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ABSTRACT 

 

Developing Optimal Growth Parameters for the Green Microalgae Nannochloris oculata 

and the Diatom Nitzschia sp. for Large Scale Raceway Production. (August 2011) 

Phillip Ryan Luedecke, B.A., Texas A&M University 

Chair of Advisory Committee: Dr. Ronald E. Lacey  

 

Microalgae produce large quantities of lipids that can be used for biofuel 

feedstock. The goal of this project was to determine the effect of several engineering and 

management parameters on the productivity of microalgae cultivated in large, outdoor 

facilities. The specific objectives were focused on the effects of inoculation ratios; the 

effects of light, temperature, and culture depth on growth; and the minimum circulation 

velocity necessary to maintain growth and minimize settling in open ponds. 

Microalgae must first be cultured in smaller quantities before the raceway is 

inoculated for optimized growth. Concentration ratios are defined as the ratio of the 

volume of microalgae inoculum to the volume of new growth media. The microalgae 

species used was Nannochloris oculata (UTEX #LB 1998). Inoculation ratios studied 

varied from 1:1 to 1:32 and were grown in 500 mL Erlenmeyer flasks. The study found 

that 1:16 and 1:32 were too dilute, while the 1:8 concentration had the largest growth 

rate.  

Determination of the effects of temperature, light intensity, and cultivation depth 

is critical to maintaining healthy cultures. Excess light intensity can result in 
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photoinhibition and temperatures above the maximum growing tolerance can have 

detrimental effects. These factors can affect growth and evidence suggests an interaction 

that exacerbates these effects. In an outdoor culture there are few practical control 

variables other than pond depth. As cultivation depth increases, the algae undergo “self-

shading” and the increased cultivation volume hinders temperature changes. Scaled 

raceway ponds were maintained at 10.16 cm (4 inch) and 13.97 cm (5.5 inch) depths. 

The species used was Nannochloris oculata and it was found to grow best at 785 µmol 

m
-2

 s
-1

, 20°C, and 10.16 cm.  

Diatoms are attractive because of high growth rates, faster lipid production, and 

greater cell density. The latter promotes rapid settling once mixing has stopped. Because 

of the silica cell wall composition, diatoms are believed to be more susceptible to shear 

forces which can result in lysis. Determining the natural settling rate to the minimum 

channel velocity relationship in cultivation ponds was the objective. No 

flocculants/coagulants were added which created a case of “natural” settling. Four 

pennate Nitzschia sp. and one centric diatom were tested in a jar tester. There was no 

significant difference in settling times between the species. The mean settling time was 

4.55 cm min
-1

 and the minimum channel velocity was determined to be 10.12 cm min
-1

. 
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NOMENCLATURE 

 

AFDW  Ash Free Dry Weight 

ANOVA Analysis of Variance Test 

DO  Dissolved Oxygen 

DW  Dry Weight 

LS Means Least Square Means 

OD  Optical Density 

PAR  Photosynthetically Active Radiation 

PPM  Parts per Million 

PSU  Practical Salinity Units  

RPM  Revolutions per Minute 

UTEX  The Culture Collection of Algae at The University of Texas at Austin 

WT4  Weight 4 

WT5  Weight 5 
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CHAPTER I 

INTRODUCTION 

 

 This microalgae research was divided into three different sections that relate to 

how both green microalgae and diatoms grow and behave under different conditions and 

how to overcome these effects for determining ideal growing conditions. The first part of 

this research began with determining microalgae inoculation ratios for biofuel 

production for raceway ponds. The second section pertains to the interaction effects of 

solar irradiance [light], temperature and pond depth, while the last section focused on the 

natural settling of diatoms and how this natural settling relates to the mixing velocity 

needed in a microalgae production raceway pond. 

Microalgae have been known to produce large quantities of oil, from 

approximately 16 to 75 percent oil dry weight depending on algae species (Chisti, 2007). 

This oil can be used to produce biofuels in an effort to reduce America’s dependence on 

foreign oil. Large scale microalgae production in outdoor raceway ponds for the purpose 

of creating biofuels is a relatively new process which found light in the Department of 

Energy’s Aquatic Species Program: Biodiesel from Algae from 1978 to 1996 (Sheehan 

et al., 1998). Currently there is little published information on what the optimal 

beginning concentration ratios of algae and growth media should be. As the production  

scale increases, the microalgae must first be cultured in smaller quantities and then the  

raceway must be inoculated or seeded with the correct amount of microalgae for 

____________ 

This thesis follows the style of Transactions of the ASABE. 
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optimized growth. The microalgae cannot simply be placed into a raceway pond and 

expected to grow as desired. Concentrations too dilute will result in  

solar bleaching, contamination, nutrient toxicity, and increased time for the microalgae 

to reach a harvest concentration. 

The inoculation rate of cultured microalgae into the raceway pond depends on 

the size of the raceway. A 0.50 ha raceway would require more inoculant per volume 

than a 0.10 ha raceway pond.  The objective of this study was to determine an optimal 

concentration ratio for raceway ponds such that the maximum and the utilization of 

resources are obtained. 

Growing microalgae in open raceway ponds depends on the local environmental 

conditions. Determination of the effects of temperature, light intensity, and cultivation 

depth is critical to maintaining healthy cultures under the weather extremes typically 

seen in the desert southwest U.S.A. It is important to have algae strains that are suited to 

the climate or develop a control process in order to mitigate the effect of the extreme 

changes in the environment the microalgae may experience. Excess light intensity can 

result in photoinhibition or even cause damage to the algal cells. Likewise, temperatures 

above the maximum growing tolerance can have detrimental effects on the growth of 

microalgae as well. Both of these factors can yield lower than expected growth or kill 

the culture in the raceway pond. While it is known that each of these factors can affect 

algal growth there has been some anecdotal evidence that there is an interaction effect 

between temperature and light intensity that exacerbates the effects. In an outdoor 

culture there are a few practical control variables but the one most often employed is 
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pond depth. As the cultivation pond depth is increased, the algae provide “self-shading” 

and the increased thermal mass dampens temperature changes in the growth media. The 

objective of this study was to determine if there was an interaction effect on algal growth 

between light intensity and temperature and if increasing the depth of the culture would 

mitigate these effects.       

There are many types of microalgae including green algae, cyanobacteria, and 

diatoms. Diatoms have attributes that make them attractive as a biofuel source including 

high growth rates, faster production of lipids, and greater particle density, which may 

assist in harvesting. The increased density also presents a challenge, as diatoms tend to 

settle out of suspension rapidly once mixing has stopped. Because of the silica cell 

structure, diatoms are also more susceptible to shear forces and excess mixing can result 

in cell damage and lysis. Natural settling is important since no flocculants or energy 

consuming machinery (e.g. centrifuge or dissolved air flotation) would be needed to 

separate the diatoms from the media. Adding flocculants, coagulants, and other means 

are costly and time consuming and if the diatoms will naturally settle, this leads to input 

costs being reduced. This study focuses on the determination of the natural settling rate 

of diatoms and the relationship to minimum channel velocity in cultivation ponds. 
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Objectives 

The overall objective was to improve the efficiency of producing microalgae on a 

large scale by improving the growth parameters and minimizing the energy and material 

inputs. Specifically, the objectives of this research were: 

1. Find the optimal inoculation concentration ratio(s) that reduce the amount of 

culturing time so more time and resources can be devoted to the final production 

ponds. 

2. Determine the effects of light intensity, temperature and pond depth on algae 

growth and determine if there is an interaction effect between these factors.  

3. Determine the rate and overall effectiveness of natural settling for a diatom 

species and estimate the minimum circulation velocity required for an open 

raceway pond. 
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CHAPTER II 

LITERATURE REVIEW 

 

Tedesco and Duerr (1989) performed an experiment with a 25-fold dilution (1:25 

ratio) using Spirulina platensis UTEX 1928 in a 200 mL culture vessel. They varied the 

irradiance from 170 to 1400 µmol photons m
-2

 s
-1

 and the temperature from 25 to 38°C. 

The tests where run either testing the temperature or light separately for a predetermined 

period using a nitrogen rich media. After the growing time was reached, the cells were 

washed with nitrogen deficient media and recultured with the nitrogen deficient media. 

The algae was then placed in standard growing conditions at 37 ± 0.5°C with continuous 

light at 600 ± 33 µmol photons m
-2

 s
-1

  of light. The goal of this study was to test what 

conditions are needed to improve the fatty acid content and composition of the 

microalgae. The high light irradiance and temperatures are comparable with those in the 

desert southwest U.S.A. It was found that light intensity affected the growth rate and 

total lipid content but had little effect on the fatty acid content. The total lipid as percent 

dry weight decreased as light intensity increased, except at the highest irradiance and 

there was no change in total fatty acid content. At the highest irradiance tested, there was 

a slight increase in total lipids noted. Tedesco and Duerr (1989) suggest not to shade 

outdoor mass cultures because of this result in order to obtain the highest possible fatty 

acid percentage. If increasing the lipid content of the microalgae is goal, this could be 

the way to achieve this. They reported that above 33°C (standard light conditions), there 

was a sharp decrease in cell growth as well as the fatty acids and percent of total lipids. 
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However, 33°C showed the most rapid growth rate for Spirulina platensis. It was also 

reported that temperatures over 39°C resulted in cells bleaching white within 48 h. Since 

there was no test on the temperature and irradiance together, it would be reasonable to 

believe that outdoor cultures would have to be shaded if grown in areas where the 

irradiance and temperature exceed the high limits tested here.  

Each strain of microalgae has a specific set of growing conditions that will yield 

the most biomass. Cho et al. (2007) did a study on the optimum temperature and salinity 

conditions for growth of green algae Chlorella elliposidea and Nannochloris oculata. 

They found that the optimal temperature for Nannochloris oculata was 25°C for growth 

and it occurred at two different salinities, 10 and 30 [PSU]. Since there are two salinities 

that yield comparable results, it is possible that salinity is not as important as the 

temperature for Nannochloris oculata. Cho et al. (2007) found a maximum density of 

Nannochloris oculata at high temperature (25 and 30°C) rather than low temperature (15 

and 20°C) at all salinities tested in this study indicate that high temperature is better for 

achieving the maximum density of Nannochloris oculata.  

Latala et al. (1991) performed a similar study on growing conditions on green 

[micro] algae. They tested nine different species and looked at the influence of salinity, 

temperature and light. The species tested covered a wide range of conditions but their 

results confirmed several statements on algal cell behavior. First, was that decreasing the 

salinity negatively affects cell behavior. It significantly decreases the metabolic rate and 

consequently cell volume. This was confirmed in six species by a cell volume decrease 

of 30% and with a 64% cell volume decrease in Scenedesmus armatus. Abu-Rezq et al. 
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(1999) also did a study where salinity was a factor being tested on growing conditions. 

This test was to determine an ideal growing salinity range. The salinities found in the 

Latala et al. (1991) study and by Abu-Rezq et al. (1999) were different because they 

were looking at different strains; which proves that each strain has its own optimum 

conditions. Secondly it was found that at low temperatures, all biochemical processes 

proceed at a slow rate, inhibiting metabolic activity and growth. High temperatures 

could result in enzyme inactivation and soluble protein coagulation. The tests of Latala 

et al. (1991) confirmed the inverse relationship between cell size and temperature. As 

temperature increases, the cell size decreases. Latala et al. (1991) reported Scenedesmus 

acuminatus had the largest cell volume change due to temperature at 42%. Finally, up to 

a certain light intensity algal biomass increased. However, once beyond that value, cell 

division decreased and eventually ceased as a result of light saturation of growth or 

photoinhibition. Their study was comparable with previously published irradiance values 

for Chlorella vulgaris. Also, this study confirmed the relationship that the size of algal 

cells increases with increasing light intensity. The highest correlation that Latala et al. 

(1991) obtained was 35% with Oocystis parva. These relationships are very important 

and can be applied to other algal strains. There are various other works that pertain to 

determining optimum growing conditions of algae. These works include but are not 

limited to Brand and Guillard (1981), Wetz et al. (2004), and Tadros and Johansen 

(1988). Both the Wetz et al. (2004) study and the Tadros and Johansen (1988) study use 

diatoms instead of green algae.  
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The inoculation ratio, the ratio of the volume of inoculum to volume of fresh 

media, is critical in designing algal growth systems and determining the numbers and 

sizes of ponds and reactors needed in the inoculum chain. A large inoculation ratio (e.g. 

10:1) will result in more resident time in each pond in the inoculum chain while reaching 

a concentration to be able to inoculate the next pond in the chain. Generally this is 

desired since it requires fewer ponds and increases the utilization efficiency for each 

pond in the chain. However, a large inoculation ratio also has the potential for solar 

bleaching and contamination, particularly under open, outside conditions. Another 

important consideration is nutrient toxicity. Very dilute concentrations of algae subjected 

to normal media levels can be poisoned by the nutrients just like terrestrial plants can be 

with too much fertilizer. Therefore, there is a need to balance the inoculation ratio 

against the effects of light and temperature to maintain growth. Depth is a factor since it 

is one means of mitigating solar intensity is to use deeper ponds and attenuate the light. 

Tedesco and Duerr (1989) performed their experiment inoculating 200 mL 

culturing vessels.  They also did not report any problems with the 1:25 ratio being too 

dilute at the 1400 µmol photons m
-2

 s
-1

. The Cho et al. (2007) study that was performed 

with Nannochloris oculata used a different method for cell concentration. Cho et al. 

(2007) used a hemacytometer to count cells for that inoculation. A cell concentration of 

100 x 10
4
 cells/mL was used to inoculate 250 mL flasks for their study. A light intensity 

of only 31µmol photons m
-2

 s
-1

 was used in that study.  

Nitzschia sp. diatoms are among the most abundant diatoms in the ocean and 

large naturally occurring mass flocculation of diatom blooms have been recorded settling 
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to the ocean floor (Alldredge and Gotschalk, 1989). Diatoms contain a heavy silica shell 

that acts as the cell wall in place of the cellulosic cell wall of green algae. According to 

Ramachandra et al. (2009), “The specific weight of a diatom test [silica shell] has been 

reported to be 2.07…the specific weight of seawater usually ranges from 1.020 to 1.028. 

It is evident that diatoms are heavier than seawater and will ordinarily sink rapidly…” 

As a diatom sinks it flocculates with other diatoms and the settling rate increases 

exponentially as the floc diameter increases (Alldredge and Gotschalk, 1989). Alldredge 

and Gotschalk (1989) also follow the premise that a certain amount of cell collision must 

occur for the cells to collide together to start forming chains. However, excess mixing 

can cause cell damage and cell lysis (Michels et al., 2010). The silica shell is fragile 

which limits the stress it can endure. Shear stress from pumping and rotational mixing 

can break the cell, resulting in cell death and non-viable cultures. 

Diatom health is another important factor related to settling. Eppley et al. (1967) 

reports that after experimentation, cells from non-growing cultures sink at about four 

times faster than cells from growing cultures. This would indicate that there is metabolic 

function that viable cells have to help keep themselves in suspension or neutrally 

buoyant. Waite et al. (1992) created an experiment to test this theory. They proposed that 

if an intracellular, energy-requiring ionic pump governs settling rates, then sinking rates 

should be predictable by the amount of energy available to the cell via photosynthesis 

and respiration. They found that the lowest settling rates occurred when cells were 

grown under saturating light and the highest settling rates occurred when cells were 

placed in the dark or treated with a respiratory inhibitor.  
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Eppley et al. (1967) and Waite et al. (1992) differ on the settling rate relation to 

cell size. Eppley et al. (1967) found that settling rates appeared to increase with cell 

diameter. Waite et al. (1992) reported that small cells sank more rapidly than large cells 

under saturation light, but under severe energy limitation settling rates were directly 

proportional to cell volume. This could be due the reason that smaller cells are denser 

since they contain less cytoplasm. A smaller cell also has less surface area so with it 

being denser and having less surface area than a larger cell, it could sink at a faster rate.  
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CHAPTER III 

MICROALGAE INOCULATION RATIOS FOR BIOFUEL PRODUCTION  

IN RACEWAY PONDS 

 

Introduction 

 Large scale microalgae production in outdoor raceway ponds for the purpose of 

creating biofuels is a relatively new process. Currently there is little published 

information on the optimal beginning concentration ratios of algae and growth media. 

This directly affects production time and operating costs. The microalgae cannot simply 

be placed into a raceway pond and expected to grow as desired. Concentrations too 

dilute will result in solar bleaching, contamination, nutrient toxicity, and increased time 

for the microalgae to reach a harvest concentration.  

 Microalgae must first be grown in small quantities and scaled stepwise to the 

production raceway. Currently the Texas AgriLIFE Research microalgae research group 

uses a 1:1 inoculation concentration ratio. This is the ratio of algae inoculum to new 

growth media. However, this takes a lot of time to culture enough microalgae to 

inoculate a 0.40 ha raceway pond. The needed 0.20 ha worth of inoculum requires a 

series of successively increasing ponds and culturing devices. In order to get to 

production size, the microalgae have to be grown in smaller quantities. Currently a 

transfer into a larger culturing device or pond is made at a 1:1 concentration ratio when 

the algae reach a concentration of 1 g L
-1

, i.e. a 1 L system at 1 g L
-1

 is put into a 2 L 

system and fresh media is added until the concentration is 0.5 g L
-1

 and 2 L volume is 
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reached. This process is repeated until the final production pond size is reached. The 

addition of CO2 increased the rate of growth of the microalgae since the microalgae 

utilized the CO2 similarly to terrestrial plants. A pH outside the optimal growth range 

can have detrimental effects on the growth of the microalgae and can lead to 

inconsistencies within the data. Having the pH that high also helps to discourage 

contamination from other microalgae strains, viruses and bacteria. This process directly 

affects production time and operating costs. The microalgae cannot simply be placed 

into a raceway pond and expected to grow as desired. Concentrations too dilute will 

result in solar bleaching, contamination, nutrient toxicity, and increased time for the 

microalgae to reach a harvest concentration. 

 

Objective  

 The objective of this study was to determine an optimal inoculation concentration 

ratio for raceway ponds such that the maximum algae production rates and the utilization 

of resources are obtained.  

 

Materials and Methods  

A single strain of algae was grown in 500 mL Erlenmeyer flasks at six different 

concentration ratios. Each concentration ratio was tested in replicate. The inoculation 

ratios of inoculum to new growth media studied were 1:1, 1:2, 1:4, 1:8, 1:16 and 1:32. 

Each flask was inoculated with Nannochloris oculata (UTEX LB# 1998) in a modified 

Erdschreiber’s growth media. The inoculum was previously grown to the start of the 
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study. The concentration of the density of the inoculum was determined based on the 

current weekly transfer cycle. This study was started when the inoculum was ready to be 

transferred into a new culturing vessel, in this case the testing flasks. It should be noted 

that a pseudo replicate was performed with this experiment. This means that the 

inoculum was grown in one culturing vessel and then split among the testing flasks and 

the testing replicates were started at the same time. There was 24 h of light provided by 

four 15 W grow lights for a total of 60 W for each system. These provided 65 µmol m
-2

 

s
-1

 of photosynthetically active radiation (PAR) measured with a handheld quantum light 

meter (Model QMSW, Apogee Instruments, Logan, UT). Ambient air and CO2 were 

delivered by aquarium air pumps to provide the CO2 for each flask as well as the 

required agitation to keep the microalgae in suspension. The microalgae contained in 

each flask were immersed in a water bath to maintain the temperature at 27°C. Figure 1 

shows the Erlenmeyer flask experimental setup. The experimental setup is the same as 

used to grow the inoculum. The light and temperature conditions were kept the same for 

the study as those used to previously grow the inoculums.  
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Figure 1: Erlenmeyer flask setup. 

 

In order to determine microalgae concentration, a Spectrophotometer (Model 

Spectronic 20D
+
, Milton Roy, USA) was used to measure the optical density (OD) 

reading at 750 nm. A growth curve of OD versus time was created. This test was 

performed in accordance with the standard operating procedures used at the Texas 

AgriLIFE Microalgae Research Facility in Pecos, TX. The procedures used are as 

follows:  

 

Measurement Methods 

 For the transmittance measurement by the spectrophotometer, three wavelengths 

are used. The wavelengths are 745, 750, and 755 nm. For each wavelength, the 

spectrophotometer must be calibrated and the sample being tested must be diluted into 

the linear range of the machine. A 10X dilution for Nannochloris oculata will be 
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adequate. After recording the values for each wavelength, take the averaged 

transmittance value from the three wavelengths and use this value for the transmittance 

to OD calculation. 

 The transmittance to OD calculation is next (Stein, 1973, pp. 331-338). The 

readings provided by the spectrometer cannot be used as is. They must be converted 

from a transmittance value to an optical density measurement. The conversion used for 

this study is as follows:  

( )IIDO olog.. =              (1) 

where,  

I = the transmission of the growth media (no microalgae cells) and 

Io = transmission of concentration ratio sample (later adjusted to read 

100%. 

 

Results and Discussion 

This study originally began with six different concentration ratios being tested in 

500 mL flasks: 1:1, 1:2, 1:4, 1:8, 1:16 and 1:32. Figure 2 shows the combined averaged 

OD values from each inoculation ratio of the flask study.  
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Figure 2: Optical density data from growth study of N. oculata in 500 mL flasks.  

 

The 1:16 and the 1:32 concentration ratios did not grow, which can be attributed 

to the inoculation ratio being too dilute for the light intensity and temperature. It is 

known from previous work that microalgae will undergo photoinhibition when exposed 

to high amounts of light irradiation (Vonshak and Guy, 1988; Jensen and Knutsen, 

1993). According to Chisti (2007), “Above a certain value of light intensity, a further 

increase in light level actually reduces the biomass growth rate in a phenomenon known 

as photoinhibition.” Photoinhibition usually results in permanent damage to the cell. 

Greater concentrations of inoculum in the culturing vessel creates a condition where the 

algae cells shade themselves as they are mixed with the culturing vessel; thus providing 

a net reduction in the overall light intensity received by each cell. Henceforth, the denser 
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the inoculation ratio is, the greater possibility the culture will not experience 

photoinhibition. Since these two inoculation ratios were so dilute in relation to the other 

ratios being tested, another important topic that could have resulted in their demise is 

nutrient toxicity. The amounts of the nutrients were in such excess that the cells 

underwent tremendous stress and could not tolerate the amount of nutrients. Lorenz et al. 

(2005) suggests for poor inocula, improved recovery may be obtained by using a less-

defined medium in combination with the standard mineral medium. So using a growth 

medium with decreased nutrients would have allowed theses cells in these two flasks to 

possible grow but that would not have been the objective of the study.  However, since 

the total amount of light and PAR light was not excessive for this study, it is more likely 

that the reason why the 1:16 and 1:32 ratios died was a result to nutrient toxicity based 

on the media components. Table 1 shows the media components used in the modified 

Erdschreiber’s growth media.  

 
Table 1: Media components used. 

Chemical g/L 

KCl 0.7500 

CaCl₂*2H₂O 0.6500 

MgSO₄*7H₂O 7.6200 

NaNO₃ 0.8500 

H₃BO₃ 0.0340 

NaH₂PO₄*H₂O 0.0400 

Tru-Soft (NaCl) 21.0000 

Trace Metals 0.0034 
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The slope of the linear trend line is the growth rate for each concentration ratio. 

The larger the slope, the faster the microalgae grew. Table 2 provides the averaged 

growth rates derived from the slope of concentration versus time for each of the 

concentration ratios.  

 
Table 2: Averaged concentration ratio growth data. 

Conc. Ratio Growth Rate 

(∆OD/d) 

1:1 0.0320 

1:2 0.0531 

1:4 0.0750 

1:8 0.1027 

 

 

 

The 1:8 concentration ratio has the largest slope. This could be explained by the 

fact that at a less dense concentration, more light can penetrate the volume of the sample. 

This could also explain why the 1:1 concentration ratio grew the slowest. There were 

more microalgae cells in the flask and having more cells did prevent the light from fully 

penetrating the flask depth. Table 3 shows how the test will be run and analyzed in 

Design Expert 8 (2010). Table 3 also provides the growth rate for each ratio and trial as 

well as the biomass concentration from an OD vs. ash-free dry weight correlation 

performed after the study was completed. Appendix A provides this correlation plot. The 

daily productivity also is based on the lighted surface area of the culturing flask used for 

each ratio. As the table clearly shows, the 1:8 inoculation concentration ratio is the best 

ratio to inoculate with. 
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Table 3: Design Expert data table and concentration ratio performance.

 

Std Run  Block 

Factor 1 

A: Conc. 

Ratio 

Response 1 

Growth 

Rate 

(∆OD/d) 

Biomass 

Conc. 

(g/L) 

Productivity 

(g/L·m²·d) 

7 1 Trial 1 1:8 0.0972 0.194 6.965 

5 2 Trial 1 1:4 0.0687 0.180 6.142 

3 3 Trial 1 1:2 0.0473 0.169 5.294 

1 4 Trial 1 1:1 0.0291 0.160 4.165 

8 5 Trial 2 1:8 0.1082 0.199 7.145 

6 6 Trial 2 1:4 0.0813 0.186 6.347 

4 7 Trial 2 1:2 0.0589 0.175 5.482 

2 8 Trial 2 1:1 0.0349 0.163 4.243 

 

 

 

The statistical software program Design Expert 8 (2010) was used for an 

ANOVA and Least Squares (LS) Means analysis on the concentration ratio model and to 

compare the linear regressions for each of the four concentration ratios. This regression 

analysis determined that each of the four concentration ratios are significant (α = 0.05).  
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Table 4: ANOVA table for the inoculation concentration ratios model. 

 
 

 

 

Table 4 provides the ANOVA output and it shows that the model is significant 

because the p-value is so small. The model includes all of the concentration ratios so it is 

not possible to determine which ratio is significant or not from this output. A LS Means 

test will need to be applied to the concentration ratios to determine the significant or not 

significant ratios. A LS Means tests the fitted regression of each concentration ratio and 

compares it to the other concentration ratios. Table 5 provides the LS Means output from 

Design Expert 8 (2010). 
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Table 5: LS Means output for the concentration ratios. 

 
 

 

 

 Table 5 displays the LS Means results for comparing the linear regression of each 

concentration ratio with each of the concentration ratios. This table expresses the 

concentration ratios in the treatment column, where treatment 1 is the 1:1 ratio, treatment 

2 is the 1:2 ratio, treatment 3 is the 1:4 ratio and treatment 4 is the 1:8 ratio. In order to 

determine significance, if the value in the Prob > |t| column is less than 0.0500 then the 

difference between the two concentration ratios tested is significant. Since all of the 

comparisons are significant, this LS Means concludes that each concentration ratio was 

significantly different. This means that each inoculation ratio will cause the culturing 

vessel used to grow at its own specific rate depending on such factors including light 

penetration, available nutrients and contamination. However, once a certain inoculation 

concentration ratio is used in an outdoor raceway pond, the environmental factors begin 

to take more control of the outcome of the growth of the pond. 
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Conclusions 

This study examined the effect of inoculation ratio on growth rate and the impact 

on commercial algae facility design. Test results showed a significant impact of 

inoculation ratio on growth rate and that the less dense, 1:8 inoculation ratio produced 

the greatest growth rate. However, if the inoculation ratio is more dilute, photoinhibition 

can occur and the cells may die. This could become an important factor in open raceway 

ponds in the desert southwest where solar irradiances are very high. Also, nutrient 

toxicity is another potential cause for pond loss and is likely the reason for the loss of the 

1:16 and 1:32 ratios. Nutrient toxicity for algae is an area that needs more focus.  

 In order to obtain an accurate and precise inoculation concentration ratio, the scale 

up testing has to take place. Scale up testing in lab scale and in large scale raceway 

ponds are critical in determining an ideal inoculation concentration ratio. Future work 

will include scale up from 500 mL flask to scaled raceway ponds to ultimately large 

scale production raceway ponds. There are also other factors that need to be considered 

which include environmental changes, strain selection and production timelines. Future 

studies may be expanded to additional testing of concentration ratios not already tested 

as well as different levels of irradiances and media mixtures. This can have the potential 

to dramatically increase production time and decrease the cost of producing fuels 

derived from microalgae. Based on these results, a 1:8 concentration ratio looked to be 

the best candidate for raceway pond inoculations. By using this concentration, more time 

can be spent growing the microalgae in the final production growth ponds than in 

culturing the inoculum to be used in inoculating the production ponds. The more dense 
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an inoculation ratio used, i.e. more inoculum to new media, the more time and capital 

costs are needed in producing the required inoculum volume thus taking away from 

producing microalgae and the required lipids for biofuel production. 
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CHAPTER IV 

IRRADIANCE, TEMPERATURE, AND POND DEPTH GROWTH STUDY ON 

NANNOCHLORIS OCULATA 

 

 

Introduction 

 Microalgae are known to produce large quantities of lipids that can be used as a 

feedstock for biofuels. Large scale microalgae production in outdoor raceway ponds for 

the purpose of creating biofuels is a new process. Currently there are few data on large 

scale microalgae production and there are several hurdles to creating an algal biofuel that 

is cost competitive with traditional petroleum fuels. One of these hurdles is to maximize 

the cultivation process to create a high growth rate regardless of environmental 

influences.   

Growing microalgae in open raceway ponds for biofuel production must rely on 

freely available sunlight, adjust to daily and seasonal variations in light levels, and adapt 

to wide temperature changes (Chisti, 2007).  Specific growing conditions for each strain 

of microalgae vary and must be considered when selecting a strain or geographical 

region for producing microalgae. Jensen and Knutsen (1993) showed that important 

limiting factors were pH, contaminates, culture depth, and stirring rate. High light 

intensities led to photoinhibition causing a loss as high as 30% of the potential 

production rate. Vonshak and Guy (1988) reported that shading outdoor cultures 

sensitive to photoinhibition resulted in a daily photosynthetic rate increase of up to 35% 

for Spirulina strains. 
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Previous work (Cho et al., 2007; Terlizzi and Karlander, 1980) reported that ideal 

temperature to achieve maximum growth for Nannochloris oculata fell in the 

temperature range of 20-25°C. Increasing the pond depth will slow the media from 

heating up too rapidly above the optimal growing temperature by increasing the thermal 

mass and slowing the response to environmental changes. Chisti (2007) reports that the 

only cooling a raceway undergoes is achieved by evaporation. During times of very high 

irradiance and temperatures, evaporative losses can be significant. An increase in the 

salinity of the raceway pond can have harmful effects on the microalgae. A deeper pond 

slows the rate of increase of total solids concentration as the fresh water is evaporated. 

Conversely, reducing the pond depths by one half, from 15.0 to 7.5 cm, increased the 

algae production (Richmond and Grobbelaar, 1986). Thus, there is a balance between 

optimizing depth for maximum algae growth and mitigating environmental effects. 

Determination of the effects of temperature, light intensity, and cultivation depth 

is critical to maintaining healthy cultures under the weather extremes typically seen in 

the desert southwest of the U.S.A. Annually, air temperatures can vary from below 0°C 

to above 45°C while the solar intensity can reach as high as 10 kWh m
-2 

day
-1

 during the 

summer months (National Renewable Energy Laboratory, 2011). Either of these factors 

can suppress or kill the microalgae. As part of the overall control of algae biomass 

production, it is necessary to determine the effects of solar intensity and temperature for 

the specific species under consideration for biofuel development and to determine if 

there are interaction effects between the parameters. Adjusting pond depth has been 
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shown to mitigate the effects of high temperatures and solar radiance by enhancing self-

shading of the algae and increasing the thermal mass of the pond.  

 

Objectives  

 The objective of this research was to determine how light intensity and 

temperature factors affect the growth rate of a species of algae used in biofuels research 

and if adjusting cultivation depth could mitigate these effects. Additionally, the effects 

would be determined under conditions that would mimic an outdoor production process; 

i.e. an open, raceway pond with a volume of approximately 40 L. The objectives were 

to: 

1. Determine if there were effects of temperature and light intensity on a large 

volume of an algal species currently under consideration for algal-based biofuels 

production. 

2. Determine if changes in culture depth would have a mitigating effect on the 

response of algal growth to environmental extremes. 

 

Materials and Methods  

 

 

Experimental Plan  

 

Temperature and light reportedly play a critical role in the growth and health of 

growing microalgae in outdoor production settings. Temperatures that exceed a species 

upper limit of growth will harm the microalgae and reduce the production rates. High 

light intensities can have unfavorable effects on microalgae that are irreversible for the 
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most part. Having one of these factors exceeding an algal strain’s growth limits can be 

detrimental, however if they are combined, the results could be much worse. Both 

temperature and irradiance have their own effects on microalgae growth. Combining 

them together might increase the problems they pose on the microalgae and create new 

ones. It seems that the only option if the light irradiance and/or temperature ever increase 

over the optimal growing conditions, the only feasible option would be to increase the 

pond depth. Covering the ponds with a shade cloth or UV filter would be too costly on a 

large scale. The increased depth would act as a self-shading mechanism for the algae. 

Lorenz et al. (2005) reports that in dense cultures, self-shading can have significant 

effect on the intensity of light reaching an individual cell. Increasing the pond depth 

would allow for decreased solar penetration on the algal cells providing less stress on the 

cells due to irradiance. During times of very high irradiance and temperatures, 

evaporative losses can be significant. Design Expert 8 (2010) is the statistical software 

package that will provide the analysis and determine the interaction effects on 

temperature, irradiance, and pond depth. Table 6 provides the testing factors and levels 

for this study. As Table 6 shows, there are three testing factors, temperature, irradiance, 

and depth. There are also two levels for each factor. The temperatures looked at will be 

38°C and 20°C. The high and low irradiance values were approximately 785 and 220 

µmol m¯
2
 s¯

1
 respectively. Finally, the depth levels looked at is 10.16 cm (4 inch) and 

13.97 cm (5.5 inch). 
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Table 6: Testing factors and levels for this study. 

Test # 
Temp 

(°C) 
Irradiance 

Depth 

(cm) 

1 38 High 
10.16 

13.97 

2 38 Low 
10.16 

13.97 

3 20 High 
10.16 

13.97 

4 20 Low 
10.16 

13.97 

5 38 High 
10.16 

13.97 

6 38 Low 
10.16 

13.97 

7 20 High 
10.16 

13.97 

8 20 Low 
10.16 

13.97 

 

 

 

Standard Growing Conditions  

 

A single strain of algae was grown separately prior to the start of this study and 

for each separate test under the standard growing conditions. The standard growing 

conditions used for Nannochloris oculata in raceways were 21-25°C, 172 µmol m¯
2
 s¯

1
 

on a (16h/8h light/dark cycle), pH 9, paddle wheel speed of 12 rpm, and 10.16 cm (4 

inch) pond depth. Figure 3 shows the micro raceway ponds used in this study. Each 

raceway in the figure is 40 L at a 10.16 cm (4 inch) depth. The pH is maintained by an 

automatic CO2 system (American Marine Inc., Pinpoint pH controller and probe, Azoo 

CO2 solenoid and regulator) that injects CO2 when the pH rises above a preset pH set 

point. The media used for the standard conditions and all of the experimental treatments 

was modified Erdschreiber’s growth media. 
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Figure 3: Micro-raceway algae ponds used for light and temperature effects studies. 

 

 

Experimental Apparatus 

Two raceways were placed in an M36 Precision growth chamber from 

Environmental Growth Chambers. The growth chamber allowed for increased control 

over lights, temperature, and humidity. The relative humidity was kept high to mitigate 

evaporative losses in the ponds caused by the high temperature and irradiances. The 

humidity was kept constant at 80%. One of the two raceways in the growth chamber was 
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kept at the 10.16 cm (4 inch) depth and the second raceway was maintained at 13.97 cm 

(5.5 inch) depth. The increased pond depth tested whether or not the irradiance could 

penetrate the full depth of the culture and if at high irradiances, there was a benefit or not 

from self shading. The sides of the raceways were covered with black cardstock 

allowing light to only reach and penetrate the surface of each raceway.  

The high and low irradiance values were approximately 785 and 220 µmol m¯
2
 

s¯
1
, respectively and were constrained by the limits of the growth chamber. Irradiance 

was measured daily with a handheld quantum light meter from Apogee Instruments 

(Model QMSW, Apogee Instruments, Logan, UT, USA). Each test lasted for 5 d and 

included a photoperiod of 16 h of light and 8 h dark. The temperature and irradiance 

were held constant during each test based on the testing parameters in Table 5. In 

addition to the Apogee meter, a multi parameter weather station from HOBO (U30 

Station, Onset, USA; PAR Sensor Part # S-LIA-MDD3; 12-Bit Temperature Sensor Part 

# S-TMB-M0XX) was placed in the growth chamber to provide data monitoring of 

ambient air temperature, temperature of the algae in each pond, the irradiance 

penetrating the algae in each pond and the irradiance reaching the surface each pond.  

Each pond was inoculated using a 1:1 concentration ratio using previously grown 

algae under standard growing conditions. Also, pseudo replications were done for these 

tests as well. Since the inoculum was split between the two testing raceways and the 

testing raceways were started at the same time. The water level was also checked each 

day and the appropriate amount of DI water was added to replace evaporative losses and 

keep the desired depth in each pond. To keep everything uniform, the water was added 
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after samples were taken. It was assumed that the salts, nutrients and algal cells stayed 

thoroughly mixed with evaporation and water additions. The fill water was also kept at 

the same temperature as the test being conducted to prevent any thermal shock. Daily 

samples were measured for ash free dry weight (AFDW), dry weight (DW), optical 

density (OD), dissolved oxygen (DO), conductivity, pH, nitrate/nitrite utilization and 

lipid content. The lipid analysis was used to determine if the algae were undergoing 

stress and producing lipids at any point during each test. The DO, conductivity, pH, and 

nitrate/nitrite tests were used for determining the health of the algae but were not used 

for the statistical analysis of this study.  

The OD measurements were conducted using a UV-Vis Spectrophotometer 

(T80+, PG instruments Ltd.). To make sure the sample fell within the linear range of the 

machine, a 10x dilution was performed every time a measurement was taken. Three 

wavelengths were used for each measurement 745 nm, 750 nm, and 755 nm with an 

average value taken for the OD reading. The DW and AFDW measurements were 

adapted from methods given by Zhu and Lee (1997) and Eaton (2005) for microalgae 

samples. For dispensing samples on the filter, if the density is greater than 1 g/L then 

filter 20 mL of algae sample and if the density is less than 1 g/L then filter 40 mL of 

algae sample. In calculating the DW and AFDW, the following two equations are used. 
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DW and AFDW Calculations: 

i. 
( )

1000
   

34
/ ×

−

mLvolume,Sample

WTWT
=LgDW,           (2) 

ii. 
( )

1000
   

54
/ ×

−

mLvolume,Sample

WTWT
=LgAFDW,           (3) 

 

 

For the pH, conductivity, and dissolved oxygen (DO) measurements, a 

multimeter analytical instrument was used for this (Beckman Coulter, model # pHi 570, 

Fullerton, CA). Nitrate and Nitrate test strips (Lamotte Insta Test, 0 to 50 PPM and 0 to 

10 PPM, Model # 2996) were used for the nitrogen uptake of the microalgae. These 

testing strips were not reliable and could not provide an accurate measure of nitrogen 

utilization. The lipid analyses were conducted with a scanning fluorescence 

spectrophotometer (PTI QuantaMaster, Photon Technology Intl., Canada).  The sample 

was diluted to the same concentration as that used for the OD measurement and 30 µL of 

Nile Red solution was added to 10 mL of correctly diluted algae sample. The lipid 

analysis data has not been processed and was not used for any statistical analysis.   

 

Results and Discussion 

Exponential growth phase was assumed during an initial two-day growth period 

for each test and was used in estimating the various parameters for this experiment. The 

OD values were normalized for every test conducted in this experiment as well. Design 

Expert 8 (2010) was used for the statistical analysis of this test. The OD vs AFDW, 
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AFDW, and OD were analyzed separately for significance and interaction effects 

between the testing factors.  

The ANOVA first performed was the OD vs AFDW data. OD and AFDW data 

were compiled to create OD vs AFDW plots for each test. This was accomplished by 

combining the OD values with the AFDW values for each day in a plot to get a growth 

rate for that test. This would allow for a more precise growth rate and give a correlation 

between OD and AFDW. Two data points were removed from the analysis, 4-38-H-1 

and 4-38-H-2. The point 4-38-H-1 was omitted from all of the Design Expert 8 (2010) 

ANOVAs because this pond failed the very first night of testing since the CO2 supply 

line had collapsed on itself causing the pH to raise too high and thus killing the algae 

before it could be fixed. The point 4-38-H-2 was removed since the growth rate was a 

statistical outlier. No transformation was needed for this ANOVA. Table 7 provides the 

Design Expert 8 (2010) output of OD vs AFDW ANOVA output table.  
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Table 7: OD vs AFDW ANOVA output table. 

 
 

 

 

As the table shows, there are no significant factors or interactions with this 

method of combining growth rates. Not all of the interactions were included since they 

had negligible contributions to the ANOVA. The only good aspect of this is that the lack 

of fit is not significant so the model fits the data.  

Next was the AFDW data that was taken each day from the ponds and analyzed. 

Table 8 shows the Design Expert 8 (2010) output of AFDW ANOVA table. Design 

Expert 8 (2010) recommended a square root transformation of the data (constant = 

0.0528). Not all of the interactions were included in the ANOVA since they had 

negligible percent contributions.   
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Table 8: AFDW ANOVA output table. 

 
 

 

 

Two data points were also omitted from this analysis. The data points removed 

from this ANOVA were 4-38-H-1 and 5.5-20-H-1. Data point 5.5-20-H-1 had a growth 

rate value that was a statistical outlier from the data set and was removed as a result. As 

Table 8 shows, there was only one significant factor which was temperature. The model 

was not significant since the p-value was so large, so there is no basis to reject the null 

hypothesis that there is a difference between the inoculation ratios. For a factor or the 

model to be significant, the p-values would need to be less than the 0.0500. Factors need 

to be greater than 0.1000 to be considered significant. Based on these results alone, 

temperature appears to be a likely candidate for limiting the growth of microalgae. The 

lack of fit for this ANOVA was also not significant relative to the pure error which was 

ideal. With the lack of fit being so large, the model fits the data well.  
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Finally, the OD growth rates were analyzed in an ANOVA. Table 9 provides the 

Design Expert 8 (2010) output of the OD ANOVA table. Interactions that not significant 

were excluded. The 4-38-H-1 data point was missing because of a failure in the raceway. 

 

Table 9: OD ANOVA output table. 

 
 

 

 

The overall model is significant (p = 0.0014). Irradiance and depth were 

significant factors, while temperature was not significant. Lack of fit was also not 

significant. Based on these results, the 20°C temperature, high irradiance and 10.16 cm 

(4 inch) pond depth were the best conditions for growing this strain of green algae. At 

the deeper pond depth, the light could not fully penetrate the microalgae to allow for full 

light exposure.  



37 

 

 

  After all of analysis was complete, the interactions that were expected did not 

appear. Several reasons could account for this occurrence. Lab conditions don’t always 

resemble real world, outside growing conditions. The light intensity in the growth 

chamber could not fully reach the irradiance levels that are common in the summer 

months in tropical and desert regions were microalgae facilities are currently located. 

The upper limit of the temperature range was a close approximation to outside 

conditions but again, did not fully reach the extreme high temperatures seen in the 

outdoor production. Not being able to compare the absolute irradiance and temperature 

extremes that are experienced in outdoor production may have been the reason why the 

expected interactions were not seen in the ANOVA analyses. If testing could take place 

during those weather conditions that are normally seen, there will be a greater chance of 

interactions between the factors tested. Performing this experiment again in outdoor 

production conditions would be ideal but that is not available; increasing the irradiance 

and maximum temperature would be a requirement. If there are truly no interactions 

between temperature, irradiance, and depth, then temperature and irradiance should have 

no combined effect on the productivity of microalgae growth. Also, the depth of the 

culture doesn’t matter and light should be able to penetrate the culture. However, this is 

already known not to be true. Richmond and Grobbelaar (1986) found by using 

Spirulina platensis that having a shallower pond depth was beneficial. They discovered 

in their testing that reducing the pond depths by one half, from 15.0 to 7.5 cm, it greatly 

increased the algal concentration to maximum productivity.   
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Conclusions 

 Upon completion of this study, it was found that Nannochloris oculata grew the 

best at a light irradiance of 785 µmol m¯
2
 s¯

1
, 20°C, and 10.16 cm (4 inch) pond depth. 

Irradiance and pond depth were found to have significant effects but there were no 

interaction effects noted. Temperature effects were not shown to be significant.  

 Additional testing needs to be performed to determine the exact temperature, 

irradiance and pond depth that would be optimal for growing this particular strain of 

microalgae. Additional factors can also be tested like pH, salinity and mixing rate among 

others. Once the ideal conditions are found, this will provide valuable information in 

regards to growing this strain and provide a stepping stone for other strains as well. 

Having the ideal growing conditions known to maximize productivity, and knowing how 

to counter the effects of the extreme conditions will help to bring the cost of algal based 

biofuels down. For the following tests, more intermediate temperatures need to be tested 

as well expand the upper limit of the temperature range. Tropical and desert regions 

where large scale microalgae facilities are located, temperatures reach greater than 38°C. 

Also, having greater irradiance intensities closer to actual conditions is needed in 

forthcoming studies. By both increasing the temperature and irradiance, pond depth 

should also be looked at more closely, both decreasing and increasing the depth.   
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CHAPTER V 

DETERMINING THE MINIMUM MIXING VELOCITY FOR PENNATE AND 

CENTRIC DIATOMS 

 

 

Introduction 

 Microalgae are the subject of current research as a source of biomass and lipids 

for conversion to biofuels. There are many types of microalgae including green algae, 

cyanobacteria, and diatoms.  Diatoms are of particular interest because they are fast 

growing, contain large amount of lipids, and are easily harvested (Ramachandra et al., 

2009). Diatoms contain a silica cell wall as opposed to a cellulosic cell wall similar to 

plants and green algae. The silica cell wall is more dense and once mixing has stopped, 

the diatoms are easily separated from the growth media by natural settling. The specific 

weight of the diatom cell wall was found to be 2.07 versus 1.02 for seawater 

(Ramachandra et al., 2009). 

Natural settling is important since no flocculants or energy consuming machinery 

(e.g. centrifuge or dissolved air flotation) would be needed to separate the diatoms from 

the media. Adding flocculants, coagulants, and other means are costly and time 

consuming and if the diatoms will naturally settle, this leads to input costs being 

reduced.   

The silica shell does make diatoms more susceptible to damage. Processing and 

transporting diatoms and with centrifugal pumps as it is done for green algae, can result 

in cell damage and lysis (Michels et al., 2010). This is will reduce growth and lipid 
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production and may even result in the death of the cell. Consequently, it is necessary that 

the minimum amount of energy needed for mixing be used in diatom cultivation so that 

cell damage is minimized or eliminated. However, sufficient mixing is necessary to 

support gas exchange, nutrient uptake, and access to sunlight so that the diatoms 

maintain a desired growth rate as well as to prevent thermal stratification (Becker, 2008). 

 

 

Objectives  

 The objectives of this study were to evaluate several species of diatoms under 

consideration for biofuel production and determine the minimal channel velocity needed 

to maintain mixing and desired growth rates. Specifically the objectives of this study 

were to: 

1. Develop the methodology to measure the settling velocity of monocultures of 

diatoms without added flocculants or coagulants. 

2. Determine the natural settling velocity for several species of diatoms at different 

stages of health. 

3. Derive the minimal channel velocity required for cultivation of diatoms in open, 

outdoor raceway ponds.  

 

Materials and Methods  

 

Four strains of the pennate diatoms from the Nitzschia sp. and one centric diatom 

were selected for the natural settling tests of this study. These strains were isolated by 
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General Atomics in San Diego, CA, the Texas AgriLIFE Experiment Station in 

Lubbock, TX and at the Texas AgriLIFE Research Facility in Pecos, TX.  

A four basin jar tester from Phipps and Bird is the device that was utilized for 

this study. Phipps and Bird have a method for settling that is used in the wastewater 

treatment industry (Hudson and Wagner, 1981). This method was adapted for use for 

these experiments. Each basin has a 2 L capacity with a sampling spout 10 cm below the 

2 L fill mark. Samples were taken immediately after the premixing time and at elapsed 

time following premixing of 1 min, 2 min, 5 min, and 10 min. Samples were taken from 

the sampling spout and run in the UV-Vis (Thermo Scientific, Genesys 20, Model 

#4001/4) to determine the amount of diatoms that had settled at each time period. The 

OD was taken at 750 nm. Before each test began, the basins being utilized were filled 

and mixed with the jar tester at 50 rpm for 10 min to ensure there was a homogenous 

mixture in each basin. This is completely natural diatom settling, no flocculants or 

coagulants were added to the diatoms.  

 

 

Premixing Test  

 

The premixing time and rpm were determined experimentally. The rpm was 

chosen to provide adequate mixing while inducing minimal sheer to the diatom cells. 

The time used allowed the cell interaction to dissipate since it is believed that there is an 

interaction that causes the diatoms to flocculate together. This is evident from 

observations as diatoms settle and when they are settled. The cells form large flocs and 

require either a longer mixing time or a greater mixing speed to disrupt the surface 
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charge. To determine the mixing time, the jar tester was used to compare 4 different 

times to see which time resulted in the best settling data. The Diatom 1 strain was used 

with premixing times of 5, 10, 15, and 20 min respectively. The Diatom 1 strain was 

used for this test since that was the only strain that there was enough volume to fill each 

basin of the jar tester. Figure 4 below shows a composite graph of the four premixing 

times.  

 

 
Figure 4: Four premixing settling times graph. 

 

 

 

To better represent all of the settling rates (slope of the curve) and fits of the 

linear regression line (R
2
) values, Table 10 shows these values.  
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Table 10: Premixing settling times graph data. 

Time 

(min) 
Settling Rate R² 

5 -0.0018 0.5063 

10 -0.0034 0.9455 

15 -0.0036 0.8881 

20 -0.0043 0.8079 

 

 

 

Based on the settling rate (slope of the curve), the fit of the linear regression line, 

and the OD at the 10 min mark it was concluded that the 10 min premixing rate was best 

for premixing before each settling test. The 10 min time had the best regression fit and 

one of the best settling rates. At the end of the test, the 10 min premixing test had the 

lowest OD which translates to the least amount of diatom cells left in solution.  

 

Settling Tests 

The five strains were tested in accordance with the methodology given by Phipps 

and Bird (Hudson and Wagner, 1981). At the end of the premixing period, the sample 

spout was flushed and an initial sample was taken which was run in a UV-Vis 

spectrophotometer (Thermo Scientific, Genesys 10S). This process of flushing the 

sample spout of settled diatoms and taking a sample at the end of each time interval was 

carried out throughout each test. The reason why there was a different UV-Vis used for 

the settling tests than was used for the premixing tests is because the settling tests were 

carried out at the Texas AgriLIFE Research Facility in Pecos, TX and the premixing 

tests were performed at Texas A&M University in College Station, TX.  
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Not all strains could be tested with a replicate since volume quantities were very 

limited and it was found that retesting the same sample did not yield similar results. The 

sample in the basin was only tested once and then discarded accordingly. The native 

centric diatom from Pecos, TX (Diatom 2) was the only strain that there was enough 

volume to make numerous testing replications of both healthy and unhealthy (stressed) 

cultures. The three replications of Diatom 1 were all unhealthy, the Diatom 3 was 

unhealthy, the Diatom 4 was healthy and the Diatom 5 was unhealthy as well. 

 

Results and Discussion 

Table 11 shows how each strain was tested and classified. Batch is the culturing 

vessel that particular test came from. The basin column designates which one of the four 

basins of the jar tester were used for that test. There was enough culture from batch 2 for 

a replicate as well as from batch 3. For this particular test, health was determined 

visually. The diatoms were determined to be healthy or not healthy (under stress) based 

on a visual inspection of their color. The mean settling velocity values came from 

determining the mean OD of each batch and then using that calculated value to solve for 

the corresponding settling velocity using the linear regression equation obtained by 

plotting OD vs settling velocity for each batch test. The median value was found by 

determining the median OD value and then solving for the corresponding settling 

velocity. OD values were normalized before being used in their respective calculations.  
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Table 11: Strain testing factors and responses. 

Factors Responses 

      
Health 

Settling Velocity 

(cm min¯
1
) 

Strain Batch Basin Healthy Unhealthy Mean Median 

Diatom 1 1 A   Unhealthy 4.46 5.36 

 
2 A 

 
Unhealthy 4.51 4.36 

  3 A   Unhealthy 4.46 4.16 

Diatom 2 1 A   Unhealthy 4.50 4.50 

 
2A A Healthy   4.55 4.21 

 
2A B Healthy   4.53 2.95 

 
2A C Healthy   6.00 6.00 

 
2B A Healthy   4.63 3.05 

 
2B B Healthy   4.20 0.87 

 
2B C Healthy   3.75 7.50 

 
3A A 

 
Unhealthy 4.64 3.73 

 
3A B 

 
Unhealthy 4.56 5.19 

 
3A C 

 
Unhealthy 4.10 6.10 

 
3A D 

 
Unhealthy 4.65 3.36 

 
3B A 

 
Unhealthy 4.53 5.71 

 
3B B 

 
Unhealthy 4.60 3.71 

 
3B C 

 
Unhealthy 4.33 3.00 

  3B D   Unhealthy 5.00 5.00 

Diatom 3 1 A   Unhealthy 4.49 4.11 

Diatom 4 1 A Healthy   4.49 7.21 

Diatom 5 1 A   Unhealthy 4.50 5.51 

 

 

 

An ANOVA was performed in Design Expert 8 (2010) to test the significance of 

each of the two responses listed in Table 11. It was found that each of the responses 

were not significant on the 95% confidence interval. Table 12 provides the ANOVA 

output (Design Expert 8, 2010) for the mean settling velocity. The model p-value 

equaled 1.0000, implying that the model was not significant.  
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Table 12: Response 1 - mean settling velocity (cm/min). 

 
 

 

 

The median settling velocity ANOVAs yielded not significant results as well. 

Since none of the models are significant, none of the testing factors are significant and 

also there no interaction affects that exist between the factors. The reason why there are 

no significant strains is due to the fact Diatom 2 has a very small size as compared to the 

Diatoms 1, 3-5 strains and is prone to floating. Also the remaining strains are all closely 

related so one would expect them to behave similarly. Since none of the testing factors 

are significant, a new set of testing factors for determining significance like cells with a 

greater set of different particle sizes, a larger range of strains and species, and having a 

quantified value for the lipid content for each test would be beneficial. In theory, the 
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more lipids each cell contains, the more buoyant they become and should resist settling 

once mixing has stopped. This is based simply on the fact that lipids, like oil, are lighter 

than water (Sargent and Falk-Petersen, 1988).  

  In order to combat the effects of settling in a raceway pond, a similar test should 

be performed with the strain of diatoms being grown and the settling rate of that 

particular strain should be determined. Once that is known, the velocity of the raceway 

should be kept higher than the diatom settling velocity to keep the diatoms in suspension 

as the diatoms travel around the length of the raceway until the diatoms reach the 

paddlewheel where they can be mixed thoroughly by the paddlewheel. For example, if 

the mean settling velocity of an algae strain was found to be 4.55 cm min
-1

 then the 

minimum mixing velocity of the raceway should be kept at 4.55 cm min
-1

 for neutral 

buoyancy or slightly higher to make sure all of the cells stay in suspension. Since the 

settling velocity was a mean value, theoretically only half of the cells will float so using 

two standard deviations to achieve a 95% suspension rate, the mixing velocity in the 

raceway should be maintained at 10.1 cm min
-1

 throughout the raceway. For a 99% 

suspension rate, three standard deviations of the mean settling velocity should be used 

for a mixing velocity of 15.2 cm min
-1

.  

If the raceway has only one paddlewheel, then the raceway velocity will need to 

be higher than it would be if there were more paddlewheels in the raceway. Having more 

paddlewheels reduces the length between mixing periods and the length diatoms need to 

travel before they will settle out of suspension. There are very large velocity drops 

through the bends in a raceway and so the mixing speed of the paddlewheel needs to be 
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increased to compensate for this or having additional mixers may be necessary. The 

ponds can also benefit from having baffles placed in the bends of the raceway to increase 

the channel velocity by dividing the channel into smaller cross-sections. Increased 

channel velocity in the raceway bends will allow for greater mixing capability with a 

lower paddlewheel speed and thus reducing the overall operating cost and shear placed 

on the diatoms. Careful consideration must be taken when choosing a mixing speed so 

that the induced shear does not exceed the tolerable levels for the strain being grown. 

Also, having excessive mixing over the minimal mixing rate needed to maintain cell 

suspension increases operating costs.  

Since the 10 min time mark was the last data point taken, it should theoretically 

have the least amount of diatoms remaining in suspension and subsequently be the 

maximum settling velocity. This maximum value is then 10 cm min¯
1
 which means for 

every minute, a diatom cell falls 10 cm within the basin. The basin is static so there is no 

movement or mixing within the basin once the settling test started. However, in a 

production setting, like a raceway pond, the mixing velocity, which is the flow rate of 

medium, necessary to ensure all the effects required for optimal algal growth, varies 

primarily depending on the settling rate of the specific algal cells (Becker, 2008). Each 

species of algae has its own specific settling velocity. In order to keep the algae in 

suspension, the mixing velocity must be maintained at a greater horizontal velocity 

throughout all points of the raceway to overcome the settling rate of the algae. 

According to Becker (2008), it is assumed that a velocity of 10 cm s¯
1
 (600 cm min¯

1
) is 

generally sufficient to avoid deposition of cells. However, an average value of 20 cm s¯
1
 



49 

 

 

(1200 cm min¯
1
) is often used because of unavoidable fluctuations of the velocity, 

particularly at the bends of the horizontal raceway ponds. In practice, most of the ponds 

are operated at a speed between 10 and 30 cm s¯
1
 (60 and 1800 cm min¯

1
). Since all of 

the mean and max settling velocities of the diatoms tested are below the published 

minimum design pond velocity, there should be no diatom settling at any point in the 

raceway path if the published values are used. As it is known, the paddlewheel causes 

shear stresses on the diatoms which cause damage. Having excessive rotational speed 

can induce unnecessary shear stresses so determining the exact settling velocity of the 

strain being grown and matching the pond velocity accordingly to keep the algae in 

suspension is necessary for optimal growth and to reduce the costs associated with 

operating paddlewheels.  

 

 

Conclusions 

 

As the lipid potential of diatoms is being studied for biofuel production, it is 

becoming important to effectively culture these organisms for maximum productivity 

levels. The natural settling of diatoms is one aspect of that. The mean, maximum, and 

median settling velocity ANOVAs all yielded not significant results partly due to the fact 

the species tested were very similar in physiology and the only different strain favored 

floating once mixing had ended. As a result, it was determined that the mixing velocity 

of the raceway being used to grow the diatoms should be kept at least two standard 

deviations higher than the mean settling velocity to ensure that 95% of the diatoms will 

stay in suspension. It is important to know the natural settling velocity of each algal 
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strain being grown in a raceway so the appropriate mixing velocity can be used to help 

keep electrical costs to a minimum as well as the shear forces exerted on the diatoms. 

The next step for this experiment is to test more strains, both healthy and 

unhealthy and have sufficient volumes of each strain to have enough replicates. It is also 

important to know exactly how much biomass is being removed and left in the basins 

during the tests. Performing cell counts at each OD with a hemacytometer is one method 

that is being looked at. More testing with this method will need to occur for more 

accurate results and it is also possible to correlate cell counts with AFDW 

measurements. Both cell counts at each OD and cell counts being correlated with an 

AFDW will take place in future work.   
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CHAPTER VI 

CONCLUSIONS 

 

 

These studies each represent one aspect in developing optimal growth parameters 

for the green microalgae Nannochloris sp. and the diatom Nitzschia sp. for large scale 

raceway production. Each study focused on a unique aspect of effectively producing 

microalgae. These studies play into the larger role of cultivating microalgae both 

efficiently and to its fullest potential. The conclusions below summarize the findings of 

each study and how they can be used to benefit microalgae production. 

The results from the inoculation ratio test showed a significant impact of 

inoculation ratio used and on growth rate and that a less dense, 1:8 inoculation ratio 

produced the greatest growth rate. However, if the inoculation ratio is more dilute, 

photoinhibition can occur as well as nutrient toxicity, and the cells may die as observed 

with the two most dilute ratios. Knowing this type of information is critical in the 

proposed ideal areas where microalgae facilities are located since the amount of 

available sunlight or solar irradiance can be detrimental. 

The amount of available solar irradiance plays a large role in the outcome of the 

results for the second study. After the testing was completed, it was found that the 

microalgae grew the best at a light irradiance of 785 µmol m¯
2
 s¯

1
, 20°C, and with a 

pond depth of 10.16 cm (4 inch). This correlated to the highest irradiance value tested 

and lowest temperature and pond depth tested. This was significant because based on the 

limitations of the experiment; a high irradiance value coupled with a shallow pond depth 

provided ideal conditions over having a deeper pond depth to help mitigate the damages 
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incurred from intense solar intensities and temperature extremes. This is definitely an 

experiment that needs to be duplicated outdoors so real world growing conditions can be 

experienced and also scaled up to production ponds as well.  

Finally, the settling study showed that there were no significant factors in settling 

times between the species or the growth phase of the diatoms, i.e. strain health. This is 

attributed to the fact that the species tested were very similar in physiology and the only 

different strain favored floating once mixing had stopped. The mean settling time was 

found to be 4.55 cm min
-1

 and the minimum channel velocity was determined to be 

10.12 cm min
-1

 based on the second standard deviation. For any algal strain being 

considered for growth in a raceway pond, this same settling test needs to be performed 

so the settling velocity can be determined. Once that is known, the mixing velocity of the 

raceway can be determined so minimal energy can be used to keep the algae in 

suspension as well reduce the shear stress on the algae.  

 



53 

 

 

REFERENCES  

 

Abu-Rezq, T. S., L. Al-Musallam, J. Al-Shimmari, and P. Dias. 1999. Optimum 

production conditions for different high-quality marine algae. Hydrobiologia 

403: 97-107.  

 

Alldredge, A. L. and C. C. Gotschalk. 1989. Direct observations of the mass flocculation 

of diatom blooms: characteristics, settling velocities and formation of diatom 

aggregrates. Deep-Sea Research 36(2): 159-171. 

 

Becker, E.W. 2008. Agitation. In Microalgae: Biotechnology and Microbiology, 96-114. 

New York: Cambridge University Press.  

 

Brand, L.E. and R.R. L. Guillard. 1981. The effects of continuous light and light 

intensity on the reproduction rates of twenty-two species of marine 

phytoplankton. Journal of Experimental Marine Biology and Ecology 50: 119-

132.   

 

Chisti, Y. 2007. Biodiesel from microalgae. Biotechnology Advances 25: 294-306. 

 

Cho, S. H., S.-C. Ji, S. B. Hur, J. Bae, I.-S. Park, and Y.-C. Song. 2007. Optimum 

temperature and salinity conditions for growth of green algae Chlorella 

ellipsoidea and Nannochloris oculata. Fisheries Science 73: 1050-1056. 

 

Design Expert 8. 2010. Ver. 8.0.4. Minneapolis, MN.: Stat-Ease, Inc. 

 

Eppley, R. W., R. W. Holmes, and J. D. H. Strickland. 1967. Sinking rates of marine 

phytoplankton measured with a fluorometer. Journal of Experimental Marine 

Biology and Ecology 1: 191-208.    

 

Eaton, A. D., Greenberg, A. E., L. S. Clesceri, E. W. Rice, and M. A. H. Franson 2005. 

Standard methods for examination of water and waste water. Method 10200I.5. 

American Public Health Association. Centennial edition.   

 

Hudson, H. E. and E.G. Wagner. 1981. Conduct and uses of jar tests. American Water 

Works Assoc. 73: 218-223.  

 

Jensen, S. and G. Knutsen. 1993. Influence of light and temperature on photoinhibition 

of photosynthesis in Spirulina platensis. Journal of Applied Phycology 5: 495-

504. 

 



54 

 

 

Latala, A., N. Hamoud, and M. Pliński. 1991. Growth dynamics and morphology of 

plankton green algae from brackish waters under the influence of salinity, 

temperature and light. Acta Ichthyologica Et Piscatoria 21: 101-116.  

 

Lorenz, M., T. Friedl, and J. G. Day. 2005. Perpetual maintenance of actively 

metabolizing microalgal cultures. In Algae Culturing Techniques, 154-155. San 

Diego, CA: Elsevier Academic Press.  

 

Michels, M. H. A, A. J. van der Goot, N.-H. Norsker, and R. H. Wijffels. 2010. Effects 

of shear stress on the microalgae Chaetoceros muelleri. Bioprocess and 

Biosystems Engineering 33: 921-927.  

 

National Renewable Energy Laboratory. 2011. Maximum daily solar radiation per 

month: horizontal flat plate. National Renewable Energy Laboratory. Available 

at: http://rredc.nrel.gov/solar/old_data/nsrdb/redbook/atlas/serve.cgi. Accessed 

13 January 2011. 

 

Ramachandra, T.V., D. M. Mahapatra, K. B., and R. Gordon. 2009. Milking diatoms for 

sustainable energy: biochemical engineering versus gasoline-secreting diatom 

solar panels. Industrial and Engineering Chemistry Research 48: 8769-8799. 

 

Richmond, A. and J. Grobbelaar. 1986. Factors affecting the output rate of Spirulina 

platensis with reference to mass cultivation. Biomass 10: 253-264.  

 

Sargent, J.R., and S. Falk-Peterson. 1988. The lipid biochemistry of calanoid copepods. 

Hydrobiologia. 167/168: 101-114.  

 

Sheehan, J., T. Dunahay, J. Benemann, and P. Roessler. 1998. A look back at the U.S 

department of engery’s aquatic species program-biodiesel from algae. National 

Renewable Energy Laboratory. Golden, Colorado.  

 

Stein, J. R. 1973. Handbook of Phycological Methods: Culture Methods and Growth 

Measurements. New York: Cambridge University Press. 

 

Tadros, M. G. and J. R. Johansen. 1988. Physiological characterization of six lipid-

producing diatoms from the southeastern United States. Journal of Phycology 

24:445-452.  

 

Tedesco, M. A. and E. O. Duerr. 1989. Light, temperature and nitrogen starvation effects 

on the total lipid and fatty acid content and composition of Spirulina platensis 

UTEX 1928. Journal of Applied Phycology 1: 201-209.  



55 

 

 

Terlizzi Jr., D. E. and E. P. Karlander. 1980. Growth of a coccoid nanoplankter 

(Eustigmatophyceae) from the Chesapeake Bay as influenced by light, 

temperature, salinity and nitrogen source in factorial combination. Journal of 

Phycology 16: 364-368. 

 

Vonshak, A. and R. Guy. 1988. Photoinhibition as a limiting factor in outdoor 

cultivation of Spirulina platensis. In Algal Biotechnology, 365-370. New York: 

Elsevier Applied Science.  

 

Waite, A. M., P. A. Thompson, and P. J. Harrison. 1992. Does energy control the 

sinking rates of marine diatoms? Limnology and Oceanography 37(3): 468-477.  

 

Wetz, M. S., P. A. Wheeler, and R. M. Letelier. 2004. Light-induced growth of 

phytoplankton collected during the winter from the benthic boundary layer off 

Oregon, USA. Marine Ecology Progress Series 280: 95-104.  

 

Zhu, C.J. and Y.K. Lee, 1997. Determination of biomass dry weight of marine 

microalgae. Journal of Applied Phycology 9(2): 189-194. 

 

 

 

 

 

 



56 

 

 

APPENDIX A 

OPTICAL DENSITY VS. ASH-FREE DRYWEIGHT CORRELATION CURVE 

 

 

 

 

Note: This curve was constructed using the data from dry weights taken from the growth 

curve. Each point was made with triplicates. (Unpublished data from Andrea Garzon).  
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