short-term cattle access. 

 

Assessment of median event E. coli loads at each site in 2008, 2009, and 2010 

reveals considerable spatial and temporal variability with significant differences in 

median event loads only being observed at the Beef Cattle Systems Center in 2010 and 

Riesel in 2008 and 2010 (Figure 3.9). Median event loads at the ungrazed BB1 were 

80% lower in 2010 than those observed at the overstocked BB3 (p = 0.04) and 67% 

lower than levels at the properly stocked BB2 (p = 0.09). However, no significant 

difference was observed between the median event loads at BB2 and BB3 in 2010. 

Loading at Riesel was interesting in that in 2008, there was no significant difference 

observed between SW12 and SW17; in 2009, loading at SW17 was significantly greater 

than loading at SW12 (p < 0.01); and finally, in 2010, loading at the ungrazed SW12 was 

significantly greater than loading at the grazed SW17 (p = 0.01). Only at the Welder 

Wildlife Refuge were no significant differences observed in median E. coli loads. 
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Figure 3.9 

E. coli loads on a runoff event basis at Beef Cattle Systems Center sites (BB1, BB2, 

BB3), Welder Wildlife Refuge sites (WWR1, WWR3), and Riesel sites (SW12, 

SW17) in 2008 (-08), 2009 (-09), and 2010 (-10). 

 

3.4.7 Comparison of E. coli Levels and Loads to Texas Water Quality Standards 

E. coli levels in 114 of the 127 samples collected (90%) exceeded the single 

sample maximum for E. coli in water (394 cfu/100 mL) listed in the Texas Water 

Quality Standards (TWQS). Further, E. coli levels at all sites exceeded the geometric 

mean (126 cfu/100 mL) listed in the TWQS by over an order of magnitude. These results 

are similar to Edwards et al. (1997) who found fecal coliform levels in runoff from four 

pastures in northwest Arkansas exceeded water quality standards 70 to 89% of the time.  

It is especially noteworthy that runoff from the ungrazed BB1, WWR1, and 

SW12 exceeded the single sample maximum in 88 to 100% of the samples. This is not 
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uncommon as Doran and Linn (1979) also found bacteria (total and fecal coliforms) in 

runoff from ungrazed pastures in eastern Nebraska exceeded water quality standards.  

Although these water quality standards apply only to surface waters (e.g. streams 

and lakes) and not edge-of-field runoff as described here, this study does expose the 

impracticality of applying existing water quality standards to runoff events, especially as 

it pertains to individual farms or fields. Water quality in streams draining rural 

watersheds are often cited as exceeding bacterial water quality criteria at some 

frequency, even when agricultural activities are at a minimum and BMPs are not needed. 

Further, many studies have found runoff may not achieve water quality standards even 

after BMP implementation (Dickey and Vanderholm 1981; Clausen and Meals 1989; 

Walker et al. 1990; Coyne et al. 1995; Fajardo et al. 2001). Thus, it is recommended that 

exemptions from current standards be made for runoff or storm flows or, as Dickey and 

Vanderholm (1981) recommended, additional research be conducted to accurately define 

bacterial quality for runoff and establish practical water quality storm water standards. 

Re-evaluation of water quality standards is of utmost importance as TMDLs are 

being established in hundreds of watersheds across Texas and thousands across the U.S. 

at great expense. Assessment of the loading reduction needed at the ungrazed native 

prairie site (SW12) showed a 98% load reduction would be required for that watershed 

to decrease E. coli loads the almost two orders of magnitude needed to achieve existing 

water quality standards (Figure 3.10). Assessment of the other six sites yielded similar 

results (data not shown). Attempting to achieve current standards during storm events is 

an insurmountable goal and not a judicious use of resources. 
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Figure 3.10 

Comparison of measured E. coli loads with maximum loads meeting Texas Water 

Quality Standards in runoff at an ungrazed native prairie reference site (SW12), 

November 2007 through October 2008. 

 

3.5 Summary and Conclusions 

This study found rotational stocking to be an effective practice for reducing E. 

coli runoff. When runoff occurred more than two weeks following grazing, E. coli levels 

in runoff were decreased from 88 to 99% as compared to runoff when the sites were 

being actively grazed. As a result of these findings, it is recommended that creek 

pastures and other hydrologically connected pastures be stocked during periods when 

runoff is less likely (e.g. summer and winter in much of Texas) and upland sites be 

grazed during rainy seasons when runoff is more likely. Further research is 

recommended to evaluate the impact of this practice on a watershed scale. 

The timing of stocking in relation to subsequent runoff events was much more 

significant than the impact of grazing management (i.e. ungrazed, properly stocked or 
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overstocked) or stocking rate. No significant differences were observed between E. coli 

runoff from properly or over-stocked pastures, although very high stocking rates did 

exhibit the potential to produce the highest E. coli concentrations. Highest E. coli 

concentrations were generally observed when runoff occurred within two weeks of 

grazing and the annual stocking rate was heavier than 1.3 ha/AUY (3.2 ac/AUY); 

however, no significant differences were observed between stocking rates of 0.7 to 3.1 

ha/AUY (1.7 to 7.7 ac/AUY) for these events. When the stocking rate was 11 ha/AUY 

(27 ac/AUY) or lighter (and runoff occurred within two weeks of them being grazed), E. 

coli levels were significantly lower and did not exceed background levels. Additional 

research is needed to evaluate runoff from severely overgrazed sites as well as sites that 

are continuously grazed since runoff conditions from these may be significantly different 

than those observed by this study. 

Background levels were considerable and relatively consistent across all sites, 

with median levels typically ranging from 3,500 to 5,500 cfu/100 mL. Most existing 

water quality models and thus total maximum daily loads and other watershed plans do 

not take background E. coli levels into account. Background levels should be considered 

when applying these models in order to prevent over-allocating loads and loading 

reductions to other sources. 

This study also suggested the potential impact of non-domesticated animals on E. 

coli runoff from grazing lands. As observed at all Beef Cattle Systems Center sites in 

October 2009, median concentrations increased approximately an order of magnitude 

presumably due to non-domesticated animals (i.e. feral hogs or migratory birds). 
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Loading from these sources during this period was responsible for 80% to 99% of the 

total loading in 2009. 

Finally, these results support the need to revise water quality standards as they 

apply to storm flow conditions. Ninety percent of runoff samples exceeded Texas Water 

Quality Standards, even at ungrazed sites. Although these water quality standards apply 

only to surface waters (e.g. streams and lakes) and not edge-of-field runoff as described 

here, this study does expose the impracticality of applying the existing water quality 

standards to runoff events, especially in runoff dominated streams. Background levels 

need to be considered as well as the significant impacts of non-domesticated animals. As 

such, it is recommended that exemptions from the current standards be made for storm 

flows and wildlife or additional research be conducted to accurately define bacterial 

quality for runoff and establish practical stream water quality standards. 



 62 

CHAPTER IV 

EVALUATION OF BACTEROIDES QPCR FOR ASSESSING CATTLE FECAL 

CONTRIBUTIONS IN RUNOFF FROM GRAZING LANDS 

 

4.1 Overview 

Excessive levels of fecal indicator bacteria (e.g. E. coli, Enterococcus, and fecal 

coliforms) are a major cause of water quality impairment. Better analytical methods are 

needed to quantify the proportion of bacterial loading contributed by the various sources 

of bacteria so appropriate restoration goals can be established and restoration efforts 

targeted. This study evaluated (1) the ability of quantitative polymerase chain reaction 

(qPCR) analysis of the bovine-associated Bacteroides marker, BoBac, to accurately 

assess the percentage of bovine-associated fecal contamination at the small watershed 

scale and (2) the relationship between the total Bacteroides marker, AllBac, and E. coli 

levels and its relevance as a fecal indicator. 

Data suggest the AllBac and BoBac markers are good indicators of recent fecal 

contamination from cattle. However, although elevated BoBac/AllBac ratios generally 

aligned well with the presence of cattle, the ratio appeared to underestimate the 

percentage of bovine-associated fecal contamination. Correlations between E. coli and 

the AllBac and BoBac markers indicated significant geographic variability may exist 

with these markers. However, significant correlations were observed at stocked sites 

where local feces were used to generate gene copy curves. This suggests that feces for 

development of gene copy curves for future studies should be collected from the 
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watershed being assessed to reduce potential errors resulting from geographic variability 

in Bacteroides populations. 

These markers appear to be useful tools for identifying sources of fecal 

contamination; however, more work is needed to improve their ability to accurately 

quantify total and source-specific bacterial loading before implementation at the 

watershed scale. 

4.2 Introduction 

Excessive levels of fecal indicator bacteria (e.g. E. coli, Enterococcus, and fecal 

coliforms) are a major cause of water quality impairment in Texas (TCEQ 2008a) and 

other regions (Weidhaas et al. 2011). Total Maximum Daily Loads (TMDLs), TMDL 

Implementation Plans, and other watershed-based plans are being developed to address 

these impairments. However, watersheds can be affected by microbial pollution from a 

wide variety of sources (TCEQ 2008d; Weidhaas et al. 2011). Nevertheless, livestock 

are increasingly under scrutiny (Weidhaas et al. 2011). Grazing cattle are often the most 

abundant species of livestock in impaired watersheds in Texas and are frequently 

identified as a source needing reductions (TCEQ 2008b, 2008c). Because of the potential 

regulatory implications of TMDLs, it is critical to accurately differentiate the potential 

bacterial contributions of livestock from those of wildlife or humans (TCEQ 2007c). 

Computer models are frequently used to assess bacterial sources in watersheds; 

however, current models do not adequately evaluate wildlife contributions due to 

insufficient data on populations, distribution, and species-specific fecal loading data. 

There are also many bacterial source tracking (BST) methods available and more under 
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development (EPA 2002; Okabe et al. 2007; Jones et al. 2009; Dick et al. 2010); 

however, to date, no single method has been identified as superior (EPA 2005; Jones et 

al. 2009), and no standard method has been adopted (Meays et al. 2004). 

Library-dependent BST methods are frequently used; however, these methods 

are burdensome, time-consuming, and costly (EPA 2002; Jones et al. 2009). Further, the 

lack of understanding of the geographic and temporal stability of BST libraries as well 

as the potential for regrowth and survival of fecal organisms in the environment, such as 

E. coli on which many of these assays are based, has raised questions about their use. 

Finally, results of library-dependent classifications are conservatively seen as semi-

quantitative and may not provide the level of specificity needed for TMDL-related 

activities. 

To address these issues and assist in the TMDL process, investigation and 

refinement of library independent BST methods has been proposed. There have been 

significant developments in library-independent BST methods in recent years. Library 

independent methods are comparatively more cost-effective, rapid, and potentially more 

specific and accurate than library dependent methods (Jones et al. 2009; Weidhaas et al. 

2011). A number of BST methods have been developed using polymerase chain reaction 

(PCR) assays targeting members of the Bacteroidales order (Bacteroides species) to 

identify and quantify the sources of bacteria (Okabe et al. 2007; Haugland et al. 2010). 

Bacteroides are non-spore forming, anaerobic bacteria found in high concentrations in 

intestinal tracts, and thus feces (i.e. > 1 × 10
10

 cells per gram of feces), of warm-blooded 

animals (Bitton 2005; Dick et al. 2010). Because they are strict anaerobes, Bacteroides 
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do not survive long in the environment, thus their presence provides a good indicator of 

recent fecal contamination of a water body (Bitton 2005; Layton et al. 2006; Balleste and 

Blanch 2010). Bacteroides also exhibit a high degree of host specificity (Field et al. 

2003; Layton et al. 2006) and moderate sensitivity (Field et al. 2003). Bacteroidales, like 

E. coli, exhibits a longer persistence with lower temperatures; however, unlike E. coli; it 

is more persistent with higher salinity. Further, predation is also a controlling factor of 

Bacteroidales decay, as it is for E. coli (Balleste and Blanch 2010; Dick et al. 2010). 

Previous BST studies have used Bacteroides markers to detect the presence or 

absence of Bacteroides and Prevotella spp. fecal bacteria specific to humans, ruminants 

(including cattle and deer), pigs, and horses by traditional PCR (Bernhard and Field 

2000; Dick et al. 2005). In 2006, a bovine-associated quantitative PCR (qPCR) assay 

targeting Bacteroides was developed by Layton et al. to simultaneously identify and 

quantify Bacteroides markers in water samples and estimate total, human, and bovine 

fecal pollution in water (i.e. AllBac, HuBac, BoBac, respectively). Layton et al. (2006) 

found the AllBac assay was a suitable estimator of total fecal contamination and E. coli 

concentrations in water and the BoBac assay was a reliable indicator of bovine fecal 

contamination, thus confirming qPCR assays as a useful tool for quantifying fecal 

concentrations and sources of fecal contamination in watersheds. Similarly, Gentry et al. 

(2007) found AllBac and E. coli load rates were highly correlated at baseflow or near 

baseflow conditions. In addition, Savichtcheva et al. (2007) found total and human-

specific Bacteroides markers displayed significant predictive capability for the 
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occurrence of E. coli O157, Salmonella, heat-labile enterotoxin of enterotoxigenic E. 

coli (ETEC), and heat-stabile enterotoxin for human of ETEC. 

Dick et al. (2010) recently found human feces-associated (HF) Bacteroidales 

markers to be a conservative predictor of human-associated E. coli; however, AllBac 

was not found to be a suitable alternate indicator of health risk in place of E. coli. 

Further, Dick et al. (2010) found the HF marker in ratio with AllBac was not a suitable 

estimator of human contributions due to the heterogeneity in the AllBac marker data 

resulting from differing degradation rates compared with E. coli or other markers. Other 

issues with Bacteroides remain regarding differing abundance among species, as well as 

continued uncertainties regarding possible geographic influences (Lamendella et al. 

2009). 

To date, the ability of these methods to reliably and correctly determine fecal 

contributions from cattle has not been thoroughly tested in environmental water samples. 

Thus, the primary goal of this study was to determine the ability of the BoBac marker to 

assess the quantity of E. coli loading originating from cattle at the small watershed scale. 

Additionally, this research further evaluated the relationship between total Bacteroides 

(AllBac) and E. coli to assess its relevance as a fecal indicator. 

4.3 Materials and Methods 

4.3.1 Site Descriptions 

E. coli and the Bacteroides AllBac and BoBac markers were determined for each 

runoff event at seven sites at three Texas locations (Table 4.1).  
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Table 4.1 

Watershed site locations and characteristics. 

Site Latitude, Longitude Vegetation Management 

Riesel   

   SW12 31°28’48‖ N, 96° 52’59‖ W Native grassland Ungrazed 

   SW17 31°27’45‖ N, 96° 53’14‖ W Bermudagrass Properly stocked 

Welder Wildlife Refuge   
   WWR1 28°6'55.97" N, 97°21'20.82" W Native rangeland Ungrazed 

   WWR3 28°6'52.60" N, 97°21'13.83" W Native rangeland Properly stocked 

Beef Cattle Systems Center   

   BB1 30°31'44.3" N, 96°24'58.3" W Tifton 85 bermudagrass Ungrazed 

   BB2 30°31'47.5" N, 96°24'57.7" W Tifton 85 bermudagrass Properly stocked 

   BB3 30°31'47.7" N, 96°24'57.9" W Tifton 85 bermudagrass Overstocked 

 

Two sites were located at the USDA-ARS Grassland, Soil and Water Research 

Laboratory in Riesel, TX, which has been one of the most intensively monitored 

hydrological research sites in the country since establishment in the 1930s (Harmel et al. 

2007). It is located in the Blackland Prairies ecoregion on the border of Falls and 

McLennan counties (Omernik 1987) (Figure 4.1). Houston Black clay soils dominate the 

region. This soil is very slowly permeable when wet; however, preferential flow 

associated with soil cracks contributes to high infiltration rates when the soil is dry. 

Mean annual rainfall is approximately 91 cm (36 in). Thirteen runoff stations are 

operated at the research site to monitor sub-watersheds under both pasture and cropland 

management. Two 1.2-ha sites were used to evaluate grazing management, SW12 and 

SW17. The average slope of SW12 is 3.8%, while slope averages 1.8% at SW17. 
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Figure 4.1 

Riesel watersheds. 

 

 

Two sites were located at the Rob and Bessie Welder Wildlife Refuge, a 3,156 ha 

(7,800 ac) native wildlife refuge 13 km (8 mi.) north of Sinton, TX, in the Western Gulf 

Coastal Plain ecoregion of Texas (Omernik 1987) (Figure 4.2). Three 1-ha (2.4 ac) sites 

had previously been established to monitor runoff in 2000 to study the effects of shrub 

management on water quality and quantity on rangeland. Berm failure on site WWR2 

prevented data collection there during the study. The Welder has never been cultivated 

and has historically been managed for livestock (Stewart 2003). Precipitation averages 

90 cm (36 in) annually. The watershed sites are located on chaparral-mixed grass 

communities on the east and west sides of Paloma draw, approximately 6 km (4 miles) 

from the foundation headquarters. Victoria clay (0 to 1% slopes) soils underlay the upper 

quarter to third of the watershed sites and Monteola clay (5 to 8% slopes) soils underlay 

the remainder. Both soils are classified as Hydrologic Soil Group D soils. 
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Figure 4.2 

Welder Wildlife Refuge watersheds. 

 
 

The final location for the study was the Texas A&M University, Department of 

Animal Science Beef Cattle Systems Center (BCSC) located west of College Station on 

the Brazos River. This site was used primarily for row crop production prior to initiation 

of this study. In October 2007, berms were constructed around three 1-ha watershed sites 

(Figure 4.3), and slope modified so each site would drain to the watershed outlet. 

Following berm construction, all sites were established to Tifton 85 bermudagrass. 

The BCSC watershed sites are located in the East Central Texas Plains ecoregion 

(Omernik 1987). Annual precipitation averages 102 cm (40 in). Soils within the study 

area are comprised of Belk clay, a heavier-textured alluvial soil (Hydrologic Soil Group 

D) found along the Brazos River. Measured slope averaged 0.2%. 
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Figure 4.3 

Beef Cattle Systems Center watersheds. 

 

4.3.2 Pasture Management 

All sites were fenced so that cattle grazing could be controlled. Three sites were 

ungrazed (SW12, WWR1, BB1), three were properly stocked (SW17, WWR3, BB2), 

and one site, BB3, had double the stocking rate of the properly stocked BB2. Site SW12 

is notable in that this ungrazed native prairie reference site has not been stocked with 

cattle or other livestock since the Riesel Research Center was established in 1937 

(Harmel et al. 2006a). Stocked sites were not grazed continuously; instead, over the 

course of the study, six to seven grazing events occurred at each site (Table 4.2). Grass 

height was monitored monthly to determine timing of grazing. Properly stocked sites 

were generally stocked once grass height exceeded 6 in, and cattle were removed once 

grass height was reduced to 3 in as recommended by the USDA Natural Resources 

Conservation Service Conservation Practice General Specifications for Prescribed 

Grazing (Practice Standard No. 528).  
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Table 4.2 

Grazing treatments. 

Locale Site Start End 
Stocking Rate 

(AU/ha)* 

Stocking Rate 

(AUD/ha)† 

Stocking Rate 

ha/AUY (ac/AUY)‡ 

Riesel SW17 9/12/07 11/14/07 1.1 70 2.6 (6.4) 

 SW17 2/25/08 6/2/08 1.1 109 1.7 (4.1) 

 SW17 11/5/08 4/21/09 1.1 185 1.6 (3.9) 

 SW17 5/1/09 6/3/09 1.1 37 1.7 (4.1) 

 SW17 7/15/09 11/6/09 1.1 126 1.1 (2.6) 

 SW17 5/3/10 5/24/10 1.1 23 2.3 (5.6) 

 SW17 7/19/10 8/27/10 1.1 43 2.5 (6.2) 

Welder WWR3 12/1/07 2/13/08 0.4 31 11.6 (28.7) 

 WWR3 4/18/08 4/28/08 2.6 26 6.4 (15.7) 

 WWR3 10/20/08 10/25/08 2.9 15 5.1 (12.5) 

 WWR3 4/27/09 5/1/09 3.4 14 11.7 (29.0) 

 WWR3 6/21/10 6/22/10 2.6 3 140.9 (348.0) 

 WWR3 9/1/10 9/11/10 2.6 26 12.8 (31.6) 

BCSC BB2 1/12/09 1/16/09 4.0 16 22.8 (56.3) 

 BB2 5/22/09 6/5/09 6.1 79 3.8 (9.5) 

 BB2 8/7/09 8/8/09 6.4 6 3.6 (8.9) 

 BB2 8/12/09 8/19/09 6.4 46 2.5 (6.1) 

 BB2 11/12/09 11/17/09 18.4 90 1.5 (3.8) 

 BB2§ 2/1/10 2/8/10 2.5 17 1.5 (3.8) 

 BB2 6/21/10 7/2/10 17.7 194 1.7 (4.3) 

 BB3 1/12/09 1/16/09 8.0 32 11.4 (28.2) 

 BB3 5/22/09 6/5/09 13.4 175 1.8 (4.4) 

 BB3 8/7/09 8/8/09 12.8 13 1.7 (4.1) 

 BB3 8/12/09 8/19/09 12.8 92 1.2 (2.9) 

 BB3 11/12/09 11/17/09 36.8 180 0.7 (1.8) 

 BB3§ 2/1/10 2/8/10 2.5 17 0.8 (1.9) 

 BB3 6/21/10 7/2/10 31.7 346 1.0 (2.5) 

* Animal units per hectare 

† Animal unit days per hectare 

‡ Annual stocking rate in hectares per animal unit and acres per animal unit 

§ Electric fences failed allowing short-term cattle access 

 

 

These grazing events allowed evaluation of the impact of a wide range of 

stocking rates on E. coli runoff. It should be noted that electric fences failed on several 
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occasions at the Beef Cattle Systems Center sites. At BB2 and BB3, electric fences 

failed on February 1 to 8, 2010; however, minimal grazing occurred on the sites during 

this time. At BB1, the electric fence failed on March 11, 2009, November 13, 2009 and 

February 1, 2010 allowing cattle limited access to the site ranging from one to seven 

days per failure. To the extent possible, fecal pats were removed from the site once the 

fence was restored. However, February 1 to 8, 2010, several runoff events occurred and 

are noted in the analysis. 

4.3.3 Edge of Field Sampling Procedures 

As recommended by Harmel et al. (2006b) flow-weighted composite edge of 

field runoff samples from the seven watershed sites were collected using ISCO 6712 

(ISCO Inc., Lincoln, NE) full-size portable samplers with single bottle configuration into 

surface disinfected polyethylene 15 L (4 gal.) round bottles. Flow from each watershed 

site was measured with ISCO 730 Module bubble flow meters. Flow data were 

downloaded at least monthly using an ISCO 581 Rapid Transfer Device (RTD). BB1, 

BB2, BB3, WWR1, and WWR3 were equipped with berms and 90
o
 v-notch weirs to aid 

in collection and measurement of runoff, while SW12 and SW17 were monitored using 

0.9 m (3 ft.) H-flumes. Runoff was monitored for a period of two years at SW12 and 

SW17 (November 2007 – October 2009) and BB1, BB2, and BB3 (November 2008 – 

October 2010), and due to a severe drought, only one year at WWR1 and WWR3 

(November 2009 – October 2010). The ISCO samplers at sites WWR1, WWR3, BB2, 

and BB3 enabled when the water level exceeded 6 mm (0.02 ft) and then collected 50 

mL for every 4.2 m
3
 (150 ft

3
) of runoff. The ISCO sampler at BB1 enabled when the 
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water level exceeded 6 mm (0.02 ft) and then collected 25 mL for every 2.1 m
3
 (75 ft

3
) 

of runoff. The ISCO samplers at SW12 and SW17 enabled at 60 mm (0.20 ft.) and 

sampled at 16 m
3
 (566 ft

3
) intervals. All ISCO samplers were programmed to rinse 

sample tubing with ambient water prior to collection of each sample. Following each 

event, samples were retrieved as soon as possible (typically within 24 hr) from the ISCO 

samplers and placed on ice in a cooler for transport to the lab where they were stored at 

4
o
C (39

o
F) until analysis. 

4.3.4 E. coli Analysis 

Analysis of all water samples for E. coli was conducted within six hours of 

retrieval from ISCO samplers. E. coli in water samples were enumerated using EPA 

Method 1603 (EPA 2006). If counts were greater than 200 colonies at the highest 

dilution, the count was reported as too numerous to count (TNTC). Results were 

reported as cfu (colony forming units)/100 mL. 

4.3.5 Bacteroides Analysis 

Within 6 hr of retrieval, water samples were also filtered through a sterile Supor-

200, 0.2 µM pore size filter (Pall Corporation, Ann Arbor, MI). Filter volumes averaged 

30 ml, but varied from 10 to 100 mL depending on the quantity of suspended solids in 

the sample (i.e. how much could be passed before the filter clogged). Filters were placed 

in sterile, Whirl-Pak® bags containing 500 µl of guanidine isothiocyanate (GITC) lysis 

buffer (Walters and Field, 2009) and stored at -80°C until DNA extraction. 
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The DNA was extracted directly from the filters using QIAamp DNA mini kits 

(QIAGEN, Valencia, CA). Total DNA from corresponding filters was eluted in 100 µl of 

0.01X TE (0.1 mM Tris-EDTA buffer, pH 8.0) into a sterile tube. To remove any 

residual alcohol, eluted samples were concentrated at 60°C to a volume of 10 to 20 µl 

using an Eppendorf Vacufuge Plus (Westbury, NY), and their volumes were brought 

back to 100 µl with 0.01X TE. The DNA was quantified using both Quant-It™ 

Picogreen® assay (Invitrogen) and a NanoDrop ND-1000 UV spectrophotometer 

(NanoDrop Technologies, Wilmington, DE). The DNA extracts were stored at –80°C 

until analyzed by qPCR. 

4.3.6 Construction of Bacteroides 16S rRNA Gene Copy Standards 

Bovine feces were collected aseptically from a pastured cow at the Texas A&M 

University, O. D. Butler, Jr. Animal Science Teaching, Research, and Extension 

Complex (College Station, TX) using a sterile spatula, into a sterile, screw-cap 

polypropylene specimen tube. The fecal sample was immediately returned to the lab and 

mixed in a volume of sterile distilled water equal to the weight of the feces. The DNA 

was extracted from the bovine feces using a PowerSoil DNA Isolation Kit (Mo Bio 

Laboratories, Carlsbad, CA) and purified using illustra MicroSpin S-400 HR Columns 

(GE Healthcare, UK), according to the manufacturers’ recommendations. 

Bacteroides-specific 16S rRNA genes (32F/708R), containing both the AllBac 

and BoBac regions, were amplified from fecal DNA extracts (Field et al. 2003). The 25 

µL reactions contained 1X Failsafe Buffer A (Epicentre Biotechnologies, Madison, WI), 

15 pmol of forward and reverse primers (32F and 708R), 1.25 units of AmpliTaq Gold 
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DNA Polymerase (Applied Biosystems, Foster City, CA), and 1 µL of fecal community 

DNA. Thermocycling was conducted in an Eppendorf Mastercycler (Hamburg, 

Germany) under the following conditions: 95°C for 10 minutes, followed by 35 cycles of 

95°C for 30 s, 53°C for 1 min, and 72°C for 1 min; and a final extension of 72°C for 10 

min (Field et al. 2003). The PCR product was confirmed on an agarose gel stained with 

ethidium bromide, gel purified using QIAquick Gel Extraction Kit (QIAGEN, Valencia, 

CA) and finally cloned into a pDrive Cloning Vector (Qiagen, Valencia, CA). Inserts in 

presumptive clones were extracted using PerfectPrep Spin Mini Kit (5 Prime, 

Gaithersburg, MD) and verified by amplification with the AllBac and BoBac primer sets 

(Layton et al. 2006). These 25 µL reactions contained 1X Failsafe Buffer A (Epicentre), 

15 pmol of forward and reverse primers, 1.25 units of AmpliTaq Gold DNA Polymerase, 

and 1 µL of plasmid template. Thermocycling was conducted in an Eppendorf 

Mastercycler under the following conditions: 50°C for 2 min, followed by 95°C for 10 

min and 50 cycles of 95°C for 30 s, 57°C (BoBac assay) or 60°C (AllBac assay) for 45 s, 

and final extension at 72°C for 1 min (Layton et al. 2006). The PCR product was 

confirmed on an agarose gel stained with ethidium bromide. Plasmids were extracted 

using PerfectPrep Spin Mini Kit (5 Prime, Gaithersburg, MD). The DNA was quantified 

using Quant-It™ Picogreen® assay (Invitrogen) and normalized to 1 ng/µl with 

subsequent standards made using 10-fold dilutions in DNA-grade water to 10
-7

. 

4.3.7 Construction of Bacteroides Fecal Curve 

Bovine feces were collected aseptically from a pastured cow at the Beef Cattle 

Systems Center using a sterile spatula, into a sterile, screw-cap polypropylene specimen 



 76 

tube. The feces were immediately returned to the lab and 1 g was mixed into 100 ml of 

sterile PCR-grade water producing a fecal concentration of 10,000 mg of feces/L of 

water. Standards were made using 10-fold dilutions to a concentration of 0.1 mg/L.  

4.3.8 Quantitative PCR Assays 

Extracted DNA from runoff samples was tested for total (AllBac) and bovine-

associated (BoBac) fecal markers as described by Layton et al. (2006). Gene targets as 

well as the probe and primer sequences and amplicon size for the two qPCR assays used 

in this study are summarized in Layton et al. (2006). Oligonucleotide primers and 6-

carboxyfluorescein (FAM)-BHQ probes were obtained from Integrated DNA 

Technologies, Inc. (Coralville, IA). 

The qPCR was performed in 25 µl reactions containing 12.5 µl QuantiTect Probe 

PCR Master Mix (QIAGEN, Valencia, CA), 5 µl template, 15 pmol (1 µl) each of 

forward and reverse primers, 5 pmol (0.5 µl) probe, 1 µl 0.01X TE or spike (2E+05 gene 

copies), and 4 µl PCR-grade water. Reactions were set up using a CAS-1200™ Precision 

Liquid Handling System (Corbett Life Science, Australia). The PCR amplification and 

detection of the fluorescent signal was performed using the Rotor-Gene 6000 real-time 

rotary analyzer (Corbett Life Science) under the following conditions: 50°C for 2 min, 

followed by 95°C for 10 min and 50 cycles of 95°C for 30 s, 57°C (BoBac assay) or 

60°C (AllBac assay) for 45 s, and 72°C for 60 s (Layton et al. 2006).  

For all qPCR runs, standards, negative controls (no DNA), samples and spiked 

samples were run in triplicate. Each assay contained two types of standard curves, a gene 

copy standard curve and a fecal dilution standard curve. For the AllBac and BoBac 
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assays, bovine fecal standards ranging in concentration from 1.0 to 1,000 mg/L were 

used for calculating the concentration of total and bovine-associated feces in each 

sample. Similarly, gene copy standards ranging in concentration from 2E+01 to 2E+06 

copies per reaction were used for calculating the concentration of total and bovine-

associated Bacteroides gene copies in each sample. Gene copies or fecal concentrations 

were calculated from standard curves (log10 concentrations vs. the qPCR threshold 

cycle). Linear correlations were determined using Microsoft Excel. Results were 

expressed as gene copies per L of water or as a fecal concentration in mg/L. Percent 

cattle contribution was estimated by dividing the bovine-specific Bacteroides (BoBac) 

results by the total Bacteroides (AllBac) results for each runoff sample. 

Sterile 0.01X TE buffer was used as a negative control. The potential for PCR 

inhibition was measured by spiking samples with 2E+05 copies of plasmid DNA. The 

amount of PCR inhibition was measured by determining the recovery of the copies in the 

presence of the runoff sample as calculated from the plasmid DNA standard curve 

[percent recovery = (measured copies in runoff sample spiked with 2E+05 plasmid 

copies - measured copies in unspiked runoff sample)/(measured copies in blank sample 

spiked with 2E+05 plasmid copies) x 100]. The percentage of plasmid recovery was 

measured in each runoff sample was then determined. 

4.3.9 Statistical Analysis 

The statistical software, Minitab (Minitab Inc., State College, PA) was used for 

determining descriptive statistics (means, standard deviations, maximums, medians, 

etc.), calculating Pearson product moment correlation coefficients and conducting linear 
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regression analyses on log10 transformed bacterial concentrations, and assessing 

differences in median concentrations between sites and treatments using the Mann-

Whitney test. Regression analysis was used to assess relationships of AllBac and BoBac 

gene copy and fecal concentrations to E. coli levels. An alpha level of 0.05 was accepted 

as a minimum level of significance; thus results were considered statistically significant 

when p < 0.05. 

4.4 Results and Discussion 

4.4.1 Comparison of AllBac to SR and Grazing Management 

AllBac was detected in all samples and ranged in concentration from 3.5E+05 to 

3.5E+09 gene copies/L (Appendix E). The AllBac concentrations were not correlated 

with grazing management (p = 0.83) or stocking rate (p = 0.53). With the exception of 

sites SW17 and WWR3, no significant differences in median AllBac concentrations 

were observed between sites (Figure 4.4). Significantly higher median AllBac 

concentrations were observed at SW17, while significantly lower median AllBac gene 

copies were observed at WWR3. The lower concentrations at WWR3 likely resulted 

from the minimal grazing that took place the year before the runoff events occurred as a 

result of a major two year drought during the study. As such, WWR3 was more 

representative of an ungrazed site than a stocked site during the period samples were 

collected. In contrast, SW17 was the most extensively grazed site throughout the study, 

being grazed for over 14 months (out of 24 months), though at a lighter stocking rate 

than the other sites. 
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Figure 4.4 

Box plot depicting AllBac concentrations (copies/L) at each site. The boundary of 

the box closest to zero indicates the 25
th

 percentile, the solid line within the box 

represents the median, the dashed line represents the mean, the boundary of the 

box farthest from zero indicates the 75
th

 percentile, the whiskers above and below 

the box indicate the 10
th

 and 90
th

 percentiles, and the circles indicate outliers. 

 

 

To further evaluate the data, annual AllBac concentrations were assessed (Table 

4.3). Comparison of median annual AllBac concentrations among sites also showed no 

correlation with either grazing management (p = 0.58) or annual stocking rate (AUD/ha) 

(p = 0.62). Because AllBac would also detect other fecal sources including wildlife, 

significant correlations with grazing management and stocking rate would not 

necessarily be expected. 

However, a significant correlation was observed between median annual AllBac 

concentrations and percentage of runoff events occurring while sites were stocked or had 

been stocked less than 2 weeks prior to runoff (p < 0.01; r
2
=0.52). This indicates AllBac 

concentrations are significantly impacted by recent fecal contamination from cattle. 
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Table 4.3 

Comparison of AllBac levels (copies/L) with grazing management, stocking rate 

(AUD/ha), and cattle presence during runoff events. 

Site-Yr§ Mean sd Median Max. 
Grazing 

Management 

Annual 

AUD/ 

ha 

Cattle on 

site during 

runoff-%* 

BB1-09 1.52E+07 2.22E+07 9.49E+06 6.84E+07 Ungrazed 0 No-0% 

BB2-09 4.13E+06 3.25E+06 4.30E+06 1.07E+07 Properly stock 147 No-0% 

BB3-09 3.58E+06 3.04E+06 3.30E+06 1.17E+07 Overstocked 312 No-0% 

BB1-10 5.88E+06 4.80E+06 3.58E+06 1.41E+07 Ungrazed 17 Yes†-20% 

BB2-10 8.72E+06 9.83E+06 4.74E+06 2.82E+07 Properly stock 301 Yes-67% 

BB3-10 4.64E+08 1.23E+09 1.45E+07 3.52E+09 Overstocked 543 Yes-75% 

SW12-08 8.13E+06 4.87E+06 7.61E+06 1.62E+07 Ungrazed 0 No-0% 

SW17-08 6.48E+07 5.38E+07 5.22E+07 1.58E+08 Properly stock 124 Yes-100% 

SW12-09 5.95E+06 7.16E+06 4.18E+06 2.39E+07 Ungrazed 0 No-0% 

SW17-09 6.21E+07 7.49E+07 1.58E+07 2.06E+08 Properly stock 341 Yes-100% 

WWR1-10 4.34E+06 4.66E+06 2.74E+06 1.32E+07 Ungrazed 0 No-0% 

WWR3-10 1.01E+06 8.73E+05 6.99E+05 2.72E+06 Propery stock‡ 0 No-0% 

* Percent of samples collected while site actively or recently stocked (< 2 weeks). 

† Electric fences failed February 1 to 8, 2010 allowing cattle access to site. 

‡ Although managed at a proper stocking level, a severe drought prevented grazing the 

year immediately preceding all runoff events; therefore, data from these events are more 

representative of an ungrazed site. 

§ Year, November 1 to October 31. 

 

Other factors (e.g. persistence) and sources (e.g. wildlife) may impact AllBac 

concentrations as well since AllBac is a measure of total Bacteroides and differing 

persistence between fecal sources may exist between human and ruminant Bacteroidales 

markers (Walters and Field 2009). 

4.4.2 Comparison of BoBac to SR and Grazing Management 

As with AllBac, BoBac was detected in all samples as well and ranged in 

concentration from 2.9E+02 to 5.9E+08 gene copies/L (Appendix F). Comparison of 

BoBac concentrations among sites showed that ungrazed sites generally had lowest 
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BoBac levels and that stocked sites generally had highest levels (Table 4.4), but median 

BoBac gene copy concentrations were not correlated with either annual stocking rate 

(AUD/ha) (p = 0.10) or grazing management (p = 0.21). However, median BoBac 

concentrations (log10 transformed) were strongly correlated with the percent of runoff 

events that occurred while sites were stocked or had been stocked less than 2 weeks prior 

to runoff (p < 0.001; r
2
=0.88). 

 

Table 4.4 

Comparison of BoBac levels (copies/L) with grazing management, stocking rate 

(AUD/ha), and cattle presence during runoff events. 

Site-Yr§ Mean sd Median Max. 
Grazing 

Management 

Annual 

AUD/ 

ha 

Cattle on 

site during 

runoff-%* 

BB1-09 9.10E+03 7.45E+03 6.18E+03 2.31E+04 Ungrazed 0 No-0% 

BB2-09 6.56E+03 5.56E+03 4.59E+03 1.66E+04 Properly stock 147 No-0% 

BB3-09 6.61E+03 3.75E+03 6.13E+03 1.32E+04 Overstocked 312 No-0% 

BB1-10 2.28E+05 2.84E+05 1.12E+05 7.32E+05 Ungrazed 17 Yes†-20% 

BB2-10 1.67E+06 2.48E+06 8.87E+05 6.60E+06 Properly stock 301 Yes-67% 

BB3-10 7.69E+07 2.05E+08 2.90E+06 5.85E+08 Overstocked 543 Yes-75% 

SW12-08 1.26E+04 2.77E+04 1.51E+03 6.90E+04 Ungrazed 0 No-0% 

SW17-08 1.09E+07 1.23E+07 5.45E+06 3.30E+07 Properly stock 124 Yes-100% 

SW12-09 1.40E+04 3.08E+04 2.17E+03 9.57E+04 Ungrazed 0 No-0% 

SW17-09 2.60E+07 3.75E+07 6.95E+06 1.03E+08 Properly stock 341 Yes-100% 

WWR1-10 1.02E+05 1.12E+05 7.93E+04 2.92E+05 Ungrazed 0 No-0% 

WWR3-10 2.05E+04 1.88E+04 1.73E+04 4.46E+04 Properly stock‡ 0 No-0% 

* Percent of samples collected while site actively or recently stocked (< 2 weeks). 

† Electric fences failed February 1 to 8, 2010 allowing cattle access to site. 

‡ Although managed at a proper stocking level, a severe drought prevented grazing the 

year immediately preceding all runoff events; therefore, data from these events are more 

representative of an ungrazed site. 

§ Year, November 1 to October 31. 

 

Further, BoBac concentrations were significantly higher, exceeding 10
5
 copies/L, 

in runoff when cattle were actively grazing or had grazed the sites within 2 weeks of the 

runoff event (Figure 4.5) and generally 10
5
 copies/L or less when sites were destocked. 
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The BoBac concentrations were not significantly different among the sites when they 

were stocked. Similarly, with the exception of SW12, which exhibited the lowest BoBac 

concentrations, BoBac levels were also not significantly different among the sites when 

they were destocked. This analysis appears to validate BoBac as a suitable indicator of 

recent fecal contamination from cattle. 

 

Figure 4.5 

BoBac concentrations (copies/L) in runoff from grazing lands at each site when 

stocked and destocked. 

 

4.4.3 Comparison of AllBac and BoBac Gene Copy Concentrations to E. coli Levels 

In order for the AllBac marker to be able to relate to existing water quality 

standards, there needs to be a strong correlation between AllBac and E. coli 

concentrations. Overall, a significant correlation (p < 0.001) was observed between 

AllBac gene copy and E. coli concentrations when data from all sites were compared; 
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however, the coefficient of determination value was low (r
2
=0.21). In comparison, 

Okabe et al. (2007) found a moderate level of correlation between Bacteroides-

Prevotella group specific 16S rRNA gene markers and fecal coliforms (r
2
=0.49). 

Correlations of Bacteroides markers and fecal indicator bacteria such as E. coli are 

impacted by many factors, particularly the differences in detection methods (culture vs. 

molecular based) and differences in survivability of each in the environment. 

Quantitative PCR methods detect DNA from both culturable and unculturable or dead 

organisms, whereas the E. coli methods used detect only culturable cells (Okabe et al. 

2007, Dick et al. 2010). This relationship is further complicated by the survivability of 

the organisms, particularly since data regarding the persistence of Bacteroides genes are 

scarce (Bell et al. 2009), while E. coli has been shown to reproduce in the environment 

under some conditions. However, recent research has demonstrated that little difference 

exists in the decay rates of fecal Bacteroides 16S RNA genes in human, cattle, and pigs 

using both host-specific and general assays (Bell et al. 2009). Further, recent studies 

have found several Bacteroides markers, such as the HF-human fecal marker, decayed at 

similar or significantly faster rates than E. coli thus making them conservative predictors 

of E. coli (Dick et al. 2010). But, Dick et al. (2010) suggested that a reservoir of AllBac 

markers may persist and thus may not be useful as an alternate indicator for E. coli. 

Further, when this relationship was evaluated at each site (Figure 4.6), potential 

geographic variability in the AllBac marker was indicated. The AllBac gene copy and E. 

coli concentrations were not correlated at Riesel (SW12, SW17) or Welder Wildlife 

Refuge (WWR1, WWR3) sites. In contrast, a moderate, statistically significant 
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correlation was observed between AllBac gene copy concentrations and E. coli at all 

BCSC sites (BB1, BB2, BB3). This correlation between E. coli and AllBac gene copies 

at the BCSC sites was perhaps due to the fact that the fecal matter used to generate the 

gene copy curves was collected from the TAMU Animal Science facility located directly 

adjacent to the BCSC. Although EPA (2005) and Layton et al. (2006) suggest 

Bacteroides spp. have broad geographic stability, these results and other studies appear 

to indicate otherwise. For instance, Lamendella et al. (2009) noted differences in the 

geographic stability of swine-associated Bacteroidales assays potentially due to 

differences in animal management practices among different locations.  

When BoBac gene copy and E. coli concentrations from all sites were compared, 

a statistically significant correlation was observed (r
2
=0.16, p < 0.001). Similar 

correlations have been observed with other markers as demonstrated by Weidhaas et al. 

(2011), who found a comparable correlation to our study between the LA35 poultry 

marker and E. coli levels (r
2
=0.37, p = 0.001). As would be expected, positive 

correlations were not observed at the ungrazed SW12, WWR1, and BB1 (negative 

relationship observed) and significant correlations were observed at the overstocked 

BB3 and properly stocked SW17 (Figure 4.6). However, no correlation was observed at 

the properly stocked BB2 and WWR3. This likely resulted from no runoff events 

occurring at either of these sites while they were actively stocked unlike BB3 and SW17. 
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Figure 4.6 

Linear regression analysis showing correlation of AllBac (A,B,C) and BoBac 

(D,E,F) levels to E. coli levels in runoff from grazing lands.  
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Finally, the correlation of E. coli to AllBac and BoBac when sites were stocked 

was evaluated. At BCSC sites, E. coli was significantly correlated with both AllBac and 

BoBac when the sites were stocked (Figure 4.7). Conversely, at SW17, where 100% of 

samples were collected while it was stocked, E. coli was not correlated with AllBac 

(Figure 4.6B) or BoBac (Figure 4.6E) when stocked. This further confirms the 

geographic variability of these markers suggesting feces for development of gene copy 

curves should be collected from the watershed being assessed to reduce potential errors 

resulting from this variability in Bacteroides populations. 

 

Figure 4.7 

Linear regression analysis showing correlation of AllBac and BoBac concentrations 

to E. coli concentrations in runoff from BCSC sites when stocked. 
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4.4.4 Evaluation of Cattle Contributions Using BoBac/AllBac 

The BoBac/AllBac ratio was used to assess the percentage of bovine-associated 

fecal contamination for each runoff event. To validate this ratio, it was compared to the 

percentage of bovine-associated contamination estimated using E. coli levels determined 

as described below. For each location (i.e. Welder, BCSC, Riesel), if the E. coli level at 

the grazed site was equal to or less than the average concentration observed at the 

ungrazed control site, then the percentage of E. coli from cattle was considered 0%. If 

the E. coli level at the grazed site exceeded the average concentration observed at the 

ungrazed control site, then the percent of E. coli attributed to cattle was considered to be: 

 

As would be expected, when sites were destocked, the percentage of bovine-

associated fecal contamination determined using BoBac/AllBac was low averaging ~1% 

(Figure 4.8). Furthermore, when sites were stocked, the percentage of bovine-associated 

fecal contamination determined using BoBac/AllBac averaged 23%. In comparison, E. 

coli analysis estimated that 6% of the bacterial loading resulted from cattle and other 

ruminants at ungrazed and destocked sites, while an average of 67% of the bacterial 

loading was estimated to result from cattle and other ruminants when sites were stocked. 

Thus, although elevated BoBac/AllBac ratios generally aligned well with cattle 

presence, the percentage of bovine-associated fecal contamination determined using 

BoBac/AllBac was significantly lower than that estimated by E. coli and thus appears to 

underestimate cattle contributions. 

 
E. coli conc. at grazed site – average E. coli conc. at ungrazed control site

E. coli conc. at grazed site
 X 100 
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Figure 4.8 

Comparison of average percentage of bacterial loading attributed to cattle in runoff 

from grazing land as estimated using E. coli concentrations and BoBac/AllBac gene 

copy concentrations. The error bars on each bar indicate one standard deviation. 

 

 

Co-extraction of substances can completely or partially inhibit PCR amplification 

of target markers in environmental samples (Haugland et al. 2010) and result in 

underestimation of marker levels as observed using the BoBac/AllBac gene copy 

percentages. However, percent recoveries for both AllBac and BoBac gene copies in this 

study generally ranged from 70 to 130% indicating inhibition was likely not a major 

factor. Similar underestimations have been observed with other markers such as the 

swine PF163 primer, which did not match well with a majority of environmental water 

sequences (Lamendella et al. 2009). Potential diversity in Bacteroides spp., as observed 

by Lamendella et al. (2009) with swine markers, complicates development of inclusive 

host-specific assays. Further, Dick et al. (2010) suggested a reservoir of AllBac markers 
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may persist in recreational waters and thus may not be useful for estimating the source 

contributions in ratio with other markers. Similarly, van der Wielen and Medema (2010) 

questioned whether PCR methods detected only fecal Bacteroidales species and 

suggested environmental sources of Bacteroidales of nonfecal origin (including from the 

hindguts of insects) also occurred. More work is needed to assess the ability of species-

specific marker (e.g. BoBac) to total Bacteroides (e.g. AllBac) ratios in order to 

accurately quantify contamination for specific sources (Haugland et al. 2010). 

4.4.5 Evaluation of AllBac and BoBac Fecal Concentrations 

In addition to measuring AllBac and BoBac gene copy concentrations, AllBac 

and BoBac fecal concentrations were also measured as described by Layton et al. (2006). 

In general, the relationship between both AllBac and BoBac fecal concentrations were 

similar to those observed between the gene copies for these markers. However, fecal 

concentrations found by this study were substantially lower than those found by Layton 

et al. (2006) in high flow samples. The AllBac fecal concentrations observed in edge-of-

field runoff in this study, which averaged 1.96 mg/L, were approximately two orders of 

magnitude lower than the levels found in high flow samples by Layton et al. (2006), 

which ranged from 100 to 452 mg/L and averaged 276 mg/L. 

To further evaluate the reasonableness of the fecal concentrations determined by 

AllBac and BoBac, fecal concentrations were also estimated using E. coli concentrations 

by dividing the observed E. coli concentrations (cfu/100 mL) by E. coli levels found in 

beef cattle manure (5.9 log10 cfu/g—McDowell et al. 2008) and converting the 

concentration to mg/L for comparison. Using this method, fecal concentrations estimated 
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using E. coli levels were comparable to those reported by Layton, averaging 361 mg/L, 

but were again, approximately 2 orders of magnitude higher than those determined using 

AllBac and BoBac.  

These analyses suggest the fecal concentrations determined by this study using 

AllBac and BoBac do not accurately represent fecal loadings. The method used by this 

study contained several divergences from that used by Layton et al. (2006), which may 

help explain this observed difference. Primarily, runoff samples for this study were 

filtered and DNA extracted from the filters prior to qPCR analysis while Layton’s 

environmental samples were not filtered and were directly analyzed using qPCR without 

DNA extraction. Although filtration would be expected to concentrate and increase the 

measurable levels of Bacteroides instead of decrease them, loss of DNA can occur 

during the extraction process as a result of incomplete cell lysis, DNA sorption to soil or 

other surfaces, coextraction of enzymatic inhibitors, and loss, degradation, or damage of 

DNA (Miller et al. 1999). Further, PCR inhibition could have further reduced observable 

fecal concentrations. However, PCR inhibition was not considered to be a major factor 

as percent recoveries generally ranged from 70 to 130%. 

It was also postulated that Bacteroides levels in the fecal sample used to develop 

the standard curve for this study could possibly be different from those in Layton et al. 

(2006) resulting in the significantly lower levels. The fecal curves used for this study 

were based on a single fecal sample from one individual animal. It is unclear whether the 

Layton et al. (2006) fecal curve was based on one individual animal or a slurry from 

multiple individuals. However, because Bacteroides levels can vary between individuals, 
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it was anticipated this may have been a factor. Further, considerable variability in 

Bacteroides DNA yield and PCR inhibitor presence may result from intra-specimen 

variability as well, as feces are very heterogeneous biological materials (Nechvatal et al. 

2008). However, when threshold cycle (Ct) values and fecal concentrations from both 

studies were compared, the fecal concentration standard curves from this study were 

found to be comparable to Layton et al. (2006). Finally, geographic instability of the 

markers, as previously noted, may have contributed as well to the lower levels observed. 

Nevertheless, our study did not find the use of AllBac and BoBac fecal concentrations 

beneficial as it did not provide additional information and results were suspect due to the 

significantly lower levels observed. 

4.5 Summary and Conclusions 

Using host-specific markers can provide important information about sources of 

fecal pollution to impaired waters (Weidhaas et al. 2011). However, uncertainties remain 

regarding the geographical stability of markers and the difficulty of interpreting results 

in relation to regulatory water quality standards and quantifying source contributions 

(Jones et al. 2009). The goals of this study were to determine the ability of the BoBac 

marker to accurately assess the percentage of bovine-associated fecal contamination at 

the small watershed scale and to further evaluate the relationship between total 

Bacteroides (AllBac) and E. coli levels and its relevance as a fecal indicator. 

Data indicate neither AllBac and BoBac concentrations were correlated with 

either grazing management or annual stocking rate. However, both markers were 

significantly correlated with the percentage of runoff events that occurred while sites 
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were stocked or had been stocked less than two weeks prior to runoff suggesting that 

they provide a good indicator of recent fecal contamination from cattle. In addition, 

BoBac concentrations were significantly higher in runoff when cattle were actively 

grazing or had grazed the sites within two weeks of the runoff event validating BoBac as 

a suitable indicator of recent fecal contamination from cattle. Further, when sites were 

destocked, the percentage of bovine-associated fecal contamination determined using 

BoBac/AllBac averaged 1% as would be expected. However, when sites were stocked, 

the percentage of bovine-associated fecal contamination determined using 

BoBac/AllBac was lower than expected, averaging only 23% instead of 67% as 

estimated using E. coli concentrations. Thus, although elevated BoBac/AllBac ratios 

generally aligned well with stocking, it is unclear whether they can accurately estimate 

the percentage of bovine-associated fecal contamination. More work is needed to assess 

the ability of species-specific markers (e.g. BoBac) to total Bacteroides (e.g. AllBac) 

ratios to accurately quantify contamination for specific sources. 

Overall, a significant, but weak, correlation was observed between AllBac and 

BoBac gene copy and E. coli concentrations when data from all sites were compared; 

however, results varied by location with best results being obtained at sites where feces 

was collected for development of gene copy curves. Further, when sites where feces was 

collected for development of the gene copy curves were stocked, strong correlations 

between both AllBac and BoBac and E. coli were observed. These results are 

encouraging in that the AllBac and BoBac primers and probes developed and validated 

based primarily upon samples from eastern Tennessee worked well for some of the 
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watersheds in Texas; however, the differing results in the various watersheds, apparently 

due to geographic variability in the AllBac and BoBac markers, suggests that feces for 

development of gene copy curves for future studies should be collected from each 

specific watershed being assessed. Using watershed-specific standard curves may help to 

reduce potential errors resulting from geographic variability in Bacteroides populations. 

In conclusion, these markers appear to be potentially useful tools for identifying 

sources of fecal contamination; however, more work is needed to improve their ability to 

accurately quantify total and source-specific bacterial loading before implementation at 

the watershed scale. 
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CHAPTER V 

SUMMARY 

 

5.1 Evaluation of BMPs to Reduce Bacterial Pollution from Grazing 

This study evaluated two BMPs, alternative water supplies and prescribed 

grazing, for reducing bacterial contamination of surface waters from grazing cattle. 

Results of this study indicated the amount of time cattle spent in the stream could be 

reduced 43% from 3.0 to 1.7 minutes/AU/day by providing alternative off-stream water. 

As a result of this, direct deposition of E. coli into Clear Fork of Plum Creek was 

estimated to be reduced 4.76E+06 cfu/AU/day from 1.11E+07 cfu/AU/day when no 

alternative water was provided to 6.34E+06 cfu/AU/day once alternative water was 

provided. Observed pre- and post-treatment E. coli loads suggested similar reductions; 

however, this study could not conclusively attribute the observed E. coli loading 

reductions to alternative water because of the lack of statistical significance of these 

observations, the decrease in flow observed during Year 2, and the observed increase in 

E. coli levels during Year 2. A drought during Year 2, which reduced flows by 79% and 

influenced ranch management decisions to increase the stocking rate by 34%, may 

explain much of the increase in E. coli levels observed. Other probable factors impacting 

observed E. coli levels include natural variability, changes in fate and transport due to 

the drought, and potential increased contributions from wildlife. Although this study did 

not provide conclusive evidence of reduced E. coli levels resulting from providing 

alternative off-stream water supplies, this practice is still highly recommended due to the 
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significant reductions observed in the time cattle spent in and near the stream, the 51% 

reduction in fecal coliform documented by Sheffield et al. (1997), and the 85 to 95% 

decrease in median base flow E. coli load found by Byers et al. (2005). These reductions 

are comparable to those provided by fencing of streams (Brenner et al. 1994; Brenner 

1996; Cook 1998; Hagedorn et al. 1999; Lombardo et al. 2000; Meals 2001; Line 2002; 

Line 2003; Meals 2004). Further, this study supports McIver (2004) who noted 

alternative water supplies alone would not achieve water quality improvements unless 

implemented in conjunction with good grazing management (i.e. appropriate stocking 

rate, evenly distributed grazing, avoiding grazing during vulnerable periods, and 

providing ample rest after grazing events). As a result of the severe drought, these 

principles were not adhered to and likely confounded improvements in water quality that 

could have been due to the provision of alternative water supplies. 

Results also suggest that rotational stocking is an effective practice for reducing 

E. coli runoff. When runoff occurred more than two weeks following grazing, E. coli 

levels in runoff were decreased from 88 to 99% as compared to runoff when the sites 

were being actively grazed. This effect of timing of stocking in relation to subsequent 

runoff events was much more significant than the impact of grazing management (i.e. 

ungrazed, properly stocked or overstocked) or stocking rate. No significant differences 

were observed between E. coli runoff from properly or over-stocked pastures, although 

very high stocking rates did exhibit the potential to produce the highest E. coli 

concentrations. Highest E. coli concentrations were generally observed when runoff 

occurred within two weeks of grazing and the annual stocking rate was heavier than 1.3 
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ha/AUY (3.2 ac/AUY); however, no significant differences were observed between 

stocking rates of 0.7 to 3.1 ha/AUY (1.7 to 7.7 ac/AUY) for these events. When the 

stocking rate was 11 ha/AUY (27 ac/AUY) or lighter (and runoff occurred within two 

weeks of them being grazed), E. coli levels were significantly lower and did not exceed 

background levels. As a result of these findings, it is recommended that creek pastures 

and other hydrologically connected pastures be stocked during periods when runoff is 

less likely (e.g. summer and winter in much of Texas) and upland sites be grazed during 

rainy seasons when runoff is more likely. Further research is recommended to evaluate 

the impact of rotational stocking of creek pastures on a watershed scale. Additional 

research is also needed to evaluate runoff from severely overgrazed sites as well as sites 

that are continuously grazed since runoff conditions from these may be significantly 

different than those observed by this study. 

Although not a primary objective of the original study, a significant finding of 

this research was that background E. coli levels were considerable and relatively 

consistent across all sites, with median levels typically ranging from 3,500 to 5,500 

cfu/100 mL. Most existing water quality models and thus total maximum daily loads and 

other watershed plans do not take background E. coli levels into account. Background 

levels should be considered when applying these models in order to prevent over-

allocating loads and loading reductions to other sources. In addition to this, this study 

suggests the potential impact of non-domesticated animals on E. coli runoff from grazing 

lands can be considerable. As observed at all Beef Cattle Systems Center sites in 

October 2009, median concentrations increased approximately an order of magnitude 
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presumably due to non-domesticated animals (i.e. feral hogs or migratory birds). 

Loading from these sources during this period was responsible for 80% to 99% of the 

total loading in 2009. These results support the need to revise water quality standards as 

they apply to storm flow conditions. Ninety percent of runoff samples exceeded Texas 

Water Quality Standards, even at ungrazed sites. Although these water quality standards 

apply only to surface waters (e.g. streams and lakes) and not edge-of-field runoff as 

described here, this study does expose the impracticality of applying the existing water 

quality standards to runoff events, especially in runoff dominated streams. Background 

levels need to be considered as well as the significant impacts of non-domesticated 

animals. As such, it is recommended that exemptions from the current standards be made 

for storm flows and wildlife or additional research be conducted to accurately define 

bacterial quality for runoff and establish practical stream water quality standards. 

5.2 Evaluation of qPCR to Assess Bacterial Pollution from Grazing 

Finally, this study evaluated the ability of qPCR analysis of the bovine-

associated Bacteroides marker, BoBac, to accurately assess the percentage of bovine-

associated fecal contamination at the small watershed scale and the relevance the total 

Bacteroides marker, AllBac, as a fecal indicator. Data indicate neither AllBac nor BoBac 

concentrations were correlated with either grazing management or annual stocking rate. 

However, both markers were significantly correlated with the percentage of runoff 

events that occurred while sites were stocked or had been stocked less than two weeks 

prior to runoff suggesting that they provide a good indicator of recent fecal 

contamination from cattle. In addition, BoBac concentrations were significantly higher 
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in runoff when cattle were actively grazing or had grazed the sites within two weeks of 

the runoff event validating BoBac as a suitable indicator of recent fecal contamination 

from cattle. Further, when sites were destocked, the percentage of bovine-associated 

fecal contamination determined using BoBac/AllBac averaged 1% as would be expected. 

However, when sites were stocked, the percentage of bovine-associated fecal 

contamination determined using BoBac/AllBac was lower than expected, averaging only 

23% instead of 67% as estimated using E. coli concentrations. Thus, although elevated 

BoBac/AllBac ratios generally aligned well with stocking, it is unclear whether they can 

accurately estimate the percentage of bovine-associated fecal contamination. More work 

is needed to assess the ability of species-specific markers (e.g. BoBac) to total 

Bacteroides (e.g. AllBac) ratios to accurately quantify contamination for specific 

sources. 

Overall, a significant, but weak, correlation was observed between AllBac and 

BoBac gene copy and E. coli concentrations when data from all sites were compared; 

however, results varied by location with best results being obtained at sites where feces 

was collected for development of gene copy curves. Further, when sites where feces was 

collected for development of the gene copy curves were stocked, strong correlations 

between both AllBac and BoBac and E. coli were observed. These results are 

encouraging in that the AllBac and BoBac primers and probes developed and validated 

based primarily upon samples from eastern Tennessee worked well for some of the 

watersheds in Texas; however, the differing results in the various watersheds, apparently 

due to geographic variability in the AllBac and BoBac markers, suggests that feces for 
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development of gene copy curves for future studies should be collected from each 

specific watershed being assessed. Using watershed-specific standard curves may help to 

reduce potential errors resulting from geographic variability in Bacteroides populations. 

Although these markers appear to be potentially useful tools for identifying 

sources of fecal contamination, more work is needed to improve their ability to 

accurately quantify total and source-specific bacterial loading before implementation at 

the watershed scale. 
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APPENDIX A 

GPS MONITORING DATA 

 

GPS monitoring dates. 

Start Date End Date Treatment 

7/4/07 7/25/07 No trough 

10/3/07 10/25/07 No trough 

1/11/08 2/2/08 Trough 

4/4/08 4/26/08 No trough 

9/19/08 10/9/08 Trough 

11/7/08 11/29/08 Trough 

2/5/09 2/27/09 Trough 

4/10/09 5/2/09 Trough 

 



 

 

1
1
8
 

2S GPS Collar Data 

GPS Sample Total Corrected Points in each buffer % time within each buffer  

Number Period Points Tot Pts In-stream 15 ft 25 ft 35 ft 50 ft In-stream 15 ft 25 ft 35 ft 50 ft BMP 

1276 Jul-07 6336 6252 13 93 148 266 433 0.2% 1.5% 2.4% 4.3% 6.9% None 

1909 Jul-07 6336 6183 8 63 122 205 356 0.1% 1.0% 2.0% 3.3% 5.8% None 

1910 Jul-07 6335 6211 8 88 168 260 412 0.1% 1.4% 2.7% 4.2% 6.6% None 

380 Jul-07 6336 6242 8 70 146 217 308 0.1% 1.1% 2.3% 3.5% 4.9% None 

88 Jul-07 6336 6314 46 279 424 506 649 0.7% 4.4% 6.7% 8.0% 10.3% None 

Mean Jul-07 6336   17 119 202 291 432 0.3% 1.9% 3.2% 4.6% 6.9%  

               

1276 Oct-07 6446 6327 7 89 145 211 307 0.1% 1.4% 2.3% 3.3% 4.9% None 

1909 Oct-07 6446 6321 11 128 212 287 383 0.2% 2.0% 3.4% 4.5% 6.1% None 

1910 Oct-07 6446 6294 15 103 191 288 440 0.2% 1.6% 3.0% 4.6% 7.0% None 

1951 Oct-07 6446 6267 15 112 195 297 458 0.2% 1.8% 3.1% 4.7% 7.3% None 

1952 Oct-07 6446 6326 9 106 199 289 421 0.1% 1.7% 3.1% 4.6% 6.7% None 

380 Oct-07 6446 6388 13 112 186 256 354 0.2% 1.8% 2.9% 4.0% 5.5% None 

88 Oct-07 6446 6351 26 120 183 265 369 0.4% 1.9% 2.9% 4.2% 5.8% None 

Mean Oct-07 6446   14 110 187 270 390 0.2% 1.7% 3.0% 4.3% 6.2%  

               

1909 Jan-08 6621 6538 4 25 39 60 88 0.1% 0.4% 0.6% 0.9% 1.3% Trough 

1910 Jan-08 6624 6482 3 18 27 40 53 0.0% 0.3% 0.4% 0.6% 0.8% Trough 

1951 Jan-08 6624 6541 4 51 74 108 173 0.1% 0.8% 1.1% 1.7% 2.6% Trough 

1952 Jan-08 6624 6555 3 22 43 66 107 0.0% 0.3% 0.7% 1.0% 1.6% Trough 

87 Jan-08 6624 4448 4 41 70 89 126 0.1% 0.9% 1.6% 2.0% 2.8% Trough 

Mean Jan-08 6623   4 31 51 73 109 0.1% 0.5% 0.9% 1.2% 1.9%  



 

 

1
1
9
 

2S GPS Collar Data 

GPS Sample Total Corrected Points in each buffer % time within each buffer  

Number Period Points Tot Pts In-stream 15 ft 25 ft 35 ft 50 ft In-stream 15 ft 25 ft 35 ft 50 ft BMP 

1276 Apr-08 6624 6460 13 101 179 274 487 0.2% 1.6% 2.8% 4.2% 7.5% None 

1909 Apr-08 6621 6422 25 159 263 373 572 0.4% 2.5% 4.1% 5.8% 8.9% None 

1910 Apr-08 6620 6197 5 64 115 205 343 0.1% 1.0% 1.9% 3.3% 5.5% None 

1951 Apr-08 6624 6434 7 69 121 196 334 0.1% 1.1% 1.9% 3.0% 5.2% None 

1952 Apr-08 6624 6485 15 135 254 380 590 0.2% 2.1% 3.9% 5.9% 9.1% None 

380 Apr-08 6624 6454 21 172 249 360 505 0.3% 2.7% 3.9% 5.6% 7.8% None 

87 Apr-08 6623 4836 21 168 280 409 552 0.4% 3.5% 5.8% 8.5% 11.4% None 

88 Apr-08 6621 6460 15 122 217 370 636 0.2% 1.9% 3.4% 5.7% 9.8% None 

Mean Apr-08 6623   15 124 210 321 502 0.3% 2.0% 3.4% 5.3% 8.2%  

               

1276 Sep-08 6048 6011 21 183 271 357 507 0.3% 3.0% 4.5% 5.9% 8.4% Trough 

1909 Sep-08 6048 5958 7 43 69 106 154 0.1% 0.7% 1.2% 1.8% 2.6% Trough 

1910 Sep-08 6048 5839 15 111 161 233 310 0.3% 1.9% 2.8% 4.0% 5.3% Trough 

1951 Sep-08 6048 5906 12 98 164 246 330 0.2% 1.7% 2.8% 4.2% 5.6% Trough 

1952 Sep-08 6048 5975 7 84 138 202 295 0.1% 1.4% 2.3% 3.4% 4.9% Trough 

380 Sep-08 6048 5992 5 43 67 98 169 0.1% 0.7% 1.1% 1.6% 2.8% Trough 

87 Sep-08 6048 4639 8 38 86 129 196 0.2% 0.8% 1.9% 2.8% 4.2% Trough 

88 Sep-08 6048 5940 5 38 71 97 144 0.1% 0.6% 1.2% 1.6% 2.4% Trough 

Mean Sep-08 6048   10 80 128 184 263 0.2% 1.4% 2.2% 3.2% 4.5%  

               

1276 Nov-08 6624 6576 8 50 86 115 174 0.1% 0.8% 1.3% 1.7% 2.6% Trough 

1909 Nov-08 6624 6562 2 52 85 121 176 0.0% 0.8% 1.3% 1.8% 2.7% Trough 

1910 Nov-08 6624 6481 12 71 128 165 227 0.2% 1.1% 2.0% 2.5% 3.5% Trough 

1951 Nov-08 1622 1613 0 9 18 27 40 0.0% 0.6% 1.1% 1.7% 2.5% Trough 

1952 Nov-08 6624 6578 4 37 56 80 133 0.1% 0.6% 0.9% 1.2% 2.0% Trough 

380 Nov-08 6624 6583 7 52 85 128 203 0.1% 0.8% 1.3% 1.9% 3.1% Trough 

87 Nov-08 6624 4831 3 43 87 127 216 0.1% 0.9% 1.8% 2.6% 4.5% Trough 

88 Nov-08 6625 6576 8 57 85 112 146 0.1% 0.9% 1.3% 1.7% 2.2% Trough 

Mean Nov-08 5999   6 46 79 109 164 0.1% 0.8% 1.4% 1.9% 2.9%  



 

 

1
2
0
 

2S GPS Collar Data 

GPS Sample Total Corrected Points in each buffer % time within each buffer  

Number Period Points Tot Pts In-stream 15 ft 25 ft 35 ft 50 ft In-stream 15 ft 25 ft 35 ft 50 ft BMP 

1276 Feb-09 6624 6599 11 59 98 128 160 0.2% 0.9% 1.5% 1.9% 2.4% Trough 

1909 Feb-09 6624 6585 7 55 76 90 109 0.1% 0.8% 1.2% 1.4% 1.7% Trough 

1910 Feb-09 6624 6534 14 81 149 217 309 0.2% 1.2% 2.3% 3.3% 4.7% Trough 

1951 Feb-09 6624 6597 4 52 80 97 131 0.1% 0.8% 1.2% 1.5% 2.0% Trough 

1952 Feb-09 6624 6603 9 76 109 133 158 0.1% 1.2% 1.7% 2.0% 2.4% Trough 

380 Feb-09 6624 6593 10 51 78 104 155 0.2% 0.8% 1.2% 1.6% 2.4% Trough 

87 Feb-09 6624 4721 9 42 60 75 87 0.2% 0.9% 1.3% 1.6% 1.8% Trough 

88 Feb-09 6624 6607 7 40 63 70 91 0.1% 0.6% 1.0% 1.1% 1.4% Trough 

Mean Feb-09 6624   9 57 89 114 150 0.1% 0.9% 1.4% 1.8% 2.3%  

               

1276 Apr-09 6624 6507 4 45 90 153 247 0.1% 0.7% 1.4% 2.4% 3.8% Trough 

1909 Apr-09 6624 6547 19 103 161 234 346 0.3% 1.6% 2.5% 3.6% 5.3% Trough 

1910 Apr-09 6624 6401 6 77 139 220 327 0.1% 1.2% 2.2% 3.4% 5.1% Trough 

1951 Apr-09 6624 6509 16 85 155 251 407 0.2% 1.3% 2.4% 3.9% 6.3% Trough 

1952 Apr-09 2773 2694 7 32 50 75 117 0.3% 1.2% 1.9% 2.8% 4.3% Trough 

380 Apr-09 6624 6538 13 127 187 256 359 0.2% 1.9% 2.9% 3.9% 5.5% Trough 

87 Apr-09 6624 4986 13 89 148 212 287 0.3% 1.8% 3.0% 4.3% 5.8% Trough 

88 Apr-09 6624 6516 11 100 176 250 379 0.2% 1.5% 2.7% 3.8% 5.8% Trough 

Mean Apr-09 6143   11 82 138 206 309 0.2% 1.4% 2.3% 3.5% 5.2%  
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APPENDIX B 

ALTERNATIVE WATER STUDY — E. COLI, FLOW, TURBIDITY AND LOADING 

DATA 

 

 

 

 

 

 

 

 

 

 



 

 

1
2
2
 

2S Data (Year 1) 

Date 
Flow 

(cfs) 

Days 

Since 

rain 

PC1 PC2 
2S E. coli  

Load  

(cfu/d) 

# of  

AU 

2S E. coli  

Load  

(cfu/AU/d) 

E. coli 

Conc 

(cfu/100mL) 

Turb. 

(NTU) 

E. coli  

Load  

(cfu/d) 

E. coli  

Conc 

(cfu/100mL) 

Turb.  

(NTU) 

E. coli  

Load  

(cfu/d) 

7/26/07 154.83 0 1220  4.62E+12 920  3.48E+12 -1.14E+12 57 -2.00E+10 

8/2/07 1.99 4 50  2.43E+09 70  3.41E+09 9.74E+08 57 1.72E+07 

8/16/07 1.56 0 2300  8.78E+10 3300  1.26E+11 3.82E+10 57 6.73E+08 

9/6/07 1.07 2 320  8.38E+09 880  2.30E+10 1.47E+10 57 2.59E+08 

9/20/07 0.66 1 40  6.46E+08 110  1.78E+09 1.13E+09 57 1.99E+07 

10/4/07 0.43 9 17  1.75E+08 287  3.02E+09 2.84E+09 57 5.01E+07 

10/18/07 0.51 10 80  9.98E+08 27  3.33E+08 -6.65E+08 57 -1.17E+07 

11/1/07 0.51 10 30  3.74E+08 55  6.86E+08 3.12E+08 57 5.50E+06 

11/15/07 0.43 24 213  2.24E+09 162  1.70E+09 -5.37E+08 57 -9.46E+06 

12/6/07 0.51 10 73  9.05E+08 200  2.50E+09 1.59E+09 57 2.81E+07 

12/20/07 0.51 5 31  3.87E+08 35  4.37E+08 4.99E+07 57 8.80E+05 

1/3/08 0.59 19 17  2.45E+08 104  1.50E+09 1.26E+09 57 2.21E+07 

1/17/08 0.51 2 87  1.09E+09 111  1.39E+09 2.99E+08 57 5.28E+06 

2/7/08 0.59 13 21 5 3.03E+08 23 5 3.32E+08 2.89E+07 57 5.09E+05 

2/21/08 0.57 5 230 19 3.21E+09 420 16 5.86E+09 2.65E+09 57 4.67E+07 

3/6/08 0.66 0 35 23 5.57E+08 125 12 2.02E+09 1.46E+09 57 2.58E+07 

3/20/08 1.19 2 340 21 9.89E+09 295 29 8.58E+09 -1.31E+09 57 -2.31E+07 

4/3/08 0.66 4 81 35 1.31E+09 103 24 1.66E+09 3.55E+08 57 6.27E+06 

4/17/08 0.51 14 170 34 2.12E+09 1475 19 1.84E+10 1.63E+10 57 2.87E+08 

5/1/08 0.51 5 210 60 2.62E+09 370 31 4.62E+09 2.00E+09 57 3.52E+07 

5/15/08 0.43 1 182 18 1.91E+09 83 21 8.68E+08 -1.05E+09 57 -1.85E+07 

6/5/08 0.31 23 90 61 6.75E+08 430 9 3.23E+09 2.55E+09 57 4.50E+07 

6/19/08 0.25 13 2600 57 1.60E+10 160 12 9.82E+08 -1.50E+10 57 -2.64E+08 

7/2/08 0.15 30 325 62 1.22E+09 500 8 1.87E+09 6.55E+08 57 1.16E+07 
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2S Data (Year 2) 

Date 
Flow 

(cfs) 

Days 

since 

rain 

PC1 PC2 
2S E. coli  

Load  

(cfu/d) 

# of  

AU 

2S E. coli  

Load  

(cfu/AU/d) 

E. coli  

Conc 

(cfu/100mL) 

Turb.  

(NTU) 

E. coli  

Load  

(cfu/d) 

E. coli  

Conc 

(cfu/100mL) 

Turb.  

(NTU) 

E. coli  

Load  

(cfu/d) 

7/17/08 0.16 9 410 23 1.57E+09 465 16 1.78E+09 2.10E+08 76 2.77E+06 

8/7/08 0.08 14 320 17 6.58E+08 400 12 8.22E+08 1.64E+08 76 2.16E+06 

8/21/08 0.08 2 490 30 1.01E+09 1075 6 2.21E+09 1.20E+09 76 1.58E+07 

9/4/08 0.02 7 745 27 3.65E+08 93 6 4.55E+07 -3.19E+08 76 -4.20E+06 

9/18/08 0.00 5   0.00E+00   0.00E+00 0.00E+00 76 0.00E+00 

10/2/08 0.00 21   0.00E+00   0.00E+00 0.00E+00 76 0.00E+00 

10/16/08 0.00 1   0.00E+00   0.00E+00 0.00E+00 76 0.00E+00 

11/6/08 0.04 0 150 8 1.47E+08 845 5 8.27E+08 6.80E+08 76 8.95E+06 

11/20/08 0.08 16 145 4 2.97E+08 450 3 9.25E+08 6.28E+08 76 8.26E+06 

12/4/08 0.15 32 43 4 1.58E+08 475 2 1.74E+09 1.59E+09 76 2.09E+07 

12/18/08 0.12 10 400 3 1.17E+09 120 2 3.52E+08 -8.22E+08 76 -1.08E+07 

1/8/09 0.20 2 106 4 5.19E+08 56 2 2.74E+08 -2.45E+08 76 -3.22E+06 

1/22/09 0.25 16 30 2 1.81E+08 530 1 3.25E+09 3.07E+09 76 4.04E+07 

2/12/09 0.25 2 450 9 2.76E+09 500 7 3.07E+09 3.07E+08 76 4.04E+06 

2/26/09 0.25 16 62 10 3.77E+08 810 8 4.97E+09 4.59E+09 76 6.04E+07 

3/12/09 0.59 0 5700 18 8.23E+10 8100 14 1.17E+11 3.46E+10 76 4.56E+08 

3/26/09 0.15 12 20 10 7.34E+07 268 13 9.84E+08 9.10E+08 76 1.20E+07 

4/9/09 0.20 7 36 5 1.76E+08 280 5 1.37E+09 1.19E+09 76 1.57E+07 

4/23/09 0.15 5 660 18 2.42E+09 7000 31 2.57E+10 2.33E+10 76 3.06E+08 

5/14/09 0.15 17 78 21 2.86E+08 600 47 2.20E+09 1.92E+09 76 2.52E+07 

5/28/09 0.08 4 100 43 2.06E+08 410 34 8.43E+08 6.37E+08 76 8.38E+06 

6/11/09 0.00 8   0.00E+00   0.00E+00 0.00E+00 76 0.00E+00 

6/24/09 0.00 24   0.00E+00   0.00E+00 0.00E+00 76 0.00E+00 

7/9/09 0.00 2   0.00E+00   0.00E+00 0.00E+00 76 0.00E+00 
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APPENDIX C 

PUBLISHED FECAL COLIFORM CONCENTRATIONS IN RUNOFF FROM 

UNGRAZED AND GRAZED PASTURES 

 

Geometric mean values for fecal coliform concentrations (cfu/100 mL) in runoff 

from ungrazed and grazed pastures and corresponding annual stocking rates and 

grazing days (in AU days per hectare—AUD/ha and AU days per acre—AUD/ac). 

Grazing Reference 
Stocking Rate* 

ha/AUY (ac/AUY) 

Grazing – AUD/ha 

(AUD/ac) 

Fecal coliform 

(cfu/100 mL) 

Ungrazed Doran et al. 1981 0.0 0.0 6.6E+03 

Ungrazed Robbins et al. 1972 0.0 0.0 1.0E+04 

Grazed
 

Edwards et al. 1997 3.1 (7.7) 117 (48) 8.7E+03 

Grazed
 

Edwards et al. 1997 1.2 (3.0) 300 (121) 5.5E+04 

Grazed Doran et al. 1981 1.2 (2.9) 308 (124) 5.7E+04 

Grazed
 

Edwards et al. 1997 0.9 (2.3) 386 (156) 3.7E+03 

Grazed
 

Edwards et al. 1997 0.9 (2.3) 386 (156) 2.7E+04 

Grazed Robbins et al. 1972 0.5 (1.2) 773 (313) 3.0E+04 

* Stocking rate in hectares per AU year and acres per AU year 
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APPENDIX D 

RUNOFF DATA FROM WELDER WILDLIFE REFUGE, RIESEL, AND BEEF 

CATTLE SYSTEMS CENTER WATERSHEDS 

 

Welder Wildlife Refuge E. coli concentration, flow, and E. coli loading data 

Date 

WWR1 - Ungrazed  WWR3 - Properly Stocked 

E. coli 

Conc. 

(cfu/100 ml) 

Flow 

(cf) 

E. coli 

Load 

(cfu/ha) 

 

E. coli 

Conc. 

(cfu/100 ml) 

Flow 

(cf) 

E. coli 

Load 

(cfu/ha) 

11/20/09 3700 6355 6.66E+09  4100 8910 1.03E+10 

11/21/09 5500 8617 1.34E+10  7500 12081 2.57E+10 

12/1/09 30000 228 1.94E+09  5400 808 1.23E+09 

12/17/09   0.00E+00  330 311 2.90E+07 

1/15/10 7460 5299 1.12E+10  7027 6351 1.26E+10 

2/5/10 880 618 1.54E+08  10300 1480 4.32E+09 

2/11/10 5500 1200 1.87E+09  5500 2415 3.76E+09 

7/1/10 400 20407 2.31E+09  2600 26248 1.93E+10 

9/19/10 330 18920 1.77E+09  390 24064 2.66E+09 

9/23/10 2800 3312 2.63E+09  1600 3196 1.45E+09 

 



 

 

1
2
6
 

Riesel 2008 and 2009 E. coli concentration, flow, and E. coli loading data 

Date 

SW12 - Ungrazed  SW17 – Properly Stocked 

E. coli  

Conc. 

(cfu/100 ml) 

Flow  

(cf) 

E. coli  

Load  

(cfu) 

E. coli  

Load  

(cfu/ha) 

 

E. coli  

Conc. 

(cfu/100 ml) 

Flow  

(cf) 

E. coli  

Load  

(cfu) 

E. coli  

Load  

(cfu/ha) 

3/3/08   0.00E+00 0.00E+00  80000 52 1.18E+09 9.83E+08 

3/6/08 11250 1666 5.31E+09 4.42E+09  16200 1136 5.21E+09 4.34E+09 

3/11/08 9450 5666 1.52E+10 1.26E+10  16250 1696 7.80E+09 6.50E+09 

3/18/08 11750 5066 1.69E+10 1.40E+10  19150 2826 1.53E+10 1.28E+10 

4/10/08   0.00E+00 0.00E+00  28000 505 4.00E+09 3.33E+09 

4/10/08 4600 1666 2.17E+09 1.81E+09    0.00E+00 0.00E+00 

4/17/08   0.00E+00 0.00E+00  11300 566 1.81E+09 1.51E+09 

5/14/08 12550 10766 3.83E+10 3.19E+10  27000 8486 6.49E+10 5.41E+10 

5/15/08 4450 4566 5.75E+09 4.79E+09    0.00E+00 0.00E+00 

3/13/09 260 865 6.37E+07 5.31E+07  5400 1311 2.00E+09 1.67E+09 

4/17/09   0.00E+00 0.00E+00  113000 3396 1.09E+11 9.06E+10 

4/18/09 220 1666 1.04E+08 8.65E+07    0.00E+00 0.00E+00 

4/28/09 110 6866 2.14E+08 1.78E+08  29000 5096 4.18E+10 3.49E+10 

9/13/09   0.00E+00 0.00E+00  800000 566 1.28E+11 1.07E+11 

10/9/09 1000 5166 1.46E+09 1.22E+09  14000 3966 1.57E+10 1.31E+10 

10/11/09 500 2766 3.92E+08 3.26E+08    0.00E+00 0.00E+00 

10/13/09 2700 4566 3.49E+09 2.91E+09  13000 7916 2.91E+10 2.43E+10 

10/22/09 2600 10166 7.48E+09 6.24E+09  32000 10186 9.23E+10 7.69E+10 

10/26/09 10100 19766 5.65E+10 4.71E+10  15000 18676 7.93E+10 6.61E+10 

10/30/09 5900 566 9.46E+08 7.88E+08    0.00E+00 0.00E+00 
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Riesel 2010 E. coli concentration, flow, and E. coli loading data 

Date 

SW12 - Ungrazed  SW17 – Properly Stocked 

E. coli  

Conc. 

(cfu/100 ml) 

Flow  

(cf) 

E. coli  

Load  

(cfu) 

E. coli  

Load  

(cfu/ha) 

 

E. coli  

Conc. 

(cfu/100 ml) 

Flow  

(cf) 

E. coli  

Load  

(cfu) 

E. coli  

Load  

(cfu/ha) 

11/21/09 2400 1766 1.20E+09 1.00E+09    0.00E+00 0.00E+00 

1/16/10 2800 2865 2.27E+09 1.89E+09    0.00E+00 0.00E+00 

1/16/10   0.00E+00 0.00E+00  20 1058 5.99E+06 4.99E+06 

1/29/10 8900 16966 4.28E+10 3.56E+10  370 14706 1.54E+09 1.28E+09 

2/5/10 1400 3966 1.57E+09 1.31E+09  70 3966 7.86E+07 6.55E+07 

2/9/10 1600 566 2.56E+08 2.14E+08  80 1126 2.55E+07 2.13E+07 

2/11/10 570 2266 3.66E+08 3.05E+08  30 4526 3.84E+07 3.20E+07 

3/9/10 8000 3966 8.98E+09 7.49E+09  170 2266 1.09E+08 9.09E+07 

3/21/10 18000 2866 1.46E+10 1.22E+10  4200 566 6.73E+08 5.61E+08 

3/25/10 21000 3966 2.36E+10 1.97E+10  2900 1696 1.39E+09 1.16E+09 

4/24/10 6200 1166 2.05E+09 1.71E+09  10000 1696 4.80E+09 4.00E+09 
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Beef Cattle Systems Center E. coli concentration, flow, and E. coli loading data 

Date 

BB1 - Ungrazed BB2 - Properly Stocked BB3 - Overstocked 

E. coli 

Conc. 

(cfu/100 ml) 

Flow 

(cf) 

E. coli 

load 

(cfu/ha) 

E. coli 

conc. 

(cfu/100 ml) 

Flow 

(cf) 

E. coli 

load 

(cfu/ha) 

E. coli 

conc. 

(cfu/100 ml) 

Flow 

(cf) 

E. coli 

load 

(cfu/ha) 

3/13/09       140 205 8.14E+06 

3/25/09 1200 210 7.15E+07       

3/26/09    1000 429 1.21E+08 7200 1,703 3.47E+09 

3/27/09       2000 62 3.52E+07 

4/17/09 1155 1342 4.39E+08 980 3,529 9.79E+08 450 4,781 6.09E+08 

4/18/09 4400 1755 2.19E+09 2225 4,214 2.65E+09 2100 5,460 3.25E+09 

4/28/09 7600 597 1.28E+09 12200 5,173 1.79E+10 24000 7,710 5.24E+10 

10/4/09 57000 200 3.23E+09 5114 781 1.13E+09 3065 4,173 3.62E+09 

10/9/09 36000 472 4.82E+09 24043 3,085 2.10E+10 15000 7,134 3.03E+10 

10/13/09 42851 9,347 1.13E+11 23826 16,796 1.13E+11 5591 17,952 2.84E+10 

10/22/09       172500 149 7.28E+09 

10/26/09 261000 6,649 4.91E+11 181000 12,325 6.32E+11 45000 13,513 1.72E+11 

11/16/09     -  800000 257 5.82E+10 

11/21/09 9300 267 7.03E+08 58000 2,153 3.54E+10 223750 3,474 2.20E+11 

11/29/09       87000 323 7.95E+09 

12/1/09 8100 3,477 7.98E+09 10800 7,210 2.20E+10 13300 9,300 3.50E+10 

12/22/09 2800 86 6.82E+07 3400 1,093 1.05E+09 4400 2,585 3.22E+09 

12/30/09    2300 287 1.87E+08 5000 1,113 1.58E+09 

1/16/10 410 249 2.89E+07 4900 1,888 2.62E+09 830 1,893 4.45E+08 

1/29/10 5400 5,264 8.05E+09 9500 10,028 2.70E+10 4400 11,233 1.40E+10 

2/4/10 2400 319 2.17E+08 8800 1,893 4.72E+09 2600 2,378 1.75E+09 

2/8/10 9800 1,992 5.53E+09 6000 4,653 7.91E+09 8100 5,448 1.25E+10 

2/11/10 2100 3,456 2.06E+09 1500 7,059 3.00E+09 1100 8,204 2.56E+09 

6/9/10 8900 10,141 2.56E+10 8200 18,112 4.21E+10 9250 19,258 5.04E+10 
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APPENDIX E 

TOTAL BACTEROIDES (ALLBAC) DATA FROM WELDER WILDLIFE REFUGE, 

RIESEL, AND BEEF CATTLE SYSTEMS CENTER WATERSHEDS 

 



 

 

1
3
0
 

Site 
Event 

Date 

Filter 

vol.(mL) 

Vol. eluted 

(uL) 

Template 

vol. (uL) 

AllBac 

(copies/rxn) 

AllBac 

(copies/L) 

AllBac 

%R 

qPCRAllBac 

fecal conc 

AllBac fecal 

conc (mg/L) 

BB1 3/25/09 10 100 5 6.76E+02 1.35E+06 102% 6.47E+01 6.47E-01 

BB1 4/17/09 20 100 5 2.15E+03 2.15E+06 81% 1.34E+02 6.68E-01 

BB1 4/18/09 30 100 5 2.41E+04 1.61E+07 86% 6.46E+02 2.15E+00 

BB1 4/28/09 20 100 5 1.32E+03 1.32E+06 85% 9.83E+01 4.91E-01 

BB1 10/4/09 10 100 5 3.42E+04 6.84E+07 106% 6.50E+02 6.50E+00 

BB1 10/9/09 30 100 5 1.98E+04 1.32E+07 101% 4.76E+02 1.59E+00 

BB1 10/13/09 30 100 5 1.43E+04 9.53E+06 98% 3.72E+02 1.24E+00 

BB1 10/26/09 30 100 5 1.11E+05 7.43E+07 98% 5.49E+02 1.83E+00 

BB1 10/26/09 30 100 5 1.42E+04 9.44E+06 100% 3.76E+02 1.25E+00 

BB1 11/21/09 20 100 5 3.58E+03 3.58E+06 108% 1.80E+02 9.01E-01 

BB1 12/1/09 20 100 5 2.52E+03 2.52E+06 98% 1.18E+02 5.90E-01 

BB1 1/16/10 25 100 5 1.76E+04 1.41E+07 98% 4.43E+02 1.77E+00 

BB1 1/29/10 25 100 5 7.83E+03 6.27E+06 104% 2.11E+02 8.43E-01 

BB1 2/4/10 20 200 5 1.48E+03 2.96E+06 100% 1.76E+01 1.76E-01 

BB2 3/25/09 10 100 5 4.25E+02 8.50E+05 95% 4.82E+01 4.82E-01 

BB2 3/25/09 10 100 5 1.86E+02 3.72E+05 97% 2.88E+01 2.88E-01 

BB2 4/17/09 20 100 5 8.27E+02 8.27E+05 103% 7.48E+01 3.74E-01 

BB2 4/18/09 30 100 5 8.93E+03 5.95E+06 93% 3.42E+02 1.14E+00 

BB2 4/28/09 20 100 5 1.02E+03 1.02E+06 94% 8.34E+01 4.17E-01 

BB2 10/4/09 20 100 5 4.37E+03 4.37E+06 99% 2.01E+02 1.01E+00 

BB2 10/4/09 30 100 5 6.45E+03 4.30E+06 105% 2.52E+02 8.40E-01 

BB2 10/9/09 30 100 5 1.60E+04 1.07E+07 103% 4.01E+02 1.34E+00 

BB2 10/13/09 30 100 5 9.01E+03 6.01E+06 89% 2.74E+02 9.14E-01 

BB2 10/26/09 30 100 5 2.36E+04 1.58E+07 100% 1.82E+02 6.07E-01 

BB2 10/26/09 30 100 5 5.45E+03 3.63E+06 98% 2.21E+02 7.37E-01 

BB2 11/21/09 30 100 5 4.23E+04 2.82E+07 99% 7.33E+02 2.44E+00 



 

 

1
3
1
 

Site 
Event 

Date 

Filter 

vol. (mL) 

Vol. eluted 

(uL) 

Template 

vol. (uL) 

AllBac 

(copies/rxn) 

AllBac 

(copies/L) 

AllBac 

%R 

qPCR AllBac 

fecal conc 

AllBac fecal 

conc (mg/L) 

BB2 12/1/09 20 100 5 5.12E+03 5.12E+06 97% 1.89E+02 9.44E-01 

BB2 1/16/10 25 50 1 4.50E+03 9.00E+06 74% 2.98E+02 5.95E-01 

BB2 1/29/10 25 100 5 2.55E+03 2.04E+06 96% 1.16E+02 4.66E-01 

BB2 2/4/10 20 200 5 1.79E+03 3.57E+06 99% 2.11E+01 2.11E-01 

BB2 2/8/10 10 50 1 8.73E+02 4.36E+06 97% 8.06E+01 4.03E-01 

BB3 3/13/09 20 100 5 2.93E+03 2.93E+06 101% 1.62E+02 8.11E-01 

BB3 3/25/09 10 100 5 7.47E+02 1.49E+06 97% 3.27E+01 3.27E-01 

BB3 3/25/09 10 100 5 4.20E+02 8.40E+05 96% 4.80E+01 4.80E-01 

BB3 3/27/09 20 100 5 1.17E+04 1.17E+07 86% 3.88E+02 1.94E+00 

BB3 4/17/09 20 100 5 7.46E+02 7.46E+05 103% 7.00E+01 3.50E-01 

BB3 4/18/09 30 100 5 6.33E+03 4.22E+06 97% 2.75E+02 9.15E-01 

BB3 4/28/09 20 100 5 8.59E+02 8.59E+05 90% 7.51E+01 3.76E-01 

BB3 10/4/09 40 100 5 6.71E+03 3.35E+06 99% 2.58E+02 6.44E-01 

BB3 10/4/09 25 100 5 4.13E+03 3.30E+06 103% 1.95E+02 7.81E-01 

BB3 10/9/09 30 100 5 7.14E+03 4.76E+06 100% 2.57E+02 8.56E-01 

BB3 10/13/09 30 100 5 5.49E+03 3.66E+06 95% 1.98E+02 6.59E-01 

BB3 10/26/09 30 100 5 3.42E+04 2.28E+07 97% 2.37E+02 7.91E-01 

BB3 10/26/09 30 100 5 4.45E+03 2.97E+06 98% 1.98E+02 6.59E-01 

BB3 11/16/09 20 100 5 3.52E+06 3.52E+09 -59% 1.41E+04 7.06E+01 

BB3 11/21/09 30 100 5 1.44E+05 9.60E+07 85% 1.47E+03 4.91E+00 

BB3 11/29/09 20 100 5 5.12E+04 5.12E+07 105% 5.68E+02 2.84E+00 

BB3 12/1/09 20 100 5 1.07E+04 1.07E+07 96% 3.07E+02 1.54E+00 

BB3 1/16/10 25 100 5 1.69E+04 1.35E+07 112% 3.16E+02 1.27E+00 

BB3 1/29/10 25 100 5 4.16E+03 3.33E+06 98% 1.51E+02 6.03E-01 

BB3 2/4/10 15 50 1 4.62E+03 1.54E+07 94% 3.04E+02 1.01E+00 

BB3 2/8/10 15 50 1 6.40E+02 2.13E+06 100% 6.29E+01 2.10E-01 
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Site 
Event 

Date 

Filter 

vol. (mL) 

Vol. eluted 

(uL) 

Template 

vol. (uL) 

AllBac 

(copies/rxn) 

AllBac 

(copies/L) 

AllBac 

%R 

qPCR AllBac 

fecal conc 

AllBac fecal 

conc (mg/L) 

SW12 3/3/08 50 200 5 8.21E+03 6.57E+06 89% 7.98E+01 3.19E-01 

SW12 3/6/08 50 100 5 2.35E+04 9.38E+06 113% 1.90E+02 3.80E-01 

SW12 3/10/08 50 200 5 2.62E+03 2.10E+06 90% 3.88E+01 1.55E-01 

SW12 3/10/08 50 100 5 4.04E+04 1.62E+07 104% 1.68E+02 3.36E-01 

SW12 3/18/08 50 100 5 1.46E+04 5.84E+06 92% 1.33E+02 2.66E-01 

SW12 4/10/08 50 100 5 2.65E+04 1.06E+07 97% 3.69E+02 7.38E-01 

SW12 4/10/08 50 100 5 8.31E+03 3.32E+06 97% 3.27E+02 6.54E-01 

SW12 5/14/08 100 100 5 1.87E+04 3.74E+06 93% 5.49E+02 5.49E-01 

SW12 5/15/08 99.75 200 5 2.57E+04 1.03E+07 107% 2.69E+02 5.39E-01 

SW12 3/13/09 50 100 5 1.65E+04 6.61E+06 104% 2.68E+02 5.36E-01 

SW12 4/17/09 40 100 5 4.78E+04 2.39E+07 91% 1.00E+03 2.50E+00 

SW12 4/18/09 100 100 5 1.76E+04 3.52E+06 93% 2.80E+02 2.80E-01 

SW12 4/28/09 50 200 5 1.12E+03 8.92E+05 77% 1.13E+01 4.53E-02 

SW12 10/9/09 25 100 5 1.02E+04 8.17E+06 99% 1.00E+02 4.02E-01 

SW12 10/9/09 25 100 5 2.61E+03 2.09E+06 99% 1.47E+02 5.88E-01 

SW12 10/11/09 25 100 5 5.56E+03 4.45E+06 113% 1.16E+02 4.64E-01 

SW12 10/13/09 25 100 5 2.09E+03 1.68E+06 108% 3.71E+01 1.48E-01 

SW12 10/22/09 25 50 5 1.04E+04 4.18E+06 97%   

SW12 10/26/09 25 50 5 4.15E+03 1.66E+06 84%   

SW12 10/30/09 25 50 5 2.02E+04 8.09E+06 116%   

SW12 1/16/10 25 100 5 8.92E+02 7.13E+05 98% 8.08E+01 3.23E-01 

SW17 3/3/08 50 200 5 1.15E+05 9.16E+07 87% 1.05E+03 4.20E+00 

SW17 3/6/08 50 200 5 3.09E+04 2.47E+07 94% 2.91E+02 1.17E+00 

SW17 3/10/08 50 100 5 2.46E+04 9.82E+06 94% 6.55E+02 1.31E+00 

SW17 3/10/08 50 200 5 1.40E+04 1.12E+07 96% 1.34E+02 5.38E-01 

SW17 3/18/08 50 100 5 4.34E+04 1.74E+07 90% 2.71E+02 5.41E-01 
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Site 
Event 

Date 

Filter 

vol. (mL) 

Vol. eluted 

(uL) 

Template 

vol. (uL) 

AllBac 

(copies/rxn) 

AllBac 

(copies/L) 

AllBac 

%R 

qPCR AllBac 

fecal conc 

AllBac fecal 

conc (mg/L) 

SW17 4/10/08 50 100 5 1.31E+05 5.22E+07 96% 6.14E+02 1.23E+00 

SW17 4/18/08 30 100 5 1.48E+05 9.88E+07 92% 2.06E+03 6.87E+00 

SW17 5/14/08 30 200 5 1.18E+05 1.58E+08 98% 1.15E+03 7.68E+00 

SW17 3/13/09 50 200 5 2.58E+05 2.06E+08 97% 2.32E+03 9.28E+00 

SW17 4/17/09 40 100 5 1.63E+05 8.16E+07 89% 2.19E+03 5.48E+00 

SW17 4/18/09 40 100 5 1.59E+05 7.96E+07 85% 1.25E+03 3.11E+00 

SW17 4/28/09 49 100 5 6.52E+03 2.66E+06 88% 2.80E+02 5.71E-01 

SW17 10/9/09 25 100 5 1.54E+05 1.23E+08 106% 6.92E+02 2.77E+00 

SW17 10/9/09 25 100 5 1.62E+04 1.30E+07 95% 4.04E+02 1.62E+00 

SW17 10/13/09 25 100 5 1.34E+04 1.07E+07 93% 3.23E+02 1.29E+00 

SW17 10/22/09 25 250 5 5.25E+04 1.05E+08 75% 1.59E+03 1.59E+01 

SW17 10/26/09 50 200 5 1.98E+04 1.58E+07 99% 2.09E+02 8.36E-01 

SW17 1/16/10 25 100 5 1.25E+04 9.99E+06 121% 1.15E+02 4.61E-01 

WWR1 10/26/09 30 100 5 4.32E+03 2.88E+06 82% 5.46E+01 1.82E-01 

WWR1 11/20/09 30 100 5 4.60E+03 3.07E+06 98% 1.76E+02 5.87E-01 

WWR1 11/21/09 30 100 5 8.26E+03 5.50E+06 116% 2.90E+02 9.66E-01 

WWR1 12/1/09 20 100 5 1.32E+04 1.32E+07 82% 2.78E+02 1.39E+00 

WWR1 1/15/10 25 200 5 8.07E+02 1.29E+06 80% 9.87E+00 7.90E-02 

WWR1 1/16/10 25 200 5 3.58E+02 5.73E+05 85% 4.55E+00 3.64E-02 

WWR1 2/3/10 30 100 5 3.61E+03 2.41E+06 84% 7.00E+01 2.33E-01 

WWR3 10/26/09 30 100 5 1.28E+04 8.52E+06 82% 1.18E+02 3.93E-01 

WWR3 11/20/09 30 100 5 5.22E+02 3.48E+05 78% 5.40E+01 1.80E-01 

WWR3 11/21/09 30 100 5 9.68E+02 6.45E+05 94% 6.29E+01 2.10E-01 

WWR3 12/1/09 30 200 5 7.88E+02 1.05E+06 75% 9.65E+00 6.44E-02 

WWR3 1/15/10 25 200 5 4.71E+02 7.53E+05 79% 7.74E+00 6.19E-02 

WWR3 1/16/10 25 200 5 1.70E+03 2.72E+06 83% 2.01E+01 1.61E-01 
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APPENDIX F 

BOVINE-ASSOCIATED BACTEROIDES (BOBAC) DATA FROM WELDER 

WILDLIFE REFUGE, RIESEL, AND BEEF CATTLE SYSTEMS CENTER 

WATERSHEDS 
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Site 
Event 

Date 

Filter 

vol. (mL) 

Vol. eluted 

(uL) 

Template 

vol. (uL) 

BoBac 

(copies/rxn) 

BoBac 

(copies/L) 

BoBac 

%R 

qPCR BoBac 

fecal conc 

BoBac fecal  

conc (mg/L) 

BB1 3/25/09 10 100 5 1.15E+01 2.31E+04 94% 7.57E-01 7.57E-03 

BB1 4/17/09 20 100 5 3.65E+00 3.65E+03 71% 2.23E-01 1.11E-03 

BB1 4/18/09 30 100 5 1.60E+01 1.07E+04 80% 1.93E+00 6.45E-03 

BB1 4/28/09 20 100 5 4.51E+00 4.51E+03 78% 2.95E-01 1.47E-03 

BB1 10/4/09 10 100 5 3.93E+00 7.85E+03 103% 5.29E-01 5.29E-03 

BB1 10/9/09 30 100 5 5.63E+00 3.75E+03 87% 7.38E-01 2.46E-03 

BB1 10/13/09 30 100 5 2.56E+01 1.71E+04 93% 1.95E+00 6.50E-03 

BB1 10/26/09 30 100 5 3.22E+00 2.15E+03 84% 2.37E-01 7.89E-04 

BB1 10/26/09 30 100 5 3.38E+00 2.26E+03 100% 4.58E-01 1.53E-03 

BB1 11/21/09 20 100 5 1.51E+02 1.51E+05 92% 1.01E+01 5.03E-02 

BB1 12/1/09 20 100 5 1.12E+02 1.12E+05 87% 7.61E+00 3.81E-02 

BB1 1/16/10 25 100 5 1.18E+02 9.44E+04 92% 3.18E+01 1.27E-01 

BB1 1/29/10 25 100 5 6.09E+01 4.87E+04 97% 9.49E+00 3.79E-02 

BB1 2/4/10 20 200 5 7.32E+02 7.32E+05 86% 6.66E+01 3.33E-01 

BB2 3/25/09 10 100 5 8.61E+00 1.72E+04 83% 5.59E-01 5.59E-03 

BB2 3/25/09 10 100 5 2.30E+00 4.59E+03 87% 1.38E-01 1.38E-03 

BB2 4/17/09 20 100 5 2.59E+00 2.59E+03 90% 3.49E-01 1.75E-03 

BB2 4/18/09 30 100 5 1.06E+01 7.04E+03 91% 1.31E+00 4.37E-03 

BB2 4/28/09 20 100 5 2.89E-01 2.89E+02 90% 1.55E-02 7.75E-05 

BB2 10/4/09 20 100 5 2.18E+00 2.18E+03 115% 3.09E-01 1.55E-03 

BB2 10/4/09 30 100 5 1.93E+01 1.29E+04 101% 2.28E+00 7.60E-03 

BB2 10/9/09 30 100 5 2.49E+01 1.66E+04 97% 2.86E+00 9.52E-03 

BB2 10/13/09 30 100 5 1.53E+01 1.02E+04 82% 1.22E+00 4.05E-03 

BB2 10/26/09 30 100 5 1.11E+01 7.38E+03 91% 8.50E-01 2.83E-03 

BB2 10/26/09 30 100 5 3.96E+00 2.64E+03 77% 2.19E+00 7.31E-03 

BB2 11/21/09 30 100 5 9.91E+03 6.60E+06 110% 6.79E+02 2.26E+00 
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Site 
Event 

Date 

Filter 

vol. (mL) 

Vol. eluted 

(uL) 

Template 

vol. (uL) 

BoBac 

(copies/rxn) 

BoBac 

(copies/L) 

BoBac 

%R 

qPCR BoBac 

fecal conc 

BoBac fecal  

conc (mg/L) 

BB2 12/1/09 20 100 5 1.47E+03 1.47E+06 87% 8.19E+01 4.10E-01 

BB2 1/16/10 25 50 1 1.02E+02 8.16E+04 223% 1.74E+01 6.98E-02 

BB2 1/29/10 25 100 5 8.72E+01 6.98E+04 98% 1.33E+01 5.33E-02 

BB2 2/4/10 20 200 5 9.14E+02 9.14E+05 86% 8.30E+01 4.15E-01 

BB2 2/8/10 10 50 1 4.30E+02 8.60E+05 96% 2.68E+01 2.68E-01 

BB3 3/13/09 20 100 5 1.31E+01 1.31E+04 130% 8.57E-01 4.28E-03 

BB3 3/25/09 10 100 5 4.93E+00 9.87E+03 118% 3.65E-01 3.65E-03 

BB3 3/25/09 10 100 5 3.06E+00 6.13E+03 79% 1.90E-01 1.90E-03 

BB3 3/27/09 20 100 5 2.57E+00 2.57E+03 71% 1.55E-01 7.76E-04 

BB3 4/17/09 20 100 5 4.62E+00 4.62E+03 91% 6.04E-01 3.02E-03 

BB3 4/18/09 30 100 5 3.32E+00 2.21E+03 107% 4.42E-01 1.47E-03 

BB3 4/28/09 20 100 5 3.23E+00 3.23E+03 82% 2.02E-01 1.01E-03 

BB3 10/4/09 40 100 5 1.02E+01 8.13E+03 109% 1.26E+00 5.06E-03 

BB3 10/4/09 25 100 5 1.52E+01 7.58E+03 107% 1.83E+00 4.57E-03 

BB3 10/9/09 30 100 5 8.43E+00 5.62E+03 93% 1.07E+00 3.56E-03 

BB3 10/13/09 30 100 5 9.55E+00 6.37E+03 94% 7.87E-01 2.62E-03 

BB3 10/26/09 30 100 5 1.64E+01 1.09E+04 82% 2.27E+01 7.57E-02 

BB3 10/26/09 30 100 5 1.97E+01 1.32E+04 100% 7.80E+00 2.60E-02 

BB3 11/16/09 20 100 5 5.85E+05 5.85E+08 141% 2.56E+04 1.28E+02 

BB3 11/21/09 30 100 5 2.95E+04 1.96E+07 112% 1.84E+03 6.12E+00 

BB3 11/29/09 20 100 5 4.22E+03 4.22E+06 93% 5.28E+02 2.64E+00 

BB3 12/1/09 20 100 5 3.22E+03 3.22E+06 98% 1.69E+02 8.44E-01 

BB3 1/16/10 25 100 5 3.52E+02 2.82E+05 105% 5.00E+01 2.00E-01 

BB3 1/29/10 25 100 5 9.96E+01 7.97E+04 99% 2.78E+01 1.11E-01 

BB3 2/4/10 15 50 1 1.93E+03 2.58E+06 97% 2.86E+02 1.91E+00 

BB3 2/8/10 15 50 1 1.80E+02 2.40E+05 122% 1.56E+01 1.04E-01 



 

 

1
3
7
 

Site 
Event 

Date 

Filter 

vol. (mL) 

Vol. eluted 

(uL) 

Template 

vol. (uL) 

BoBac 

(copies/rxn) 

BoBac 

(copies/L) 

BoBac 

%R 

qPCR BoBac 

fecal conc 

BoBac fecal  

conc (mg/L) 

SW12 3/3/08 50 200 5 2.68E+00 1.07E+03 85% 4.91E-01 9.82E-04 

SW12 3/6/08 50 100 5 4.33E+00 1.73E+03 78% 3.37E-01 6.74E-04 

SW12 3/10/08 50 200 5 1.52E+00 6.09E+02 88% 2.89E-01 5.77E-04 

SW12 3/10/08 50 100 5 4.64E+00 1.86E+03 70% 5.35E-01 1.07E-03 

SW12 3/18/08 50 100 5 3.22E+00 1.29E+03 112% 2.51E-01 5.01E-04 

SW12 4/10/08 50 100 5 2.11E+00 8.45E+02 106% 1.52E-01 3.04E-04 

SW12 4/10/08 50 100 5 1.73E+02 6.90E+04 103% 1.81E+01 3.62E-02 

SW12 5/14/08 100 100 5 3.49E+00 6.98E+02 106% 4.03E-01 4.03E-04 

SW12 5/15/08 99.75 200 5 3.75E+00 7.52E+02 72% 3.50E-01 3.51E-04 

SW12 3/13/09 50 100 5 5.43E+00 2.17E+03 112% 4.03E-01 8.05E-04 

SW12 4/17/09 40 100 5 3.22E+00 1.61E+03 86% 4.28E-01 1.07E-03 

SW12 4/18/09 100 100 5 3.99E+00 7.98E+02 100% 2.93E-01 2.93E-04 

SW12 4/28/09 50 200 5 6.39E+00 5.11E+03 81% 2.82E-01 1.13E-03 

SW12 10/9/09 25 100 5 5.65E+00 4.52E+03 103% 2.87E+00 1.15E-02 

SW12 10/9/09 25 100 5 6.81E-01 5.45E+02 97% 2.89E-01 1.15E-03 

SW12 10/11/09 25 100 5 2.58E+00 2.06E+03 94% 4.73E-01 1.89E-03 

SW12 10/13/09 25 100 5 2.01E+00 1.61E+03 98% 3.75E-01 1.50E-03 

SW12 10/22/09 25 50 5 2.51E+00 5.02E+03 73% 8.01E-01 8.01E-03 

SW12 10/26/09 25 50 5 4.78E+01 9.57E+04 107% 7.86E+00 7.86E-02 

SW12 10/30/09 25 50 5 6.32E+00 1.26E+04 93% 1.11E+00 1.11E-02 

SW12 1/16/10 25 100 5 3.90E+00 3.12E+03 126% 1.12E+00 4.48E-03 

SW17 3/3/08 50 200 5 2.71E+04 1.08E+07 93% 3.05E+03 6.09E+00 

SW17 3/6/08 50 200 5 1.36E+04 5.45E+06 92% 1.16E+03 2.33E+00 

SW17 3/10/08 50 100 5 2.64E+03 1.06E+06 90% 3.36E+02 6.72E-01 

SW17 3/10/08 50 200 5 3.14E+03 1.26E+06 86% 2.83E+02 5.67E-01 

SW17 3/18/08 50 100 5 3.53E+03 1.41E+06 115% 3.17E+02 6.34E-01 
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Site 
Event 

Date 

Filter 

vol. (mL) 

Vol. eluted 

(uL) 

Template 

vol. (uL) 

BoBac 

(copies/rxn) 

BoBac 

(copies/L) 

BoBac 

%R 

qPCR BoBac 

fecal conc 

BoBac fecal  

conc (mg/L) 

SW17 4/10/08 50 100 5 5.34E+03 2.14E+06 127% 4.55E+02 9.10E-01 

SW17 4/18/08 30 100 5 4.95E+04 3.30E+07 114% 4.02E+03 1.34E+01 

SW17 5/14/08 30 200 5 3.29E+04 2.20E+07 86% 2.94E+03 9.80E+00 

SW17 3/13/09 50 200 5 1.12E+05 4.48E+07 126% 1.18E+04 2.35E+01 

SW17 4/17/09 40 100 5 4.58E+04 2.29E+07 101% 3.43E+03 8.57E+00 

SW17 4/18/09 40 100 5 1.72E+04 8.59E+06 101% 1.69E+03 4.22E+00 

SW17 4/28/09 49 100 5 4.19E+02 1.71E+05 96% 4.16E+01 8.49E-02 

SW17 10/9/09 25 100 5 9.71E+03 7.77E+06 NA 9.36E+02 3.74E+00 

SW17 10/9/09 25 100 5 8.69E+03 6.95E+06 87% 4.40E+02 1.76E+00 

SW17 10/13/09 25 100 5 1.80E+03 1.44E+06 95% 2.34E+02 9.37E-01 

SW17 10/22/09 25 250 5 5.15E+04 1.03E+08 107% 1.67E+03 1.67E+01 

SW17 10/26/09 50 200 5 3.58E+03 2.87E+06 92% 2.66E+02 1.07E+00 

SW17 1/16/10 25 100 5 6.32E+01 5.05E+04 43% 2.09E+00 8.38E-03 

WWR1 10/26/09 30 100 5 2.36E+00 1.57E+03 66% 1.70E-01 5.66E-04 

WWR1 11/20/09 30 100 5 2.37E+02 1.58E+05 93% 5.50E+01 1.83E-01 

WWR1 11/21/09 30 100 5 4.38E+02 2.92E+05 84% 2.68E+01 8.92E-02 

WWR1 12/1/09 20 100 5 1.17E+02 1.17E+05 72% 3.16E+01 1.58E-01 

WWR1 1/15/10 25 200 5 2.41E+00 3.85E+03 63% 9.89E-02 7.91E-04 

WWR1 1/16/10 25 200 5 1.17E+00 1.87E+03 67% 4.47E-02 3.58E-04 

WWR1 2/3/10 30 100 5 6.22E+01 4.14E+04 35% 6.52E+00 2.17E-02 

WWR3 10/26/09 30 100 5 3.38E+01 2.25E+04 60% 2.66E+00 8.88E-03 

WWR3 11/20/09 30 100 5 5.61E+01 3.74E+04 69% 4.03E+00 1.34E-02 

WWR3 11/21/09 30 100 5 6.70E+01 4.46E+04 94% 4.74E+00 1.58E-02 

WWR3 12/1/09 30 200 5 2.19E+01 2.92E+04 55% 1.07E+00 7.15E-03 

WWR3 1/15/10 25 200 5 3.45E+00 5.52E+03 61% 1.49E-01 1.19E-03 

WWR3 1/16/10 25 200 5 9.86E-01 1.58E+03 68% 3.84E-02 3.07E-04 
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