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ABSTRACT 

 

Preservice Teachers’ Content Knowledge of Function Concept 

within a Contextual Environment. (August 2011) 

Irving Anthony Brown, B.S., Lamar University; M.S., Tarleton State University 

Co-Chairs of Advisory Committee: Dr. Gerald O. Kulm 
              Dr. Dennie L. Smith 

 

The overarching goal of this dissertation research was to develop and measure 

the psychometric properties of an instrument to assess preservice teachers’ content 

knowledge of the function concept embedded in contextual problems. This goal was 

accomplished through two research projects described in two studies. The first study 

reports on the collective case study that was used to pilot test the instrument and the 

second study details the rationale used in item selection and the psychometric properties 

of the new instrument. Unlike existing research studies that examine a broad range of 

function related topics using various forms of symbolic, tabular, and graphical 

representations as the basis for questions and problems, this study focused solely on 

function problems immersed in various real world contexts. Since this is not a common 

approach to measuring content knowledge of the function concept, the existing 

instruments in published studies were not found to be suitable for this specialized 

purpose. The psychometric measurements of the instrument did not suggest that the 

instrument was valid or reliable so more research will be required to validate the 

instrument. However, based on the preliminary results from testing, several potential 
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suggestions can be made to teacher educations programs. Inferences drawn from the 

mathematical problem-solving cognition will aid in the development and validation of 

future instruments to assess the content knowledge of the mathematical function concept 

of preservice teachers as they complete contextualized problem-solving tasks. 
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study, the term middle school will mean grades four through 
eight. 

 
Praxis™ The series of examinations were created by ETS to provide 

several states a means of assessment of preservice teachers’ 
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Tennessee, Texas, and Virginia. 

 
SBEC State Board for Educator Certification 
 
TEA Texas Education Agency 
 
TExES™ Texas Examinations of Educator Standards™ () - is the product of 

a collaborative effort between the State of Texas’ State Board for 
Educator Certification (SBEC), the Texas Education Agency 
(TEA) and the Educational Testing Service (ETS) to create a 
series of examinations to be used by state agencies as a partial 
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CHAPTER I 

INTRODUCTION 

 

The genesis of this research project occurred after I conducted several 

mathematics content knowledge review sessions for two groups of preservice teachers 

enrolled in alternative certification programs (ACP). In working with preservice middle 

school mathematics and secondary school mathematics/science teachers, I found that 

many of them struggled to understand the requirements and context of the problems 

more than the specific mathematical operations required for a solution. After I explained 

the problem context and requirements, most of the preservice teachers were able to 

perform the correct mathematical operations to find a solution. These experiences led me 

to form a basic hypothesis: middle and secondary school teachers do not have sufficient 

content knowledge of the function concept in contextual environments to perform at the 

high expectations of today’s STEM curriculum. 

Generally speaking, teachers lack depth in mathematics content knowledge and 

the concept of function (Even, 1993; Kulm, 2008; Leinhardt, Zaslavsky, & Stein, 1990; 

Sherin, 2002; Stein, Baxter, & Leinhardt, 1990). A rich and practical understanding of 

the concept of function has been found to be at insufficient levels in college students as 

well as some middle and secondary school mathematics teachers (Sierpinska, 1992; N. 

Webb, 1979). Learning complex concepts, such as the concept of function, is 

 
 
_______ 
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much more effective when carried out within a contextual learning environment (de la 

Harpe & Wyber, 2001; Lankard, 1995). Mathematics education researchers need a 

specialized instrument to ascertain the level of teachers’ content knowledge of the 

function concept in a contextualized environment but such an instrument was not found 

in the literature. Having such an instrument would allow researchers to determine what 

steps were needed to improve teachers’ content knowledge.  

This study details the development of such an instrument through two empirical 

research projects. The first project examines preservice teachers’ contextualized function 

problem-solving cognition by analyzing qualitative data collected in task-based 

interviews and serves as the pilot test of the instrument. The second project describes the 

item selection, development, and the psychometric properties of the instrument. The two 

projects are highly connected through an iterative process of design and testing.  

In 1975, the National Advisory Committee on Mathematics Education 

(NACOME) paved the way for the public school reform efforts that restructured the 

teaching of mathematics in general and algebraic concepts in particular (O'Callaghan, 

1998). Algebra, misunderstood by some to be merely a study of variables and symbolic 

manipulation (Driscoll, 1999), plays a central role in students’ mathematical 

development. Algebra can be thought of as the mathematical “bridge” across which 

secondary students must pass to reach advanced mathematical concepts in high school 

(Dooren, Verschaffel, & Onghena, 2002) as well as post secondary studies in the 

science, technology, engineering, and mathematics (STEM) subject areas.  



 3

Robert Moses, the noted leader of the Algebra Project spoke of math literacy, and 

more specifically algebra, as the new focal point in civil rights: 

Today, I want to argue, the most urgent social issue affecting poor people 

and people of color is economic access. In today’s world, economic 

access and full citizenship depend crucially on math and science literacy. 

I believe that the absence of math literacy in urban and rural communities 

throughout this country is an issue as urgent as the lack of registered 

Black voters in Mississippi was in 1961 (Moses & Cobb, 2001, p. 5). 

Even though our nation’s schools have made math literacy a priority in 

education, a persistent gap in algebraic achievement between students from 

minority groups and White students exists (Ladson-Billings, 1997; Moses & 

Cobb, 2001; Richardson, 2009).  

Of the algebraic topics covered in middle and secondary schools, researchers 

recognize the concept of function as the single most important tool in algebra regarding 

a student’s ability to apply mathematical concepts in sciences, engineering and other 

related contexts (Hollar & Norwood, 1999; Knuth, 2000; Lloyd & Wilson, 1998; 

O'Callaghan, 1998; Zbiek, 1998). Underdeveloped knowledge of the function concept 

hinders the mathematical development of students. The National Council of Teachers of 

Mathematics (NCTM) expects all students, beginning in grades six, to be able to “model 

and solve contextualized problems using various representations such as graphs, tables, 

and equations” (National Council of Teachers of Mathematics, 2000b), which requires 

students to possess a working knowledge of functions in contextualized environments.  
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With the focus of mathematics education research on students’ achievement, it is 

important to note that teacher knowledge is the most important factor influencing student 

learning (Dooren et al., 2002; Lappan & Ferrini-Mundy, 1993; National Council of 

Teachers of Mathematics, 1991). Recent research reveals that, generally speaking, 

teachers lack depth in mathematics content knowledge (N. Webb, 1979) and earlier 

research found that teachers find the concept of function particularly challenging (Even, 

1993; Leinhardt et al., 1990; Sherin, 2002; Stein et al., 1990). The lack of full 

understanding of the function concept impacts the preparation of teachers by bringing a 

marginalized view of functions to their classrooms (Leinhardt et al., 1990; Lloyd & 

Wilson, 1998; Stein et al., 1990). 

Teachers’ knowledge is not a static core of ideas but rather an ever changing pool 

of ideas that are supplemented, refined, and at times diminished during the instructional 

life of the teacher (Sherin, 2002). It is important that the initial pool of preservice 

teachers mathematical knowledge is as deep and clear as possible (Hill, Rowan, & Ball, 

2005; Kulm, 1982; Li & Kulm, 2008). A rich source of knowledge for the teacher 

reduces the number of modifications to existing mathematical misconceptions and 

misrepresentations teachers must correct as they gain experience in the classroom. This 

pool of knowledge forms long before the preservice teacher enters a college classroom, 

but it is the college experience that is expected to deepen and widen the pool.  

Some research suggests that the best way to learn the concept of function is over 

an extended period (years in some cases) (Yerushalmy, 2000). Through these years of 

mathematics instruction, are the preservice teachers actually absorbing the knowledge in 
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such a way that it will provide an initial foundation that can be used in the classroom? 

Finding teachers that have acquired and maintained a strong concept of function can be 

particularly challenging in an environment where it has been reported that 65% of the 

middle school teachers neither have a mathematics degree nor have certification in 

mathematics (Li & Kulm, 2008).  

Traditional algebraic instruction stresses the memorization of algebraic facts and 

symbolic manipulation at the expense of problem-solving skills and conceptualization 

(Hollar & Norwood, 1999; Karsenty, 2002; O'Callaghan, 1998). Research has uncovered 

the following disturbing corollary to this shortsighted view of algebraic instruction: 

students have been found to internally characterize word problems as artificially 

contrived classroom based scenarios that have little or no relation to problems of the 

real-world (Greer, Verschaffel, & De Corte, 2002; Verschaffel, De Corte, & Borghart, 

1997). This suggests students feel free to suspend common sense approaches and the 

benefit of their personal real-world experiences and attack the word problem with simple 

mathematical facts and algorithms they have previously learned.  

In their Connections standard, NCTM prescribes “Instructional programs from 

prekindergarten through grade 12 should enable all students to recognize and use 

connections among mathematical ideas; understand how mathematical ideas 

interconnect and build on one another to produce a coherent whole; recognize and apply 

mathematics in contexts outside of mathematics” (National Council of Teachers of 

Mathematics, 2000a, p. 63). NCTM takes the position that mathematical lessons learned 

by students in connected curricula are richer and are better retained than a lesson of 
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isolated mathematical thoughts. They also contend that through contextual lessons, 

students gain a better feel for both the utility of mathematics in other subject areas as 

well as a deeper understanding of the related content area of which the mathematics 

lesson is connected. Since research reflects more than one definition of contextual 

lessons (Roth, 1996), it is sensible to examine definitions and descriptions of contextual 

teaching and learning. 

Williams (2007) describes contextual teaching as “a methodology of teaching 

that connects academic concepts to real-world conditions and encourages students to see 

how what they learn relates to their lives” (p. 572). Contextual teaching is also described 

as an integration of social constructivism, situated cognition, multiple intelligences and 

brain based learning theories (Lynch & Harnish, 2003; Williams, 2007). Roth (1996) 

cautions that contextualized problems are not just word problems with added verbiage, 

but rather “an expression is contextualized as part of meaningful practices rather than 

through an increase in (sign-based) situation descriptions” (p. 489). Roth’s minority 

opinion of contextual teaching follows a perspective held by John Dewey (Menand, 

2001) that it is necessary for students to actively (kinesthetically) engage in the learning 

process. Current mathematics education research does not show a strong link between 

Dewey’s kinesthetic learning perspective and contextual teaching.  

A significant aspect of the notion of contextual learning and problem-solving lies 

beyond the definition or description and entails how students are impacted by it. On the 

surface, research suggests the importance of “finding meaning by connecting academic 

work with daily lives” (Lynch & Harnish, 2003, p. 6) , and the idea that contextual 
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lessons add meaning to both the mathematical topic as well as justify increased interest 

in academics (Lynch & Harnish; Wiseley, 2009). However, a deeper rationale for this 

study lies in the way contextual lessons help students convert seemingly correct 

mathematical answers into solutions based on “real-world” thinking. The following two 

problems best illustrate this point (Verschaffel et al., 1997, p. 340): 

Steve has bought 4 ropes of 2.5 metres each. How many ropes of 0.5 metre can 

he cut out of these 4 ropes? Steve has bought 4 planks of 2.5 metres each. How 

many planks of 1 metre can he saw out of these 4 planks? 

Students can compute a correct response to the first problem without considering real-world 

consequences; 4 ropes * 2.5 meters/rope * 1 rope section/0.5 meters = 20 rope sections. But the 

same straightforward application of mathematics applied to the second problem leaves the 

student with a seemingly correct mathematical solution of 10 planks, which of course is 

impossible based on the context of the problem.  

Research has shown empirically that students have a strong tendency not to use their 

common sense in solving word problems but would rather rely on absent-minded repetition of 

the drills practiced in school mathematics (Greer et al., 2002; Verschaffel et al., 1997). The 

following diagram (Figure 1) of the problem-solving process shows the dependence on 

interpreting the mathematical solution in light of contextual constraints to arrive at a “real” 

solution. 
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Figure 1 Kulm’s Problem-solving Model (Kulm, 1982) 
 

Since mathematics teachers have the greatest influence in students’ mathematical 

development (Dooren et al., 2002), it is imperative that teachers possess sufficient depth 

of mathematical content knowledge and experience in contextual problem-solving to 

effectively lead student learning. Researchers believe one of the contributing factors to 

the disconnect between real-world insights in students’ problem-solving abilities is “the 

way in which these problems are considered and used in current instructional practice 

and culture, and more specifically the lack of systematic attention to the modeling 

perspective by the teacher”(Verschaffel et al., 1997, p. 340). Likely reasons teachers 
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avoid modeling highly contextualized problems in their classrooms are their 

inexperience and lack of confidence in solving this type of problem. 

A teacher’s ability to solve problems in a contextual (using real-world insights) 

environment needs to be assessed to give teacher educators insight into possible 

modifications to preservice programs and to provide school administrators a clearer 

perspective into the professional development needs of mathematics teachers. This need, 

and the fact that a contextual function instrument was not found in the literature, drives 

the rationale for creating and validating such an instrument. 

Statement of the Problem 

Recent research reveals that, generally speaking, teachers lack depth in 

mathematics content knowledge (N. Webb, 1979). More specifically, teachers lack depth 

in their conception of the mathematical function (Even, 1993; Leinhardt et al., 1990; 

Sherin, 2002; Stein et al., 1990). A rich and practical understanding of the concept of 

function has been found to be at insufficient levels in college students as well as some 

middle and secondary school mathematics teachers (Sierpinska, 1992; N. Webb, 1979). 

Learning complex concepts, such as the concept of function, is much more effective 

when carried out within a contextual learning environment (de la Harpe & Wyber, 2001; 

Lankard, 1995) but research suggests that the primary use of contextual, real-world 

instruction is relegated to developmental mathematics courses in post secondary 

education (Grubb & Kraskouskas, 1992; Stone, Alfeld, Pearson, & Lewis, 2006; 

Wiseley, 2009) even though state teacher certification examinations are rich in 
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contextualized problems (Educational Testing Service, 2009a, 2009b; Texas Education 

Agency, 2009).  

If we, as mathematics educators, expect to improve preservice teachers’ content 

knowledge of the function concept in a contextualized environment, then the first step 

will be to assess their current knowledge. Only after we have assessed their current level 

of knowledge can we plan modifications to preservice teacher education and perhaps 

teacher professional development programs. In order to make a sound assessment, we 

must have a reliable and valid instrument at our disposal. There are many extant survey 

instruments to measure a wide range of mathematical attitudes, affective behaviors, and 

content knowledge dimensions, including general function concepts, but an instrument 

that specifically measures knowledge of the function concept in a contextually rich 

environment for preservice and in-service mathematics teachers has not been published. 

Statement of Purpose 

The overarching goal of this dissertation research was to develop and validate an 

instrument to assess preservice teachers’ content knowledge of the function concept 

embedded in contextual problems. This goal was accomplished through two research 

projects described in two central chapters. Chapter II reports on the collective case study 

that was used to pilot test the instrument, and Chapter III details the rationale used in 

item selection and the psychometric properties of the new instrument. Unlike existing 

research studies that examine a broad range of function-related topics using various 

forms of non-contextual symbolic, tabular, and graphical representations as the basis for 
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questions and problems, this study focuses solely on function assessment problems 

immersed in various real-world contexts. 

Since this is not a common approach to measuring content knowledge of the 

function concept, the existing instruments in published studies were not found to be 

suitable for this specialized purpose. An instrument dedicated to measurement of content 

knowledge of functions using problems that are immersed in real-world contexts was 

developed and tested for validity and reliability measures.  

Research Questions 

 The overarching question that defined and guided both research projects 

described in this study was, “how can preservice mathematics teachers’ content 

knowledge of the function concept be assessed?” The following questions form the basis 

of this investigation: 

1. How do preservice teachers demonstrate their knowledge of conceptual and 

procedural problem-solving skills related to contextualized mathematical 

function problems? 

a. How do preservice teachers decode the imbedded function concept from a 

contextualized problem? 

b. Which procedural approaches do preservice teachers use in problem-

solving? 

c. How do preservice teachers demonstrate their conceptual knowledge of 

functions in problem-solving? 
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2. What are the key items in assessing contextual function concepts that should 

be included in an instrument to assess preservice mathematics teachers’ 

knowledge? 

3. What are the psychometric properties of an instrument developed to assess 

preservice middle and secondary mathematics teachers’ knowledge of the 

mathematical concept of function within a contextual environment? 
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CHAPTER II 

OBSERVING PRESERVICE TEACHERS’ CONTEXTUALIZED FUNCTION 

PROBLEM-SOLVING THROUGH TASK-BASED INTERVIEWS 

 

Introduction 

In 1975, the National Advisory Committee on Mathematics Education 

(NACOME) paved the way for the public school reform efforts that restructured the 

teaching of mathematics in general and algebraic concepts in particular (O'Callaghan, 

1998). Algebra, misunderstood by some to be merely a study of variables and symbolic 

manipulation (Driscoll, 1999), plays a central role in students’ mathematical 

development. Algebra can be thought of as the mathematical “bridge” across which 

secondary students must pass to reach advanced mathematical concepts in high school 

(Dooren et al., 2002) as well as post secondary studies in the science, technology, 

engineering, and mathematics (STEM) subject areas. 

 Of the algebraic topics covered in middle and secondary schools, researchers 

recognize the concept of function as the single most important tool in algebra regarding 

a student’s ability to apply mathematical concepts in sciences, engineering and other 

related contexts (Hollar & Norwood, 1999; Knuth, 2000; Lloyd & Wilson, 1998; 

O'Callaghan, 1998; Zbiek, 1998). Underdeveloped knowledge of the function concept 

hinders the mathematical development of students. The National Council of Teachers of 

Mathematics (NCTM) expects all students, beginning in grades six, to be able to “model 

and solve contextualized problems using various representations such as graphs, tables, 
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and equations” (National Council of Teachers of Mathematics, 2000b), which requires 

students to possess a working knowledge of functions in contextualized environments. 

Problem 

Recent research reveals that, generally speaking, teachers lack depth in 

mathematics content knowledge (N. Webb, 1979). More specifically, teachers find the 

concept of function particularly challenging (Even, 1993; Leinhardt et al., 1990; Sherin, 

2002; Stein et al., 1990). A rich and practical understanding of the concept of function 

has been found to be at insufficient levels in college students as well as some middle and 

secondary school mathematics teachers (Sierpinska, 1992; N. Webb, 1979).  

Learning complex concepts, such as the concept of function, is much more 

effective when carried out within a contextual learning environment (de la Harpe & 

Wyber, 2001; Lankard, 1995) but research suggests that the primary use of contextual, 

real-world instruction is relegated to developmental mathematics courses in post 

secondary education (Grubb & Kraskouskas, 1992; Stone et al., 2006; Wiseley, 2009) 

even though state teacher certification examinations are rich in contextualized problems 

(Educational Testing Service, 2009a, 2009b; Texas Education Agency, 2009).  

There are many extant instruments to measure a wide range of mathematical 

content topics and attitudes, but an instrument that specifically measures knowledge of 

the function concept in a contextually rich environment for preservice and in-service 

mathematics teachers has not been published.  

The purpose of this study was to describe the mathematical problem-solving 

processes related to contextualized mathematical function problems for six preservice 
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middle and secondary school mathematics teachers at a large Southwestern, research 

intensive university. The results of the study will contribute to the validation of a new 

instrument to assess the content knowledge of the mathematical function concept of 

preservice teachers as they complete contextualized problem-solving tasks. Conclusions 

about the participants’ mathematical problem-solving processes were derived from the 

verbal responses to interview questions, the written responses to the assessment 

instrument, and the interpretation of the researcher’s observation of the preservice 

teachers’ responses during task-based interviews. Inferences drawn from the 

mathematical problem-solving cognition will aid in the development and validation of an 

instrument to assess preservice mathematics teachers’ knowledge of how to connect their 

knowledge mathematical concept of function to a contextual setting. 

Research Questions 

The research questions were driven by a desire to gain a richer understanding of 

the internal cognitions and procedures used by preservice teachers as they attempt to 

understand and apply the concept of function in a richly contextualized environment.  

The central question that guided this study was: How do preservice teachers demonstrate 

their knowledge of conceptual and procedural problem-solving skills related to 

contextualized mathematical function problems? 

The following sub questions served to sharpen the focus of the study:  

1. How do preservice teachers decode the imbedded function concept from a 

contextualized problem? 

2. Which procedural approaches do preservice teachers use in problem-solving? 
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3. How do preservice teachers demonstrate their conceptual knowledge of 

functions in problem-solving? 

Theoretical Framework 

 This study proposes to discover aspects of the participants’ knowledge related to 

the task of solving contextualized mathematical function problems. Since it is not 

possible to directly access a person’s thoughts, Piaget’s clinical examination forms the 

theoretical basis for this study (Piaget, 1965). As Goldin (1997, 2000) builds on Piaget’s 

base and focuses the work on mathematics education research through task-based 

interviews, he cautions that the outcomes from clinical interviews cannot be considered 

to be thoughts or cognitions. Goldin’s perspective is guided by, “First, it is crucial to 

maintain carefully the scientific distinction between that which is observed and 

inferences that are drawn from observations” (1997, p. 52). Therefore a foundational 

theoretical postulation for this research is based on the notion that it is not possible to 

observe a mathematical construct within a student’s mind, but rather the observations 

allow us to infer something about the student’s internal mathematical constructs. 

 In addition to allowing us to infer qualities of the participant’s internal 

mathematical cognitions, the theoretical framework should also describe how the 

characteristics of the mathematical tasks under study interact with those internal 

cognitions of the participant (Goldin, 1997). A task’s language, mathematical content 

and structure, mathematical appropriateness, and the interview context are examples of 

the characteristics of the task. Kulm and others describe these as “task variables” in 

problem-solving research (Kulm, 1979; N. Webb, 1979). In this research project, the 
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task’s mathematical content and structure and the mathematical appropriateness of the 

task are principally based on the TExES™ and Praxis™ teacher certification 

examinations, upon which the primary research instrument is based (I. A. Brown, 2011). 

The task’s language and the interview context are key characteristics under study 

in this research project. This research assumes the theoretical position that the language 

of the contextualized function problems of the primary instrument will require the 

participant to work at a much higher level of cognition than when solving 

straightforward, “given these conditions, find the value of x” type of problems. By 

moving beyond the simple recall of definitions and basic algorithms, the participant will 

have the opportunity to demonstrate their deeper understanding of the central concepts 

of mathematical functions and their ability to use this knowledge to aid in their problem-

solving approaches. The interview context is based on the design principle that holds the 

participant’s free expression of mathematical ideas is of the utmost importance in the 

interview. Answers are to be accepted as “good” by the interviewer (researcher) whether 

the answers are correct or not. By using only non-directive follow-up questions and 

heuristic suggestions, the participant’s responses are expected to yield rich data that will 

allow the researcher to infer qualities of the participant’s internal mathematical 

constructs. 

 The theoretical foundation for the task-based interviews, as described by Goldin 

(1997) is based on three fundamental assumptions. First, it is assumed that the student’s 

internal mathematical cognitions or “competencies and structures of such competencies” 

(p.55) are able to be inferred from external behaviors. Specifically, these internal 
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structures are able to be inferred from the data gathered from task-based interviews when 

the task and the interview elicit certain cognitive and behavioral responses from the 

interviewee. The second assumption “is the idea that competencies are encoded in 

several different kinds of internal representations and that these interact with one another 

and with observable, external representations during problem-solving” (Goldin, p. 55). 

The third assumption is that a student’s representational actions are based on internal 

and/or external configurations which “symbolize” other representational configurations. 

Method 

Participants 

The participants in this study were preservice middle school mathematics 

teachers enrolled in a preservice teachers’ mathematics education problem-solving 

course at a large Southwestern, research intensive university. Purposeful sampling was 

used to choose six students from the class based on their willingness to participate in this 

pilot study. To effect a maximum variation type of sampling (Creswell, 2007, p. 127), 

two of the highest scoring students and two of the lowest scoring students were chosen 

from the group that volunteered to participate along with two students that scored near 

the mean of the class scores. 

Five of the six preservice teachers were preparing to teach middle school 

mathematics (education majors) while the sixth participant, Teacher4, was a 

mathematics major preparing to teach secondary school mathematics. One of the 

participants, Teacher6, was previously a mathematics major before becoming an 
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education major. All six of the participants were classified as university juniors; four of 

which were White females; there was one Black female and one White male.  

Instrument 

 There were two instruments, both created by the researcher, employed in this 

study. The primary instrument, the “Contextual Function Instrument”, was an initial 

draft of an instrument which consisted of fifteen multiple choice questions designed to 

assess middle and secondary school preservice mathematics teachers’ knowledge of the 

mathematical function concept in a contextually rich environment. This primary 

instrument was the focus of the pilot study and is the instrument that will ultimately be 

validated in a separate research study.  

 Prior to creating a new instrument, research literature was searched in an attempt 

to find an instrument that would satisfy the requirements of being highly contextualized 

as well as focusing on pre-calculus level function concepts. Included in the review of 

research literature were the following databases available on the Texas A&M University 

Library website: Academic Search Complete (EBSCO), ERIC, ScienceDirect, and the 

Web of Science (Texas A&M University, 2010). Additionally, function instruments 

were sought using GoogleScholar,  and the test collection at Educational Testing Service 

(ETS). 

The questions on the primary instrument were created by the researcher and are 

based on common competencies described in the TExES™ and Praxis™ teacher 

certification examinations for middle and secondary school preservice mathematics 

teachers (Educational Testing Service, 2009c; Texas Education Agency, 2009). Texas 
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middle school mathematics teachers are required to demonstrate successful performance 

on the “115 Mathematics 4 – 8” examination and Texas secondary school mathematics 

teachers are required to demonstrate successful performance on the “135 Mathematics 8 

– 12” examination (Texas Education Agency, 2008). North Carolina middle school 

mathematics teachers are required to demonstrate successful performance on the 

“Middle School Mathematics (0069)” examination and secondary school mathematics 

teachers are required to demonstrate successful performance on the “Mathematics: 

Content Knowledge (0061)” examination (Educational Testing Service, 2009a, 2009b, 

2009c). 

 The second instrument was a task-based interview protocol script of five primary 

questions asked of the participants during the interview. In the instances when the five 

primary questions did not consume the entire 45 minute interview time slot, a sixth 

auxiliary question was used. The development of the interview protocol, which is shown 

in Appendix A, is based on the work of Goldin’s (1997) task based interview protocol 

creation guidelines: 

The script is written so that for each main question, exploration proceeds 

in four stages: (a) posing the question ("free" problem-solving) with 

sufficient time for the child to respond and only nondirective follow-up 

questions (e.g., "Can you tell me more about that?”); (b) heuristic 

suggestions if the response is not spontaneous (e.g., "Can you show me 

by using some of these materials?"); (c) guided use of heuristic 

suggestions, again to the extent that the requested description or behavior 
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does not occur spontaneously (e.g., "Do you see a pattern in the cards?"); 

and (d) exploratory (metacognitive) questions (e.g., "Do you think you 

could explain how you thought about the problem?") (p. 45). 

The goal of the instrument’s design was to guide the interviewer in eliciting complete, 

coherent mathematical thoughts from the participant for each of the questions. 

Data Collection 

Qualitative data for this collective case study were collected face to face by the 

researcher (interviewer) in a conference room on campus, using the aforementioned 

protocol in 45 minute, semi structured, individual interviews. The interviews were audio 

recorded and those recordings were transcribed for data analysis. The researcher also 

made notes during the interview to supplement the transcription and the participants’ 

written responses to the tasks presented. 

Results 

Data Analysis 

The data consisted of the audio recorded interviews, the written problem-solving 

solutions from the participants, as well as the interviewer’s notes. The audio tapes were 

transcribed and read several times by the researcher to help form initial open coding. 

Direct interpolation was also used to analyze data within each individual case. An in-

depth depiction of the cases using narrative analysis was created to give a clearer image 

of the individual participants. 

Each of the participants’ responses (transcribed from audio recordings) was 

subdivided into “logical segments” of information that allowed the researcher to infer 
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something of the participants thinking relating to the assigned task. The interview 

transcripts yielded a total of 209 logical segments for all six participants. Using a 

constant comparison approach (Boeije, 2002; Glaser, 1965; Maxwell, 2010), 18 

researcher-defined codes were developed and used to interpret these 209 logical 

segments. For example, when asked about the method used to arrive at a particular 

answer, Teacher3’s response included the statement, “I’m trying to remember, like, the 

equation for surface area and I’m thinking that since we really don’t need to know how 

much it costs that would eliminate answer A and answer C.” That logical segment was 

assigned the code, “eliminate answer choices.” To validate the primary researcher’s 

coding process four other researchers reviewed, supplemented, and modified the coding 

scheme. 

The three research sub-questions were used as themes and categorical 

aggregation was employed to classify data across the six cases. The following tables 

show the codes (Table 1), the frequency of their occurrence (Table 2) and their rank 

within the specific groups (Table 3).   
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Table 1. Frequency of Preservice Teachers’ Strategies to Decode the Imbedded 
Function Concept from Contextualized Problems. 

 
Rank Decoding Approach Frequency 

1 Decode the context and eliminate the extraneous text 
without getting overwhelmed by the amount of text. 61.4% 

2 Use function notation and proper mathematical language to 
re-state and understand the problem context. 18.2% 

3 Convert problem into their own words to better understand 
what the problem is asking. 11.4% 

4 
Relate the embedded function in familiar “x” and “y” terms 
even when the Cartesian coordinate system has nothing to do 
with the problem at hand. 

4.5% 

5 
Assume the given mathematics problem is actually a 
“physics” problem and therefore that it is outside of their 
knowledge base. 

4.5% 

 
 
Table 2. Frequencies of Procedural Approaches Used by Preservice Teachers Use in 
Contextual Problem-Solving. 

 
Rank Procedural Approach Frequency 

1 Eliminate answer choices to reduce the probability of making 
a wrong answer selection. 35.4% 

2 Use to mathematical definitions (from memory) to serve as 
foundations in their problem-solving strategies. 25.7% 

3 Use graphing calculators. 10.6% 

4 
Use dimensional analysis to resolve disparities between the 
units given in the problems statement and the solution 
choices. 

9.7% 

5 Used conceptual understanding of mathematics and functions 
to guide their solution formulation. 8.8% 

6 
Decide on a potential formula for a solution, then “plugged 
in” one of the given numerical values and checked to see if 
the solution matches an answer choice. 

4.4% 

7 Apply proportional reasoning as an analytic method of 
solution. 2.7% 

8 Use knowledge from prior problems and filtering of given 
information to find solution. 2.7% 
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Table 3. Frequencies of Preservice Teachers Demonstration of Conceptual Knowledge 
of Functions in Contextual Problem-Solving. 

 
Rank Demonstrated Approach Frequency 

1 Demonstrate the ability to apply real-world knowledge as 
constraints within their mathematical problem-solving. 38.5% 

2 Use the definitions of a mathematical function as well as 
function notation. 30.8% 

3 Use multiple representations to conceptualize the problem 
and its solution. 23.1% 

4 Struggle with unknown constants in the problem even when 
the value of the problem is not necessary to find a solution. 3.8% 

5 Filter decoded functional concepts to find the most 
appropriate use. 3.8% 

 

The logical segments that included the five codes in Table 1 accounted for about 

21% of the total segments across the six cases (44 out of 209). An analysis of the 

original questions asked, the participants’ statements that contained the logical segments 

and the correct answers to the questions revealed that the participants were 100% 

successful when they converted the problem into their own words (rank #3) and when 

they related the problems to the Cartesian coordinate system (rank #4). The participants 

were found to be totally unsuccessful (0%) when the assumed the problem was actually 

a “physics” problem (rank #5). They were successful in about 63% of the cases when 

they tried to use function notation and proper mathematical language (rank #2), but only 

successful at a rate of about 26% when they attempted to decode the context of the 

problem and eliminate extraneous text (rank #1). 

The logical segments related to the eight codes in Table 2 accounted for about 

54% of the total segments across the six cases (113 out of 209). An analysis of the 

original questions asked, the participants’ statements that contained the logical segments 



 25

and the correct answers to the questions revealed that the participants were 93% 

successful when they eliminated answer choices (rank #1). The participants were found 

to be successful in 83% of the cases when they used graphing calculators (rank #3) and 

80% successful when they used their conceptual understanding of mathematics and 

functions to guide their solution formulation (rank #5). They were successful in about 

67% of the cases both when they applied proportional reasoning (rank #7) and when 

they used knowledge from prior problems and filtering of given information to find the 

solution (rank #8), but only successful at a rate of about 40% when after deciding on a 

potential formula for a solution, they “plugged in” one of the given numerical values and 

checked to see if the solution matched an answer choice (rank #6). Finally, the 

participants were found to be successful about 64% of the time when they used 

dimensional analysis to resolve disparities between the units given in the problem 

statement and the solution choices (rank #4). 

The logical segments related to the five codes in Table 3 accounted for about 

25% of the total segments across the six cases (52 out of 209). An analysis of the 

original questions asked, the participants’ statements that contained the logical segments 

and the correct answers to the questions revealed that the participants were 100% 

successful when filtering decoded functional concepts to find the most appropriate (rank 

#5) and 95% successful when they demonstrated their ability to apply real-world 

knowledge as constraints (rank #1). The participants were found to be totally 

unsuccessful (0%) when they struggled with “unknown” constants in the problem (rank 

#4). They were successful in about 83% of the cases when they used multiple 



 26

representations to conceptualize the problem and its solution (rank #3), and successful at 

a rate of about 75% when they attempted to use their definitions of a mathematical 

function as well as function notation (rank #2). 

Even though the teachers’ correct answers were not the primary focus of this 

study, it is still worth noting that the individual scores ranged from a low of 10% correct 

to a high of 80% correct. Overall, the six participants answered a total of 26 task related 

questions correctly out of the 59 task questions posed (44%). Due to the time constraint 

of the interview and the fact that some participants answered much more quickly than 

others, each of them were not asked the same number of questions. Participants were 

asked as few as eight questions and as many as 12 questions with the average being 

about 9.8 task questions. 

It is interesting to note that none of the preservice teachers interviewed had a 

strong definition of a mathematical function in memory. When asked, “What is a 

mathematical function”, the responses varied significantly. One participant responded: 

A mathematical function is a lot of things hmm, in my opinion,  it’s 

where  (pause) I don’t know how to explain, it’s something I’m so used to 

doing, when I have to explain what it actually is, it’s been so long since 

I’ve been told a definition that I just go through it. I wouldn’t know how 

to explain it; it’s something that comes with experience. 

Another participant offered a specific definition that characterized a one-to-one 

correspondence between variables, and another said a mathematical function is 

something that shows a relationship between two or three things. Yet, even with a weak 
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demonstrated function definition, all of the participants were successful about three-

quarters of the time when they attempted to use their definitions of a mathematical 

function as well as functional notation. Rizzuti (1991), using 12th grade mathematics 

students in her study, also found that her participants’ weak function definitions did not 

hinder their function-related problem-solving ability. 

 
Interpretation of Individual Participants’ Responses 

Teacher1 

My initial impression of Teacher1 was that she was uncomfortable with the 

mathematics involved. Of the six participants, she displayed the least positive body 

language and she made the most negative statements about the questions on the 

instrument and her ability to answer the questions. My experience with students of 

mathematics suggests to me that her affective display was more likely related to her lack 

of confidence rather than lack of knowledge or skill. She answered two of the nine 

questions correctly, but more importantly she had a very diverse (and at times 

conflicting) range of responses to the questions. 

She struggled with the definition of a function as well as the concept of direct 

and inverse proportionality, but during a discussion of a different problem she was able 

to demonstrate her knowledge of the function concept by implicitly expanding the 

functional relationship between heat and evaporation loss. 

…but a lot of things in the real-world isn’t just linear, it has a lot of 

variability, variables throughout the day. I mean it could be sun shining 

one day so you are going to lose… with heat you are going to lose more 
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water with evaporation whereas some days it’s not sun shining so it’s not 

going be; whereas [solution] D [she refers to a linear graph of evaporation 

losses versus pool radius] makes it seems like it will be sunshine every 

single day and in life it’s really not. Some days are cloudy some days are 

not, so that it’s not going to be perfect, staggering and that’s why I say 

[solution] B [she refers to a quadratic graph of evaporation losses versus 

pool radius] because it has that curve so it kind of leaves more leeway to 

the days. 

This problem explicitly states, “…that water evaporation is directly proportional to the 

surface area of the pool…”, yet she was able to extend this idea based on prior 

knowledge that the evaporation rate of water is a function of heat. Unfortunately, this 

added knowledge may have played a role in the confounding of the answer. She chose 

the correct answer, but the line of thinking she used to arrive at that conclusion was 

flawed. 

In her discussion of problem solutions, she demonstrated the ability to apply 

proper contextual meaning to the mathematics with statements like, “I would eliminate C 

because I know the radius wouldn’t be negative; [there is] really not such a thing as a 

negative radius”. But she was not consistent in this demonstrated ability, as shown by 

her notion in the passage above that the graph of a linear function suggests something 

“perfect” whereas the smooth curve of a quadratic function implies a more natural and  

“variable” response. 
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On several occasions Teacher1 made statements like, “… there’s a lot of 

information in the problem and I’m trying to separate it in my mind so that I don’t get 

anything confused”, which served as examples of her demonstrated difficulties in 

decoding the imbedded function concept from contextualized problems. When she was 

able to fully grasp the concept within the contextual problem, she was able to 

demonstrate adequate mathematical procedural problem-solving skills. But these 

procedural skills were still overshadowed by statements like, “A mathematical function 

is a lot of things hmm, in my opinion, it’s where (pause). I don’t know how to explain, 

it’s something I’m so used to doing, when I have to explain what it actually is (pause), 

it’s been so long since I’ve been told a definition that I just go through it. I wouldn’t 

know how to explain it; it’s something that comes with experience.” Teacher1 

demonstrated knowledge of problem-solving procedures, like immediately eliminating 

as many answer choices as possible, but her ability to clearly demonstrate her conceptual 

knowledge of functions was not apparent. 

Teacher2 and Teacher5 

Teacher2 and Teacher5 are grouped together because they were quite similar in 

more than just demographics (White, female, preservice middle school teachers), they 

showed similar problem-solving approaches and responses. They had similar ratios of 

correct response to interview questions (2/10 and 3/12, respectively) and they both 

answered the same questions correctly and used similar reasoning in arriving at answer 

choices. In their solution to a problem that defined a function such that “the water 

evaporation is directly proportional to the surface area of the pool”, both focused on a 
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self-defined concept of change to explain their conceptual knowledge of functions. 

Teacher2 correctly chose answer choice B and explained, “I’m thinking that because it’s 

directly proportional, that means that the proportion is not changing or wouldn’t be 

changing and so I feel like it should be a straight line and not a curve or maybe I don’t 

know.” (It should be noted that independent of her self defined concept of change in 

graphs and its relationship to the term directly proportional, her answer choice 

contradicts her statement; choices B and C show the graphs of quadratic functions and 

choices A and D show the graphs of linear functions.) Teacher5 also correctly chose 

answer choice B and explained, “I would go with B just for the fact that that function is 

changing and I think it would change.” When asked why she would eliminate choice A 

(the graph of the linear function) she continued to explain, “Because of the changing like 

that one is constant…” Teacher5, like Teacher2, also used good real-world knowledge to 

constrain her choice to those with positive values on the independent axis knowing that 

the pool radius could not take on negative values. 

Teacher2 and Teacher5 both struggled to decode the imbedded function concept 

from the contextualized problems. “Difficult, … like when they throw in the extra stuff 

that’s not needed” and “I think that the length of the problems and this has been the case 

with most of them, it’s just so overwhelming when you’re trying to think about 

everything at the same time” were characteristic responses by both teachers. Both 

teachers employed the “eliminate answer choices” problem-solving strategy as their 

primary procedural approach to problem-solving without giving sufficient cause for the 

elimination.  
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When they demonstrated their conceptual knowledge of functions in problem-

solving, Teacher2 and Teacher5 both showed strengths in their ability to use real-world 

knowledge to properly constrain their problem solutions. However, they both struggled 

with foundational function concepts; they were unable to remember proper function 

definitions or were unable to apply some that they did recall. An exception to this 

difficulty was noted in their approach to find the zeros of a quadratic function. In this 

case, both teachers clearly demonstrated their understanding of the need to set the given 

function equal to zero and solve for the independent variable. 

Teacher3 

Teacher3 offered quite a contrast in style and demonstrated knowledge from 

Teacher1, Teacher2 and Teacher5. Teacher3 approached the problems with a calm, 

confident manner that allowed her to work through the most difficult problems without 

showing signs of frustration. She correctly answered 7 of the 10 questions, and one of 

the three incorrect responses was due to a simple calculation error rather than a 

conceptual shortcoming. Most interesting was the fact that she was the first interviewee 

that actually “spoke aloud her thoughts” as she solved the problems with very little 

prompting from the interviewer. Though it was not explicitly part of the task-based 

interview, Teacher3 displayed strong pedagogical skills in her explanation of her 

thoughts and problem-solving techniques. 

She was able to consistently decode the imbedded function concept by carefully 

translating the text of the stated problem into her own words. She was then able to use 

these translated ideas to explicitly state what she believed the problem was asking and to 
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link to definitions and concepts that she was able to recall. Additionally, Teacher3 was 

able to determine which parts of the text were clearly extraneous and eliminate them 

from future consideration as she continued her problem solution. 

The primary procedural approach to problem-solving used by Teacher3 was to 

apply her knowledge of mathematical definitions and function concepts to properly set 

the problems up for an analytic solution. When posed with a problem that involved 

inverse proportional function, Teacher3 explained her thought in the following way, “I 

kind of saw that inversely proportional to the quantity so I knew that the proportion, the 

quantity wouldn’t be on top, it would be on bottom and I knew I would divide because 

when you find the inverse it’s one over something.” On several occasions she also relied 

on the graphing calculator as part of her problem-solving approach, but she also made it 

clear that, “if I can, I’ll solve it without using the calculator to better understand why it's 

doing what it's doing.” While she also used the technique of the elimination of answers, 

she was more likely to actually work through the problem and compare her answer with 

the answer choices available. 

 Teacher3’s primary means of demonstrating her conceptual knowledge of 

functions involved the way she interpreted and set-up her problem solution strategy. For 

example she stated, “We know that they’re looking for how much evaporation loss is 

lost per day with the gallons of water and I know that the water evaporation is directly 

proportional to the surface area.” She continued by describing the mathematical 

operations that will be necessary to complete the calculations and properly used 

dimensional analysis to convert a given quantity into a quantity more suitable for 
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problem solution. Teacher3 also showed strength in her ability to use real-world 

knowledge to properly constrain her problem solutions. 

Teacher4 

Teacher4 offered the greatest contrast between his demonstrated knowledge as 

evidenced by the number of correct answers to the posed questions (4/8) and the quality 

of his responses during the interview. Like Teacher3, Teacher4 was quite impressive as 

he “spoke aloud his thoughts” as he solved the problems. He did this with minimal 

prompting from the interviewer. Also like Teacher3, he displayed strong pedagogical 

skills in his explanation of his thoughts and problem-solving techniques and he was very 

confident and relaxed during the interview. As a preservice secondary school 

mathematics teacher, Teacher4’s additional mathematics training was evident in his 

discussions. In three of the four incorrect answers to questions posed, Teacher4 knew 

exactly how to set up and solve the problem. It seems that he rushed the solutions (in 

two cases, he did the problems in his head) and therefore gave incorrect answers to 

concepts and procedures that he clearly understood. There was only one problem for 

which Teacher4 did not understand how to arrive at a correct solution. 

Like Teacher3, he was able to consistently decode the imbedded function 

concept by carefully translating the text of the stated problem into his own words. He 

was then able to use these translated ideas to explicitly state what he believed the 

problem was asking and to link to the wealth of mathematical definitions and concepts 

that he easily recalled. Furthermore, Teacher4 was also able to determine which parts of 
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the text were clearly extraneous and eliminate them from future consideration as he 

continued his problem solution. 

Teacher4 also mirrored Teacher3’s proclivity for using an analytical approach to 

problem-solving, but unlike Teacher3 he demonstrated a mild aversion to the use of 

technology in his solutions. He openly confessed, “Then my lack of technology skills, 

umm, made it difficult to figure out the exact point and I’m very slow at using a 

calculator.” His secondary procedural approach to problem-solving was the proper use 

of elimination of answers as he worked through the problems. 

Teacher4 demonstrated his conceptual knowledge of functions in statements like, 

“It says it’s a modulating activity therefore I was thinking that the graph will have a 

series of ups and downs…” and “and then the fact that the formula has a square we knew 

that the graph should increase exponentially not linearly.” Like Teacher2, Teacher3 and 

Teacher5, he also showed as a strong point his ability to use real-world knowledge to 

properly constrain his problem solutions. Teacher4 was particularly adept at using 

dimensional analysis to verify his problem solution strategy. 

Teacher6 

Teacher6 was a preservice middle school mathematics teacher, but unlike the 

others, she was a mathematics major before switching to education. It seemed that this 

additional training in mathematics allowed her to perform at a higher level of 

competence than all of the other preservice teachers that were interviewed in this study. 

Teacher6 also approached the problems with a calm, confident manner that allowed her 

to work through the most difficult problems without showing signs of frustration. She 
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correctly answered eight of the ten primary questions, and since she showed signs of 

having a deeper understanding of the concepts, she was asked several conceptual 

“follow-up” questions which she also answered correctly. Teacher6 also “spoke aloud 

her thoughts” as she solved the problems with very little prompting from the interviewer 

and like Teacher3 and Teacher4, she displayed strong pedagogical skills in her 

explanation of her thoughts and problem-solving techniques. 

Unlike Teacher3 and Teacher4, she was unable to initially decode the imbedded 

function concept as she translated the text of the stated problem into her own words. She 

freely confessed, “If I would have been paying more attention and read the problem 

more carefully, it might have taken a lot less time.” It seemed that she merely needed 

time to become acclimated to the dense text in these contextualized problems, because 

after reading the first few problems, Teacher6 was also able to determine which parts of 

the text were extraneous and eliminate them from future consideration. 

Teacher6 also mirrored Teacher3’s proclivity for using an analytical approach to 

problem-solving, but unlike Teacher4 she demonstrated a higher level of affinity for the 

use of technology (the graphing calculator) in her solutions than all of the other teachers 

interviewed. After describing how to solve the problem conceptually she added, “Then, 

since it gave you the equation, you can pretty much just plug it into the calculator and 

find out where it’s equal to zero.” Her secondary procedural approach to problem-

solving was the proper use of elimination of answers as she worked through the 

problems. 
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Teacher6 demonstrated her conceptual knowledge of functions in statements like, 

“Ok so it gives you a function of the activity of the thing which is t2+3 times t2- 5t + 4 

and it says you only can remove the capsule when the activity is at zero, so we need to 

find the roots of that function” and “the dependent variable would be the evaporation 

loss per gallon per day, and [the independent variable is] the radius of the circle of the 

pool.” Like most of the other teachers, she also showed her ability to use real-world 

knowledge to properly constrain her problem solutions. Teacher6 also paid attention the 

units of the problem and was adept at using dimensional analysis to verify her problem 

solution strategy. 

Discussion 

Decoding Strategies 

One of the questions under consideration in this study was to better understand 

how preservice teachers decode the embedded function concept from a contextualized 

problem. The most challenging aspect of this question is, “How much context makes a 

good contextual problem and how much does it take to simply muddy the waters?” It 

was not a goal of this study to answer that question directly, but that question remains a 

part of the conversation as we consider the results. A priori assumptions concerning this 

research question included the preservice teachers being either confounded by the 

language and sheer volume of text in the problems and/or being unable to recall or apply 

enough function concepts and definitions to be effective problem solvers. 

The results showed that the most frequently used approach to decode the 

embedded function concept was to “eliminate the extraneous text” but the participants 
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who used that approach were only successful about a quarter of the time. On the other 

hand, participants were always successful when they “converted problem into their own 

words for better understanding” or “related the embedded function in familiar ‘x’ and ‘y’ 

terms even when the Cartesian coordinate system has nothing to do with the problem at 

hand.” However, these more successful approaches were rarely used.   These results 

show that the methods used by the preservice teachers most often were not the methods 

that they were most successful with and the most successful methods were among the 

least used by the preservice teachers.  Though the studies are quite different, these 

results are contrary to finding by Nathan and Koedinger where beginning algebra 

students employed the methods “that gave the highest likelihood of success (around 

70%) and led to the greatest number of correct solutions when they were applied” (2000, 

p. 176). A similar study using preservice teachers as the participants has not been 

discovered. 

Procedural Approaches 

The preservice teachers showed a wider range of procedural approaches than 

they did in either decoding or demonstrating function concept knowledge. Their 

procedural approaches accounted for about half of the total observed strategies. The 

most frequently used procedure, “eliminating answer choices”, was also the method that 

produced success on almost every item. Eliminating answer choices, along with using 

dimensional analysis, “top-down” analytic solution methods and multiple representations 

were the strategies hypothesized the preservice teachers would use, but it was not 

anticipated that eliminating answer choices would be used to that extent. Nor was it 
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anticipated that the eliminating answer choices procedure would be used in such a casual 

manner as using the statement “it doesn’t seem right” as justification. 

Eliminating answer choices is a popular test-taking strategy that is taught 

throughout most of a student’s K – 12 academic experiences, but it is best applied after 

careful consideration of the correct answer to the problem (Hong, Sas, & Sas, 2006; 

Texas Education Agency, 2009). Students should not eliminate an answer choice simply 

because “it doesn’t seem right”, but rather they should have a logical basis for answer 

elimination. “Students should NOT eliminate answer choices that they are not sure 

about, only those that they can logically show are wrong using either information in the 

question or facts that they know” (Noel, 2010). 

Prior to data collection, the researcher hypothesized a strong demonstration of 

their knowledge of conceptual and procedural problem-solving skills related to 

contextualized mathematical function problems would have included more “top-down” 

analytic solutions (which would include the use of correct mathematical definitions in 

their problem-solving strategies), more dimensional analysis used in problem-solving as 

well as more discussions in multiple representations. Only the top two teachers displayed 

these types of problem-solving skills. These skills add to the richness of problem-solving 

methods as mathematics students are tasked with complex STEM problems (Connally et 

al., 2004). 

A promising result in this study was observed in the preservice teachers’ ability 

to apply real-world knowledge as constraints within their mathematical problem-solving. 

This strategy was their most frequently demonstrated approach as well as a very 
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successful approach for them. The ability to properly apply constraints to a novel 

mathematical problem to create a useful real-world solution is a key attribute in project-

based learning environments, which are central to STEM curricula (Prince & Felder, 

2006). Another promising result was found in their ability to correctly use multiple 

representations to find or discuss problem solutions. Unfortunately, it was only used 

about a quarter of the time. 

Implications and Conclusions 

Since today’s middle and high school mathematics teachers provide the academic 

foundation for future STEM college graduates, it is important for mathematics educators 

to be able to assess just how well prepared the mathematics teachers are in integrating 

contextual function problem-solving into the 6 – 12 curriculum. In the setting of a 

university mathematics course, a freshman or sophomore student can recite function 

definitions, examples and counter-examples of mathematical functions. The path to 

academic achievement can seem quite linear; the instructor lectures on the function 

concept, the students reinforce the lecture with homework assignments and within a 

relatively short time frame the students demonstrate their acquisition of this new 

knowledge by passing an exam. But what happens a year or two later when that same 

preservice teacher is asked to demonstrate their knowledge of the function concept? As 

these preservice teachers make ready to transition to in-service mathematics teachers, 

how much conceptual knowledge of functions do they maintain? How do they apply this 

knowledge in problem-solving? How well can preservice teachers adapt classroom 
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function concepts in contextual applications that tend to be buried in extraneous details 

and text?   

The ability to retain problem-solving skills is not a matter of memory retention 

related to specific problems or problem types, but rather a profound knowledge of the 

foundational concepts that form the backbone of the mathematical problems (L. Ma, 

1999). Researchers need a way to measure teachers’ knowledge to develop better 

preservice programs and summative assessments prior to professional licensure. If a 

reliable and valid instrument is employed to establish preservice teachers’ content 

knowledge of mathematical function, then that instrument can be used with induction 

year in-service middle and secondary school mathematics teachers to establish the 

quality and quantity of problems solving skills retained in the transition from student to 

teacher. 

The ability of a teacher to adapt content knowledge into pedagogical content 

knowledge and to employ it in the classroom in such a way as to increase student 

learning of mathematics is a central theme in mathematics education research (Darling-

Hammond & Youngs, 2002; Hill, 2007; Hill & Ball, 2004; Hill et al., 2005; Kulm, 2008; 

Lappan & Ferrini-Mundy, 1993). Results from this study have provided a view into how 

preservice teacher decode function concepts embedded in context similar to traditional 

problems found in other STEM courses. The use of this instrument, and its future 

generations, can provide mathematics education researchers quantifiable evidence of the 

interaction between preservice teachers’ knowledge and the methods they use to convert 

that knowledge into useful problem-solving skills. 
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There are many extant instruments to measure a wide range of mathematical 

content topics and attitudes, but an instrument which specifically measures knowledge of 

the function concept in a contextually rich environment for preservice and in-service 

mathematics teachers has not been published. In the effort to validate a new content 

knowledge of mathematical function instrument, a pilot test was required to gain further 

insight into the mathematical thinking of preservice teachers while they complete 

contextualized mathematical function problem-solving tasks. The purpose of this case 

study was to describe the mathematical problem-solving cognition related to 

contextualized mathematical function problems for preservice middle and secondary 

school mathematics teachers. Inferences drawn from the mathematical problem-solving 

cognition will aid in the development and validation of an instrument to assess 

preservice mathematics teachers’ knowledge of the mathematical concept of function. 

 Results, in general, will help establish the mathematical content and style of the 

next generation of the contextual function instrument. Results from the decoding 

strategies employed by the preservice teachers in this study will impact the complexity 

of the context in future problems and the finding from the procedural approaches used 

will likely push future instrument development towards a free-response instrument rather 

than a multiple-choice instrument. 
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CHAPTER III 

THE DEVELOPMENT AND PSYCHOMETRIC MEASUREMENT OF AN 

INSTRUMENT TO ASSESS PRESERVICE MATHEMATICS TEACHERS’ 

CONTENT KNOWLEDGE IN CONTEXTUAL FUNCTION PROBLEM-SOLVING  

 

Background 

Of the algebraic topics covered in middle and secondary schools, researchers 

recognize the concept of function as the single most important tool in algebra regarding 

a student’s ability to apply mathematical concepts in sciences, engineering and other 

related contexts (Hollar & Norwood, 1999; Knuth, 2000; Lloyd & Wilson, 1998; 

O'Callaghan, 1998; Zbiek, 1998). The National Council of Teachers of Mathematics 

(NCTM) expects all students, beginning in grade six, to be able to “model and solve 

contextualized problems using various representations such as graphs, tables, and 

equations” (National Council of Teachers of Mathematics, 2000a), which require 

students to possess a working knowledge of functions in contextualized environments.  

With the focus of mathematics education research on students’ achievement, it is 

important to note that teacher knowledge is the most important factor influencing student 

learning (Dooren et al., 2002; Lappan & Ferrini-Mundy, 1993; National Council of 

Teachers of Mathematics, 1991; The Education Alliance, 2006). Recent research reveals 

that, generally speaking, teachers lack depth in mathematics content knowledge (Kulm, 

2008) and earlier research found that teachers find the concept of function particularly 

challenging (Even, 1993; Leinhardt et al., 1990; Sherin, 2002; Stein et al., 1990). 
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Finding highly qualified teachers can be particularly challenging in an environment 

where it has been reported that 68.5% of the middle school teachers in the US have 

neither a major nor have certification in mathematic (Li & Kulm, 2008). Do middle and 

secondary school mathematics teachers have sufficient content knowledge of the 

function concept in contextual environments to perform at the high expectations of 

today’s STEM curriculum? 

 Since mathematics teachers have the greatest influence in students’ mathematical 

development (Dooren et al., 2002), it is imperative that teachers possess the depth of 

mathematical content knowledge and the experience of contextual problem-solving to 

effectively lead students. Researchers believe one of the contributing factors to the 

disconnect between real-world insights in students’ problem-solving abilities is “the way 

in which these problems are considered and used in current instructional practice and 

culture, and more specifically the lack of systematic attention to the modeling 

perspective by the teacher”(Verschaffel et al., 1997, p. 340).  

Teachers’ Knowledge of the Concept of Function 

A question that might serve to focus our attention could be phrased simply as, 

“What do mathematics teachers need to know to be effective in teaching functions in 

middle and secondary mathematics classrooms?” Generally speaking, middle and 

secondary school mathematics teachers are responsible for diverse range of subjects 

ranging from pre-algebra through AP® calculus and the concept of function is a common 

thread woven through all of these courses (Educational Testing Service, 2009c; W. Ma 

& Freedson, 2002; National Council of Teachers of Mathematics, 2000a; Texas 
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Education Agency, 2008, 2009). To be successful in any of these courses, a mathematics 

teacher must have a firm grasp of both the pedagogical knowledge necessary for the 

classroom instruction as well as mathematical content knowledge of the material they 

are teaching (Kulm, 2008; Mohr, 2008). Shulman (1986) cautions against viewing these 

notions as being mutually exclusive or even independent thoughts, but rather he 

introduces the notion of “pedagogical content knowledge” to provide a paradigm bridge 

between these complementary ideas. But there are still unanswered questions concerning 

teacher knowledge. 

Shulman regards the following as “the central questions for disciplined inquiry 

into teacher education”: 

What are the domains and categories of content knowledge in the minds of 

teachers? How, for example, are content knowledge and general 

pedagogical knowledge related? In which forms are the domains and 

categories of knowledge represented in the minds of teachers? What are 

promising ways of enhancing acquisition and develop? (p.9) 

These questions are used to form the basis of his theoretical framework of teacher 

knowledge, which he divides into three categories; subject matter content knowledge, 

pedagogical content knowledge, and curricular knowledge. Of these three, this study will 

focus on subject matter content knowledge. 

If content knowledge is viewed as an independent construct that only served the 

individual teacher, it could be discounted as irrelevant to the goals of classroom 

instruction. Research has shown that teacher’s knowledge is not an independent 
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construct within only the teacher, but rather that a teacher’s mathematical content 

knowledge is directly related to pedagogical content knowledge and therefore has a 

direct effect on student learning (N. Webb, 1979). Just knowing that a teacher has 

specific content knowledge is not enough, we need to know that they have the 

appropriate knowledge for the content domain being taught and we need to know that 

they have a sufficient level of that knowledge (Sherin, 2002). It was the aim of this study 

to develop and validate an instrument to measure middle and secondary school 

preservice mathematics teachers’ content knowledge of the function concept in a 

contextual environment. 

Test Development 

Testing, which has been in existence for about 3000 years (Allen & Yen, 2002), 

is used to measure a characteristic, trait or quality in a person or object.  A test can also 

be defined as “an evaluative device or procedure in which a sample of an examinee’s 

behavior in a specified domain is obtained and subsequently evaluated and scored using 

a standardized process” (American Educational Research Association, American 

Psychological Association, National Council on Measurement in Education, & Joint 

Committee on Standards for Educational and Psychological Testing (U.S.), 1999, p. 3). 

Carmines and Zeller (1979) describe measurement as a “process” of quantifying 

empirical data with abstract concepts. The creation and subsequent validation of a “test” 

or assessment instrument is firmly grounded in measurement theory. “Measurement 

theory is a branch of applied statistics that attempts to describe, categorize and evaluate 

the quality of measurements, improve the usefulness, accuracy and the meaningfulness 
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of measurements, and propose methods for developing new and better measurement 

instruments” (Allen & Yen, 2002, p. 2). In the quest improve the usefulness, accuracy 

and meaningfulness of quantitative instruments, two common metrics are often used: 

reliability and validity. 

When developing new instrumentation for testing, great care should be taken to 

show that the newly created instrument is both reliable and valid. Without verification of 

these two key qualities, the proposed instrumentation cannot be trusted to provide a 

useful link between observable phenomenon and abstract ideas (Carmines & Zeller, 

1979). Generally speaking, reliability is a measure of how consistent an instrument is in 

measuring the same quality repeatedly. “Fundamentally, reliability concerns the extent 

to which an experiment, test, or any measure procedure yields the same results on 

repeated trials” (Carmines & Zeller, 1979, p. 11).  

Common methods of assessing reliability in social science research are internal-

consistency estimates of reliability and include the split halves method which can yield 

the Spearman-Brown coefficient for tests where the halves can be classified as parallel, 

or Cronbach’s alpha (α) when the test halves are considered essentially τ-equivalent 

(Allen & Yen, 2002; Carmines & Zeller, 1979). The Kuder-Richardson #20 (K-R 20) 

coefficient, like the Spearman-Brown coefficient and Cronbach’s alpha, is also a 

measure of an instrument’s internal consistency reliability. These forms of internal 

consistency reliability testing procedure display a contrast to procedures that aim to 

measure reliability over a period of time, such as the test-retest reliability procedure 

(Huck, 2008). 
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Reliability is a measure of an instrument’s consistency whereas validity 

quantifies how well an instrument is able to measure its intended dimension. This could 

commonly be phrased, “how well a test measures what it is supposed to measure” 

(Orcher, 2005). Sireci (2007, p. 478) summarizes key aspects of validity in the 

following: 

• Validity is not a property of a test. Rather, it refers to the use of a test for a 

particular purpose. 

• To evaluate the utility and appropriateness of a test for a particular purpose 

requires multiple sources of evidence. 

• If the use of a test is to be defensible for a particular purpose, sufficient evidence 

must be put forward to defend the use of the test for that purpose. 

• Evaluating test validity is not a static, one-time event; it is a continuous process. 

The three major types of validity used in research in the social science are content 

validity, criterion-related validity, and construct validity (Allen & Yen, 2002; Carmines 

& Zeller, 1979; Orcher, 2005). This study focused on content and construct validity for 

the new instrument. 

Problem 

Recent research reveals that, generally speaking, teachers lack depth in 

mathematics content knowledge (Kulm, 2008). More specifically, teachers find the 

concept of function particularly challenging (Even, 1993; Leinhardt et al., 1990; Sherin, 

2002; Stein et al., 1990). A rich and practical understanding of the concept of function 

has been found to be at insufficient levels in college students as well as some middle and 
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secondary school mathematics teachers (Sierpinska, 1992; N. Webb, 1979). Learning 

complex concepts, such as the concept of function, is much more effective when carried 

out within a contextual learning environment (de la Harpe & Wyber, 2001; Lankard, 

1995) but research suggests that the primary use of contextual, real-world instruction is 

relegated to developmental mathematics courses in post secondary education (Grubb & 

Kraskouskas, 1992; Stone et al., 2006; Wiseley, 2009) even though state teacher 

certification examinations are rich in contextualized problems (Educational Testing 

Service, 2009a, 2009b; Texas Education Agency, 2009). There are many extant 

instruments to measure a wide range of mathematical content topics and attitudes, but an 

instrument which specifically measures knowledge of the function concept in a 

contextually rich environment for preservice and in-service mathematics teachers has not 

been published (I. A. Brown, 2010). 

The purpose of this study was to create an instrument to assess mathematics 

teachers’ content knowledge of the function concept in a contextual environment and 

measure the psychometric properties of the instrument for the purpose of measuring 

middle and secondary school preservice mathematics teachers’ content knowledge of the 

function concept in a contextual environment. The results from this study will aid 

mathematics education researchers in developing future assessments of a teacher’s 

ability to solve problems in a contextual environment. This may offer teacher educators 

insight into possible modifications to preservice programs and provide school 

administrators a clearer perspective into the professional development needs of 

mathematics teachers. 
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Research Questions 

 The research questions were driven by a desire to gain a deeper understanding of 

the complex nature of instrument development and the validation of an instrument for a 

particular mathematical assessment. The questions reflect the iterative design-test-

redesign method used in this study. The initial set of problems used in the instrument 

was developed based on research findings and items used in the TExES™ and Praxis™ 

examinations (Brown, 2010). The questions were pilot tested with a sub-sample of 

middle school preservice mathematics teachers which prompted a redesign of the 

problem set. This redesigned problem set was then evaluated by the subject matter 

experts which again led to further redesign of the instrument. The goal of this design-

test-redesign method was to determine which items should be included in the instrument 

and how those individual items chosen performed together as an instrument. The 

questions that formed the basis of this study were: 

1. What are the key items in assessing contextual function concepts that should 

be included in an instrument to assess preservice mathematics teachers’ 

knowledge? 

2. What are the psychometric properties of an instrument developed to assess 

preservice middle and secondary mathematics teachers’ knowledge of the 

mathematical concept of function within a contextual environment? 

These two questions served as foundations to guide the research project reported in this 

paper. 
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Theoretical Framework 

“Validity refers to the degree to which evidence and theory support the 

interpretations of test scores entailed by proposed uses of tests. Validity is, therefore, the 

most fundamental consideration in testing and evaluating tests” (American Educational 

Research Association et al., 1999, p. 9). Validity is not a characteristic of a test but rather 

it is a metric related to how the test is used nor is it a singular measurement but rather 

validity is established by an amalgamation of validity evidence (American Educational 

Research Association et al., 1999; Lissitz, 2009; Sireci, 2007). The Standards for 

educational and psychological testing “outline various sources of evidence that might be 

used in evaluating a proposed interpretation of test scores for particular purposes” 

(American Educational Research Association et al., 1999, p. 11) which are evidence 

based on test content, response processes, internal structure, relations to other variables, 

and consequences to testing. This research attempts to establish validity for the proposed 

use of the instrument through the processes of item review and factor analysis. 

Item Selection and Review 

“Evidence of content validity is needed whenever performance on a sample of 

items (the test) is used to make inferences about the broader domain of which the test 

items are a sample” (F. G. Brown, 1983, p. 132). This is particularly true of cognitive 

achievement tests like the instrument developed in this study. In defining content 

validity, the Standards define test content in following manner, “Test content refers to 

the themes, wording, and format of the items, tasks, or procedures regarding 

administration and scoring” (American Educational Research Association et al., 1999, p. 
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11). The goal of establishing content validity for this study is to show that the instrument 

represents a subset of the skills or competencies of the broader domain, namely 

preservice teachers’ knowledge of the function concept in a contextual environment. The 

primary method for establishing content validity is by conducting a review of test items 

by an expert panel (Carmines & Zeller, 1979; Huck, 2008). 

Standard 1.6 and Standard 1.7 serve to guide the item selection and review 

processes: 

Standard 1.6: When the validation rests in part on the appropriateness of 

test content, the procedures followed in specifying and generating test 

content should be described and justified in reference to the construct the 

test is intended to represent. 

Standard 1.7: When a validation rests in part on the opinions or decisions 

of expert judges, observers, or raters, procedures for selecting such experts 

and for eliciting judgments or ratings should be fully described. The 

qualifications, and experience, of the judges should be presented. The 

description of procedures should include any training and instructions 

provided, should indicate whether participants reached their decisions 

independently, and should report the level of agreement reached. If 

participants interacted with one another or exchanged information, the 

procedures through which they may have influenced one another should 

be set forth. (American Educational Research Association et al., 1999) 
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A pathway to provide evidence of validity can be developed by providing a 

logical structure that demonstrates the relationships between the test items and the 

construct under examination and providing the method for properly identifying 

and qualifying the experts who will ultimately judge the validity claims. 

Measurement Issues 

It is important to recognize that even if the sample chosen is truly representative 

of the population under study, there can still be errors associated with the collected data. 

One of the most obvious sources for error is due to survey non-response (Ott & 

Longnecker, 2001). To reduce the potential effects due to non-responsive participants, 

the researcher worked closely with most of the faculty at the universities under study to 

improve faculty buy-in on the research. The faculty members have also been offered the 

opportunity to join the researcher in future potential journal publications that use the 

collected data from their respective programs. 

One area of bias that the instrument has very little protection against is 

respondent bias (Abbasi, 2000). Since the survey is anonymous, and consists of non-

personal type questions, the natural instinct to protect ones self should not be as strong 

as with other types of surveys. Errors due to processing errors can be guarded against by 

using structure checks, duplication checks, and omission checks and by having the 

checks verified by an independent, third party (graduate student) to the research (Abbasi, 

2000; Ott & Longnecker, 2001). 

Due to the highly contextual nature of the instrument, there is also the potential 

for leading questions as well as unclear or poorly worded questions. The initial item 
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review, discussed in a following section, should allow most of these type errors to be 

identified and corrected or eliminated. Care has been taken in the design of the items to 

make them both clear and neutral in language, but the language itself is another area of 

concern. It is assumed that preservice teachers are able to read at or above the level of 

the language used in the creation of the instrument, but as mentioned in the next section, 

the expert panel will provide feedback concerning any potential language level concerns 

they may perceive. 

Factor Analysis 

Factor analysis is a statistical method of data analysis that is used to help 

determine construct validity. “A prime use of factor analysis has been in the 

development of both the operational constructs for an area and the operational 

representatives for the theoretical constructs” (Gorsuch, 1983, p. 350). A construct, for 

the purposes of this study, can be thought of as a theoretical concept that logically binds 

test items. In developing an instrument to measure mathematical cognitive skills or 

knowledge, it is reasonable to question whether all of the test items are based on one 

particular mathematical concept or are several concepts represented in the items. Each of 

these constructs that bind groups of items, of a particular mathematical concept for 

example, will be a factor in the factor analysis of the instrument. 

Since the problems were developed from three specific function content areas in 

the TExES™ and Praxis™ examinations, it is assumed that these three areas will also 

constitute the three factors in the instrument.  It is also true that the test items were 

developed based on three of the four Levels of Demands of Mathematical Tasks as set 
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forth by Smith and Stein (Smith & Stein, 1998). We hypothesize that a factor analysis 

will show that the items selected for use in the instrument are related based on the three 

mathematical function concepts under examination, namely linear functions, quadratic 

functions, and exponential functions. We further hypothesize that a factor analysis, 

based on different factors, will show that the items are correlated based on three of the 

levels of demand of mathematical tasks, namely Lower-Level Demands (procedures 

without connections), Higher-Level Demands (procedures with connections), and 

Higher-Level Demands (doing mathematics). Therefore, confirmatory factor analysis 

(CFA) will be used to verify the a priori hypotheses concerning the model structure, 

factors, and factor loading of the items in the instrument. 

When qualifying model structures, several indices are used to guide the model 

refinement process. Brown (2006) describes the overall goodness of by saying: 

Goodness-of-fit indices provide a global descriptive summary of the 

ability of the model to reproduce the input covariance matrix, but the other 

two aspects of fit evaluation (localized strain, parameter estimates) 

provide more specific information about the acceptability and utility of the 

solution (p. 133).   

In addition to the goodness-of-fit index, the Root Mean Square Error of Approximation 

(RMSEA), the Weighted Root Mean Square of Residual (WRMR), and the Comparative 

Fit Index / Tucker-Lewis Index (CFI/TLI) should be used to determine the model’s 

psychometric properties (Albright & Park, 2009; T. A. Brown, 2006). 
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Method 

Development of the Instrument/Item Creation 

The initial draft of the instrument consisted of fifteen multiple choice questions 

to assess middle and secondary school preservice mathematics teachers’ knowledge of 

the mathematical function concept in a contextually rich environment. A sample 

question follows: 

Pricilla’s newly formed company, Aggie Pools, Inc., is in the business of 

installing round, in ground swimming pools.  She offer pools from the 

economy sized (20 feet in diameter) to the “Hummer” of backyard pools (80 

feet in diameter).  A common concern of her customers is the amount of water 

lost each day due to evaporation.  To maintain a constant level in the 

swimming pool, each gallon of water lost to evaporation must be made up 

with fresh water from the city water department.  The local fresh water supply 

rate is $4.80 for the first 2000 gallons of water and $1.96 for each additional 

thousand gallons.  Armed with the knowledge that water evaporation is 

directly proportional to the surface area of the pool and that evaporation loss 

rates in her service area average about 1/120 gallons per hour per ft2 of pool 

surface area, she decides to create a formula that relates evaporation loss per 

day as a function of the radius of the pool. 

Of the four graphs below, which of the graphs best represents the real-world 

use of the above function? 
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The question above was followed by four graphical representations of functions. 

One of the four graphs will best represent the function described by the problem 

statement while the remaining three graphs will be incorrect or less desirable 

solutions to the problem.  

The question above and fifteen similar questions were created by the authors and 

are based on common competencies described in the TExES™ and Praxis™ teacher 

certification examinations for middle and secondary school preservice mathematics 

teachers (Educational Testing Service, 2009c; Texas Education Agency, 2009). Texas 

middle school mathematics teachers are required to demonstrate successful performance 

on the “115 Mathematics 4 – 8” examination and Texas secondary school mathematics 

teachers are required to demonstrate successful performance on the “135 Mathematics 8 

– 12” examination(Texas Education Agency, 2008). North Carolina middle school 

mathematics teachers are required to demonstrate successful performance on the 

“Middle School Mathematics (0069)” examination and North Carolina secondary school 

mathematics teachers are required to demonstrate successful performance on the 

“Mathematics: Content Knowledge (0061)” examination(Educational Testing Service, 

2009a, 2009b, 2009c). 

For the middle school function content, common requirements between the 

TExES™ (domains II & V) and the Praxis™ (content categories I & III) examinations 

included models, representations, and transformations, linear and non-linear functions, 

properties of functions and their graphs, mathematical models of real-world situations, 

analysis and evaluation models, use of multiple representations of a concept, and use 
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mathematical models in other academic disciplines. The secondary school function 

content maintains all of the middle school function content with the additional 

requirement to be able to use the properties of polynomial, exponential, and 

trigonometric functions to analyze, graph, model, and solve problems based on TExES™ 

(domain II) and the Praxis™ (content categories IV-Trigonometry & V-Functions ). The 

initial content in the instrument was based on four specific domain areas; linear, 

quadratic, trigonometric, and exponential functions. 

A fundamental goal in item selection was to ensure alignment between the 

standards, in this case the TExES™ and Praxis™ examinations, and the instrument. The 

items in this version of the instrument were created to be consistent between (1) a 

common category of content between the standards, (2) Bloom’s Taxonomy for the 

cognitive domain (Krathwohl, 2002), and (3) cognitive demand as defined by Webb’s  

(2002, p. 4) “depth-of-knowledge”. Webb (2007, p. 2) defines the following four levels 

of depth of knowledge: 

Level 1 (recall and reproduction) is the recall of information such as a fact, 

definition, term, or a simple procedure, as well as performing a simple 

science process of procedure. A student answering a Level 1 item either 

knows the answer or does not. 

Level 2 (skills and concepts) includes the engagement of some mental 

processing beyond recalling or reproducing a response. The content 

knowledge or process involved is more complex than in Level 1. 

Keywords that generally distinguish a Level 2 item include ‘classify,’ 
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‘organize,’ ‘estimate,’ ‘make observations,’ ‘collect and display data,’ and 

‘compare data.’ 

Level 3 (strategic thinking) requires reasoning, planning, using evidence, 

and higher level of thinking than the previous two levels. The complexity 

results because the multistep task requires more demanding reasoning. 

Level 4 (extended thinking) Tasks at this level have high cognitive 

demands and are very complex. Students are required to make several 

connections, to related ideas within the content area or among content 

areas—and have to select or devise one approach among many solution 

alternatives. This level requires complex reasoning, experimental design 

and planning, and probably will require an extended period of time, either 

for the science investigation required by an objective, or for carrying out 

the multiple steps of an assessment item. 

A careful review of TExES™ and Praxis™ examinations reveals there are no “Level 4” 

depth-of-knowledge competencies required, therefore there are no “Level 4” items in this 

instrument. 

Table 4, adapted from Hess’ work on “cognitive complexity” (Hess, 2006, p. 6), 

shows the association between Bloom’s Taxonomy and Webb’s Depth of Knowledge 

(DoK) levels. The areas highlighted in bold print emphasize the intersection of the 

cognitive complexity items and the common competencies between the TExES™ and 

Praxis™ mathematics examinations relating to linear, quadratic, and exponential function 

problems that are of interest in this study. 
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Table 4. Webb’s Depth of Knowledge Levels.  
 

Bloom’s 
Taxonomy 

Level 1 
Recall & 
Reproduction 

Level 2 
Skills & Concepts 

Level 3 
Strategic 
Thinking/Reasoning 

Knowledge 
Define, list, 
memorize, name, 
order, recognize, 
relate, recall, state 

- Recall or identify 
conversions between 
and among 
representations. 

  

Comprehension 
Classify, 
describe, explain, 
express, identify, 
locate, recognize, 
select, translate 

- Make conversions 
between and among 
representations. 
- Evaluate an 
expression. 
- Solve a one step 
problem. 

- Make basic 
inferences or logical 
predictions from 
data. 

- Use concepts to 
solve non-routine 
problems. 
- Explain, generalize, 
or connect ideas using 
supporting evidence. 

Application 
Apply, choose, 
demonstrate, 
illustrate, 
interpret, sketch, 
solve 

- Follow a simple 
procedure, 
algorithm, or 
formula. 
- Perform 
calculation. 
- Apply an 
algorithm or 
formula. 

- Solve routine 
problem applying 
multiple concepts. 
- Retrieve 
information from a 
graph or a table 
and use it to solve a 
problem requiring 
multiple steps. 

- Use concepts to 
solve non-routine 
problems. 
- Use reasoning, 
planning, and 
evidence. 

Analysis 
Analyze, 
calculate, 
compare, 
discriminate, 
examine 

- Retrieve 
information from a 
graph or a table. 

Compare/contrast 
figures or data. 
- Select appropriate 
graph. 
- Interpret data 
from a simple 
graph. 

- Analyze and draw 
conclusions. 
- Generalize a 
pattern 
- Interpret data from 
complex graph. 

Synthesis 
Rearrange, create, 
design, develop, 
formulate, 
organize, propose 

- Brainstorm ideas, 
concepts, or 
perspectives related 
to a topic. 

- Use models to 
represent 
mathematical 
concepts. 

- Develop a 
mathematical model 
for a complex 
situation. 

Evaluation 
Appraise, assess, 
defend, estimate, 
predict, select, 
evaluate 

  - Cite evidence and 
develop a logical 
argument for 
concepts. 
- Verify 
reasonableness of 
results. 

Note: It should be noted again that “Level 4 – Extended Thinking” type items are beyond the scope of this 

study.  

It can be seen from the above table that the inverted triangular shape of the bold 

items indicates a pattern. Items that will best fit these criteria will not be based on 
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Bloom’s lowest two levels of skills, “knowledge” or “comprehension”, but rather will be 

based on “application”, “analysis”, “synthesis”, and “evaluation”. These skills are 

consistent with contextualized function problems. It can also be seen that as the skill 

level progresses from “application” to “evaluation”, Webb’s DoK levels increase as 

well. Therefore, the item(s) with the lowest cognitive demand will be developed such 

that they will be associated with Bloom’s “application” level and Webb’s DoK “Level 

1”, whereas the item(s) with the highest cognitive demand will be developed based on 

Bloom’s “synthesis” skill level and Web’s DoK “Level 3”. 

From these criteria, fifteen items were created by the researcher for the initial 

version, version 1.1, of the instrument (see Appendix B). Table 5 illustrates the 

relationship between the created items and the alignment to the standards, Bloom’s 

skills, and Webb’s DoK. (#1 refers to item #1 in the instrument). 
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Table 5. Test Items in Webb’s DoK Levels. 
 

 
 
 

TExES & 
Praxis 

Function 
Content 

K
no

w
le

dg
e 

C
om

pr
eh

en
si

on
 

A
pp

lic
at

io
n 

A
na

ly
si

s 

Sy
nt

he
si

s 

E
va

lu
at

io
n 

Level 1: Recall and Reproduction 

Linear   #9, #10 #1   
Quadratic   #3    

Exponential       
Trigonometric       

Level 2: Skills and Concepts 

Linear     #2  
Quadratic   #4 #11   

Exponential       
Trigonometric   #13, #14    

Level 3: Strategic Thinking / Reasoning 

Linear   #11 #12   
Quadratic     #5, #6,  

Exponential   #7, #8, #15, #16   
Trigonometric       

 
    
 

Item Review 

This initial draft of the instrument was reviewed by a panel of mathematics 

education experts and the results from the analysis of their comments were used to 

produce the second draft of the instrument. The subject matter experts (SME) were 

asked to verify the content areas represented in the problems, level of the language used 

in the instrument is consistent with the language level of the preservice teachers in their 

programs, and to provide commentary as to the level of difficulty of the problems. 
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Please see Appendix C for a copy of the letter sent to the SME panel and Appendix D 

for a copy of the “Contextual Function Survey - Subject Matter Expert Response Sheet.” 

Item Review Participants - Subject Matter Experts 

12 faculty members from nine universities in the states of North Carolina and 

Texas were contacted via email and phone calls and asked to serve as an SME for this 

project. Nine faculty members from seven universities agreed to serve on the panel. Two 

of the faculty members held the rank of Assistant Professors, three were Associate 

Professors, three were Full Professors, and one member of the SME panel held the rank 

of Distinguished Professor. All of the SME were responsible for middle and/or 

secondary school mathematics teacher education and held positions in the mathematics 

department as mathematics educators, the mathematics education department or joint 

appointments in both departments. Two of the universities hold the Carnegie 

Classification (The Carnegie Foundation, 2010) designation of Master’s Colleges and 

Universities-Larger Programs (Master’s/L), two are Doctoral Research Universities 

(DRU), two are Research Universities-high research activity (RU/H), and one holds the 

designation of  Research Universities-very high research activity (RU/VH). 

Item Review Data 

Data was collected from the SME in two modes 1) individual, personal 

interviews were completed at the researchers’ home institution by the primary author, 

and 2) SME at remote institutions completed the SME Response Sheet on their own 

without collaboration between SME. Of the data collected remotely via the SME 

Response Sheets, there were a total of 5060 words written by SME. 39.5% of the 



 63

responses were provided by the Full and Distinguished Professors and 57.8% provided 

by the Associate Professors. When the distribution is viewed from a per-person 

perspective, the Full and Distinguished Professors provided 19.8% per person and the 

Associate Professors contributed 19.3% per person. The sole Assistant Professor 

contributed less that 3% of the total responses. 

The data from the SME response sheets were divided into two categories, 1) free 

response data, and 2) data specific to each item.  Through substantive analyses of the 

free response data in the SME sheets, the primary researcher developed a set of response 

categories and key themes were identified. Review of the data specific to each item led 

to item revision or if the negative responses were significant, the item was replaced. 

Instrument Validation Participants 

The population under consideration for this study was middle and secondary 

grades preservice mathematics teachers in full-time, university teacher education 

programs within the states accredited by SACS. Since the states of Florida and Georgia 

currently use neither the Praxis™ nor TExES™ exams, students from those states are 

not part of the population. The sample for this study was comprised of 191 preservice 

teachers in 10 university teacher education programs in the states of Texas and North 

Carolina. This preservice teacher sample was chosen to represent the diverse preservice 

teacher population of the nine states accredited by SACS that use either the TExES™ or 

Praxis™ teacher certification examinations. 

There were 148 (77.5%) females and 42 (22.0%), males with one preservice 

teacher not reporting, of the 191 preservice teachers in the sample used for this study. 24 
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(12.6%) of the participants classified themselves as sophomores, 65 (34.0%) were 

juniors, 93 (48.7%) were seniors, and 7 (3.7%) were Post-Bachelors with 2 not reporting 

their class. 123 (64.4%) of the preservice teachers are seeking middle school teaching 

certification and 62 (32.5%) are seeking secondary certification with 6 not reporting. 31 

(16.2%) of the preservice teachers reported their academic major as being “Math and/or 

Science Education”, 31 (16.2%) were mathematics majors, 2 (1.0%) were physics 

majors, 16 (8.4%) reported “Multi-Disciplinary” majors, 7 (3.7%) reported “Other” with 

11 not reporting an academic major.  

Instrument Validation Data 

A unique identifier was assigned to each of the completed Contextual Function 

Instruments (CFI) so that score transcription could be verified by an independent 

researcher. The multiple choice answers from the CFI were transcribed from the 

individual completed instruments into an Excel spreadsheet as raw data. A coding 

system was created to convert the checked class, certification, and college major 

demographic entries on the CFI into numeric codes for entry into the data sheet. A 

second worksheet ply was added to convert raw scores into dichotomous data for use in 

two statistical analysis software packages; SPSS (version 16.0) and Mplus® 6 (version 

6.1) (Muthen & Muthen, 2010). An Excel formula was used to convert the raw answer 

(A, B, C, or D) into a “0” if the answer was incorrect or a “1” if the answer was correct. 

The dichotomous data was then used in SPSS to calculate the descriptive 

statistics for the demographic information (sex, class, certification, and college major) 

and to also compute the descriptive information for the scores based on sex and class 
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(see Appendix E). The SPSS data file was saved as an ASCII file to be used as an input 

data file to Mplus.  

Results 

Item Review 

Version 1.1 of the Contextual Function Instrument was modified based on the 

results of analysis of the item review data from the Subject Matter Experts. The most 

significant concern from the SME panel was related to the framework used to classify 

the problems. The original framework was based on an integration of Bloom’s taxonomy 

and Webb’s Depth of Knowledge adapted from Hess’ work on “cognitive complexity” 

(Hess, 2006). One of the SME responded in the following way: 

My general concern is the framework that you are using to classify / 

categorize the cognitive demand of an item is not sufficient. The 

framework by Hess (2006) which combines Bloom’s Taxonomy and 

Webb’s “depth of knowledge” framework is quite confusing to me; in my 

opinion it contradicts how Bloom’s Taxonomy is supposed to be 

interpreted.   

Based on responses like these and other related issues, several items were modified or 

replaced. Table 6 summarizes the changes from version 1.1 to version 4.1. 
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Table 6. Modification Of Instrument Items Based on Item Review Results. 
 

Problem # Version 1.1 Version 4.1 
1 Replaced New-linked to #8 
2 Replaced New-linked to #9 
3 Modified; moved to #9 Modified old #5 -linked to #11 
4 Modified; moved to #10 New-linked to #13 & #14 
5 Modified; moved to #3 New-linked to #15 
6 Modified; moved to #3 New-linked to #15 
7 Replaced New Problem 
8 Replaced New Problem 
9 Replaced Modified; from old #3 
10 Replaced Modified; from old #4 
11 Replaced New Problem 
12 Replaced New Problem 
13 Replaced Slightly modified; from  old #7 
14 Replaced Slightly modified; from  old #8 
15 Replaced Slightly modified; from  old #16 
16 Moved to #15 N/A 

 

 Five of the original problems were maintained in the final version after minor 

modifications. The remaining problems were replaced to allow the researchers to better 

infer the participants’ knowledge of the function concept in contextualized problems and 

to bring all of the items under a tighter framework. 

The entire original set of items asked the participants to demonstrate their ability 

to solve highly contextualized function problems, but did not allow the following basic 

question to be answered. “Did the participant fail to solve the contextualized problem 

because they were unable to understand the function concept because it was immersed in 

the given context, or did they simply not understand the function concept to begin with?” 

To offer more insight into this area, six new problems were created to test the 

participants’ knowledge of linear, quadratic, and exponential functions without much 
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problem context. These first six problems serve to establish the participant’s basic 

function knowledge prior to asking the participant to demonstrate similar function 

knowledge in solving six linked, highly contextualized problems. For example, problem 

#4 gives the participant the function P(t) = P0 • e rt ; and explicitly given values for P0 

and r, the participant is asked to find P(11). Later in the instrument, problem # 13 asks 

the participant to solve a similar exponential problem using the same formula, but the 

values for t, P0 and r are described or implied in the context of the problem. If the 

participant can correctly answer #4 but fails to correctly answer #13 our belief is that the 

context of the problem, and not the computation of the exponential function itself, 

caused the participant to fail to provide a correct solution.  

To bring all of the items under a tighter framework, we turn to a body of work 

compiled by Smith and Stein referred to as the “Levels of Demands of Mathematical 

Tasks”. Smith and Stein (1998, p. 6) refer to the following four level of demands:  

1. Lower-level demands (memorization) involve either reproducing 

previously learned facts, rules, formulas, or definitions or committing 

facts, rules, formulas or definitions to memory.  

2. Lower-level demands (procedures without connections) are 

algorithmic and use of the procedure either is specifically called for or 

is evident from prior instruction, experience, or placement of the task 

and are focused on producing correct answers instead of on developing 

mathematical understanding.  
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3. Higher-level demands (procedures with connections) focus students' 

attention on the use of procedures for the purpose of developing 

deeper levels of understanding of mathematical concepts and ideas and 

are usually are represented in multiple ways, such as visual diagrams, 

manipulatives, symbols, and problem situations.  

4. Higher-level demands (doing mathematics) require complex and non-

algorithmic thinking--a predictable, well-rehearsed approach or 

pathway is not explicitly suggested by the task, task instructions, or a 

worked-out example and require students to explore and understand 

the nature of mathematical concepts, processes, or relationships. 

The redefined items are shown to fit into Smith and Stein’s framework (Table 7). 

 

Table 7: Test Items in Smith & Stein’s Framework. P1 Means Problem #1. 

 Linear Quadratic Exponential 

Lower-Level Demands 
(Memorization)    

Lower-Level Demands 
(Procedures Without Connections) P1, P2 P3 P4 

Higher-Level Demands 
(Procedures With Connections) P8 P5, P6, 

P10 P13 

Higher-Level Demands 
(Doing Mathematics) P7 P9, P11, 

P12, P15 P14 

 

 

It can be seen that more than half of the problems are quadratic in nature and 

seven of the eight quadratic problems fall into the two Higher-Level Demand 
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categories. The table also shows that none of the problems are classified as 

Lower-Level Demand (Memorization). 

Instrument Validation 

 As stated earlier, the Contextual Function Instrument comprised of these 

15 revised items, was distributed to the 191 preservice teachers that made up the 

instrument validation sample pool. Each multiple choice test was graded by the 

researcher and the resulting score data (represented as percent correct) was 

included with the demographic and item data. The overall average for all 

participants was 45.3% and the participant scores ranged from a high of 87% to a 

low of 7% (with a standard deviation of 16.6). The overall average for all items 

was 45.3% and the item scores ranged from a high of 90.6% for problem #1 (P1) 

to a low of 16.8% for P13.  Table 8, and Figure 2 and Figure 3 summarize the 

scores and ranks of the problems. 
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Table 8. Problems, Scores and Ranks.  
 
 

Problems in 
rank order  Problems in 

problem order 

Rank Problem Score  Problem Rank Score 

1 P1 90.58%  P1 1 90.58% 
2 P5 80.10%  P2 4 57.59% 
3 P4 78.01%  P3 8 37.70% 
4 P2 57.59%  P4 3 78.01% 
5 P10 56.02%  P5 2 80.10% 
6 P6 53.40%  P6 6 53.40% 

7 P8 47.64%  P7 9 36.13% 

8 P3 37.70%  P8 7 47.64% 
9 P7 36.13%  P9 13 20.42% 
10 P11 31.94%  P10 5 56.02% 
11 P15 31.94%  P11 10 31.94% 
12 P14 22.51%  P12 14 19.37% 
13 P9 20.42%  P13 15 16.75% 
14 P12 19.37%  P14 12 22.51% 
15 P13 16.75%  P15 11 31.94% 
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Figure 2. Scores in Rank Order. 
 

 
 

Figure 3. Scores in Problem Order.
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 The Levels of Demand of Mathematical Tasks framework can be revisited 

with ranks of the scores and the links between problems included in Figure 4, 

which  shows, for example, that problem #1 (P1) has a score rank of 1 and is 

linked to problem #8 (P8) which has a rank of 7. The links shown above are based 

on a priori assumptions relating the items during creation, but we will now show 

the relative strength of the links based on analysis of the data.  

 

 
 
Figure 4. Level of Demand of Mathematical Tasks with Score Ranks and Links. 
 
 

Lower-Level 
Demands- 
Procedure w/o 
Connections 

Linear Quadratic Exponential 

Higher-Level 
Demands- 
Procedure 
with 
Connections 

Higher-Level 
Demands- 
Doing 
Mathematics 

P1-(1) 

P2-(4) 

P8-(7) 

P3-(8) 

P13-(15) 

P14-(12) 

P4-(3) 

P7-(9) 

P5-(2) 

P6-(6) 

P10-(5) 

P9-(13) 

P12-(14) 

P11-(10) 

P15-(11) 
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A Priori Assumptions about Links 

To test a priori assumptions about the links between items, SPSS software 

was used to create cross tabulation data to demonstrate potential relationships 

between test items. As stated earlier, one of the primary purposes for creating new 

(redefined) test items was to be able to address the question, “Did the participant 

fail to solve the contextualized problem because they were unable to understand 

the function concept because it was immersed in the given context, or did they 

simply not understand the function concept to begin with?” The basic assumption 

is if the participant can correctly answer the lower demand linked problem but 

fails to correctly answer its higher demand linked complement then the context of 

the problem, and not the concept of the function itself, caused the participant to 

fail to provide a correct solution. Table 9 summarizes the cross tabulation of the 

responses for linked problems. 



 74

Table 9. Cross Tabulation on Linked Items.  
 

  Incorrect Correct Total 

  P8 
Incorrect 14 4 18 
Correct 86 87 173 P1 
Total 100 91 191 

  P9 
Incorrect 69 12 81 
Correct 83 27 110 P2 
Total 152 39 191 

  P11 
Incorrect 79 40 119 
Correct 51 21 72 P3 
Total 130 61 191 

  P13 
Incorrect 31 11 42 
Correct 128 21 149 P4 
Total 159 32 191 

  P14 
Incorrect 31 11 42 
Correct 117 32 149 P4 
Total 148 43 191 

  P15 
Incorrect 31 7 38 
Correct 99 54 153 P5 
Total 130 61 191 

  P15 
Incorrect 71 18 89 
Correct 59 43 102 P6 
Total 130 61 191 

 
 
 It can be seen in the table above that when participants correctly answered 

problem #1 (P1), then they had about an equal chance of correctly answering P8, 
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but when they incorrectly answered P1 they were more than three times more 

likely to incorrectly answer P8. The link between P2 and P9 has a similar 

outcome, but demonstrates other information about the linkage. When participants 

correctly answered P2, they were about three times more likely to incorrectly 

answering P9. Unlike the link between P1 and P8 which simply moves from the 

Lower-Level Demands category to the next higher category and the link remains 

within the linear function domain, the link between P2 and P9 is more complex. 

We can see that P2 is a linear function within the Lower-Level Demands 

category, but its linked complement, P9, is two levels higher in the Higher-Level 

Demand (Doing Mathematics) category and it is also a quadratic function. The 

difference in ranks, 4 for P2 and 13 for P9, also demonstrates the increased 

difficulty between the problems. Nonetheless, when participants incorrectly 

answered P2 they were nearly six times more likely to incorrectly answer P9. The 

remainder of the linked problems shows similar trends and relationships. 

Construct Validity 

SPSS™ was also used to compute the value of Cronbach’s Alpha for the 

instrument. All 191 cases were reported to be valid with no cases excluded; the 

value of Cronbach’s Alpha for the 15 test items was 0.559. The Cronbach’s Alpha 

was also computed for a modified case in which P4, P13, and P14 were removed 

from the data set due to negative correlations. The resultant value of Cronbach’s 

Alpha was 0.546. 
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Factor Analysis 

A key aspect of this project was the fact that several important a priori 

assumptions were made concerning relationships between test items. These 

assumptions effectively define the structure of the instrument by defining the 

items based on the categories of the Levels of Demands of Mathematical Tasks as 

well as the three mathematical topic areas chosen. Since this is an exploratory 

study, designed to better understand the factor structure of the instrument, 

confirmatory factor analysis (CFA) was run using two different factor structures. 

 The first CFA was completed using the Levels of Demands of Mathematical 

Tasks to define the factor structure (please see Appendix F for the complete Mplus CFA 

output). As defined in Figure 4 above, problems 1 – 4 were associated with factor 1 

(Lower-Level Demands-Procedures Without Connections), problems 5, 6, 8, 10, & 13 

were associated with factor 2 (Higher-Level Demands-Procedures With Connections), 

and problems 7, 9, 11, 12, 14, & 15 were associated with factor 3 (Higher-Level 

Demands-Doing Mathematics). A brief summary of the CFA output is in Table 10. The 

Chi-Square Test of Model Fit value was 123.4 with 87 degrees of freedom and a P-value 

of 0.0063. The other key parameters are as follows: the RMSEA was estimated at 0.047, 

the CFI was 0.814, the TFI was 0.775, and the WRMR was 0.964. It can be seen from 

the factor loadings (Estimates) that problems 13 and 14 show a negative loading. This 

finding is consistent with the fact that the score rank for P13 was 15 (16.8% success rate) 

and the rank for P4 was 12 (22.5% success rate). 
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Table 10. CFA Output Summary for Factors Based on Levels of Demands. 
 

  Estimate S.E. Est./S.E. Two-Tailed 
P-Value 

F1 BY     
 P1 1.000 0.000 999.000 999.000 
 P2 0.880 0.313 2.806 0.005 
 P3 1.449 0.478 3.035 0.002 
 P4 1.668 0.496 3.359 0.001 
      

F2 BY         
 P5 1.000 0.000 999.000 999.000 
 P6 0.830 0.190 4.363 0.000 
 P8 0.512 0.191 2.675 0.007 
 P10 0.615 0.183 3.356 0.001 
 P13 -0.274 0.212 -1.292 0.196 
      

F3 BY         
 P7 1.000 0.000 999.000 999.000 
 P9 0.353 0.432 0.818 0.413 
 P11 0.295 0.348 0.847 0.397 
 P12 0.997 0.502 1.987 0.047 
 P14 -0.108 0.375 -0.287 0.774 
 P15 2.15 0.816 2.634 0.008 

 
 

 

The second CFA was completed using the mathematical topic areas to define the 

factor structure (please see Appendix G for the complete Mplus CFA output). As defined 

in Figure 2 above, problems 1, 2, 7, & 8  were associated with factor 1 (linear functions), 

problems 5, 6, 9, 10, 11, 12, & 15 were associated with factor 2 (quadratic functions), 

and problems 4, 13, & 14 were associated with factor 3 (exponential functions). A brief 

summary of the CFA output is in Table 11. The Chi-Square Test of Model Fit value was 

124.8 with 87 degrees of freedom and a P-value of 0.0050. The other key parameters are 

as follows: the RMSEA was estimated at 0.048, the CFI was 0.807, the TFI was 0.767, 
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and the WRMR was 0.966. Again, it can be seen from the factor loadings (Estimates) 

that problems 13 and 14 show a negative loading. 

 

 
Table 11. CFA Output Summary for Factors Based Mathematical Topic. 

 

  Estimate S.E. Est./S.E. Two-Tailed 
P-Value 

F1 BY     
 P1 1.000 0.000 999.000 999.000 
 P2 0.856 0.310 2.765 0.006 
 P7 0.698 0.274 2.545 0.011 
 P8 0.695 0.290 2.396 0.017 
      

F2 BY     
 P3 1.000 0.000 999.000 999.000 
 P5 0.946 0.210 4.512 0.000 
 P6 0.786 0.165 4.765 0.000 
 P9 0.135 0.209 0.646 0.519 
 P10 0.569 0.156 3.649 0.000 
 P11 0.111 0.175 0.635 0.525 
 P12 0.477 0.213 2.235 0.025 
 P15 0.971 0.185 5.259 0.000 
      

F3 BY     
 P4 1.000 0.000 999.000 999.000 
 P13 -0.176 0.179 -0.980 0.327 
 P14 -0.087 0.128 -0.685 0.494 

 
 
 
 

SPSS was used to test the correlation between P4 & P13 and between P4 

& P14. This confirmed the suspected negative correlation between P4, P13, & 

P14 as shown by the results of the CFA. To improve the overall goodness of fit 

values for the model, P13 and P14 were removed. Since P13 and P14 are linked to 
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P4, and it would be nonsensical to create a model that has a factor with only one 

variable, P4 was also removed and the CFA were re-run on the modified data set. 

The full results of the revised CFA using the Levels of Demands of Mathematical 

Tasks to define the factor structure (please see Appendix H) and using the 

mathematical topic areas to define the factor structure (please see Appendix I) 

showed improved values for overall goodness of fit. The Mplus Chi-Square Test 

of Model Fit value was 69.6 with 51 degrees of freedom and a P-value of 0.043 

(The other key parameters are as follows: the RMSEA was estimated at 0.044, the 

CFI was 0.857, the TFI was 0.814, and the WRMR was 0.878) for the Levels of 

Demand model and 79.9 with 53 degrees of freedom and a P-value of 0.042 (The 

other key parameters are as follows: the RMSEA was estimated at 0.043, the CFI 

was 0.854, the TFI was 0.818, and the WRMR was 0.886) for the mathematical 

topic areas model. 

Discussion 

With the focus of mathematics education research on students’ achievement, it is 

important to note that teacher knowledge is the most important factor influencing student 

learning (Dooren et al., 2002; Lappan & Ferrini-Mundy, 1993; National Council of 

Teachers of Mathematics, 1991; The Education Alliance, 2006). Recent research reveals 

that, generally speaking, teachers lack depth in mathematics content knowledge (Kulm, 

2008) and earlier research found that teachers find the concept of function particularly 

challenging (Even, 1993; Leinhardt et al., 1990; Sherin, 2002; Stein et al., 1990). A 

preliminary examination of the data used to develop and validate the Contextual 
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Function Instrument supports these claims. The overall average for all participants was 

45.3% and the participant scores ranged from a high of 87% to a low of 7%. It should be 

noted that the data collected and reported in this study was not meant to be able to report 

on the actual function knowledge of preservice teachers, but rather to analyze the 

properties of a new instrument. Nonetheless, it’s difficult not to notice the low success 

rate on this unproven instrument. 

Sherin (2002) notes that just knowing that a teacher has specific content 

knowledge is not enough, we need to know that they have the appropriate knowledge for 

the content domain being taught and we need to know that they have a sufficient level of 

that knowledge. For this reason, care was taken in the selection of appropriate function 

topics for this instrument. The items on the original instrument were created based on the 

mathematical topics of linear, quadratic, trigonometric, and exponential functions. These 

topics are most prominent in both the TExES™ and Praxis™ educator certification 

examinations (Educational Testing Service, 2009a, 2009b, 2009c; Texas Education 

Agency, 2009) and therefore should be represented on any instrument used to ascertain 

preservice teachers knowledge of function concepts. 

It was discovered in this research that it is difficult to span four function areas on 

a test with less than 20 questions, and 20 question of a contextual nature require too 

much time for reasonable, volunteer testing. Therefore, it was decided to reduce the 

subject area in the revised instrument to only three function topics; linear, quadratic, and 

exponential functions. The study was frustrated by the fact that even though the 

contextual exponential problems were linked to a straightforward application problem 
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(score of 78% and a rank of 3), the participants performed so poorly on the problems that 

they had to be eliminated as well. Based on the results of the cross tabulation, the most 

prudent action to take would be to create clearer contextual exponential problems as 

replacement rather than have an instrument that only tested linear and quadratic 

functions. 

When developing new instrumentation for testing, great care should be taken to 

show that the newly created instrument is both reliable and valid. Without verification of 

these two key qualities, the proposed instrumentation cannot be trusted to provide a 

useful link between observable phenomenon and abstract ideas (Carmines & Zeller, 

1979). The computed value for Cronbach’s Alpha of 0.56 confirms the fact that several 

items in this instrument must be revised to increase this instrument’s internal consistency 

reliability. For those items that otherwise fit well into the factor structure of the 

instrument but posses weak R2 values, it would be wise to revise or replace them to be 

more consistent with items with similar items that posses large R2 values. 

The focus of this project was to create an instrument to assess mathematics 

teachers’ content knowledge of the function concept in a contextual environment and 

measure the psychometric properties of the instrument for the purpose of measuring 

middle and secondary school preservice mathematics teachers’ content knowledge of the 

function concept in a contextual environment. Knowing the logistical limitations in 

collecting data, the plan was not to bring the instrument into full reliable and valid form, 

but rather to examine key psychometric properties of the instrument to lay the 

groundwork for future research and continued development of this instrument. In 
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addition to the factors and the overall goodness-of-fit index, the Root Mean Square Error 

of Approximation (RMSEA), the Weighted Root Mean Square of Residual (WRMR), 

and the Comparative Fit Index / Tucker-Lewis Index (CFI/TLI) were measured as 

recommended by the literature (Albright & Park, 2009; T. A. Brown, 2006).  

One of the strongest aspects of this project was the procedure to determine 

content validity. The goal of establishing content validity was to show that the 

instrument represents a subset of the skills or competencies of the broader 

domain, namely preservice teachers’ knowledge of the function concept in a 

contextual environment. The method for establishing content validity, by 

conducting a review of test items by an expert panel, is consistent with 

recommended practices in the research literature (Carmines & Zeller, 1979; Huck, 

2008). Care was taken to follow Standard 1.6 and Standard 1.7 of  the Standards 

for educational and psychological testing (American Educational Research 

Association et al., 1999) in specifying and generating test content. Also, since 

content validity rested on the opinions a Subject Matter Expert panel, the 

procedures for qualifying the experts were well defined.  

It is clear from the psychometric properties of the instrument that the items 

on the instrument should have a tighter scope. While it is desired to have an 

instrument that can examine participants’ knowledge in the areas of linear and 

quadratic functions, exponential functions and trigonometric functions, we 

recognize that those areas span too large of an area for a reliable and valid test 

that can be taken within a reasonable amount of time. Perhaps separate 
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instruments can be created that can examine linear and quadratic functions while 

exponential and trigonometric functions can be examined in another instrument. 

The relationships shown in the results suggest that highly contextualized 

problems should be linked to non-contextualized foundational function problems 

(similar to problems used in common instruments examining the knowledge of 

the function concept). While the results from link relationships were quite 

encouraging, the authors recognize that the current instrument only provides a 

good base for future instrument development. Future research should also seek to 

discover the potential relationship between the relative strengths of links and the 

instrument’s psychometric properties. 
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CHAPTER IV 

CONCLUSIONS 

 

This chapter will conclude this project by describing how the results and 

conclusions Chapters II & III for a cohesive discussion that answers the overall question, 

“How should preservice mathematics teachers’ content knowledge of the function 

concept be assessed?” this chapter will also describe how the sum of the results and 

conclusions from Chapters II and III add knowledge to the field of mathematics 

education. It is worthwhile to recount the origins of the project with the hope that a more 

complete picture of this complex and important landscape is drawn. 

As explained in the introductory chapter, the genesis of this research project 

occurred after I conducted several mathematics content knowledge review sessions for 

groups of preservice teachers enrolled in alternative certification programs (ACP) within 

the state of Texas. In working with preservice middle school mathematics and secondary 

school mathematics and science teachers, I found that many of them struggled to 

understand the context and requirements of the problems on the TExES examination 

more than the specific mathematical operations required for a solution. Generally, after I 

explained what the problem requirements were, they were able to recall the appropriate 

mathematical content and perform the correct mathematical operations to find a solution.  

The ACP enrolled preservice teachers from various academic backgrounds 

provided the preservice teacher had the requisite number of appropriate college 

mathematics courses. The fact that the preservice teachers with applied mathematics 



 85

backgrounds (primarily science and engineering) seemed to have better command of the 

contextualized function problems on the TExESTM practice problems caused me to 

wonder if preservice teachers in traditional mathematics teacher education programs 

were better prepared for the rigors of the certification examinations. These thoughts led 

to the overarching question that defined and guided both research projects described in 

this study, “how should preservice mathematics teachers’ content knowledge of the 

function concept be assessed?” 

To answers this and the subsequent related questions, I reviewed existing 

mathematics education and teacher education literature to determine how content 

knowledge of the function concept has been accessed.  This led me to also investigate if 

and how contextual teaching and learning promote effective methods in the mathematics 

classroom and whether or not a reliable and valid instrument existed that would be 

useful in assessing teachers’ content knowledge of the function concept. Finally, I 

performed a review of literature in the field of assessment and instrument development 

to discover key psychometric properties that must be considered in the development of 

an effective instrument. 

Implications for Preservice Teacher Education 
 

In a 2009 speech at Teachers College, Secretary of Education Arne Duncan 

provided an less than admirable view of university based teacher education programs 

(Duncan, 2009, p. 1): 

Yet, by almost any standard, many if not most of the nation's 1,450 

schools, colleges, and departments of education are doing a mediocre job 
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of preparing teachers for the realities of the 21st century classroom. 

America's university based teacher preparation programs need 

revolutionary change—not evolutionary tinkering. But I am optimistic 

that, despite the obstacles to reform, the seeds of real change have been 

planted. America faces three great educational challenges that make the 

need to improve teacher preparation programs all the more urgent. 

Not all of Secretary Duncan’s comments were as damaging as the “mediocre” comment; 

he goes on in that speech to offer conciliatory statements to educational leadership for 

the monumental gains that have been made in the field of teacher education. 

Nonetheless, university education programs need to continually find new research-based 

ways improve teacher education. 

The abundance of research literature in the area of mathematics teacher education 

demonstrates that the preparation of mathematics teachers is not a new area of concern, 

but some readers might be surprised to know how long this concern has been voiced in 

the research literature. As described in a 1907 article in School Science and 

Mathematics, Professor H. L. Coar of Marietta College presented of a paper entitled 

“The Teacher of Mathematics” where:  

He had found that conditions similar to those that Professor Skinner 

reported from Wisconsin held generally elsewhere. The preparation of the 

teacher of mathematics is very often quite inadequate. Universities, 

colleges, normal schools, and local school authorities could do much to 

better conditions (Whitney, Denton, & Jone, 1907, p. 70). 
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Even though the interest for improving the quality of mathematics teachers is not new, 

the past twenty-five years have been particularly fruitful in terms of producing high 

quality theoretical and empirical research (Hill, 2007; Hill & Ball, 2004). 

The findings in this task-based interview research project (Chapter II) confirm 

research findings that generally speaking, teachers lack depth in mathematics content 

knowledge (N. Webb, 1979). More specifically, teachers find the concept of function 

particularly challenging (Even, 1993; Leinhardt et al., 1990; Sherin, 2002; Stein et al., 

1990). A rich and practical understanding of the concept of function has been found to 

be at insufficient levels in college students as well as some middle and secondary school 

mathematics teachers (Sierpinska, 1992; N. Webb, 1979). This project revealed 

weaknesses and strengths of preservice teachers’ contextual problem-solving ability. 

Contrary to finding by Nathan and Koedinger, where beginning algebra students 

employed the methods “that gave the highest likelihood of success (around 70%) and led 

to the greatest number of correct solutions when they were applied” (2000, p. 176), the 

participants described in Chapter II did not use the decoding strategies that they found 

most successful. By far, the strategy used the most was the elimination of an answer 

choice. This suggests that the participants have worked themselves into a problem-

solving rut. Rather than search their minds, though their problems solving experiences, 

to find the method most appropriate for the problem at hand they tend to try to apply a 

most familiar method to every problem.  

Knowing that preservice teachers have this problem-solving liability, teacher 

educators could improve student outcomes by modifying problem choices sufficiently to 
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give the students a wider view of problem-solving. Another strategy that could be 

employed by teacher educators is to require students to solve a problem using more than 

a single method and by specifying a method that must be used. An alternative to this last 

idea could be to also specify in the problem directions which problem-solving methods 

that cannot be used for this particular problem.  

The most unproductive preservice teacher strategy (or way of classifying 

problems) was their insistence that some problems “were physics” problems. Upon 

making that statement, the students always failed to correctly solve the problem. Teacher 

educators could potentially improve problem-solving courses by borrowing problems 

from other STEM disciplines. The researcher hypothesized that students who recognized 

a math problem as a math problem, held themselves open to more mathematical 

problem-solving strategies than the student that discounted the problem as being outside 

of their knowledge domain, which may allow the student to mentally give up trying 

further. 

Teacher educators can also build on the strengths displayed by the participants. 

The participants were extremely successful (95%) when they demonstrated their ability 

to apply real-world knowledge as constraints in problem-solving. This suggests an 

improvement in the earlier work by Vershaffel, et al. (1997) where participants failed to 

use real-world thinking in their problem-solving solutions. This student strength can be 

leveraged with a wider variety of problems (STEM based problems) to expand the 

preservice teachers’ breadth of problem-solving knowledge and critical thinking skills. 
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The National Council for Accreditation of Teacher Education (NCATE) 

published a list of “Research Supporting the Effectiveness of Teacher Preparation” on its 

website (National Council for Accredition of Teacher Education, 2005, p. 1). In that list, 

it offers the following quote from (Wenglinksy, 2002): 

Wenglinsky looked at how math and science achievement levels of more 

than 7,000 eighth graders on the 1996 National Assessment of 

Educational Progress were related to measures of teaching quality and 

student social class background. He found that student achievement was 

influenced by both (1) teacher content background and (2) teacher 

education /professional development coursework, especially in how to 

work with diverse student populations and students with special needs. In 

addition, teaching practices, which had strong effects on achievement, 

were related to teacher training. Students performed better when teachers 

provided hands-on learning opportunities and helped student develop 

higher order thinking skills. These practices were related to the training 

they had received in developing critical thinking skills and related 

pedagogy. 

Deep real-world problem-solving can help develop these critical thinking skills in 

preservice mathematics teachers (Greer et al., 2002; Verschaffel et al., 1997). 

Another area that could be strengthened in teacher education programs is the 

preservice teachers’ definition of the concept of function. It is interesting to note that 

none of the preservice teachers interviewed had a strong definition of a mathematical 
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function in memory. Yet, even with a weak demonstrated function definition, the 

participants were successful about three-quarters of the time when they attempted to use 

their definitions of a mathematical function as well as functional notation. Rizzuti 

(1991), using 12th grade mathematics students in her study, also found that her 

participants’ weak function definitions did not hinder their function related problem-

solving ability. It can easily be argued that it may be permissible for a student to not 

have a proper definition for a mathematical function in mind if they can still use the 

concepts to properly set-up and solve problems. Teachers, on the other hand, are not 

afforded that luxury. Mathematics students have little hope of forming useful function 

concepts if their teachers exhibit weak function definitions. 

The ability to retain problem-solving skills is not a matter of memory retention 

related to specific problems or problem types, but rather a profound knowledge of the 

foundational concepts that form the backbone of the mathematical problems (L. Ma, 

1999). Researchers need a way to measure teachers’ knowledge to develop better 

preservice programs and summative assessments prior to professional licensure. If a 

reliable and valid instrument is employed to establish preservice teachers’ content 

knowledge of mathematical function, then that instrument can be used with induction 

year in-service middle and secondary school mathematics teachers to establish the 

quality and quantity of problems solving skills retained in the transition from student to 

teacher. 

As noted previously, this study only examined preservice teachers’ problem-

solving cognitions related to linear, quadratic, and exponential functions. While these 
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three topics offer a good start, much more work is needed to expand the body of 

knowledge to span the full pre-calculus function range. The majority of the existing 

research literature on the function concept is restricted to algebraic level discussions 

(1996; DeMarois & Tall, 2009; Gray & Tall, 1994; Hollar & Norwood, 1999; Kieran, 

2008; Lambertus, 2007; Leinhardt et al., 1990; O'Callaghan, 1998; Sfard, 1991). A 

potential paradox to overcome is the fact that as the range of problem types increases, 

the internal consistency coefficient can tend to suffer leaving the instrument with lower 

reliability scores. This will require very careful problem selection. 

The item creation and validation procedures outlined in this project should 

provide a good foundation to future projects that endeavor to create expanded versions 

of this instrument. Specifically, the importance of creating linked mathematical 

problems to give researchers the ability to distinguish between foundational function 

misconceptions and contextual shortcomings will hopefully be a component of future 

development in this area. 

A related area of future research will involve converting the format of the 

instrument from a multiple choice test to an open response test. This researcher, as well 

as several members of the Subject Matter Expert panel, expressed interest in seeing the 

open response version of the instrument so that more of the student thinking would be 

exposed. The issue to overcome is the time constraint; most students used an elimination 

strategy to assist in the problem-solving process which also shortens the time for test 

completion. Presenting the test as an open response test would lengthen the time 

required beyond the 50 minutes time requirement of the multiple-choice format. Since 
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many university based teacher education program classes are 50 minutes in duration, it 

would be difficult to administer a test of this length to a typical class. The alternative, of 

course, would be to shorten (reduce the number of problems) the test, but again there 

would be difficulties due to either too few functional topics covered or a degradation of 

psychometric properties due to greater variability in participant responses. 

Limitations 

This research study endeavored to develop and measure the psychometric 

properties of an instrument that can be used to quantify the level of contextual function 

concept knowledge of preservice middle and secondary school teachers in the southern 

region of the U.S. More specifically, the population is comprised of students enrolled in 

university teacher education programs within the eleven states whose colleges and 

universities are accredited by The Commission on Colleges of the Southern Association 

of Colleges and Schools (SACS) (Southern Assocation of Colleges and Schools, 2009) 

that use either the TExES™ or the Praxis™ teacher certification examinations. The 

ability to generalize the results will be limited due to the fact that the sample represents 

14 universities accredited by SACS in two states. 

Another limiting factor in this study is the sheer breadth of the notion of content 

knowledge of the function concept. The need for this study is justified by the fact that 

the function concept is both ubiquitous and powerful in the STEM fields. It is very 

difficult to encompass the entire function concept in one short, multiple choice 

instrument, therefore I concede that we are only able to measure certain important 
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aspects of the concept, as determined by the mathematics education experts that 

participated in the review of the instrument. 

Delimitations 

An important aspect of the methodology was the selection of the participants that 

represent the sample of the population under study. This study did not try to understand 

the function concept knowledge of preservice teachers all over the U.S., but rather the 

scope is narrowed to students in two Southern states. A common element in nine of the 

eleven southern states under SACS is that either the Texas Examinations of Educator 

Standards™ (TExES™) or Praxis™ teacher certification examination is used by the 

state certification boards (Educational Testing Service, 2009c; Texas Education Agency, 

2009). Therefore, to improve the validity of the instrument, items selected on the 

instrument were based on the competency areas as defined by the TExES™ and 

Praxis™ mathematics teacher certification examinations for middle and secondary 

school teachers.  

This study also concerns only itself with preservice middle and secondary school 

mathematics teachers in the nine Southern states that use TExES™ and Praxis™ 

mathematics teacher certification examinations. Logistical constraints require further 

delimitation of the sample pool to participants within the states of Texas and North 

Carolina. These states were chosen because they span the teacher certification exams 

under consideration and both states have an extended system of teacher education 

programs. 



 94

Assumptions 

This study assumed that all participants surveyed gave honest and thoughtful 

responses to all questions on the instrument. It was further assumed that all participants 

had a sufficient English language reading proficiency to fully comprehend the meaning 

of the questions. 
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APPENDIX A 

OBSERVING PRESERVICE TEACHERS’ CONTEXTUALIZED FUNCTION 
PROBLEM-SOLVING THROUGH TASK-BASED INTERVIEWS: INTERVIEW 

PROTOCOL 
 

By 
Irving A. Brown 

Texas A&M University 
Spring 2010 

 
 
Date: ___/___/2010  Time:___:___ am/pm  Interviewee # _______ 
 
    Audio cassette # _______ 
 
Introduction: 
Good (morning/afternoon/evening), my name is Irving Brown. I am a PhD candidate in 
Mathematics Education here at Texas A&M and this interview is part of a study that will 
be part of my dissertation research. Thank you for your participation. Before we begin, 
do you have any questions about the information sheet that you have been given 
concerning this study? Do you have any questions about your rights as a research 
participant? Our interview will be audio recorded and later transcribed for research 
purposes and I will also take notes during our interview. You will only be referred to in 
both my notes and the interview transcripts by a random “interviewee” number. 
 
First, let me share some information about this study with you. The purpose of this study 
is to learn more about how preservice teachers solve contextualized function problems. I 
will be asking you some questions from the “Contextual Function Survey” you 
completed earlier and also asking you to complete some related tasks. It is important to 
note that you may or may not know how to correctly solve the problems; the focus of our 
discussion is not on a “correct” answer but rather, I am interested in your thoughts and 
problem-solving approaches to the various problems.  
 
I am not interested in you giving me a single answer, but rather I am interested in finding 
out about your thinking. It won’t be helpful to me if you think silently and just give me 
an answer. It will be more helpful if you tell me what you are thinking. I will be asking 
for clarifications and explanations about what you have done or said. This doesn’t mean 
that you are right or wrong. I am just trying to make sure that I understand how you are 
thinking about the mathematics.  
 
To make sure you have the tools you may need to solve the problems, I have a 
calculator, paper, and a pencil available if you would like to use any of them. I also have 
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a laptop available with specialized graphing software installed for our use to enhance our 
mathematical discussions. Do you have any questions before we get started? 
Question 1: [This is primarily a “warm-up” problem to prepare the participant for the 
mathematical thinking to come in questions 2 – 5. The response to the question “what 
is a function?” should provide valuable insight to the participants’ basic 
understanding of the function concept.] 
 
Please refer to problem 2 on the Contextual Function Survey. To the best of your ability, 
please solve the problem and speak aloud your thoughts as you solve the problem. 
(Give the interviewee sufficient time to work the problem with only non-directive follow-
up questions. e.g., “Can you tell me more about that approach?”) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(If response is not spontaneous, give heuristic suggestion. e.g., “Can you solve the 
problem using the calculator or laptop?”) 
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Question 1: (problem 2 continued) 
(If interviewee is “stuck” or non-responsive, offer guided heuristic suggestion; e.g., 
“How does the given information relate to the terms in the formula? What does ‘directly’ 
proportional mean; what does ‘inversely’ proportional mean?”) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Does this problem represent a mathematical function? What is a mathematical function? 
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 Question 2: 
Please refer to problem 9 on the Contextual Function Survey. To the best of your ability, 
please solve the problem and speak aloud your thoughts as you solve the problem. 
(Give the interviewee sufficient time to work the problem with only non-directive follow-
up questions. e.g., “Can you tell me more about that approach?”) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(If response is not spontaneous, give heuristic suggestion. e.g., “Can you solve the 
problem using the calculator or laptop?”) 
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Question 2: (problem 9 continued) 
(If interviewee is “stuck” or non-responsive, offer guided heuristic suggestion; e.g., 
“What formula would you use to set this problem up? How does the given information 
relate to the terms in the formula?”) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Please explain how you approached this problem in your mind; which elements of the 
problem made it seem easy or difficult to you? How did you decide which elements of 
the problem statement to use and which to discard? 
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Question 3: 
Please refer to problem 10 on the Contextual Function Survey. To the best of your 
ability, please solve the problem and speak aloud your thoughts as you solve the 
problem. 
(Give the interviewee sufficient time to work the problem with only non-directive follow-
up questions. e.g., “Can you tell me more about that approach?”) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(If response is not spontaneous, give heuristic suggestion. e.g., “Can you solve the 
problem using the calculator or laptop?”) 
 
 
 
 
 
 



 114

Question 3: (problem 10 continued) 
(If interviewee is “stuck” or non-responsive, offer guided heuristic suggestion; e.g., 
“What significant differences do you see in the four graphs? How does the given 
information relate to the significant differences in the graph?”) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Please explain how you approached this problem in your mind; which elements of the 
problem made it seem easy or difficult to you? 
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Question 4: 
Please refer to problem 12 on the Contextual Function Survey. To the best of your 
ability, please solve the problem and speak aloud your thoughts as you solve the 
problem. 
(Give the interviewee sufficient time to work the problem with only non-directive follow-
up questions. e.g., “Can you tell me more about that approach?”) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(If response is not spontaneous, give heuristic suggestion. e.g., “Can you solve the 
problem using the calculator or laptop?”) 
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Question 4: (problem 12 continued) 
(If interviewee is “stuck” or non-responsive, offer guided heuristic suggestion; e.g., 
“Let’s use the specialized graphing software on the laptop to create a parabola. 
Generally speaking what should the parabola look like? Should it open up, down, to the 
left or to the right? Now, use the software tool to change the value of the vy coefficient. 
How does that software visualization help you?”) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Please explain how you approached this problem in your mind; which elements of the 
problem made it seem easy or difficult to you? 
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 Question 5: 
Please refer to problem 15 on the Contextual Function Survey. To the best of your 
ability, please solve the problem and speak aloud your thoughts as you solve the 
problem. 
(Give the interviewee sufficient time to work the problem with only non-directive follow-
up questions. e.g., “Can you tell me more about that approach?”) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(If response is not spontaneous, give heuristic suggestion. e.g., “Can you solve the 
problem using the calculator or laptop?”) 
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Question 5: (problem 15 continued) 
(If interviewee is “stuck” or non-responsive, offer guided heuristic suggestion; e.g., 
“What formula would you use to set this problem up? How does the given information 
relate to the terms in the formula?”) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Please explain how you approached this problem in your mind; which elements of the 
problem made it seem easy or difficult to you? How did you decide which elements of 
the problem statement to use and which to discard? 
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Question 6*: [*Only if time permits the use of this additional question] 
Please refer to problem 8 on the Contextual Function Survey. To the best of your ability, 
please solve the problem and speak aloud your thoughts as you solve the problem. 
(Give the interviewee sufficient time to work the problem with only non-directive follow-
up questions. e.g., “Can you tell me more about that approach?”) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(If response is not spontaneous, give heuristic suggestion. e.g., “Can you solve the 
problem using the calculator or laptop?”) 
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Question 6*: (problem 8 continued) 
(If interviewee is “stuck” or non-responsive, offer guided heuristic suggestion; e.g., 
“What formula would you use to set this problem up? How does the given information 
relate to the terms in the formula?”) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Please explain how you approached this problem in your mind; which elements of the 
problem made it seem easy or difficult to you? (If the interviewee solved the problem 
algebraically, ask them if they can solve it graphically, or visa-versa.) 
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This concludes our interview. Thank you very much for your time and attention in 
sharing your problem-solving approaches with me. Your responses will be of significant 
value to my dissertation research. 
 
Please remember that if you have any questions about this research in the future, please 
feel free to contact me using the email address or phone number on the information 
sheet. 
 
 
Thank you again. 
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Appendix B 
 

CONTEXTUAL FUNCTION INSTRUMENT (VER. 1.1) 
 

 
TExES (4 – 8): Domain II, Comp 005 & 007; Domain V, Comp 015 
Praxis (0069): Content Category I, Items 8 & 9; Category III, Items 4, 5 & 7 
 
After many years of hard work at Elberton National Bank, Vernon has finally worked 
himself into his dream job. As the newest Corporate Loan Manager, Vernon was faced 
with making a loan decision on his first corporate account. Business was booming at 
Nunnally’s Family Farming Implements so James and Ned decided to expand their 
“Garden Gopher” line of rakes, hoes, and mattocks which had been active since 1977. 
Since they were not ready to take on new partners for capitalization, they found 
themselves at Vernon’s desk in the corporate loan department of the bank hoping for a 
$75,000.00 loan at either 4 ¼ % for 36 months or at 5 ½ % for 24 months.  As part of the 
loan qualification process, Ned and James provided the following profit and sales data to 
show that the profit grew at a constant rate with sales: 
 
Profit -471.00 216.50 1,726.25 4,888.75 8,329.00 10,529.00 12,729.00
Units sold 500 750 1299 2449 3700 4500 5300
 
 
1) Before the first unit was sold, what was the cost (negative profit) of doing business? 
 

A. $471.00 
B. $1846.00 
C. $2750.00 
D. $75,000.00 
 

2) How much money more money is earned for each 1,000 unit increase in sales? 
A. $471.00 
B. $1846.00 
C. $2750.00 
D. $75,000.00 

 
 
TExES (4 – 8): Domain II, Comp 006 & 007; Domain V, Comp 015 & 016 
Praxis (0069): Content Category I, Items 9; Content Category III, Items 5, & 8 
 

Pricilla’s newly formed company, Aggie Pools, Inc., is in the business of 
installing round, in ground swimming pools.  She offers pools from the 
economy sized (20 feet in diameter) to the “Hummer” of backyard pools (80 
feet in diameter).  A common concern of her customers is the amount of water 
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lost each day due to evaporation.  To maintain a constant level in the 
swimming pool, each gallon of water lost to evaporation must be made up 
with fresh water from the city water department.  The local fresh water supply 
rate is $4.80 for the first 2000 gallons of water and $1.96 for each additional 
thousand gallons.  Armed with the knowledge that water evaporation is 
directly proportional to the surface area of the pool and that evaporation loss 
rates in her service area average about 1/120 gallons per hour per ft2 of pool 
surface area, she decides to create a formula that relates evaporation loss per 
day as a function of the radius of the pool. 
 
3) Which of the 4 choices below, best represents the function described 
above?  
 

A. Evap. Loss = $1.96 * x + $4.80 
B. Evap. Loss = 0.2 π r2 
C. Evap. Loss = (1/120)*( π r2) + $4.80 
D. Evap. Loss = (1/120)*( area) 

 
 
4) Of the four graphs below, which of the graphs best represents the “real 
world” use of the above function? 

 
 

A.  
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B. CORRECT ANSWER 

 
 

C.  

 
 

D.  



 125

 
 
 
 
 
TExES (4 – 8): Domain II, Comp 006; Domain V, Comp 015 & 016 
Praxis (0069): Content Category I, Items 9 & 10; Content Category III, Items 5 
 
It was Mr. I. Diot’s lifelong aspiration to one day become an award winner. What he 
didn’t realize was that his unique antics would one day win him the “Darwin Award” for 
his personal contribution to help cleanse the gene pool.  I. Diot came up with the brilliant 
plan to test his new bullet proof helmet by firing a gun straight up into the air, run inside 
the house to get the helmet, run back out to the exact spot below the falling bullet, and 
count up ten seconds before putting on the helmet. Mr. Tightpockets, the insurance 
claims adjuster handling the death benefit for Mrs. I. Diot, calculated the time for the 
bullet to travel into the sky and become the last thing on I. Diot’s mind by using the 
formula: y = y0 + vy0 * t + ½*ay * t2. Additional facts used to calculate the bullet’s travel 
time were as follows: it took I. Diot 40 seconds to run into the house to retrieve the 
helmet and run back to the exact test spot, the value of vy0 = 750 ft/sec, the value of ay = 
-32.2 ft/sec2, and he initially fired the gun from head level at y0 = 6 ft. 
 
5) What was the last number Mrs. I. Diot heard her husband say, before she whipped out 
the cell phone to call the insurance claims adjuster and the travel agent? 
 

A. “6” 
B. “7” 
C. “8” 
D. “9” 

 
6) Besides not trying such a reckless stunt in the first place, what else could I. Diot have 
done to improve his chance of survival? 
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A. Purchased a higher quality helmet 
B. Moved the spot for the stunt twice as far from the house 
C. Clean and test fire the gun before the stunt 
D. Held the gun 2 feet above his head before firing 

 
TExES (8 – 12): Domain II, Comp 008; Domain V, Comp 019  
Praxis (0061): Content Category: Functions, Items 1, & 4 
 
The question really boiled down to whether or not Bugs Meany was really at the coffee 
shop at midnight as he claimed, or was he across town committing the cat burglary of the 
century? His friends claim that his alibi is valid because he drank coffee with them until 
midnight, but other seemingly reliable witnesses told police that Buzz left the coffee 
shop about 8pm. At his wits end, the police chief calls in Encyclopedia Brown, the boy 
detective, to crack the case. Encyclopedia Brown’s first suggestion is to draw a sample 
of Bugs’ blood to determine the remaining level of caffeine, the psycho-active substance 
that gives coffee its “kick.” The lab determined that the blood sample drawn at 8:00am 
retained 33 mg of caffeine of the original 325 mg of caffeine consumed by Bugs in the 
two large espressos he drank the night before. Using the knowledge that caffeine leaves 
the average person (approx. 145 pounds) at a continuous rate of about 15% per hour, 
Encyclopedia Brown smiles and tells the chief to put the handcuffs on Bugs Meany and 
read him the Miranda warning. 
 
7) Based on the average person’s weight assumption, how much caffeine should have 
remained in Bugs’ blood? 
 

A. 97.89 
B. 84.25 
C. 72.52 
D. 62.42 

 
8) Bugs attempts to counter Encyclopedia Brown’s findings by pointing out that he is, at 
197 pounds, much larger than the average person and Encyclopedia Brown should have 
used the fact that caffeine leaves a person of his size at a continuous rate of 19%. Using 
this new information, about how many hours had passed since Bugs drank the two 
espressos to have retained the 33mg found in his blood at 8:00am? 
 

A. 8 hours 
B. 10 hours 
C. 12 hours 
D. 14 hours 
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TExES (4 – 8): Domain II, Comp 005; Domain V, Comp 015 
Praxis (0069): Content Category I, Item 8; Category III, Items 5, & 8 
 
Chasity and Denise, owners of “Pickett’s Custom Accoutrements” and makers of the 
finest handbags in the South, want to be able to predict the production cost of their most 
popular handbag “Gretha’s Grip”.  Business has been growing in the 18 months of 
handbag production, and their highest sales in a single month have been 147 handbags.  
After a careful analysis of the variable costs (costs based on the number of bags 
produced) and fixed costs (the cost of doing business before a single bag is produced), 
they are able to describe the relationship between the total monthly cost, C, (fixed cost + 
variable costs) and the number of bags produced in a month, n, as follows: 

C = $39.86 * n + $1608.00 
 
9) What is the monthly fixed cost associated with producing “Gretha’s Grip”? 

A. $1647.86 
B. $39.86 
C. $1608.00 
D. $1568.14 

 
10) What is the monthly variable cost associated with producing “Gretha’s Grip”? 

A. $1608.00*n/month 
B. $39.86*n/month 
C. $1608.00*n/bag 
D. $39.86*n/bag 

 
 
TExES (8 – 12): Domain II, Comp 005; Domain V, Comp 019  
Praxis (0061): Content Category: Functions, Items 5 
 
The goal of creating new and exciting machines has driven Valerie to excel in her 
studies since she was a little girl. Now, as a manufacturing engineer, she has created a 
most amazing pair of magical machines that contradict the law of conservation of mass. 
Her machines increase the mass of ice cream fed into them! The first machine, she calls 
the “Pi” machine, gives as an output 2.5 times the amount fed to it. For example, if she 
feeds 2 kilograms in, she will get 5 kilograms out; 4 kilograms in, gives 10 kilograms 
out. The second machine, Valerie refers to as the “Sigma” machine, gives an output 6.2 
kilograms more than the amount fed to it. For example, if she feeds 2 kilograms in, she 
will get 8.2 kilograms out; 4 kilograms in, gives 10.2 kilograms out. 
 
11) Assuming her machines work as described, how much ice cream should she feed 
into each machine to get an equal output from both machines? 
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A. 3.14 kilograms 
B. 4.13 kilograms 
C. 5.68 kilograms 
D. 8.65 kilograms 
 

12) The output of the “Pi” machine can be fed to the input of the “Sigma” machine to 
make a composite machine or the output from the “Sigma” machine can be fed to the 
input of the “Pi” machine for a different composite machine. It should be noted that one 
of the composite configurations is more productive than the other. If Valerie feeds 5 
kilograms of ice cream into the more productive of the two possible composite 
machines, how many kilograms will be produced? 
 

A. 8.7 kilograms 
B. 15.5 kilograms 
C. 18.7 kilograms 
D. 28.0 kilograms 

 
 
TExES (8 – 12): Domain II, Comp 009; Domain V, Comp 019  
Praxis (0061): Content Category: Trigonometry, Items 1, 3 & 4; Functions, Items 4 
 
Just looking at the sparkle in Trinard’s eyes is enough to know that the source of this 
beautiful light comes from daughters Kyndall and Kale. Today’s task is to use his new 
camera, that his wife Karen purchased for their eleventh wedding anniversary, to take 
the perfect photo of his little girls as they ride the “Twin Trig Twister” kiddy coaster at 
“Fun-Land” amusement park. For him the perfect photo opportunity will occur when 
both girls, on their separate coasters, will be at the same height.  
 
The height of coaster A (h1) is defined by the formula h1 = 2 * sin(2*x) and the height of 
coaster B (h2) is defined by the formula h2 = -1.5 * sin(x); where x is the linear distance 
traveled by the respective coaster. The figure below shows the graphical representation 
of the formulas for the two coasters. Both coasters start at the same x distance (zero feet) 
and height and end at the same height 360 feet away.  
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13) Approximately how many feet away from the start of the coaster ride should Trinard 
set up his camera for the first opportunity for the “perfect” shot? 

A. 108 feet 
B. 112 feet 
C. 128 feet 
D. 148 feet 

 
 
14) Approximately how many feet away from the end of the coaster ride can Trinard set 
up his camera for the last opportunity for the “perfect” shot? 

A.  108 feet 
B. 112 feet 
C. 128 feet 
D. 148 feet 

 
 
TExES (4 – 8): Domain II, Comp 006; Domain V, Comp 015 & 016   
Praxis (0069): Content Category I, Items 9, & 10 
 
An international spy, Agent 008, has just been rushed into the medical unit at 
headquarters. A full body radiographic scan has revealed that Agent 008 has been 
injected with a synthetic neurotoxin capsule that has modulating activity (toxicity) in the 
human body. The activity of natural neurotoxins tends to grow exponentially until they 
cause irreversible damage and become terminal for the patient. It was found that the 
activity for this particular synthetic neurotoxin is dependent on the time it has been in the 
human body by the following formula: Activity = t4 – 5t3 + 7t2 – 15t + 12. Assisted by a 
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particularly bright mathematics teacher, it was shown that the activity formula for this 
capsule could alternatively be expressed as: Activity = (t2 + 3) (t2 – 5t + 4), where t 
represents the time in days the patient has been exposed to the neurotoxin. It has also 
been determined that if the capsule remains in the 185 pound body of Agent 008 for 
more than 8 days, the activity will have risen to sufficient levels to become terminal. The 
medical team has decided to operate on Agent 008 to remove the capsule, but they can 
only remove the capsule when the activity of the neurotoxin capsule is at zero otherwise 
he will suffer irreversible medical damage. 
 
 15) How many opportunities will the medical team have to safely remove the capsule 
from Agent 008? 

A. 1 
B. 2 
C. 3 
D. 4 

 
16) Assuming it takes 36 hours to prep the equipment and staff for the safe removal of 
the capsule, on which day should the surgical staff perform the operation? 

A. Day 1 
B. Day 2 
C. Day 3 
D. Day 4 
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APPENDIX C 
 

SUBJECT MATTER EXPERT SOLICITATION 
 

 
Hello Dr. Xxxx, 
 
I hope that you have had both a productive and regenerative summer.  Last we spoke, back in 
early spring, I was preparing to send my “Contextual Function Survey” to you and several other 
faculty members in Texas and North Carolina for expert feedback. My sending the survey was 
delayed while we planned and implemented a modified course of action for my research project. 
My committee thought it prudent that I include a qualitative study with preservice mathematics 
teachers to strengthen the overall findings in my dissertation research. Now that this qualitative 
study is complete, I am ready to proceed with the validation study of the instrument. 
 
I thank you again for agreeing to be a subject matter expert (SME) in my study. I have attached a 
copy of the instrument for your examination along with the answer key, and detailed answers for 
select problems. The purpose of the detailed answers is to give you further insight into my 
rationale for creating the problems. If you would, please provide any feedback you feel will aid 
in the refinement of this instrument such as content, language and wording. The primary focus of 
the SME feedback is to establish content validity. To further this goal, I have also included a 
(short) relevant “item creation” excerpt from my proposal. I have also attached a copy of the IRB 
exemption for this project. 
 
Please respond on the “Subject Matter Expert – Response Sheet”, save it as a Word document 
and return it to me as an email attachment. I understand how busy the beginning of the semester 
can be, so I can’t set a “deadline” for your response. If you could return your response within the 
next two weeks, that would be extremely helpful in allowing me time to revise and send the 
survey out for testing early in the semester. 
 
Thank you for your time and consideration, 
 
Irving 
 
Irving A. Brown 
PhD Candidate 
Mathematics Education 
Teaching, Learning, and Culture 
Texas A&M University  
Office:  Harrington Tower 205  
Phone:  (512) 694-4762 Wireless 
Phone:  (979) 845-0561 Office 
Email:  iab4phd@tamu.edu  
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APPENDIX D 
 

CONTEXTUAL FUNCTION SURVEY 
SUBJECT MATTER EXPERT – RESPONSE SHEET 

 
 

Name:   
Date:   
University Affiliation:   
 
Please indicate your approval or suggestions for Content and Wording/Language for 
each item on the survey. 
                         
 
Item 1  
Content: 
 
 
Wording/Language: 
 
 
 
--------------------------------------------------------------------------------------------------------- 
Item 2 
Content: 
 
 
Wording/Language:  
 
 
 
--------------------------------------------------------------------------------------------------------- 
Item 3  
Content: 
 
 
Wording/Language: 
 
 
 
--------------------------------------------------------------------------------------------------------- 
Item 4  
Content: 
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Wording/Language: 
 
 
 
--------------------------------------------------------------------------------------------------------- 
Item 5 
Content: 
 
 
Wording/Language:  
 
 
 
--------------------------------------------------------------------------------------------------------- 
Item 6  
Content: 
 
 
Wording/Language: 
 
 
 
--------------------------------------------------------------------------------------------------------- 
Item 7  
Content: 
 
 
Wording/Language: 
 
 
 
--------------------------------------------------------------------------------------------------------- 
Item 8 
Content: 
 
 
Wording/Language:  
 
 
 
--------------------------------------------------------------------------------------------------------- 
Item 9  
Content: 
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Wording/Language: 
 
 
 
--------------------------------------------------------------------------------------------------------- 
Item 10  
Content: 
 
 
Wording/Language: 
 
 
 
--------------------------------------------------------------------------------------------------------- 
Item 11 
Content: 
 
 
Wording/Language:  
 
 
 
--------------------------------------------------------------------------------------------------------- 
Item 12  
Content: 
 
 
Wording/Language: 
 
 
 
--------------------------------------------------------------------------------------------------------- 
Item 13  
Content: 
 
 
Wording/Language: 
 
 
 
--------------------------------------------------------------------------------------------------------- 
Item 14 
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Content: 
 
 
Wording/Language:  
 
 
 
--------------------------------------------------------------------------------------------------------- 
Item 15  
Content: 
 
 
Wording/Language: 
 
 
 
--------------------------------------------------------------------------------------------------------- 
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APPENDIX E 
 

DESCRIPTIVE STATISTICS 
 
 
Descriptive Statistics for Score by Sex 
 

Sex = Female Statistic Standard Error 
Mean 44.1441 1.31681 
95% Confidence Interval   Lower 41.5418  
For Mean                           Upper 46.7465  
Median 40.0000  
Variance 256.632  
Standard Deviation 16.0197  
Range 73.33  
 

Sex = Male Statistic Standard Error 
Mean 49.2063 2.79143 
95% Confidence Interval   Lower 43.5689  
For Mean                           Upper 54.8438  
Median 40.0000  
Variance 327.268  
Standard Deviation 18.0905  
Range 66.67  

 
 
Descriptive Statistics for Score by Class 
 

Class = Sophomore Statistic Standard Error 
Mean 40.8333 2.78923 
95% Confidence Interval   Lower 35.0634  
For Mean                           Upper 46.6033  
Median 40.0000  
Variance 186.715  
Standard Deviation 13.66437  
Range 53.33  

 
Class = Junior Statistic Standard Error 

Mean 45.1282 1.94348 
95% Confidence Interval   Lower 41.2457  
For Mean                           Upper 49.0108  
Median 40.0000  
Variance 245.513  
Standard Deviation 15.66885  
Range 73.33  
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APPENDIX F 
 

CONTEXTUAL FUNCTION INSTRUMENT (VER. 4.1) 
 

 
INFORMATION SHEET 

Pre-Service Teachers' Function Knowledge 
Introduction 
The purpose of this form is to provide you (as a prospective research study participant) 
information that may affect your decision as to whether or not to participate in this research. 
 
You have been asked to participate in a research study to better understand preservice 
mathematics teachers’ understanding of the function concept.  The purpose of this study is to 
develop a survey instrument to examine preservice teachers’ knowledge of the function concept.  
You were selected to be a possible participant because have been identified as a middle or 
secondary school preservice mathematics teacher. 
.   
What will I be asked to do? 
If you agree to participate in this study, you will be asked to spend about 50 minutes to complete a 
15 question survey to demonstrate your content knowledge of the function concept in a contextual 
problem-solving enviornment. You will be asked to respond to mathematics questions and 
problems. You will only be asked to complete the survey one time. 
 
What are the risks involved in this study? 
The risks associated with this study are minimal, and are not greater than risks ordinarily 
encountered in daily life. 
 
What are the possible benefits of this study? 
You will receive no direct benefit from participating in this study; however, Results from this study, 
including the newly developed instrument, may possibly help mathematics teacher educators 
better assess preservice mathematics teachers’ content knowledge of the function concept. 
 
Do I have to participate? 
No.  Your participation is voluntary.  You may decide not to participate or to withdraw at any time 
without your current or future relations with Texas A&M University, any universities within the state 
of Texas, or university within the University of North Carolina system being affected.   
 
Who will know about my participation in this research study? 
This study is anonymous and the attached survey sheet will not ask for your name or any other 
identifiers.   
No individual survey results will be used in the study; only grouped data will be included in any 
sort of report that might be published 
 
Whom do I contact with questions about the research?  
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If you have questions regarding this study, you may contact Irving A. Brown, (512) 694-4762, 
iabrown@tamu.edu. or Dr. Gerald Kulm, (979) 862-4407, gkulm@tamu.edu. 
 
 
 
Whom do I contact about my rights as a research participant?   
This research study has been reviewed by the Human Subjects’ Protection Program and/or the 
Institutional Review Board at Texas A&M University.  For research-related problems or questions 
regarding your rights as a research participant, you can contact these offices at (979)458-4067 or 
irb@tamu.edu. 
 
Participation 
Please be sure you have read the above information, asked questions and received answers to 
your satisfaction.  If you would like to be in the study, please follow the directions on the attached 
survey. 
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Contextual Function Instrument 
 
 

Demographic Information 
 
 

1) Sex: ____ Female  ____ Male 
 
2) Academic Classification: 
 ____ Sophomore ____ Junior ____ Senior ____ Post Bac 
 
3) Mathematics Teacher Certification Level: 
   ____ Middle School  ____ High School 
 
4) Undergraduate Major: 
  
 _______________________________________________ 

 
 

 
Instructions 

 
• Relax; this is not a test but simply a study. 
• Circle your answer choices. 
• Only spend about an hour on the questions. 
• Please feel free to use calculator or graphing calculator. 
• Please do not use friends, computers, or the internet. 
• You can detach and keep the first page (Information Sheet) 
• Relax and enjoy a little low stress problem-solving. 

 
 
 
Thank you for your participation! 
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Contextual Function Instrument 
 
1) Linear velocity (v) can be expressed as a function of time (t) by several different 
formulas. If time, and therefore velocity, are allowed to vary while holding the initial 
velocity (v0) and acceleration (a) constant, the function takes the form v(t) = v0 + a•t. 
 
Given v(t) = v0 + a•t ; where v(2) = 0, v0 = 60; find a. 
 

A. -20  
B. -30 
C. -40 
D. -50 

 
2) Management at Elberton National Bank has been informed by the lead bookkeeper, 
Vernon, that the number N of Certificates of Deposit (CD) sold each month appears to 
be inversely proportional to the quantity (P + 22.5) where P is the price of one certificate 
in dollars. 
 
If k is the constant of proportionality, how would Vernon express N as a function of P? 
 

A. N(P) = k + (P + 22.5)  
B. N(P) = k • (P + 22.5) 
C. N(P) = k / (P + 22.5) 
D. N(P) = k - (P + 22.5) 

 
3) The vertical distance y, (in feet above the ground), a ball travels after being thrown 
directly upward from an initial height of y0 (feet) with an initial velocity vy (in feet/sec) 
can be expressed as a function of time (t) in the following formula:  
y(t) = y0 + vy • t + ½ • ay • t2, where ay is the acceleration due to gravity in ft/sec2. Given 
the value of vy = 60 ft/sec, the value of ay = -32.2 ft/sec2, and the ball was initially 
thrown from a platform at y0 = 20 feet above the ground, calculate the time (in seconds) 
the ball travels before striking ground. 
 

A. (-0.308 & 4.03)  
B. (4.03 & -0.308) 
C. 3.3 seconds 
D. 4 seconds 

 
4) Given the function P(t) = P0 • e rt; find P(11) if P0 = 100 and r =1.05. 
 

A. 10,377,703.68  
B.      103,777.04 
C.   5,987,414.17 
D. 10,677,703.68 
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5) Given f(x) = x2 - x - 6, find the x-intercepts. 
 

A. x = 6 & x = 7 
B. x = -3 & x = 2 
C. x = -2 & x = 3 
D. x = -6 & x = 0 

 
6) Given the function f(t) = t4 - 169, how many real roots and how many imaginary roots 
does the equation have? 
 

A. 4 real roots & 0 imaginary roots 
B. 3 real roots & 1 imaginary roots 
C. 2 real roots & 2 imaginary roots 
D. 0 real roots & 4 imaginary roots 

 
 

Starting to Stop 
 
Valerie wanted to know more about the braking potential of her new pickup truck.  She 
found that from an initial velocity (v0) of 60 miles/hr, she was able to bring her truck to a 
safe stop in a time of exactly 9 seconds. The velocity function, v(t), can take the form:  
v(t) = a•t + v0. Assume a constant rate of deceleration, a. 
 
7) Which equation below best represents her truck’s velocity as a function of time? 
 

E. v(t) = 6.6667 miles/hr2 • time - 60 miles/hr 
F. v(t) = -6.6667 miles/hr2 • time + 60 miles/hr 
G. v(t) = 6.6667 miles/hr/seconds • time - 60 miles/hr 
H. v(t) = -6.6667 miles/hr/seconds • time + 60 miles/hr 
 

8) If Valerie starts at 30 miles/hr and she is able to double the rate of deceleration, how 
long will it take the truck to stop? 
 

A. 1.125 seconds 
B. 2.250 seconds 
C. 3.750 seconds 
D. 4.500 seconds 
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Evaporation Exasperation 
 

Priscilla’s newly formed company, Aggie Pools, Inc., is in the business of 
installing circular, in-ground swimming pools.  She offers pools from the 
economy sized (20 feet in diameter) to the “Hummer” of backyard pools (80 
feet in diameter).  A common concern of her customers is the amount of water 
lost each day due to evaporation.  To maintain a constant water level in the 
swimming pool, each gallon of water lost to evaporation must be made up 
with fresh water from the city water department.  The local fresh water supply 
rate is $4.80 for the first 2000 gallons of water and $1.96 for each additional 
thousand gallons.  Armed with the knowledge that water evaporation is 
directly proportional to the surface area of the pool and that evaporation loss 
rates in her service area average about 1/120 gallons per hour per ft2 of pool 
surface area, she decides to create a formula that relates evaporation loss (L) 
in gallons per day as a function of the radius of the pool. 
 
9) Which of the 4 choices below, best represents the function described above 
(where r is the radius (in feet) of the pool)?  
        

E. L(r) = $1.96 • r + $4.80 
F. L(r) = 0.2 π r2 
G. L(r) = (1/120)( π r2) + $4.80 
H. L(r) = (1/120)( π r2) 

 
10) Of the four graphs that follow, choose the one that best corresponds to the 
swimming-pool context of this function? 
E.  

 
 
 

F.  
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G.  
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H.  

 
 
 

Bungee Fun 
 
Chasity, in her new job as safety engineer for an amusement park, is analyzing data for a 
new bungee jump attraction in the water park area. The special feature of this bungee 
attraction is that the bungee ride is customized for each individual such that the rider 
barely touches the surface of the pool at the lowest point in the first fall from the 
platform. While analyzing the height vs. time (t) data for a jumper tethered to a bungee 
cord over the pool (for a single fall and rebound cycle), she notices that the function fits 
the form, height(t) = cbtat ++2 , where height is the height (in feet) above the surface 
of the pool and time is measured in seconds. She plots the data and observes the 
following graph. 
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11) Based on the information above, what can Chasity deduce about the coefficients of 
the function? 
 
A) acb 42 − > 0 
B) acb 42 − < 0 
C) acb 42 − = 0  
D) 222 bac +=  
 
 
 
For the next question, please consider how changes in the coefficients ay, vy, and y0 
affect the shape of the curve defined by the following function: 
 

y(t) = y0 + vy • t + ½•ay• t2 
 
 
12) If the coefficients ‘ay’ and ‘y0’ are constants, what effect does changing the ‘vy’ 
coefficient have on the graph of the function? 
 

A. The vertex of the parabola shifts horizontally to the left or right. 
B. The parabola opens wider or closes to become narrower. 
C. The vertex of the parabola shifts vertically up or down. 
D. The vertex of the parabola moves in a parabolic arc. 

 

 
Encyclopedia Brown and the Coffee House Caper 

 
The question really boiled down to whether or not Bugs Meany was really at the coffee 
shop at midnight as he claimed, or was he across town committing the burglary of the 
century? His friends claim that his alibi is valid because he drank coffee with them until 
midnight, but other seemingly reliable witnesses told police that Bugs left the coffee 
shop about 8pm. At his wit’s end, the police chief calls in Encyclopedia Brown, the boy 
detective, to crack the case. Encyclopedia Brown’s first suggestion is to draw a sample 
of Bugs’ blood to determine the remaining level of caffeine, the psycho-active substance 
that gives coffee its “kick.” The lab determined that the blood sample drawn at 8:00am 
retained 33 mg of caffeine of the original 325 mg of caffeine consumed by Bugs in the 
two large espressos he drank the night before. Using the knowledge that caffeine leaves 
the average person (approx. 145 pounds) at a continuous rate of about 15% per hour, 
Encyclopedia Brown smiles and tells the chief to put the handcuffs on Bugs Meany and 
read him the Miranda warning. 
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13) Based on the “average person’s weight” assumption, how much caffeine should have 
remained in Bugs’ blood if he indeed drank coffee until midnight? 
 

E. 97.89 mg 
F. 84.25 mg 
G. 72.52 mg 
H. 62.42 mg 

 
14) Bugs attempts to counter Encyclopedia Brown’s findings by pointing out that he is, 
at 197 pounds, much larger than the average person and Encyclopedia Brown should 
have used the fact that caffeine leaves a person of his size at a continuous rate of 19% 
per hour. Using this new information, about how many hours had passed since Bugs 
drank the two espressos to have retained the 33mg of caffeine found in his blood at 
8:00am? 
 

E. 8 hours 
F. 10 hours 
G. 12 hours 
H. 14 hours 

 
 

The Peril of Agent 008 
 
An international spy, Agent 008, has just been rushed into the medical unit at 
headquarters. A full body radiographic scan has revealed that Agent 008 has been 
injected with a synthetic neurotoxin capsule that has modulating activity (toxicity) in the 
human body. It was found that the activity for this particular synthetic neurotoxin is 
dependent on the length of time it has been in the human body by the following function: 
Activity(t) = (t2 + 3) (t2 – 5t + 4), where t represents the time in days the patient has been 
exposed to the neurotoxin. It has also been determined that if the capsule remains in 
Agent 008 for more than 7 days, the activity will have risen to sufficient levels to 
become terminal. The medical team has decided to operate on Agent 008 to remove the 
capsule, but they can only remove the capsule when the activity of the neurotoxin 
capsule is at zero otherwise he will suffer irreversible medical damage. 
 
15) Assuming it takes 36 hours to prep the equipment and staff for the safe removal of 
the capsule, on which day should the surgical staff perform the operation? 

E. Day 1 
F. Day 2 
G. Day 3 
H. Day 4 
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APPENDIX G 
 

CONFIRMATORY FACTOR ANALYSIS FOR FACTORS DEFINED  
BY LEVEL OF MATHEMATICAL DEMAND 

 
 
 
Mplus VERSION 6.1 
MUTHEN & MUTHEN 
01/06/2011   2:18 PM 
 
INPUT INSTRUCTIONS 
 
  TITLE:      this is a CFA with all of the 
              actual categorical data 
              factor loadings are fixed at one 
              factors are defined by levels of demand 
  DATA:       FILE IS CFI_Data.dat; 
  VARIABLE:   NAMES ARE p1-p15; 
              CATEGORICAL ARE p1-p15; 
  MODEL:      F1 BY p1-P4; 
              F2 BY p5 p6 p8 p10 p13; 
              F3 BY p7 p9 p11 p12 p14 p15; 
 
 
 
INPUT READING TERMINATED NORMALLY 
 
 
 
this is a CFA with all of the 
actual categorical data 
factor loadings are fixed at one 
factors are defined by levels of demand 
 
SUMMARY OF ANALYSIS 
 
Number of groups                                                 1 
Number of observations                                         191 
 
Number of dependent variables                                   15 
Number of independent variables                                  0 
Number of continuous latent variables                            3 
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Observed dependent variables 
 
  Binary and ordered categorical (ordinal) 
   P1          P2          P3          P4          P5          P6 
   P7          P8          P9          P10         P11         P12 
   P13         P14         P15 
 
Continuous latent variables 
   F1          F2          F3 
 
 
Estimator                                                    WLSMV 
Maximum number of iterations                                  1000 
Convergence criterion                                    0.500D-04 
Maximum number of steepest descent iterations                   20 
Parameterization                                             DELTA 
 
Input data file(s) 
  CFI_Data.dat 
 
Input data format  FREE 
 
 
 
 
 
 
UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES 
 
    P1 
      Category 1    0.094       18.000 
      Category 2    0.906      173.000 
    P2 
      Category 1    0.424       81.000 
      Category 2    0.576      110.000 
    P3 
      Category 1    0.623      119.000 
      Category 2    0.377       72.000 
    P4 
      Category 1    0.220       42.000 
      Category 2    0.780      149.000 
    P5 
      Category 1    0.199       38.000 
      Category 2    0.801      153.000 
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    P6 
      Category 1    0.466       89.000 
      Category 2    0.534      102.000 
    P7 
      Category 1    0.639      122.000 
      Category 2    0.361       69.000 
    P8 
      Category 1    0.524      100.000 
      Category 2    0.476       91.000 
    P9 
      Category 1    0.796      152.000 
      Category 2    0.204       39.000 
    P10 
      Category 1    0.440       84.000 
      Category 2    0.560      107.000 
    P11 
      Category 1    0.681      130.000 
      Category 2    0.319       61.000 
    P12 
      Category 1    0.806      154.000 
      Category 2    0.194       37.000 
    P13 
      Category 1    0.832      159.000 
      Category 2    0.168       32.000 
    P14 
      Category 1    0.775      148.000 
      Category 2    0.225       43.000 
    P15 
      Category 1    0.681      130.000 
      Category 2    0.319       61.000 
 
 
 
THE MODEL ESTIMATION TERMINATED NORMALLY 
 
     WARNING:  THE LATENT VARIABLE COVARIANCE MATRIX (PSI) IS NOT 
POSITIVE 
     DEFINITE.  THIS COULD INDICATE A NEGATIVE VARIANCE/RESIDUAL 
VARIANCE FOR A 
     LATENT VARIABLE, A CORRELATION GREATER OR EQUAL TO ONE 
BETWEEN TWO LATENT 
     VARIABLES, OR A LINEAR DEPENDENCY AMONG MORE THAN TWO 
LATENT VARIABLES. 
     CHECK THE TECH4 OUTPUT FOR MORE INFORMATION. 
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     PROBLEM INVOLVING VARIABLE F2. 
 
 
 
 
MODEL FIT INFORMATION 
 
Number of Free Parameters                       33 
 
Chi-Square Test of Model Fit 
 
          Value                            123.381* 
          Degrees of Freedom                    87 
          P-Value                           0.0063 
 
*   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV 
cannot be used 
    for chi-square difference testing in the regular way.  MLM, MLR and WLSM 
    chi-square difference testing is described on the Mplus website.  MLMV, WLSMV, 
    and ULSMV difference testing is done using the DIFFTEST option. 
 
RMSEA (Root Mean Square Error Of Approximation) 
 
          Estimate                           0.047 
          90 Percent C.I.                    0.026  0.065 
          Probability RMSEA <= .05           0.594 
 
CFI/TLI 
 
          CFI                                0.814 
          TLI                                0.775 
 
Chi-Square Test of Model Fit for the Baseline Model 
 
          Value                            300.466 
          Degrees of Freedom                   105 
          P-Value                           0.0000 
 
WRMR (Weighted Root Mean Square Residual) 
 
          Value                              0.964 
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MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 F1       BY 
    P1                 1.000      0.000    999.000    999.000 
    P2                 0.880      0.313      2.806      0.005 
    P3                 1.449      0.478      3.035      0.002 
    P4                 1.668      0.496      3.359      0.001 
 
 F2       BY 
    P5                 1.000      0.000    999.000    999.000 
    P6                 0.830      0.190      4.363      0.000 
    P8                 0.512      0.191      2.675      0.007 
    P10                0.615      0.183      3.356      0.001 
    P13               -0.274      0.212     -1.292      0.196 
 
 F3       BY 
    P7                 1.000      0.000    999.000    999.000 
    P9                 0.353      0.432      0.818      0.413 
    P11                0.295      0.348      0.847      0.397 
    P12                0.997      0.502      1.987      0.047 
    P14               -0.108      0.375     -0.287      0.774 
    P15                2.150      0.816      2.634      0.008 
 
 F2       WITH 
    F1                 0.311      0.106      2.934      0.003 
 
 F3       WITH 
    F1                 0.138      0.067      2.066      0.039 
    F2                 0.165      0.066      2.489      0.013 
 
 Thresholds 
    P1$1              -1.315      0.126    -10.452      0.000 
    P2$1              -0.191      0.091     -2.097      0.036 
    P3$1               0.313      0.092      3.395      0.001 
    P4$1              -0.773      0.101     -7.631      0.000 
    P5$1              -0.845      0.104     -8.167      0.000 
    P6$1              -0.085      0.091     -0.941      0.347 
    P7$1               0.355      0.093      3.827      0.000 
    P8$1               0.059      0.091      0.651      0.515 
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    P9$1               0.827      0.103      8.034      0.000 
    P10$1             -0.152      0.091     -1.664      0.096 
    P11$1              0.469      0.094      4.972      0.000 
    P12$1              0.864      0.104      8.299      0.000 
    P13$1              0.964      0.108      8.943      0.000 
    P14$1              0.755      0.101      7.495      0.000 
    P15$1              0.469      0.094      4.972      0.000 
 
 Variances 
    F1                 0.190      0.112      1.698      0.089 
    F2                 0.361      0.141      2.563      0.010 
    F3                 0.142      0.089      1.608      0.108 
 
 
R-SQUARE 
 
    Observed                   Residual 
    Variable        Estimate   Variance 
 
    P1                 0.190      0.810 
    P2                 0.147      0.853 
    P3                 0.400      0.600 
    P4                 0.530      0.470 
    P5                 0.361      0.639 
    P6                 0.248      0.752 
    P7                 0.142      0.858 
    P8                 0.095      0.905 
    P9                 0.018      0.982 
    P10                0.137      0.863 
    P11                0.012      0.988 
    P12                0.142      0.858 
    P13                0.027      0.973 
    P14                0.002      0.998 
    P15                0.658      0.342 
 
QUALITY OF NUMERICAL RESULTS 
 
     Condition Number for the Information Matrix              0.829E-03 
       (ratio of smallest to largest eigenvalue) 
 
     Beginning Time:  14:18:19 
        Ending Time:  14:18:20 
       Elapsed Time:  00:00:01 
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APPENDIX H 
 

CONFIRMATORY FACTOR ANALYSIS FOR FACTORS DEFINED 
BY MATHEMATICAL TOPIC 

 
 
 
Mplus VERSION 6.1 
MUTHEN & MUTHEN 
03/12/2011   6:44 PM 
 
INPUT INSTRUCTIONS 
 
  TITLE:      this is a CFA with all of the 
              actual categorical data 
              factor loadings are fixed at one 
              factors are defined by mathematical topic 
  DATA:       FILE IS CFI_Data.dat; 
  VARIABLE:   NAMES ARE p1-p15; 
              CATEGORICAL ARE p1-p15; 
  MODEL:      F1 BY p1 p2 p7 P8; 
              F2 BY p3 p5 p6 p9 p10 p11 p12 p15; 
              F3 BY p4 p13 p14; 
 
 
 
INPUT READING TERMINATED NORMALLY 
 
 
 
this is a CFA with all of the 
actual categorical data 
factor loadings are fixed at one 
factors are defined by mathematical topic 
 
SUMMARY OF ANALYSIS 
 
Number of groups                                                 1 
Number of observations                                         191 
 
Number of dependent variables                                   15 
Number of independent variables                                  0 
Number of continuous latent variables                            3 
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Observed dependent variables 
 
  Binary and ordered categorical (ordinal) 
   P1          P2          P3          P4          P5          P6 
   P7          P8          P9          P10         P11         P12 
   P13         P14         P15 
 
Continuous latent variables 
   F1          F2          F3 
 
 
Estimator                                                    WLSMV 
Maximum number of iterations                                  1000 
Convergence criterion                                    0.500D-04 
Maximum number of steepest descent iterations                   20 
Parameterization                                             DELTA 
 
Input data file(s) 
  CFI_Data.dat 
 
Input data format  FREE 
 
 
UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES 
 
    P1 
      Category 1    0.094       18.000 
      Category 2    0.906      173.000 
    P2 
      Category 1    0.424       81.000 
      Category 2    0.576      110.000 
    P3 
      Category 1    0.623      119.000 
      Category 2    0.377       72.000 
    P4 
      Category 1    0.220       42.000 
      Category 2    0.780      149.000 
    P5 
      Category 1    0.199       38.000 
      Category 2    0.801      153.000 
    P6 
      Category 1    0.466       89.000 
      Category 2    0.534      102.000 
    P7 
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      Category 1    0.639      122.000 
      Category 2    0.361       69.000 
    P8 
      Category 1    0.524      100.000 
      Category 2    0.476       91.000 
    P9 
      Category 1    0.796      152.000 
      Category 2    0.204       39.000 
    P10 
      Category 1    0.440       84.000 
      Category 2    0.560      107.000 
    P11 
      Category 1    0.681      130.000 
      Category 2    0.319       61.000 
    P12 
      Category 1    0.806      154.000 
      Category 2    0.194       37.000 
    P13 
      Category 1    0.832      159.000 
      Category 2    0.168       32.000 
    P14 
      Category 1    0.775      148.000 
      Category 2    0.225       43.000 
    P15 
      Category 1    0.681      130.000 
      Category 2    0.319       61.000 
 
 
 
THE MODEL ESTIMATION TERMINATED NORMALLY 
 
     WARNING:  THE RESIDUAL COVARIANCE MATRIX (THETA) IS NOT 
POSITIVE DEFINITE. 
     THIS COULD INDICATE A NEGATIVE VARIANCE/RESIDUAL VARIANCE 
FOR AN OBSERVED 
     VARIABLE, A CORRELATION GREATER OR EQUAL TO ONE BETWEEN 
TWO OBSERVED 
     VARIABLES, OR A LINEAR DEPENDENCY AMONG MORE THAN TWO 
OBSERVED VARIABLES. 
     CHECK THE RESULTS SECTION FOR MORE INFORMATION. 
     PROBLEM INVOLVING VARIABLE P4. 
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MODEL FIT INFORMATION 
 
Number of Free Parameters                       33 
 
Chi-Square Test of Model Fit 
 
          Value                            124.762* 
          Degrees of Freedom                    87 
          P-Value                           0.0050 
 
*   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV 
cannot be used 
    for chi-square difference testing in the regular way.  MLM, MLR and WLSM 
    chi-square difference testing is described on the Mplus website.  MLMV, WLSMV, 
    and ULSMV difference testing is done using the DIFFTEST option. 
 
RMSEA (Root Mean Square Error Of Approximation) 
 
          Estimate                           0.048 
          90 Percent C.I.                    0.027  0.066 
          Probability RMSEA <= .05           0.564 
 
CFI/TLI 
 
          CFI                                0.807 
          TLI                                0.767 
 
Chi-Square Test of Model Fit for the Baseline Model 
 
          Value                            300.466 
          Degrees of Freedom                   105 
          P-Value                           0.0000 
 
WRMR (Weighted Root Mean Square Residual) 
 
          Value                              0.966 
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MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 F1       BY 
    P1                 1.000      0.000    999.000    999.000 
    P2                 0.856      0.310      2.765      0.006 
    P7                 0.698      0.274      2.545      0.011 
    P8                 0.695      0.290      2.396      0.017 
 
 F2       BY 
    P3                 1.000      0.000    999.000    999.000 
    P5                 0.946      0.210      4.512      0.000 
    P6                 0.786      0.165      4.765      0.000 
    P9                 0.135      0.209      0.646      0.519 
    P10                0.569      0.156      3.649      0.000 
    P11                0.111      0.175      0.635      0.525 
    P12                0.477      0.213      2.235      0.025 
    P15                0.971      0.185      5.259      0.000 
 
 F3       BY 
    P4                 1.000      0.000    999.000    999.000 
    P13               -0.176      0.179     -0.980      0.327 
    P14               -0.087      0.128     -0.685      0.494 
 
 F2       WITH 
    F1                 0.295      0.093      3.167      0.002 
 
 F3       WITH 
    F1                 0.336      0.124      2.707      0.007 
    F2                 0.505      0.089      5.664      0.000 
 
 Thresholds 
    P1$1              -1.315      0.126    -10.452      0.000 
    P2$1              -0.191      0.091     -2.097      0.036 
    P3$1               0.313      0.092      3.395      0.001 
    P4$1              -0.773      0.101     -7.631      0.000 
    P5$1              -0.845      0.104     -8.167      0.000 
    P6$1              -0.085      0.091     -0.941      0.347 
    P7$1               0.355      0.093      3.827      0.000 
    P8$1               0.059      0.091      0.651      0.515 
    P9$1               0.827      0.103      8.034      0.000 
    P10$1             -0.152      0.091     -1.664      0.096 
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    P11$1              0.469      0.094      4.972      0.000 
    P12$1              0.864      0.104      8.299      0.000 
    P13$1              0.964      0.108      8.943      0.000 
    P14$1              0.755      0.101      7.495      0.000 
    P15$1              0.469      0.094      4.972      0.000 
 
 Variances 
    F1                 0.280      0.163      1.716      0.086 
    F2                 0.450      0.115      3.898      0.000 
    F3                 1.642      1.528      1.074      0.283 
 
 
R-SQUARE 
 
    Observed                   Residual 
    Variable        Estimate   Variance 
 
    P1                 0.280      0.720 
    P2                 0.205      0.795 
    P3                 0.450      0.550 
    P4              Undefined    -0.642   0.16415E+01 
    P5                 0.403      0.597 
    P6                 0.278      0.722 
    P7                 0.136      0.864 
    P8                 0.135      0.865 
    P9                 0.008      0.992 
    P10                0.145      0.855 
    P11                0.006      0.994 
    P12                0.102      0.898 
    P13                0.051      0.949 
    P14                0.013      0.987 
    P15                0.424      0.576 
 
 
QUALITY OF NUMERICAL RESULTS 
 
     Condition Number for the Information Matrix              0.907E-03 
       (ratio of smallest to largest eigenvalue) 
 
 
     Beginning Time:  18:44:04 
        Ending Time:  18:44:05 
       Elapsed Time:  00:00:01 
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APPENDIX I 
 

CONFIRMATORY FACTOR ANALYSIS FOR FACTORS DEFINED 
BY LEVEL OF MATHEMATICAL DEMAND 

WITH P4, P13, & P14 REMOVED FROM DATA SET 
 
 
 

Mplus VERSION 6.1 
MUTHEN & MUTHEN 
03/13/2011  10:41 AM 
 
INPUT INSTRUCTIONS 
 
  TITLE:      this is a CFA with all of the 
              actual categorical data 
              factor loadings are fixed at one 
              factors are defined by levels of demand 
  DATA:       FILE IS CFI_Data2.dat; 
  VARIABLE:   NAMES ARE p1-p3 p5-p12 p15; 
              CATEGORICAL ARE p1-p3 p5-p12 p15; 
  MODEL:      F1 BY p1-P3; 
              F2 BY p5 p6 p8 p10; 
              F3 BY p7 p9 p11 p12 p15; 
  OUTPUT:     SAMPSTAT Standardized; 
 
 
 
INPUT READING TERMINATED NORMALLY 
 
 
 
this is a CFA with all of the 
actual categorical data 
factor loadings are fixed at one 
factors are defined by levels of demand 
 
SUMMARY OF ANALYSIS 
 
Number of groups                                                 1 
Number of observations                                         191 
 
Number of dependent variables                                   12 
Number of independent variables                                  0 
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Number of continuous latent variables                            3 
 
Observed dependent variables 
 
  Binary and ordered categorical (ordinal) 
   P1          P2          P3          P5          P6          P7 
   P8          P9          P10         P11         P12         P15 
 
Continuous latent variables 
   F1          F2          F3 
 
 
Estimator                                                    WLSMV 
Maximum number of iterations                                  1000 
Convergence criterion                                    0.500D-04 
Maximum number of steepest descent iterations                   20 
Parameterization                                             DELTA 
 
Input data file(s) 
  CFI_Data2.dat 
 
Input data format  FREE 
 
 
UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES 
 
    P1 
      Category 1    0.094       18.000 
      Category 2    0.906      173.000 
    P2 
      Category 1    0.424       81.000 
      Category 2    0.576      110.000 
    P3 
      Category 1    0.623      119.000 
      Category 2    0.377       72.000 
    P5 
      Category 1    0.199       38.000 
      Category 2    0.801      153.000 
    P6 
      Category 1    0.466       89.000 
      Category 2    0.534      102.000 
    P7 
      Category 1    0.639      122.000 
      Category 2    0.361       69.000 
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    P8 
      Category 1    0.524      100.000 
      Category 2    0.476       91.000 
    P9 
      Category 1    0.796      152.000 
      Category 2    0.204       39.000 
    P10 
      Category 1    0.440       84.000 
      Category 2    0.560      107.000 
    P11 
      Category 1    0.681      130.000 
      Category 2    0.319       61.000 
    P12 
      Category 1    0.806      154.000 
      Category 2    0.194       37.000 
    P15 
      Category 1    0.681      130.000 
      Category 2    0.319       61.000 
 
 
SAMPLE STATISTICS 
 
 
     ESTIMATED SAMPLE STATISTICS 
 
 
           SAMPLE THRESHOLDS 
              P1$1          P2$1          P3$1          P5$1          P6$1 
              ________      ________      ________      ________      ________ 
      1        -1.315        -0.191         0.313        -0.845        -0.085 
 
 
           SAMPLE THRESHOLDS 
              P7$1          P8$1          P9$1          P10$1         P11$1 
              ________      ________      ________      ________      ________ 
      1         0.355         0.059         0.827        -0.152         0.469 
 
 
           SAMPLE THRESHOLDS 
              P12$1         P15$1 
              ________      ________ 
      1         0.864         0.469 
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           SAMPLE TETRACHORIC CORRELATIONS 
              P1            P2            P3            P5            P6 
              ________      ________      ________      ________      ________ 
 P1 
 P2             0.261 
 P3             0.152         0.299 
 P5             0.475         0.229         0.220 
 P6            -0.030         0.143         0.360         0.338 
 P7             0.221         0.009         0.109         0.246         0.250 
 P8             0.371         0.154         0.093         0.289         0.145 
 P9            -0.391         0.217         0.110        -0.016         0.008 
 P10            0.394         0.013         0.402         0.247         0.062 
 P11           -0.186        -0.005        -0.077        -0.045         0.200 
 P12            0.190         0.283         0.336        -0.108         0.156 
 P15            0.067         0.332         0.564         0.286         0.380 
 
 
           SAMPLE TETRACHORIC CORRELATIONS 
              P7            P8            P9            P10           P11 
              ________      ________      ________      ________      ________ 
 P8             0.144 
 P9            -0.004         0.019 
 P10            0.119         0.134         0.007 
 P11            0.076        -0.076         0.128         0.031 
 P12            0.131         0.113         0.215         0.111         0.309 
 P15            0.300         0.144         0.224         0.180         0.142 
 
 
           SAMPLE TETRACHORIC CORRELATIONS 
              P12           P15 
              ________      ________ 
 P15            0.213 
 
 
THE MODEL ESTIMATION TERMINATED NORMALLY 
 
     WARNING:  THE LATENT VARIABLE COVARIANCE MATRIX (PSI) IS NOT 
POSITIVE 
     DEFINITE.  THIS COULD INDICATE A NEGATIVE VARIANCE/RESIDUAL 
VARIANCE FOR A 
     LATENT VARIABLE, A CORRELATION GREATER OR EQUAL TO ONE 
BETWEEN TWO LATENT 
     VARIABLES, OR A LINEAR DEPENDENCY AMONG MORE THAN TWO 
LATENT VARIABLES. 
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     CHECK THE TECH4 OUTPUT FOR MORE INFORMATION. 
     PROBLEM INVOLVING VARIABLE F3. 
 
 
 
 
MODEL FIT INFORMATION 
 
Number of Free Parameters                       27 
 
Chi-Square Test of Model Fit 
 
          Value                             69.624* 
          Degrees of Freedom                    51 
          P-Value                           0.0425 
 
*   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV 
cannot be used 
    for chi-square difference testing in the regular way.  MLM, MLR and WLSM 
    chi-square difference testing is described on the Mplus website.  MLMV, WLSMV, 
    and ULSMV difference testing is done using the DIFFTEST option. 
 
RMSEA (Root Mean Square Error Of Approximation) 
 
          Estimate                           0.044 
          90 Percent C.I.                    0.009  0.068 
          Probability RMSEA <= .05           0.639 
 
CFI/TLI 
 
          CFI                                0.857 
          TLI                                0.814 
 
Chi-Square Test of Model Fit for the Baseline Model 
 
          Value                            195.835 
          Degrees of Freedom                    66 
          P-Value                           0.0000 
 
WRMR (Weighted Root Mean Square Residual) 
 
          Value                              0.878 
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MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 F1       BY 
    P1                 1.000      0.000    999.000    999.000 
    P2                 0.991      0.378      2.622      0.009 
    P3                 1.663      0.594      2.801      0.005 
 
 F2       BY 
    P5                 1.000      0.000    999.000    999.000 
    P6                 0.916      0.287      3.189      0.001 
    P8                 0.596      0.254      2.345      0.019 
    P10                0.742      0.257      2.884      0.004 
 
 F3       BY 
    P7                 1.000      0.000    999.000    999.000 
    P9                 0.455      0.458      0.994      0.320 
    P11                0.341      0.358      0.953      0.341 
    P12                1.122      0.552      2.034      0.042 
    P15                2.304      0.899      2.564      0.010 
 
 F2       WITH 
    F1                 0.224      0.094      2.386      0.017 
 
 F3       WITH 
    F1                 0.132      0.068      1.942      0.052 
    F2                 0.140      0.062      2.259      0.024 
 
 Thresholds 
    P1$1              -1.315      0.126    -10.452      0.000 
    P2$1              -0.191      0.091     -2.097      0.036 
    P3$1               0.313      0.092      3.395      0.001 
    P5$1              -0.845      0.104     -8.167      0.000 
    P6$1              -0.085      0.091     -0.941      0.347 
    P7$1               0.355      0.093      3.827      0.000 
    P8$1               0.059      0.091      0.651      0.515 
    P9$1               0.827      0.103      8.034      0.000 
    P10$1             -0.152      0.091     -1.664      0.096 
    P11$1              0.469      0.094      4.972      0.000 
    P12$1              0.864      0.104      8.299      0.000 
    P15$1              0.469      0.094      4.972      0.000 
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 Variances 
    F1                 0.165      0.113      1.466      0.143 
    F2                 0.307      0.152      2.018      0.044 
    F3                 0.129      0.084      1.532      0.125 
 
 
STANDARDIZED MODEL RESULTS 
 
 
STDYX Standardization 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 F1       BY 
    P1                 0.407      0.139      2.932      0.003 
    P2                 0.403      0.102      3.967      0.000 
    P3                 0.676      0.129      5.247      0.000 
 
 F2       BY 
    P5                 0.554      0.137      4.036      0.000 
    P6                 0.507      0.106      4.790      0.000 
    P8                 0.330      0.115      2.869      0.004 
    P10                0.411      0.109      3.774      0.000 
 
 F3       BY 
    P7                 0.359      0.117      3.065      0.002 
    P9                 0.163      0.150      1.089      0.276 
    P11                0.122      0.125      0.978      0.328 
    P12                0.402      0.142      2.829      0.005 
    P15                0.826      0.148      5.591      0.000 
 
 F2       WITH 
    F1                 0.995      0.217      4.594      0.000 
 
 F3       WITH 
    F1                 0.909      0.193      4.704      0.000 
    F2                 0.707      0.165      4.288      0.000 
 
 Thresholds 
    P1$1              -1.315      0.126    -10.452      0.000 
    P2$1              -0.191      0.091     -2.097      0.036 
    P3$1               0.313      0.092      3.395      0.001 
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    P5$1              -0.845      0.104     -8.167      0.000 
    P6$1              -0.085      0.091     -0.941      0.347 
    P7$1               0.355      0.093      3.827      0.000 
    P8$1               0.059      0.091      0.651      0.515 
    P9$1               0.827      0.103      8.034      0.000 
    P10$1             -0.152      0.091     -1.664      0.096 
    P11$1              0.469      0.094      4.972      0.000 
    P12$1              0.864      0.104      8.299      0.000 
    P15$1              0.469      0.094      4.972      0.000 
 
 Variances 
    F1                 1.000      0.000    999.000    999.000 
    F2                 1.000      0.000    999.000    999.000 
    F3                 1.000      0.000    999.000    999.000 
 
 
STDY Standardization 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 F1       BY 
    P1                 0.407      0.139      2.932      0.003 
    P2                 0.403      0.102      3.967      0.000 
    P3                 0.676      0.129      5.247      0.000 
 
 F2       BY 
    P5                 0.554      0.137      4.036      0.000 
    P6                 0.507      0.106      4.790      0.000 
    P8                 0.330      0.115      2.869      0.004 
    P10                0.411      0.109      3.774      0.000 
 
 F3       BY 
    P7                 0.359      0.117      3.065      0.002 
    P9                 0.163      0.150      1.089      0.276 
    P11                0.122      0.125      0.978      0.328 
    P12                0.402      0.142      2.829      0.005 
    P15                0.826      0.148      5.591      0.000 
 
 F2       WITH 
    F1                 0.995      0.217      4.594      0.000 
 
 F3       WITH 
    F1                 0.909      0.193      4.704      0.000 
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    F2                 0.707      0.165      4.288      0.000 
 
 Thresholds 
    P1$1              -1.315      0.126    -10.452      0.000 
    P2$1              -0.191      0.091     -2.097      0.036 
    P3$1               0.313      0.092      3.395      0.001 
    P5$1              -0.845      0.104     -8.167      0.000 
    P6$1              -0.085      0.091     -0.941      0.347 
    P7$1               0.355      0.093      3.827      0.000 
    P8$1               0.059      0.091      0.651      0.515 
    P9$1               0.827      0.103      8.034      0.000 
    P10$1             -0.152      0.091     -1.664      0.096 
    P11$1              0.469      0.094      4.972      0.000 
    P12$1              0.864      0.104      8.299      0.000 
    P15$1              0.469      0.094      4.972      0.000 
 
 Variances 
    F1                 1.000      0.000    999.000    999.000 
    F2                 1.000      0.000    999.000    999.000 
    F3                 1.000      0.000    999.000    999.000 
 
 
STD Standardization 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 F1       BY 
    P1                 0.407      0.139      2.932      0.003 
    P2                 0.403      0.102      3.967      0.000 
    P3                 0.676      0.129      5.247      0.000 
 
 F2       BY 
    P5                 0.554      0.137      4.036      0.000 
    P6                 0.507      0.106      4.790      0.000 
    P8                 0.330      0.115      2.869      0.004 
    P10                0.411      0.109      3.774      0.000 
 
 F3       BY 
    P7                 0.359      0.117      3.065      0.002 
    P9                 0.163      0.150      1.089      0.276 
    P11                0.122      0.125      0.978      0.328 
    P12                0.402      0.142      2.829      0.005 
    P15                0.826      0.148      5.591      0.000 
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 F2       WITH 
    F1                 0.995      0.217      4.594      0.000 
 
 F3       WITH 
    F1                 0.909      0.193      4.704      0.000 
    F2                 0.707      0.165      4.288      0.000 
 
 Thresholds 
    P1$1              -1.315      0.126    -10.452      0.000 
    P2$1              -0.191      0.091     -2.097      0.036 
    P3$1               0.313      0.092      3.395      0.001 
    P5$1              -0.845      0.104     -8.167      0.000 
    P6$1              -0.085      0.091     -0.941      0.347 
    P7$1               0.355      0.093      3.827      0.000 
    P8$1               0.059      0.091      0.651      0.515 
    P9$1               0.827      0.103      8.034      0.000 
    P10$1             -0.152      0.091     -1.664      0.096 
    P11$1              0.469      0.094      4.972      0.000 
    P12$1              0.864      0.104      8.299      0.000 
    P15$1              0.469      0.094      4.972      0.000 
 
 Variances 
    F1                 1.000      0.000    999.000    999.000 
    F2                 1.000      0.000    999.000    999.000 
    F3                 1.000      0.000    999.000    999.000 
 
 
R-SQUARE 
 
    Observed                                        Two-Tailed   Residual 
    Variable        Estimate       S.E.  Est./S.E.    P-Value    Variance 
 
    P1                 0.165      0.113      1.466      0.143      0.835 
    P2                 0.162      0.082      1.983      0.047      0.838 
    P3                 0.457      0.174      2.624      0.009      0.543 
    P5                 0.307      0.152      2.018      0.044      0.693 
    P6                 0.257      0.107      2.395      0.017      0.743 
    P7                 0.129      0.084      1.532      0.125      0.871 
    P8                 0.109      0.076      1.435      0.151      0.891 
    P9                 0.027      0.049      0.545      0.586      0.973 
    P10                0.169      0.090      1.887      0.059      0.831 
    P11                0.015      0.031      0.489      0.625      0.985 
    P12                0.162      0.114      1.414      0.157      0.838 
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    P15                0.683      0.244      2.796      0.005      0.317 
 
 
QUALITY OF NUMERICAL RESULTS 
 
     Condition Number for the Information Matrix              0.690E-03 
       (ratio of smallest to largest eigenvalue) 
 
 
     Beginning Time:  10:41:18 
        Ending Time:  10:41:18 
       Elapsed Time:  00:00:00 
 



 170

APPENDIX J 
 

CONFIRMATORY FACTOR ANALYSIS FOR FACTORS DEFINED BY 
MATHEMATICAL TOPIC WITH P4, P13, & P14 REMOVED FROM DATA SET 

 
 
 
Mplus VERSION 6.1 
MUTHEN & MUTHEN 
03/13/2011  10:20 AM 
 
INPUT INSTRUCTIONS 
 
  TITLE:      this is a CFA with all of the 
              actual categorical data 
              factor loadings are fixed at one 
              factors are defined by mathematical topic 
  DATA:       FILE IS CFI_Data2.dat; 
  VARIABLE:   NAMES ARE p1-p3 p5-p12 p15; 
              CATEGORICAL ARE p1-p3 p5-p12 p15; 
  MODEL:      F1 BY p1 p2 p7 P8; 
              F2 BY p3 p5 p6 p9 p10 p11 p12 p15; 
 
 
 
 
INPUT READING TERMINATED NORMALLY 
 
 
 
this is a CFA with all of the 
actual categorical data 
factor loadings are fixed at one 
factors are defined by mathematical topic 
 
SUMMARY OF ANALYSIS 
 
Number of groups                                                 1 
Number of observations                                         191 
 
Number of dependent variables                                   12 
Number of independent variables                                  0 
Number of continuous latent variables                            2 
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Observed dependent variables 
 
  Binary and ordered categorical (ordinal) 
   P1          P2          P3          P5          P6          P7 
   P8          P9          P10         P11         P12         P15 
 
Continuous latent variables 
   F1          F2 
 
 
Estimator                                                    WLSMV 
Maximum number of iterations                                  1000 
Convergence criterion                                    0.500D-04 
Maximum number of steepest descent iterations                   20 
Parameterization                                             DELTA 
 
Input data file(s) 
  CFI_Data2.dat 
 
Input data format  FREE 
 
 
UNIVARIATE PROPORTIONS AND COUNTS FOR CATEGORICAL VARIABLES 
 
    P1 
      Category 1    0.094       18.000 
      Category 2    0.906      173.000 
    P2 
      Category 1    0.424       81.000 
      Category 2    0.576      110.000 
    P3 
      Category 1    0.623      119.000 
      Category 2    0.377       72.000 
    P5 
      Category 1    0.199       38.000 
      Category 2    0.801      153.000 
    P6 
      Category 1    0.466       89.000 
      Category 2    0.534      102.000 
    P7 
      Category 1    0.639      122.000 
      Category 2    0.361       69.000 
    P8 
      Category 1    0.524      100.000 
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      Category 2    0.476       91.000 
    P9 
      Category 1    0.796      152.000 
      Category 2    0.204       39.000 
    P10 
      Category 1    0.440       84.000 
      Category 2    0.560      107.000 
    P11 
      Category 1    0.681      130.000 
      Category 2    0.319       61.000 
    P12 
      Category 1    0.806      154.000 
      Category 2    0.194       37.000 
    P15 
      Category 1    0.681      130.000 
      Category 2    0.319       61.000 
 
 
 
THE MODEL ESTIMATION TERMINATED NORMALLY 
 
 
 
MODEL FIT INFORMATION 
 
Number of Free Parameters                       25 
 
Chi-Square Test of Model Fit 
 
          Value                             71.995* 
          Degrees of Freedom                    53 
          P-Value                           0.0423 
 
*   The chi-square value for MLM, MLMV, MLR, ULSMV, WLSM and WLSMV 
cannot be used 
    for chi-square difference testing in the regular way.  MLM, MLR and WLSM 
    chi-square difference testing is described on the Mplus website.  MLMV, WLSMV, 
    and ULSMV difference testing is done using the DIFFTEST option. 
 
RMSEA (Root Mean Square Error Of Approximation) 
 
          Estimate                           0.043 
          90 Percent C.I.                    0.009  0.067 
          Probability RMSEA <= .05           0.652 
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CFI/TLI 
 
          CFI                                0.854 
          TLI                                0.818 
 
Chi-Square Test of Model Fit for the Baseline Model 
 
          Value                            195.835 
          Degrees of Freedom                    66 
          P-Value                           0.0000 
 
WRMR (Weighted Root Mean Square Residual) 
 
          Value                              0.886 
 
 
 
MODEL RESULTS 
 
                                                    Two-Tailed 
                    Estimate       S.E.  Est./S.E.    P-Value 
 
 F1       BY 
    P1                 1.000      0.000    999.000    999.000 
    P2                 0.949      0.367      2.586      0.010 
    P7                 0.768      0.329      2.336      0.019 
    P8                 0.730      0.342      2.135      0.033 
 
 F2       BY 
    P3                 1.000      0.000    999.000    999.000 
    P5                 0.707      0.204      3.471      0.001 
    P6                 0.682      0.164      4.157      0.000 
    P9                 0.189      0.204      0.929      0.353 
    P10                0.545      0.154      3.545      0.000 
    P11                0.141      0.169      0.830      0.406 
    P12                0.518      0.209      2.479      0.013 
    P15                1.008      0.208      4.839      0.000 
 
 F2       WITH 
    F1                 0.286      0.100      2.853      0.004 
 
 Thresholds 
    P1$1              -1.315      0.126    -10.452      0.000 
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    P2$1              -0.191      0.091     -2.097      0.036 
    P3$1               0.313      0.092      3.395      0.001 
    P5$1              -0.845      0.104     -8.167      0.000 
    P6$1              -0.085      0.091     -0.941      0.347 
    P7$1               0.355      0.093      3.827      0.000 
    P8$1               0.059      0.091      0.651      0.515 
    P9$1               0.827      0.103      8.034      0.000 
    P10$1             -0.152      0.091     -1.664      0.096 
    P11$1              0.469      0.094      4.972      0.000 
    P12$1              0.864      0.104      8.299      0.000 
    P15$1              0.469      0.094      4.972      0.000 
 
 Variances 
    F1                 0.240      0.158      1.517      0.129 
    F2                 0.509      0.133      3.831      0.000 
 
R-SQUARE 
 
    Observed                   Residual 
    Variable        Estimate   Variance 
 
    P1                 0.240      0.760 
    P2                 0.216      0.784 
    P3                 0.509      0.491 
    P5                 0.255      0.745 
    P6                 0.237      0.763 
    P7                 0.141      0.859 
    P8                 0.128      0.872 
    P9                 0.018      0.982 
    P10                0.151      0.849 
    P11                0.010      0.990 
    P12                0.137      0.863 
    P15                0.517      0.483 
 
QUALITY OF NUMERICAL RESULTS 
 
     Condition Number for the Information Matrix              0.749E-02 
       (ratio of smallest to largest eigenvalue) 
 
 
     Beginning Time:  10:20:41 
        Ending Time:  10:20:41 
       Elapsed Time:  00:00:00 
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APPENDIX K 
 

THE FUNCTION CONCEPT AND ITS ROLE IN SCHOOL MATHEMATICS: 
A REVIEW OF THE CRITICAL LITERATURE  

 

Introduction 
 

In 1975, the National Advisory Committee on Mathematics Education 
(NACOME) paved the way for the public school reform efforts that restructured the 
teaching of mathematics in general and algebraic concepts in particular(O'Callaghan, 
1998). Algebra, misunderstood by some to be merely a study of variables and symbolic 
manipulation (Driscoll, 1999), plays a central role in students’ mathematical 
development. The importance of algebra in school mathematics is not a new finding. In a 
1907 issue of School Science and Mathematics, Professor E. B. Skinner of the 
University of Wisconsin spoke on the teaching of mathematics in Wisconsin. He said, 
“in general pupils came to the university and especially to the scientific schools of the 
university inadequately prepared in algebra”(Whitney, Denton, & Jones, 1907, p. 70). 

 
Algebra can be thought of as the mathematical “bridge” across which secondary 

students must pass to reach advanced mathematical concepts in high school (Dooren, 
Verschaffel, & Onghena, 2002) as well as post secondary studies in the science, 
technology, engineering, and mathematics (STEM) subject areas. But, we have found 
that simply requiring schools to teach courses in algebra is not enough. Traditional 
algebraic instruction stresses the memorization of algebraic facts and symbolic 
manipulation at the expense of problem solving skills and conceptualization (Hollar & 
Norwood, 1999; Karsenty, 2002; O'Callaghan, 1998). These research findings led to 
algebraic reform efforts in K – 12 programs. 

 
Of the algebraic topics covered in middle and secondary schools, researchers 

recognize the concept of function as the single most important tool in algebra regarding 
a student’s ability to apply mathematical concepts in sciences, engineering and other 
related contexts (Hollar & Norwood, 1999; Knuth, 2000; Lloyd & Wilson, 1998; 
O'Callaghan, 1998; Zbiek, 1998). Underdeveloped knowledge of the function concept 
hinders the mathematical development of students and efforts to give the function 
concept greater emphasis in school mathematics have been under way since 1883 (M. 
Carlson & Oehrtman, 2005). The National Council of Teachers of Mathematics (NCTM) 
expects all students, beginning in grades six, to be able to “model and solve 
contextualized problems using various representations such as graphs, tables, and 
equations” (National Council of Teachers of Mathematics, 2000), which requires 
students to possess a working knowledge of functions. One of the first challenges for 
students, as well as some teachers, is to find an adequate definition of the function 
concept. 
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In a post secondary education pre-calculus text, a function is defined as “a rule 
which takes certain numbers as inputs and assigns to each input number exactly one 
output number. The output is a function of the input” (Connally, et al., 2004, p. 2). This 
seemingly simple definition of the concept of function is actually just the tip of a 
mathematical iceberg that has offers quite a challenge to students from middle school 
through post secondary graduate studies. 

 
This review of critical literature in the area of the mathematical function concept 

and its role in school mathematics will explore the various definition of the function 
concept after a brief examination of its history. This literature review will then examine 
the role and importance the function concept has in school mathematics before looking 
at common misconceptions students, and some teachers, hold concerning the function. 
Finally the review will examine integral characteristics students should possess to have a 
rich and flexible knowledge of the function concept.  
 
 
A Brief History of the Function Concept 
 

While Gottfried Wilhelm Leibniz (1694 – 1716) is generally credited with 
creating the mathematical term “function” in 1694 while defining his work in the 
development of calculus (Burton, 1999), the precursors to the concept go back as far as 
4000 years (Kleiner, 1989). Kleiner and Burton both note the evolution of the function 
concept as a logical continuation of the joining of Descartes geometry and the 
mathematics of Asia and the Middle East called algebra. From this union came new 
mathematics referred to as analytic geometry and calculus, developed independently by 
Isaac Newton (1642 – 1727) and Gottfried Leibniz, was soon to follow (Burton, 1999). 

 
Influences From the Developers of the Calculus 

 
Even (1990, 1993) points to the evolution of the function concept from the 

operational perspective held by developers of calculus to more of a structural object 
view. While many mathematics educational researchers (DeMarois & Tall, 2009; Even, 
1990; Gray & Tall, 1994; Haimes, 1996; Hollar & Norwood, 1999; Leinhardt, 
Zaslavsky, & Stein, 1990; O'Callaghan, 1998) agree on the importance of moving 
mathematics students from operational perspectives of the function to the structural 
object view, the evolution of the concept from its precalculus roots in the literature is 
worthy of closer examination. The Seldens illustrate the importance of Newton’s and 
Leibniz’s calculus problem solving methods in the formative period of the function 
concept (Selden & Selden, 1992).  

 
The calculus of Newton and Leibniz was not cast in the mold of 
functions, but was rather an ingenious collection of problem-solving 
methods applicable to curves, which were paths generated by moving 
points. In the 17th century, the study of motion, from Kepler’s work on 
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the planets to Huygen’s work on the pendulum, was central, and 
functional relationships were expressed in words and the language of 
proportion. It took time before calculus was recast in an algebraic and 
symbolic mold with curves specified by formulas or equations. Once this 
happened, attention was paid to the relationships holding between the 
symbols. Terminology was needed to represent quantities dependent on 
other quantities in formulas or equations (p. 4-5). 
 
Kleiner echoes this perspective and adds two specific reasons why the function 

concept was not developed prior to the 18th century (Kleiner, 1989). First, mathematics 
prior to 18th century was still in the process of developing algebraic symbols (Burton, 
1999), which was foundational to the symbolic nature of the function concept . Second, 
there was a lack of motivation among early mathematicians to express new abstract 
notions when so few mathematical examples existed that required abstraction. The 
Seldens and Kleiner (1989; 1992) agree that early mathematics had a propensity to focus 
on finite solutions to specific problems; abstractions and generalizations were to follow 
as mathematics continued to be refined from about 1650 – 1850. Kleiner (1989, p. 2) 
lists the refinements as follows: 

 
• Extension of the concept of number to embrace real and (to some 

extent) even complex numbers (Bombelli, Stifel, et al.); 
• The creation of a symbolic algebra (Viète, Descartes, et al.); 
• The study of motion as a central problem of science (Kepler, 

Galileo, et al.); 
• The wedding of algebra and geometry (Fermat, Descartes, et al.). 

 
Shift in Emphasis from Geometry to Function 

 
While Leibniz is credited with being the author of the term “function”, 

Leonhard Euler (1707 – 1783) (Burton, 1999) introduced the f(x) notation and in 
his 1748 work “Introduction in Analysis Infinitorum” where he defined a 
function as “an analytical expression composed in any manner from the variable 
quantity and numbers or constant quantities” (Selden & Selden, 1992, p. 5). It 
was during this period that the function concept replaced geometry as the central 
theme in calculus. Euler’s perspective on the function concept was tested and 
refined over several years of scholarly debate between himself, Daniel Bernoulli 
(1700 – 1782), and Jean le Rond d’Alembert (1717 – 1783) concerning the 
famous “Vibrating-String Problem” (Burton, 1999; Kleiner, 1989; Selden & 
Selden, 1992).  

 
Even though there was no clear winner in the debate concerning the 

“Vibrating-String Problem” (Kleiner, 1989; Malik, 1980), the concept of 
function was advanced in two significant ways. First, for the first time, functions 
were described by piecewise expressions over varying intervals. Prior to this 
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extension, functions were thought to be only described over continuous intervals. 
Second, functions were no longer bound to symbolic expressions. Mathematician 
of the late 18th century recognized curves that could be “drawn freehand” as 
functions (Kleiner, 1989). The “Vibrating-String Problem” did not end the 
scholarly debates concerning the function concept. On the contrary, it seems that 
it ushered in a new era of scholarly debate that attracted work by renowned 
mathematicians as Fourier, Cauchy, Riemann, Weierstrass, Lebesgue, and Borel 
which further developed the concept of function into the 20th century (Burton, 
1999; Kleiner, 1989; Selden & Selden, 1992). Two notable mathematicians, 
Dirichlet and Bourbaki are excluded from the list above, will be examined in 
greater detail in the next section. 

  
 

Current Working Definitions of Function 
 

Readers might find it interesting that while the Principles and Standards for 
School Mathematics from the National Council of Teachers of Mathematics (NCTM) 
has placed great emphasis on the function concept, a definition of the function concept is 
lacking from the standard (National Council of Teachers of Mathematics, 2000). Smith 
points out the fact that consistent definitions can be found in many textbooks, “In many 
ways, the topic of functions should be better delineated than that of algebra. Unlike 
algebra, function has a definition that is essentially common to all textbooks and has 
been fairly consistent for some time” (2003, p. 141). Smith goes on to quote two 
definitions of the function concept that encompass the general ideas from many texts. 

 
Smith (2003, p. 141) quotes a 1986 precalculus text by Swokowski, the following 

definition, “A function from a set D to a set E is a correspondence that assigns to each 
element x of D a unique element y of E.” Closer inspection of this first definition reveals 
an emphasis on the relationship (correspondence) between two pre-existing sets. It may 
be noteworthy to some that the sets described here are not restricted to real numbers or 
any number system for that matter. From a 1997 college algebra text by Demarois, 
McGowen, and Whitkanack, Smith (p. 141) quotes the following function definition, “A 
function is a process that receives input… and returns a value called the output. …There 
is exactly one output for each input.” This second definition demonstrates a strong 
process view of the function concept; a common example used in school mathematics to 
illustrate this perspective is the “function machine” which can be found in many 
textbooks. With these thoughts in mind, the modern definition of function will be 
examined in the next section. 
 
The “Modern” Dirichlet-Bourbaki Definition of Function 
 

The introduction of the modern definition of function is primarily credited to 
Johann Peter Gustav Lejeune Dirichlet (1805 – 1859) (Burton, 1999; Kleiner, 1989; 
Rizzuti, 1991; Selden & Selden, 1992). Dirichlet’s definition of function, “y is a function 
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of x if for any value of x there is a rule which gives a unique value of y corresponding to 
x” (Malik, 1980, p. 491; Rizzuti, 1991, p. 20) is primarily based on the idea of 
correspondence between sets. This notion is contrasted with the classical definition of 
function, based on Euler’s work, which places the emphasis on the covariation between 
the variables in the function (Rizzuti). 

 
The exemplar for the classical function definition could be a “well behaved” 

linear function such as, f(x) = 2x – 3. This linear function emphasizes the covariation of 
the variables, x and f(x); as x increases, so does f(x) and as x decreases, f(x) decreases as 
well. Rizzuti (p. 20) uses the following as an exemplar of the Dirichlet definition of a 
function: f(x) = 1, for rational x and f(x) = 0 for all irrational x. It is important to note that 
the graphical representation of this function is discontinuous and it will pass the school 
student’s “vertical line” test. This exemplar stresses correspondence and the lack of 
covariation between the variables (Rizzuti, 1991). The Dirichlet definition, which is 
based on the correspondence between real numbers, needed additional modification to 
become the modern definition (Eves, 1997). 

 
The Dirichlet definition of function was limited to real numbers but the Bourbaki 

definition, sometimes referred to as “ordered pair” (Selden & Selden, 1992), extends 
beyond the grasp of numbers. ”’Nicholas Bourbaki’ is a pseudonym for a group of 
mathematicians which set out in 1936, and continues to this day, to demonstrate that all 
of mathematics can be built on axioms and set theory” (Rizzuti, 1991). Rizzuti uses the 
following two definitions of the function concept, taken from high school textbooks, to 
exemplify the Dirichlet-Bourbaki definition of function: 

 
A function consists of two sets, the domain and the range, together with a 
paring that assigns to each member of the domain exactly one member of 
the range. (p.23) 
 
A function is a relation with the property: if (a,b) and (a,c) belong to the 
function, then b = c. (p.23) 
 

This Dirichlet-Bourbaki definition of function is also known as the “set-theoretic” 
definition which emphasizes it foundation in modern set theory (Rizzuti).  
 

The Dirichlet-Bourbaki approach defined as functions many 
correspondences that were not recognized as functions by previous 
generations of mathematicians. Among these correspondences are 
discontinuous functions, functions de- fined on split domains (i.e., by 
different rules on different subdomains), functions with a finite number of 
exceptional points, and functions defined by means of a graph. (Vinner & 
Dreyfus, 1989, p. 357) 

 
Function Definition Categories 
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The working definitions of the function concept can be described in from two 

perspectives; first, we have examined the function from the viewpoint of mathematicians 
and educators. This section will examine student conceptions of functions, which in 
some cases fail to align effectively with what may be considered the “right” concepts 
(M. Carlson & Oehrtman, 2005; Clement, 1989; DeMarois, 1996; Lambertus, 2007; 
O'Callaghan, 1998; Schwarz & Hershkowitz, 1999; Sfard, 1991). It should be noted that 
the label “student” used here is quite flexible and range from middle school students in 
mathematics classes through preservice teachers in their final stages of university study 
and early career middle school mathematics teachers participating in a “in-service” 
mathematics training course (Vinner & Dreyfus, 1989). 

 
The aforementioned students have been the focus in several research studies to 

explore and categorize students’ function concept definitions. Vinner & Dreyfus (1989, 
pp. 359-360) identified the following six categories for student function concept 
definitions: 

 
I. Correspondence: A function is any correspondence between two sets that 

assigns to every element in the first set exactly one element in the second 
set (the Dirichlet-Bourbaki definition).  

II. Dependence Relation: A function is a dependence relation between two 
variables (y depends on x).  

III. Rule: A function is a rule. A rule is expected to have some regularity, 
whereas a correspondence may be "arbitrary." The domain and the 
codomain were usually not mentioned here, contrary to Category I, where 
they were.  

IV. Operation: A function is an operation or a manipulation (one acts on a 
given number, generally by means of algebraic operations, in order to get 
its image). 

V. Formula: A function is a formula, an algebraic expression, or an equation. 
VI. Representation: The function is identified, in a possibly meaningless way, 

with one of its graphical or symbolic representations. 
 

In this particular study, Vinner & Dreyfus reported in their findings “An examination of 
the data indicates that the percentage of students giving some version of [the Dirichlet-
Bourbaki] definition increased with the level of the mathematics course the students 
were taking” (p. 360). 
 
Function Concept Definition vs. Concept Images 
 

When discussing students’ function concept definitions, the research literature is 
rich in the associated topic of concept images (Confrey & Smith, 1995; Dubinsky & 
Harel, 1992; Monk, 1992; Norman, 1992; Rizzuti, 1991; Selden & Selden, 1992; Sfard, 
1992; Sierpinska, 1992; Smith, 2003; Tall & Vinner, 1981; Vinner, 1983, 1992; Vinner 
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& Dreyfus, 1989). Tall & Vinner (1981) introduce the notion of concept image with the 
following passage:  

 
Many concepts which we use happily are not formally defined at all, we 
learn to recognise them by experience and usage in appropriate contexts. 
Later these concepts may be refined in their meaning and interpreted with 
increasing subtlety with or without the luxury of a precise definition. 
Usually in this process the concept is given a symbol or name which 
enables it to be communicated and aids in its mental manipulation. But 
the total cognitive structure which colours the meaning of the concept is 
far greater than the evocation of a single symbol. It is more than any 
mental picture, be it pictorial, symbolic or otherwise. During the mental 
processes of recalling and manipulation a concept, many associated 
processes are brought into play, consciously and unconsciously affecting 
the meaning and usage. We shall use the term concept image to describe 
the total cognitive structure that is associated with the concept, which 
includes all the mental pictures and associated properties and processes. 
(pp. 151-152) 
 
The notion of concept image is contrasted with concept definition in that a 

concept definition is a verbal definition, void of an individual’s mental images, which is 
used to describe and specify a particular concept (Hartter, 2009; Sfard, 1992; Sierpinska, 
1992; Tall & Vinner, 1981; Vinner, 1983; Vinner & Dreyfus, 1989). Important 
distinctions for mathematics educators are that students access and use these two 
potentially disparate parcels of information in different ways (Lambertus, 2007; Vinner, 
1983, 1992; Vinner & Dreyfus, 1989). Vinner found that when a selected group of high 
achieving mathematics students were asked to give the definition of the function 
concept, more than half were able to give an adequate definition. When the same group 
of students was asked to solve function related problems that required specific reasoning, 
only about a third of the students that were able to give an adequate definition were also 
able to use that definition in their mathematical reasoning (1992). Vinner theorizes that 
in many situations, students rely on their concept images and do not consult their 
concept definitions at all. 
 
 
The Importance of the Function Concept in School Mathematics 
 

The function concept plays a central and unifying role in mathematics (Selden & 
Selden, 1992). The NCTM standard (National Council of Teachers of Mathematics, 
2000, p. 222) for grades 6-8 sets the following expectations concerning the function 
concept: 

 
• Represent, analyze, and generalize a variety of patterns with 

tables,   graphs, words, and, when possible, symbolic rules; 
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• Relate and compare different forms of representation for a 
relationship; 

• Identify functions as linear or nonlinear and contrast their 
properties from tables, graphs, or equations. 

 
The standard for grades 9-12 follows a similar tenor (p.296) in their expectations of 
student knowledge of the function: 
 

• Generalize patterns using explicitly defined and recursively 
defined functions;   

• Understand relations and functions and select, convert flexibly 
among, and use various representations for them;   

• analyze functions of one variable by investigating rates of change, 
intercepts, zeros, asymptotes, and local and global behavior;   

• Understand and perform transformations such as arithmetically 
combining, composing, and inverting commonly used functions, 
using technology to perform such operations on more-complicated 
symbolic expressions;   

• Understand and compare the properties of classes of functions, 
including exponential, polynomial, rational, logarithmic, and 
periodic functions;   

• Interpret representations of functions of two variables.   
 
Incongruent with these expectations, research has shown that teachers continue to 
struggle with the function concept (Brown & Slough, 2009; Kulm, 2008; Norman, 1992; 
Selden & Selden, 1992; Vinner, 1992). Since research has show teachers’ knowledge to 
be a key factor in student learning (You, 2006), it is not surprising that school students 
also have difficulty with the function concept (DeMarois, 1996; DeMarois & Tall, 2009; 
Gray & Tall, 1994; Hollar & Norwood, 1999; Kieran, 2008; Lambertus, 2007; 
Leinhardt, et al., 1990; O'Callaghan, 1998; Sfard, 1991). 
 

Studies have shown that learning the function concept is a complex task and even 
high performing students have weak function concepts (M. Carlson & Oehrtman, 2005; 
Kulm, 2008; Vinner & Dreyfus, 1989). “Students who think about functions only in 
terms of symbolic manipulations and procedural techniques are unable to comprehend a 
more general mapping of a set of input values to a set of output values; they also lack the 
conceptual structures for modeling function relationships in which the function value 
(output variable) changes continuously in tandem with continuous changes in the input 
variable” (M. Carlson & Oehrtman, 2005). These reasoning skills serve as a foundation 
to higher concepts in mathematics as well as other contents areas within the STEM 
disciplines (Brown & Slough, 2009; M. Carlson & Oehrtman, 2005; Kaput, 1992). 
Common Misconceptions and Issues 
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One of the most common function misconceptions revealed in the research 
literature is students’ belief that a function is always defined by a well-behaved algebraic 
equation (Dubinsky & Harel, 1992; Norman, 1992; Selden & Selden, 1992; Sfard, 1992; 
Sierpinska, 1992; Vinner, 1992). Many students don’t recognize that functions can be 
defined over disjoint domains or be displayed in a discontinuous graph. The 
correspondence between sets, the basis for the Dirichlet definition of the function, is 
thought to be a rule that displays regularities over the entire domain. Rizzuti points out 
that the Dirichlet-Bourbaki definition of function is too abstract for many students, and 
that even after learning the definition, students are unable to effectively use the 
definition in mathematical reasoning (1991). 

 
As a corollary to his discussion on concept images and concept definitions, 

Vinner (1992) adds the notion of compartmentalization which basically describes the 
situation which occurs when two incompatible items of knowledge exist in someone’s 
mind without them being aware of it. When a person’s concept image is sufficiently 
different and incompatible with their concept definition, they will tend to use one to 
answer one type of problem and the other for different problems not perceive the conflict 
(Lambertus, 2007; Sfard, 1992).  

 
Sfard (1992) indicates a particularly problematic issue for students. If two 

symbolic different algebraic formulas produce the same output for a given input, 
students perceive the functions to be different. Norman (1992) study reveals many 
secondary teachers’ dependence on a single form of representation for functions, which 
was most often the graph. Students were also found to be unsure about the use of the 
equal sign and many “view functions simply as two expressions separated by an equal 
sign” (M. P. Carlson & Bloom, 2005, p. 3). 

 
Integral Student Characteristics of the Concept of Function 
 

Freudenthal points to the notions of arbitrariness and equivalence as being the 
two essential features of the function concept (1983) but this simply addresses a full 
understanding and use of the modern function definition. A richer discussion is 
introduced by considering students’ conceptual development. Students tend to begin 
their practical use of the function concept in what is referred to as an action view of 
functions (M. Carlson & Oehrtman, 2005, pp. 8-9; Dubinsky & Harel, 1992). As these 
students mature mathematically, it is recommended that they develop a process view of 
function (M. Carlson & Oehrtman, 2005, pp. 8-9; Dubinsky & Harel, 1992). 

 
An action conception of function would involve the ability to plug 
numbers into an algebraic expression and calculate. It is a static 
conception in that the subject will tend to think about it one step at a time 
(e.g., one evaluation of an expression). A student whose function 
conception is limited to actions might be able to form the composition of 
two functions, defined by algebraic expressions, by replacing each 
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occurrence of the variable in one expression by the other expression and 
then simplifying; however, the students would probably be unable to 
compose two functions that are defined by tables or graphs. 
 
A process conception of function involves a dynamic transformation of 
quantities according to some repeatable means that, given the same 
original quantity, will always produce the same transformed quantity. The 
subject is able to think about the transformation as a complete activity 
beginning with objects of some kind, doing something to these objects, 
and obtaining new objects as a result of what was done. When the subject 
has a process conception, he or she will be able, for example, to combine 
it with other processes, or even reverse it. Notions such as 1-1 or onto 
become more accessible as the students' process conception strengthens. 

 
This notion of the separate conceptions of action and process should not be confused 
with Gray and Tall’s (1994) notion of the function “procept” which suggests a way of 
viewing a function as both a process and as a concept (Sajka, 2003). The function f(x) = 
5x – 1 can be viewed as a process when the “operation” class of the function definition 
described above. In this sense, the student can calculate a value for f(x) for each value of 
x given. But the function can also be viewed as a concept when the “correspondence” 
class of the function definition is used. The above notions of action and process might be 
best aligned with Sfard’s analysis of the formation of the function concept. Sfard (1991) 
defined the three stages of concept development interiorization, condensation, and 
reification to “correspond to three degrees of structuralization” (p.18). 
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