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ABSTRACT 

 

Plastidic Pi transporters in Arabidopsis thaliana.  

(August 2011) 

Sonia Cristina Irigoyen Aranda, B.S., Universidad Autonoma de Nuevo Leon, Facultad 

de Ciencias Biologicas; M.S., Universidad Autonoma de Nuevo Leon, Facultad de 

Ciencias Biologicas 

Chair of Advisory Committee: Dr. Wayne Versaw 

 

  Phosphorous in its inorganic form, orthophosphate (Pi), is found in every 

compartment of the plant cell and serves as a substrate, product or effector for a wide 

range of metabolic processes. Several Pi transporters exist in plants and these help 

regulate Pi homeostasis within different cellular compartments. The PHT4 family of 

organellar Pi transporters consists of six members in the model plant Arabidopsis 

thaliana, and five of these are localized to plastids. I used gene expression analyses and 

reverse genetics to demonstrate functional specialization for the PHT4 family members 

with a focus on PHT4;1 and PHT4;2. The PHT4;1 Pi transporter is localized to 

chloroplast thylakoid membranes and it is expressed in a circadian manner. Plants that 

lack a functional copy of the PHT4;1 gene have reduced rosette size and altered 

responses to photooxidative stress. The PHT4;2 transporter is localized to heterotrophic 

plastids in roots and other sink organs and pht4;2 mutants exhibit decreased starch 
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accumulation, which is consistent with a defect in Pi export, and increased rosette size, 

which is caused by increased cell proliferation. 

These results confirm that PHT4;1 and PHT4;2 have specialized functions and 

that plastidic Pi homeostasis influences broad aspects of plant metabolism, including 

abiotic stress response and control of lateral organ growth. 
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CHAPTER I 

INTRODUCTION  

 

Importance of phosphate 

Phosphorous is a macronutrient of crucial importance to plants.  The biologically 

relevant form of phosphorous, orthophosphate (Pi), serves as a substrate for numerous 

metabolic processes; it is a structural component of nucleic acids, phospholipids and 

ATP; and it is also involved in regulation of numerous enzymatic reactions through 

protein phosphorylation. Additionally, Pi is an allosteric regulator of the partitioning of 

fixed carbon partitioning during photosynthesis. Although plants require a large amount 

of Pi throughout their lifespan, this macronutrient is one of the least available 

macronutrients in soil due to its tendency to form insoluble complexes and organic 

compounds that plants are unable to use. Plants have therefore evolved several 

morphological (increase of root-to-shoot ratio, formation of proteoids, mycorrhizal 

associations) and physiological (secretion of organic acids and phosphatases, 

mobilization of Pi from older leaves, etc.) adaptations to adjust to low Pi-containing soils 

in order to enhance Pi uptake and distribute it to all organs and tissues  (Bieleski, 1973; 

Raghothama, 1999; Versaw and Harrison, 2002).   

 

 

 

 

__________ 

This dissertation follows the style of Plant Physiology. 
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The first barrier for Pi acquisition is the root epidermis, where specific transport 

proteins located in the plasma membrane are required to catalyze out Pi uptake from the 

soil solution. Once inside the root cells, distinct transport mechanisms are needed to 

regulate cellular Pi homeostasis and translocation to different organs (Bieleski, 1973; 

Raghothama, 1999). 

 

 

Plant phosphate transporters 

 

Several of the transporters that regulate Pi homeostasis within and between cells 

have been identified. These are currently categorized into five families based on 

sequence similarity and subcellular localization: PHT1 proteins localize to the plasma 

membrane, PHT2 and pPT proteins localize to the plastid inner membrane, PHT3 

proteins localize to the mitochondrial inner membrane (Rausch and Bucher, 2002), and 

PHT4 proteins localize to either the plastid inner membrane or to the Golgi apparatus 

(Guo et al., 2008b).   

Until recently, Pi transport in plastids has been attributed solely to members of 

the plastidic phosphate translocator (pPT) family (Knappe et al., 2003). This family 

includes the triose phosphate/phosphate translocator (TPT), which is the first transporter 

to be cloned from plants (Flügge et al., 1989).  TPT is located in the chloroplast inner 

membrane and carries out export of triose phosphate (TP, glyceraldehydes 3-phosphate 

and dihydroxyacetone phosphate) from the chloroplast stroma in exchange for cytosolic 

Pi. Despite the importance of TPT for provision of carbon to the cytosol and the rest of 

the plant, a tpt-1 knockout mutant has no obvious developmental defect. This suggests 
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the existence of mechanisms that compensate for the defects in both carbon and Pi 

allocation. For example, the TP export defect can be fully compensated by increased 

rates of starch synthesis and turnover as well as by export of glucose (Glc) and maltose 

(Schulz et al., 1993; Schneider et al., 2002). Other members of the pPT family include 

the glucose-6-phosphate/Pi transporter (GPT), which is expressed mainly in 

heterotrophic organs; the phosphoenolpyruvate/Pi (PEP) transporter, which localizes to 

both photosynthetic and non-photosynthetic organs; and the xylulose 5-phosphate/Pi 

translocator (XPT) (Muchhal, 1996; Kammerer et al., 1998; Flügge, 1999). Unlike TPT, 

these pPT translocators catalyze export of stromal Pi in exchange with the specified 

phosphorylated sugar.  

In recent years, two additional families of plastid-localized Pi transporters, PHT2 

and PHT4, have been discovered. PHT2 proteins localize to the chloroplast inner 

membrane, and functional analyses in yeast suggest that these proteins have low affinity 

for Pi and catalyze H
+
/Pi symport that contribute to plastidic Pi regulation have been 

discovered and characterized. Among them, the PHT2 family, which comprises one 

family member, PHT2;1, is localized in the chloroplast inner membrane. It is a low-

affinity transporter and functions as a H
+
/Pi symport (Daram et al., 1999; Versaw and 

Harrison, 2002; Zhao et al., 2003). An Arabidopsis pht2;1 null mutant exhibits low Pi 

content in leaves and reduced plant size, consistent with a defect in the import of Pi into 

the chloroplast and associated Pi-limited photosynthesis (Sivak and Walker, 1986; 

Versaw and Harrison, 2002). 
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PHT4 sequences are widely conserved in plants but functional analyses have thus 

far been limited to the six-member family in Arabidopsis. Five of these proteins, 

PHT4;1/4 localize  plastids in either photosynthetic or heterotrophic tissues, and one, 

PHT4;6, localizes to the Golgi apparatus (Guo et al., 2008a). All six of these proteins 

mediate Pi transport that is dependent on the presence of a proton electrochemical 

gradient when expressed in yeast, which is suggestive of H
+
/Pi symport (Guo et al., 

2008a). One of these, PHT4;1, also exhibits Na
+
-dependent Pi transport when expressed 

in E. coli, and this protein is targeted to the chloroplast thylakoid membrane in plants 

(Ruiz Pavón et al., 2008).  The other plastid-localized members of this family are 

confirmed or predicted to reside in the plastid inner membrane (Ferro et al., 2003; Roth 

et al., 2004). The expression of these proteins in photosynthetic and non-photosynthetic 

tissues suggests functional roles in chloroplast and heterotrophic plastids. Further 

analysis is required to define these roles as well as the mechanism and directionality of 

Pi transport in the respective plastids.  

The identification and characterization of these transporters has enhanced our 

understanding of Pi transport in plants. These transport processes, together with 

biochemical reactions that recycle Pi from organic forms in each cell compartment, 

regulate Pi homeostasis at the cellular and organismal levels (Mimura, 1999). 

 

Plastid biology 

Plastids are organelles present in all plant cells and are derived from 

undifferentiated proplastids found in meristematic cells. Proplastids differentiate into 
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specialized types of plastids during plant development and in response to environmental 

conditions. These specialized plastids are typically categorized based on function, e.g., 

photosynthesis (chloroplasts), or the types of compounds that are accumulated, e.g., 

starch (amyloplasts), oils (elaioplasts) and pigments (chromoplasts) (Pyke, 2009). All 

plastids are surrounded by an envelope, which consists of two membranes: an outer 

membrane permeable to small molecules and an inner membrane that constitutes the 

actual permeability barrier between the plastid stroma and the cytosol (Flugge and Heldt, 

1991). Transport proteins within the inner envelope membrane enable controlled 

exchange of molecules between the plastid stroma and the cytosol (Fig. 1) to integrate 

plastidic metabolism with that of the rest of the cell (Flugge and Heldt, 1991; Ferro et 

al., 2003). 

Despite the variety of plastid types, these can generally be classified as 

photosynthetic (chloroplasts) and non-photosynthetic or heterotrophic plastids. 

Chloroplasts are the best understood of all plastids due to their photosynthetic activity 

and their ability to fix and supply the carbon to the rest of the plant. Chloroplast structure 

is highly specialized for photosynthetic activity. Internal thylakoid membranes provide 

the surface area in which the photosynthetic machinery resides. Stacks of thylakoid 

membrane, or grana, are held together by electrostatic interactions between the 

transmembrane protein complexes (Pyke, 2009). The light reactions of photosynthesis 

lead to acidification of the thylakoid lumen and the resulting proton gradient across the 

thylakoid membrane which drives ATP synthesis. The stroma is the space between the 

chloroplast inner membrane and the thylakoid grana. The stroma houses a wide variety 
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of protein complexes and enzymes, including those responsible for carbon fixation, and 

is the storage site for starch granules that increase in size during the day.  

 

 

 

 

 

 

 

 

 

 

 

Non-photosynthetic plastids such as amyloplasts are found in sink organs like 

roots, flowers and seeds. Amyloplasts are characterized for their ability to synthesize and 

Figure 1. Pi requirements of photosynthetic and heterotrophic plastids. Chloroplasts import Pi 

from the cytosol in order to synthesize ATP, which then enters the Calvin cycle of carbon fixation. 

Chloroplasts export both sugars and ATP to be used by heterotrophic tissues. Heterotrophic 

plastids need to import ATP and sugars as precursors for starch synthesis via the GPT and NTT 

transporters, respectively. Exchange of ATP/ADP via the NTT transporter results in a net gain of 

one Pi in the plastid stroma, which is an allosteric inhibitor of ADP-glucose pyrophosphorylase 

(ADGP). Heterotrophic plastids thus need to export excessive Pi via an unidentified transporter in 

order to maintain starch synthesis. 
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store large amounts of starch that is used as a carbon source to support respiration during 

the night (Pyke, 2009). Non-photosynthetic plastids cannot fix their own carbon or 

produce ATP by photophosphorylation. Consequently, such plastids are dependent on 

the import of both carbohydrates, generally Glc 6-P, and ATP from the cytosol to fuel 

biosynthetic reactions. These include the synthesis of starch as well as amino acids, fatty 

acids and purines via the oxidative pentose phosphate pathway (OPPP), hence 

underlining the importance of communication among different plastid types (Kammerer 

et al., 1998).  

 Despite the economic importance of non-photosynthetic plastids as storehouses 

of starch in grains and tubers of crop plants, our knowledge of their molecular machinery 

is limited (Pyke, 2009). 

 

Pi regulation of carbon metabolism 

Photosynthetic carbon assimilation takes place exclusively in the chloroplasts via 

the Reductive Pentose Phosphate Pathway or Calvin cycle. Inorganic CO2 from the 

atmosphere is assimilated into organic compounds. Triose phosphates (TPs) are the net 

end products of this process, as illustrated by the following equation (Bassham et al., 

1950). 

3CO2 + 6H2O + Pi Triose Phosphate + 3H20 + 3O2 

TPs further serve as substrates for synthesis of starch and sugars, cell walls, fatty 

acids and aminoacids (Stitt et al., 2010).  In photosynthetic tissues, TP enters the sucrose 

synthesis pathway in the cytosol and the released Pi is shuttled back into the chloroplast 
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stroma in exchange for more TP. This recycling of Pi between cytosol and chloroplast 

maintains a Pi homeostasis on both sides of the chloroplast envelope. Not surprisingly, 

when cellular Pi levels are altered, a deviation from the normal carbon partitioning is 

observed. For example, when cytosolic Pi is insufficient, TP export is impaired and there 

is a simultaneous comparative increase in starch synthesis in the plastid stroma (Sheu-

Hwa et al., 1975).  

A more detailed description of the role of Pi in modulating carbon partitioning 

and photosynthesis follows. Chloroplasts at the end of the night have very low levels of 

starch and soluble sugar; as a result, there is a high TP-to-Pi ratio within the stroma, 

while in the cytosol this ratio is reversed. Excess TP in the stroma is exported to the 

cytosol, initiating biosynthesis of sucrose (Suc), which is then exported to sink organs. 

The demand for Suc in sink tissues is eventually met and the the rate of Suc export and 

biosynthesis decreases. As a result, less Pi is released from TP and more Pi becomes 

trapped in organic compounds. The depletion of the cytosolic Pi pool in turn slows TP 

export from the stroma and reduces stromal Pi levels. This series of events relieves the 

inhibition of ADGP by high Pi concentration and starch synthesis in the stroma is 

stimulated. Importantly, starch synthesis effectively recycles Pi from the plastidic 

organic phosphate pool to be used as substrate for continued ATP synthesis via 

photophosphorylation, thus partially uncoupling the plastid stroma from Pi supplied 

from the cytosol (Tegeder, 2006; Stitt et al., 2010). Finally, during the night, the starch 

synthesized throughout the day is degraded via a phosphorolytic route by the plastidic 

glucan phosphorylase. This enzyme may also provide hexose phosphates as substrates 



9 

 

for the plastid localized oxidative pentose phosphate pathway (OPPP) during the night 

(Stitt et al., 2010). 

 

Mechanisms of organ size regulation 

Organ size and shape is well defined and tightly regulated by several 

developmental genetic programs that vary among plant species. Variations in such 

predetermined size and shape are only slightly affected by environmental factors (Disch 

et al., 2006; Bogre et al., 2008; Lee et al., 2009). 

Cell number and cell size are the primary determinants of a mature organ size. 

Final cell numbers in a lateral organ, such as a leaf, can be determined by three factors: 

(1) the rate of cell proliferation; (2) the duration of the cell proliferation and; (3) the 

number of initial cells in the primordial pool, i.e., cell allocation (Autran et al., 2002). 

Independent of the factors that determine cell number, lateral organ growth is the result 

of cell proliferation within a small meristematic zone, where cells are slowly pushed out 

from the meristems and gradually stop dividing as they continue expanding. This process 

is divided into two stages: (1) cell proliferation, where new cells increase in mass and 

divide; and (2) cell expansion, in which cells stop dividing but continue expanding, 

aided by water intake and loosening of the cell wall. These two stages are generally 

sequential but there is some overlap (Beemster et al., 2005; Bogre et al., 2008; Krizek, 

2009; Massonnet et al., 2010).  

Given the complexity of lateral organ size regulation, it is difficult to identify the 

contributing mechanisms and individual components (Bogre et al., 2008). Moreover, 



10 

 

multiple pathways are responsible for independently controlling cell proliferation and 

lateral organ size (Gonzalez et al., 2010). Nonetheless, progress has been made in recent 

years, largely through genetic approaches to study the control of cell proliferation in 

plants.  Several components discovered seem to affect the duration of the cell 

proliferation stage in lateral organs, although the timing and/or mechanism varies among 

different pathways. For example, transcription factors such as AINTEGUMENTA 

(ANT), STRUWWELPETER (SWP), the cytochrome KLUH (KLU), the ubiquitin 

ligase BIG BROTHER, and the GIF family all affect cell proliferation in a dose-

dependent manner. Other genes such as the putative DNA-binding protein PEAPOD, the 

E3 ubiquitin ligase BIG PETAL and the ubiquitine receptor DA1, negatively regulate 

cell proliferation in lateral organs (Mizukami and Fischer, 2000; Autran et al., 2002; 

Disch et al., 2006; White, 2006; Bogre et al., 2008; Li et al., 2008; Lee et al., 2009). 

Additional factors such as nutrient availability and plant carbon status also influence 

plant organ growth (Riou-Khamlichi et al., 2000; Bogre et al., 2008; Krizek, 2009). 

Given the influence of Pi levels in a cell on carbon partitioning, aspects of Pi 

homeostasis may constitute another pathway to regulate organ size. In fact, mutants that 

lack the functional chloroplast phosphate transporter protein PHT2;1 develop smaller 

rosettes than those of wild type plants, indicating that altered Pi contents in the leaves 

can have pleiotropic effects on leaf growth (Versaw and Harrison, 2002).  
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CHAPTER II 

DIFFERENTIAL EXPRESSION AND PHYLOGENETIC ANALYSIS SUGGEST 

SPECIALIZATION OF PLASTID-LOCALIZED MEMBERS OF THE PHT4 

FAMILY* 

 

Introduction 

Dynamic control of stromal Pi levels is central to the specialized metabolic 

functions of differentiated plastids. Notably, the concentration of Pi in the chloroplast 

stroma is tightly coordinated with environmental conditions to modulate both 

photosynthesis and the subsequent partitioning of fixed carbon (Sharkey, 1985; Walker 

and Sivak, 1986). Pi concentrations in amyloplasts also are held within a critical limit to 

prevent inhibition of starch biosynthesis (Preiss, 1982). For each plastid type, Pi 

concentrations are controlled through a combination of metabolic recycling in the stroma 

and surrounding cytosol, and the transport of Pi across the plastid limiting membrane. 

Recent data suggest that similar processes also link the Pi status of the chloroplast 

stroma and thylakoid lumen (Ruiz Pavón et al., 2008).  

 

 

 

 

__________ 

*Reprinted with permission from ―Differential expression and phylogenetic analysis 

suggest specialization of plastid-localized members of the PHT4 phosphate transporter 

family for photosynthetic and heterotrophic tissues‖ Guo B, Irigoyen S, Fowler TB, 

Versaw WK, 2008, Plant Signaling and Behavior, 3:10, 1-7.  © 2008 Landes 

Bioscience. 
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Plastidic Pi transport is generally attributed to members of the plastidic 

phosphate translocator (pPT) family (Knappe et al., 2003). These proteins are located in 

the inner envelope membrane and mediate strict counter-exchange of Pi for 

phosphorylated C3, C5 or C6 compounds. The triose phosphate/Pi translocator (TPT) 

was the first pPT protein to be identified, and it is expressed almost exclusively in 

photosynthetic tissues where it catalyzes transport of cytosolic Pi into the chloroplast in 

exchange for triose phosphates, the end products of photosynthesis (Flügge et al., 1989). 

This activity represents the major pathway for carbon allocation to the cytosol during the 

day as well as the primary route for Pi import into the chloroplast. Besides TPT, other 

members of the pPT family include the phosphoenolpyruvate/Pi translocator (PPT), 

glucose 6-phosphate/Pi translocator (GPT) and xylulose 5-phosphate/Pi translocator 

(XPT) (Fischer et al., 1997; Kammerer et al., 1998; Eicks et al., 2002). In contrast to 

TPT, these translocators export Pi from plastids in exchange for cytosolic metabolites 

that serve as precursors for biosynthetic processes within the stroma. Moreover, PPT and 

XPT are expressed in both photosynthetic and heterotrophic tissues, and GPT expression 

is restricted to heterotrophic tissues (Flügge, 2003). 

Data mining of plant genome sequences coupled with plastid envelope 

proteomics has revealed additional classes of plastidic Pi transporters that are unrelated 

to members of the pPT family. PHT2;1 was identified in Arabidopsis based on its 

similarity with Na
+
/Pi symporters from mammals and fungi (Daram et al., 1999). 

Functional analyses in yeast, however, suggest that PHT2 proteins catalyze H
+
-

dependent Pi transport (Daram et al., 1999; Versaw and Harrison, 2002; Zhao et al., 
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2003). GFP translational fusions with PHT2 proteins from Arabidopsis, Medicago 

truncatula, spinach and potato are targeted to the chloroplast envelope, (Ferro et al., 

2002; Versaw and Harrison, 2002; Zhao et al., 2003; Rausch et al., 2004) and 

localization within the inner envelope membrane is supported by subcellular proteomics 

and membrane fractionation/immunodetection (Ferro et al., 2002). In addition to a 

putative role in Pi import into the chloroplast, the presence of PHT2;1 transcripts within 

the root stele suggests that the encoded protein also functions in a subset of non-

photosynthetic plastids (Rausch et al., 2004).  

The Arabidopsis genome also encodes six PHT4 proteins, all of which mediate Pi 

transport in yeast with high specificity (Guo et al., 2008a). The effects of pH and 

protonophores on transport activities suggest that PHT4 transporters, like PHT2 proteins, 

catalyze H
+
-dependent Pi transport. Functional studies in Escherichia coli suggest that at 

least one of these, PHT4;1, can also mediate Na
+
-dependent Pi transport (Ruiz Pavón et 

al., 2008). Bioinformatics and localization of PHT4-GFP protein fusions indicate that 

five members of this family (PHT4;1 through PHT4;5) are targeted to plastids,(Ferro et 

al., 2003; Roth et al., 2004; Guo et al., 2008a) and the sixth, PHT4;6, resides in the Golgi 

apparatus (Guo et al., 2008b).  Proteomic analysis of the chloroplast envelope and 

envelope membrane fractionation studies confirmed that PHT4;4 is located in the 

chloroplast inner envelope membrane (Ferro et al., 2003; Roth et al., 2004; Ruiz Pavón 

et al., 2008). In contrast, PHT4;1 is located in the thylakoid membrane (Guo et al., 

2008b). Despite the localization of these two proteins to chloroplast membranes, 

transcripts for all of the Arabidopsis PHT4 genes have been detected in roots as well as 
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leaves suggesting that the encoded plastid-targeted proteins also function in non-

photosynthetic plastids (Guo et al., 2008b). Previous studies have not distinguished 

whether these transporters are redundant or have unique specificities for different plastid 

types. Here we present evidence for differences in spatial expression patterns and 

regulation with respect to light and circadian rhythm, which suggest specialized roles for 

the encoded Pi transporters in different plastid types and highlight the diversity of 

plastids that are present in heterotrophic tissues. Moreover, comparative analyses of 

Arabidopsis and rice PHT4 protein sequences suggest that these transporters and their 

respective roles are conserved. 

 

Results 

Tissue specificity of Arabidopsis PHT4 genes  

To analyze the spatial expression patterns of the PHT4 genes throughout plant 

development we used a promoter-reporter strategy in which each promoter was cloned 

upstream of the β-glucuronidase (GUS) reporter gene (Jefferson et al., 1987). The 

transcriptional fusion constructs were introduced into Arabidopsis plants, and progeny of 

the transgenic plants were evaluated for GUS activity using a histochemical assay. 

PHT4;1 and PHT4;4 promoters conferred nearly identical GUS expression patterns. 

Reporter activity was detected throughout the green tissues of seedlings (Fig. 2A, left), 

and in sepals of mature flowers (Fig 2B, left). In sections prepared from rosette leaves, 

GUS activity appeared to be present in all cell types but was not uniformly distributed in 
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the epidermis (Fig. 2C, right). To examine expression in epidermal cells more directly, 

we isolated and stained leaf epidermal peels.  

 

 

               

 

 

 

 

 

 

Figure 2. Localization of promoter-GUS gene fusions in transgenic A. thaliana plants. A, Seedlings 

representative of PHT4;1-GUS and PHT4;4-GUS (left); PHT4;2-GUS seedling (center); and PHT4;6-

GUS seedling (right). B, flower representative of PHT4;1-GUS, PHT4;4-GUS and PHT4;5-GUS (left); 

PHT4;4-GUS flower (center); leaf and cotyledon of PHT4;3-GUS and PHT4;5-GUS, showing 

vascular-specific GUS activity (right). C, PHT4;1-GUS root (left); PHT4;3-GUS root (center); 

transverse leaf section representative of PHT4;1-GUS and PHT4;4-GUS plants (right). D, Leaf 

epidermal peel representative of PHT4;1-GUS and PHT4;4-GUS plants (left); chlorophyll auto-

fluorescence of same epidermal peel (center); transverse leaf section representative of PHT4;3-GUS 

and PHT4;5-GUS plants showing GUS activity in phloem (right). 
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GUS expression was detected only in guard and subsidiary cells (Fig. 2D, left). 

In all cases, GUS activity co-localized with chlorophyll autofluorescence (red signal, 

Fig. 2D, center), indicating that PHT4;1 and PHT4;4 were expressed predominantly in 

chloroplasts of photosynthetic cells. GUS activity was, however, also detected at low 

levels in the root stele of seedlings containing the PHT4;1 promoter-GUS fusion (Fig. 

2C, left). Despite previous detection of PHT4;4 transcripts in roots by RT-PCR, (Guo et 

al., 2008a), no GUS activity was detected in roots of plants that carried the PHT4;4 

promoter-GUS fusion. GUS expression driven by the PHT4;2 promoter was detected 

throughout the root (Fig. 2A, center), but was not detected in either leaf or floral tissues. 

Plants harboring the PHT4;3 and PHT4;5 promoter-GUS fusions also exhibited 

similar expression patterns, but these patterns clearly differed from those directed by the 

PHT4;1 and PHT4;4 promoters. In leaves and cotyledons, GUS expression driven by the 

PHT4;3 and PHT4;5 promoters was restricted to the veins (Fig. 2B, right). Differential 

interference contrast (DIC) imaging of transverse leaf sections revealed that expression 

in these organs was limited to the phloem portion of the vascular bundle (Fig. 2D, right). 

Although tissue specificity for the PHT4;3 and PHT4;5 promoters appeared identical in 

leaves, expression differed in roots and flowers. In roots, weak GUS activity was 

detected at the root tip in plants carrying the PHT4;3 promoter-GUS construct (Fig. 2C, 

center), whereas no activity was detected in roots harboring the PHT4;5 reporter 

construct. In flowers, the PHT4;3 promoter generated no detectable staining, but the 

PHT4;5 promoter directed GUS expression that was restricted to sepals, essentially the 

same pattern seen with the PHT4;1 and PHT4;4 promoters (Fig. 2B, left). PHT4;6 is the 
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only member of the PHT4 family that is targeted to the Golgi apparatus rather than 

plastids (Guo et al., 2008a). We examined the tissue specificity of this promoter to 

determine whether PHT4;6 might serve as a marker for potential heterogeneity of Golgi 

functions in different plant tissues. No such specificity was observed. GUS activity was 

detected in every part of transgenic seedlings (Fig. 2A, right), as well as sepals, stamens 

and carpels of mature flowers (Fig. 2B, center). 

 

Light and circadian control of PHT4 gene expression  

TPT and PHT2;1 are expressed primarily in photosynthetic tissues, and their 

expression is induced by light (Schulz et al., 1993; Versaw and Harrison, 2002; Rausch 

et al., 2004).  To determine whether light also influences expression of PHT4 genes, we 

used quantitative RT-PCR to monitor transcript levels in rosette leaves of 3-wk-old 

plants that had been held in the dark for 3 d and at defined time points after re-exposure 

to light (Fig. 3). PHT2;1 served as a positive control for light-induced expression 

(Versaw and Harrison, 2002; Rausch et al., 2004). As expected, PHT2;1 transcript levels 

increased rapidly after exposure to light. PHT4;1 and PHT4;4 transcript levels also 

increased during the 7 hr light treatment, 20-fold and 10-fold, respectively, although 

transcripts for both genes accumulated only after a 3 hr lag. In contrast, the light 

treatment had no obvious effect on expression of PHT4;3, PHT4;5 or PHT4;6. 

Transcript levels for PHT4;2 were extremely low, i.e., maximum levels were less than 

2% of the lowest value obtained for the other genes (data not shown). This low 

expression was consistent with promoter-GUS results indicating that PHT4;2 is 
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expressed almost exclusively in roots (Fig. 2A). Consequently, we evaluated PHT4;2 

transcript levels in roots harvested from the same plants. As shown in Fig. 4, PHT4;2 

transcript levels decreased nearly 80% during the light treatment, and like PHT4;1 and 

PHT4;4, the change in transcript abundance occurred only after a 3 hr lag. 

Although PHT2;1 expression is not under circadian control, (Sharkey, 1985; 

Knappe et al., 2003) it was possible that the changes in PHT4;1, PHT4;4 and PHT4;2 

transcript levels during the light treatment (Fig. 3) reflect rhythmic expression rather 

than a response to light. To distinguish between these possibilities, transcript levels in 

rosette leaves of 3-wk-old plants maintained with a 14 hr light: 10 hr dark cycle (LD) 

were compared to those in plants that had been transferred to constant light (LL). Plants 

were harvested at time points corresponding to the midpoint and end of the subjective 

light and dark phases of two consecutive diurnal cycles. As shown in Fig. 4, PHT4;1 and 

PHT4;4 both exhibited a diurnal expression pattern under LD conditions, but this 

rhythmic pattern persisted in LL only for PHT4;1. Thus, PHT4;1 exhibits a circadian 

expression pattern with peak expression during the light phase of the diurnal cycle.  

Consistent with this circadian pattern, two copies of the CIRCADIAN CLOCK 

ASSOCIATED 1-binding site (CBS: AAAAATCT), which is important for morning 

specific circadian expression, (Wang et al., 1997; Michael and McClung, 2002) are 

located in the PHT4;1 promoter. One CBS is located -17 bp relative to the translation 

start, and the other is located -281 bp and is on the complementary strand. No CBS 

motifs were found in the promoters of the other PHT4 genes.  
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Figure 3. Effect of light on expression of PHT4 genes. Mature plants were held in the dark for 3 d 

before re-exposure to light. Expression levels were determined at the indicated time points by 

quantitative RT-PCR and normalized to EIF-4A2. The values plotted are averages of two 

biological replicates, and error bars indicate the replicate values. For analysis of PHT4;2, RNA 

was isolated from root tissues. For all other genes, RNA was isolated from rosette leaves. PHT2;1 

serves as a positive control for light induction. 
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Figure 4. Expression of PHT4 genes under light/dark and constant light conditions. Expression levels 

were measured at the indicated times by qRT-PCR and normalized to EIF-4A2. The values plotted are 

averages of two biological replicates, and error bars indicate the replicate values. The light and dark 

bars at the top of the figure indicate the respective light conditions. For analysis of PHT4;2, RNA was 

isolated from root. For all other genes, RNA was isolated from rosette leaves. 
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In contrast to the circadian expression of PHT4;1, expression of PHT4;4 appears 

to be induced by light, both after a long dark period (Fig. 3) and in standard LD 

conditions (Fig. 4). PHT4;3 and PHT4;5 transcript levels, which were unaffected by 

light exposure treatment after a long dark treatment (Fig. 3), varied with the light/dark 

cycle in LD but not under LL conditions (Fig. 4). Transcripts for all three of these genes 

were more abundant in the light than dark. 

To determine whether PHT4;2 expression also exhibited a diurnal pattern, we 

compared transcript levels in roots of plants grown under LD and LL conditions. As 

shown in Fig. 4, transcript levels appeared rhythmic in LD with a 2.5-fold difference 

between the light and dark. However, the phase of this rhythm was opposite to those of 

the other genes. That is, PHT4;2 transcripts were more abundant in the dark than light. 

This expression pattern did not persist in LL suggesting that the pattern in LD is related 

to exposure of the plant tissues to light rather than circadian control. 

 

Conservation of the PHT4 family in Arabidopsis and rice  

Searches of the GenBank sequence database revealed putative PHT4 homologs 

in multiple plant species, including rice, tomato, maize, grape and barley, suggesting that 

these transporters are widely conserved. However, it is difficult to determine orthology 

because this gene family may have undergone differential expansion in each species. 

The availability of the complete genome sequences for Arabidopsis and rice allowed us 

to address this issue for two distantly related plant species. We identified seven protein 

sequences through searches of the TIGR rice genome database (http://rice.tigr.org/) 

http://rice.tigr.org/)
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(Yuan et al., 2005) that shared 70–80% similarity to Arabidopsis PHT4 proteins. 

Iterative searches with the rice sequences revealed no additional homologs, indicating 

that these seven proteins comprise the rice PHT4 family.  

To estimate the phylogenetic relationship between the Arabidopsis and rice 

proteins, the sequences were aligned with ClustalX and M-Coffee, (Moretti et al., 2007) 

and neighbor joining was used to generate an unrooted phylogram (Fig. 5). The topology 

of this phylogram is supported by 100% bootstrap values. Furthermore, maximum 

parsimony analysis with the same alignments yielded trees with identical topologies (not 

shown). Six groups of proteins are inferred from the phylogram, each consisting of a 

single Arabidopsis protein and, in all but one group, a single orthologous rice protein. 

The exception was the group containing PHT4;6, which includes two paralogous rice 

sequences. The presence of both Arabidopsis and rice proteins in each group indicates 

that divergence of the PHT4 family occurred prior to the divergence of monocots and 

dicots. Like the Arabidopsis PHT4 proteins, all of the rice orthologs have poorly 

conserved, N-terminal sequences that share features with organellar targeting sequences. 

Predictions of the subcellular localization of these proteins using TargetP, (Emanuelsson 

et al., 2007) as well as consensus predictions derived from multiple other programs 

(ARAMEMNON database, http:aramemnon.botanik.uni-koeln.de/), suggest that each 

rice protein is targeted to the same organelle as its corresponding Arabidopsis ortholog.  
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Discussion 

Phylogenetic analysis suggests that members of the PHT4 Pi transporter family 

diverged prior to the monocot-dicot split that is estimated to have occurred 140–150 Myr 

ago (Chaw et al., 2004). Surprisingly, all six of the ancestral members have been 

preserved in Arabidopsis and rice, and only one ortholog appears to have undergone 

duplication. This level of conservation was unexpected given that multiple, large-scale 

Figure 5. Neighbor joining tree of A. thaliana and rice PHT4 Pi transporter proteins. Rice 

sequences are indicated by TIGR locus assignments. The numbers at the nodes of the trees are 

bootstrap values (1,000 replicates). Scale bar indicates substitutions per site. 
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duplication and deletion events have occurred since the divergence of monocots and 

dicots (Simillion et al., 2002; Paterson et al., 2004). Indeed, a similar analysis of PHT1 

Pi transporters revealed orphan homologs in both Arabidopsis and rice, as well as 

differential expansion of ancestral orthologs (Paszkowski et al., 2002). The simplest 

explanation for the conservation of individual PHT4 orthologs is that each has unique 

physiological roles. The overlapping but distinct expression patterns for the Arabidopsis 

genes support this hypothesis. 

The PHT4;1 promoter was active predominantly in photosynthetic tissues, and in 

the leaf epidermis, activity was restricted to cells that contain chlorophyll. This tissue 

and cell specificity is consistent with the recent finding that the protein is targeted to the 

chloroplast thylakoid membrane (Ruiz Pavón et al., 2008). This location positions 

PHT4;1 for a role in recycling Pi from the thylakoid lumen to the stroma. Pi is generated 

in the thylakoid lumen through hydrolysis of nucleotides, including the PsbO-mediated 

hydrolysis of GTP, which regulates dephosphorylation and turnover of the photosystem 

II reaction center D1 protein (Lundin et al., 2007a; Lundin et al., 2007b). Coordination 

of PHT4;1 activity with D1 protein turnover is an intriguing possibility given that the 

prerequisite events, expression of PHT4;1 and phosphorylation of the D1 protein, are 

both controlled by a circadian rhythm with peak activities in the light (Booij-James et 

al., 2002). Circadian regulation is critical for many aspects of photosynthesis and plant 

growth, (Dodd et al., 2005) but to our knowledge, this is the first example of circadian 

control of a plant Pi transporter gene. 
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The stimulatory effect of low pH on Pi transport catalyzed by PHT4;1 in 

heterologous systems would favor export of Pi from the acidic lumen (Ruiz Pavón et al., 

2008; Guo et al., 2008a). However, at this time we cannot rule out the possibility that 

PHT4;1 transports stromal Pi into the lumen. It has been suggested that if such an 

activity sequesters stromal Pi below the Km of the thylakoid ATP synthase, the resulting 

decrease in proton conductivity could serve as a means of down regulating 

photosynthetic light capture (Ruiz Pavón et al., 2008; Takizawa et al., 2008). 

The PHT4;1 promoter also exhibited weak activity in the root stele (Fig. 3B), which 

corroborates previous results indicating that endogenous transcripts are present in roots 

at low levels (Guo et al., 2008a). The physiological significance of this expression is 

unclear because root plastids have limited internal membranes, (Usami et al., 2004) and 

the metabolic contributions of plastids within the root stele have not been defined. We 

hypothesize that the internal membranes of these plastids represent a metabolically 

active compartment and that PHT4;1 is involved in its Pi homeostasis. 

Chloroplasts rely on the import of Pi from the cytosol to support the synthesis of 

ATP through photophosphorylation and to control the subsequent partitioning of fixed 

carbon. Pi import is mediated mainly by TPT with strict counter-exchange of stromal 

triose phosphates (Fliege et al., 1978). Surprisingly, plants with reduced levels of TPT 

have no substantial growth phenotype or reduction in photosynthetic capacity when 

grown under ambient conditions (Riesmeier et al., 1993; Barnes et al., 1994; Heineke et 

al., 1994; Häusler et al., 1998; Schneider et al., 2002; Walters et al., 2004). Such plants 

do, however, exhibit increased rates of starch turnover and export of neutral sugars to 
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compensate for the defect in carbon allocation, which suggests that redundant or 

compensatory mechanisms also exist for the coupled defect in Pi import. PHT4;4 and 

PHT2;1 are candidates for this activity. Like TPT, both of these Pi transporters are 

located in the chloroplast inner envelope membrane (Ferro et al., 2002; Roth et al., 

2004). Also, transcript levels for the genes increased when plants were exposed to light, 

although the delay in PHT4;4 transcript accumulation may reflect regulation by 

photosynthates rather than a direct response to light. It is formally possible that PHT4;4 

and PHT2;1 also maintain stromal Pi concentrations through export. That is, these 

transporters may serve as two-way valves with transport direction dependent on the Pi 

electrochemical gradient and proton-motive force. Experimental evaluation of this 

hypothesis is needed, although such flexibility would enable the fine control of stromal 

Pi levels, necessary to sustain high rates of transitory starch synthesis. 

Unlike chloroplasts, non-photosynthetic plastids cannot synthesize ATP or 

precursor metabolites for anabolic processes such as the synthesis of starch, fatty acids 

and amino acids (Neuhaus and Emes, 2000). The import and subsequent assimilation of 

these compounds can lead to an imbalance in stromal Pi, which must be countered by a 

Pi export activity that is not directly coupled to the transport of phosphorylated carbon 

compounds, i.e., unidirectional Pi transport (Neuhaus and Maass, 1996). Several of the 

PHT4 transporters, as well as PHT2;1, may contribute to this role in different 

heterotrophic tissues. In roots, GUS activity driven by the PHT4;2 promoter was 

observed throughout the entire organ, whereas expression under the control of the 

PHT4;3 and PHT2;1 promoters was restricted to the root cap and stele, respectively. 
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These expression patterns suggest that PHT4;2 functions in all root plastids and that Pi 

transport catalyzed by PHT4;3 and PHT2;1 may be needed to supplement that of 

PHT4;2 in distinct plastid types, including amyloplasts in root cap columella cells. 

Although PHT4;4 and PHT4;5 transcripts have been detected in roots by RT-PCR (Guo 

et al., 2008a) and the corresponding promoter-GUS lines described here exhibited strong 

activity in green tissues, no GUS activity was detected in roots. This suggests that 

PHT4;4 and PHT4;5 are expressed in root tissues at levels below the limit of detection 

by histochemical staining, and therefore, may have limited roles in root plastids. 

Non-photosynthetic plastids occur in the sieve elements and companion cells that 

comprise phloem (Behnke, 1973; Behnke, 1991). Promoter-GUS fusions used in this 

study revealed that PHT4;3 and PHT4;5 were expressed in the phloem tissue of leaves 

and cotyledons, but not roots. Expression of both PHT4;3 and PHT4;5 in leaves was 

diurnal with transcripts more abundant in the light. Transcript abundance was not 

induced by light after a 3 d dark treatment suggesting that the diurnal pattern may be 

related to instability of the transcripts in the dark. Little has been reported on the 

metabolic functions of phloem plastids, although they may be the primary sites of 

tryptophan biosynthesis, (Lu and McKnight, 1999), and at least some of these plastids 

accumulate starch (Behnke, 1991). Given that amino acid and starch synthesis are ATP-

consuming and Pi-liberating processes, we hypothesize that PHT4;3 and PHT4;5 

contribute to Pi export from phloem plastids. 
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In summary, the results of this study have revealed differences in the spatial 

expression patterns and regulation of the plastid-localized members of the Arabidopsis 

PHT4 Pi transporter family. These differences provide some insight into the potential 

roles of these proteins in chloroplasts and in an unexpectedly wide range of non-

photosynthetic plastids in root and phloem tissues. The remarkable similarity of the 

PHT4 family structure between Arabidopsis and rice suggests that the roles for the 

individual family members have been conserved since the divergence of monocots and 

dicots. 

 

Methods 

Plant growth conditions  

Arabidopsis thaliana (L.) Heynh. (Col-0) plants were grown in chambers at 21˚C 

with 70% relative humidity and, unless specified otherwise, a 14 h light (150 μmol m-2 

s-1): 10 h dark photoperiod. Plants were grown in soil for general propagation. For gene 

expression studies, plants were grown hydroponically or on agar-solidified, half-strength 

MS medium (Murashige and Skoog, 1962) as described previously (Guo et al., 2008a) 
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Construction and analysis of PHT4 promoter-GUS fusions 

Promoters for each PHT4 gene were amplified from Arabidopsis genomic DNA 

using Pfx high-fidelity polymerase (Invitrogen, Carlsbad, CA) then cloned in the binary 

vector pBI101.1 upstream of the β-glucuronidase (GUS) gene to generate transcriptional 

fusions. Promoter sequences correspond to the region immediately upstream of the 

respective ATG start codons: 1000 bp for PHT4;1, PHT4;2, PHT4;3 and PHT4;4, 623 

bp for PHT4;5, and 1682 bp for PHT4;6. The PHT4;5 promoter extends to the stop 

codon of the neighboring gene (At5g20390). Promoter-GUS constructs were introduced 

into Agrobacterium tumefaciens strain GV3101, and the resulting strains were used to 

transform Arabidopsis via the floral dip procedure (Clough and Bent, 1998). Transgenic 

seedlings were selected on half-strength MS medium containing 25μg ml
-1

 kanamycin.  

At least 12 independent lines for each construct were examined for GUS activity 

by histochemical detection (Jefferson et al., 1987; Vitha et al., 1995). Briefly, seedlings 

were vacuum infiltrated with assay buffer (50 mM sodium phosphate pH 7.0, 0.1% (v/v) 

Triton X-100, 0.5 mM potassium ferrocyanide, 0.5 mM potassium ferricyanide, 10 mM 

EDTA) containing 0.05% (w/v) 5-bromo-4-chloro-3-indolyl glucuronide (X-gluc) then 

incubated in the dark at 37˚C overnight. Green tissues were de-stained with 70% ethanol 

prior to observation. To prepare sections, tissues were briefly fixed in 4% formaldehyde 

prior to staining. After staining, tissues were fixed in assay buffer containing 4% 

formaldehyde and 0.5% glutaraldehyde then dehydrated in an ethanol series and  
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embedded in Steedman’s wax (polyethylene glycol 400 distearate/ 1-hexadecanol, [9:1, 

w/w]) (Steedman, 1957). Embedded tissue was cut into 10 μm sections using a rotary 

microtome. 

 

Quantitative RT-PCR analysis  

Total RNA was isolated from rosette leaves or roots of 3-wk-old plants with TRI 

reagent (Sigma- Aldrich, St. Louis, MO), and traces of DNA were removed with 

TURBO DNA-free (Ambion, Austin, TX). Two biological replicates consisting of 

tissues pooled from two plants were used for each analysis. One microgram of RNA was 

used to make cDNA with SuperScript first-strand cDNA synthesis kit (Invitrogen, 

Carlsbad, CA). PCR was performed with Power SYBR Green Master Mix (Applied 

Biosystems, Foster City, CA) using the ABI Prism 7500 sequence detection system 

(Applied Biosystems). Expression levels were normalized to EIF-4A2 (At1g54270) and 

fold changes were calculated using the ΔΔCT method. Primers used for quantitative 

PCR were described previously (Guo et al., 2008a). 
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CHAPTER III 

THE SINK-SPECIFIC PLASTIDIC PHOSPHATE TRANSPORTER PHT4;2 

INFLUENCES CARBON PARTITIONING AND CELL PROLIFERATION IN 

ARABIDOPSIS THALIANA 

 

Introduction 

Unlike chloroplasts, nonphotosynthetic plastids cannot synthesize the ATP 

needed to fuel anabolic processes within these organelles, which include biosynthesis of 

starch, fatty acids and amino acids (Neuhaus and Emes, 2000). Metabolism in such 

plastids, therefore, is dependent on the import of ATP from the cytosol. Nucleotide 

transporters (NTTs), located in the plastid inner envelope fulfill this energy requirement 

by catalyzing the stoichiometric exchange of cytosolic ATP for stromal ADP (Reiser et 

al., 2004; Reinhold et al., 2007). A consequence of the unbalanced phosphate moieties 

associated with this exchange is that inorganic phosphate (Pi) would accumulate to 

deleterious levels within the stroma if not countered by Pi export. Despite the 

fundamental importance of Pi homeostasis to plastid functions and, in turn, to plant 

growth and development, the identity of the transporter(s) responsible for this activity 

has been elusive.  

In addition to ATP/ADP exchange, NTTs can accept Pi as a third substrate to 

transport Pi-Pi homo-exchange or to co-transport Pi plus ADP in exchange for ATP 

(Trentmann et al., 2008). Although the latter activity would preclude the necessity for a 

distinct Pi transporter, studies with cauliflower bud amyloplasts revealed Pi export 
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activity in the absence of potential counter-exchange substrates, i.e., unidirectional 

transport, indicating that transporters other than NTTs contribute to net Pi export 

(Neuhaus and Maass, 1996). 

Plastid-localized Pi transport systems identified to date include members of the 

plastidic Pi translocator (pPT), PHT2 and PHT4 families. pPTs catalyze exchange of Pi 

with phosphorylated compounds, and therefore would not support net Pi export (Flügge, 

1999; Eicks et al., 2002). In contrast, members of the PHT2 and PHT4 families mediate 

H
+
- and/or Na

+
-dependent Pi transport (Daram et al., 1999; Versaw and Harrison, 2002; 

Zhao et al., 2003; Ruiz Pavón et al., 2008; Guo et al., 2008a). The role of these 

transporters in nonphotosynthetic plastids is unclear. Gene expression studies suggest 

that all of these transporters are present in limited types of heterotrophic tissues, but 

most are expressed predominantly in autotrophic tissues (Rausch et al., 2004; Guo et al., 

2008a). PHT4;2 is the sole exception to this expression pattern as its transcripts are 

nearly restricted to roots (Guo et al., 2008a).  

In this study, we used A. thaliana mutants that lack a functional copy of the 

PHT4;2 gene to gain insight into the roles of the encoded transporter in plastid and 

whole plant physiology. We confirmed that PHT4;2 contributes to Pi transport in 

isolated root plastids, and found that starch accumulation is reduced in both roots and 

leaves of the mutant plants. We also discovered a surprising conditional growth 

phenotype in which rosette leaves of pht4;2 mutants were larger than those of wild type 

when plants were grown with a short (8 h) photoperiod, and increased cell proliferation 

accounted for the greater leaf area and biomass.  
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Mature leaf size is an intrinsic trait that is a function of both the size and number 

of cells in the organ. The mechanisms that control final leaf size are poorly understood. 

In some cases, a reduction in cell number through mutation or transgenes is offset by a 

compensatory increase in cell size (Hemerly et al., 1995; De Veylder et al., 2001; 

Horiguchi et al., 2006). In contrast, a number of modifiers of leaf size have been 

identified that primarily affect cell number, but these represent diverse functional 

classes, including transcriptional regulation, auxin signaling, protein synthesis and DNA 

replication (for review, see (Gonzalez et al., 2009; Krizek, 2009). A recent comparative 

analysis of a subset of these modifiers confirmed that multiple independent pathways 

contribute to the control of cell proliferation in leaves (Gonzalez et al., 2010). Because 

none of the previously described modifiers of leaf size appear to be involved in plastid 

functions, and because PHT4;2 expression during vegetative growth is restricted to 

roots, the effect of pht4;2 mutations on cell proliferation suggests novel signaling 

between roots and developing leaves that also contributes to the regulation of leaf size.  

  

 

Results 

PHT4;2 is expressed in carbon-sink tissues 

We reported previously that PHT4;2 expression was restricted to roots and 

exhibited a diurnal but not circadian pattern in which transcript abundance was greater in 

the dark than the light (Guo et al., 2008a).  
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Expression data in the Genevestigator microarray database (Hruz et al., 2008) 

support these patterns and suggest that PHT4;2 is also expressed in floral tissues. To 

investigate spatial expression in greater detail, a PHT4;2 promoter-GUS transcriptional 

fusion construct was introduced into Arabidopsis and GUS activity was assessed in 

progeny of the transgenic plants. To maximize expression, plants were grown with a 

short (8 h) photoperiod.  

As expected, GUS activity was readily detected in roots but not in leaves (Fig. 

1A). GUS activity was also detected in sepals, stamens and carpels, as well as silique 

valves and septum (Fig. 6A), but not in the mature seeds. Quantitative RT-PCR analysis 

of PHT4;2 transcripts in wild-type plants corroborated these findings and indicated that 

expression was greatest in roots, followed by intermediate levels in flowers and siliques, 

and barely detectable levels in rosette and cauline leaves (Fig. 6B). These results extend 

our previous studies to suggest that in addition to roots, PHT4;2 is broadly expressed in 

carbon import-dependent sink organs. 
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Identification of pht4;2 T-DNA insertion mutants 

To obtain insight into the role of PHT4;2 in plastid function and overall plant 

metabolism, we required mutants that lacked a functional PHT4;2 allele. We obtained 

two independent T-DNA insertion lines from the SALK collection (Alonso et al., 2003), 

SALK_019289 (pht4;2-1) and SALK_070992 (pht4;2-2). Insertions were confirmed by 

PCR and sequencing of amplicons that spanned the insertion junctions. The pht4;2-1 line 

Figure 6. Localization of PHT4;2-GUS expression in transgenic A. thaliana plants. A, 

Representative 5-wk-old plant (left), flower (center) and mature siliques (right). B, Quantitative 

RT-PCR analysis of PHT4;2 expression in different organs (RT, root; RL, rosette leaf; CL, 

cauline leaf; F, flower; S, silique). PHT4;2 expression levels were normalized to EIF-4A2. 

Values shown are mean ± SE for three independent analyses. 
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has a tandem T-DNA insertion 2170 bp downstream of the translation start site, and a 7 

bp deletion at the insertion site. The pht4;2-2 line has a single T-DNA inserted within 

the first intron, 738 bp downstream of the translation start site, and also has a deletion of 

4 bp at the insertion site. The structures of the mutant loci are represented in Fig. 7A. 

 

 

                           

 

 

 

 

 

 

Homozygous mutant lines were identified by PCR then screened by DNA gel 

blot for the presence of additional insertions (Figures 8 and 9). At least one backcross to 

Figure 7. Molecular characterization of pht4;2 T-DNA insertion mutants. A, Scheme indicating 

the positions of T-DNA insertions in pht4;2-1 and pht4;2-2 lines. Insertions were confirmed by 

PCR and DNA sequence. Arrows represent primers used for RT-PCR. B, RT-PCR analysis of 

total RNA isolated from roots of wild-type and pht4;2 plants. 
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wild type was required to segregate ectopic insertions from the genetic backgrounds. 

Only homozygous mutants that lacked ectopic insertions were used in subsequent 

studies. RT-PCR analysis of root RNA using primers that anneal downstream of the 

insertion sites revealed no PHT4;2 transcripts in the homozygous mutants suggesting 

that both mutant alleles are null (Fig. 7B). 

 

 

                

 

 

 

 

Figure 8. Molecular characterization of pht4;2-1 T-DNA insertion mutants. A, diagram indicating 

the position of restriction enzymes used relative to the T-DNA insertion.  B, Southern hybridization 

results indicate fragment corresponding to internal T-DNA (red arrow) and fragment resulting from 

T-DNA and genomic DNA. Green asterisk represents nptII probe. 
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Localization of PHT4;2 to root plastids 

To confirm localization of the endogenous PHT4;2 protein to root plastids, intact 

plastids were isolated from roots of hydroponically-grown wild-type Arabidopsis, and 

the proteins were subjected to immunoblot analysis. As shown in Fig. 10A, a single 45 

kDa band reacted with the antibody. The signal intensity varied in proportion to the 

amount of total protein loaded in the well, and no reaction was detected when the 

Figure 9. Molecular characterization of pht4;2-2 T-DNA insertion mutants. A, diagram indicating 

the position of restriction enzymes and probes used relative to the T-DNA insertion.  B, Southern 

hybridization results indicate the presence of a single insertion event at this position. Green asterisk 

represents nptII probe, red asterisk represents CaMV35S probe. 
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corresponding pre-immune serum was used, indicating that the antibody is highly 

specific. No reacting proteins were detected in leaf chloroplasts (data not shown), in 

accord with transcript localization results (Fig. 6). 

Immunoblot analysis was also carried out with plastids isolated from roots of 

pht4;2 mutants. Equal amounts of total plastid protein (15 µg protein per lane) from wild 

type and each mutant were evaluated. The 45 kDa band was detected in the wild-type 

preparation but in neither of the mutants (Fig. 10B), which further verified that the 

mutations are null. 

We noted that the molecular mass of PHT4;2 estimated from its mobility in SDS-

PAGE was lower than that expected from its composition. PHT4;2 encodes a 512 aa 

protein (UniProt Q7XJR2) that is predicted by TargetP (Emanuelsson et al., 2007) to 

include an N-terminal 44 aa transit peptide. The theoretical molecular mass of the 

processed protein is 50.5 kDa. Two other members of the PHT4 family, PHT4;1 and 

PHT4;4, also exhibit anomalous migration in SDS-PAGE (Roth et al., 2004; Ruiz Pavón 

et al., 2008). The significance of these gel migration patterns is unclear and may be 

related to detergent-binding features typical of membrane proteins (Rath et al., 2009). 
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Figure 10. Localization of PHT4;2 to root plastids. A, Immunoblot of proteins isolated from wild-

type root plastids using a peptide-specific antibody and pre-immune serum. B, Western blot of wild-

type and pht4;2 root plastid proteins (15 mg protein/lane) with antibody and pre-immune serum. 

Molecular mass markers are indicated, and the position of PHT4;2 is marked with an arrow. (Figure 

by Cornelia Spetea and Jacob Kuruvilla). 
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Pi transport in isolated root plastids 

 Previous studies indicated that PHT4;2, as well as the other five members of the 

Arabidopsis PHT4 family, mediate Pi transport that is dependent on the presence of a H
+
 

electrochemical gradient when expressed in yeast (Guo et al., 2008a). Interestingly, one 

of these same proteins, PHT4;1, was found to catalyze Na
+
-dependent Pi transport when 

expressed in E. coli (Ruiz Pavón et al., 2008). Thus, different heterologous systems, 

perhaps due to differences in membrane lipid composition and cell physiology, impart or 

reveal unique qualities of the Pi transport process. Here we have taken advantage of the 

availability of knockout lines to study PHT4;2 in its native context of root plastids.  

Plastids isolated from roots of hydroponically-grown wild-type and pht4;2 plants 

were equivalent with respect to intactness (70-75%), specific activity of the plastid 

marker nitrite reductase (NiR) and contamination by other organelles (Table I). 

Microbial contamination of plastid fractions, which was assessed by growth on LB agar 

medium, was also similar with 200-250 colony forming units/mg protein, which 

corresponds to a low number of microbial cells (6 to 8) in samples used for Pi transport 

measurements. Pi uptake by root plastids was linear for 60 s regardless of genotype, but 

the rate of transport measured with wild-type plastids was twice that of plastids isolated 

from pht4;2 mutants (Fig. 11). Because the purity and enrichment of root plastids were 

equivalent, we attribute the reduced transport rates with mutant plastids solely to the 

absence of PHT4;2. 
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 Wild type pht4;2-1 pht4;2-2 

  

Yield (%) 

Specific 

activity 

 

Yield (%) 

Specific 

activity 

 

Yield (%) 

Specific 

activity 

NiR 

(plastid) 

6.91 ± 0.52 2.55 ± 0.87 7.73 ± 1.01 2.41 ± 0.97 7.46 ± 0.36 2.13 ± 0.01 

NADH-MDH 

(mitochondrion, 

cytosol, 

peroxisome) 

0.33 ± 0.21 0.23 ± 0.07 0.39 ± 0.32 0.49 ± 0.10 0.44 ± 0.05 0.23 ± 0.16 

α-Mannosidase 

(vacuole) 

0.56 ± 0.03 0.18 ± 0.04 0.86 ± 0.61 0.19 ± 0.14 0.55 ± 0.07 0.14 ± 0.01 

 

 

 

 

                                 

Table I. Distribution of organelle marker enzyme activities in isolated root plastids. 

Yields are defined as the percentage of activity in the crude extract, and specific activities as units/mg 

protein. Mean values ± SE of three independent determinations. 

Figure 11. Rate of Pi uptake by isolated root plastids. Assays were conducted at pH 6.5 with 

5 mM NaCl and 0.05 mM Pi. Plotted values are means ± SE for three independent 

experiments. 
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Figure 12. Characterization of Pi transport in isolated root plastids. A, Effect of pH and NaCl on Pi 

uptake in wild-type and pht4;2 plastids. B, Effect of inhibitors on Pi uptake. Values are relative to 

untreated wild-type plastids. All assays were conducted at pH 6.5 and in the presence of 5 mM NaCl. C, 

Pi export from preloaded plastids. Values expressed as the percentage of preloaded Pi. Preloading and 

export buffer conditions indicated on the x-axis are separated by an arrow, and + indicates the presence 

of 5 mM NaCl. The data shown represent the mean ± SD for three independent experiments. * 

Significantly different from wild type (P<0.05, Student’s t test). (Figure by Cornelia Spetea and Jacob 

Kuruvilla). 
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 Pi uptake by root plastids isolated from wild-type plants was 2- to 3-fold greater 

than those isolated from pht4;2 mutants when 5 mM NaCl was included in the assay, but 

not when this salt was omitted (Fig. 12A) or when all sources of Na
+
 were substituted 

with K
+
 (data not shown). Pi transport activities for all plastids were greater at pH 7.5 

than at pH 6.5, but the differences between mutant and wild-type activities were 

consistently greatest at pH 6.5 in the presence of NaCl. These results suggest that 

PHT4;2 catalyzes Na
+
-dependent Pi transport in root plastids. 

To better understand the mechanism of the observed Pi uptake activity we 

investigated the effects of select pharmacological agents. Transport assays were 

conducted in the presence of NaCl and at pH 6.5, and Pi uptake was expressed as a 

percentage of the amount of Pi accumulated in untreated wild-type plastids. All three of 

the compounds we tested, mersalyl, pyridoxal 5’-phosphate (PLP) and carbonyl cyanide 

p-(trifluoromethoxy)-phenyl-hydrazone (FCCP), had a pronounced inhibitory effect on 

Pi transport in wild-type plastids and a lower but clearly measurable effect in mutant 

plastids (Fig. 12B). These results suggested that PHT4;2 is the predominant but not sole 

source of Pi transport activity under these assay conditions. Addition of mersalyl, a thiol-

reactive agent (Amores et al., 1994), reduced wild-type transport to 35%, indicating the 

importance of sulfhydryl groups for PHT4;2 activity. Similarly, treatment with PLP, a 

lysine-reactive agent known to inhibit pPTs (Gross et al., 1990; Flügge, 1992), reduced 

wild-type activity to 17%. Addition of the protonophore FCCP reduced transport in 

wild-type plastids to 40%, indicating that the concentration and/or membrane potential 
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components of the H
+
 electrochemical gradient also affect PHT4;2 activity. Dissipation 

of membrane potential by FCCP would also diminish the magnitude of a Na
+
 

electrochemical gradient. 

The Pi uptake assays described above verified that root plastids could be 

preloaded with Pi to levels sufficient to assess its export. Plastids were preloaded in the 

presence of 5 mM NaCl at pH 6.5 or 7.5 then washed and resuspended in buffer with or 

without NaCl. After incubation, the amounts of Pi exported and retained in the plastid 

were both measured, and export was calculated as a percentage of total Pi to account for 

differences in preloading. As shown in Fig. 12C, Pi export was significantly reduced in 

root plastids isolated from pht4;2 mutants under most of the conditions tested, 

confirming that PHT4;2 contributes to this activity in wild-type plastids. Export 

activities for wild-type plastids measured at pH 7.5 were equivalent when pH, NaCl or 

both were varied after preloading (Fig. 12C), suggesting an apparent lack of specificity 

for either H
+
 or Na

+
. In contrast, similarly low export activities were detected in mutant 

and wild-type plastids when the composition of the preloading and export solutions were 

identical (data not shown).  

 

PHT4;2 affects starch accumulation  

 Pi is an allosteric inhibitor of ADP-glucose pyrophosphorylase (ADGP), which 

catalyzes the first committed step in starch biosynthesis within plastids (Preiss, 1982; 

Ballicora et al., 2004). Therefore, we reasoned that starch accumulation in roots could 
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serve as an in vivo indicator for defects in plastidic Pi homeostasis associated with the 

absence of PHT4;2.  

To test this hypothesis, we measured starch contents of roots that were harvested 

from hydroponically-grown, 6-wk-old wild-type and pht4;2 plants at multiple times 

throughout the day. As reported previously for hydroponically-grown Arabidopsis 

(Malinova et al., 2011), starch was distributed throughout the entire root rather than 

restricted to the root tip (data not shown). Starch levels in wild-type roots doubled during 

the first half of the photoperiod then returned to near-starting levels by the end of the 

photoperiod (Fig. 13). In contrast, starch remained at low levels throughout the day in 

pht4;2 roots. This reduced capacity for starch accumulation is consistent with Pi 

inhibition of starch synthesis due to a defect in Pi export.  

Starch contents of leaves were also lower in the mutants than wild type at all time 

points measured (Fig. 13). Because PHT4;2 transcripts and protein in wild-type plants 

were restricted to roots during vegetative growth, the diminished accumulation of starch 

in mutant leaves presumably reflects a secondary consequence of metabolic changes in 

the roots. 
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Figure 13. Starch and sucrose contents in pht4;2 plants. Roots and rosette leaves of 6-

wk-old wild-type and pht4;2-1 plants were collected at the onset, midpoint and end of 

an 8 hr photoperiod. Wild type, filled circles; pht4;2-1, open circles. 
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Consistent with this idea, we detected root- and leaf-specific changes in the 

expression of a number of genes that are either directly or indirectly involved in starch 

synthesis (Fig. 14). Specifically, transcript levels for GPT1 and GPT2, which encode 

Glc6P/Pi translocators (GPTs), and NTT1 and NTT2, which encode ATP/ADP 

nucleotide translocators (NTTs), were induced in roots but not in leaves of pht4;2 plants 

(Fig. 14A). The proposed functions of GPT and NTT are to provide nonphotosynthetic 

plastids with the carbon and energy, respectively, needed for starch synthesis and the 

oxidative pentose phosphate pathway, although mutant analyses indicate that these 

proteins also have roles in photosynthetic tissues (Niewiadomski et al., 2005; Reinhold 

et al., 2007). In addition, expression of the AGPase small subunit gene, APS1, was 

induced only in roots of pht4;2 plants, whereas AGPase large subunit genes, APL1 and 

APL3, were induced only in leaves (Fig. 14B). Because transcript levels for these genes 

were inversely correlated with starch levels, the altered expression patterns may reflect 

compensatory responses to the effects of pht4;2 mutations. Similarly, the cytosolic 

fructose-1,6-bisphosphatase gene (cFBP), which encodes a key enzyme in sucrose 

biosynthesis (Stitt et al., 2010), was induced only in pht4;2 leaves (Fig. 14B). But we 

detected no significant changes in the accumulation of Suc in leaves or roots of pht4;2 

plants (Fig. 13). 
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Figure 14. PHT4;2 modifies the expression of multiple genes involved in plastid transport and carbon 

metabolism. Expression levels were determined by quantitative RT-PCR of total RNA from plants 

grown in hydroponics. A, Genes involved in plastid transport, including Glc6P/Pi exchange (GPT1 and 

GPT2) and ATP/ADP exchange (NTT1 and NTT2). B, Genes involved in starch synthesis (APS1, APL1 

and APL3) and sucrose synthesis (cFBP). Values shown are mean ± SE for three independent analyses. 

* Significantly different from wild type (P<0.05, Student’s t test). 
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Loss of PHT4;2 increases plant size and biomass 

The pht4;2 mutants have no obvious morphological or developmental phenotype 

when grown with a 14 h photoperiod. However, when plants were grown with a shorter 

photoperiod (8 h light), fully-expanded pht4;2 rosettes were notably larger than those of 

wild type (Fig. 15A). Both mutant and wild-type plants had 43  1 rosette leaves when 

flowering initiated, indicating that the increase in rosette size was not due to additional 

leaves but rather an increase in leaf size (Fig. 15B). Because individual leaves emerge 

and complete the expansion phase of organ growth at different chronological times, 

differences in rosette sizes were not detected until plants had grown for at least 5 wk but 

then increased to a maximum when flowering initiated at 8 to 9 wk (Fig. 15C).  

The large-leaf phenotype was also observed when plants were grown hydroponically, 

and the magnitude of the size difference was typically greater than that seen with plants 

grown in soil. Rosette area of fully-expanded pht4;2 mutants was 45 to 65% greater than 

wild type, and biomass was at least twice that of wild type (Table II). Roots at the time 

of harvest (8 wk) were tangled, so it was not possible to accurately assess growth of 

individual root systems. Therefore, we used the combined weight of root systems to 

derive an average fresh weight per plant. Results from four independent growth 

experiments consisting of 74 to 113 plants indicated no significant differences in root 

growth (0.86 ± 0.17, 0.88 ± 0.18 and 0.73 ± 0.10 g plant
-1

 for wild type, pht4;2-1 and 

pht4;2-2, respectively). In addition, when plants were allowed to complete their life 

cycle, no differences between pht4;2 mutants and wild type were detected in flowering 

time, flower size or seed size (data not shown). 
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Figure 15. Increased size of pht4;2 rosette leaves. A, Rosettes of representative 8-

wk-old plants. B, Rosette leaf number 3, 6, 8 and 14 of representative wild-type (WT) 

and pht4;2-2 plants. C, Increase in rosette area during vegetative growth. Values 

shown are mean ± SE, n=8. 
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It was possible that, in addition to increased area, leaf thickness also contributed 

to the greater biomass of pht4;2 leaves. To estimate thickness of leaves throughout a 

rosette we took advantage of the relationship between leaf thickness and the product of 

specific leaf area (leaf area per unit dry mass) and leaf dry matter content (ratio of dry 

mass to fresh mass) (Vile et al., 2005). Leaf punches from the centers of ten fully 

expanded rosette leaves were collected from mutant and wild-type plants. Both specific 

leaf area, 0.51  0.02 cm
2
 mg

-1
, and leaf dry matter content, 0.10  0.01 mg mg

-1
 were 

identical for pht4;2 and wild-type leaves. From these values and a leaf density of 1 g cm
-

3
 (Vile et al., 2005), we calculated an average thickness of 196  2 µm for both mutant 

and wild-type leaves, which is similar to values obtained from direct measurements of 

leaf sections and three-dimensional imaging of mature leaves (Wuyts et al., 2010). 

Consequently, the increased area of pht4;2 leaves fully accounts for increased biomass. 

 

 

 

 

 

Genotype Area (cm
2
) FW (g) DW (g) 

Wild type 37.06 ± 2.82 0.78 ± 0.08 0.06 ± 0.01 

pht4;2-1 53.76 ± 3.52 1.47 ± 0.13 0.12 ± 0.01 

pht4;2-2 61.20 ± 3.87 1.78 ± 0.13 0.16 ± 0.01 

 

 

Table II. Rosette area and biomass at the end of the vegetative growth stage. 

Plants were grown in hydroponics for 8 wk. Values are mean ± SE, n=10. * 

Significantly different from wild type (P<0.05, Student’s t test). 
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In the course of our investigation of leaf size we noted that PHT4;2 is located 

adjacent to DET2 on chromosome 2 (loci At2g38060 and At2g38050, respectively) with 

550 bp between the PHT4;2 stop codon and the DET2 translation start site. DET2 

encodes a steroid 5α-reductase that catalyzes a key step in BR biosynthesis (Noguchi et 

al., 1999). This close proximity raised the possibility that the large-leaf phenotype we 

attributed to disruption of PHT4;2 was instead caused by over-expression of DET2 via 

T-DNA activation (Weigel et al., 2000; Ren et al., 2004). However, this possibility is 

inconsistent with our finding that the large-leaf phenotype (assessed by rosette fresh 

weight) segregated as a recessive trait in F2 progeny of a cross between wild type and 

the homozygous mutant (14 wild type [1.69  0.06 g]: 45 hemizygous mutant [1.56  

0.10 g]: 15 homozygous mutant [2.17  0.12 g]; χ
2
=3.48, p=0.17) (Fig. 16). 

Furthermore, quantitative RT-PCR indicated that DET2 transcript level was unaffected 

by pht4;2 mutation (data not shown). 
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Leaf cell size, number and ploidy 

Leaf size is dependent on both the number and the size of cells in the organ. To 

determine whether enlargement of pht4;2 leaves was associated with increased cell 

number, cell size or a combination of these parameters, we compared sizes of epidermal 

cells in the ninth rosette leaves of pht4;2 and wild-type plants at different stages of leaf 

expansion. When plants were 7-wk-old, the leaf-size phenotype was apparent such that 

the area of the ninth rosette leaves of pht4;2 plants was 25 to 30% greater than wild type. 

The average size of epidermal cells in these leaves, however, was not significantly 

different (Table III), indicating that pht4;2 leaves have at least 25% more cells than wild 

Figure 16. The pht4;2 leaf biomass phenotype segregates as a recessive trait. A pht4;2-1 

X Wt F2 population was weighed and genotyped at the end of the vegetative stage. 
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type. When this analysis was conducted with 5-wk-old plants, an age when leaf 

expansion was incomplete and leaf areas of pht4;2 and wild-type plants were 

indistinguishable, epidermal cells of mutant leaves were 30% smaller than wild type 

(Table III), implying that mutant leaves contain more cells than wild-type leaves. 

Together, these results indicate that the large-leaf phenotype of pht4;2 plants is the result 

of increased cell proliferation with subsequent expansion of individual cells to normal 

size at maturity. 

 

 

                           

 

 

 

 Leaf 9 area (cm
2
) Epidermal cell area (mm

2
) Epidermal cell number 

Incomplete expansion (5 wk)    

Wild type 1.6 ± 0.1 3,770 ± 200 42,400 ± 2650 

pht4;2-1 1.6 ± 0.1  2,820 ± 100*  56,800 ± 3,550* 

pht4;2-2 1.7 ± 0.1  2,780 ± 370*  61,210 ± 3,600* 

Complete expansion (7 wk)    

Wild type 2.2 ± 0.1 4,150 ± 660 53,060 ± 2,410 

pht4;2-1  2.7 ± 0.2* 3,930 ± 300  68,790 ± 5,100* 

pht4;2-2  2.7 ± 0.1* 3,750 ± 310  72,000 ± 2,670* 

 

 

 

Repeated cycles of endoreduplication gives rise to somatic polyploidy, which is 

positively correlated with cell and leaf size (Melaragno et al., 1993; Vlieghe et al., 

Table III. Leaf cell sizes and numbers. The ninth rosette leaf was harvested from plants at growth times 

corresponding to incomplete and complete leaf expansion. Values are mean ± SE for three leaves. Cell 

areas are calculated from three regions within each leaf. * Significantly different from wild type 

(P<0.05, Student’s t test). 
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2005). However, endoreduplication appears to be unaffected by loss of PHT4;2 because 

the distribution of ploidy levels in cells of mature pht4;2 and wild-type leaves were 

nearly identical (Fig. 17). Endoreduplication occurs after cell division ceases and 

continues until leaf expansion is complete (Beemster et al., 2005). Consequently, the 

similar distribution of ploidy levels also suggests that additional cell proliferation in 

pht4;2 leaves occurs predominantly, if not exclusively, at early stages in leaf 

development. 

 

 

                             

 

 

 

 

 

Figure 17. Distribution of ploidy in rosette leaves of WT and pht4;2 plants. DNA content of 

nuclei isolated from wild-type (black) and pht4;2-1 (white) rosette leaves were analyzed by 

flow cytometry. Values shown are mean ± SE for three independent analyses. 
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Photosynthetic activity 

Leaf enlargement and altered carbon partitioning in pht4;2 mutants suggested the 

possibility of a change in photosynthetic activity. The two mutant lines presented similar 

fluorescence characteristics to wild-type plants, as reflected in the F0 and Fm values 

(Tsimilli-Michael and Strasser, 2008) (data not shown). Therefore, the maximum 

quantum yield for PSII photochemistry (Fv/Fm) was not significantly different in the 

wild-type, pht4;2-1 and pht4;2-2 plants, 0.812 ± 0.011, 0.809 ± 0.005 and 0.801 ± 0.003, 

respectively. 

 

 

                  

 

 

 

 

 

Figure 18. Relative Electron Transport Rate (ETR) of pht4;2 plants. ETR was measured as a 

function of intensity of the photosynthetically active radiation (PAR). The ETR parameter was 

measured via the fluorescence parameter in light-adapted detached leaves. The data shown 

represent an average of three to four independent measurements ±SD (Figure by Cornelia 

Spetea and Jacob Kuruvilla). 
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To assess and compare the light saturation of photosynthetic performance in 

mutant and wild-type plants we recorded a light response curve of chlorophyll 

fluorescence and calculated the relative electron transport rate. As shown in Fig. 18, this 

analysis revealed that all plants display similar ETR values and reach saturation at 

approximately 500 µmol photons m
-2

 s
-1

.
 
Together, these data indicate that the lack of 

PHT4;2 does not modify photosynthetic electron transport in leaves. As expected from 

these data, total chlorophyll contents were not significantly different in wild-type, 

pht4;2-1 and pht4;2-2 leaves (1.14 ± 0.1, 1.15 ± 0.1 and 1.15 ± 0.1 mg g
-1

 FW, 

respectively). We concluded that the increased biomass of pht4;2 rosettes is the result of 

a larger photosynthetic area and not from increased photosynthetic rate. 

 

 

Discussion 

Although ATP/ADP exchange fulfills the energy requirement of plastids with 

limited or no photosynthetic activity, the unbalanced phosphate moieties would lead to 

detrimental accumulation of Pi and negative charge within the stroma if not countered by 

Pi export. Earlier biochemical data suggested that an unknown transporter in cauliflower 

bud amyloplasts catalyzes Pi export in the absence of exogenous counter-exchange 

substrates (Neuhaus and Maass, 1996), but the effect of Na
+
 and H

+
 levels on this 

activity was not investigated. Our data presented here suggest that PHT4;2 mediates 

Na
+
-dependent Pi transport in Arabidopsis root plastids and, given its spatial expression 

pattern, is likely to carry out the same function in other sink organs. Our analysis of 
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pht4;2 null mutants also revealed pleiotropic effects in starch accumulation throughout 

the plant and cell proliferation in leaves, which underscore the importance of plastidic Pi 

homeostasis to plant growth and physiology. 

We evaluated Pi transport in root plastids isolated from pht4;2 and wild-type 

plants and found that export and import activities were both reduced in mutant plastids, 

indicating that PHT4;2 is capable of catalyzing reversible Pi transport under our assay 

conditions (Fig. 12). Given that ATP consumption would generate considerable amounts 

of Pi within the stroma, it is possible that Pi import does not occur under physiological 

conditions. Moreover, because root plastids and chloroplasts are developmentally related 

and share many of the same biosynthetic and transport processes (Bräutigam and Weber, 

2009; Daher et al., 2010), stromal pH and inner envelope membrane potential of root 

plastids are likely to be similar to those of dark-adapted chloroplasts (pH ~7; 20-100 

mV, interior negative) (Demmig and Gimmler, 1983; Wu et al., 1991), and these 

conditions would favor Pi export.  

Pi uniport, such as the activity described by Neuhaus and Mass (1996), is an 

attractive possible mechanism for PHT4;2, as this would rectify both the Pi 

concentration and charge imbalances derived from ATP/ADP exchange. Nevertheless, 

coupled transport, e.g., symport, as indicated from the effects of Na
+
 and H

+
 we 

observed with isolated plastids, is also possible provided that the associated charge 

imbalance is rectified by an independent activity. Indeed, the addition of Na
+
, but not K

+
, 

to plastids clearly stimulated the Pi import activity of PHT4;2. Pi import was not 

stimulated by external acidic conditions (pH 6.5) in the absence of Na
+ 

(Fig. 12A), 
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indicating that the presence of a H
+
 gradient alone is insufficient to activate Pi transport. 

However, Na
+
-dependent Pi import was largely inhibited when the imposed H

+
 gradient 

was dissipated by a protonophore (FCCP, Fig. 12B), suggesting that other aspects of the 

H
+
 gradient are important for Pi transport. For example, a change in stromal pH would 

affect the fraction of Pi ionic forms, H2PO4
-
 and HPO4

2-
. Thus, if PHT4;2 preferentially 

transports monoanionic H2PO4
-
, then its inward electrochemical gradient would be 

considerably less when the stroma and external solution have the same pH than when the 

stroma is more alkaline than the external solution. Alkalinization of the stroma may 

occur via Na
+
/H

+
 exchange, as this transport process has been reported to play an 

important role in homeostasis of cytosolic and stromal pH (Song et al., 2004).  

Pi export mediated by PHT4;2 was also found to be Na
+
 dependent (Fig. 12C). 

We propose that this export activity is the in vivo function of PHT4;2 in 

nonphotosynthetic plastids, as this would enable homeostasis with respect to Pi 

concentration. Although Pi export under conditions where Na
+
 was present both during 

loading and export would suggest that transport can occur in the absence of a Na
+
 

gradient, a Na
+
 gradient may in fact exist under these conditions if Na

+
/H

+
 exchangers 

use the imposed H
+
 gradient to import Na

+
 into the stroma. Additional studies using 

mutants with limited plastidic Na
+
/H

+
 exchange activities are needed to resolve this 

possibility. However, it is important to note that the lack of significant Pi export when 

the composition of the import and export solutions were the same (no pH or Na
+
 

gradient) strongly supports the idea that PHT4;2 requires a Na
+
 gradient. Furthermore, 

this requirement may be common to PHT4 transporters because mutational analysis 
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identified a Ser that is critical for the Na
+
-dependency of Pi transport by PHT4;1, and 

this amino acid is fully conserved in the PHT4 family (Ruiz Pavon et al., 2010).  

pht4;2 mutants exhibited abnormal starch accumulation as well as increased leaf 

cell proliferation with a concomitant increase in biomass. These pleiotropic effects could 

initiate with altered homeostasis of Pi levels in the stroma of root plastids. Specifically, 

we expected a defect in Pi export to result in elevated stromal Pi levels. Confirmation of 

this effect through direct measurement in isolated plastids was compromised by ongoing 

metabolism during the isolation procedure. However, reduced starch accumulation in 

pht4;2 roots was consistent with an increase in stromal Pi concentrations, as Pi is an 

inhibitor of starch biosynthesis (Preiss, 1982; Ballicora et al., 2004).  

Starch levels were also reduced in pht4;2 leaves. The lack of PHT4;2 transcripts 

and protein in wild-type leaves suggests that the starch phenotype in mutant leaves is a 

secondary consequence of the metabolic defect in roots. For example, although the 

altered expression of other plastid transporter genes and APS1 in roots, but not leaves, 

(Fig. 14A) suggests a local response to the defect in root plastids, altered expression of a 

subset of starch and Suc metabolism genes in leaves, but not roots, (Fig. 14B) implicates 

a defect in long-distance signalling of metabolic status. The strong induction of GPT2 in 

pht4;2 roots further substantiates the relationship between PHT4;2 and starch 

accumulation because GPT2 is also induced in a number of starch-defective mutants 

(Kunz et al., 2010). 

The partitioning of carbon between starch and Suc biosynthetic pathways is 

tightly regulated to coordinate carbon demands throughout the day and night. Thus, it 
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might be expected that reduced starch accumulation in pht4;2 plants would be 

accompanied by an increase in Suc levels. However, no significant changes were 

detected in Suc levels in roots or leaves of pht4;2 mutants. This finding does not 

preclude the possibility that the partitioning of carbon to other sugars, amino acids or 

lipids is altered, and that one or more of these metabolites are directly involved in 

stimulating cell proliferation in pht4;2 leaves. Additional studies that include metabolite 

profiling of roots and leaves of pht4;2 and wild-type plants are needed to resolve these 

possibilities.  

An increase in the number of cells in pht4;2 leaves fully accounted for the 

greater rosette area and biomass, as epidermal cell sizes and leaf thickness were 

equivalent to wild type when leaves were fully expanded. When leaves were examined 

prior to full expansion the increase in cell number was already evident, indicating that 

cell proliferation was augmented early in leaf development, which is in accord with the 

timing of the proliferative phase of leaf growth (Beemster et al., 2005). However, there 

was a corresponding reduction in cell size at this time point such that leaf sizes were 

equivalent to wild type. Thus, the leaf-size phenotype was apparent only after cells 

expanded to normal sizes. Although we detected no change in relative photosynthetic 

electron transport rate associated with pht4;2 mutations, the greater total leaf area of the 

mutants resulting from increased cell proliferation would provide a proportional increase 

in the photosynthetic activity per plant.  

The mechanisms controlling the size of leaves and other organs are poorly 

understood, largely because this trait is regulated through multiple pathways (Gonzalez 
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et al., 2009; Krizek, 2009). Moreover, Gonzalez et al., (2010) recently demonstrated that 

several of these pathways, including those associated with auxin, jasmonate, 

brassinosteroid and GA synthesis or signaling, as well as transcriptional regulation by 

GROWTH-REGULATING FACTOR5 (GRF5), which is not associated with changes in 

phytohormones, independently control cell proliferation and leaf size. Indeed, the 

phenotypes of lines evaluated in this study differ from each other and from pht4;2, 

primarily with respect to leaf positions. For example, overexpression of AVP1, a 

vacuolar pyrophosphate-dependent H
+
 pump that is involved in auxin transport (Li et al., 

2005), yields rosettes with a greater number of leaves, all of which are enlarged. 

Overexpression of JAW1, which is involved in the regulation of jasmonate biosynthesis 

(Palatnik et al., 2003; Schommer et al., 2008), leads to enlargement of only the first 

rosette leaves and these have a characteristic uneven shape. Leaf enlargement is also 

restricted to the first few rosette leaves in lines overexpressing GRF5 and BRI1, a 

brassinosteroid receptor (Wang et al., 2001; Horiguchi et al., 2005), whereas 

overexpression of GA20OX1, an enzyme involved in GA synthesis (Huang et al., 1998), 

yields enlarged young but not old leaves. 

Cell cycle progression is responsive to carbon status (Riou-Khamlichi et al., 

2000), and it is possible that the influence of pht4;2 mutations on starch accumulation 

constitutes one of the multiple pathways that converge on control of cell proliferation 

and organ size. Starch-deficient mutants do not have abnormally large leaves (Ventriglia 

et al., 2008), suggesting that reduced starch accumulation is unlikely to be causal for the 

increase in cell proliferation underlying the pht4;2 leaf-size phenotype. However, starch 
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accumulation in such mutants is affected throughout the entire plant so comparisons may 

be misleading if the leaf-size phenotype is related to carbon balance between source and 

sink organs. In addition, our results indicate that the mechanism responsible for 

increased cell proliferation is non-autonomous, suggesting that PHT4;2 plays a key role 

in coordinating metabolic signals throughout the entire plant.  

 

Methods 

Plant material and growth conditions  

Arabidopsis thaliana T-DNA insertion lines SALK_019289 (pht4;2-1),  and 

SALK_070992 (pht4;2-2) were obtained from ABRC. Insertion sites and zygosity were 

confirmed by PCR using combinations of PHT4;2-specific primers and primers that 

anneal to the T-DNA right and left borders. The sequence of amplicons that spanned 

insertion junctions was confirmed. Homozygous pht4;2-1 and pht4;2-2 plants were 

screened by DNA gel blot analysis using the nptII segment of the binary plasmid 

pROK2 as probe to identify individuals with insertions at a single locus.  

Plants were grown in chambers at 21°C with 70% relative humidity and an 8 h 

photoperiod (150 μmol m
-2

 s
-1

) in soil (SunGro Redi-earth, Bellevue, WA) or 

hydroponically as previously described (Noren et al., 2004; Guo et al., 2008a). 

 

Analysis of PHT4;2 promoter-GUS expression 

A PHT4;2 promoter-GUS transcriptional fusion (Guo et al., 2008a) was 

introduced into Agrobacterium tumefaciens strain GV3101 and used to transform 
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Arabidopsis (Clough and Bent, 1998). Transgenic seedlings were selected on half-

strength Murashige and Skoog medium (Murashige and Skoog, 1962) containing 25 μg 

mL
-1

 kanamycin. At least 12 independent lines were examined for GUS activity by 

histochemical detection. Seedlings, flowers and siliques were fixed in 50 mM sodium 

phosphate pH 7.0, 4% (v/v) formaldehyde then infiltrated with 50 mM sodium 

phosphate pH 7.0, 0.1% (v/v) Triton X-100, 0.5 mM potassium ferrocyanide, 0.5 mM 

potassium ferricyanide, 10 mM EDTA, 0.05% (w/v) 5-bromo-4-chloro-3-indolyl 

glucuronide (X-gluc), and then incubated in the dark at 37˚C overnight. Green tissues 

were de-stained with 70% (v/v) ethanol prior to observation. Images were captured with 

a Nikon Coolpix 4300 camera mounted on an Olympus LMS 225R dissection 

microscope.  

 

Quantitative RT-PCR analysis 

Total RNA was isolated from roots or leaves using TRI reagent (Sigma Aldrich, 

St. Louis, MO), and traces of contaminating DNA were eliminated with TURBO DNA-

free (Ambion, Austin, TX). Three biological replicates were used for each analysis. 

First-strand cDNA was synthesized from 1 µg total RNA using SuperScript first-strand 

cDNA synthesis kit (Invitrogen, Carlsbad, CA). Real-time PCR was conducted with 

Power SYBR Green Master Mix and the ABI Prism 7500 sequence detection system 

(Applied Biosystems, Foster City, CA). Expression levels were normalized to EIF-4A2 

(Guo et al., 2008a).  
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Root plastid isolation and Pi transport assays 

Plastids were isolated from the entire root system of 6-wk-old plants as described 

(Emes and England, 1986). Briefly, roots (10-15 g) were washed in distilled water, 

chilled at 4ºC for 30 min then ground in four 5 s bursts in a blender with 40 mL of cold 

isolation buffer: 50 mM K-Tricine (pH 8.0), 0.3 M sorbitol, 1 mM EDTA, 2 mM MgCl2 

and 0.1 % (w/v) freshly added BSA. The homogenate was filtered through two layers of 

Miracloth then centrifuged at 1500 g for 3 min at 4ºC. The pellet was suspended in 0.5 

mL isolation buffer then transferred to a tube containing 40 mL 10% (v/v) Percoll in 

isolation buffer. The mixture was centrifuged at 3000 g for 10 min at 4ºC. Intact plastids 

were pelleted while broken plastids and cell debris remained at the top of the Percoll 

solution. The intact plastids were suspended in 20 mL isolation buffer then pelleted 

again by centrifugation at 1500 g for 3 min. The pellet was finally suspended in 0.5 mL 

isolation buffer and maintained at 4ºC. Root plastids were typically 70-75% intact as 

estimated by phase contrast microscopy. The protein content of the plastid suspension 

was determined spectrophotometrically. For plastid enrichment, the activity of nitrite 

reductase (NiR) was assayed as previously described (Takahashi et al., 2001). For plastid 

purity, vacuolar contamination was determined by α-mannosidase (Stitt et al., 1989), and 

combined mitochondrial, cytosolic and peroxisomal contamination was determined by 

NADH-malate dehydrogenase (NADH-MDH) (Schneider and Keller, 2009). 

Pi uptake by freshly isolated root plastids was assayed in 30 µL assay buffer at a 

final protein concentration of 1 mg mL
-1

 for 1 min at 22ºC. The assay buffer contained 

50 mM Mg-HEPES adjusted to either pH 6.5 or 7.5 as indicated, 0.3 M sorbitol, 1 mM 
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MgCl2 and 0 or 5 mM NaCl as indicated. The final concentration of [
32

P]orthophosphate 

(60 mCi/mmol; 1 mCi = 37 MBq; Perkin Elmer, USA) was 50 µM. Transport inhibition 

studies were carried out with 150 µM mersalyl, 6 mM pyridoxal-5'-phosphate (PLP) or 

50 µM FCCP, added 1 min before addition of Pi. Transport was terminated by the 

addition of 170 µL of cold assay buffer followed by centrifugation at 16000 g for 1 min. 

The pellet was washed with 200 µL cold assay buffer then suspended in 30 µL of 2 mM 

dodecyl maltoside and incubated for 5 min on ice. Accumulated Pi was measured by 

liquid scintillation spectrometry in 1.5 mL distilled water. Control experiments 

performed in the presence of 10 mM potassium phosphate buffer (pH 6.5 and 7.5) 

indicated 10-15% nonspecific binding, which was subtracted from the corresponding 

measured activity. Root plastids isolated from wild type and mutants were assayed in 

parallel for each experiment. Results are the average of 2-3 independent experiments 

performed in triplicates ± SD. 

Pi export studies were conducted with the same buffers as for uptake. Plastids 

were first preloaded with Pi for 1 min in the indicated buffer then washed twice with the 

same buffer to remove excess Pi. Preloaded plastids were then incubated for 1 min in the 

indicated assay buffer at the same temperature. The assay was terminated by 

centrifugation, and the amounts of Pi remaining in the plastid pellet and exported to the 

assay buffer were determined by scintillation counting as described above. Results are 

the average of two independent experiments performed in triplicates ± SD. 
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SDS-PAGE and Western blotting 

Root plastid proteins were separated by electrophoresis using 14 % (w/v) 

acrylamide SDS-gels. Following electroblotting to PVDF membranes (Millipore, 

Bedford, MA), the PHT4;2 protein was immunodetected using a specific antibody 

against the N-terminal peptide RYSSESDGKRRNA produced in rabbit by Innovagen 

(Lund, Sweden). The blots were further reacted with secondary donkey anti-rabbit 

antibody conjugated with horseradish peroxidase and chemiluminescent substrate kit 

(GE Healthcare, UK). 

 

Extraction and measurement of Suc and starch 

Leaf and root samples were harvested at the indicated times in the photoperiod 

then immediately frozen in liquid nitrogen. Suc was extracted with 80% (v/v) ethanol, 

5% (v/v) formic acid at 80ºC for 20 min then the extraction was repeated with 80% 

ethanol. The supernatants were pooled, lyophilized, suspended in 10 mM Na-acetate (pH 

5.5) then assayed for Suc. Pellets were dried and starch was gelatinized and hydrolyzed 

as described (Smith and Zeeman, 2006). Suc and starch concentrations were quantified 

using coupled assays in which the formation of NADH was monitored by absorbance at 

340 nm using a Synergy HT microplate reader. All assays were performed in duplicate 

and values were determined from standard curves. At least four independent samples 

were collected for each time point and results are reported as mean ± SE. 
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Leaf and cell size analysis 

The area of rosettes and individual rosette leaves was determined from digital 

images that included reference objects using the histogram function of Adobe 

Photoshop. To determine epidermal cell area, nail polish impressions of the abaxial 

epidermis were prepared from the ninth rosette leaf of at least three wild-type and pht4;2 

plants. Images were captured with constant magnification (400x) for three different 

locations in each leaf between 25% and 75% of the distance between the tip and the base 

of the blade, halfway between the mid-rib and leaf margin. Cells in each field of view 

were counted, and cell areas (mean ± SE) were determined from a total of at least 500 

cells.  

 

Ploidy analysis 

Nuclei were isolated from fully expanded leaves of 8-wk-old plants as described 

previously (Galbraith et al., 1983). Briefly, leaves were finely chopped with a razor 

blade in 2 ml of ice-cold buffer containing 45 mM MgCl2, 30 mM sodium citrate, 20 

mM MOPS, pH 7 and 1 mg ml
-1 

Triton X-100. Tissue fragments were removed by 

filtration through 36 µm nylon mesh, and DNase-free RNase (10 µg ml
-1

 final) and 

propidium iodide (100 µg ml
-1

 final) were added. Nuclei were incubated for 30 min in 

the dark at room temperature before analyzing the distribution of DNA content using a 

FACScan flow cytometer. Results are from three independent plants of each genotype 

and at least 4000 nuclei for each analysis. 
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Photosynthetic activity in detached leaves 

Chlorophyll fluorescence was measured using a pulse-amplitude fluorometer 

model PAM-210 (Walz, Effeltrich, Germany) in leaves detached from 16-h dark-adapted 

plants. The dark-adapted state fluorescence yield, F0, was recorded by using a weak 

measuring light whereas the maximum fluorescence yield, Fm, was measured after 

application of a 1-sec pulse of saturating visible light (Schreiber et al., 1986). The 

maximum quantum yield of photosystem II photochemistry (Fv/Fm) was calculated using 

the equation Fv/Fm = (Fm-F0)/Fm. The photosynthetic electron transport rate (ETR) was 

determined in detached leaves using PAM-210 by measuring the quantum yield of PSII 

photochemistry (Y’) after every 20 sec of illumination with photosynthetically active 

radiation (PAR) of 0 to 1850 µmol photons m
-2

 s
-1

, increased stepwise. The relative ETR 

was calculated by the equation ETR = 0.84  0.5  PAR  Y (Genty et al., 1989). It was 

assumed that 84% of the incident light was absorbed (factor 0.84), and that an equal 

fraction of the absorbed quanta is distributed to photosystem II and I (factor 0.5). Results 

are the mean of 3 to 4 independent measurements ± SD. 
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CHAPTER IV 

CHARACTERIZATION OF THE THYLAKOID PHOSPHATE TRANSPORTER 

PHT4;1 OF ARABIDOPSIS THALIANA 

 

Introduction 

The thylakoid membrane serves as a structural support for light-driven electron 

and proton transport, which are required for NADP
+
 reduction and synthesis of ATP. 

Multiple protein complexes are found within or tightly associated with thylakoid 

membranes. These include photosystems (PS) I and II, the cytochrome b6f complex and 

ATP synthase. Several thylakoid transmembrane proteins that do not appear to be 

directly associated with these complexes have also been identified (Andersson and 

Barber, 1994; Spetea et al., 2004; Thuswaldner et al., 2007). One of these proteins was 

recently confirmed to be an ATP/ADP transporter that supplies the thylakoid lumen with 

ATP required for energy-dependent reactions within this membrane-bound compartment 

(Thuswaldner et al., 2007).  

Plants require light to carry out photosynthesis; however, exposure to high levels 

of light increases the production of reactive oxygen species and subsequent photo-

oxidative damage. With prolonged exposure, photo-oxidative damage can cause death of 

the exposed tissue and eventually the death of the plant (Muller et al., 2001). Although 

light stress in plants is generally interpreted as excess light intensity, a more accurate 

definition is the absorption of light beyond what can be utilized during photosynthesis. 

Thus, light stress occurs when the ratio of photon flux density (PFD) to photosynthetic 
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capacity is high. Plants have developed different mechanisms for photo-protection and 

optimization of photosynthesis and growth under a wide range of light intensities, such 

as the movement of chloroplasts or whole leaves (Demmig-Adams and Adams, 1992; 

Muller et al., 2001), adjustment of leaf angle, increasing surface reflectance or 

production of other pigments that help decrease the amount of light absorbed by 

chlorophyll (Demmig-Adams and Adams, 1992). 

The maintenance of Pi homeostasis within chloroplasts subcompartments is 

crucial to adequate chloroplast functionality. Several chloroplast inner envelope-

localized transport proteins have been identified that facilitate the movement of Pi 

between the cytosol and chloroplast stroma (Flügge et al., 1989; Fischer et al., 1997; 

Eicks et al., 2002; Knappe et al., 2003). These proteins serve key roles in the control of 

photosynthesis and carbon partitioning. Recent data indicate that at least one Pi 

transporter, PHT4;1, is located in the thylakoid membrane (Ruiz Pavón et al., 2008) but 

little is known of the physiological significance of this activity or the role of Pi in the 

thylakoid lumen. 

As part of a collaboration with Dr. Cornelia Spetea (University of Gothenburg, 

Sweden), we have isolated an Arabidopsis mutant that lacks a functional copy of the 

PHT4;1 thylakoid Pi transporter and used this mutant to study the influence of PHT4;1 

on plant growth and photosynthetic activity. Rosette leaves of mature pht4;1 plants are 

smaller than those of wild-type plants and exhibit altered transcriptional responses to 

light and other abiotic stresses as well as altered photosynthetic properties. These results 

underscore the importance of thylakoid Pi homeostasis for plant growth and health. 
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Results 

Identification of a pht4;1 Ds transposon insertion mutant  

To gain a better understanding of the role of PHT4;1 in thylakoid functions and 

in overall plant metabolism, I isolated a mutant line, pht4;1-1, that lacks a functional 

PHT4;1 allele. The insertion was confirmed by PCR and sequencing of the amplicons 

spanning the insertion junctions. The pht4;1-1 line has a Ds transposon inserted 131 bp 

downstream of the translation start site, with no insertion or deletion of PHT4;1 

sequence at the insertion site. The structure of the mutant locus is shown in Fig.19A. 

The pht4;1-1 homozygous line was also screened by DNA gel blot for the 

presence of additional insertions (data not shown), and only homozygous plants that 

lacked ectopic insertions were used for subsequent studies. RT-PCR analysis of leaf 

RNA using primers that anneal downstream of the insertion site revealed no PHT4;1 

transcript in the homozygous plants suggesting that pht4;1-1 mutants are null (Fig. 19B).  
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Localization of PHT4;1 to thylakoid membranes 

The localization of the endogenous PHT4;1 protein to thylakoids was confirmed 

by isolating thylakoid membranes from wild-type Arabidopsis and subjecting the 

proteins to immunoblot analysis. A single band of approximately 45 kDa was detected in 

wild-type preparations with a PHT4;1 specific antibody (Fig. 20). The 45 kDa band was 

not detected in thylakoid preparations from pht4;1-1 mutants, further verifying that this 

mutation is null.  

 

Figure 19. Molecular characterization of pht4;1-1 Ds transposon insertion mutants. A, Scheme 

indicating the positions of T-DNA insertions in pht4;1-1. Insertions were confirmed by PCR 

and DNA sequence. Arrows represent primers used for RT-PCR. B, RT-PCR analysis of total 

RNA isolated from leaves of wild-type and pht4;1-1 plants. 
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Plant size 

The pht4;1-1 mutants showed no obvious developmental phenotype when the 

plants were grown under a 14 h photoperiod. In this regard, pht4;1-1 mutants are similar 

to pht4;2 mutants, since both transporter mutants show no phenotype under long-day 

conditions. However when pht4;1-1 plants were grown under a 8 h photoperiod, they 

showed a conditional phenotype. When grown under short day conditions, rosette leaves 

of pht4;1-1 plants are smaller than leaves of wild-type plants (Fig. 21). No significant 

difference in the number of leaves per rosette was observed, which is indicative of 

reduced leaf size rather than a decreased rate of leaf emergence. 

The smaller leaf size phenotype is observed both with plants grown on soil and 

hydroponically. Rosette areas of fully expanded pht4;1-1 plants are about 80% of 

Figure 20. Thylakoids of pht4;1 mutants lack detectable PHT4;1 

protein. Immunoblot with anti-PHT4;1 antibody of thylakoids 

isolated from wild type (WT) plants and pht4;1 plants (10 μg 

Chl/lane) (Figure by Patrik M. Karlsson and Cornelia Spetea). 
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wildtype, with a corresponding decrease in both rosette fresh weight and dry weight 

(Table IV). 

 

 

 

                  

 

 

 

 

 

 

 

 

 

Figure 21. Decreased rosette size of pht4;1-1 mutants. Rosettes of 

representative 5-week old wild type and pht4;1-1 plants. 
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Genotype  Diameter (cm) FW (mg) DW(mg) 

Wild type  4.76±0.13 135.8±8.3 12.4±9 

pht4;1-1  3.95±0.16 107.1±9.1 9.9±1 

p value  0.0012 0.015 0.038 

 

 

 

Segregation analysis of pht4;1-1 was carried out to determine linkage of pht4;1-1 

mutation with the smaller rosette phenotype. F2 progeny of a cross between pht4;1-1 

and wild-type were grown with an 8 h photoperiod. At the end of the vegetative growth 

phase (8 weeks), plants were genotyped and rosette fresh weights were determined (8 

wild type [0.037  0.026 g]: 8 hemizygous mutant [0.27  0.027 g]: 8 homozygous 

mutant [0.28  0.032 g]; χ
2
=3.48, p=0.03). The results indicated that the pht4;1-1 

mutation co-segregates with the small-rosette phenotype and because the dry weights of 

hemizygous plants were equivalent to the homozygous plants,  the growth phenotype is a 

haplo-insufficient trait (Fig. 22).  

 

 

Table IV. Rosette diameter and biomass at the end of the vegetative growth 

stage (8 wk). Values are mean ± SE, n=10. 
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Complementation of the pht4;1 size phenotype 

To confirm that disruption of PHT4;1 rather than an unrelated but linked 

mutation is responsible for the reduced leaf size phenotype of pht4;1-1 plants, we tested 

whether a PHT4;1 cDNA clone complements  this phenotype. A PHT4;1 cDNA was 

cloned downstream of the CaMV35S promoter and was transformed into wild-type and 

pht4;1-1 backgrounds. Introduction of the wild-type copy of PHT4;1 complemented the 

rosette growth defect of pht4;1-1 plants, confirming that the absence of the functional 

Figure 22. The pht4;1-1 rosette size phenotype segregates as a haplo-insufficient 

trait. A pht4;1-1 X Wt F2 population was weighed and genotyped at the end of the 

vegetative stage. N=8, p < 0.03 
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PHT4;1 protein was the cause for the reduced rosette growth phenotype. Over-

expression of PHT4;1 in wild-type plants did not affect rosette size (Fig. 23). 

 

 

                         

 

 

 

 

 

   

 

Effect of pht4;1-1 mutation on expression of stress-response genes 

Reduced leaf growth of pht4;1-1 plants may be associated with an environmental 

stress response. That is, pht4;1-1 plants may be more sensitive to abiotic stress than 

wild-type plants, and as a consequence, exhibit slower growth rate. To assess stress 

Figure 23. Rosette size complementation of a PHT4;1 over-expression (OE) line. A CaMV35S-

PHT4;1 construct was introduced into wild type and pht4;1-1 plants. Over-expressing lines 

showed a rosette size comparable to that of wild type, and bigger than rosettes of pht4;1-1 plants, 

indicating that absence of PHT4;1 protein can cause decreased rosette size. 



80 

 

responses of wild-type and pht4;1-1 plants, detached leaves were exposed to high light, 

high salinity, oxidative and cold stress. Expression levels of the stress-induced genes 

VDE (violaxanthin de-epoxidase), ZEP (zeaxanthin epoxidase), CBF3 (C-repeat binding 

protein 3), sHSP (class 1 small heat shock protein) and the chlorophyll-binding protein 

ELIP2 (early light-induced protein 2) (North et al., 2005; Kleine et al., 2007; Miura et 

al., 2007; Rossel et al., 2007) were quantified by qRT-PCR.  

 The pht4;1-1 leaves showed an increased expression of VDE under both salinity 

and cold stress (Fig. 24). There was no significant change in relative expression level of 

ZEP and CBF3 between wild-type and pht4;1-1. Relative expression levels of sHSP was 

higher under both high light and oxidative stress in pht4;1-1. Finally, under high light 

treatment, pht4;1-1 leaves showed a 50% decrease in relative expression levels of ELIP2 

when compared to wild-type leaves. These results confirm that pht4;1-1 plants exhibit a 

wide range of altered stress responses, some of which may be contributing to the reduced 

leaf size phenotype. 
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Discussion 

In nature, plants are exposed to varying light intensities, and thus may have 

evolved regulatory responses to protect the photosynthetic machinery from light stress. 

High light stress, like many other types of environmental stresses, results in the 

production of reactive oxygen species (Niyogi, 1999) that damage cellular components 

and even cause death. Chloroplasts and specifically, thylakoids, are important stress 

sensors in plants. In thylakoid membranes, the close proximity of O2 liberated from 

water to the electron transport chain can generate reactive oxygen species that can 

Figure 24. Relative expression levels of stress-induced genes in pht4;1-1 leaves. 

Expression levels were normalized to EIF-4A2 and are relative to the respective WT 

control. C, control; HL, high light; O, oxidative; S, salinity; Cl, cold. 

*significant at p<0.05, Student’s T-test. 
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potentially oxidize pigments, proteins and lipids (Pessarakli, 1999). Hence, maintenance 

of homeostasis within the thylakoid compartments is crucial to plant response to abiotic 

stress. The PHT4;1 transporter localizes to the thylakoid membranes, and its expression 

is regulated by the circadian clock (Guo et al., 2008b), peaking in during the light. The 

present work indicates that PHT4;1 is necessary for appropriate responses to a number of 

abiotic stresses.  

Reduction of photosynthetic efficiency can protect plants from photodamage. 

This mechanism helps deflect excessive light and dissipate it in the form of heat. Such a 

transition, known as non-photochemical quenching (NPQ), involves activation of the 

xanthophyll cycle  In one of these biochemical reactions, the carotenoid violaxanthin 

(Vio) is transformed to zeaxanthin (Zea) by the enzyme violaxanthin de-epoxidase 

(VDE) (Demmig-Adams and Adams, 1992). However, the exact role of zeaxanthin in 

the quenching process is still unclear. 

An increase in light dissipation and reduction of photosynthetic efficiency may 

have negative effects on plant development. An analysis of pht4;1 plants under 

restrictive photoperiod conditions (8h photoperiod) showed that their leaves were 

smaller when compared to wild-type. Interestingly, this phenotype is reminiscent of the 

Arabidopsis ascorbate-deficient mutants, vtc1 and vtc2, which also exhibit reduced leaf 

size and lower photosynthesis under short (10h) photoperiod conditions (Müller-Moulé 

et al., 2004). Reduced ELIP2 transcript levels in pht4;1-1 leaves that have been exposed 

to HL stress support this hypothesis, as ELIP transcript levels transiently increase shortly 

after HL exposure, and suppression of ELIP1 and ELIP2 can cause changes in 
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chlorophyll and zeaxanthin levels, increasing light sensitivity and reducing 

photosynthesis. The process by which ELIP accumulation causes these changes is not 

clear, although it is thought that it interacts with some components of the chloroplast 

biosynthesis pathway, thereby reducing the levels of some chlorophyll precursors 

(Tzvetkova-Chevolleau et al., 2007).  

 In Arabidopsis, expression of both ZEP and VDE is down-regulated by drought 

stress; however, an increase in VDE was observed in pht4;1-1 mutants. VDE catalyzes 

the conversion of violaxanthin to zeaxanthin, which is the first committed precursor for 

abscisic acid (ABA) synthesis. ABA signaling triggers responses to various abiotic 

stresses like drought, salinity and cold, among others. The increased expression of VDE 

in pht4;1-1 plants correlates with the increased sensitivity of pht4;1-1 mutants to abiotic 

stress.  

Taken together, these results indicate that disruption of the PHT4;1 renders 

plants hypersensitive to multiple abiotic stresses, including photooxidative damage. 

Given the decreased growth of pht4;1-1 plants, it is possible that these hypersensitivities 

lead to a reduction in net photosynthetic rate. Additional experiments are needed to 

determine the specific roles of PHT4;1 in photosynthesis. It will be particularly 

interesting to elucidate the relationships between PHT4;1, xanthophyll pigments and 

non-photosynthetic quench.  
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Methods        

Plant material and growth conditions  

An Arabidopsis thaliana (L.) Heynh Ds transposon insertion line (ABRC stock 

#CS171768, pht4;1-1) was obtained from the JIC Gene Trap collection.  Insertion site 

and zygosity were confirmed by PCR using combinations of PHT4;1-specific primers 

and primers that anneal to the transposon Ds borders. The sequence of amplicons that 

spanned the insertion junctions was confirmed by DNA sequencing. Homozygous 

pht4;1-1  plants were screened by DNA gel blot analysis using the GUS segment of the 

Ds transposon as a probe to identify individuals with insertions at a single locus. Plants 

were grown in chambers at 21°C with 70% relative humidity and an 8 h photoperiod 

(150 μmol m
-2

 s
-1

) in soil (SunGro Redi-earth, Bellevue, WA) or hydroponically as 

previously described (Noren et al., 2004; Guo et al., 2008b). 

 

RT-PCR analysis 

Total RNA was isolated from wild-type and pht4;1-1 leaves using TRI reagent 

(Sigma Aldrich, St. Louis, MO), and traces of DNA were eliminated with the TURBO 

DNA-free kit (Ambion, Austin, TX). First-strand cDNA was synthesized using 

SuperScript first-strand cDNA synthesis kit (Invitrogen, Carlsbad, CA). RT-PCR was 

conducted using primers that align downstream of the Ds transposon insertion. RT-PCR 

with primers specific to EIF-4A2 was used an RNA input control.  
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Abiotic stress treatments 

Wild-type (Ler) and pht4;1-1 plants were grown in soil in individual pots for 7 

weeks with an 8 hr photoperiod, 125 µmol m
-2

 s
-1

 light intensity. For each treatment, the 

9
th

 or 10
th

 fully expanded rosette leaf was harvested from 3 individual plants 1 hr after 

onset of light so that the 3 hr treatments ended at the midpoint of the photoperiod. Unless 

indicated otherwise, stress treatments were carried out in ambient light (~12 µmol m
-2

 s
-

1
) at room temperature (22°C). Leaves were floated with abaxial side facing up. 

 For control conditions, leaves were floated in water at room temperature. For 

high light treatment, leaves were floated in 600 ml of water as a heat sink while 

subjected to 1000 µmol photons m
-2

 s
-1 

light intensity provided by a 150-W fiber optic 

system with dual gooseneck. Oxidative stress and salt treatments were carried out by 

floating the leaves in 20 mM hydrogen peroxide and 200 mM NaCl, respectively. 

Finally, the cold treatment consisted of floating the leaves in 4°C water. After 3 hr 

treatments, individual leaves were transferred to centrifuge tubes, snap-frozen in liquid 

nitrogen and stored at -80°C. 

Total RNA was isolated from leaves using TRI reagent (Sigma Aldrich, St. 

Louis, MO), and traces of DNA were eliminated with TURBO DNA-free (Ambion, 

Austin, TX). First-strand cDNA was synthesized from 1 µg total RNA using SuperScript 

first-strand cDNA synthesis kit (Invitrogen, Carlsbad, CA). Real-time PCR was 

conducted with Power SYBR Green Master Mix and the ABI Prism 7500 sequence 

detection system (Applied Biosystems, Foster City, CA). Expression levels were 

normalized to EIF-4A2 (Guo et al., 2008b). 
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SDS-PAGE and Western blotting 

Arabidopsis thylakoids were isolated as described by Norén et al. (1999), and 

thylakoid proteins were separated by electrophoresis using 14 % (w/v) acrylamide SDS-

gels. Following electroblotting to PVDF membranes (Millipore, Bedford, MA), the 

PHT4;1 protein was immunodetected using a peptide antibody against the 15 residues 

within the N terminus of the protein (73–88, CEGDKVSGNNDVVSDSP) produced in 

rabbits and purified by affinity chromatography by Innovagen (Lund, Sweden). The 

blots were further probed with secondary donkey anti-rabbit antibody conjugated to 

horseradish peroxidase and developed using a chemiluminescent substrate kit (GE 

Healthcare, UK). To verify the purity of the thylakoid preparations, antibodies against 

the thylakoid LHCII protein (Agrisera, Umeå, Sweden) were employed (data not 

shown). 

 

Leaf size analysis 

The area of rosettes was determined from digital images that included reference 

objects using the histogram function of Adobe Photoshop, as described in Chapter III. 
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CHAPTER V 

CONCLUSIONS AND FUTURE DIRECTIONS 

 

The PHT4 family of plant organellar Pi transporters was initially identified by 

sequence similarity to SLC17/Type I Pi transporters, a family of proteins that carry out 

transport of Pi, organic anions and chloride in animal cells. Functional studies confirmed 

that each of the six members of the PHT4 family in Arabidopsis catalyzes Pi transport 

with high specificity when expressed in yeast (Guo et al., 2008a). Subcellular 

localization studies with GFP fusions revealed that five of these proteins localize to 

plastids and one localizes to the Golgi apparatus. Phylogenetic analysis suggests that the 

PHT4 transporter family diverged prior to the monocot-dicot split about 140-150 Myr 

ago, as all six members have been preserved as distinct orthologs in Arabidopsis and 

rice. This level of conservation suggests unique physiological roles for each of the PHT4 

members.  

The current study has revealed differences in the spatial and temporal expression 

of the plastid-localized members of the Arabidopsis PHT4 Pi transporter family, which 

further supports the idea that the individual members of this family have specialized 

rather than redundant roles. Additionally, I presented evidence for the role of the PHT4;1 

and PHT4;2 transporters in plant metabolism and development. 

In nonphotosynthetic plastids, the strict requirement for import of ATP and 

precursor metabolites to fuel anabolic processes like synthesis of starch, fatty acids and 

amino acids (Neuhaus and Emes, 2000) would lead to an imbalance of stromal Pi if not 
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countered by unidirectional Pi export (Neuhaus and Maass, 1996).  Based on expression 

patterns, I hypothesized that PHT4;2 contributes to this activity in roots and other non-

photosynthetic tissues, and that PHT4;3 and PHT2;1 supplement PHT4;2 in distinct root 

plastid types (Fig. 2). Reduced Pi transport activities of plastids isolated from pht4;2 

roots supports this hypothesis (Fig. 12). Limited accumulation of starch in pht4;2 roots 

(Fig. 13) further supports the in vivo role for PHT4;2 in Pi export because starch 

synthesis is allosterically inhibited by Pi accumulation (Preiss, 1982; Sivak and Walker, 

1986; Ballicora et al., 2004). Although it could be expected that the reduction in starch 

levels would lead to a corresponding accumulation of sucrose (Suc), I found no 

significant differences in the accumulation of Suc in pht4;2 roots or leaves. This does 

not preclude the possibility that carbon partitioning defects involving other sugars or 

amino acids and lipids exist. 

 The pht4;2 mutants exhibit an unexpected growth phenotype in which fully-

expanded leaves are larger than those of wild type when plants are grown with a short 

photoperiod. This leaf-size phenotype is a function of increased cell number with no 

change in cell size (Table II). Phytohormones such as auxin and cytokinin can affect 

organ formation and influence cell division and expansion. Therefore, several 

experiments were performed to determine whether changes in these hormones and their 

respective signaling pathways were responsible for the pht4;2 leaf-size phenotype. First, 

the pht4;2 mutants were crossed to the high-auxin mutant yucca (Zhao et al., 2001) and 

the low-auxin mutant IAAL (Romano et al., 1991), and the resulting double mutants 

pht4;2/yucca and pht4;2/IAAL  were compared to wild-type and the individual parents. 
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The double mutants were indistinguishable from the yucca and IAAL parents, suggesting 

that the severe auxin phenotypes of yucca and IAAL mask the effects of the pht4;2 

mutation on leaf size. As an alternative approach, I crossed pht4;2 to plants carrying the 

DR5::GUS auxin-responsive reporter and analyzed progeny for altered GUS expression 

patterns. I did not observe any effect of the pht4;2 mutation on DR5::GUS expression. 

Similarly, transcript levels of the auxin-responsive genes IAAL9, CKX4, CYP735A4 and 

SAUR-AC1 were equivalent in wild-type and pht4;2 plants.  These results suggest that 

the pht4;2 mutation has no effect on auxin levels or downstream components of auxin 

signaling.  

I used strategies similar to those for auxin signaling to assess the effect of pht4;2 

mutations on cytokinin signaling.  That is, pht4;2 mutations had no effect on expression 

of the cytokinin-responsive pARR5::GUS reporter or endogenous cytokinin-responsive 

genes CRE1, AHK2 and AHK3. Cytokinin-dependent leaf chlorophyll retention in dark-

treated leaves (Riefler et al., 2006) was also equivalent for wild-type and pht4;2 plants. 

Taken together, these results suggest that the increased leaf size of pht4;2 is the result of 

a signaling pathway independent of auxin and cytokinin.   

To broadly survey whether pht4;2 mutations are associated with changes in the 

abundance of specific metabolites/signaling molecules we participated in a metabolite 

profiling workshop hosted by the Samuel Roberts Noble Foundation. As part of this 

workshop we prepared small-scale metabolite profiles of pht4;2 and wild-type roots and 

leaves using GC-MS. The results revealed that pht4;2 roots, but not leaves, have nearly 

7-fold more trehalose (Tre) than wild-type.  Unlike Suc, Tre is only present in trace 
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amounts (0.1 µM - 10 µM) in plant cells, so it may play a regulatory role rather than 

energy or structural roles (Gómez et al., 2006; Paul et al., 2008). Alterations in Tre 

synthesis genes are associated with developmental phenotypes in some plant species. 

Arabidopsis tps1 mutants that lack a functional copy of the trehalose-6-phosphate 

synthase 1 (TPS1) gene exhibit arrest at the embryonic torpedo stage unless they are cold 

stratified for an extended period (1-3 weeks), and also have a slow development 

characterized by a reduced rate of cell division (Gómez et al., 2006), suggesting that 

TPS1 is essential for normal vegetative growth. However, TPS overexpression 

phenotypes seem to be dependent on the type of plant host. When the TPS homolog 

OtsA from Rhizobium etli is overexpressed in P. vulgaris, plants exhibit increased leaf 

biomass and higher seed yield than wild-type plants (Suárez et al., 2008). In contrast, 

Arabidopsis plants overexpressing E. coli OtsA exhibit increased T6P content and 

smaller rosette leaves than wild-type; whereas plants overexpressing OtsB, a trehalose 

phosphate phosphatase homolog accumulate less T6P and have larger leaves than wild-

type plants (Schluepmann et al., 2003). Given these contradictory results, it is unclear 

whether the growth phenotypes are caused by T6P or Tre, but a role for Tre metabolism 

in plant growth is clear.  

Because my metabolic profiling was conducted with few samples (two biological 

replicates), I wanted to assess the apparent correlation between pht4;2 and Tre levels 

using an independent approach. I used qRT-PCR to determine the expression levels of 

the trehalose-6-phosphate synthesis genes TPS1 and TPS5, as well as the trehalase TRE1 

gene. Trehalase catalyzes the conversion of Tre to Glc. The transcript levels of TPS1, 
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TPS5 and TRE1 are all significantly greater in pht4;2 roots than in wild type (Fig. 25), 

implicating a role for Tre signaling in the increased leaf size of pht4;2 mutants.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25. Relative expression levels of trehalose synthesis genes in pht4;2. A qRT-PCR analysis 

of mature pht4;2 roots shows increased levels of the synthesis subunits of T6P synthase, TPS1 and 

TPS5 and of the trehalase 1 (TRE1) transcripts. Line represents expression levels in wild type 

leaves. 
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Because Tre levels and transcripts for Tre metabolism genes were elevated only 

in the roots of pht4;2 plants, I hypothesize that Tre or Tre-6P represent a mobile signal 

between the root and shoot that influences cell proliferation in leaves. To first test the 

hypothesis that a root-derived mobile signal of any kind is responsible for the pht4;2 

leaf-size phenotype, I plan to conduct a grafting experiment. If the large-leaf phenotype 

of pht4;2 mutants is caused by a signal originating from the root, wild-type shoots 

grafted on pht4;2 root stock would exhibit enlarged leaves, much like the non-grafted 

pht4;2 mutants.  Conversely, a pht4;2 shoot grafted on a wild-type root stock would 

show no increase in leaf size.  

A transgenic approach will be required to test whether increased Tre or Tre-6P 

levels are causal for the pht4;2 leaf-size phenotype. Specifically, Tre synthesis and Tre-

6P phosphatase genes will be over-expressed under the control of a root-specific 

promoter in a wild-type background. Causality would be supported if one of these 

transgenic lines phenocopies the large-leaf phenotype of pht4;2 mutants. The PHT4;2 

promoter directs relatively low expression. Therefore, to drive high, root-specific 

expression of Tre metabolism genes, I will use the PYK10 myrosinase promoter. This 

promoter has been confirmed to mediate high levels of gene expression specifically in 

the root (Nitz et al., 2001). Primers designed to amplify a 1456-bp promoter fragment of 

PYK10 (Werner et al., 2010) were used to carry out the cloning of the PYK10 promoter. 

Confirmation of promoter activity and preparation of the required gene fusions are in 

process. 
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Although our knowledge of sugar signaling, cell cycle regulation and lateral 

organ size development is growing, it remains unclear how these different processes are 

coordinated. The morphological and molecular phenotypes of the pht4;2 mutants suggest 

that these pathways are interconnected. Recently, Snf-related kinase 1 (SnRK1), a 

protein involved in sugar signal transduction, was found to respond to Pi-starvation 

(Fragoso et al., 2009). In addition, it has been proposed that SnRK1 may act as a link 

between sugar (Glc, Suc and Tre) signaling and cell cycle control in meristems (Francis 

and Halford, 2006). SnRK1 is a heterotrimer formed by a α-catalytic subunit and β- and 

γ- regulatory subunits, which in Arabidopsis are encoded by multiple genes. Some of the 

catalytic isoforms localize to chloroplasts (Fragoso et al., 2009), and hence are ideally 

positioned to mediate communication between plastidic Pi homeostasis, carbon 

metabolism and cell cycle in different plant organs. Additional experiments are needed 

to resolve whether PHT4;2 influences SnRK1 functions. 

PHT4;1 is expressed predominantly in photosynthetic tissues and immunoblot 

results confirmed that PHT4;1 is localized in thylakoids (Fig. 20). Given this location, 

PHT4;1 may play a role in Pi recycling from the thylakoid lumen to the stroma. 

Transcript analysis showed that PHT4;1 expression is controlled by the circadian clock. 

This constitutes the first instance that links circadian clock regulation of a Pi transporter. 

Characterization of pht4;1-1 plants revealed a reduction in  rosette size when plants are 

grown in short day conditions. The cause of this phenotype is not clear, but preliminary 

analyses indicate that the mutant is hyper-responsive to multiple types of abiotic stress. 

Specifically, altered expression levels of ELIP2 and VDE (Fig. 24), which are involved 
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in chlorophyll and zeaxanthin synthesis, respectively, are indicative of an increased 

sensitivity to photooxidative damage. Mutants with altered abiotic stress-responses, such 

as the ascorbate-deficient mutants, vtc1 and vtc2, have a reduced-size phenotype 

resulting from reduced photosynthesis as a response to hypersensitivity to oxidative 

stress (Müller-Moulé et al., 2004). It will be interesting to test whether the pht4;1-1 

mutants have altered photosynthetic capacity and whether the increased high-light 

sensitivity in pht4;1-1 results in decreased photosynthesis. 

In summary, the reduced leaf size phenotype of pht4;1-1 mutants may be a result 

of hypersensitivity to photooxidative damage, which may lead to a decrease in net 

photosynthetic rate. Additional experiments are needed to determine the influence of 

PHT4;1 on the production of photosynthetic pigments as well as the pigments involved 

in non-photosynthetic quench (NPQ).  Further analysis of PHT4;1 and each of the other 

PHT4 Pi transporter proteins is needed to provide additional insight into how Pi 

homeostasis in plastids of different tissues influences plant metabolism. Such knowledge 

may help us define the mechanisms whereby Pi regulation, carbon metabolism and cell 

proliferation are coordinated in different plant organs and lead to agricultural 

applications to maximize crop production on low-Pi soils or under abiotic stress. 
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APPENDIX A 

 

Table IA. Primers used for the PCR genotyping of pht4;2 and pht4;1 lines.  

 

 
Primer Name  Direction Sequence 

PHT4;2(2786→2765) Reverse 5’-ATA TCC CGT CCC TAT TGT ACT T  

 

PHT4;2(1855→1876) Forward 5’-GTG ACT AAC AAC TGG GTG AGT T  

 

PHT4;2 (278→304) Forward 5’-GAT GAT GCC TGA GAG GAT TAA GGT AGT 

 

PHT4;2 (806→828) Reverse 5’-GTG ACC CAC ACG GCC ACA TTA T 

 

PHT4;1(-486→465) Forward 5’- ATC ATG ATC AAT ACT CTC TCG C 

   

PHT4;1(565→544) Reverse 5’- GAA AGA AGA CTG AAT CAG ACC A 

   

EIF-4A2(882→911) Forward 5’-GCA AGA GAA TCT TCT TAG GGG TAT CTA TGC 

  

EIF-4A2 (1575→1549) Reverse 5’-GGT GGG AGA AGC TGG AAT ATG TCA TAG 

 

 

 

 

 

Table IIA. Primers used for RT-PCR.  

 
Primer Name  Direction Sequence 

PHT4;2 Forward 5’-AGT AGT ATC GGA CTT CTT GAT 

 

 Reverse 5’-AAA GTG TCC AAG GAG AGC GTT 

 

PHT4;2 (1301→1327) Forward 5'-CTT TAG CCA AGC TGG ATT TCT CCT CAA 

 

PHT4;2 (1384→1360) Reverse 5'-CAC AAT TCG AAA TAC CGT GCA GGA A 

EIF-4A2(At1g54270) Forward 
5’-GCA AGA GAA TCT TCT TAG GGG TAT CTA TGC  

EIF-4A2(At1g54270) Reverse 
5’-GGT GGG AGA AGC TGG AAT ATG TCA TAG 

PHT4;1 (659→678) Forward 
5’ CGA AGT GGG TTC CTG TGC AA 

PHT4;1 (1276→1254) Reverse 
5’ TGC ACA AAA CAG CCA TTG TAG GA 
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Table IIIA. Primers used for quantitative (qRT-PCR) transcript analyses of the PHT4 

family. 

 
Gene Direction Sequence 

EIF-4A2 Forward 5′-CAA GGT GTC AAG GTT CAT GC  

 

 Reverse 5′-CAA CGA CAA CAT GAA CAC CA 

 

PHT4;1 Forward 5′-TCT TCT GGG GTT ACC TTC TTA CA CAGA 

 

 Reverse 5′-TGA GAA TTG TAG CGA TTG ACC ACC AA 

 

PHT4;2 Forward 5′-GAT GAT GCC TGA GAG GAT TAA GGT AGT 

 

 Reverse 5′-TAA CAA CTC TGT CGG CGT TAC ATA GA 

 

PHT4;3 Forward 5′-CAG AAT TTA TAA CGT CGG AGA GAG TCA AA 

 

 Reverse 5′-AA AAT GAT TTG CTC CAT CCA CGA GAA AG 

 

PHT4;4 Forward 5′-TGT GAA CAT GAG CAT TGC AAT TCT T 

 

 Reverse 5′-CAA CAG TTG CAC TAC TCC AGT TAT ATT CT 

   

PHT4;5 Forward 5′-TCC AGT CTT CCT TCT TTT GGG GTT ATG 

 

 Reverse 5′-CGA AAG ACC ATG TAA AGA CAC CAA TCT 

 

PHT4;6 Forward 5′-GAT TGG TTT CGA TAA CGA CAT CAG GAA 

 

 Reverse 5′-ATT CCG GAC CTC TAA GCT CAA CTAA 
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Table IVA. Primers used for additional RT-PCR transcript analyses in pht4;1 and 

pht4;2. 

 

 
Gene Direction Sequence 

SAUR-AC1 Forward 

 

5’- TTT TTG AGG AGT TTC TTG GGT G 

 Reverse 

 

5’- CTG AGA TGT GAC TGT GAA GAA CA 

CRE1 Forward 5’- AGA TCG ATT TTT GGC GTT CG 

 

 Reverse 5’- CAG TCG GAT TTT CAG GAA GAG 

 

AHK2 Forward 5’- TGG TGT AGC GTA TGC TTT GAA 

 

 Reverse 5’- TGC ATC TCA TGG TTC CTT GA 

 

AHK3 Forward 5’- TTC CAT GTG CTA GGG TTT GGT 

 

 Reverse 5’- TTT  CCC AGA CAG CAT ATC GA 

   

IAAL9 Forward 5’- AGA AGG TTA ATG ATT CGC CG 

 

 Reverse 5’- AAT GAA CCA GCT CCT TGC TT 

 

CKX4 Forward 5’- TGT TCG TAC AAG ATG TTC CGT 

 

 Reverse 5’- TGG AGA CAA TAG TCT TTT GGG 

 

CYP735-A4 Forward 5’- TAA TGT GGA ACG GGA CAG AA 

 

 Reverse 5’- ACC ATC TTG GCC ACA AAC TT 
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Table VA. Primers used for additional qRT-PCR transcript analyses in pht4;1 and 

pht4;2. 

 
Gene Direction Sequence 

NTT1 Forward 5’-ACC CGT AGC AAG AAG AAG AAG GTG 

 

 Reverse 5’-GCA ACC ACC AAA GTA GCA AGA TCC 

 

NTT2 Forward 5’-TGT GTA GTG CGG TGC CCT TCA 

 

 Reverse 5’-ATC GCA GTC TTG CCT TTA ACC TTG  

 

GPT1 Forward 5’- TCG GAC CAC AGT TTG TCT GGT G 

 

 Reverse 5’- TGG AGG AGA CAA TGA CGG AGA TA 

 

GPT2 Forward 5’- TCT ATT GCC GTG GAA GGT CCT C 

 

 Reverse 5’- ACT TTG TGC CAC TAC CCA CCA G 

 

APS1 Forward 5’- AGG GCT GTG TTA TCA AGA ACT GC 

 

 Reverse 5’- TAT GCA GGA ACG GAG TCC AAC C 

 

APL1 Forward 5’- CGA ATC TTG CAC TCA CTG AGC ATC 

 

 Reverse 5’- TGA TGG TGG CAG GTT TCT CCT TG 

 

APL3 Forward 5’- AAA CCG AGA AGT GCC GGA TTG 

 

 Reverse 5’- GTT GGA TGC TGC ATT CTC CCA AG 

 

APL4 Forward 5’- CGT GTG CAC CAG TTA GTG AAA GC 

 

 Reverse 5’- ACG CCC ACC TCG ATC AAT CTT TAC 

   

cFBP Forward 5’- ACC GGA ATT TCC CAG ACA AA 

 

 Reverse 5’- TCA GCA GAT TTT GGA TCA GG 

 

TPS1 Forward 5’- ATC ACC AAG ATC CTG ACC CAG AC 

 

 Reverse 5’ -CAA GCC CTT TGC TTA CTC CCT GAG 

 

TPS5 Forward 5’-AGC TTA TGG AAC ACC TCG AAA GCG 

 

 Reverse 5’-GAC CTT TGT TCA CAC CCT GTG G 

   

 Reverse 5’-AGC CTT CCA TGT CTC AGA TTC CTC 
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Table VA continued 

 
Gene Direction Sequence 

TRE1 Forward 5’ -AGG GCA ATG GCT GGA TTA CTG G 

 

 Reverse 5’-AGC CTT CCA TGT CTC AGA TTC CTC 

 

VDE Forward 5’- TTG CGC GTT CCT TAT TGT TCC ATC 

 

 Reverse 5’- CGG TTT CAT CTG GAC GGT TAT TGC 

 

ZEP Forward 5’- GAA CGT ACT ATA AAG GGA GAA TGG 

 

 Reverse 5’- CTG AGA CGA AGG GAT CAC AAT 

 

CBF3 Forward 5’-GAT GAC GAC GTA TCG TTA TGG A 

 

 Reverse 5’-TAC ACT CGT TTC TCA GTT TTA CAA AC 

 

sHSP Forward 5’-CCT GGA TTG AAG AAG GAG GAA 

 

 Reverse 5’-TAG GCA CCG TAA CAG TCA ACA C 

 

ELIP2 Forward 5’-CAC CAC AAA TGC CAC AGT CT 

 

 Reverse 5’-TGC TAG TCT CCC GTT GAT CC 
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APPENDIX B 

METHODS 

 

Arabidopsis Chloroplast Isolation 

Adapted from Chloroplast Isolation Kit –Technical Bulletin (SIGMA CP-ISO), Saint 

Louis, Missouri 

 

 

Reagents: 

 

1x Grinding Buffer (1000ml)                                  Chloroplast Resuspension Medium 
50mM HEPES-KOH pH 7.5                                     300mM D-Sorbitol 

330mM D-Sorbitol                                                    0.1% BSA 

2mM EDTA 

1mM MgCl2 

1mM MnCl2 

0.25% BSA (add before use) 

100mM Sodium Ascorbate (add before use) 

 

25%BSA, filter sterilized 

 

0.1 mg/ml Glutatione 

 

80% Percoll, mix 4:1 Percoll:5xGB, 15µg/ml Glutathione 

50% Percoll, mix 1:1 Percoll:2.5xGB, 15µg/ml Glutathione 

 

Dissolve HEPES in 500ml of distilled H2O, adjust pH to 7.5 using KOH, then add the 

rest of the components one at a time and wait for each to dissolve completely before 

adding the next. Bring to a volume of 990ml with more H2O. BSA and Sodium 

Ascorbate should be added fresh before using. 

 

Materials: 

Clean razor blades 

Waring blender 

Scissors 

Miracloth (Calbiochem) 

 

Procedure 

All buffers and equipment used should be pre-cooled. Keep Percoll gradients, water and 

buffers at 4ºC and the blender at -20ºC. The grinding buffer 1xGB with BSA needs to be 

at 4ºC or as a semi-frozen slush whenever possible. 
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Preparation of 50/80% Percoll gradient: 

Each gradient can separate up to 4ml of chloroplast suspension 

1. In a 13ml centrifuge tube, place 2.5ml of 80% Percoll and carefully layer 5ml of 50% 

Percoll on top.  

Note: Percoll gradients can be stored at 4°C for up to two days if kept undisturbed. 

 

Chloroplast Isolation 

All steps should be performed at 2 to 4°C. For optimal yield of intact chloroplasts, leaves 

of two to three week old plants should be used. Plants should be kept in the dark before 

the preparation so it is recommended to cover them 12 to 14 hours before harvesting. 

 

1. Fold two layers of Miracloth into a funnel shape, soak them in chilled 1xGB and place 

them into a suitable size funnel. 

2. With clean scissors, harvest rosette leaves, and float them in chilled water. After all 

the plant material is harvested, blot excess water and register fresh weight. 

3. Place leaves in a large weigh boat and add 2 ml of 1xGB per gram of fresh weight. 

Chop with a new, clean razor blade and transfer to blender. 

4. Homogenize with two or three 2-second pulses (speed 5 in a seven speed Waring 

blender). Filter through 2 layers of Miracloth into a clean 250ml Nalgene centrifuge 

tube, squeeze gently to collect all of the liquid. 

5. Put ground leaves back in blender and add another 2ml of 1xG. Repeat step 4. 

6. Recover the total filtrate in 250ml centrifuge tubes. Centrifuge for 3min at 200xGB. A 

white (starch) pellet should form. 

7. Transfer supernatant to clean, chilled 250ml tubes and centrifuge for 7 minutes at 

1,000xg to sediment the chloroplasts as a green pellet. 

8. Discard the supernatant and gently break the pellet by finger tapping. Resuspend the 

pellets in 2-4 ml 1xGB by gently swirling. 

9. Using a wide-bore 1ml pipette tip, carefully apply the chloroplast suspension on top of 

the Percoll gradient. 

10. Spin in a swing-out rotor (BECKMAN centrifuge, JS-13 rotor) for 15 min at 

3,200xg. The broken chloroplasts will form an upper band and the intact chloroplasts 

will form a band at the interface between the 50% and 80% Percoll layers. 

11. Collect the intact chloroplasts band with a wide-bore pipette tip; wash by 

resuspending in 3 volumes of 1xGB (no BSA) and centrifuge at 1,700xg for 1 minute. 

12. Resuspend the chloroplast pellet in 0.5 ml of 1xGB without BSA. The chloroplast 

suspension should be kept in the dark, on ice, until further use.  

 

Estimation of chloroplast yield by chlorophyll concentration: 

The yield of isolated chloroplasts is usually expressed on a unit chlorophyll basis (mg of 

chlorophyll).  For this procedure, chlorophyll is extracted from the chloroplasts 

suspension using an organic solvent like 80% acetone. 

 

1. Add 10 μl of the chloroplast suspension to 1 ml of an 80% acetone solution and mix 

well. 
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2. Centrifuge for 2 minutes at 3,000 x g. Retain the supernatant. 

3. Measure the absorbance of the supernatant at 652 nm. Use the 80% acetone solution 

as the reference blank. 

4. Multiply the absorbance by the dilution factor (100) and divide by the extinction 

coefficient of 36 to obtain the mg of chlorophyll per ml of the chloroplast suspension. 

 

mg chlorophyll  = A652 × 100 

ml                       36 

 

To obtain the total chloroplast yield in µg chlorophyll per gram of fresh weight, multiply 

the mg chl/ml by the total ml of chloroplast suspension and divide by the number of 

grams of initial fresh weight. This chloroplast isolation protocol typically yields about 8 

to 10µg chl/g of fresh weight. 

 

 

Estimation of the percent of intact chloroplasts: 

 

Reference: Walker et al. (1987) pp. 155 

 

Method 1: Phase contrast microscopy 

 

This method is based on the differences in refractive index between the intact 

chloroplasts and their aqueous medium. Walker et al. (1987) describes intact 

chloroplasts appear ―pale yellow-green with a refractive halo‖ while broken chloroplasts 

appear dark green with no visible halo. 

 

1. Place a drop of chloroplast suspension on a microscope slide, carefully place a cover 

slip on top and view under phase contrast. 

2. Count the number of intact vs. broken chloroplasts on several fields and calculate the 

average of intactness. 

3.  Intactness percentages of at least 70% are recommended for photosynthesis or 

transport assays. This protocol usually yields chloroplasts with 80% to 90% intactness 

depending on the quality of plant tissue used. 

 

Method 2: CFDA staining 

 

Reference: Schulz et al. (2004)  

 

Carboxyfuorescein diacetate succinimidyl ester (CFDA) is a molecule widely used for 

the staining on living cells. CFDA will diffuse freely into cells (or in this case, plastids) 

but will not produce fluorescence until its acetate groups are cleaved by the cell’s 

esterases. Thus, broken chloroplasts are unable to cleave CFDA and will not produce 

this specific fluorescence. When examined under fluorescence microscopy under a 

fluorescein-specific filter, intact chloroplasts will look green, whereas broken 
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chloroplasts will not be visible. Using non specific wavelengths filter the chlorophyll in 

all the chloroplasts will be visible as red. When merging these two images into one, the 

broken chloroplasts still appear red whereas intact plastids look yellow because of the 

mixing of green (CFDA) and red (chlorophyll) fluorescence (Fig. 26). 

 

1. Equilibrate an aliquot of chloroplast suspension with an equal volume of CFDA (final 

concentration 0.0025% w/v) and incubate 5 min in ice. Keep them away from light to 

avoid photobleaching and examine by fluorescence microscopy.  

 

 When counting the number of intact chloroplasts by this method, we found that it 

correlates with the numbers obtained by phase contrast. 

 

 

 

 

 

               
 

 

 

 

 

 

 

 

 

 

 

DIC imaging of Arabidopsis tissues 

 

Protocol based on notes received from Jim Mattsson, Simon Fraser University. See some 

of his images at http://www.sfu.ca/biology/faculty/mattsson/dic.html 

 

Figure 26. Evaluation of chloroplast intactness by CFDA staining. A, chloroplasts viewed 

immediately after isolation; Left, Fluorescein-specific wavelength; Center, chlorophyll 

autofluorescence; Right, Overlay. Intact chloroplasts appear yellow/green. B, overlay images of 

chloroplasts 60 min (left) and 120 min (right) after isolation. Bars: ~10μm. Arrows point to broken 

chloroplasts. Percent of intact chloroplasts varied from 78% to 84%. 

http://www.sfu.ca/biology/faculty/mattsson/dic.html
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1. Fix Arabidopsis leaves in 6:1 ethanol: glacial acetic acid. This can be done in 2ml 

microfuge tubes or 12-well plates. Cover samples with fixative solution and place open 

tubes in vacuum dessicator. Apply house vacuum for 15 min to remove trapped air 

bubbles and speed fixation. Close tubes and let sit 4-24 hrs at room temp.  

 

2. Wash twice in 95% ethanol (leave 10 minutes or so before replacing). 

3. Store in 70% ethanol at room temp. Fixed samples can be stored in 70% ethanol for 

several days or proceed to next step immediately. 

4. Clear in 85% lactic acid (VWR cat no. MK267604). Add just enough lactic acid to 

cover tissue, let sit 2-24 hrs. Tissues will become nearly transparent. 

Note: lactic acid is corrosive. Clean up any spills quickly.  

5. Mount in 30% glycerol, adaxial leaf surface up.  

      Fixed leaves tend to fold on themselves when removed to the lactic acid. Using 

forceps take the leaf out of the acid and quickly transfer to a microscope on which a drop 

of 30% glycerol has been placed. Use the forceps or a fine paint brush to ensure the leaf 

is completely flat over the slide. If necessary, you can confirm that you have the adaxial 

side up before applying a coverslip by viewing under low magnification – you should 

see lots of trichomes.  

 

6. Label the slide with date and sample info.  

If the slide is to be stored for more than 4-5 days, you can seal the cover slip with 

clear nail polish. Do not store prepared slides for more than two weeks, as the lactic 

acid-treated leaves tend to break down. 

 

Alternative clearing with chloral hydrate: 

Clear in 8:3:1 mix of chloral hydrate:glycerol:water (store cold). 

Clearing works best on young tissue. If you use young leaves, you can mount the leaves 

directly in chloral hydrate solution and wait for a few minutes to overnight for clearing 

to occur. If it is tough, leave leaves in the solution in a vial for one to several days, then 

mount. 

 

Determine number of leaf cells per fixed area: 

Cells are visible under brightfield, but phase contrast yields much better images, and 

DIC may be better yet (Fig. 27). Cell counts should be done with Pallisade mesophyll 

cells since they have a nearly uniform shape. Alternatively, epidermal cells can also be 

used to determine cell density per fixed area, but their irregular shape and flat surface 

makes it harder to focus. Capture images at the distal, medial and proximal end of the 

leaf - all near the midline. Count cells per field of view (or other defined area).  

 

 

 

 



122 

 

          
 

 

 

 

 

 

 

 

 

 

Determine number of cells per leaf: 

BEFORE FIXING, place the fresh leaf on paper next to printed defined areas (e.g., 

squares with 2, 4, 8, 12 mm sides). It may be necessary to place a transparency sheet on 

top to flatten the leaf. Use Photoshop to calculate the area of the leaf and squares. Save 

the image file with a meaningful name. Multiply the average cell per unit area 

(determined above) by the leaf area to determine the number of cells per leaf. This value 

is an estimate but it is suitable for comparisons between genotypes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 27. DIC images of WT leaves. Expanded leaves of 9 week old plants were fixed and bleached. 

DIC imaging on fixed leaves was carried out under a 40x objective. Left, mesophyll cells; Right, 

epidermal cells. Scale bars are 50µm. 
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Total Starch and Soluble Sugar Assays 

 

Reference: 

Smith AM, Zeeman SC. (2006)  

 

Reagents: 

 

10 mM Na-acetate, pH 5.5: 

Add 0.057 mL glacial acetic acid to 90 mL dH20. Adjust pH to 5.5 with NaOH (~0.86 

mL 1 M NaOH) 

Adjust to 100 mL with dH20 

 

200 mM K-HEPES pH 7.5: 

In 40 mL dH20, add 2.383 g HEPES (FW 238.3; Sigma, H3375). Adjust pH to 7.5 with 

KOH (~2.5 mL 2 M KOH). Adjust to 50 mL with dH2O 

 

0.2 M KOH 

Add 2.81 g KOH (FW 56.11) to 200 ml dH2O. Adjust to 250 mL with dH2O 

 

1.0 M acetic acid 

5.75 mL glacial acetic acid diluted to 100 mL. 

 

80% EtOH, 5% formic acid 

Note: Formic acid (Sigma F0507), 95%, is volatile and highly corrosive. Open in fume 

hood and handle with care. 

 

80% EtOH 

 

Amyloglucosidase Stock (1.25 U/l): 

1.9 ml amyloglucosidase (Megazyme , E-AMGDF 3260 U/ml) +2.1 ml of 200 mM 

NaAc/ 30% glycerol, pH 4.6 

 

100 mM ATP stock: 

In 5.0 mL dH20, dissolve 0.276g ATP disodium (FW 551.1). 

 

50 mM NAD stock: 

Weigh 0.332 g NAD (fw 663.43; VWR 80053-322). Bring to 10 mL with dH2O. 

Note: NAD and NADH are only good for 1 freeze-thaw cycle! Freeze in 600µL aliquots. 

 

1M MgCl2 stock: 

Weigh 1.017 g MgCl2 (fw 203.3; Sigma, M2670). Bring to 5.0 mL with dH20 

 

Hexokinase Stock (1000 U/mL): 

In 1.0 mL 30% glycerol, add 9.17 mg hexokinase (VWR 101175-550, 1000U). 
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Glucose-6-P-dehydrogenase (G6PDH) Stock: 

VWR 101174-382 (USB 16171) >5 kU/mL, or VWR 101169-590 (all) in 0.5 mL 30% 

glycerol (10 kU/mL). 

 

 

Hexokinase/G6PDH Working Solution 

(32 units/mL Hexokinase + 32 units/mL G6PDH): 160 ul hexokinase stock (1000 

U/ml)m + 160 U G6PDH stock. Bring to 5 mL final vol. in 30% glycerol 

 

Invertase Stock Solution (20 units/µL) 

100 mg invertase (400 units/mg; Sigma I4504) in 2.0 mL of 30% glycerol 

 

Invertase Working Solution (150 units/ml) or Sucrose Assay Reagent (Sigma, S1299): 

15.0 µL of Invertase stock solution in 2.0 mL final vol of 10 mM Na-acetate (pH 5.5)  

Note: Works best when made fresh. 

 

Phosphoglucose Isomerase Working Solution (80 U/ml) 

23.0 µL of PGI stock (3500 units/ml; Fisher NC9333115) in 1.0 mL final vol of 100 mM 

K-HEPES pH 7.5  

 

Glucose Assay Reagent (MAKE FRESH!!): 

Final solution is: 100 mM K-HEPES, 1.0 mM ATP, 2.0 mM NAD or NADP, 5.0 mM 

MgCl2. Make enough for starch, sucrose, glucose, and fructose assays. 

For 15 mL: 

7.5 mL of 200 mM K-HEPES, pH 7.5 

+ 150 µL of 100 mM ATP stock 

+ 600 µL of 50 mM NAD stock 

+ 75 µL of 1 M MgCl2 stock 

+ dH2O to 15 mL total volume 

 

 

Tissue Collection:  

 

Harvest leaf material at the 8 to 12 leaf stage before bolting. Always take the same 

leaves because starch contents vary between individual leaves of a rosette, sometimes 

more than the equivalent leaves of two individuals. I usually use the 5
th

 and 6
th

 true 

leaves. 

1. Collect two rosette leaves from each biological sample. Place in a pre-weighed 2 mL 

microfuge tube and determine fresh weight. Collect 4-5 biological replicates for each 

sampling point. For roots, harvest from hydroponically-grown plants and take the 

roots out carefully to avoid breaking off root tips. Blot roots on paper towel and chop 

with a razor. Randomly select portions for use in assays. Place in a pre-weighed 2 

mL microfuge tube and determine fresh weight. 
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2. After weighing, freeze in liquid N2. At this point, samples can be stored at -80°C for 

several months, or proceed immediately to Soluble Sugar and Starch Preparation. 

 

Soluble Sugar and Starch Preparation:  

1. Add 750 µL of 80% EtOH, 5% formic acid to samples, and grind briefly with a 

micro pestle. Incubate at 80ºC for 20 min. Cool down in an ice bath and spin samples 

for 5 min at max speed to pellet down tissues. Transfer EtOH solution to an empty, 

labelled 2 mL tube. (To heat, place tubes in eppendorf rack and clamp a second rack 

on top with rubber bands. This prevents the tubes from popping and samples being 

lost). 

2. Add 750 µL 80% EtOH to tissues and incubate in clamped tube rack again for 20 

min at 80ºC. Remove EtOH supernatant and add to the previous aliquot. For each 

sample, you should now have one tube containing bleached leaves with no EtOH 

solution left and one 2 mL tube containing approx 1.5 mL greenish EtOH solution. 

The latter contains the soluble sugars. Evaporate the EtOH solution in a Speedvac (3-

4 hours) then resuspend the dried pellet in 300 µL of 10 mM Na-acetate (pH 5.5). 

Sonicate each sample for 30 seconds (10 seconds, place in ice, repeat two more 

times). Spin for 10 min. Use the supernatant for enzymatic assays. 

3. To extract starch, dry the bleached leaves in Speedvac or 70ºC oven then add 0.25 

mL 0.2 M KOH and grind with a micro pestle. 

4. Add another 250 µL of 0.2 M KOH, washing the pestle while adding. Incubate at 

95ºC for 1 hr in a clamped tube rack. This step makes the starch soluble.  

5. Cool in an ice bath and bring to pH 5.0 by adding 100 µL of 1 M acetic acid. Check 

pH of one sample using test strips to verify. Centrifuge 10 min at max speed then 

transfer 50-100 µL (record volume!) to a new tube for digestion and analysis. 

6. To each aliquot, add 5 μL amyloglucosidase (6.25 U). Incubate overnight at 30ºC. 

This step is the complete conversion of soluble starch to glucose. 

7. Denature enzymes by incubating a 95ºC for 10 min. Cool in ice bath. Add 440 µl 

dH2O and use for starch assay. (Note: further dilution may be necessary depending 

on your samples) 
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Assays: Perform all reactions  in UV Star 96 well plates (flat bottom, ½ area; Bioone 

675807) and read in plate reader. 

 

Starch and Glucose Assay: 

1. Add 150 µL of Glucose Assay Reagent to each well. Add 20 µL of sample to the 

corresponding well (2 replicates for each sample). Be sure to include the glucose 

standards (see below). Standards (0, 2, 10, 20, 50 and 100 nmol) are all 20 µL. 

2. Measure the initial Abs 340 nm to determine the sample background.  

3. Add 15 µL of Hexokinase/G6PDH Working Solution to each well, mix, and incubate 

for 20 minutes at room temp. 

4. Measure the final Abs 340 nm.  

5. Determine glucose content from standard curve (∆Abs vs. Glc).  

 

 Sucrose Assay:  

1. Add 15 µL of Invertase Working Solution to wells of a 96 well plate. Add 20 µL of 

sample to the corresponding well (2 replicates for each sample) mix, and incubate at 

room temp for 20 min. Make sure to include the glucose standards. 

2. Add 150 µL of Glucose Assay Reagent to each well, mix, and measure the initial 

Abs 340 nm to determine the sample background. 

3. Add 15 µL of Hexokinase/G6PDH Working Solution to each well, mix, and incubate 

for 15 minutes at room temp.  

4. Measure the final Abs 340 nm.  

5. Determine sucrose content from standard curve (∆Abs vs. Glc). Note: must subtract 

free Glc content. 

 

Fructose Assay: 

1. Add 150 µL of Glucose Assay Reagent to each well. Add 20 µL of sample to the 

corresponding well (2 replicates for each sample). Be sure to include the glucose 

standards. 

2. Read initial Abs 340 nm to determine the sample background. 

3. Add 10 µL of Hexokinase/G6PDH Working Solution and 15 µL of PGI to each 

sample and incubate for 15 min at room temp.  
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4. Measure the final Abs 340 nm. 

5. Determine fructose content from standard curve (∆Abs vs. Glc). Note: must subtract 

free Glc content. 

 

Glucose standards: 

Prepare a 10 mM glucose stock in water. From this stock, prepare 2.5 mM and 0.5 mM 

dilutions. The table below shows how each standard is prepared – volumes are for a 

single sample.  

 
nmol 

Glc 

10 mM stock 

(µl) 

2.5 mM stock 

(µl) 

0.5 mM stock 

(µl) 

Water 

(µl) 

Final 

vol (µl) 

0 0 0 0 20 20 

2 0 0 4 16 20 

10 0 4 0 16 20 

20 0 8 0 12 20 

50 5 0 0 15 20 

100 10 0 0 10 20 

 

Glucose Standard Curve: 

1. Determine ∆Abs and Avg ∆Abs for each standard. 

2. Plot Avg ∆Abs (y-axis) vs. glucose content in µmoles (x-axis). Calculate trend line 

equation (y=mx+b). Should have R
2 

(> .97).  

3. Example: 

Glucose ∆Abs ∆Abs Avg ∆Abs 

(µmol) (340nm) (340nm) (340 nm) 

0 0 0.0 0.0 

0.002 0.082 0.075 0.079 

0.01 0.375 0.364 0.370 

0.02 0.705 0.675 0.690 

0.05 1.404 1.492 1.447 

0.10 3.113 2.800 2.957 

y=29.07x + 0.042  R
2
=0.999 

Calculations:  

The linear equation from the glucose standard curve is used to calculate starch/sugar 

content in the plant tissue samples. Absorbance values for unknowns must fall within the 

range covered by the standards. To express results in 

dilution volumes must be accounted for. Starch will be reported in glucose equivalents.  

 

Starch: 

µmol Glc in well = (Avg ∆Abs – y int)/slope [y int and slope from Glc standard curve] 

µmol Glc in starch aliquot = (µmol Glc in well/ 20 µL)*(450 µL water/enzymes + X µL 

starch aliquot) 

µmol Glc in tissue = (µmol Glc in starch aliquot/ X µL starch aliquot) * 600µL 

KOH/acetic acid 

µmol Glc equivents/g FW = µmol Glc in tissue/ g FW 
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Glucose: 

µmol Glc in well = (Avg ∆Abs – y int)/slope 

µmol Glc in tissue = (µmol Glc in well/ 20 µL) * 300 µL 

µmol Glc/g FW = µmol Glc in tissue/ g FW 

 

Sucrose: 

µmol Suc in well = (Avg ∆Abs – y int)/slope 

µmol Suc in tissue = (µmol Suc in well/ 20 µL) * 300 µL 

µmol Suc/g FW = (µmol Suc in tissue/ g FW) – (µmol Glc/g FW) 

 

Note: you must subtract the free Glc to determine Glc liberated by invertase 

 

Fructose: 

µmol Frc in well = (Avg ∆Abs – y int)/slope 

µmol Frc in tissue = (µmol Frc in well/ 20 µL) * 300 µL 

µmol Frc/g FW = (µmol Frc in tissue/ g FW) – (µmol Glc/g FW) 

 

Note: you must subtract the free Glc to determine Frc converted by phosphoglucose 

isomerase 
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