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ABSTRACT 

 

Characterization and Analysis of the Bovine Epigenome during Preimplantation  

Embryo Development In Vitro. (August 2011) 

Gayle Linger Williamson, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Charles Long 

 

During early mammalian embryogenesis, the embryonic genome undergoes critical 

reprogramming events that include changes in both DNA methylation and histone 

modifications necessary to control chromatin structure and thus, gene expression.  

Improper reprogramming of the epigenome during this window of development can 

lead to a vast number of imprinting anomalies, which are increased in children and 

livestock conceived in vitro.  In the bovine, which closely resembles human 

preimplantation development, epigenetic changes occur from fertilization through the 

blastocyst stages.  In particular, and concurrent with embryonic genome activation 

(EGA), de novo DNA methylation begins at the 8-cell stage.  In order to explore the roles 

of histone-modifying enzymes during this crucial period of development, we 

characterized the transcript expression of several enzymes key enzymes across in vitro 

bovine preimplantation development using quantitative real-time PCR.  Two of the 7 

genes analyzed (Suz12 and Lsh) exhibited notable increases at the 8-16 cell stages, with 
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basal levels observed both before and after this.  These increases coincided with both 

EGA and de novo DNA methylation.  We further explored their roles in bovine 

preimplantation embryos by knocking down expression via the use of gene-specific 

targeting siRNAs.  Independent suppression of either Suz12 or Lsh via cytoplasmic 

microinjection of targeting siRNAs resulted in lower development rates (p < 0.0001), 

and poorer embryo quality of the morulas and blastocysts that survived.  In addition, 

Suz12 suppression led to reductions in both H3K27 (p < 0.0001) and H3K9 (p = 0.07) 

trimethylation, and an increase in DNA methylation levels (p < 0.0001), as compared to 

the null-injected controls.  Lsh suppression did not change H3K27, but led to a 

reduction in H3K9 trimethylation (p = 0.006) and an increase in DNA methylation (p < 

0.0001).  Clearly our data demonstrate that these epigenetic modifiers play a critical 

role in formation of the embryonic epigenome, but further research would be 

necessary in order to fully characterize gene activities during this developmental 

window.
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NOMENCLATURE 

 

5meC   5-methylcytosine 

ac   Acetylated 

AI   Artificial  insemination 

ARTs   Assisted reproductive technologies 

AS   Angelman syndrome 

BWS   Beckwith-Wiedemann syndrome 

CpG   Cytosine-Guanine (dinucleotides) 

DMR   Differentially methylated region 

DNMT   DNA methyltransferase 

dpc   Days post-coitum 

EGA   Embryonic genome activation 

ET   Embryo transfer 

H3K4   Histone 3 lysine residue 4 

H3K9   Histone 3 lysine residue 9 

H3K27   Histone 3 lysine residue 27 

HAC   Histone acetyltransferase 

HDAC   Histone de-acetylase 

HMG   Histone modifying gene 

HMT   Histone methyltransferase 
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HP1   Heterochromatic protein 1 

hpf   Hours post-fertilization 

ICC   Immunocytochemistry 

ICR   Imprinting control region 

IVF   In vitro fertilization 

MBPs   Methyl CpG-binding proteins 

MDBK   Madin-Darby bovine kidney (cells) 

me2   Dimethylated 

me3   Trimethylated 

PGCs   Primordial germ cells 

qPCR   quantitative real-time PCR 

RNAi   RNA interference 

RT   Reverse transcription 

siRNAs   short interfering RNAs 

TEs   Transposable elements 

Xi   Inactivated X-chromosome 
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CHAPTER I 

INTRODUCTION 

 

ABNORMALITIES ASSOCIATED WITH ASSISTED REPRODUCTIVE TECHNOLOGIES 

The use of assisted reproductive technologies (ARTs) dates to at least the late 1800s 

when embryo transfer (ET) was performed for the first time in rabbits (Heape 1891).  In 

the time since, ART use has expanded to include additional technologies such as 

multiple ovulation embryo transfer (MOET), artificial insemination (AI), in vitro 

maturation and fertilization (IVM and IVF, respectively), intracytoplasmic injection 

(ICSI), embryo splitting, somatic cell nuclear transfer (cloning), gender preselected 

semen and others (Willett et al. 1951, Elsden et al. 1976, Iritani & Niwa 1977, Newcomb 

et al. 1978, Willadsen 1986, Prather et al. 1987, Robl et al. 1987, Smith 1988a, Smith 

1988b, Bondioli et al. 1990, Gray et al. 1991, Barnes et al. 1993, Johnson et al. 1994, 

Campbell et al. 1996, Wilmut et al. 1997, Betteridge 2003).  In livestock, these 

technologies evolved as ways to maximize the use of and/or preserve superior genetics.  

Approximately 15% of all bovine embryos produced around the world are now 

produced in vitro (Thibier 2003, Mapletoft & Hasler 2005).  The widespread research 

and use of superovulation, AI, ET and IVF in cattle and other animals led to application  
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of these technologies in humans, and the birth of the first in vitro conceived child in 

1978 (Steptoe & Edwards 1978).  As a result of this success as well as a notable 

decrease in human fertility over the last 50 years, in vitro technologies (particularly 

superovulation, IVF, ICSI and ET) have since become routine treatments for infertile 

couples (CDC’s 2002 Annual ART Success Rates Report).  However, the application of 

these methods to bypass certain fertility issues has created other important medical 

anomalies (Benoff & Hurley 2001, Khosla et al. 2001a, Khosla et al. 2001b, Maher et al. 

2003, Fleming et al. 2004, Kelly & Trasler 2004, Niemitz & Feinberg 2004, Menezo et al. 

2006, Paoloni-Giacobino 2007, Amor & Halliday 2008, Banwell & Thompson 2008, 

Lawrence & Moley 2008, Grace & Sinclair 2009, Laprise 2009, Le Bouc et al. 2010). 

The use of ARTs involves in vitro manipulation of oocytes and embryos at a time 

when essential epigenetic changes are occurring, any deviation from which can inhibit 

developmental competence.  In livestock, it has been observed that in vitro produced 

embryos result in increased rates of prenatal morbidity and mortality, as well as fetal 

overgrowth that can lead to dystocia during parturition, when compared to embryos 

conceived via AI or ET (Young et al. 1998, Lonergan et al. 2003, Summers & Biggers 

2003, Lawrence & Moley 2008, Sinclair 2008).  There are an increasing number of 

reports (reviewed in Owen and Seagars 2009) which suggest an increased risk of 

imprinting abnormalities associated with the use of ARTs in humans.  Beckwith-

Wiedemann Syndrome (BWS) and Angelman Syndrome (AS) are among the most 

common examples of imprinting abnormalities that have been linked with ARTs.  The 



3 
 

incidence of BWS for children conceived via ARTs has been reported to be as high as 

nine times that of naturally conceived children (Halliday et al. 2004).  With an 

estimated incidence of 1 in 13,700 live births in the general population, clinical 

manifestations of the syndrome are highly variable but include fetal overgrowth and 

hypoglycemia, macroglossia, hemihyperplasia, facial nevi and an increased risk for 

embryonal tumors, yet normal intellect (Amor & Halliday 2008).  BWS can result from 

either genetic or epigenetic alterations of two imprinting control regions (ICRs) on 

chromosome 11p15, although approximately 70% of cases result from epimutations 

within these regions (Lawrence & Moley 2008).  One of these ICRs, DMR1 (differentially 

methylated region 1), regulates methylation of two genes: IGF2 (normally maternally 

methylated) and H19 (normally paternally methylated).  The other ICR, DMR2 

(differentially methylated region 2), regulates expression of three genes: KCNQ1OT1 

(LIT1), KCNQ1, and CDKN1C.  Under normal conditions, maternal methylation of the 

DMR2 ICR silences the maternal LIT1 allele, thereby allowing only paternal expression 

of LIT1.  In particular, loss of maternal methylation of the DMR2 imprinting center is the 

most common cause among reported cases of BWS in ART-conceived children, and 

similarly, is responsible for 50-60% of sporadic cases of BWS (Huntriss & Picton 2008, 

Lawrence & Moley 2008, Sinclair 2008, Owen & Segars 2009).   

Risk for AS has also been reported to be increased in association with ARTs, 

especially when mothers underwent ovarian stimulation (Huntriss & Picton 2008).  

With an estimated prevalence of about 1 in 15,000 in the general population, AS is 
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characterized by microcephaly and severe mental retardation, frequent laughter with 

congenial affect, ataxia, seizures and speech impairment (Amor & Halliday 2008, 

Lawrence & Moley 2008).  It results from loss of maternal expression of the UBE3A 

gene at chromosome 15q11-13 and can be caused by several mechanisms (one being 

imprinting defects that silence the maternal allele).  Other imprinting defects have also 

been reported, due to changes in methylation status at other DMRs (Huntriss & Picton 

2008, Lawrence & Moley 2008, Sinclair 2008, Owen & Segars 2009).   

In particular, a recent study demonstrated a clear link between superovulation 

(compared to spontaneous ovulation) and a reduction in methylation of several 

imprinted loci (Snrpn, Peg3, H19 and Kcqnot1) in mouse blastocysts (Market-Velker et 

al. 2010b).  The same group also assessed the effect of culture media on embryo 

development, comparing the methylation status of these same imprinted loci in mouse 

blastocysts that had been cultured in several different medias, to that of blastocysts 

produced in vivo.  Not surprisingly, none of the medias tested were able to maintain 

methylation levels of the imprinted loci well enough to successfully duplicate an in vivo 

environment, in terms of methylation status of imprinted genes (Market-Velker et al. 

2010a).  The evidence clearly suggests the need for a better understanding of 

epigenetic events occurring during early development, so that we may improve current 

in vitro systems to meet those requirements. 
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EPIGENETICS 

Epigenetic modifications are heritable traits of gene expression that result without any 

alteration of the DNA sequence, involving changes in DNA methylation, histone 

modifications and RNA interference.  These normal alterations can “help lead to the 

selective utilization of genome information through the activation or inactivation of 

functional gene transcription during gametogenesis, embryogenesis and cell 

differentiation” (Teitell & Richardson 2003, Turek-Plewa & Jagodzinski 2005).  

Epigenetic modifications can be affected by diet, age, development, or exposure to 

pharmaceutical drugs or other chemicals in the environment (2005).  In general, 

exposure to an unsuitable or inadequate environment can result in abnormal 

epigenetic changes occurring within cells, ranging from mild (temporary alteration) to 

severe (inherited to offspring) effects.  Downstream epigenetic contributions can 

directly affect the stability of chromatin structure, control of tissue-specific gene 

expression, replication timing, genomic imprinting, embryonic development and female 

X-chromosome inactivation (Geiman & Robertson 2002, Chow & Brown 2003, Ehrlich 

2003, Robertson et al. 2004, Rousseaux et al. 2004, Ting et al. 2004, Turek-Plewa & 

Jagodzinski 2005). 

 

DNA Methylation 

DNA methylation has been widely characterized in many organisms, including 

mammals, as a way to regulate gene expression (Drahovsky & Morris 1972, Gama-Sosa 
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et al. 1983, Kautiainen & Jones 1985, Gardiner-Garden & Frommer 1987, Kaslow & 

Migeon 1987, Monk et al. 1987, Kafri et al. 1992, Li et al. 1992, Li et al. 1993, Sasaki et 

al. 1993, Okano et al. 1999, Jones & Takai 2001, Reik & Dean 2001, Thompson et al. 

2001, Geiman & Robertson 2002).  It has also been linked to the control of many other 

cellular functions, including genomic imprinting, X-chromosome inactivation and 

chromatin structure (Woodcock et al. 1986, Kaslow & Migeon 1987, Caiafa et al. 1991a, 

Caiafa et al. 1991b, Kafri et al. 1992, Li et al. 1993, Sasaki et al. 1993, Feil & Khosla 

1999, Rein et al. 1999).  In multicellular eukaryotes, DNA methylation occurs by the 

addition of a single methyl group to the 5-carbon position of a cytosine base, forming 5-

methylcytosine (5meC), predominantly within the context of C-G (CpG) dinucleotides 

(Bestor & Tycko 1996).  In mammalian genomic DNA, it has been estimated that 

approximately 70-80% of cytosine residues occurring within CpG dinucleotides are 

methylated (Ehrlich et al. 1982, Bird 2002).  Within GC-rich (60-70% GC content) DNA 

regions, 0.2-5 kb DNA fragments with clusters of CpG dinucleotides are termed “CpG 

islands,” and are typically located near the promoter or within the first exon of 

numerous genes (Takai & Jones 2003, Law & Jacobsen 2010).  The formation of 5meC 

occurs non-randomly in the genome and can create regions of hyper- and 

hypomethylation, further leading to the formation of heterochromatin (DNA is less 

accessible to transcriptional machinery), or euchromatin (DNA is more accessible).  

Certain regions, such as repetitive and transposable elements, are hypermethylated 

and transcriptionally inactive; other regions, such as CpG islands in promoters of 
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housekeeping genes, are hypomethylated and transcriptionally competent.  A 

disruption of proper methylation patterns in the genome can lead to a wide range of 

moderate to severe disease states (Helwani et al. 1999, Jones & Laird 1999, Doherty et 

al. 2000, Jones & Takai 2001, Khosla et al. 2001a, Khosla et al. 2001b, Young et al. 2001, 

Shiraishi et al. 2002, El-Maarri et al. 2003, Das & Singal 2004). 

DNA methylation, which is associated with a repressed chromatin state, can inhibit 

gene expression either directly or indirectly.  Direct inhibition involves the modification 

of cytosine bases, which then inhibits the binding of transcriptional activators to their 

cognate DNA sequences (Watt & Molloy 1988).  With indirect inhibition, proteins that 

recognize the 5meC mark (methyl CpG-binding proteins, or MBPs) can initiate the 

modification of surrounding chromatin by recruiting co-repressors (Nan et al. 1998, 

Yoon et al. 2003). 

DNA methyltransferases (DNMTs) are the enzymes responsible for catalyzing the 

conversion of cytosine to 5meC and can be generally classed as either de novo or 

maintenance methyltransferases (see Figure 1.1 and Table 1.1).  Both contain a C-

terminal catalytic region as well as an N-terminal regulatory region (Turek-Plewa & 

Jagodzinski 2005).  The primary de novo methyltransferases include DNMT3A and 

DNMT3B, and are responsible for the introduction of cytosine methylation at previously 

unmethylated CpG sites, thereby establishing new methylation patterns on DNA.  

Maintenance methyltransferases, namely DNMT1, preferentially attach methyl groups 

to hemimethylated DNA during replication, ensuring that the DNA methylation pattern 
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is faithfully copied to the newly synthesized DNA strand following replication.  While 

their catalytic regions are all very similar, their regulatory regions diverge significantly, 

consistent with their different functions.  The eukaryotic DNMT family also includes 

DNMT1o, DNMT1p, DNMT1s, DNMT2, and DNMT3-like (DNMT3L) (Geiman & 

Robertson 2002, Hermann et al. 2004a, Kelly & Trasler 2004, Turek-Plewa & Jagodzinski 

2005, Klose & Bird 2006, Law & Jacobsen 2010). 

 

 

 

 

 

 

 

 

 

 

 

 

Forming the core of the replication fork, DNMT1 methylates newly bio-synthesized 

DNA strands directly after the replication round, using the parent strand as the 

template from which to copy the proper methylation pattern.  It displays 5- to 40-fold 

Figure 1.1 DNA methylation and demethylation in mammals.  Dnmt3a and 
Dnmt3b introduce methyl groups to unmethylated DNA de novo.  During DNA 
replication, Dnmt1 recognizes methyl groups on hemimethylated DNA and 
copies the mark to the daughter strand.  In the absence of Dnmt1, passive 
demethylation occurs and is replication cycle-dependent.  Although DNA 
demethylases have not been well characterized, they represent a mechanism 
of active removal of methyl groups not coupled with DNA replication (Reik & 
Walter 2001). 
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higher activity in vitro for hemimethylated DNA than for unmethylated DNA and also 

exhibits very weak de novo methylation activity, presumably stimulated by DNMT3A 

(Bestor 2000, Fatemi et al. 2002, Hermann et al. 2004b).  It has further been shown to 

be involved in the mismatch repair system as well (Wang & James Shen 2004).  The 

DNMT1 gene is quite unique, in that it possesses sex-specific promoters (Mertineit et 

al. 1998) and a multi-potential first exon.  Unique sequences of the first exon are 

formed as a result of alternative splicing, and lead to the tissue-specific isoforms 

DNMT1o, DNMT1p and DNMT1s (Ko et al. 2005).  Dnmt1o has been shown in mice to 

be present in growing oocytes and stored in the cytoplasm of mature MII oocytes and 

preimplantation cleavage stage embryos.  It briefly translocates to the nucleus at the 8-

cell stage, then returns to the cytoplasm at the 16-cell stage (Ratnam et al. 2002, 

Huntriss et al. 2004).  However, this isoform has not been demonstrated to show any 

activity in other species.  DNMT1p is present in pachytene spermatocytes, but its 

sequence interferes with translation machinery and prevents the synthesis of DNMT1  

 

Table 1.1 Summary of the properties of the three catalytically active mammalian DNMTs (Geiman & 
Robertson 2002). 
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protein.  Thus, although the transcript is abundantly present in spermatocytes during 

spermiogenesis, there is no functional protein activity (Trasler et al. 1992).  DNMT1s is 

present in somatic cells (Carlson et al. 1992, Mertineit et al. 1998, Ratnam et al. 2002, 

Chung et al. 2003, Turek-Plewa & Jagodzinski 2005). 

Both de novo methyltransferases (Okano et al. 1998), DNMT3A and 3B share a high 

degree of primary structure homology, but are actually encoded by different genes on 

different chromosomes.  Most active during early embryogenesis, transcript levels 

taper off upon the differentiation of ES cells and remain low in adult tissues (Xie et al. 

1999).  DNMT3A demonstrates a preference for sites flanked by promoters, and while it 

is highly specific for CpG methylation, it can also methylate cytosine at CpA and CpT 

dinucleotides.  DNMT3B is specialized for the methylation of CpG dinucleotides within 

repeat sequences of chromosome pericentric satellite regions (Hermann et al. 2004a, 

Turek-Plewa & Jagodzinski 2005).  DNMT3L, a non-catalytic stimulatory factor, is known 

to interact with both DNMT3A and unmethylated histone 3 lysine 4 (H3K4) tails.  A 

model was proposed to explain these interactions in primordial germ cells (PGCs) 

following the wave of demethylation of imprinted genes and transposable elements 

(TEs), in which DNMT3L binds unmethylated H3K4 tails and recruits the DNMT3A 

isoform DNMT3A2 to imprinted loci in order to re-establish parent of origin specific 

DNA methylation imprints (Jia et al. 2007, Ooi et al. 2007, Otani et al. 2009, Law & 

Jacobsen 2010). 

 



11 
 

Histone Modifications 

Histones are protein macromolecules that assist in the organization and compaction of 

DNA.  These octomeric proteins are made up of 2 molecules each of H2A, H2B, H3 and 

H4 and form the nucleosome, around which approximately 147 bp of DNA are wound 

(Luger et al. 1997).  However, histones do not just serve as “spools” to neatly organize 

the DNA; chemical modification of histone tails can result in changing the degree of 

DNA compaction (heterochromatin or euchromatin), which then allows or prevents 

transcriptional machinery from binding.  “Histone modifications of nucleosomes 

distinguish euchromatic from heterochromatic chromatin states, distinguish gene 

regulation in eukaryotes from that of prokaryotes, and appear to allow eukaryotes to 

focus recombination events on regions of highest gene concentrations” (Holmquist & 

Ashley 2006).  Thus, in addition to DNA methylation, histone tail modifications serve as 

an additional level of epigenetic control over gene expression.  Modifications of various 

amino acid residues within histone tails can be in the form of acetylation, methylation, 

phosphorylation or ubiquitination.  In general, acetylation of lysine residues results in a 

more relaxed DNA compaction state, increased accessibility of transcriptional proteins 

to the DNA and thus an increase in gene expression.  Methylation of lysine residues can 

lead to tighter compaction of the DNA, inaccessibility of transcriptional activators and 

gene silencing, or a more relaxed state, depending on the residue that has been 

methylated (Nielsen et al. 2001a, Nielsen et al. 2001b, Peters et al. 2002, Vakoc et al. 

2006, Izzo & Schneider 2010).  Furthermore, lysines can be mono-, di- or tri-
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methylated, which also can lead to different downstream effects, even when occurring 

on the same residue (Birney et al. 2007, Koch et al. 2007, Izzo & Schneider 2010). 

Histone modifications have been widely explored during mammalian 

preimplantation development (Schultz & Worrad 1995, Dennis et al. 2001, Erhardt et 

al. 2003, Yan et al. 2003a, Yan et al. 2003b, Sarmento et al. 2004, de la Cruz et al. 2005, 

Santos et al. 2005, de la Cruz et al. 2007, Pasini et al. 2007, Puschendorf et al. 2008, 

Ross et al. 2008), and several of these studies have demonstrated relationships 

between altered histone modifications, DNA methylation and downstream 

heterochromatic spreading (Dennis et al. 2001, Erhardt et al. 2003, Yan et al. 2003b, de 

la Cruz et al. 2007, Pasini et al. 2007, Puschendorf et al. 2008).  These alterations could 

potentially lead to profound changes in phenotype, including cancer, imprinting 

diseases and other developmental abnormalities (Cuthill 1994, Geiman et al. 2001, 

Khosla et al. 2001a, Khosla et al. 2001b, Tycko & Morison 2002, Ehrlich 2003, De La 

Fuente et al. 2006, Xi et al. 2007).  It would be no surprise to discover a strong link 

between changing histone modifications and embryonic reprogramming, any deviation 

from which could lead to the increase in imprinting-type anomalies seen in mammals 

following in vitro exposure during the oocyte and/or embryo stage.  Several candidate 

genes involved in methylation of H3K4, H3K9, H3K27 and H4K20 would be interesting 

for further investigation during this window of preimplantation development.  These 

modifications have been characterized in a wide variety of applications relating to 

general gene activation/repression in facultative and constitutive heterochromatic 
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regions (Peters et al. 2002, Plath et al. 2003, Schotta et al. 2004, Zhang et al. 2004, 

Bernstein et al. 2005, Morillon et al. 2005, Botuyan et al. 2006, Vakoc et al. 2006, Cao 

et al. 2008, Huen et al. 2008, Pesavento et al. 2008, Yang et al. 2008); however, it is less 

well-known exactly how they contribute specifically to embryonic genome activation 

during the reprogramming period.  In mouse 2-cell embryos, differential histone 

modifications exist between the maternal and paternal genomes.  In particular, 

H3K27me3 marks are enriched on maternal, but not paternal chromosomes (Santenard 

et al. 2010).  Additionally, H4K20me3 marks begin disappearing from the maternal 

chromatin, and do not reappear until the blastocyst stage (Kourmouli et al. 2004).  In 

mouse embryos between the 4-cell and morula stages, approximately equal levels of 

H3K9, H3K27 and H4K20 are evident between blastomeres (Erhardt et al. 2003).  Once 

blastomeres are committed to the formation either the trophectoderm (TE) or inner 

cell mass (ICM), differential histone modification marks are seen once again (Tachibana 

et al. 2002, Erhardt et al. 2003, Dodge et al. 2004).  However, one must keep in mind 

that differences in the timing of the reprogramming events exist between species 

(described later), so what is known about histone modifications during mouse 

development may not be applicable to humans or the bovine model.  Further 

exploration in this area would be most helpful in determining whether or not histone 

modifications regulate, or at least contribute to, reprogramming in early bovine and 

human embryos. 
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RNA Interference 

Prior to the discovery of the RNA interference (RNAi) mechanism, researchers stumbled 

upon the puzzling phenomenon that when exogenous transgenes were introduced into 

petunias in order to enhance color intensity (by increasing the activity for an enzyme 

involved in the production of specific pigmentation in petunia flowers), it instead 

resulted in either the partial or complete loss of color.  This meant that the introduced 

transgenes were able to affect the expression of endogenous genes, by decreasing the 

activity of the pigmentation enzyme, and resulting in partially or completely white 

flowers (Napoli et al. 1990).  This phenomenon was termed “co-suppression” and later 

renamed post-transcriptional gene silencing (PTGS) (Van Blockland et al. 1994).  

Although it had been observed previously, Andrew Fire and Craig Mellow, were 

credited with the actual discovery of the RNAi mechanism, when they concluded that 

specifically double-stranded RNA (dsRNA) resulted in silencing of the targeted gene 

(Fire et al. 1998).  Later, it was determined that the introduction of dsRNA into 

mammalian cells, in the form of synthesized siRNA molecules, also resulted in the 

desired gene-silencing response (Elbashir et al. 2001a, Elbashir et al. 2001b).  This 

discovery established that the RNAi pathway also operates in mammalian cells. 

RNAi can act in most eukaryotes via three distinct pathways: by degrading mRNA 

(PTGS), by repressing translation and by targeting specific loci for 

heterochromatinization (Holmquist & Ashley 2006).  Primarily of interest here, 

however, is the use of siRNA technology as a mechanism to suppress expression of 
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specifically targeted genes without generating a complete knockout.  Following 

introduction into a cell via transfection or microinjection, these small ~21-bp siRNAs are 

processed, become single stranded and mediate post-transcriptional silencing of their 

specific targets by mRNA degradation (Bartel 2004, Holmquist & Ashley 2006). 

 

THE ROLE OF THE EPIGENOME DURING EARLY DEVELOPMENT 

During oocyte growth and maturation, the oocyte must achieve both cytoplasmic and 

nuclear/meiotic maturation in order to be competent for fertilization and further 

development.  At birth, the female’s (mouse, bovine and human) oocytes are poised at 

prophase I of meiosis within primordial follicles (Picton et al. 1998).  Follicular waves 

within each reproductive cycle result in the recruitment of primordial follicles to grow 

and develop.  Unlike the male’s gametes at their corresponding stage of 

spermatogenesis, oocytes at the beginning of follicular recruitment have not yet re-

acquired all the necessary (maternal) imprints.  These maternal imprints are re-

established gradually during follicular growth from the primary to the antral stages 

(Huntriss & Picton 2008, Lawrence & Moley 2008).  In addition to the acquisition of 

maternal imprints and oocyte growth (size) during follicular recruitment, the oocyte 

also begins storing maternal mRNA.  Very little transcription occurs during the first few 

cleavage divisions following fertilization, so the newly formed embryo must rely on the 

maternally stored mRNAs the oocyte accumulated prior to fertilization to sustain 

development until transcriptional activation of the embryonic genome is initiated 
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(Eichenlaub-Ritter & Peschke 2002).  Once the oocyte has acquired all the maternal 

mRNAs and other cytoplasmic organelles it will need, the oocyte is considered to be 

cytoplasmically mature.  However, the oocyte must still achieve meiotic competence 

via nuclear maturation; the LH surge causes spontaneous resumption of meiosis, which 

continues until arrest at the metaphase II stage in preparation for fertilization 

(Rodriguez & Farin 2004).   

Unlike the oocyte, which is designed to contribute all the cytoplasm with necessary 

components for the resulting zygote, the sperm’s main role is to serve as an efficient 

DNA-delivery vehicle.  For this reason, a sperm’s DNA is packaged with protamines, 

allowing tighter compaction of the DNA than could be accomplished with histones.  

Following fertilization and prior to syngamy, however, sperm chromatin undergoes 

decondensation as the protamines are replaced with histones from the oocyte (Mann & 

Bartolomei 2002). 

In most mammalian species, the parental genomes become differentially 

demethylated soon after fertilization.  In general, the paternal genome is actively 

demethylated prior to the first cleavage division, while the maternal genome is 

passively demethylated (replication-dependent) over the first few cell divisions (see 

Figure 1.2).  Though the mechanism is currently unknown, imprinted genes and some 

repeat sequences somehow manage to escape this erasure and reestablishment of 

DNA methylation (until later reprogramming during gametogenesis).  Stage-dependent 

on species, the embryonic genome is then remethylated with the proper marks it will 
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need.  In the cow, remethylation occurs prior to differentiation, beginning at the 8-cell 

stage.  However, in the mouse, remethylation does not begin until after differentiation, 

at the blastocyst stage.  Also during the first few cleavage divisions, the maternal mRNA 

stores are gradually used up or degraded (Memili & First 2000).  In order to continue  

 

 

Figure 1.2 DNA methylation levels across bovine preimplantation embryonic development.  The blue line 
represents active demethylation of the paternal genome, while the red represents passive demethylation 
of the maternal genome.  After erasure, these marks are reestablished de novo when the embryonic 
genome is activated (Mann & Bartolomei 2002). 

 

development, the embryo must begin transcribing its own mRNA, an event termed 

embryonic genome activation (EGA).  The EGA is also stage-dependent on species; it 

occurs at the 2-cell stage in mice and around the 4-8 or 8-16 cell stage in humans and 

bovids, respectively (Braude et al. 1988, Kopecny 1989, Kopecny et al. 1989, Memili & 

First 2000, Wang et al. 2004, Zeng & Schultz 2005, Wong et al. 2010).  In human and 

bovine embryos, de novo DNA methylation is concurrent with EGA and the first major 
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wave of transcription (Kopecny 1989, Kopecny et al. 1989, Fulka et al. 2004, Wong et al. 

2010).  In mice however, EGA does not coincide with de novo DNA methylation.  

Transcription is initiated at the 2-cell stage, while the DNA remethylation event does 

not occur until after implantation (Monk et al. 1987, Kafri et al. 1992, Santos et al. 

2002, Wang et al. 2004, Zeng & Schultz 2005). 

The combination of changing chromatin configuration, changes in DNA methylation 

status and embryonic genome activation all occurring during a very short time period 

may suggest an epigenetic link connecting these events to each other.  Because this is 

such a critical time in development of the epigenome, as evidenced by the fact that 

imprinting abnormalities have been associated with the prevalent use of ART 

procedures in human and livestock reproduction, we are investigating the roles of 

several epigenetic modifiers during preimplantation development.  We hypothesize 

that a disruption in activity of these key enzymes likely leads to alteration in important 

downstream developmental processes. 
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CHAPTER II 

EXPRESSION PROFILING OF HISTONE MODIFYING ENZYMES IN IN VITRO 

PRODUCED BOVINE PREIMPLANTATION EMBRYOS 

 

INTRODUCTION 

Although much information has been gleaned about DNA methylation characteristics 

during the reprogramming period in early embryonic development, changing chromatin 

configurations have been less explored.  In cattle and humans, we know that the 

embryonic genome begins transcribing its own RNA at approximately the same stage as 

DNA remethylation, but it is unclear exactly which histone modifications are occurring 

at this time. 

Our central goal was to determine which epigenetic modifiers (DNMTs and/or 

HMGs) could be playing a key role in early epigenetic reprogramming in the bovine 

preimplantation embryo.  We hypothesized that expression profiles would either follow 

the pattern of maternal mRNA degradation between fertilization and the 8-cell stage or 

that the gene(s) would be expressed higher around the 8- to 16-cell stage, in 

association with embryonic genome activation and/or de novo DNA methylation.  To 

address this hypothesis, we collected RNA from pooled in vitro-derived bovine embryos 

at specific time points (representing different cleavage stages) between fertilization 

and the blastocyst stage, reverse-transcribed it into cDNA, and profiled expression of 

several genes (SetB1, G9a,  Suv3-9h1, Suv4-20h1, Suz12, Lsh, SmyD3 and Lsd1) via 
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qPCR.  These particular genes were selected based on their known implications with 

histone modifications and/or DNA methylation, as described below. 

 

SetB1 

Set domain bifurcated 1 (SetB1) is an H3K9-specific methyltransferase, containing a 

putative methyl-binding domain (MBD) that potentially links H3K4 methylation to DNA 

methylation, or may do so through the interaction with the MBD-containing protein 

MBD1 (Hashimoto et al. 2010).  It has been demonstrated that SetB1 only interacts 

with H3 in the absence of H3K4me3, as it fails to methylate H3K9 in the presence of 

substrates containing the H3K4me3 mark (Binda et al. 2010).  In Drosophila 

melanogaster, trimethylation of H3K9 by SetB1 mediates recruitment of Dnmt2 and the 

Drosophila ortholog of mammalian HP1 to target genes.  In doing so, SetB1 triggers 

DNA methylation and silencing of genes and certain retrotransposons (Gou et al. 2010).  

Although this has not been demonstrated in mammals, it provides a potentially 

interesting link between SetB1 HMT activity and DNA methylation. 

 

G9a 

Euchromatic histone-lysine methyltransferase 2 (Ehmt2, or more commonly G9a) is 

known to methylate H3K9, aiding in gene silencing of euchromatic regions.  While it is 

specific for mono- and dimethylation (Rice et al. 2003), some have suggested that G9a 

is indeed capable of trimethylation of H3K9 as well (Patnaik et al. 2004), although Suv3-
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9h1 and Suv3-9h2 are primarily the enzymes responsible for this modification (Rice et 

al. 2003).  Mice deficient in G9a die prematurely between embryonic days 9.5 and 12.5, 

displaying severe growth retardation due to deregulation of developmental genes 

(Tachibana et al. 2002).  Interestingly, similar growth retardation was also observed in 

Dnmt1-null mice (Li et al. 1992), indicating a possible link between the activities of G9a 

and Dnmt1.  Esteve et al. have reported a direct interaction between G9a and Dnmt1 

based on their data in 2006.  They demonstrated that these two proteins colocalize in 

the cell and at replication foci during S phase, and that G9a stimulates Dnmt1 activity, 

while Dnmt1 exhibits a similar, modest activity on G9a.  They suggested that the 

Dnmt1-G9a binary complex is catalytically competent and can perform both histone 

and DNA methylation, so that H3K9 residues undergo histone methylation, concurrent 

with maintenance DNA methylation.  In addition, the authors suggested that the 

presence of G9a in a Dnmt1 complex can activate Dnmt1 catalysis for additional de 

novo methylation (methylation spreading) as seen in silenced genes in cancer cells 

(Esteve et al. 2006).  Clearly, G9a represents another HMG with close ties to DNA 

methylation, once again strengthening the argument for a link between histone 

modifications and the DNA methylation changes occurring during early development. 

 

Suv3-9h1 

In eukaryotes, suppressor of variegation 3-9 homolog 1 (Suv3-9h1) is required for 

formation of pericentric heterochromatin by catalyzing H3K9 trimethylation.  Suv39h1-
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mediated trimethylation of H3K9 leads to binding of HP1 and other HP proteins, which 

target the two Suv4-20h HMTs as well as Dnmts 3a & 3b in order to establish a 

transcriptionally repressed state (Puschendorf et al. 2008). 

 

Suv4-20h1 

Suppressor of variegation 4-20 homolog 1 (Suv4-20h1), which contains a SET domain, 

prefers catalyzation of H4K20 dimethylation but can also accomplish trimethylation of 

the same enzyme (Yang et al. 2008).  Not much about the function of Suv4-20h1 has 

been determined, but deficiency results in telomere elongation and derepression of 

telomere recombination (Benetti et al. 2007).  Some have suggested that Suv4-20h1, in 

addition to Suv3-9h, is also active in establishing pericentric heterochromatin (Schotta 

et al. 2004). 

 

Suz12 

Suppressor of zeste 12 (Suz12) is a member of PRC2 and PRC3, known to catalyze both 

di- and trimethylation (me2 and me3, respectively) of H3K27 during mouse 

embryogenesis.  Suz12 enhances the activity of PRC2/3 by mediating the recruitment of 

the necessary histone-binding subunit RbAp48 to both of these complexes.  In Suz12 -/- 

mice, data suggest the effects of Suz12 loss arise around 8.5 days post-coitum (dpc), 

with near-complete fetal reabsorption by 10.5 dpc (Pasini et al. 2004).  In Drosophila, 

Su(z)12 has been implicated in the formation of both facultative and constitutive 
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heterochromatin (de la Cruz et al. 2007), and in mouse embryonic (ES) cells involves 

enrichment of Suz12 on the Xi during X-inactivation.  In human cells, knockdown of 

SUZ12 via siRNA transfection resulted in global loss of H3K27me3 (de la Cruz et al. 

2005).  In addition to its involvement with H3K27 methylation, Suz12 has also been 

shown to be required for stable H3K9 trimethylation.  In a separate experiment, 

knockdown of SUZ12 in human cells not only reduced the levels of H3K27me3, but also 

decreased levels of H3K9me3, thereby leading to the dissociation of HP1α from 

heterochromatin.  The enrichment of H3K9me3 and HP1α on pericentric 

heterochromatin is required for centromere function & normal chromosome 

segregation (de la Cruz et al. 2007).  Clearly, Suz12 plays an important role in histone 

methylation and heterochromatin formation during early development, and further 

study in the bovine model would shed helpful light on major epigenetic remodeling 

occurring during this time period. 

 

Lsh 

Lymphoid-specific helicase (Lsh) is known to be non-essential for murine embryonic 

development, but Lsh deficient mice die shortly after birth (Dennis et al. 2001) with 

dramatically reduced levels of DNA methylation, especially in normally-occurring 

heterochromatic regions, where transposable elements and other specific genes reside 

(Huang et al. 2004, Lippman et al. 2004, Fan et al. 2005).  In mouse embryonic 

fibroblasts, Yan et al. reported that Lsh, in addition to Dnmt1 and Dnmt3B, is required 
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for DNA methylation of pericentric major satellite repeats (Yan et al. 2003b).  Lsh has 

also been shown to co-immunoprecipitate with de novo methyltransferases Dnmt3a 

and Dnmt3b (Zhu et al. 2006).  Most recently, researchers found that while 

transcriptional silencing by the LSH protein complex does not immediately result in 

DNA methylation, LSH directly recruits DNMT1, DNMT3B, and histone de-acetylases 

(HDACs) to the site, and the LSH-mediated increase in the local concentration of 

DNMTs on chromatin may lead to DNA methylation that further stabilizes a silenced 

chromatin state.  These authors also showed that DNMT3B directly binds to the N-

terminus of LSH, and that the interaction of DNMT1 with LSH in vitro and in vivo 

requires the presence of DNMT3B; DNMT1 is then believed to recruit HDAC1 and 

HDAC2 to the LSH-bound DNMT3B (Myant & Stancheva 2008).  Clearly, Lsh is necessary 

for proper DNA methylation, especially during early development.  However, due to 

differences between the timing of de novo DNA methylation activity in mice versus the 

more similar pattern seen between ruminants and humans, it would be helpful to 

further characterize Lsh activity during bovine preimplantation development. 

 

SmyD3 

SmyD3 is a member of the SmyD family class of chromatin regulators important in 

heart and skeletal muscle development (Sirinupong et al. 2011).  Frequently 

overexpressed in different types of cancer cells, it contains a SET domain and is 

responsible for the accumulation of di- and trimethylation of H3K4 at induced estrogen 
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receptor genes (Kim et al. 2009).  It has been suggested that SmyD3 plays a crucial role 

in HeLa cell proliferation and migration/invasion, as knockdown of this gene in HeLa 

cells inhibited these cellular functions (Wang et al. 2008).  It is unclear what role SmyD3 

plays in preimplantation development. 

 

RESULTS 

Following multiple rounds of IVF, we collected groups of bovine embryos at specific 

time points, representative of the following embryonic stages: 2-cells (day 1 post-IVF), 

4-7-cells (day 2), early 8-cells (day 3), late 8-cells (day 4), 16-cells (day 5), morulas (day 

6) and blastocysts (day 7).  Groups of unfertilized MII oocytes were also collected on 

day 0, in order to have samples consisting of only maternally-derived mRNA, for 

comparison.  Each replicate was produced from a different IVF round, and the sample 

size varied from one stage to another in order to compensate for decreasing levels of 

mRNA around the 8-16 cell stage (see Table 2.1). 

RNA was isolated from each group and reverse-transcribed into cDNA.  The cDNA 

was used (via SYBR Green qPCR) to determine a gene expression profile of the HMGs 

described above, across bovine preimplantation development.  To account for both 

differences in cell number and varying mRNA content at each stage, gene expression 

was normalized to an average of three endogenous controls.  We obtained 3 unique 

expression profiles for these epigenetic modifiers, displayed in Figure 2.1.  SetB1, Suv3-

9h1, Suv4-20h1 and SmyD3 were all moderately expressed in MII oocytes, higher 
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Table 2.1  Oocytes and embryos collected for characterization of gene expression.  
Time of collection corresponds to the number of hours following in vitro fertilization. 

Stage Replicate n Time of collection

MII oocytes 1 17 0

MII oocytes 2 17 0

2-cells 1 15 30

2-cells 2 14 35

4-7-cells 1 17 48

4-7-cells 2 25 52

mid 8-cells 1 18 74

mid 8-cells 2 20 75

late 8-cells 1 22 94

late 8-cells 2 19 96

16-cells 1 21 124

16-cells 2 22 124

morulas 1 12 146

morulas 2 8 148

morulas 3 18 149

blastocysts 1 9 172

blastocysts 2 21 172

blastocysts 3 15 180  

 

around the 2-4 cell stage, before levels tapered off by the morula & blastocyst stages.  

G9a represented a similar profile, but with levels increasing slightly at the late 8-cell 

stage.  Interestingly, Suz12 and Lsh mRNA levels were low during the earlier cleavage 

stages, increased noticeably around the 8- or 8-16 cell stages (respectively), then 

decreased again to levels similar to the 2-4 cell stages.  Because we were primarily 

interested in obtaining the approximate expression patterns of these genes during this 

developmental window to use for further study, a statistical analysis of these data was 

not performed. 
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DISCUSSION 

These data suggest that SetB1, Suv3-9h1, Suv4-20h1, and SmyD3 represent genes most 

active during the cleavage divisions, prior to and including the early stages of the EGA 

event.  These transcripts are most likely maternally-derived, as their expression profiles 

exhibit strong similarity to levels of maternally-stored transcripts (levels decrease as 

the transcripts are used up or degraded prior to EGA) (Memili & First 2000).  Transcript 

Figure 2.1  (A-C) Three characteristic expression patterns exhibited by several representative epigenetic 
modifiers in bovine preimplantation embryos.  The y-axis represents the average fold change in 
expression seen across early embryonic stages, normalized to the geometric mean of three endogenous 
controls: Gapdh, Ywhaz, and Sdha (Goossens et al. 2005).  Error bars represent S.E.M. for each stage 
examined. 
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levels of these genes following the 8-cell stage are likely embryonically-derived, but 

could also be residual maternal mRNA.  Interestingly, because levels are still 

moderately high around the 8-cell stage, they could be actively involved in the EGA 

event and/or DNA remethylation.  However, further examination of their actions would 

be necessary in order to support this hypothesis.  Suz12 and Lsh represent a different 

and most unique expression profile.  These mRNA were low in the earlier stages 

(maternal transcripts) and noticeably increased around the 8-cell stage (embryonic 

transcripts).  This notable increase in expression coincides with both EGA and de novo 

DNA remethylation, thereby supporting the notion of their possible involvement in 

these key events.  Further study of the enzymatic activities of Suz12 and Lsh (examining 

their impact on histone and DNA methylation) would be most informative in 

determining the significance of these genes during the EGA and DNA remethylation 

events.  G9a represents a third profile, similar to that of both maternally-stored mRNA 

(decrease up to the 8-cell stage) and embryonic transcripts (increase in levels at or 

following the 8-cell stage).  However, the increase is fairly small and slightly later than 

that of Suz12 and Lsh; further examination of the G9a profile during these stages, and 

additional characterization of its enzymatic activity affecting histone and DNA 

methylation is needed before an argument could be made that G9a plays a key role in 

EGA. 

In this study, we aimed to collect each sample from a separate IVF round, so that 

any variation from one round to the next would be visible between samples.  However, 
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using this method sometimes limited the number of embryos we could include in a 

sample, at each stage.  If development was not as high as we expected for a particular 

round, we would then not have enough embryos for a minimum sample size, and 

therefore n would vary between samples.  Also, this meant that we could not collect 

every stage from every IVF round, because if done this way, the sample sizes would not 

be sufficiently large enough for the amount of RNA needed for reverse transcription 

and qPCR analysis.  With what we learned from this experiment, we decided that a 

better way to minimize variation while keeping n the same from sample to sample 

(with a minimum sample size set for each stage collected, to provide enough RNA) 

would be to collect all stages from each round of IVF.  Because not enough embryos 

would be collected from each round to fulfill the required sample size, embryos at each 

stage would be pooled until the minimum n had been reached for the first sample, then 

the same for the second and third until all samples had been collected.  Therefore, 

regarding all embryo samples collected for qPCR analysis following this experiment, we 

switched to using this approach. 

Overall, this dataset provides an interesting window into the changing transcript 

levels of selected HMGs during bovine embryo preimplantation development in vitro, 

and thereby suggests at which time point(s) these genes could be active.  However, a 

further look into protein levels and/or their enzymatic activities is needed before we 

can reach any sort of conclusion on their involvement with either the EGA event or DNA 

remethylation. 
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CHAPTER III 

siRNA-MEDIATED KNOCKDOWN OF SELECTED GENES 

 

INTRODUCTION 

To address our goal of uncovering which epigenetic modifications are associated with 

early developmental reprogramming and EGA, we suppressed expression of a subset of 

the previously characterized HMGs and evaluated effects on development rates, gene 

function (specific histone modifications and/or DNA methylation) and gene expression 

of other known epigenetic modifiers.  We hypothesized that genes with increased 

transcription around the 8-cell stage were likely involved in EGA, and that suppression 

of these transcripts would lead to a reduction in or complete block from further 

development. 

To address this hypothesis, we selected the two most obvious candidates fitting 

the description of increased transcript levels around the 8-cell stage: Suz12 and Lsh.  In 

short, the design of the experiment was to suppress the expression of these proteins 

individually via cytoplasmic microinjection of mRNA-targeting siRNAs at the zygote 

stage.  Our endpoints for evaluation included development rates, the degree of gene 

knockdown via qPCR, any change in expression of non-targeted epigenetic modifiers 

and examination of any resulting changes in DNA or histone (H3K9 and H3K27) 

methylation via immunocytochemistry (ICC).  
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RESULTS 

Testing siRNA Effectiveness in a Bovine Cell Line 

In order to test which siRNAs were most successful in reducing target mRNA levels, we 

transfected MDBK cells at both low (20 nM) and high (50 nM) siRNA concentrations.  Of 

the 2 Suz12-targeting siRNAs that were tested, 1 was found to have considerable 

knockdown efficiency at both low and high siRNA concentrations (low concentration 

shown in Figure 3.1).  Of the 4 Lsh-targeting siRNAs we tested, 2 displayed notable 

knockdown efficiencies at both low and high siRNA concentrations; however, a further 

increase in efficiency was observed when these 2 siRNAs were transfected together 

(low concentration shown in Figure 3.1).  The higher (50 nM) concentration of siRNAs 

did not result in an increased efficiency over the lower (20 nM) concentration; 

therefore, the 50 nM transfection data is not included here.  Successful siRNA target 

sequences are listed in Table 3.1. 

 

Table 3.1  siRNA sequences that were successful in reducing target gene expression when tested in 
MDBK cells.  These siRNAs were further used for cytoplasmic microinjection into zygotes. 

Gene Target Name bp Start siRNA Target Sequence

Suz12 SUZ-316 316 5'-AAGGATGTAAGTTGTCCGATA-3'

Lsh LSH-1575 1575 5'-AGCAGATACTGTTATCATTTA-3'

Lsh LSH-447 447 5'-TCGGATATTGGTAAAGCATAT-3'  
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Figure 3.1  Targeted gene expression in MDBK cells, using 20 nM (low) siRNA 
concentration.  (A) Bars represent Suz12 expression following no treatment (CTL), 
transfection with a non-targeting siRNA control (NULL), or transfection with an Suz12-
targeting siRNA (SUZ-316).  (B) Bars represent Lsh expression following no treatment 
(CTL), transfection with a non-targeting siRNA control (NULL), or transfection with Lsh-
targeting siRNAs (LSH-1575, -447 or –both).  The Lsh siRNAs were tested singly at 20 
nM and in combination (20 nM each), in order to determine if a synergistic effect 
increased target reduction efficiency.  Statistical comparisons were not performed. 

 

 

 

 

A 

B 
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Preliminary Data: Experimental Design Evaluation 

We conducted a preliminary study in order to evaluate our experimental design, using 

embryos from a non-injected (CTL) group, or those injected with either non-targeting 

(NULL) or Suz12-targeting (SUZ) siRNAs.  In vitro produced embryos were collected 

from each of these groups at the 4-cell, 8-cell, morula, and blastocyst stages.  Cleavage 

and blastocyst rates were evaluated on days 2 and 7 following fertilization, 

respectively.  RNA was isolated from 3 replicates of pooled embryos at each stage, 

except for the blastocysts, and reverse-transcribed into cDNA for use with qPCR.  

Relative gene expression levels from each sample were calculated in triplicate using the 

SYBR Green comparative Ct method, adjusted according to individual PCR efficiencies 

for each primer pair (R2> 0.95) and normalized to the geometric mean Ct of of 3 

endogenous controls (GAPDH, YWHAZ and SDHA), to account for differences in both 

cell number and amount of total mRNA present in each sample (Goossens et al. 2005). 

In the SUZ embryos, we succeeded in suppressing Suz12 expression to 1% or less of 

levels seen in the NULL embryos, at each stage analyzed (Figure 3.2).  As seen in Table 

3.2, the microinjection procedure resulted in a decrease (p < 0.0001) in cleavage rates 

between injected (NULL and SUZ) and noninjected (CTL) groups, while no difference (p 

= 0.8) was observed between the NULL and SUZ groups.  However, the blastocyst rates 

were unexpectedly low and significantly different (p < 0.0001) between all groups, with 

the SUZ group exhibiting less than 1% development to the blastocyst stage (only 3 SUZ 

blastocysts were obtained for qPCR analysis).  Because all of the blastocyst rates were 
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lower than expected, we re-evaluated our methods and made several modifications 

before repeating the experiment. 

 

 

 

Figure 3.2  Expression levels of Suz12 in bovine preimplantation embryos.  (A) grouped by 
treatment, showing the average fold change (error bars represent S.E.M. for each treatment 
group and stage collected), and (B) by developmental stage with transcript levels in the NULL 
group set at 100% for each stage examined, to illustrate knockdown efficiency as percentage 
values.  Asterisks reflect significantly different values, within each stage (Tukey Kramer 
adjusted p < 0.05). 

 

A 

B 

* * * * 
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Table 3.2 Development rates for bovine embryos in the preliminary study.  Letters indicate 
significantly different values between treatment groups, as determined by Chi-square analysis, (p < 
0.05). 

Treatment n Cleaved % Cleaved Blastocysts % Blastocysts

CTL 508 394 77.6%a
96 18.9%a

NULL 580 384 66.2%b
34 5.9%b

SUZ 520 348 66.9%b
3 0.6%c

 

 

Targeted Gene Suppression in Bovine Embryos 

We tested the experimental hypothesis that epigenome modifiers are important during 

early embryonic development and specifically at the EGA by injecting the confirmed 

effective siRNAs targeting Suz12 or Lsh into bovine zygotes.  The experimental 

endpoints would determine whether a reduction in either Suz12 or Lsh transcript levels 

prior to and during the reprogramming period would result in altered development 

rates, changes in non-targeted gene expression and alterations in histone and/or DNA 

methylation, thus highlighting the importance of these genes during bovine 

preimplantation development. 

 

Validation of Suz12 Suppression in Bovine Embryos 

Suz12 mRNA levels were suppressed at least 93% at all embryonic stages analyzed, with 

the highest degree of suppression seen in the 4-cell, 8-cell and morula stages.  Suz12 

expression levels are shown in Figure 3.3, grouped either by treatment (A) to illustrate  
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Figure 3.3  Relative expression levels of Suz12 across embryo stages (4C, 4-cells; 8C, 8-cells; 
M, morulas; B, blastocysts), among 3 treatment groups (CTL, NULL or SUZ), determined by 
TaqMan qPCR.  (A) Expression profiles of Suz12 across development, grouped by treatment.  
Individual bars represent the treatment mean ± S.E.M.  Asterisks refer to significant 
differences in relative abundance of transcripts between treatment groups within each stage.  
(B) The same dataset grouped by stage, with expression levels shown as a percentage of the 
NULL treatment group mean at each stage, in order to illustrate the percent knockdown of 
the target gene.  Asterisks reflect significantly different values, within each stage (Tukey 
Kramer adjusted p < 0.05).     

 

A 

B 
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expression levels across development or by stage (B) in order to illustrate the 

percentage knockdown at each stage, normalized to the NULL embryos.  Overall, no 

significant difference was seen in Suz12 expression between the CTL and NULL 

treatment groups at any of the stages examined (p > 0.05). 

 

Effects of Suz12 Suppression on Development and Expression of Non-Targeted 

Epigenetic Modifiers 

Following siRNA-mediated suppression of Suz12 of the appropriate zygotes, 

examination of cleavage rates revealed a small, but significant decrease resulting from 

the microinjection procedure (p < 0.01), but no difference (p = 0.24) in cleavage rates 

was seen between the NULL and SUZ groups.  However, Suz12 suppression clearly had 

effects on later development rates and embryo quality, beyond those resulting from 

the microinjection procedure.  Cleavage and development rates are listed in Table 3.3, 

showing significantly different values between treatment groups.  Although the NULL 

 

Table 3.3  Cleavage and development rates ± S.E.M. for bovine embryos in the Suz12 targeted 
knockdown experiment.  Chi-square comparisons were performed for all treatment groups; letters 
denote significantly different values (p < 0.05) between groups for each experiment. 

Treatment n Cleaved % Cleaved Blastocysts % Blastocysts

CTL 1210 1009 83.4 ± 0.3%a
335 27.7 ± 0.3%a

NULL 1118 882 78.9 ± 0.3%b
229 20.5 ± 0.3%b

SUZ 946 726 76.7 ± 0.4%b
60 6.3 ± 0.2%c

 

 



38 
 

embryos did exhibit a decrease in development compared to the CTL embryos (p = 

0.0001), the blastocyst rate of the SUZ group was considerably lower (p < 0.0001) than 

both the NULL and CTL groups.  Most of the SUZ morulas & blastocysts exhibited 

considerable fragmentation (grade 2 or lower), characteristic of poor quality or 

unhealthy embryos.  In particular, the SUZ morulas that did go on to form blastocysts 

had fewer, larger compacting cells prior to blastocoele formation.  Morphologically, the 

NULL and CTL embryos seemed to develop normally or with only minor fragmentation 

(grades 1-2), although the NULL embryos also exhibited somewhat lower blastocyst 

formation.  Images of representative embryos from each stage and treatment can be 

seen in the Appendix. 

To evaluate the effect of Suz12 suppression on several non-targeted genes 

involved in histone modification, DNA methylation or differentiation, we also used 

TaqMan-based qPCR to examine mRNA levels of these various genes.  No significant 

differences were observed in any of the non-targeted genes (p < 0.05) when comparing 

the SUZ treatment to the NULL treatment, as illustrated in Table 3.4. 
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Table 3.4  Changes in mRNA levels of non-targeted epigenetic modifiers, 
resulting from Suz12 suppression in early bovine embryos at the 4-cell, 8-cell, 
morula and blastocyst stages.  No significant change was detected in the 
expression of any of the non-targeted genes, comparing the NULL and SUZ 
treatments within each stage (p < 0.05).  The significant decreases in Suz12 
levels at each stage are illustrated in Figure 3.3. 

Upregulated No change Downregulated

none Lsh Suz12

G9a

Suv4-20h1

Lsd1

Dnmt1

Dnmt3a

Dnmt3b

Oct4

Sox2

Cdx2  

 

Validation of Lsh Suppression in Bovine Embryos 

Similar results were observed when we injected Lsh-targeting siRNAs into bovine 

zygotes, although the Lsh-targeting siRNAs were not as effective at suppressing target 

mRNA levels as were those targeting Suz12.  Despite this, we still achieved a minimum 

of 89% suppression in Lsh transcript levels at the 4-cell, 8-cell and morula stages.  

However, some Lsh suppression was lost by the blastocyst stage, as mRNA levels were 

only decreased by 57%.  Lsh expression levels are illustrated in Figure 3.4, grouped 

either by treatment (A) to illustrate expression levels across development or by stage 

(B) in order to illustrate the percentage knockdown at each stage, normalized to the 

NULL embryos. Although the graphical representation of Lsh expression levels seems to 

show moderate differences between treatment groups at the blastocyst stage, these  
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Figure 3.4  Relative expression levels of Lsh across embryo stages (4C, 8C, M and B), among 3 
treatment groups (CTL, NULL or SUZ) determined by TaqMan qPCR.  (A) Expression profiles of 
Lsh across development, grouped by treatment.  Individual bars represent the treatment 
mean ± S.E.M.  Asterisks refer to significant differences in relative abundance of transcripts 
between treatment groups within each stage.  (B) The same dataset grouped by stage, with 
expression levels shown as a percentage of the NULL treatment group mean at each stage, in 
order to illustrate the percent knockdown of the target gene.  Asterisks reflect significantly 
different values, within each stage (Tukey Kramer adjusted p < 0.05). 

 

differences were not significant (p = 0.60 and 0.44, when comparing the LSH group to 

the CTL and NULL groups, respectively).  Overall, there was no significant difference 

A 

B 

* * * 
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found in Lsh expression between the CTL and NULL treatment groups at any of the 

stages examined (p > 0.05). 

 

Effects of Lsh Suppression on Development and Expression of Non-Targeted Epigenetic 

Modifiers 

Targeted suppression of Lsh resulted in lower cleavage rates in the injected groups as 

compared to the CTL embryos; again, there was no significant difference between the 

NULL and LSH injected groups.  Analysis of blastocyst rates revealed that CTL embryos 

exhibited the highest development, followed by the NULL and finally, LSH groups.  LSH 

morulas and blastocysts also exhibited fragmentation and the morulas had fewer, 

larger compacting cells.  Cleavage and development rates are listed in Table 3.5, 

showing significantly different (p < 0.05) values between treatment groups.  Images of 

representative embryos from each stage and treatment can be viewed in the Appendix. 

 

Table 3.5  Cleavage and development rates ± S.E.M. for bovine embryos in the Lsh targeted 
knockdown experiment.  Chi-square comparisons were performed for all treatment groups; letters 
denote significantly different values (p < 0.05) between groups. 

Treatment n Cleaved % Cleaved Blastocysts % Blastocysts

CTL 847 648 76.5 ± 0.4%a
173 20.4 ± 0.4%a

NULL 582 384 66.0 ± 0.4%b
89 15.3 ± 0.5%b

LSH 615 399 64.9 ± 0.6%c
30 4.9 ± 0.3%c

 

 

The effects of Lsh suppression on the non-targeted genes involved in histone 

modification, DNA methylation or differentiation were determined as stated previously.  
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Overall, no changes (p < 0.05) in transcript levels of the non-targeted genes were 

observed when comparing the LSH treatment to the NULL treatment (illustrated in 

Table 3.6). 

 

Table 3.6  Changes in mRNA levels of non-targeted epigenetic modifiers, 
resulting from Lsh suppression in early bovine embryos at the 4-cell, 8-cell, 
morula and blastocyst stages.  No significant change was detected in the 
expression of any of the non-targeted genes, comparing the NULL and LSH 
treatments within each stage (p < 0.05).  The significant decreases in Lsh levels 
at each stage are illustrated in Figure 3.4. 

Upregulated No change Downregulated

Suz12 Lsh

G9a

Suv4-20h1

Lsd1

Dnmt1

Dnmt3a

Dnmt3b

Oct4

Sox2

Cdx2  

 

Immunocytochemical Analysis of Histone or DNA Methylation in Bovine Embryos 

We used antibodies specific to H3K27 trimethylation in order to verify any changes in 

this modification that may have resulted from suppression of either Suz12 or Lsh.  By 

counterstaining the DNA of these same embryos with Hoescht and obtaining 

fluorescence intensity values for each staining, we obtained a ratio of H3K27me3 

fluorescence divided by DNA fluorescence for each embryo.  These values were 

averaged within treatment groups in order to obtain a mean ratio for each treatment.   
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We observed no difference between the CTL, NULL and LSH treatment groups, with 

ratios of 1.28, 1.32 and 1.33, respectively.  However, we did observe a significant 

decrease in the fluorescence ratio of the SUZ group (0.52), compared with the other 

three treatments (p < 0.05), signifying a reduction in H3K27 trimethylation levels as a 

result of Suz12 suppression.  Images of representative blastocysts from each treatment 

group with appropriate ratios H3K27me3:DNA are listed in Figure 3.5.   

 

 

Figure 3.5  Immunostaining of DNA (blue) and H3K27 trimethylation (green) in blastocysts, 
illustrating differences between treatment groups.  Ratio averages for each treatment are listed 
along with S.E.M. values.  

A,B
 Tukey Kramer adjusted p < 0.05. 
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For embryos stained specifically for H3K9 trimethylation, and using the same 

analysis of fluorescence values mentioned above, we obtained intensity ratios of 

H3K9me3 fluorescence divided by DNA fluorescence.  Ratios for the CTL, NULL, SUZ and 

LSH treatment groups were 0.57, 0.89, 0.71 and 0.63, respectively.  Images of 

representative blastocysts from each treatment group, along with the appropriate 

ratios for H3K9me3:DNA, are listed in Figure 3.6. 

 

 

Figure 3.6  Immunostaining of DNA (blue) and H3K9 trimethylation (green) in blastocysts, 
illustrating differences between treatment groups.  Ratio averages for each treatment are listed 
along with S.E.M. values.  

A,B,C
 Tukey Kramer adjusted p < 0.05. 
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For embryos stained for DNA methylation (5meC), and using the same analysis 

mentioned previously, we obtained intensity ratios of 5meC fluorescence divided by 

DNA fluorescence.  Images of representative blastocysts from each treatment group, 

along with appropriate ratios for 5meC:DNA, are listed in Figure 3.7.  No difference was  

 

 

Figure 3.7  Immunostaining of DNA (red) and 5meC (green) in blastocysts, illustrating differences 
between treatment groups.  Ratio averages for each treatment are listed with S.E.M. values.  

A,B
 

Tukey Kramer adjusted p < 0.05. 

 

seen in the ratios between the CTL & NULL treatments (1.04 and 0.93 respectively, p = 

0.25), or between the SUZ & LSH treatments (1.27 and 1.23 respectively, p = 0.96).  

However, both the SUZ and LSH treatments resulted in significantly increased (p < 0.01) 
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levels of 5meC, indicating a general increase in DNA methylation when compared to the 

CTL and NULL treatments. 

 

DISCUSSION 

Histone modifying enzymes and the modifications they bring about represent an 

important and intensely investigated area of epigenetics due to its wide-reaching 

effects on development (Schultz & Worrad 1995, Dennis et al. 2001, Erhardt et al. 2003, 

Yan et al. 2003a, Yan et al. 2003b, Sarmento et al. 2004, de la Cruz et al. 2005, Santos et 

al. 2005, de la Cruz et al. 2007, Pasini et al. 2007, Puschendorf et al. 2008, Ross et al. 

2008).  In particular, characterization of these enzymes during the reprogramming 

events of preimplantation development would be helpful in determining which, if any, 

histone modifications lead to and/or control EGA in mammals.  From these data, we 

can conclude that suppression of two of these enzymes, Suz12 and Lsh, in bovine 

embryos leads to lower development rates as well as alterations in both histone and 

DNA methylation at the blastocyst stage. 

 

siRNA Validation 

When deciding on types of siRNA oligos to use for the experiment, we chose Ambion’s 

Silencer® Select siRNAs over standard oligos, as these siRNAs are supposed to require 

lower siRNA concentrations than standard counterparts.  However, in order to be sure 

we observed the highest possible knockdown with these siRNAs, we still tested them at 
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both low (20 nM) and high (50 nM) concentrations.  After several rounds of testing, we 

obtained siRNAs that were suitable enough to use for microinjection, without needing 

the higher siRNA concentration. 

 

Preliminary Data 

In order to evaluate our experimental design, we conducted a preliminary experiment 

using the Suz12 siRNAs.  In this experiment, we observed the high degree of Suz12 

suppression we desired in the SUZ embryos, but were limited on any analyses to be 

performed on the blastocyst stage embryos, because so few SUZ treated embryos 

survived to the blastocyst stage.  The extremely low rate of SUZ blastocysts could likely 

be attributed to the lack of Suz12 expression during the earlier stages, as nearly all of 

the SUZ morulas were severely fragmented in comparison with the NULL and CTL 

morulas.  However, this still presented us with a problem, as we were greatly limited in 

the number of SUZ blastocysts feasibly obtained for analysis.  In addition, the rate of 

CTL blastocyst formation was still much lower than we expected to see with our in vitro 

fertilization and culture system.  Blastocyst rates of at least 25% for the CTL embryos 

would have been more appropriate for our system.  After re-examining our techniques, 

we further minimized the time that the zygotes were out of the controlled CO2/O2 

incubator for microinjection by working with smaller numbers at a time, and began 

holding them in a bicarbonate-buffered culture media in the incubator between 

handling periods, instead of the hepes-buffered holding media we had been using with 
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ambient air on warm plates.  Furthermore, we learned that the bull whose semen we 

were using was a proven producer of slower-developing embryos, typically not forming 

many blastocysts until day 8.  For all future embryos we evaluated, we collected 

blastocysts and recorded development rates on day 8 instead of day 7. 

In addition to the changes mentioned above, we also wanted the opportunity to be 

able to look at additional non-targeted genes without needing to increase the number 

of embryos collected in each sample.  In order to accomplish this by multiplexing 

reactions, we switched from using SYBR Green based qPCR to TaqMan based qPCR for 

all future gene expression analyses. 

 

Gene Expression 

Depletion of Suz12 transcript levels beginning at the zygote stage led to continued 

suppression of the target gene throughout the 8-cell, morula and blastocyst stages, 

although siRNA efficiency was slightly reduced in the blastocysts.  Presumably, the 

siRNA molecules were used up and/or degraded over time, allowing the embryo to 

partially recover from Suz12 suppression, leading to the slight decrease in knockdown 

efficiency seen at the blastocyst stage.  It is also possible that because we cannot 

ensure the same volume is injected into every embryo, some embryos received more 

siRNAs than others, and the ones that received the lowest siRNA treatment initially 

were more capable of development to the blastocyst stage. 
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In addition to Suz12, we also wanted to see if suppression resulted in any off-target 

effects on other epigenetic modifiers.  Studies have demonstrated an unexplainable 

effect of Suz12 depletion on transcript stability of Ezh2, another component of the 

PRC1 complex (Pasini et al. 2004).  We selected several other epigenetic modifiers with 

known involvement in histone and/or DNA methylation to see if lowered Suz12 mRNA 

levels resulted in altered expression of these genes.  No significant (p > 0.05) off-target 

changes in expression of these genes were observed.  Although not reported in Table 

3.4, we also looked to see if expression of HP1 was altered as a result of Suz12 

suppression.  Suz12 has been shown to be required for proper H3K9me3 and HP1 

recruitment to initiate the spreading of heterochromatin (Bannister et al. 2001).  While 

no changes from the NULL embryos were seen in HP1 expression, the primer/probe set 

we used did not meet our minimum PCR amplification requirements when the standard 

curves.  Although we did not expect to see alteration in HP1 transcript levels, the 

analysis would need to be repeated with suitable primers in order to conclude any 

effects on HP1 expression. 

Although not quite as efficient as the Suz12 knockdown, depletion of Lsh 

transcripts initiated at the zygote stage resulted in a moderate to high maintenance of 

Lsh suppression at the 4-cell, 8-cell and morula stages.  However, the targeting siRNAs 

were not able to maintain suppression at a significant level (p > 0.05) through the 

blastocyst stage, and suppression was reduced to an efficiency of only 57%.  Again, the 

lowered efficiency of the Lsh-targeting siRNAs observed at the blastocyst stage could 



50 
 

either be due to the siRNAs being used up or degraded over time, or because the 

embryos that survived to the blastocyst stage represent those that received less siRNAs 

during the microinjection procedure. 

We observed no significant change in expression of any of the non-targeted genes 

in the LSH treatment group, compared with the NULL treatment group, at all stages 

examined.  However, we did observe the following changes when comparing the LSH 

groups to the CTL groups: Suv4-20h1 expression increased in the LSH blastocysts (p = 

0.04) and Dnmt3b expression decreased in the LSH morulas (p = 0.0009), both 

compared to the CTL embryos at those stages.  Dennis et al. reported no alteration of 

Dnmt1, 3a or 3b protein levels, as well as Dnmt1 activity when Lsh levels were depleted 

in mouse Lsh -/- tissues (Dennis et al. 2001).  Others have suggested that Lsh directly 

participates in chromatin formation, as opposed to indirectly increasing transcription of 

other chromatin components (Muegge 2005).  The effects of the LSH treatment we 

observed on Suv4-20h1 and Dnmt3b expression cannot, for sure, be attributed to Lsh 

depletion because the microinjection treatment alone could have contributed to some 

of these changes.  Further research would be necessary in order to draw any 

conclusions from these observations. 

 

Histone and DNA Methylation 

Although, Suz12 suppression was not as efficient at the blastocyst stage, it was still 

sufficient enough to decrease methylation levels of H3K27 and H3K9, both expected 
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downstream effects (Cao & Zhang 2004, Pasini et al. 2004, de la Cruz et al. 2007, Pasini 

et al. 2007).  However, we did observe an increase in DNA methylation levels of the SUZ 

embryos (p < 0.01).  This result was quite unexpected, as we have no evidence of a 

downstream effect on DNA methylation, which results from alteration of H3K27 and 

H3K9 methylation.  It has been speculated that DNA methylation does not intervene to 

silence genes that are actively transcribed, but only affects genes that have already 

been silenced by other means, such as histone methylation (Bird 2002).  Under this 

idea, DNA methylation acts as a method of cell “memory” to reinforce the silencing of 

heterochromatin that was previously marked for methylation via histone modifications.  

It is possible that preventing necessary heterochromatic silencing (by preventing 

H3K27me3) might lead cells to use DNA methylation in order to try and prevent 

activation of these elements.  It is known that different tissues, even within the same 

species, can employ PCG-mediated silencing and DNA methylation interchangeably 

(Iida et al. 1994, Sado et al. 2000, Wang et al. 2001, Bird 2002)  If this were the case, 

then DNA methylation could act as the primary mark for silencing of heterochromatic 

regions, not simply as a method of reinforcing silencing initiated by histone 

methylation.  However, this still does not explain how DNA methylation levels were 

increased in the SUZ-treated embryos, without any alteration in expression of the 

DNMTs examined.  Therefore, how suppression of Suz12 can actually lead to increased 

DNA methylation cannot be explained within the scope of our experiment, and further 

examination/validation of this phenomenon is necessary. 
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Because of the reported requirement of Lsh for DNA methylation in the mouse 

(Dennis et al. 2001, Yan et al. 2003b), we anticipated seeing a decrease in 5meC 

staining intensity; however, the opposite of our expectation was observed.  The 

intensity ratio of 5meC/DNA in the LSH embryos was significantly higher than both the 

CTL and NULL groups (p < 0.01), but explanation of this occurrence is beyond the scope 

of our experiment, as there was no significant increase in transcript abundance of 

Dnmt1, 3a or 3b.  As expected, we did not see any significant change (p > 0.05) in 

H3K27 trimethylation, as Lsh has not been demonstrated to have any effect on this 

modification.  Unexpectedly, a slight decrease was seen when comparing the ratios of 

H3K9me3 in the LSH group to the NULL group (p = 0.006).  It should be noted, however, 

that many of the embryo ratios for the LSH group fell within the range of ratios for the 

NULL group, and that by simple visual examination of the images, many of the LSH 

embryos looked no different from some of the NULL embryos. 

Of further concern in this experiment was the extreme variation in signal ratios 

observed in H3K9me3 of the CTL embryos.  Embryos that were “older” (stained and 

imaged a few months prior to the actual analysis) displayed a mean ratio similar to that 

of the NULL (p = 0.91), while the “newer” embryos (stained and imaged only days or 

weeks prior to the analysis) exhibited a mean ratio lower than any of the treatment 

groups, and one not significantly different from the IgG background controls (p = 0.78).  

Because there was significant variation in the controls from the beginning to the end of 

the experiment, the comparisons to the injected embryos cannot be trusted. 
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Development 

The decrease in both blastocyst rate and quality of both the SUZ- and LSH-treated 

embryos serves as evidence of the importance of these genes during bovine 

preimplantation development.  However, because some embryos did go on to form 

blastocysts, it is unclear if Suz12 and Lsh are absolutely required for blastocyst 

formation.  Near-complete suppression of Suz12 severely limited development, but 

some embryos were still able to form blastocysts.  Because we cannot standardize the 

volume of siRNA delivery into each zygote during the microinjection process, it is 

possible that these SUZ blastocysts survived only because they received less siRNAs 

than the embryos which arrested earlier in development.  The partial “recovery” from 

Suz12 suppression at the blastocyst stage would support this theory (97% or greater 

suppression in the earlier stages, reduced to 93%), as embryos which received a lower 

siRNA treatment at the zygote stage would probably exhibit reduced siRNA efficiency.  

If we compare our results to those from studies generating Suz12 knockout mice, we 

see some consistency in outcome, as Suz12 -/- mice survive past implantation, but die 

in utero approzimately 8.5 dpc, as a result of gastrulation defects arising around 7.5 dpc 

(Pasini et al. 2004).  If these SUZ embryos were transferred into recipient cattle, we 

cannot say for sure if they would be expected to live full-term after Suz12 suppression 

during the preimplantation reprogramming period.  Severe alterations in histone 

modifications or DNA methylation could result in expression of genes or other elements 
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that are usually silenced in normal, untreated embryos (Yan et al. 2003b, Huang et al. 

2004, Muegge 2005).   

 Although the Lsh-targeting siRNAs were not as efficient as those targeting Suz12, 

Lsh suppression at the earlier stages was sufficient enough to cause very low 

development rates and poorer quality embryos of those that did make it to the 

blastocyst stage.  Again, because we cannot standardize the amount of siRNAs that get 

injected into each zygote, the LSH embryos that were able to form blastocysts could 

represent those which initially received a lower treatment volume, and therefore 

exhibit the reduced efficiency of Lsh suppression we observed at the blastocyst stage.  

Because we were not able to maintain a high level of Lsh suppression throughout all 

stages examined, it would be interesting to see whether or not similar development 

rates were observed if the experiment was repeated and a high degree of Lsh 

suppression maintained through the blastocyst stage. 

It has been demonstrated that Lsh is required for proper DNA methylation, by 

recruiting DNMTs and HDACs to the site of potential methylation (Myant & Stancheva 

2008).  If we compare our observations to those from Lsh knockout mouse 

experiments, we might not expect any change in development rates, as Lsh -/- mice 

survive full term, but die shortly thereafter (Dennis et al. 2001, Geiman et al. 2001, 

Huang et al. 2004, Lippman et al. 2004, Fan et al. 2005).  Although the mouse model 

differs from the bovine model, in that remethylation of the embryonic genome does 

not begin until around the time of implantation (as opposed to the 8-16 cell stage in 
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bovids), one would likely conclude that a knockout phenotype would be more severe 

than that of a short-term knockdown.  Therefore, because Lsh -/- mice do survive to 

term, we might expect the LSH embryos to also survive full-term, but be born with 

severe DNA hypomethylation defects, regardless of the differences in timing of DNA 

remethylation during early development.  However, Lsh probably has a much more 

important role in early bovine development than it does in early mouse development, 

based on our results here.  In the mouse Lsh -/- model, it was assumed that Lsh 

depletion did not have a negative effect on implantation rates, because normal 

Mendelian frequencies were observed from 13 dpc until birth.  Because DNA 

remethylation occurs post-implantation in the mouse (and Lsh is believed to be 

required for proper DNA methylation), this observation would make sense.  However, 

in the cow, DNA remethylation occurs prior to implantation, so if DNA methylation is 

somehow altered (i.e. by depletion of Lsh), this could cause reduced development to 

the blastocyst stage (just before implantation). 

Also, because we cannot standardize the amount of siRNA material that is 

introduced into the cytoplasm during microinjection, it is likely that the embryos that 

were able to survive to the blastocyst stage represent those embryos which received 

less Lsh-targeting siRNA material initially.  Due to the severe decrease in blastocyst 

formation observed with LSH-treated embryos, we would expect to see a further 

reduction in development rates with increased Lsh suppression, possibly to the point of 

an early embryonic lethal phenotype.  
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Summary 

Taken together, these results confirm the expected requirement of sufficient Suz12 

expression for proper trimethylation of both H3K27 and H3K9, but suggest that Suz12 

could somehow be involved in DNA methylation.  As expected, reduction in Lsh 

transcripts did not have any observable effect on H3K27 trimethylation, but did have 

effects on H3K9 trimethylation (expected) and DNA methylation (unexpected).  

However, because Lsh suppression was not maintained through the blastocyst stage, 

the experiment would need to be repeated, preferably with siRNAs which could 

maintain a higher degree of Lsh suppression, over this period of time.  Also, for both of 

these epigenetic modifiers, examining these same histone and DNA methylation marks 

one stage earlier (at the morula stage) might give us a clearer picture of gene activities, 

since gene transcript suppression was more efficient at this stage.  Although we have 

demonstrated here the involvement of Suz12 and Lsh in both histone and DNA 

methylation, further examination of the activities of these two genes (including histone 

acetylation and methylation of other residues) would likely be informative in 

determining the specific roles of these two histone-modifying enzymes. 
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CHAPTER IV 

METHODS 

 

siRNA DESIGN AND TESTING 

Two Silencer® Select siRNAs (Applied Biosystems, USA) were designed from published 

mRNA sequence for each gene, using Applied Biosystem’s GeneAssist™ Workflow 

Builder program and tested in an MDBK cell line.  Concentrations of siRNAs were tested 

via transfection at 20 nM and 50 nM singly, and at 20 nM in combination, in order to 

find out the optimal efficiency of each siRNA and whether or not a synergistic effect 

was produced when transfecting both siRNAs together.   

 

CELL CULTURE AND siRNA TRANSFECTION 

MDBK cells were grown and maintained in culture in Modified Eagle’s Medium (Gibco, 

Invitrogen, USA), supplemented with 10% horse serum and 50 µg/mL gentamicin 

(Gibco, Invitrogen, USA), in a humidified atmosphere composed of 5% CO2 in air at 

37°C.  Cells were washed, trypsinized, counted and plated at least 3 hours prior to 

transfection in order achieve approximately 50% confluency at time of transfection.  

siRNAs were transfected into the cells using a standard calcium phosphate kit 

(Invotrogen, USA); for each siRNA or combination of siRNAs being tested, three 

replicates were performed.  Forty-eight hours following transfection, the cells were 

washed in 1X PBS and harvested in 600 µL of a guanidine thiocyanate-containing lysis 
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buffer (buffer RLT).  The cell lysate was then vortexed and stored at -80°C until the RNA 

isolation step. 

 

OOCYTE AND EMBRYO PRODUCTION 

Multiple pools of mature bovine ova were obtained from TransOva Genetics (MN, USA), 

following standard in vitro maturation procedures.  Briefly, viable cumulus-oocyte 

complexes (COCs) aspirated from slaughterhouse-derived ovaries of mixed-breed cows 

were matured in vitro in tissue-culture medium (TCM-199 Earle’s) supplemented with 

10% fetal bovine serum (FBS), 0.02 I.U./mL bovine follicle-stimulating hormone (bFSH, 

Sioux Biochem, USA), 0.02 I.U./mL bovine luteinizing hormone (bLH, Sioux Biochem, 

USA), 12.5 mM sodium bicarbonate and 50 µg/mL gentamicin.  Groups of 

approximately 50 COCs were matured for 23 hours (during overnight shipping) at 

38.5°C in sealed tubes that had been equilibrated in a 5% CO2 environment.  Upon 

arrival, matured groups of COCs were washed through TL Hepes (Lonza, USA) and 

fertilized in vitro using frozen/thawed semen from a bull with proven fertility in a 

humidified atmosphere composed of 5% CO2 in air at 38.5°C. 

Approximately 19 hours following fertilization, presumptive zygotes were vortexed 

in 0.4% bovine hyaluronidase in TL Hepes to remove cumulus cells and cultured in a 

commercial culture media system, supplemented with bovine serum albumin 

(Probumin, Millipore, USA) and 50 µg/mL gentamicin (Gibco, Invitrogen, USA), under 

mineral oil in a humidified atmosphere composed of 5% CO2, 5% O2 and 90% N2 at 
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38.5°C until time of collection.  During specific time windows for each stage, groups of 

ova or embryos were collected, washed through 1X PBS, placed in buffer RLT and 

homogenized by vortexing for 1 minute, then frozen and stored at -80°C until all 

samples had been collected.  Cleavage rates for each group were recorded on day 2, 

and blastocyst rates recorded on day 8 prior to collection; Chi-square analysis was used 

to determine significantly different (p < 0.05) development rates between groups. 

 

CYTOPLASMIC MICROINJECTION OF BOVINE ZYGOTES 

Following vortexing, presumptive zygotes were randomly sorted into three treatment 

groups: non-injected controls (CTL), nonsense siRNA injected controls (NULL) or 

targeted siRNA injected embryos (either SUZ or LSH).  CTL embryos were moved into 

culture immediately, and the others moved into holding plates (with either hepes-

buffered benchtop media on warm plates or culture media in the incubator) until 

injection.  Embryos from the NULL, SUZ and LSH treatment groups were cytoplasmically 

microinjected with a mixture of 25 nM siRNAs (Ambion, USA) and 2 mg/mL fluorescein 

dextran (Invitrogen, USA) in TE buffer.  The biologically inert dextran served as a marker 

to positively identify embryos that had been successfully microinjected.  Approximate 

injection volume was estimated to be around 500-1000 pL, as determined by 

measuring the change in cytoplasmic volume (calculated using diameter 

measurements) before & after microinjection.  Any embryos that were lysed as a result 
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of the microinjection procedure were removed prior to placing the embryos back into 

culture.   

Separate groups of embryos were generated for each of the targeted knockdown 

experiments (ie: the CTL and NULL embryos corresponding to the SUZ treatment group 

were not the same as the CTL and NULL embryos corresponding to the LSH treatment 

group).  Embryos were collected at specific timepoints according to stage from multiple 

rounds of IVF, and pooled until three replicates were obtained for each stage 

evaluated.  The number of embryos per sample (n) varied from one stage to another in 

order to compensate for decreasing levels of mRNA around the EGA, and much higher 

levels by the blastocyst stage.  However, n was the same for different treatment groups 

within the same stage.  Sample size and time of collection for each stage are listed 

below in Table 4.1. 

 

Table 4.1  Embryos collected for the SYBR Green (A) or TaqMan (B) gene expression analyses of 
siRNA-mediated gene knockdown experiments.  Time of collection corresponds to the number of 
hours following in vitro fertilization.  The main difference was that we switched from collecting 
blastocysts on day 7 for the SYBR Green preliminary analysis to day 8 for the TaqMan analyses.  *A 
total of only 3 SUZ blastocysts were generated in the preliminary experiment (SYBR Green qPCR), 
and were combined as a single replicate. 

4-cell 8-cell morula blastocyst

Sample size (n ) 15 20 10 10

Replicates per treatment 3 3 3 3*

Time of collection 44-46 hrs 70-72 hrs 146-148 hrs 172-174 hrs  

4-cell 8-cell morula blastocyst

Sample size (n ) 15 20 10 10

Replicates per treatment 3 3 3 3

Time of collection 44-46 hrs 70-72 hrs 146-148 hrs 194-196 hrs  

A 

B 
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RNA ISOLATION (MDBK CELLS) 

Total RNA was isolated from the MDBK cell samples using the standard version of the 

RNeasy kit protocol (Qiagen, USA).  Frozen, homogenized cell lysate samples were 

defrosted on ice and vortexed again for 1 minute to ensure homogenization.  All 

remaining steps were carried out at room temperature, and all wash/elution steps 

were performed via centrifugation. 

An equal volume of 70% ethanol was added to the sample and gently mixed to 

promote selective binding of RNA to the RNeasy column membrane.  The sample was 

then added to the column and centrifuged to allow the RNA to bind to the column.  

After washing with an ethanol-containing wash buffer (buffer RW1), the sample was 

treated on-column with RNase-free DNase I (Qiagen, USA) to remove any 

contaminating genomic DNA.  The column-bound sample was then washed once more 

with buffer RW1 and twice with different ethanol-containing wash buffer (buffer RPE).  

Each sample was eluted in 40µL nuclease-free water.  Reverse transcription was carried 

out immediately following the elution step in order to prevent degradation of the 

freshly isolated RNA. 

 

RNA ISOLATION (OVA AND EMBRYOS) 

Total RNA was isolated from oocyte & embryo samples using a slightly modified version 

of the RNeasy kit protocol (Qiagen, USA).  Briefly, 80% ethanol was used instead of 

70%, the second wash step in buffer RPE was replaced by washing in 80% ethanol and 
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the column was spun-dried for an additional 5 minutes just prior to the elution step.  

Because of the much lower amount of RNA present in these examples, each was eluted 

in only 20 µL nuclease-free water. 

 

REVERSE TRANSCRIPTION (RT) 

RT was performed using the qScript RT protocol (Quanta BioSciences, USA).  For 

oocyte/embryo samples, 15 µL of each RNA sample was combined with 4 µL qScript 

reaction mix and 1 µL qScript reverse transcriptase (RTase) on ice and pipetted gently 

to mix.  The remaining 5 µL of RNA from each sample was used to create a 

negative/”no RT” control for the qPCR step; to each of these samples, 1.33 µL of qScript 

reaction mix and 1.33 µL of nuclease-free water was added.  For MDBK cell samples, 

the same volumes of qScript reaction mix and RTase were used, but only 500 µg of each 

RNA sample was used, diluted to 15 µL with nuclease-free water. 

All samples were incubated at 25°C for 10 minutes for primer annealing followed 

by 35 minutes at 42°C.  The RT reactions were stopped by heating the samples at 95°C 

for 5 min.  Resulting cDNA (or RNA in the case of the “no RT” controls) was then diluted 

appropriately for qPCR amplification. 

 

SYBR GREEN qPCR 

All cDNA samples were run in triplicate, with a single “no RT” control for each.  Per well, 

each 20 µL reaction consisted of 10 µL 2X Power SYBR Green PCR Master Mix (Applied 
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Biosystems, USA), 5 µL of a primer mix (3.33 µM forward & 3.33 µM reverse primers) 

and 5 µL of diluted template. 

qPCR reactions were run in an ABI StepOne Plus Real-Time PCR System (Applied 

Biosystems, USA) in 48- or 96-well Optical Reaction Plates using the following 

conditions: 10 minutes at 95°C to allow for DNA denaturation and Taq Polymerase 

activation, followed by 40 cycles of 95°C for 3 seconds and 60°C for 30 seconds, then 

95°C for 15 seconds, and finally a gradual heating cycle from 60°C to 95°C in order to 

obtain a dissociation curve for the PCR products. 

Relative gene expression from each sample was calculated in triplicate using the 

SYBR Green comparative Ct method (Applied Biosystems, USA), and normalized to the 

geometric mean Ct of 3 endogenous controls: Gapdh, Ywhaz and Sdha.  This method 

accounts for differences in both cell number per embryo as well as total mRNA present 

in each sample, and corrects for changing gene expression levels of commonly used 

endogenous controls during this developmental period (Goossens et al. 2005).  Each 

calculation was also adjusted to the individual PCR amplification efficiencies for each 

primer pair (R2 > 0.95), estimated by constructing standard curves for each pair using 

serial dilutions of mixed oocyte and blastocyst cDNA (representative of both maternally 

and embryonically-derived mRNA). 
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TAQMAN qPCR 

Primers used for TaqMan qPCR were multiplexed into 8 sets, ranging from 1 to 4 sets of 

primers and probes per set.  Concentration of primers and probes in each set for a 

single 25 µl reaction are given in Table 4.2. 

 

Table 4.2  Primer and probe concentrations used for TaqMan qPCR analysis. 

Set number Target Gene Primer pair concentration Probe concentration

1 Gapdh 0.6 µM 0.1 µM

1 Sdha 0.6 µM 0.1 µM

1 Ywhaz 0.8 µM 0.15 µM

1 Suv4-20h1 0.6 µM 0.1 µM

2 Dnmt3b 0.8 µM 0.15 µM

2 Lsh 0.6 µM 0.1 µM

3 Dnmt3a 0.6 µM 0.1 µM

3 Lsd1 0.6 µM 0.1 µM

4 G9a 0.8 µM 0.15 µM

4 Suz12 0.6 µM 0.1 µM

5 SetB1 0.6 µM 0.1 µM

6 Dnmt1 0.8 µM 0.15 µM

7 Oct4 0.6 µM 0.1 µM

8 Sox2 0.6 µM 0.1 µM

8 Cdx2 0.6 µM 0.1 µM  

 

Along with the primers and probes, each 25 µL reaction consisted of:  2.5 µL 10X 

Platinum Taq buffer (Invitrogen, USA), 4mM MgCl2 (Invitrogen, USA), 0.4mM dNTP mix 

(Invitrogen, USA), 1.25U Platinum Taq (Invitrogen, USA) and 2.5 µL of 1:10 diluted cDNA 

template.  All cDNA samples were run in triplicate, with a single “no RT” control for 

each.  In addition, 2 “no template” controls were run for each multiplexed primer and 

probe set. 
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qPCR reactions were run in an ABI StepOnePlus Real-Time PCR System (Applied 

Biosystems, USA) in 96-well Optical Reaction Plates using the following conditions: 1 

minute at 95°C to allow for DNA denaturation and Taq Polymerase activation, followed 

by 40 cycles of 95°C for 30 seconds and 60°C for 30 seconds.  The reaction was then 

held at 4°C. 

Relative gene expression from each sample was calculated in triplicate using the 

TaqMan comparative Ct method (Applied Biosystems, USA), and normalized to the 

geometric mean Ct of 3 endogenous controls: Gapdh, Ywhaz and Sdha.  Each calculation 

was also adjusted to the individual PCR amplification efficiencies for each primer pair 

(R2 > 0.95), estimated by constructing standard curves for each pair using serial 

dilutions of blastocyst cDNA. 

 

IMMUNOCYTOCHEMISTRY (ICC) 

Blastocysts were selected on day 8 of development from multiple pools of IVF-derived 

embryos, fixed by placing in cold methanol for a minimum of 1 minute, and stored in 

PBS-0.1% Tween 20 (PBS-Tw) at 4°C until further use.  Embryos were permeabilized 

with 1% Triton X-100 in PBS (PBS-Tr) for 1 hour at room temperature while shaking and 

washed thoroughly through PBS-Tw over 15 minute intervals.  Following the 

permeabilization and wash, embryos were blocked in fresh blocking buffer (10 mg/mL 

BSA, 2% v/v goat serum and 11.25 mg/mL glycine in 1X PBS) overnight in order to 

prevent any nonspecific antibody binding.  Embryos that were to be labeled with 5meC 
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were washed at room temperature with 2M HCl for 30 minutes and subsequently 

neutralized with 100 mM Tris/HCl buffer (pH 8.5) for 10 minutes following 

permeabilization, but before washing and blocking overnight.  Antibody labeling of 

histone modifications did not require an acid wash.  Embryos were then labeled with 

the appropriate primary antibody, shaken at room temperature for one hour, washed 

through fresh blocking buffer again and labeled with the corresponding secondary 

antibody.  Primary and secondary antibodies were all diluted to 0.5% v/v in PBS-Tw; see 

Table 4.3 for a list of all antibodies used. 

 

Table 4.3  Antibodies used for ICC staining and analysis of bovine embryos. 

Type Target Antibody Source

Primary IgG Normal rabbit IgG Santa Cruz

Primary IgG Normal mouse IgG eBiosciences

Primary H3K9me3 Histone H3 trimethyl Lys9 Rabbit pAb Active Motif

Primary H3K27me3 Histone H3 trimethyl Lys27 Rabbit pAb Active Motif

Primary 5meC Monoclonal Antibody, 5-Methylcytidine Mouse Eurogentec

Secondary rabbit IgG Alexa 488 goat anti-rabbit IgG (H+L) Invitrogen

Secondary mouse IgM Alexa 488 goat anti-mouse IgM (H+L) Invitrogen

 

 

Following antibody bonding, the embryos labeled for H3K9me3 and H3K27me3 

were washed through PBS-Tw and counterstained with 0.5% v/v Hoescht in PBS-Tw; 

embryos labeled for 5meC were counterstained with 0.5% v/v propidium iodide in PBS-

Tw instead of Hoescht.  Following one more wash through PBS-Tw, each group of 

embryos was mounted separately (according to treatment & staining) on glass slides 



67 
 

using Prolong Gold anti-fade reagent mounting media (Invitrogen), sealed and stored at 

4°C protected from light until further examination.  For each round of ICC, in addition 

to the specific staining (H3K9me3, H3K27me3 and 5meC) of all treatment groups (CTL, 

NULL, SUZ and LSH), a minimum of 2 CTL embryos were stained for IgG, in order to 

serve as a control for background intensity. Embryo treatment groups were visualized 

and z-scan images taken for analysis within 7 days of labeling/mounting, in order to 

prevent any fading of the fluorescently-tagged antibodies over time from affecting the 

actual intensities of each embryo. 

 

CONFOCAL LASER MICROSCOPY AND ANALYSIS 

All images were taken with a 63X water-immersion objective lens.  To represent 

fluorescence intensity of the entire embryo, 6-7 optical sections were taken for each 

embryo, evenly divided between the bottom and top of the embryo.  Thickness of the 

Z-scans among embryos varied from 6 to 10 µm, and depended on the size of each 

embryo and other uncontrollable mounting variables between each slide.  The area 

photographed and characterized as “representative” of a single blastocyst was 

determined by the location and visibility (80-100%) of the inner cell mass (ICM) of each 

embryo.  The average intensity of these measurements for an individual blastocyst was 

considered illustrative of the intensity of the entire embryo.  Exposure times for each 

filter are listed in Table 4.4.  Each filter setting was determined according to minimum 

and maximum fluorescent values of IgG controls and replicate controls across all group 
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replicates and treatments; thus, filter settings were set and remained the same with 

each replicate and experimental treatment. 

 

Table 4.4 Exposure times used to image embryos for each channel/filter. 

Labeling Used to visualize Filter Exposure time (ms)

Hoescht DNA (nuclei) DAPI 200

Propidium iodide DNA (nuclei) CY3 300

Alexa 488 primary antibody FITC 500  

 

Average fluorescence intensity ratios were calculated for each embryo by dividing 

the intensity of the specific target (H3K27me3, H3K9me3 or 5meC) by the intensity of 

DNA staining (Hoescht or propidium iodide).  Ratios for each embryo were then 

averaged to obtain a mean ratio for each treatment group and staining combination.  

Using these means, a one-way ANOVA model was constructed in order to determine 

significant differences between treatment groups for each staining (p < 0.05). 
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CHAPTER V 

SUMMARY 

 

The increased application of ARTs in both humans and animals has led to the increased 

incidence of imprinting and other epigenetic abnormalities in animals or people 

conceived in vitro.  These observations have led to more research aiming to uncover 

the mechanisms involved in reprogramming the early embryo and in vitro 

perturbations during this critical time period.  However, the area of epigenetics still 

remains somewhat unexplored in the mammalian preimplantation embryo, especially 

as it relates to histone tail modifications, the enzymes that catalyze these changes and 

downstream effects of the modifications.   

We characterized gene expression via qPCR of several known histone modifying 

enzymes during bovine preimplantation development.  SetB1, SmyD3, Suv3-9h1 and 

Suv4-20h1 exhibit transcript levels highest in the oocyte or 2-cell stage and dropping off 

by the morula and blastocyst stages.  G9a is expressed moderately during the earlier 

cleavage stages pre-EGA, but also possibly active during EGA, because an increase in 

expression is observed around the 8-cell stage.  Suz12 and Lsh reflect genes with low 

expression pre-EGA and a notable increase at the 8-16 cell stage.  These transcript 

levels are then reduced to basal levels again by the morula and blastocyst stages. 

Suz12 and Lsh were selected as obvious candidates for further exploration of gene 

function during this developmental window, since their increases in expression 
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coincided with the EGA event as well as reprogramming of DNA methylation.  After 

testing and confirming siRNAs targeted at each of these genes in MDBK cells, we 

employed cytoplasmic microinjection to introduce these molecules into bovine 

embryos at the zygote stage.  Embryos were collected at the 4-cell, 8-cell, morula and 

blastocyst stages for analysis of genes expression via qPCR.  Development rates were 

also evaluated to the blastocyst stage and blastocysts from each treatment group were 

collected and used for ICC analysis of either specific histone (H3K9me3, H3K27me3) or 

DNA methylation.  Near-complete (>90%) suppression of Suz12 resulted in decreased 

development rates (p < 0.01) and lower morphological quality of embryos that did 

make it to the blastocyst stage, when compared to the CTL and NULL embryos.  In 

addition, Suz12 suppression led to expected decreases in both H3K9 (p = 0.07) and 

H3K27 trimethylation (p < 0.0001), and an unexpected increase in DNA methylation (p < 

0.0001).  Moderate to high (55-95%) suppression of Lsh similarly resulted in lower 

development rates (p < 0.0001), with poorer quality embryos that formed blastocysts.  

Lsh suppression also led expectedly to no change in H3K27 trimethylation levels (p > 

0.05), but unexpectedly to changes in both H3K9 trimethylation (decreased, p = 0.006) 

and DNA methylation (increased, p < 0.0001).  Because these results both confirm some 

and disagree with other previously published activities for these two genes, further 

characterization of their activities would be necessary in order to determine their 

potential role(s) in the reprogramming events occurring during preimplantation 

development. 
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APPENDIX 

 

 

Figure A1 Pre-EGA representative morphological similarities exhibited by the SUZ and LSH embryos, as 
compared to the CTL and NULL embryos, at the 4-cell (4C) and 8-cell (8C) stages. 
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Figure A2 Post-EGA representative morphological differences exhibited by the SUZ and LSH embryos, as 
compared to the CTL and NULL embryos, at the morula (M) stage. 

  

 

Figure A3 Post-EGA representative morphological differences exhibited by the SUZ and LSH embryos, as 
compared to the CTL and NULL embryos, at the blastocyst (B) stage. 
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