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ABSTRACT 

 

Study of Pure-silica Zeolite Nucleation and Growth from Solution. (August 2011)  

Xiang Li, B.S., Beijing University of Chemical Technology;  

M.S., Tianjin University 

Chair of Advisory Committee: Dr. Daniel F. Shantz 

 

Zeolites are microporous crystalline materials, which are widely used in 

catalysis, adsorption, and ion-exchange processes. However, in most cases, the synthesis 

of novel zeolites as functional materials still relies on trial-and-error methods, which are 

time consuming and expensive. Therefore, the motivation for this thesis work is to 

understand the zeolite synthesis mechanismand further develop knowledge for 

manipulating zeolite properties and ultimately the rational design of porous materials. 

This work focused on formation of silicalite-1 (pure-silica ZSM-5) from basic aqueous 

solutions containing tetraorthosilicate (TEOS) as silica source, and 

tetrapropylammonium (TPA) cations as the organic structure-directing agent. The 

presence of silica precursor particles with size of 2-5 nm in these mixtures prior to and 

during hydrothermal treatments have been observed through dynamic light scattering 

(DLS), small-angle X-ray (SAXS) and transmission electron microscopy (TEM). 

However, to quantify composition and the molecular structure transformation of these 

silica precursor particles during zeolite synthesis is still a technical challenge. Another 

important yet unresolved question is how organocations interact with these nanoparticles 

and direct zeolite nuclei.  Unlike many studies performed analyzing the inorganic phase 
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(silica) present in synthesis mixtures, this study quantified the organocation-silica 

particle interaction and its ultimate effect on zeolite growth mainly through probing the 

behavior of the organocations. Pulsed-field gradient (PFG) NMR was used to capture the 

mobility change of organocations, and was complemented with scattering measurements 

(DLS, SAXS) on the silica nanoparticles. On the basis of the measurement results, the 

thermodynamic and kinetic properties of the organic-inorganic interaction were derived. 

Upon aging at room temperature, this interaction manifested as binding of TPA onto the 

silica particles due to electrostatic interactions, and such binding behavior can be well 

described by the Langmuir adsorption model. Upon hydrothermal treatment, a fraction 

of TPA adsorbed at room temperature dissociates from the growing silica nanoparticles 

and the corresponding desorption profiles were fitted well by the pseudo-second order 

kinetic model. The addition of tetramethylammonium (TMA) as “competitors” promoted 

TPA desorption kinetics and hindered silica nanoparticle growth due to stronger 

association of TMA with particles than that of TPA. Finally, the TPA adsorption 

strength increased via addition of monovalent salts with increasing ionic size whereas 

that of TMA shows an opposite trend. This suggests one potential route for tuning the 

organic-silica precursor particle interactions and thus possibly affecting some kinetics 

steps in the synthesis. 
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CHAPTER I  

INTRODUCTION 

 

1.1   Overview  

Zeolites are one class of solid materials with a broad range of applications in 

catalysis, adsorption as well as nano-devices.1-3 Given their importance in the chemical 

and refining industries, the nucleation and crystallization of zeolites has been widely 

studied for developing a molecular-level understanding of their formation mechanism 

and further rational design of novel zeolitic materials.4-6 During the past decades, 

numerous in situ and exit situ techniques including small angle X-ray and neutron 

scattering,7-10 microscopy,11, 12 as well as NMR spectroscopy 13-15 have been introduced 

to investigate the nucleation and growth of zeolite from solutions. Findings from these 

works have provided useful insights for developing a more complete picture of zeolite 

formation. Another important, yet unresolved question is how organic molecules used 

for directing zeolite structures interact with silica species during the course of zeolite 

syntheses. In this study, pulsed-field gradient (PFG) NMR was employed to probe the 

motion of these organic molecules, from which quantitative insights about organic-

inorganic interactions were obtained.  

 

1.2   Zeolite Structures and Applications 

Zeolites are microporous, crystalline aluminosilicates which are formed from  

____________ 
This dissertation follows the style and format of Langmuir. 
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primary tetrahedral units (TiO4) linked to generate a three-dimensional framework 

structure. (See Figure 1-1) Given the flexibility in T-O-T bond lengths and angles, more 

than 200 zeolite topologies have been developed, and each is distinguished by its unique 

powder diffraction pattern.16 These topologies are named according to a three-letter 

code, among which MFI, LTA, FAU are the most industrially relevant framework-type. 

While the classical zeolites are aluminosilicates, open frameworks with partial or full 

substitution by heteroatom can be synthesized and denoted as zeotypes. This include 

families of microporous crystalline aluminophosphate (AlPOn), 17 and silica-and metal-

alminophosphate (SAPO, MeAPO) molecular sieves. 18, 19 

 

 

 
Figure 1-1. (from left to right) Primary building unit (TiO4, Ti=Si or Al), secondary 
bulding units (Sodalite cage), zeolite A and zeolite Y.  20 
 

 

Since tetrahedral aluminum is negatively charged, zeolite frameworks containing 

aluminum need extra-framework cations, such as alkali or alkaline metal species (Na+, 

K+, Ca2+), to maintain charge neutrality of the zeolite. 21 Thus, the general empirical 

formula of zeolite materials is shown as follows where m is the valence of cations (M) 

and x represents the alumina content. 

/ 2 4x m x xM Al Si O  
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Hence, zeolites are usually classified into three different types with respect to Si/Al 

ratio: low-silica (Si/Al < 5) zeolites with high cation content and excellent ion-exchange 

ability, intermediate-silica (5<Si/Al< 10), and high-silica zeolites (Si/Al> 10) first 

reported by Mobil R&D laboratories during 1960s-1970s. 22, 23       

The fascinating catalytic properties of zeolites originate from three major 

reasons: pore structures, compositions and extra framework species. As shown in the 

above formula, the incorporation of a trivalent heteroatom, such as aluminium, in 

zeolites gives rise to a negative charge, which is the source of framework acidity. Figure 

1-2 shows a typical zeolite acid site which consists of a hydroxyl group bridging a 

silicon atom and an aluminum atom corresponding to a strong Brönsted site and 

oxobridges with Lewis base properties.  

 

 

 

Figure 1-2. (Left) detail of the atomic structure, illustrating the linked tetrahedral (TO4), 
(right) active site in zeolite framework showing T-O-T linkage.24 

 

 

 In addition, zeolites are size and shape selective regarding molecular adsorption 

due to the distinct pore systems with size of 0.3 nm to 1.2 nm (e.g., cages, channels and 

interconnected channels). Figure 1-3 shows the framework projections and the ring size 
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for the most studied frameworks. The pore openings are uniform throughout zeolite 

crystals and have selectivity for molecules with dimensional differences less than 0.1 

nm.  

 

 

 

Figure 1-3. Comparison of pore size of different zeolite framework structures.25  
 
 

For zeolite-catalyzed reactions, there are three types of shape selectivity as 

shown in Figure 1-4. Reactant selectivity depends on pore size limits on the entrance of 

the reactant molecules. Product selectivity occurs when the products are too bulky to 

diffuse out and thus converted to less bulky molecules. Transition-state selectivity refers 

to suppression of certain reactions due to pore limits on corresponding transition states 

of the reactions. 26 
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Figure 1-4. Different types of reaction selectivity imposed by rigid pore structure of 
zeolite. 26 
 

 

Table 1-1. Selected major catalytic applications of zeolites.
27

 

Process Catalyst Products 

Catalytic Cracking Re-Y, US-Y, ZSM-5 Gasoline, Fuels 

Hydrocracking Y, Mordenite Diesel, Benzene 

Alkylation of aromatics ZSM-5, Mordenite p-xylene, ethyl-benzene, styrene 

Hydroisomerization ZSM-5 p-xylene 

Catalytic dewaxing ZSM-5 Improvement of cold flow properties 

Methanol-to-gasoline Ga-ZSM-5 Aromatics 
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Two of the largest markets for zeolite materials are in the petrochemical and 

chemical industries. FCC (Fluid Catalytic Cracking) of petroleum accounts for the most 

consumption of zeolite Y. MFI and MWW type zeolites are the most widely used 

additives to FCC catalysts for octane number enhancement.28 Zeolites are also employed 

in purification of natural gas, separation of paraffin, desulfurization, as well as fine 

chemical productions. The major applications of zeolites are summarized in Table 1-1. 

 

1.3   Hydrothermal Zeolite Synthesis   

Given the scientific interest in zeolite structure-property relations and their 

industrial importance, much effort has been paid to zeolite synthesis. zeolites are 

synthesized under hydrothermal conditions from gels or clear solutions in alkaline or 

fluoride media at temperatures between 60 oC and 200 oC. Typical reagents include a 

silica source, an alumina source and organic molecules as structure-directing agents for 

high Si/Al ratio zeolite. Figure 1-5 highlights the developments of high-silica zeolite 

materials over the last several decades. 29
 

 

1.3.1   Silica and Alumina Sources 

Zeolite growth kinetics and framework structures can be affected by dissolution 

of the solid reactants as well as formation of aluminosilicate precursors in synthesis 

mixtures. The typical silica sources for industrial usage are fumed silica or sodium 

silicate solutions which require significant dissolution time to research the desired 

zeolite growth conditions. Hydrolysis of tetraethyl orthosilicate (TEOS), a high cost 

reagent, yields mononeric silica sources more quickly. Also the formation of ethanol as 
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byproducts of TEOS hydrolysis needs to be accounted when analyzing synthesis 

mixtures.30  Sodium aluminate is most the common aluminum source but has low water 

solubility which can limit the range of experimental studies of precursor solutions. 31 

 

 

 
 

Figure 1-5. Development of zeolites synthesized using organic ammonium cations. 29 
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1.3.2   Structure Directing Agent (SDA) 

Many different types of molecules can be used to form zeolites. These include 

alkali cations, organocations, ethers, etc. Although the precise role of these molecules 

during - zeolite formation is not fully understood, they can act as space fillers, templates 

or structure director. 3, 4  In most cases, the inorganic and small organic species fall into 

the group of space fillers, which are loosely incorporated within zeolite frameworks. 

However, there is neither translation of the organic into the final zeolite structures, nor is 

necessarily 1:1 selectivity between organic species and zeolite structures.32, 33 A few 

organic molecules serve as true templates. They often have rigid structures which enable 

them to form specific zeolite frameworks. The synthesis of SSZ-58 and ZSM-18 can be 

considered as examples and are shown in Figure 1-6. 34, 35 Particularly, the tri-quat 

molecule is a true template in that the ZSM-18 cage has C3 rotational symmetry, same 

as the organocation.34  

 

 

 

Figure 1-6. (a) Energy-minimized configuration of 1-butyl-1-cyclooctylpyrrolidinium 
SDA (within frame) with the cavity at the channel intersections of SSZ-58.34 (b) The 
proposed locations of the tri-quat (within frame) relative to the 3-rigns in ZSM-18 
framework along (001) unit cell direction. 36 



 9 

Many organic molecules act as structure directing agents, in that they appear to 

strongly favor the formation of specific zeolite phases. A typical example is synthesis of 

ZSM-5 which is aluminum-containing form of MFT framework, with 

tetrapropylammonium (TPA) as SDA. ZSM-5 crystallizes in the orthorhombic space 

group Pnma with lattice constants a=20.1 Ǻ, b=19.7Ǻ and c=13.1 Ǻ, and contains two 

channels (one straight and one sinusoidal) with pore size of 5.1-5.6 Ǻ. 
23, 37 The TPA is 

located in the intersection of the two channels with four hydrocarbon chains each 

extending into one channel, as shown in Figure 1-7. Despite that ZSM-5 can be 

synthesized using inorganic cations and organic molecules other than TPA, it is more 

difficult to make phase-pure MFI materials in the absence of TPA.18 

 

 

 
 
Figure 1-7. Molecular structure of TPA (within the frame) and packing diagram with Si 
atoms as framework viewed along (010) face.38  
 

 

Given the unique role of TPA in MFI synthesis, the influence of other 

tetraalkylammonium (TAA) cations has been examined in the presence of alkaline metal 
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(Li+, K+).39-41 Tetramethylammonium (TMA), more hydrophilic than TPA, directed 

ZSM-5 and ZSM-39 in presence of Li+, whereas in the presence of K+, ZSM-39 and 

ZSM-48 were formed at high TMA concentrations.39 Tetraethylammonium (TEA) is 

intermediate in behavior and led to ZSM-5 as the main zeolitic phase whereas ZSM-11 

is obtained using tetrabutylammonium (TBA).40 The stabilization energies as a function 

of TAA cation occluded in ZSM-5 and ZSM-11 are compared in Figure 1-8. As can 

been seen, the energy increases to a maximum for TPA and declines in progressing to 

TBA assuming four TAA per unit cell. Reducing the loading to three TBA per unit cell 

leads to a slight increase in stabilization energy yet the value is still less than that 

obtained with four TPA per unit cell. One explanation is increasing the length of alkyl 

chain results in an increase in organic-zeolite non-covalent interactions and the repulsive 

interactions between end methyl groups of TBA.41 

 

 

 

Figure 1-8. Stabilization energy of tetraalkylammonium (TAA) cations occluded in 
ZSM-5 and ZSM-11 at an occupancy of four cations per unit cell. 25, 41 (All energies are 
in kcal per unit cell.)  
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While there are many cases where multiple SDAs give the same zeolite 

framework, the flexibility and physicochemical properties of SDA play an important role 

in their phase selectivity.3, 42-46 In general, increasing the bulk size of SDA with 

increasing C+N number results in a decrease in the number of  zeolite frameworks that 

can be formed in its presence, i.e., increasing phase selectivity. (see Figure 1-9).4 

 

 

 

Figure 1-9. Illustration of the increased selectivity of different SDA as the size of the 
molecule (C+N) is increased.4   
 

 

Figure 1-10 proposes a synergetic balance between the hydrophilicity of the 

organic SDA and hydrophobic features of the high/pure-silica zeolites directed by the 

SDA. 44, 47 As shown in Figure 1-10a, the organocations with C/N ratios ranging from 11 
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to 15 are effective SDAs for directing zeolite formation partially due to their moderate 

hydrophobicity. Furthermore, this hydrophobic character of the SDA could be 

independent of its structural symmetry as suggested by Figure 1-10b.4 

 

 

 

Figure 1-10. (a) Percentage of the ammonium iodide salt transferred from the aqueous 
to the chloroform (organic) phase. (TPenA represents tetrapentylammonium)47.(b) 
Partition of quaternary ammonium compounds between water and chloroform.4  
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1.4   Zeolite Nucleation and Crystallization  

Zeolite synthesis under hydrothermal condition is simple to perform but involves 

complex silica chemistry and transport. Also the numerous interdependent quasi-

equilibria and condensation steps occur simultaneously during zeolite growth, which 

complicates the mechanisitic studies. Unlike covalent organic synthesis which can be 

divided into numerous reactions with separate reagents, separation of desired from 

unwanted steps and products for zeolite synthesis is always difficult. In other words, 

there may not be a universal mechanism describing all zeolite growth. Thus, this work 

emphasizes high and pure-silica zeolite formation from solution using organic 

molecules.  

 

1.4.1   Early Studies of Zeolite Formation Mechanism  

There are two primary categories of growth mechanisms for zeolite synthesis: 

gel-phase mechanism and solution-phase mechanism. The gel structure shown in Figure 

1-11 is depolymerized by hydroxide ions. The hydrated alkali metal cations rearrangthe 

aluminosilicate and silicate anions in the hydrogel, leading to the formation of 

polyhedral units and ultimately, zeolite structures.48, 49 One can view zeolite growth from 

solution as a process with multiple stages including nucleation of various structures, 

crystallization and dissolution of metastable species (See Figure 1-12). The conversion 

of silica-alumina species to crystals accelerates once the crystallization process starts, 

suggesting that nucleation is the rate-limiting step.50 Tezak and Flanigen 51, 52 suggested 

four substages involved in zeolite synthesis: formation of monomer and polymeric 

aluminosilicates, aggregation of these complexes to form zeolite embryo, nucleation as 
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aggregate formation with a well ordered primary particles, and finally aggregation of 

primary particles via oriented aggregation.  

 

 

 

Figure 1-11. Schematic view of the formation of zeolite crystal nuclei in hydrous gel.51 

 

 

 

Figure 1-12. A schematic view of zeolite synthesis process.53  
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Cufaz and co-workers 54 introduced a semi-quantitative method for estimating 

zeolite nucleation and growth kinetics. Assuming that the rate-limiting step was crystal 

growth, they measured crystallization rates as the percentage conversion per hour at the 

highest rate (50% conversion). A similar treatment of nucleation rate was taken as the 

reciprocal of the induction period. (see Figure 1-13). A number of framework types (e.g., 

LTA, FAU, MFI) follow such trend in growth, where by an induction period for 

nucleation is followed by linear growth rates that level off when crystallization approach 

completion.25 Vlacho‟s lab established a population balance formulation to describe 

zeolite growth from precursor gels, which is in qualitative agreement with experiment 

results and shown in Figure 1-14. 55, 56 

 
 
 

 
Figure 1-13. Nucleation rate is taken as the reciprocal of the induction time and 
crystallization rate as the slope of crystallization curve at 50 % conversion. 54 
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Figure 1-14. Schematic view of the nucleation rate, crystal growth and nutrient content 
as function of zeolite synthesis time. 56 
 

 

1.4.2   Studies of TPA-ZSM-5 Synthesis 

The synthesis of ZSM-5 (MFI) has been widely studied as a model system for 

understanding zeolite formation. Its siliceous form, silicalite-1, can be synthesized 

exclusively using TPA over a wide range of experimental conditions including gel and 

solution systems (see Figure 1-15). 57 Unlike aluminum-containing MFI zeolites which 

are hydrophilic, silicalite-1 is hydrophobic, and selectively adsorbs organic molecules in 

the presence of water. 58 Studies on silicalite-1 synthesis began on hydrogels containing 

sodium hydroxide (NaOH), a fumed silica source and TPABr. Transformation of 

amorpohous silica gels to crystals was monitored using small-angle scattering of X-ray 

and neutron, suggesting the presence of primary particles with size of ~12 nm which 

grow during heating time. 59-61 Solution syntheses of nanoscale ZSM-5 have been 

developed as to date, many studies investigated the synthesis mechanism of pure ZSM-5 

under a wide synthesis composition range and summarized in Figure 1-16. 
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Figure 1-15. Diagram of crystallization behavior of TPA-silicalite-1.57 
 
 

 
Figure 1-16. Composition (molar fraction) range investigated in TPA-silicalite-1 studies 
to date. ( Reference [62];  Reference [7];  Reference [63];  Reference [64]; 

 Reference [65];  Reference [66];  Reference [11]) 
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Despite debate over the growth mechanisms, the silica precursors present in 

synthesis mixtures and their interactions with organic SDA, the proposed mechanisms 

can be classified into two roughly groups. The „monomer/oligomer addition‟ 

mechanism, as shown in Figure 1-17a, suggests that TPA organizes soluble silica species 

into a portion of its hydration sphere via the hydrophobic interactions, leading to the 

formation of organic-inorganic composites. These composite spheres aggregate and 

participate in nucleation with addition of silica monomers/oligomers. The following 

crystal growth occurs via diffusion of these above species to the growing crystalline 

cores.67 The second mechanism proposed that addition of colloidal nanoparticles to 

growing zeolite nuclei via aggregation mechanism. (see Figure 1-17b) Kirschhock and 

Houssin suggested these particles as zeosil nanoslabs with included TPA on the basis of 

TEM and SAXS measurements (See Figure 1-18a).68 27, 62, 69 70
 However, the nanoslab 

models has subsequently been disproved by several laboratories. 71, 72 

Many labs, including the Lobo, Vlachos, Tsapatsis and Shantz laboratories 

suggested these colloidal particles are initially amorphous and surrounded by a shell of 

organic SDA (see Figure 1-18b) on the basis of SAXS and SANS measurements. 7, 72-77  

Furthermore, the average particle size are largely controlled by solution alkalinity and 

nearly independent of organocations studied.78 Along this theme Tsapatsis and co-

wokers 11, 12, 79-81 proposed that these amorphous precursor particles contribute to growth, 

and their direct addition to the growing crystal can be rate limiting. (see Figure 1-19) 

Intensive experimental studies on kinetics and thermodynamics of zeolite growth have 

been performed to develop these above mechanisms. 
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Figure 1-17. (a) Schematic view of TPA-silicalite-1 crystal growth involving inorganic-
organic composite species.67, 82 (b) Schematic crystallization of TPA-silicalite-1 via 
aggregation of nanoslabs with zeolite structures.27 
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Figure 1-18. (a) Schematic view of a proposed nanoblock with included TPA.69 (b) 
Ellipsoidal core (silica)-shell (TPA) structure of precursor nanoparticles formed from 
TEOS hydrolysis. (Ellipsoidal axes are labeled as a and b.) 78 
 

 

 

 

Figure 1-19. Schematic view of transformation of silica primary particles into zeolite 
nuclei and crystal growth by aggregation. (A represents primary particles, Bi is 
intermediate primary particles of age state i , Ci is crystal of size i, βij is coalescence rate 
constant between a particle of size i and size j, k+ and k- are forward and reverse aging 
rate constantans, respectively.)80  
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Schoeman and his co-workers 83-86 reported the initial in situ dynamic light 

scattering (DLS) measurements on TPA-silicalite-1 crystallization at 70 oC, and the 

results are shown in Figure 1-20. Two particle populations can be observed, a suspension 

of colloidal silicate particles with nearly constant diameter of ~ 3.3 nm during the 

crystallization period studied, and larger particles with size approximately 10-12 nm, 

indentified as crystalline silicate and a linear growth rate of 0.72 nm/h. Similar particle 

populations in sililcate-1 synthesis solutions were also observed by de Moor et al. using 

as series of SAXS and WAXS despite of different Si: OH- molar ratio and using “dimer” 

or “trimer” of TPA.
9, 64, 87 Nanoparticles of approximately 2.5 nm in size were detected 

before hydrothermal treatment, consistent with DLS measurements. Two additional 

populations approximately ~ 10 nm and above 50 nm appear after 1h heating. However, 

continued heating favors the growth of the 50 nm particles and both the 10 nm and 2.5 

nm colloidal particles disappear. These observations suggested the connection between 

the disappearance of colloidal particles and the growing of the silicalite-1 nuclei could 

be the basis of zeolite nucleation.  Nikolakis et al.62 performed quantitative analysis of 

silicalite-1 crystal growth using DLVO theory which focused on electrostatic 

interactions between negatively charged surfaces on silicalite-1 and colloidal 

nanoparticles. This study described the experimental trends in particle growth rate at 

various temperatures and predicted the activation energies.62 In addition, the 

physicochemical features of silicalite-1 surfaces was investigated through TPA 

adsorption using zeta potential measurements over a range of solution pH.88  
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Figure 1-20. Particle size distribution as function of heating during crystallization of 
TPA-silicalite-1 at 70 oC.85 
 
 

Given that zeolite growth mechanisms are synthesis parameter dependent, the 

growth kinetics can be varied by changes in temperature, silica content, solution 

alkalinity and ionic strength, among which temperature and alkalinity are the most 

profound parameters. Table 1-2 compared the activation energy obtained at various 

syntheses conditions yet the origin of the variation is not clearly understood.89 Cundy et 

al. 90 investigated the temperature dependence of crystal growth rates along the (010) 

and (100) directions (see Figure 1-21), and the results were shown in Table 1-3. The 

resulting activation energies for length and width growth are 79 ± 1 and 62 ± 1 kJ/mol, 

respectively, indicating the crystallization is probably controlled by surface integration 

of growth species into the framework. 
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Table 1-2. Comparison of activation energies for TPA-silicalite-1 crystallization.
89

 

 

SiO2: OH-: TPA: H2Oa 

 

Si/OH Si/TPA Si/H2O Ea (kJ/mol) 

deMoor et al.87 2.4 4.1 0.088 83 

Twomey et al.91 2.3 2.8 0.055 96 

Schoeman et al.83 2.8 2.8 0.05 42 

Li et al.92 2.8 2.8 0.052 70 

Watson et al.57 1.7 8.3 0.008 70 

Nikolakis et al.62 4.4 4.4 0.004 90 

Sano et al.93 10 10 0.003 48 

Cundy et al.90 30 20 0.04 71 

Feokitistova et al.94 16.7 10.1 0.04 55 

 
 

 

 
 
Figure 1-21. Idealized crystal morphology of silicalite-1.90 
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Table 1-3. * Growth rates for silicalite-1 at different temperatures.
90

 

 

T/K 
length-growth rate 

Rl/μm h
-1 

width-growth rate 
RW/μm h

-1 
368 0.011 0.005 

393 0.061 0.027 

413 0.228 0.074 

433 0.55 0.126 

448 1.17 0.195 

*Synthesis composition with molar ratio of 1Na2O: 60 SiO2: 3TPABr:1500 H2O: 
240EtOH. 
 
 

In addition to kinetics of zeolite formation, thermodynamic aspects of zeolite 

formation rationalize driving forces for zeolite synthesis. Navrotsky and co-workers95, 

performed detailed studies on formation enthalpies of zeolites respect to α-quartz, the 

thermodynamic stable phase. Despite that these values became more endothermic with 

decreasing framework density; the variation of enthalpies is slight compared with the 

wide range of pore diameters of zeolite studied. Zeolites studied are only 7-14 kJ/mol 

less stable than quartz in enthalpy and 3.2 – 4.2 J/K·mol above quartz in entropies.96, 97 

Furthermore, Piccione et al.98 compared the Gibbs free energies of the interactions in 

several pure-silica zeolite frameworks and occluded organic SDA. Their results showed 

that the crystallization process is favorable and the energy values range from -1.1 to -5.9 

kJ/mol SiO2. Therefore, small energetic differences indicate that various kinetic 
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pathways lead to the formation of zeolites. Also the SDA may play more of a kinetic role 

in selectivity of zeolite phases than stabilizing one phase with respect to the others. 

 

1.5   Thesis Outline  

The above studies provide valuable insight into growth mechanism of pure silica 

zeolite. Also interactions among primary colloidal particles, organic SDA and monomer 

species present in synthesis mixtures were identified and characterized by Burkett and 

Knight et al using 1H-29Si CP MAS NMR and 29Si NMR techniques.13, 14, 67, 99-101 

However, few definitive statements of silica precursor particles and their association 

with the organic SDA can be drawn from these works. In contrast to most previous 

studies performed analyzing the silica species, i.e. inorganic phases, this thesis addresss 

these issues via investigating how organic SDAs participate in zeolite nucleation and 

quantifying their association with silica precursor particles. Given that the  determination 

of  the strength of organic-inorganic interactions in solution is not trivial, pulsed-field 

gradient (PFG) NMR provides a potential opportunity for studying this problems since it 

is non-invasive.102 Chapter II describes the theoretical background and experimental 

procedures regarding PFG NMR as well as scattering techniques used for investigating 

silica species present in synthesis solutions. Chapter III investigates the formation of 

silica precursor nanoparticles in clear solution of TEOS-TAAOH-water and analyzed 

interactions of TAA cations with silica particles at room temperature with combined 

DLS and NMR methods. The Langmuir isotherm model was used to describe the 

organic-inorganic association at equilibrium. Chapter IV focuses on studying the 

behavior of TPA during early stages of silicalite-1 nucleation and determining TPA 
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desorption kinetics. The effect of tetramethyl ammonium (TMA), as a competitive ion, 

on TPA-silica particles interaction at room temperature and elevated temperatures is 

discussed in Chapter V. The questions of how the colloidal stability of TAA-silica 

particles is affected by solution ionic strength and its ultimate effect on formation of the 

zeolite phase were addressed in Chapter VI. Also, the perturbation of TMA- and TPA-

silica interactions in presence of salt induce particle aggregations were studied and 

compared in this chapter. Finally, Chapter VII summarizes important findings from these 

above chapters and outlined the areas for future work with respect to application of 

NMR methods in dynamic studies and technical basis for synthesizing pure silica zeolite 

nanocrystals. 
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CHAPTER II  

EXPERIMENTAL METHODS AND SAMPLE PREPARATION 

 

The main methods used in this thesis, along with their experimental details, are 

described in this chapter.  Liquid-state NMR spectroscopy in general and pulsed-field 

gradient (PFG) NMR spectroscopy in particular, were heavily utilized to determine the 

organocation-silica interactions.  Dynamic light scattering (DLS) and small-angle X-ray 

scattering (SAXS) were used to determine the size of the inorganic particles present in 

the mixtures. 

 

2.1   Nuclear Magnetic Resonance (NMR) Spectroscopy  

NMR was usedto capture the essential chemistry and dynamics of organic 

structure directing molecules in synthesis mixtures. Particularly, NMR parameters 

including chemical shifts, nuclear relaxation time and self-diffusion coefficients can be 

measured to obtain information about molecular structure and motion, binding energy 

and reaction kinetics. Before introducing advanced NMR methods, it is necessary to 

discuss the basic theory of generating NMR signal.  

For a nucleus of spin I there are 2I+1 possible orientations. For example, proton 

nucleus with spin ½ has two possible orientations.  In the absence of an external 

magnetic field, the two orientations are of equal energy. When a magnetic field (Bo) is 

applied, the energy levels split into a two quantum magnetic states, i.e., mα = -½ against 

the field, and mβ = ½ aligned with the field, as shown in Figure 2-1. The energy 

difference (ΔE) between these two states can be described as  
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2

oh B
E                                                                    (2-1) 

where h is Planck constant (6.6261×10-34 Js), γ is the magnetogyric ratio (the value for 

1H is 2.6752×108 rad s-1 T-1) and Bo is the strength of the applied magnetic field. 

Furthermore, the ratio of nuclei population in the two energy levels is determined by the 

Boltzmann distribution. Thus, the number of nuclei at lower energy level (mα) is slightly 

higher than that at higher energy level (mβ).  

E

kT
N

e
N

                                                                  (2-2) 

where N and N are the population of nuclei in lower (α) and higher energy level (β), 

respectively, k is Boltzmann constant (1.380× 10-23 J/K).  

 

 

 
Figure 2-1. Energy levels for a 1H nucleus with spin quantum number (I = ½). 

 
 

Electromagnetic radiation of energy equal to ΔE could excite the nuclei at α spin 

level into β level in the magnetic field Bo, which is called the resonance condition. The 

frequency (ν) of the radiation can be calculated by 
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                                                      (2-3) 

where μ is the z-component magnetic moment of the nucleus, i.e., align with the 

quantization axis. Analogous to precession of a spinning mass in a gravitational field, the 

magnetic moment (μ) associated with a nucleus precesses in the applied magnetic field 

(Bo). This precession frequency is called Larmor frequency (ωo) and is denoted as 

o oB                                                            (2-4) 

Figure 2-2 illustrates the vector diagrams of proton magnetization behavior in a 

magnetic field (Bo). The vector M represents the vector sum of magnetization of proton 

α and β spins (see Figure 2-2 A). On the basis of the Boltzmann distribution, Mz of spins 

in the magnet is aligned with the Bo, along z-axis as shown in Figure 2-2 B. Since the 

system is at thermal equilibrium, no NMR signal can be observed. A secondary magnetic 

field is produced orthogonal to Bo via applying a radio frequency (RF) pulse along x-

axis, a fractions of nuclei at α level are excited to the higher β level, thus M will shifts 

away from z-axis and toward y-axis, generating a vector component Mxy in xy plane.(see 

Figure 2-2C) After irradiation the spin system returns to equilibrium state (Mz) in a 

process named relaxation, and Mxy precesses about Bo at the Larmor frequency (ωo) 

which gives rise to the detected NMR signal by inducing a current in the coil 

surrounding the sample. The frequency difference between the induced signal and the 

RF pulse is called the Free Induction Decay (FID) as shown in Figure 2-2D. This time-

domain signal includes all amplitude and frequency information of each resonance, and 

can be converted to frequency-domain NMR spectrum through Fourier Transformation 

(see Figure 2-2E). 
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Figure 2-2. Vector diagram of magnetization pressing in applied magnetic field (Bo). 
(A) Two populations of spins alligned with Bo (α) and against Bo(β); (B) net 

magnetization Mz along z-axis due to excess of spin in lower level (α); (C) Transition of 

Mz to Mxy via application of 90o radio-frequencey pulse along x-axis; (D) A free 
induction decay (FID) of TPABr-Ethanol-water mixtures in this study and (E) the 
corresponding NMR spectra generated through  a Fourier Transformation of the FID in 
shown in D. (The detected frequencies (in Hz) for 1H are already referenced against DSS 
(4,4-dimethyl-4-silapentane-1-sulfonic sodium)). Chemical shift with unit of ppm is 
defined as detected frequency divided by frequence of the spectroscopy, which is 500 
MHz in this study.) ((A), (B) and (C) are adopted from the reference [103].) 
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2.2 Relaxation NMR 

As shown in Figure 2-2 C, after the RF pulse, the excited magnetization relaxes 

back to the thermal equilibrium along z axis. This relaxation process is determined by 

two components in absence of chemical exchange. The first is spin-lattice relaxation 

which involves the transfer of excited spins to their surroundings. The intensity of the 

magnetization during the spin-lattice relaxation can be described as: 

1( ) [1 exp( )]Z oI t I tR                                                    (2-5a) 

1

1

1
R

T
                                                                  (2-5b) 

where ZI and oI  are the intensity at time t following the pulse and at equilibrium, 

respectively. R1 is the first-order rate constant at which the spins return to equilibrium 

along z or longitudinal axis. T1 is the relaxation time constant. 

The second component is the relaxation of the bulk magnetization in the 

transverse (xy) plane after the RF pulse, leading to the dephasing of magnetization in 

this plane. This relaxation is called spin-spin (or transverse) relaxation, which involves 

the transfer of excess energy between the individual spins, and occurs simultaneously 

with spin-lattice relaxation. The intensity change during the transverse relaxation can be 

explained by 

2exp( )xy oI I tR                                                      (2-6a) 

2

2

1
R

T
                                                              (2-6b) 
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where xyI and oI are the intensity of the magnetization at time t following the pulse and 

of the equilibrium magnetization. R2 is the rate constant for spin-spin relaxation and T2 is 

corresponding relaxation time constant. T2 relaxation time constant cannot be larger than 

the T1 relaxation time constant. In addition, the effective transverse relaxation time ( *

2T ) 

is a combination of T2 and magnetic field inhomogenity. In a perfect homogenous 

magnetic field, *

2T  is equal to T2, whereas *

2T  is shorter than T2 when the field is 

inhomogeneous. Furthermore, the width of a NMR resonance at half-height ( 1/2w ) is 

inversely proportional to the value of *

2T . 

*

2

1/2

1
T

w
                                                               (2-7) 

According to the above equation, the resonance of a nucleus gets broadening as the 

corresponding T2 relaxation time decreases. The increase in resonance width usually 

occurs when observing binding behavior. For example, tetrapropylammonium (TPA) 

bind to colloidal particles in solution. TPA in solution has a T2 of 0.31 s. The binding of 

TPA onto silica particles in solution is manifested by decrease in T2 to the value of 

0.025s. The measurement of T1 and T2 are described in subsection 2.5.1. 

 

2.3   Pulsed-field Gradient (PFG) NMR 

One of the many capabilities of NMR is the ability to spatially label nuclear spins 

by applying magnetic field gradients to the sample. This ability leads to the possibility of 

measuring self-diffusion coefficients of molecules in solution. PFG NMR was developed 

based on NMR pulse sequences to measure the translational self-diffusion coefficient of 
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molecules via labeling their nuclear spins in a spatially varying magnetic field by applied 

gradient pulses.103-106 Conventional techniques for diffusion measurements including 

light and neutron scattering, fluorescence, and zero-length chromatography often have 

detection limitations on sample concentration range and can be invasive in nature. PFG 

NMR, while having its own limitations is ideally suited for the current work as it is non-

invasive and given the high-number of protons per organocation is sufficiently sensitive 

even at millimolar concentrations of organocation.107  Furthermore, it provides 

complementary information to mutual diffusivity obtained from scattering techniques. 

108 Of relevance to the current work PFG NMR has been applied for studying weakly 

interacting host-guest systems via separating different species in such systems based on 

their different diffusion coefficients (i.e. the ability to discern a „free‟ and a „bound‟ 

state). Particularly, the method has been used successfully to describe small molecule 

binding in macromolecular systems even when resonances assignments of the 

macromolecule are unknown.109-115 Given the difficulties of investigating the 

organocation during zeolite synthesis it was determined to use PFG NMR to probe 

organocation-silica interactions.  

 

2.3.1   Measuring Self-Diffusion with Magnetic Field Gradients 

Random translational motion, i.e, Brownian motion of molecules or ions, is 

called self-diffusion which is the most fundamental form of transport and characterized 

by the self-diffusion coefficient (DS). Such diffusion can be described by Debye-Einstein 

theory and obtained by the following equation .116  
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f
                                                                   (2-8) 

where kB is the Boltzmann constant, T is temperature, and f is the friction coefficient. For 

the case of spherical diffusing species with an effective hydrodynamic radius (RH) in a 

solution of viscosity (η), the friction coefficient (f) is given by 

6 Hf R                                                            (2-9) 

Generally, the friction coefficient can be modified by including the factors such as 

molecular shape, hydration.104 The self-diffusion coefficient provides information on the 

molecular interaction and structural properties of the diffusing species under study. It is 

also known the average displacement of a molecule due to thermal motion,<l
2>, in 

isotropic medium can be related to the diffusion time t, by the Einstein relation. 117  

2 6 Sl D t                                                            (2-10) 

For non-isotropic media the self-diffusion (DS) must be replaced by the diffusion tensor 

DS. 
117 The average displacement plays a central role in the interpretation of NMR-based 

diffusion studies.  

In principle, nuclear spins can be labeled by a well defined magnetic field 

gradient, and thus diffusion coefficients can be calculated from the echo attenuation if 

the amplitude (g) and duration (δ) of the magnetic field gradient are known. Typically, a 

field gradient is generated by passing current through a coil wound across the sample. 

The resulting gradient with amplitude g can be described by: 

             ˆˆ ˆyx z
BB B

g i j k
x y z

                                              (2-11) 
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where î , ĵ, k̂  are unit vectors in the x, y, z directions, respectively. Here the z-direction is 

defined by the direction of B0 and we are concerned with gradients in the z direction.102 

The original diffusion NMR measurement was a simple modification of the Hahn spin-

echo pulse sequence (see Figure 2-3), developed by Stejskal and Tanner.118 As shown in 

Figure 2-3(top), after the first 90° radio frequency (RF) pulse along x the axis and a short 

delay (t1), the applied z-direction gradient pulse encodes nuclear spins along the length 

of sample. Such spatial encoding occurs since the nuclei precess at different frequencies 

due to their different positions in the applied field gradient (g). Following that a delay (τ) 

allows the magnetization to undergo precession in the xy plane. Then a 180° RF pulse is 

applied along the y axis, which reverses the direction of the precession. The 

magnetization refocuses along –y axis at the end of the second η delay. This refocused 

magnetization is termed as an „echo‟. During this delay period (η), a second identical 

gradient pulse is applied along the sample, which spatially decodes the spins. As a result, 

a spin echo is generated at a time of 2 η after the first 90°x pulse, and the NMR signal is 

acquired. The PFG NMR experiment exploits that due to Brownian motion the 

molecules in the system move during this process.  Thus the nuclei do not experience the 

same gradient strength from the second gradient due to motion.  This leads to incomplete 

focusing of the echo.  Moreover, the signals observed, i.e. the extent of signal 

attenuation, can be readily related to the rate of motion.  Since large molecules diffuse 

more slowly, less attenuation of the NMR signal occurs.103 However, the diffusion time 

(Δ) of PGSE sequence which allows a molecule to diffuse before coherence is limited by 

the Spin-Spin relaxation time (T2),i.e. Δ≤ T2. This constraint restricts the size of 
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molecules that can be measured using this pulse sequence. To circumvent this limitation 

one can use the pulsed-field gradient stimulated echo (PFG-STE) 119 which stores the 

magnetization along the negative z-axis during the diffusion time (Δ), in contrast to the 

PGSE sequence where the magnetization is stored in the xy plane during the diffusion 

period (Δ). Thus the PFG-STE experiment, shown in Figure 2-3(bottom), produces 

echoes whose attenuation are limited by the Spin-Lattice relaxation (T1), which is 

usually longer than T2, and eliminates the dephasing of magnetization due to spin-spin 

coupling.  

 

 

 

 

Figure 2-3. (Top) A schematic view of how the Stejakal and Tanner (or Pulse Gradient 
Spin Echo) pulse sequence measures diffusion. (Bottom) Hahn stimulated echo (STE) 
with pulsed field gradients. 102
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Another noteworthy issue is the eddy current induced by the short gradient pulse 

(g), which is required to dissipate before the NMR signal can be acquired. One of the 

best ways to minimize these currents is to replace the gradient pulse by a pair pulse of 

different polarity separated by a 180°RF pulse. The composite bipolar gradient STE 

pulse sequence is shown in Figure 2-4. 

 

 

 

Figure 2-4. Bipolar-pulse pair stimulated each (BPPSTE) pulse sequence. 120 

 
 

Typically PFG NMR measurements are performed by acquiring a series of 

spectra with systematically increased the gradient amplitudes. Figure 2-5 (top) shows a 

PFG NMR stack spectra of tetrapropylammonium (TPA)-ethanol-water mixtures 

acquired with the BPPSTE sequence shown in Figure 2-4.  As can be seen in Figure 2-5 

(top), the resonances assigned to water (4.7ppm), ethanol (3.6 and 1.2 ppm) and TPA 

(3.1, 1.7 and 0.9 ppm) attenuate as the gradient strength increases yet with different 

attenuation rates. Particularly, the self-diffusion coefficient of TPA (0.9 ppm) is obtained 
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by monitoring the TPA signal intensity as a function of the squared gradient amplitude 

(g2). For the BPPSTE sequenced used the signal decay is given by  

2 2 2exp[ ( ) ]
2 3

o SI I D g                                            (2-12) 

 
where γ is the magnetogyric ratio, g is the gradient strength or amplitude (G/cm), Δ the 

diffusion time between gradient pulses, and τ is the time between the gradient pulse and 

the following RF pulse shown in Figure 2-4.  I and Io are the NMR peak heights and the 

value at initial gradient strength. Accurate Ds measurements require attenuation of signal 

intensity to 10 % of the value obtained at the initial gradient strength.  The exponential 

decay fit based on equation (2-12) to the TPA signal attenuation yields a diffusion 

coefficient of 4.28 × 10-10 m2/s.  Also shown in Figure 2-5, the intensity of ethanol (1.2 

ppm, Ds = 7.21×10-10 m2/s) shows a larger decay slope than that of TPA, since ethanol 

has a smaller molecular size and thus diffuses more quickly than TPA. This simple 

numerical analysis, as performed for the data in Figure 2-5, is effective if resolved 

resonances are available for each component in the sample, or if the diffusion 

coefficients of overlapped resonances differ significantly. However, alternative analysis 

methods are required for analysis of complex mixtures, where resonances are highly 

overlapped and/or the difference in diffusion coefficients is small.  
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Figure 2-5. (Left) 
1
H PFG NMR stack spectra of a TPA-ethanol-water mixture collected 

with the BPPSTE sequence. (Right) The normalized integral intensity of TPA and 
ethanol plotted against the square of the gradient amplitude. 
 

 

2.3.2   Two-Dimensional Diffusion Ordered NMR Spectroscopy (DOSY) 

The PFG NMR data set can be visualized as two-dimensional spectrum called 

Diffusion Ordered Spectroscopy, or DOSY, via user selected transformations that 
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display conventional chemical shift spectra in one dimension and corresponding 

„diffusion spectra‟ based on molecular diffusion rates in the other dimension. 105, 106  The 

general DOSY data processing scheme is shown in Figure 2-6. The NMR spectra are 

obtained by a Fast Fourier Transformation (FFT) of FID data in the time domain to 

frequency domain of chemical shift, as shown in Figure 2-2D. The core of DOSY 

processing is the transformation and display of diffusion data in the second spectral 

dimension. The PFG NMR experiment provides a data set 102, 106 

2( , ) ( ) exp[ ( ]m n m n

n

I K v A v D                                  (2-13) 

where K g and the value of ε depends on the shape of the gradient pulse. ( )n mA V is 

the amplitude of the 1D NMR spectrum for the nth diffusing species when g is close to 

zero and Dn is the corresponding diffusion coefficient. According to equation (2-10), 

each frequency ( m ) of the NMR spectrum has a 1D data set that is described by a sum 

of exponential components with K
2 as the independent variable. Thus, at a given 

frequency ( m ), the 1D date set I (K) describing the attenuation of the peak at m can be 

described as 

2 2

0
( ) ( )exp( )I K K d                                           (2-14) 

where ( )nD  and ( ) is the „spectrum‟ of the diffusion coefficient.  The decay 

function 2( )I K  obtained by PFG NMR is the Laplace Transformation of ( ) . 

Therefore, ( )  can be calculated via Inverse Laplace Transformation (ILT) of the 

decay function 2( )I K  (see Figure 2-6 as an example). However, in contrast to FT which 
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suffices to yield a unique spectrum in the absence of truncation errors, ILT is an ill-

conditioned problem and may be completely intractable. In some cases, even if solutions 

for ( )  can be found that are consistent with 2( )I K they are usually not unique. Thus, 

prior knowledge for the sample under study may be essential for limiting the range of 

solutions as well as obtaining the most likely diffusion spectrum.  

 

 

 
Figure 2-6. DOSY data processing by Fast Fourier Transformation (FFT) and Inverse 
Laplace Transformation (ILT). 102 

 
 

Figure 2-7 shows the transformation of a PFG NMR stack plot of Tetrapropyl 

ammonium (TPA)-Tetramethylammonium (TMA)-silica mixture to a DOSY plot, which 

is associated with Figure 2-6. The details of data inversion process by means of various 

computer algorithms are well documented in the literature. 102, 121, 122 
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Figure 2-7. (a) PFG NMR stack FIDs of TPA-TMA-silica mixture as a function of 
gradient amplitude and (b) corresponding stack NMR spectra obtained via FFT. (c) 
NMR intensity decay plot obtained from (b), and (d) corresponding DOSY contour plot 
obtained by ILT. (For clarity, signal from water and ethyl group of ethanol are not 
shown.) 
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2.3.3   Exchange Effects in Diffusion NMR Experiments 

Numerous studies have been performed on chemical exchange processes using 

NMR methods.123-125 The exchange rates, i.e. inverse lifetimes, can be manipulated by 

changes in temperature and concentrations for intermolecular reactions. In diffusion 

NMR the variable is gradient strength and duration (gδ), rather than time, thus no 

analogue of lifetime broadening exists in the diffusion dimension.125, 126 However, 

chemical exchange can potentially influence the observed PFG NMR results. Consider a 

system where a nuclear spin can stay in two separate environments with the same 

Larmor frequency (ωo) and can migrate from one site (A) to the other (B). If exchange 

between the two sites is comparable to the diffusion time scale, the normalized intensity 

decay of the spin is a superposition of the exponential functions associated with each 

site. 127 

( ) exp( ) exp( )A A B BI x p x p x                                         (2-15) 

where 2 2 2( )x g , A and B are apparent decay constants containing 

information about the diffusion coefficients DA and DB, respectively. pA and pB are the 

apparent fractions of each site.  

If the two-site exchange is fast compared to the diffusion time scale, equation (2-

12) become a single exponential decay with a mean diffusion coefficient (DM) 

M A A B BD f D f D                                                           (2-16) 

where fA and fB are the true molecular fractions in sites A and B. This suggests that the 

observed diffusion coefficient is a weighted average of the respective diffusion value in 

either site. 
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If the molecular exchange between the sites is slow compared to the relevant 

experimental time scale, the normalized PFG-NMR intensity decay can be written as a 

sum of the corresponding signal decay of both sites 

( ) exp( ) exp( )A A B BI x p D x p D x                                    (2-17) 

Also the influence of relaxation occurring during the delays (τ) in the STE pulse 

sequence (see Figure 2-1) needs to be considered. Thus, the apparent fractions in 

diffusion experiments are described by 

2 1

2
exp[ ( )]A Ap f

T T
                                             (2-18) 

where T2 is the spin-spin relaxation time and T1 is spin-lattice relaxation time which can 

be obtained by NMR relaxation measurements shown in the following subsections. 

Experimental results of exchange effects on PFG NMR results for TPA-silica and TMA-

silica mixtures are shown subsection 3.3.2.  

 

2.4   Dynamic Light Scattering (DLS) 

DLS measures scattered light intensity changes at a fixed angle as a function of 

time. The thermal motion of the species in solution scattering light causes such time-

dependent fluctuations.  In this study, DLS measurements are performed under dilute 

concentration of silica nanoparticles to avoid multiple scattering. The single-scattered 

light was collected and characterized with an autocorrelator to generate a first-order 

autocorrelation function (ACF).  For monodisperse spherical particles this can related to 

the diffusion coefficient by 

(1) 2( ) exp( )g Dq                                              (2-19) 
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where D is the diffusion coefficient of particles, q is the magnitude of scattering vector 

defined as: 

4
sin( )

2

n
q                                                     (2-20) 

where n is the refractive index of the media, λ is the wavelength of the laser beam, and θ 

is the scattering angle (typically 90°). The diffusion coefficient (D) is related to the 

hydrodynamic radius (RH) of the particles using the Stokes-Einstein equation assuming 

particle-particle interactions can be neglected for dilute solution. 

6
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H

k T
R

D
                                                            (2-21) 

This relation is consistent with equation 2-5 and equation 2-6. The autocorrelation 

function can be fitted by various algorithms to generate the mean particle size or size 

distribution. 128, 129 

 

2.5   Experimental Aspects 

 

2.5.1   NMR Measurements  

All NMR experiments in this thesis were performed on a Varian INOVA 500 

MHz spectrometer equipped with a 5 mm broadband indirect detection probe and a z 

gradient coil (up to 32 G/cm). The temperature was regulated at 25 °C for all 

experiments and the temperature calibration was performed with methanol. Chemical 

shifts are reported relative to an internal reference of DSS at 0 ppm (sodium 2, 2-

dimethyl-2- silapentane-5-sulfonate, Cambridge Isotopes). Approximately 500 μL of 



 46 

mixture was added to the 5-mm tube (Wilmad Labglass). The samples were allowed to 

thermally equilibrate for at least 15 min prior to analysis. 

1H PFG NMR experiments were carried out with static samples, using the 

BPPSTE sequence shown in Figure 2-2. The 90° pulse length was typically 7 to 9 μs. 

The gradient strength (g) was varied from 1 G/cm to 25, 30, or 32 G/cm. The bipolar 

pulse gradient duration (δ) was 2 ms (1 ms duration of individual pulses), the gradient 

recovery delay (τ) was 300 μs, and the diffusion period (Δ) was varied from 200 ms to 1s 

in order to attenuate the signal intensity to less than 10 % of the value obtained at 1 

G/cm. At least 16 transients were collected for each increment step with a relaxation 

delay of 4 s. The field gradient strength was calibrated by measuring the value of self-

diffusivity (Ds) of 10 mol % H2O in D2O (99.96% D atom, Cambridge Isotopes), Ds = 

(1.92 ± 0.06) × 10-10 m2/s at 25 °C. 130 For the BPPSTE pulse sequence the resonance 

intensity (I) is related to the self-diffusion coefficient (Ds) described by equation 2-5. 

DOSY processing was used to resolve the overlapping resonances and was performed 

with the Varian VNMR, VnmrJ operating system. The sweep width of the attenuated 

stack spectra was manually adjusted to approximately 3-4 kHz for data storage purposes. 

In the 1H dimension, the free induction decays (FIDs) were zero filled to 32767 data 

points and processed with a decaying exponential apodization function equivalent to 0.2 

Hz line broadening. A total of 128 complex increments were used in the diffusion 

dimension (plot of peaks corresponding to their diffusion coefficient values). Peak 

heights were utilized as signal intensity (I) in the analyses. 

Spin-lattice relaxation time (T1) measurements were determined using inversion 

recovery experiments [180o
y - η -90o

x - Acq].  Spin-spin relaxation (T2) measurements 
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were performed with the Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence, [90°x-τ-

(180°y-2τ)n-Acq], which utilizes a 180° pulse train to attenuate signals from relaxing 

species. 113, 131 132 The T2 delay (τ) is set to 1 ms and a half-echo was recorded every 4nτ. 

The relaxation delay was 20 s and the number of scans per sample was 4 or 16. When 

the experimental conditions were such that the signal-to-noise was poor (e.g., samples 

with very dilute concentration, long diffusion delay time (Δ), long pulse train length 

(4nτ)), the spectra were carefully examined to include only clearly identifiable peaks. 

 

2.5.2   DLS Measurements  

The DLS experiments were performed with a BIC ZetaPALS with a BI-9000AT 

correlator. The wavelength of the incident laser beam (λ) was 660 nm and the detector 

angle (θ) was 90°. To eliminate any dust, the tested samples were filtered by using a 0.2 

μm PES syringe filter (Corning Co.) prior to loading into the cuvette (VWR). For each 

sample, three measurements were performed and the elapsed time was 5 min to ensure 

good signal-to-noise. The sampling and analysis were carried out in the self-beating 

mode. The delay time increased from 2 μs to 20 ms and the measurement temperature 

was 25 °C. The intensity autocorrelation functions were analyzed with the non-negative 

constrained least-squares method (NNLS). NNLS fitting yields a particle size 

distribution for polydisperse and the largest population is set to 100%. Given the level of 

dilution in these mixtures (approximately 1.3 vol % silica in the C4 mixture) particle-

particle interactions can be reasonably neglected. Thus to a reasonable first 

approximation the translational diffusion coefficient measured is approximately equal to 

the self-diffusion coefficient (Ds), which can be related to the particle hydrodynamic 
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radius (RH) via the Stokes-Einstein equation (2-14). The viscosity of the solution (η), is 

taken to be that of deuterated water (1.097 cP at 298 K). 133 

 

2.5.3   pH and Conductivity 

Solution pH values were measured using a Fisher Scientific AB15/15+ pH meter 

and an Accument glass body Ag/AgCl reference electrode (Pittsburgh, PA, USA). The 

pH meter was calibrated with standard pH7 and 10 buffer solutions. (Ricca Chemical 

Co.). Solution conductivity of was determined with a VWR model 2052EC meter, and 

the conductivity meter was tested on KCl standards at conductivity values of 700μS/cm.  

 

2.5.4   Viscosity 

Viscosity measurements were performed using a precalibrated tube viscosity 

meter (viscometer constant is 0.005095 cSt/s) emerged in a water bath and the measured 

values are averaged over total six measurements. 

 

2.5.5   X-ray Diffraction (XRD)  

Powder XRD measurements were performed on a Rigaku MiniFlex II (Cu KR 

radiation) in reflection mode from 2θ = 5 to 40 
o with a step size of 0.02o and 2s per step. 

 

2.5.6   Small Angle X-ray Scattering (SAXS) 

SAXS measurements were performed using a Bruker-AXS Rotating-Anode 

NANO-STAR Small Angle X-ray Scattering Instrument with Cu Kα radiation (1.5417 

Å). The sample was loaded into a 1-mm diameter Anton Paar quartz capillary and 
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measured at 25 °C. The sample to detector distance 64 cm, corresponding to a q range of 

0.02-0.3 Å-1. The exact sample to detector distance was determined using a silver 

behenate standard. For obtaining the transmission coefficient of the sample, a piece of 

glassy carbon was inserted into the beam path as a second specimen after each 

measurement.  The scattered intensity of the particles was calculated based on using 

water as the reference material for the background subtraction in data analysis.   

 

2.5.7   Thermogravimetric Analyses (TGA) and Scanning Electron Microscopy 

(SEM) 

TGA were performed using a NETZSCH TG 209 with a heating rate of 5 K/min 

from 298 to 973K under mixed O2/N2 environment. The O2 and N2 flow rates were 10 

mL/min and 15 mL/min, respectively. Field emission SEM measurements were 

performed with a JEOL JSM-7500 microscope operating at 5 kV. 

 

2.6   Materials 

All compounds used in the thesis work were used as received. 

Tetramethylammonium hydroxide (TMAOH, 25% w/w), tetraethylammonium 

hydroxide (TEAOH, 35% w/w), tetrapropylammonium hydroxide (TPAOH, 40% w/w), 

tetrabutylammonium hydroxide (TBAOH, 40% w/w), and tetramethylammonium 

bromide (TMABr, 98%) were purchased from Alfa Aesar. Tetrapropylammonium 

bromide (TPABr, 98%) was purchased from Aldrich. Tetraethyl orthosilicate (TEOS, > 

99%) was purchased from Fluka. Sodium hydroxide (NaOH, 99%) was purchased from 

BDH Chemicals. Ethanol (CH3CH2OH, > 99.5%) was purchased from Acros Organic. 
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Lithium chloride (LiCl, 99%) and cesium chloride (CsCl, 99%) were purchased from 

Alfa Aesar. Sodium chloride (NaCl, 99%) was purchased from EMD Chemicals. 

Deuterium oxide (D2O, 99.96% D, Cambridge Isotopes) and sodium 2,2-dimethyl-2-

silapentane-5-sulfonate (DSS) was used as received.  

 

2.7   Sample Preparation 

 

2.7.1   Samples Tested prior to Heating 

Two different preparation methods were used to formulate the mixtures 

investigated. For one set of experiments it was desired to prepare samples of varying 

silica content at fixed TAAOH concentration. In this case solutions of molar 

composition 9TAAOH: xSiO2: 9500H2O: 4xEtOH (x varied from 0 to 120) were 

synthesized in two steps. First, the desired TAAOH was added to deionized water and 

the mixture was stirred for approximately 1 h. Then TEOS was added to the mixture, and 

the resulting solution was stirred for a minimum of 12 h to ensure the complete 

hydrolysis of TEOS. The solutions used for NMR measurements were prepared 

following the method above, but instead with deuterated water. To make a comparison 

with hydrolyzed TEOS solutions, mixtures with the equivalent amount of water and 

ethanol were prepared by first diluting TPAOH in deuterated water and then adding the 

desired amount of ethanol to yield a final composition of 9TPAOH: 4xEtOH: 9500D2O 

(x =20-120).  

The other series of samples with fixed silica content but varying the TAA content 

were prepared as follows. NaOH was dissolved in deuterated water, and TEOS was 
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added to give a mixture composition of 9NaOH: x SiO2: 9500D2O: 4x EtOH (x= 0, 5, 20, 

40, 80). These above solutions were stirred for at least 12 h to allow complete hydrolysis 

of TEOS, and are hereafter denoted as C0-C4 shown in Table 2-1. The viscosity of C0-

C4 mixtures were also shown in Table 2-1. Increasing amount of TPABr or TMABr was 

added to these silica solutions, and the resulting mixtures are denoted as y TAA/C0, C1, 

C3, C4 (TAA= TMABr, TPABr; y was increased from 0.25 to 36). The compositions 

were chosen as they are representative of those used in silica precursor particle studies 62, 

73 and silicalite-1 growth experiments.78 Sodium hydroxide was used to set the solution 

initial pH when varying the TAA cation concentration, and thus control the nanoparticle 

formation. All samples used for NMR measurements were allowed to equilibrate for a 

minimum of 24 h before measuring.     

 

 

Table 2-1. Mixture compositions and viscosity of silica solutions investigated.* 

Sample Composition Viscosity (cp) 

C1 9NaOH:5SiO2:9500H2O: 20EtOH 0.947  0.037 

C2 9NaOH:20SiO2:9500H2O: 80EtOH 0.980  0.004 

C3 9NaOH:40SiO2:9500H2O: 160EtOH 1.063  0.003 

C4 9NaOH:80SiO2:9500H2O: 320EtOH 1.296  0.014 

*SiO2 was added as TEOS. 
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2.7.2   Samples Subjected to Heating 

TPA-silica mixtures with molar compositions of 9NaOH: x TPABr: 40SiO2: 

9500 D2O: 160 EtOH (x = 0.25, 0.5, 0.75, 1.0, 1.5, 3.0) were prepared as described in the 

above subsection 2.6.1, and are denoted as x TPA/C3. These TPA-silica mixtures were 

then placed in screw cap Teflon containers and heated at 90 °C. Particularly, 0.5 TPA/C3 

sample were heated at 70, 90, and 100 °C to study the effects of heating temperature. 

Aliquots were taken from the above heated mixtures that were quenched at different time 

intervals. Despite that these experiments are not formally in situ measurements, the 

particle structure becomes more stable over time at elevated temperatures, which is 

irreversible, and thus the measurements are expected to capture the key feature of 

interest in the current work (TPA-silica interactions). 

x TPA/C3 (x= 0.5, 1.5, 3.0, 9.0) mixtures were prepared as described above but 

in protonated water, and heated at 90 °C for two weeks. Nanosized silicalite-1 crystals 

were synthesized as a reference material as follows.134 TPAOH was mixed with 

deionized water, and the desired amount of TEOS was added to yield a molar 

composition of 9 TPAOH: 25 SiO2:1450 H2O: 100 EtOH. This solution was stirred for 

24 h at room temperature and placed into a sealed, Teflon-lined autoclave heated at 100 

°C for 2 days. The collected solids from the above two mixtures were removed from 

their mother liquid by centrifugation at a rate of 13 000 rpm, washed with distilled water 

until pH = 7-8, and then dried overnight at 40 °C before being subjected to further 

characterization. 

. 
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2.7.3    Samples with Mixed Organocations 

TMA-TPA-silica mixtures with molar compositions of 9NaOH:  y TPABr: x 

TMABr: 40 SiO2: 9500 D2O: 160 EtOH (x = 0.125-1.0; for a given value of x, y was 

varied between 0.125-1.25) were synthesized as described above.  These above mixtures 

are denoted as y TPA/ x TMA/C3. To investigate the effect of hydrothermal treatment, 

0.5TPA/ x TMA/C3 (x = 0, 0.5, 1.0, 1.5) mixtures were placed in screw cap Teflon 

containers and heated at 90 oC. Aliquots were taken from the heated mixtures that were 

quenched at different time intervals. In addition, these above TMA-TPA-silica mixtures 

were prepared in protonated water and heated at 90 oC for 2 weeks. The collected solids 

were removed from their mother liquid by centrifugation at a rate of 13 000 rpm, washed 

with distilled water until the pH was between 7 and 8, and then dried overnight at 40 oC. 

 

2.7.4    Samples Added with Various Salts 

Silica mixture C3 as mentioned above serves as a background solution. LiCl, 

NaCl, and CsCl were added to C3 solution with concentrations ranging from 1 to 50 

mM.  These mixtures were stirred for two hours to dissolve the added salt completely 

and are denoted as C3/x MCl (M=Li, Na, Cs and x =1, 2, 5, 10, 20, 50 mM). After that, 

desired amount of TPABr, and TMABr was dissolved in silica mixtures with added 

various salts, and the resulting mixtures were denoted as 0.25 TAA/ C3/ x MCl (TAA= 

TPA, TMA).  

        Another series of samples were also prepared with constant salt concentration 

where the TAABr content was varied to investigate the effect of electrolyte type on the 

TAA-silica interactions.  Thus different amounts of TAABr were added to C3 mixtures 
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with 5mM salt and denoted as y TAA/C3/5mM MCl (y represents the moles of TAA 

added and increases from 0.25 to 1.25).  Mixtures were filtered with 0.45 μm membranes 

(Corning Co.) prior to analysis.  For pH and conductivity studies, the silica solutions 

with added salt are prepared as described above but with protonated water. 
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CHAPTER III 

TETRAALKYLAMMONIUM-SILICA PRECURSOR PARTICLE 

INTERACTIONS AT ROOM TEMPERATURE* 

 

3.1   Introduction     

1H PFG NMR studies of tetraalkylammonium (TAA) cations in the presence of 

silica precursor particles at room temperature are complemented as necessary with 

dynamic light scattering. These results are consistent with the model of the nanoparticles 

having a core (silica)-shell (TPA) structure, and demonstrate the validity of PFG NMR 

for measuring TAA-silica nanoparticle interactions. Clear differences can be observed 

for different organocations and a detailed comparative study between 

tetramethylammonium (TMA) and tetrapropylammonium (TPA) is presented. The 

implications of these findings in terms of zeolite nucleation and growth are discussed. 

 

3.2   Experimental 

 

3.2.1   Sample Synthesis 

TPA-silica-water mixtures tested in this chapter are prepared as described in 

subsection 2.7.1. The composition and viscosity of silica mixtures C0-C4 are shown in 

Table 2-1. 

*Reproduced with permission from “PFG NMR Investigations of Tetraalkylammonium-

Silica Mixtures” by Li, X and Shantz, D. F. Journal of Physical Chemistry C, 2010, 114, 

8449-8458. Copyright 2010 American Chemistry Society. 
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3.2.2   Experimental 

Solution pH, Viscosity, Dynamic Light Scattering (DLS), Relaxation NMR, and 

PFG NMR measurements were performed as described in subsections 2.2, 2.3, 2.4. 

 

3.3   Results  

 

3.3.1   Formation of Silica Nanoparticles in Silica Basic Solutions 

Figure 3-1a shows the hydroxide concentrations of TAAOH-silica mixtures 

decrease rapidly and then level off with increasing silica concentration in these mixtures.  

Also initial scattering intensity of DLS measurements on sodium hydroxide silica 

mixtures (C1-C4) increase as addition of more silica above certain point (see Figure 3-

1b). The results shown are in good agreement with previous work by Fedeyko and co-

workers.7, 73 When the silica concentration is below the critical aggregation 

concentration (cac) the solution pH decreases sharply upon increasing the silica 

concentration. After the cac point, there is only a very small decrease in the pH with 

increasing silica concentration. Previous work in the literature has described this 

behavior in detail. 13, 81 The results in Figure 3-1 are included here as baseline 

information, and also for comparison to the NMR relaxation and diffusion measurements 

described below. 



 57 

 

Figure 3-1. (a) Hydroxide concentration as a function of the total silica content in 
solution. (The dashed line denotes the approximate value of the critical aggregation 
concentration.) (b) Autocorrelation functions of C1-C4 silica solutions obtained by DLS.  
 

 

3.3.2   NMR Analysis of TAA-silica Nanoparticle Interactions 

1H NMR spectra of 0.5TPA/C0-C4 mixtures are shown in Figure 3-2a. The 

ethanol resonances due to TEOS hydrolysis are at chemical shift values of 3.63 and 1.17 

ppm, neither the line positions nor line widths change appreciably with increasing silica 

content. The resonances assigned to TPA cations in the C0 solution without silica are at 

3.11, 1.68, and 0.92 ppm. The lines gradually lose their fine structure (i.e., J coupling) 

and the line widths increase monotonically upon increasing silica concentration. A 

simple explanation for the TPA line broadening observed is that there are interactions 

between the silica in solution and the organocations. The relative intensity ratios of the 

TPA and ethanol resonances are summarized in Table 3-1, and indicate nearly all the 

TPA is observable.  
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Figure 3-2. (a) 1H NMR spectra and (b) Spin-spin relaxation time (T2) of TPA in 0.5 
TPA/C0-C3 and 1.0 TPA/C4 mixtures. (# Ethanol; $ TPA; * 13 C side band; T2 values of 
the methyl group of TPA cation are reported here.) 
 

 

Table 3-1. Relative intensities ratio (R) between TPA and ethanol resonances.* 

 0.5 TPA/C3 1.0 TPA/C4 
Resonance 
assignment 

Chemical Shift 
(ppm) Rexp RTheory  Rexp RTheory 

Ethanol 3.64 0.018 0.019 0.016 0.019 
TPA 0.96 

*Average over six integrations for 0.5TPA/C3 and four integrations for 1.0TPA/C4; 
calculated from integration area of CH3 group of TPA and CH2 group of Ethanol. 
 
 

To investigate this further, transverse relaxation measurements (T2) were 

performed on the above TPA-silica mixtures, and shown in Figure 3-2b. The plot shows 

that TPA has a larger T2 value when silica concentration above cac point than that below 

cac point. . The results in Figure 3-2b are consistent with the idea that the silica-TPA 

interactions are the origin of line broadening observed in Figure 3-2a. The fact that the 
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value of the relaxation time is essentially constant after the cac seems to imply that 

increasing the number of nanoparticles does not lead to changes in the TPA-silica 

interaction. In other words, upon crossing the cac adding more silica leads to more 

nanoparticles until gelation occurs.  

On the basis of the results above the addition of silica to these mixtures leads to a 

perturbation of the environment of the organociatons as manifested by the movement of 

certain resonances and the line broadening observed, which is reflected in the decreasing 

values of T2. To study this in more detail PFG NMR was used to investigate these 

mixtures. Figure 3-3a shows the measured organocation diffusion coefficient for 

TAAOH-silica mixtures as a function of the silica content in the mixture. For all TAA 

cations it is clearly observed that the observed coefficient decreases (Dobs) with 

increasing silica content. The values of the diffusion coefficients at the lowest silica 

content are quite similar to those of the value of TAAOH in water. As shown in Figure 

3-3b, the observed diffusion coefficient (Dobs) of TPAOH in TEOS hydrolyzed solution 

is smaller than that in the corresponding water/ethanol mixture, and the discrepancy 

between the two values becomes larger with increasing silica contents. A simple 

interpretation of the data in Figure 3-3b is that the organocation-silica interactions lead 

to a reduction in the observed diffusion coefficient. Our attempts to describe this in more 

detail have focused on a two-state model, wherein the organocation can be described as 

either “free” in solution or “bound” to the nanoparticle (see Figure 3-4). This simple 

physical model is chosen for several reasons. First, small molecule binding in 

macromolecular systems has been successfully described with this approach. The main 

points of this methodology have been explained in subsection 2.3.2. Second, this appears 
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to be a reasonable physical model for physical adsorption of the organocation on the 

nanoparticle surface and is consistent with existing models of these systems which report 

these to be organocation-silica core-shell materials.  

 

 

 

Figure 3-3. (a) Observed diffusion coefficients (Dobs) for a series of TAAOH-silica 
mixtures with constant TAAOH content but varying silica content. (b) Dobs of TPAOH in 
ethanol/water (solid circles) and TEOS/water (open circles) mixtures. (The dashed line 
denotes the approximate value of the critical aggregation concentration (cac).) 
 

 

 

Figure 3-4. Schematic view of TAA cations adsorption on silica nanoparticles in 
solution. 
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In the following subsections, a quantitative analysis of TAA-silica nanoparticle 

interactions was performed through careful comparison experiments. TMA and TPA 

were chosen as probe molecules and added to C0-C4 silica solutions. This is motivated 

by TPA cations being widely used as an SDA for the synthesis of silicalite-1 from clear 

solutions, and TMA is a much more hydrophilic cation, incapable of making zeolites 

under these conditions (i.e., pure silica mixtures, low-temperature heating). Figure 3-5 

shows the diffusion coefficient measured versus the organocations concentration for a 

variety of TMA-silica and TPA-silica mixtures, i.e. y TAA/C0-C4. The lowest 

concentration mixtures were chosen based on the detection limit of the NMR 

measurements. The high concentration mixtures were chosen based on the observed 

diffusion coefficient becoming insensitive to changes in concentration. Three key 

observations can be made. First, measurements of TMA/C0 and TPA/C0 water solutions 

show that the self-diffusion coefficient is nearly constant over the range of cation 

concentrations investigated. This allows us to conclude that TAA aggregation under 

these conditions is not significant. Second, for C1 solutions only with dissolved silica 

species (the silica concentration is below the cac point), the observed diffusion 

coefficients of TMA and TPA are essentially constant with addition of cations and only 

show a minor variation from the values in the C0 water mixture. Third, for mixtures 

having silica nanoparticles, i.e., C2-C4 solutions, the observed diffusion coefficients 

(Dobs) within low TAA concentration region was significant lower than the values of C1 

solution. One explanation for this reduction in diffusion coefficients could be the 

changes of the silica solution viscosity with increasing silica content. However, the 

viscosity measurements of C1-C4 mixtures at 25 °C (see Table 2-1) show that viscosity 
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variation of the silica mixtures is within 40 %. Also given the effect of ethanol due to 

TEOS hydrolysis on the motion of TAA (see Figure 3-3b), the diffusion coefficient of 

TPA and TMA were obtained from mixtures with equivalent amounts of ethanol and 

water as the C2-C4 silica solutions (see Figure 3-6). However, the presence of a large 

amount of ethanol only leads to a slight decrease in TPA diffusion coefficients. 

Therefore, in Figure 3-5, the significant reduction of Dobs observed within low TAA 

concentration region (1mM to 10mM) is mainly due to the binding of TAA cations onto 

the negatively charged silica nanoparticles.  

 

 

 

Figure 3-5. Observed diffusion coefficient (Dobs) of (a) TMA and (b) TPA as a function 
of the organocation concentration for several mixtures, which are indicated in the 
legend. 
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Figure 3-6. Observed diffusion coefficient (Dobs) of (a) TMA and (b) TPA in ethanol / 
water mixtures as a function of total cation concentration. (y TAABr/4x EtOH/9500 
H2O, x =0, 20, 40, 80 and for each x, y varies from 0.25 to 36.0). 
 
 

      Another noteworthy in Figure 3-5 is that the diffusion coefficients of TAA in C2-C4 

mixtures increase rapidly upon addition of more TAA and reach a plateau at high TAA 

concentration region. This behavior is consistent with the two-state model demonstrated 

in Figure 3-4. The observed diffusion coefficient obtained by PFG NMR method is an 

averaged value between the value of free and bound TAA. As shown in Figure 3-5, upon 

increasing the total TAA concentration, the population of free TAA increases, leading to 

an increase in the observed diffusion coefficient towards the value of the free diffusion 

coefficient.  The potentially confounding effects of chemical exchange on diffusion 

experiments must be considered, as mentioned in subsection 2.2.3.127 To test this, PFG 

NMR experiments were performed on a series of TMA-silica and TPA-silica mixtures 

with various organocation concentration, and the diffusion time (Δ) ranging from 0.05 to 

1.0 s Δ< T1 . The T1 values of the TPA-silica and TMA-silica mixtures studied were 
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shown in Table 3-2. Figure 3-7 shows the observed diffusion coefficient (Dobs) of TPA 

and TMA as a function of diffusion time (Δ) in a series of silica mixtures. 

 

 

Table 3-2. Spin-lattice relaxation time (T1) of TAA in different silica mixtures. 

Samples C TPA (wt %) T1(s) Samples C TMA (wt %) T1(s) 

1.0TPA/C4 0.14 0.89  0.03 0.25TMA/C4 0.021 1.74  0.05 

3.0TPA/C4 0.43 0.82  0.02 1.0TMA/C4 0.083 2.04  0.03 

6.0TPA/C4 0.86 0.81  0.02 0.25TMA/C3 0.021 1.82  0.05 

0.5TPA/C3 0.07 0.99  0.03 1.0TMA/C3 0.083 2.54  0.02 

1.0TPA/C3 0.14 0.85  0.03 0.25TMA/C2 0.021 2.66  0.01 

3.0TPA/C3 0.43 0.89  0.02 0.25TMA/C1 0.021 7.69  0.02 

6.0TPA/C3 0.86 0.94  0.02 0.25TMA/C0 0.021 8.20  0.11 

0.5TPA/C2 0.07 1.03  0.01    

0.5TPA/C1 0.07 1.17  0.02    

0.5TPA/C0 0.07 1.15  0.01    
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Figure 3-7. Observed diffusion coefficient (Dobs) of organocations in as a function of 
diffusion time (Δ/s) in (a) x TPA/C2-C3, x TPA/C4 (b) and (c) x TMA/C0-C4. 
 
 

These experiments show that the diffusion coefficients measured within this 

diffusion time region are essentially independent of diffusion (no attenuation above 5-

10%). This and the observation of single exponential intensity decay behavior are both 

consistent with the cation being in the fast exchange limit. Thurs the observed diffusion 

coefficient of TAA can be described by: 
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obs b b f fD f D f D                                                   (3-1) 

where Db and Df denote the diffusion coefficient of free and bound TAA; fb and ff denote 

the fraction of TAA in free and bound state, respectively.  

Now with the results above in hand it is possible to determine the fraction of 

bound organocation (fb) for the various TAA-silica mixtures. DLS was employed to 

estimate the diffusion coefficient of the bound state (Db), as we assume the bound TAA 

diffuse at the same rate with theses silica nanoparticls. The particle size distribution of 

C2-C4 silica solutions are shown in Figure 3-8. Thesis mixtures have silica nanoparticles 

around 5-6 nm in size and a few large particles with size of around 100 nm. However, no 

large aggregates in silica mixture (C3) were observed from SAXS data (see Figure 3-9). 

The values of Df   were obtained from a series of TAA-water-ethanol mixtures shown in 

Figure 3-7.  

 
 

 

Figure 3-8. Particle size distribution of silica solutions C2-C4 obtained by NNLS fitting 
of corresponding ACFs shown in Figure 3-1b. 
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Figure 3-9. SAXS data of silica mixture C3 measured at RT. (Inset) Corresponding pair 
distance distribution function (PDDF). 
 
 

 Figure 3-10 shows that the fraction of bound TMA and TPA decreases rapidly 

upon addition of more organocation at first and gradually converges to a constant value 

in the high organocation concentration region. The concentration of bound TAA cation 

can then be determined by 

[ ] [ ]bound b totalTAA f TAA                                                         (3-2) 

Thus, the fraction of TAA bound shown in Figure 3-10 can be replotted as the 

concentration of bound cation versus total solution concentration, i.e., binding isotherms 

show in Fig. 3-11. The behavior observed in Figure 3-11 is consistent with classic 

monolayer (Langmuir) behavior. The strongest binding occurs at low concentrations of 

TAA and is characterized by a sharp rise in the amount of TAA adsorbed. Following this 

sharp increase in the amount of TAA bound the value plateaus as the total amount of 

TAA further increased above 31.5 mM/kg for TMA and 47 mM/ kg for TPA. Also 



 68 

noteworthy is that the maximum amount of TAA bound appears to scale with the silica 

concentration, implying the amount bound scales with the number of nanoparticles.  

 

 

Figure 3-10. Fraction of (a) bound TMA and (b) bound TPA as a function of the 
organocation concentration in C2, C3 and C4 silica mixtures. 
 
 

 

Figure 3-11. Binding isotherms of (a) TMA and (b) TPA in a series of silica mixtures.  
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If one is willing to assume that the nanoparticle surface is uniform and TAA 

cations adsorbed onto the surface form a monolayer coverage the Langmuir model can 

be used to describe the behavior observed in Figure 3-11. This is consistent with 

previous literature, which indicates that TAA cations form aggregates in water at 

molarities of approximately 1 mol/L, 101 which is well above the concentrations used in 

our studies (1.45 mM/L - 0.21 mol/L). For the dilute solutions of this study, the general 

equation for a Langmuir-type adsorption is similar to that for gas adsorption, expressed 

as 135, 136  

1f f

m m

b ad b b

C C

X K X X
                                                       (3-3) 

 
where Xb is the molar ratio of [TAA]bound versus [SiO2]nanoparticle (the concentration of 

silica in the form of nanoparticles) and m

bX is the ratio at adsorption saturation. Kad is the 

adsorption equilibrium constant, and Cf is the concentration of free TAA cations in 

solution at equilibrium. From a plot of (Cf)/(Xb) versus Cf one can obtain m

bX  from the 

slope and Kad from intercept. The adsorption free energy o

adG  can then be calculated 137 

lno

ad adG RT K                                                          (3-4) 

To fully analyze the data and calculate total adsorbed amount at saturation 

[ ]m

bTAA (mol/kg), we need an estimate of [SiO2]nanoparticle. On the basis of previous work 

we assume the dominant silica species are the dissolved monomers and nanoparticles. 13, 

99 Using the work of Rimer and co-workers 78, we can describe the composition of silica 

species as: 

2 2 2[ ] [ ] [ ]tot monoer nanoparticlesSiO SiO SiO                                         (3-5)  
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Also from these previous works we can estimate the monomer concentration 

from the cac point 

2[ ] 24.147[ ] 0.016cacSiO OH                                                 (3-6) 

Figure 3-12a shows the results of these fits for the various TMA-silica solutions 

and (b) shows the fits for the TPA-silica solutions. R2 values of all fits are between 0.969 

(TMA/C2) and 0.998 (TPA/C4), showing that the experimental results fit the Langmuir 

adsorption model well. The deviations from the regression fits consistently appear at the 

lowest solution concentrations of TMA and TPA.  

 

 

 

Figure 3-12.  Data (circles) and fit (solid line) for (a) TMA-silica mixtures and (b) TPA-
silica mixtures as described by the Langmuir isotherm model. 
 
 

A simple interpretation of this result is that in the dilute solution limit 

nonhomogeneity of the surface can be detected, or alternatively that the first cations 
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adsorbed bind at the strongest binding sites. Table 3-3 displays the Langmuir constants 

and derived thermodynamic parameters for TMA and TPA in silicate solutions with 

different silica content.  

 

 

Table 3-3. Langmuir constants and derived thermodynamic parameters obtained 

for adsorbing TAA on silica nanoparticles. 

a calculated using the value of [SiO2]cac (0.042mol/kg) obtained from the pH 
measurement of sodium silicate solutions using equation 3-5 and equation 3-6; b For 
TMA/C2-C4, the average uncertainty in [TMA]b

m is 3.33 %, and that in Kad and ΔG
o
ad is 

25.41%; c For TPA/C2-C4, the average uncertainty in Xb
m and [TPA]b

m is 2.96 %, and 
that in Kad and ΔG

o
ad is 17.31%. 

 
 

As can be seen in Table 3-3, all o

adG values vary between -10 and -14 kJ/mol, 

indicating the nonspecific adsorption of TAA cations to silica particles. Comparing the

o

adG and Kad values shown in Table 3-3, TMA displays larger values than TPA with 

approximately the same silica nanoparticle concentration, suggesting a stronger binding 

strength between TMA and silica particles. Another notable finding is that more TMA 

adsorbs on the nanoparticles than TPA for monolayer coverage. Considering the 

                                              bTMA                                                                     cTPA 

Solution a[SiO2]nanoparticle 

(mol/kg) 

[ ]m

bTMA  

(mol/kg) 

Kad 

(kg/mol) 

o

adG   

(kg/mol) 

[ ]m

bTPA   

(mol/kg) 

Kad 

(kg/mol) 

o

adG   

(kg/mol) 

C2 0.063 0.0045 202.27 -13.15 0.0039 69.81 -10.52 

C3 0.169 0.0117 295.62 -14.09 0.0092 95.51 -11.29 

C4 0.379 0.0243 284.35 -14.00 0.0152 148.64 -12.39 
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difference in surface charge density of organocations, TMA may have stronger 

electrostatic interactions with the nanoparticles than TPA. The other notable difference 

between the two cations is that TPA is more hydrophobic; however, work below, we 

believe, points to the differences observed being due primarily to electrostatic effects. 

 

3.4   Conclusions 

The interactions between TAA cations and silica nanoparticles in a series of clear 

solutions have been investigated by PFG NMR. The results confirm that binding of TAA 

cations to silica is a general phenomenon in these mixtures. The binding isotherm of 

TMA cations and TPA cations in silica mixtures demonstrated a nonlinear behavior and 

can be well described by the Langmuir adsorption model. From this model, we estimated 

the monolayer coverage of TAA cations on silica nanoparticles, as well as adsorption 

equilibrium constants (Kad) and adsorption free energy (ΔG°ad) for different TAA-silica 

mixtures. The results indicate that TMA has a stronger adsorption strength and larger 

adsorption loading on the silica particles than TPA cations. A sharp decrease of T2 

values of organocations in the presence of silica implies that rotational motion of TAA is 

significantly reduced mainly due to binding. 1H NMR spectral line broadening and the 

frequency shift of TAA cations with increasing silica content are consistent with the 

change of T2. Taken together, the findings in this study have important implications for 

understanding the organic-inorganic interaction and further, the role of TAA-silica 

particles in zeolite nucleation. The following Chapter IV investigates how these 

properties change in TPA-silica mixtures upon hydrothermal treatment. 
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CHAPTER IV 

TETRAALKYLAMMONIUM-SILICA PRECURSOR PARTICLE 

INTERACTIONS AT ELEVATED TEMPERATURES* 

 

4.1   Introduction 

The works shown in Chapter II characterized the organocation-silica 

nanoparticles interactions in TAA-silica mixtures and determined binding isotherms for 

these mixtures at room temperature prior to heating. In this chapter, we use PFG NMR to 

study the evolution of the tetrapropyl ammonium (TPA)-silica nanoparticle complexes 

as a function of temperature and TPA content. These data are further correlated with 

DLS to determine the primary nanoparticle evolution over time to provide kinetic 

information on silicalite-1 nucleation. 

 

4.2   Experimental 

 

4.2.1   Sample Preparation 

     TPA-silica mixtures (x TPA/C3, where x = 0.5-3.0) studied in this  chapter were 

prepared as described in subsection 2.7.2.  

__________ 

*Reproduced with permission from “PFG NMR Investigations of Heated 
Tetraalkylammonium-Silica Mixtures” by Li, X and Shantz, D. F. Journal of Physical 

Chemistry C, 2010, 114, 14561-14570. Copyright 2010 American Chemistry Society. 
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4.2.2   Analytical 

Solution pH and conductivity, powder X-ray diffraction (PXRD), Thermo 

gravimetric analyses (TGA), Field-emission scanning electron microscopy (FE-SEM), 

Dynamic Light Scattering (DLS) and NMR measurements were performed as described 

in subsections 2.2, 2.3, 2.4.  

 

4.3   Results 

The solids collected from 0.5 TPA/C3 synthesis mixtures heated for 2 weeks at 

90 °C were analyzed by XRD and FE-SEM to verify phase purity. The organic free but 

otherwise identical silica mixture C3 did not form silicalite-1 under the same conditions. 

The 0.5 TPA/C3 sample was chosen for investigation as it is dilute in TPA, facilitating 

PFG NMR, yet mixtures with the same TPA/SiO2 ratio are known to form silicalite-1.90 

For comparison, nanosized silicalite-1 crystals were synthesized following the protocol 

of Hedlund et al.134 and used it as a reference. The XRD data in Figure 4-1 shows that 

the products obtained from the 0.5 TPA/C3 mixtures are pure MFI-type materials. 

Figure 4-1 also shows the weight loss curve of the reference sample and the products 

from 0.5 TPA/C3 in TGA measurements. For the 0.5 TPA/C3 sample, a weight loss of 

11.8 wt % is observed over the temperature range of 360 - 650 °C due to the thermal 

decomposition of the organocations. Despite that the 0.5 TPA/C3 mixture is TPA-

deficient (i.e., could not crystallize all silica in the solution), the amount of the organic 

template corresponds to four TPA molecules per unit cell, indicating that the zeolite 

forms with the ideal unit-cell composition [(TPA)4(SiO2)96]. For the reference sample, 

the total weight loss was approximately 14 wt %, with 1.2 and 11.6 wt % in the 
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temperature ranges 25-280 oC and 300-650 °C. The former weight loss is attributed to 

physically adsorbed water and organocation at crystal surfaces. The difference in weight 

loss curves is likely due to the very different size of the crystals, which may lead to more 

physically adsorbed water on the external surface of the crystals for the reference 

sample.  

 

 

 

Figure  4-1.  (Left) PXRD patterns and (right) TGA traces of the reference sample and 
solids obtained from 0.5 TPA/C3 synthesis mixtures. 
 
 

SEM micrographs of the two samples are shown in Figure 4-2. The reference 

sample exhibits a spherical crystal shape with diameters of 500 nm, whereas the crystals 

from the 0.5 TPA/C3 solution are large (∼10 μm) with high length/width ratios. It 

appears that fewer nuclei form in the TPA-limited synthesis solution, and hence 

relatively large crystals are produced. The results above indicate that silicalite-1 crystals 
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can be synthesized from 0.5 TPA/C3 solution mixtures and the zeolite yield is limited by 

TPA availability (silicalite-1 yield is between 1-2 % based on silica). Also, the formation 

of elongated flat crystals from the dilute solution with high H2O/SiO2 ratio is in a good 

agreement with previous studies. 66, 138 Detailed measurements for the dilute synthesis 

mixture were performed to gain insight into how the organocation-silicate interactions 

evolve during initial heating. 

 

 

 

Figure 4-2.  FE-SEM images of (left) a reference sample of silicalite-1 and (right) an as-
synthesized 0.5 TPA/C3 sample.  (Scale bar is 1μm in both images.) 
 
 

The pH and conductivity (ζ) were measured for 0.5 TPA/C3 heated at 90 
oC over 

a 24-h period and is shown in Figure 4-3. It is observed that both of pH and conductivity 

increase within the first eight hour of heating and level off as time progresses. This 

change of solution properties indicate that a fraction of silica precursor particles might 

dissolve and/or aggregate during heating. Figure 4-4 shows the particle size distribution 

of the 0.5 TPA/C3 sample subjected to hydrothermal treatment (70-100 °C) for 48 h. 
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Particles with a radius of approximately 6 nm were observed in all samples prior to 

heating. 

 

 

 
Figure 4-3. pH and conductivity (ζ) of 0.5 TPA/C3 sample heated at 90 

oC over 24 h 
period. 
 
 

 
Figure 4-4. Particle size distribution obtained from DLS data of 0.5 TPA/C3 mixture 
prepared with deuterated water and heated at various temperatures for 48h (a-c): 70 °C, 
90 °C and 100 °C. 
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Figure 4-4. Continued. 

 
 

As shown in Figure 4-4a, no significant changes were observed in the particle 

size upon heating at 70 °C after 48 h. Upon heating at 90 °C only a slight increase in the 

particle size is observed during the first 24 h (see Figure 4-4b). A clear difference is 

observed upon heating for 48 h, as most of the particles increase in size to approximately 

20 nm, and a much smaller population of 5 nm particles is observed. For samples heated 

at 100 °C (Figure 4-4c), a second population of particles with a radius of approximately 

20 nm is observed after 24 h of heating. The number density of these particles increases 

upon heating for an additional 24 h. In general, nanoparticles approximately 5-7 nm in 

diameter have been observed in the heated sample, and their number remains stable 

during the first 24 h of heating at 70-100 °C. These observations are consistent with 

previous studies.78, 83, 85 
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4.3.1   
1
H NMR     

The previous chapter reported silica-organocation interactions in these mixtures 

prior to heating. Given the intense interest in understanding the evolution of these 

particles during heating and the steps involved in nucleation, here we focus on 

quantifying the silica-organocation interactions after these mixtures have been heated. 

Of particular relevance to the current work is a previously published study by Rimer and 

co-workers.78 Their work suggested that the particles evolve via an Ostwald ripening 

process and that a fraction of them grow into larger and more stable particles while many 

dissolve during heating. Also noteworthy is that the nanoparticles are stabilized by a 

layer of organic cations and may evolve into viable nuclei with incorporated organic 

template upon hydrothermal treatment.  

1H NMR measurements were performed on 0.5 TPA/C3 mixtures to monitor the 

organocation during heating. These results are expected to provide information about the 

TPA-nanoparticle interactions and how they change upon heating. Figure 4-5 shows the 

1H NMR spectra of 0.5 TPA/C3 mixtures heated at 70, 90 and 100 °C over 48 h. The 

ethanol resonances due to TEOS hydrolysis are at chemical shift values of 3.63 (not 

shown) and 1.17 ppm, and the line positions do not change upon heating. The resonances 

assigned to TPA cations are at 3.13, 1.68, and 0.95 ppm. In previous work we showed 

that the TPA resonances broaden upon the introduction of silica due to binding of the 

cations onto the nanoparticles. No appreciable change of the chemical shift values is 

observed for the TPA resonances. However, the line widths and intensity vary with 

increasing temperature and heating time. At the lowest temperature (70 °C), neither the 

line widths nor the line intensities change appreciably with synthesis time (see Figure 4-
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5a). However, the line intensity of the methyl group of the TPA cation at 90 °C 

gradually increases with heating time (see Figure 4-5b). Further increasing the 

temperature to 100 °C leads to a pronounced increase in the intensity along with a 

decrease in the line widths during heating. (see Figure 4-5c) 

 

 

 

 

Figure 4-5. 1H NMR spectra of 0.5 TPA/C3 synthesis mixtures heated at (a) 70 oC, (b) 
90 oC and (c) 100 oC. (For clarity, the ethylene group (3.63 ppm) of ethanol is not 
shown, and the y-axis is on the same scale.) 
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To give a more quantitative analysis and avoid the effect of ethanol loss during 

heating, the relative intensity ratios (R) of the methyl group of TPA (0.95 ppm) versus 

the methyl group of DSS (0 ppm) (internal standard) in the sample upon heating are 

summarized in Figure 4-6. An increase in the intensity ratio for samples heated at 90 and 

100 °C with time was observed, and the ratio increases with increasing heating 

temperature. This is not observed for the sample heated at 70 °C, which possibly 

indicates more TPA remains bound to the nanoparticles. It is not clear why the ratio 

increases above the theoretical maximum of 6.7, which is calculated based on the molar 

ratio of TPA/DSS (5) and total number of protons in their methyl groups. One possibility 

is that the DSS partially decomposes upon heating; the trend with temperature in Figure 

4-6 would be consistent with this (i.e., lower heating temperatures lead to less 

decomposition and a lower ratio). However, the key conclusion from Figure 4-6 is that 

before heating the observed intensity ratio is within 10 % of the expected ratio. This 

implies that there is not a sizable population of unobservable TPA cations. A simple 

explanation of the changes in the line widths and intensity in Figure 4-6 is that the 

mobility of the TPA increases upon heating. PFG NMR is used to quantify this. 
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Figure 4-6. Relative intensity ratio (R) of TPA cations versus DSS in 0.5 TPA/ C3/ 0.1 
DSS samples. (R is the ratio of integration area of the CH3 group of TPA versus the CH3 
group of DSS. The solid line represents the theoretical R value of 6.7. The estimated 
variability in the values is between 10 and 15% due to the low concentration of TPA and 
DSS.) 
 
 

Figure 4-7 shows the observed self-diffusion coefficient (Dobs) of TPA in the 0.5 

TPA/C3 mixtures as a function of heating time at different heating temperatures. As can 

be seen the observed self-diffusion coefficient rapidly increases upon heating, and in all 

cases effectively plateaus to a constant value after 16-24 h of heating. Of note is that the 

value at which the diffusion coefficient plateaus is temperature dependent. These 

systems are more complex than our previous work investigating the mixtures at room 

temperature, as during heating one can anticipate that the particle structures are dynamic 

in nature and that particle dissolution, growth, and particle restructuring are all occurring 

simultaneously. We have previously shown that these systems are in the fast exchange 

limit, and thus the data in Figure 4-7 can be analyzed with a two-state model, i.e., free 
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and bound state. Thus, the measured diffusion coefficient (Dobs) is an averaged value of 

the two sites and described as equation 3-1. 

obs b b f fD f D f D                                                         (3-1) 

where Df and Db are the diffusion coefficient of free and bound cations and ff, fb are the 

free and bound fraction, respectively. The value of Df was estimated from the diffusion 

coefficient of TPA in water/ethanol mixtures with compositions equivalent to C3 

mixture but no silica ((3.997 ± 0.094) × 10-10 m2/s). The value of Db has been estimated 

from DLS measurements (0.626 × 10-10 m2/s) 139 and is considered as an average value 

for the nanoparticles with size in the 5-7 nm range. Therefore, the bound fraction (fb) of 

TPA at various heating times can be calculated from the above equation, and the results 

are shown in Figure 4-8. This figure shows two key points: first, the fraction of bound 

cations trends downward over the first 16-24 h of heating and then plateaus. Second, the 

“final” fraction of bound cations is dependent on the heating temperature. Thus, upon 

heating a smaller fraction of organocations are associated with the nanoparticles.  
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Figure 4-7.  Observed diffusion coefficient (Dobs) of TPA as a function of time for 0.5 
TPA/C3 samples heated at various temperatures. 
 
 

 
Figure 4-8. Bound fraction (fb) of TPA cations as a function of time for 0.5 TPA/C3 
mixtures heated at various temperatures. 
 
 

There are several possible explanations for the above results. The first possibility 

is that the nanoparticles dissolve upon heating. This physically seems reasonable as the 

solubility of small silicate oligomers is temperature dependent. If there are fewer 
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nanoparticles, all things being equal there will be fewer bound TPA cations. Another 

possible factor is that previous work has shown via neutron scattering that TPA becomes 

occluded in the nanoparticles upon heating. We have no evidence to believe that we can 

observe occluded TPA cations, as one would expect TPA encapsulated in silica to have a 

dramatic reduced T2 due to restricted mobility and likely not contribute to the observed 

NMR signal. Consistent with this, experimentally we observe that the T2 value of TPA in 

the C3 mixture heated at 100 o C is essentially constant (See Table 4-1). If there is a 

population of TPA cations that are not observable by NMR, we would expect to see the 

opposite trend than that observed in Figure 4-6. However, another possibility is that the 

likely small amount of TPA occluded in the silica nanoparticles would lead to small 

changes in intensity that are very hard to quantify within these experiments. The third 

possibility is that upon heating the number of TPA cations that can absorb per particle 

dramatically decreases. This last point may be possible but is very hard to ascertain 

analytically. Nevertheless, at the most cautious level, our results clearly show that upon 

heating there is a significant increase in the self-diffusion of the TPA cations in the 

mixture. This is consistent with the existing picture that some of the nanoparticles 

dissolve upon heating, and that in turn would imply more TPA is available to be released 

into solution. That the diffusion coefficients plateau at different temperatures after 16-24 

h of heating would seem to imply that this dissolution process is by and large complete 

by that time. Also that the diffusion coefficient increases with heating temperature seems 

logical as one would anticipate that the largest number of nanoparticles would be 

dissolved at the highest heating temperature.  
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Table 4-1.  Spin-spin relaxation time (T2) of the TPA methyl group in 0.5 TPA/C3 

samples heated at 100 
o
C. 

Synthesis Time (h) T2 (s) error 

0 0.025 0.017 

12 0.022 0.002 

24 0.027 0.007 

48 0.030 0.001 

 

 

Presumably for nanoparticle dissolution to take place the organocations 

associated with the particles need to first desorb. This is consistent with our NMR data 

that show a pronounced increase in TPA diffusivity, even at the shortest heating times. 

To quantify this, a variety of models was used to assess this process. The bound faction 

of TPA decreases gradually with heating time and finally converges to a constant value 

after 24 h. Also the bound fraction decreases more rapidly with increasing heating 

temperature, indicating an obvious thermal effect on the desorption kinetics. With the 

results above it is now possible to obtain the amount of desorbed TPA as function of 

heating time from the following equation 

[ ] [ ] ( )i o i

des total b bTPA TPA f f                                                 (4-2) 

where i

bf  is the bound fraction shown in Figure 3-8 and [ ]i

desTPA is the amount of 

desorbed cations (mM/kg) calculated for each time (t). Three kinetic models were tested 

to find out the appropriate desorption rate expression: the pseudo-first-order (equation 4-
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3a) 140, 141, pseudo-second-order (equation 4-3b) 142-144, and intraparticle diffusion model 

(equation 4-3c) 145  

1 1 1
( )( )d

t e e

k

q q t q
                                                         (4-3a) 

2

1 1

t d e e

t
t

q k q q
                                                          (4-3b) 

0.5

t dq k t C                                                             (4-3c) 

where [ ]i

t desq TPA , kd is the desorption rate constant in (mM/ kg)-1 h-1, and qe is the 

equilibrium desorption capacity with nits of mM/kg. The parameters obtained from 

fitting the models are shown in Table 4-2. R2 values of the pseudo-second-order kinetic 

model fit are 0.94 for data at 70 °C and 0.99 for data at 90 and 100 °C, indicating that 

the model fits the data reasonably well. Additionally, R
2 values for the intraparticle 

diffusion model were between 0.83 and 0.92, suggesting that release of TPA cations 

mostly occurred on the nanoparticle surface and intraparticle hindrance for desorption 

was nearly absent. Figure 4-9 shows the linear plot of t/qt versus time t for the second-

order model at various temperatures, from which the values of kd and qe at each 

temperature were calculated and are shown in Figure 4-10.  
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Table 4-2. Fitting results for TPA desorption at various temperatures using 

different kinetic models. 

 

 

 
Figure 4-9. Pseudo-second-order kinetic plots of TPA desorption for 0.5 TPA/C3 
sample heated at 70, 90 and 100 °C. (The solid lines represent the fit to the model). 
 
 

 1st order model 2nd order model Intraparticle diffusion model 

T(°C) R
2
 σ P-value R

2
 σ P-value R

2
 σ P-value 

70 0.948 0.5453 <0.0001 0.938 4.3497 <0.0001 0.835 0.1402 5.65×10-4 

90 0.952 0.3172 <0.0001 0.987 0.6845 <0.0001 0.924 0.1315 <0.0001 

100 0.986 0.1107 <0.0001 0.991 0.4723 <0.0001 0.892 0.1726 <0.0001 
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Figure 4-10. (a) Kinetic parameters for TPA desorption for 0.5 TPA/C3 mixtures 
subjected to various temperature.  (b) Arrhenius plot of the TPA desorption kinetics of 
0.5 TPA/C3 sample at 70 oC-100 °C. (R2= 0.997) The solid lines represent the fit to the 
linear regressions. 
 

 

Increasing the temperature leads to an increase in the rate constant (kd), 

indicating that the desorption of TPA is kinetically controlled. Figure 4-10 also shows 

that the desorption amount (qe) of TPA at equilibrium rises linearly with temperature. 

This conclusion seems consistent with the number density of nanoparticles decreasing 

with increasing temperature, and thus less surface area for TPA adsorption, leading to a 

shift in the system toward more desorbed TPA. Given that the structure and composition 

of the nanoparticles are dynamic duration heating, the concept of an “equilibrium” 

between adsorbed and desorbed cations is not quantitatively correct. Thus we believe 

that the values of qe should be treated with some caution, but the values (Figure 4-10a) 

appear reasonable in that the value of qe increases from the model as the fraction of 

bound cations decreases as determined by PFG NMR. Figure 10b shows the Arrhenius 
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plot of rate constant (kd). The activation energy (EA) of TPA desorption for the initial 

heating stage is obtained from this plot and found to be 48.2 ± 2.1 kJ/mol. This value is 

comparable with previous results obtained from scattering measurements but is on the 

low end of EA values for clear solution syntheses that range between 40 and 90 kJ/mol. 

46, 57, 62, 90, 146
 This suggests that TPA desorption is likely not the rate-limiting step at the 

initial heating stage for zeolite nucleation. Given that the NMR work above is analyzing 

the organocation and not the inorganic species (i.e., silica particle size versus time), this 

might explain the determination of a value on the low end of the reported values. 

Nevertheless, it provides kinetics information on the decrease in number of TPA-

stabilized particles via ripening mechanism. 7, 11, 65, 76, 78, 84, 147 

 

4.3.2   Effect of TPA Content on TPA Desorption Kinetics 

Many studies on silicalite-1 crystallization kinetics found a trend toward an 

increasing number of crystals as TPA content increases, indicating the influence of TPA 

upon nucleation rates. Also Figure 4-11 shows the effect of TPA content on silicatlie-1 

crystal morphology. To investigate this effect further, PFG NMR measurements were 

performed on heated x TPA/C3 mixtures where x was varied from 0.25 to 3.0 to test the 

effect of TPA content on the time-resolved diffusion coefficient values. The moles of 

TPA (x) was chosen based on an ideal unit-cell composition of silicalite-1 

([TPA]4[SiO2]96), and when x > 1.67, TPA present is in excess relative to the silica. 

Figure 4-12 shows the 1H NMR spectra of TPA-silica mixtures with various TPA 

concentrations prior to heating. It is observed that the line intensity of TPA increases 

dramatically upon increasing the TPA content as expected. To address this in more 
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detail, Figure 4-13 shows the observed diffusion coefficient (Dobs) of TPA as function of 

heating time for the same mixtures shown in Figure 4-12. The initial Dobs values 

systematically increase with increasing TPA content, indicating a decrease in the bound 

fraction of TPA cations based on the two-site model as described by equation 3-1. Also, 

Dobs values for all samples display a similar increasing trend with heating time whereas 

the increase becomes less apparent at higher TPA concentrations, which indicates a 

potential limit of PFG NMR method on probing the mobility change of TPA at high 

TPA concentration. It is likely due to the fact that the NMR signal is more sensitive to 

the free organocations, and there are more free TPA cations in the silica mixtures at 

higher TPA concentration.  

 

 

 
Figure 4-11. FE-SEM image of solids obtained from (left) 9.0 TPA/C3, (middle) 3.0 
TPA/C3 and (right) 1.5 TPA/C3 samples heated at 90 oC. 
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Figure 4-12. 1H NMR spectra of ageing sample with increasing TPA content in x 

TPA/C3 samples (from bottom to top x increase from 0.25 to 3.0). 
 
 

 

Figure 4-13. Observed diffusion coefficient (Dobs) as function of time at 90 °C for 
samples with increasing TPA content. 
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In order to analyze this effect of TPA content on the cation desorption kinetics, 

the amount of desorbed TPA as a function of heating time for the x TPA/C3 samples (x 

= 0.5-3.0) was calculated via equation 4-2 and fitted with the pseudo-second-order 

desorption model (equation 4-3b). All plots of t/qt versus t for these TPA-silica mixtures 

yield straight lines (see Figure 4-14), and the fit results are shown in Table 4-3. The 

desorption rate constants (kd) of TPA were calculated from these above linear plots and 

shown plotted against moles of TPA (x) in Figure 4-15.  

 

 

Table 4-3. Fitting results for TPA desorption at different content in TPA-silica 

mixtures using pseudo-second-order kinetic model. 

mole of TPA (x) R
2
 σ P-value 

0.75 0.991 0.42823 <0.0001 

1.0 0.992 0.43506 <0.0001 

1.5 0.995 0.20297 <0.0001 

3.0 0.982 0.53589 <0.0001 
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Figure 4-14.  Pseudo-second-order kinetic plots of TPA desorption for x TPA/C3 
samples heated at 90 oC. (The solid lines represent the fit to the model; x= 0.75, 1.0, 1.5, 
3.0).  
 

 

 
Figure 4-15. Desorption rate constant (kd) of TPA as s function of TPA content in x 

TPA/C3 (x= 0.5, 0.75, 1.0, 1.5, 3.0) samples heated at 90 °C.  kd was obtained from the 
pseudo second order kinetic model. 
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kd values of TPA-deficient mixtures (x < 1.67) are constant in spite of an increase 

in the TPA content, whereas the 3.0 TPA/ C3 mixture shows a much larger value. This 

could indicate that at these higher TPA concentrations the large excess of TPA results in 

the process no longer being dependent on TPA desorption. At a most conservative level, 

it is clear that at the highest level of TPA in these mixtures the desorption process 

appears very different than at the other TPA concentrations. This trend is also 

qualitatively consistent with the visual observations of these mixtures that indicate the 

turbidity onset is very rapid for the 3.0 TPA/C3 mixtures as compared to the others. 

 

4.4   Conclusions 

The PFG NMR results above show that the measured self-diffusion coefficient of 

TPA in these TPA-silica mixtures is sensitive to heating. The results imply that upon 

heating the nature of the silica-TPA association changes dramatically and occurs before 

significant particle growth/evolution is observed by scattering methods. While the self-

diffusion coefficient increase could in part be attributed to the decrease in the number 

density of precursor particles, another likely contribution is that surface restructuring of 

the nanoparticles leads to a decrease in the amount of TPA bound. Unfortunately we do 

not have any evidence for the latter point, although it seems at least qualitatively 

consistent with previous work and consistent with the idea that upon heating the silica 

solubility and dissolution kinetics will likely lead to restructuring (and complete 

dissolution in some cases) of the nanoparticles. The current work shows PFG NMR to be 

a uniquely sensitive tool to changes in the chemical environment and binding of the TPA 

cations and their association with the nanoparticles. The next chapter investigates silica 
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mixtures with mixed organocations, studying competitive binding of these organocations 

on silica nanoparticles. 
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CHAPTER V  

 COMPETITIVE ADSORPTION OF TETRAALKYLAMMONIUM CATIONS 

PRIOR TO AND DURING ZEOLITE FORMATION* 

 

5.1   Introduction 

Chapter III quantified organocation-silica nanoparticle interactions in 

tetraalkylammonium cation (TAA)-silica mixtures and obtained binding isotherms for 

these mixtures atroom temperature. That work showed that organocation exchange on 

and off the silica nanoparticles was rapid on the NMR time scale, and thus the obtained 

self-diffusion coefficient could be analyzed in the context of a simple two-state 

exchange problem. Chapter IV showed PFG NMR measurements on TPA-silica 

mixtures and studies of evolution of TPA-silica particles upon heating.  The energy of 

TPA desorption from the silica nanoparticles was also determined. In this chapter, we 

expand the scope of that work by determining how the presence of 

tetramethylammonium (TMA) as a foreign ion affects TPA-silica interactions and 

nanoparticle evolution upon heating. The mixed organocation study was motivated by 

work from our lab 46 showing that a small perturbation of the TPA structure affects 

silicalite-1 nucleation significantly. Also, many researchers have speculated about how  

____________ 
*Reproduced with permission from “PFG NMR Investigations of TPA-TMA-Silica 
Mixtures” by Li, X and Shantz, D. F. Langmuir, 2011, 27, 3849-3858. Copyright 2011 
American Chemistry Society. 
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the organocation properties (i.e., charge density/ hydrophobicity/geometry) impact 

zeolite phase selectivity.4, 47, 148    However, this is still not well understood. Thus, 

studies of how precursor particles evolve in the presence of multiple organocations 

should provide insights on synthesizing zeolites in the presence of multiple organic 

molecules. 

 

5.2   Experimental 

 

5.2.1   Sample Preparation 

TMA-TPA-silica mixtures were prepared as described in subsection 2.7.3.  

 

5.2.2   Analytical 

Powder X-ray diffraction (PXRD), Thermogravimetric analyses (TGAs), Field 

emission scanning electron microscopy (FE-SEM), Dynamic Light Scattering (DLS), 

and NMR measurements were performed as described in subsection 2.2, 2.3, 2.5.  

 

5.3   Results  

Mixed organocation-silica mixtures 0.5TPA/ x TMA/ C3 (x = 0.5, 1.0, 1.5) were 

heated at 90 oC to investigate the effect of TMA concentration on the growth of 

silicalite-1. Those mixtures were chosen as the dilute TAA content facilitates NMR 

measurements and the 0.5TPA/C3 mixture, i.e., in the absence of TMA, has been shown 

previously by our lab to form silicalite-1. After two weeks of heating, solid products 

were observed from the 0.5TPA/0.5TMA/C3 and 0.5TPA/1.0TMA/C3 mixtures, 
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whereas the mixture with the highest TMA content (i.e., 0.5TPA/1.5TMA/C3) remained 

optically transparent, indicating suppression of zeolite formation due to the TMA. These 

collected solids were further analyzed to verify phase purity. The PXRD data in Figure 

5-1a shows that the products obtained from TPA-TMA-silica mixtures are pure MFI-

type materials. Figure 5-1b shows the weight loss curve of the products from 0.5TPA/ x 

TMA/ C3 (x = 0.5, 1.0) and 0.5TPA/C3 mixtures versus temperature. For all samples 

approximately 12 % weight loss in the temperature range 360-650 oC is observed due to 

the thermal decomposition of the organocation. The amount of the organic template 

corresponds to four TPA molecules per unit cell, indicating the zeolite forms with the 

ideal unit-cell composition [(TPA)4(SiO2)96]. In addition, the two TPA-TMA-silica 

mixtures show a weight loss of approximately 2 wt % in the temperature range 25-350 

oC. This weight loss is attributed to physically adsorbed water and organocation on the 

outer crystal surface. The results above indicate that silicalite-1 crystals can be 

synthesized from TPA-TMA-systems with limited TMA concentration. 149 Figure 5-2 

shows the SEM micrographs of silcalite-1 formed in pure TPA-silica mixtures and TPA-

TMA silica mixtures. All crystals are large (∼10 μm) with high length/width ratio, 

consistent with previous reports on the growth of elongated flat crystals from synthesis 

mixtures with high H2O/SiO2 ratio and limited TPA concentration.66, 138 The crystals 

formed in the mixed organocation systems are less uniform than those prepared from 

pure-TPA systems, indicating a possible influence of TMA on the crystal morphology 

beyond inhibiting the growth of silicalite-1. These TPA-TMA-silica mixtures were 

subjected to detailed measurements to study how the addition of TMA affects TPA 

silicate interactions before and at the early stages of heating.  



 100 

 

Figure 5-1. (a) PXRD pattern and (b) TGA traces of solids obtained from 0.5 TPA/ x 

TMA /C3 mixtures (x= 0, 0.5, 1.0) heatedat90 oC for two weeks. 
 
 

 

Figure 5-2. FE-SEM images of solids synthesized from (left) 0.5 TPA/C3, (center) 0.5 
TPA/0.5 TMA/C3, and (right) 0.5 TPA/1.0 TMA/C3 mixtures.  (Scale bar is 1μm in all 

images.) 
 
 

Figure 5-3 shows the particle size distribution of the mixed organocation-silica 

mixtures and TPA-silica mixture heated at 90 °C for 24 hours. 
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Figure 5-3. Particle size distribution obtained from DLS data of organocation-silica 
mixtures prepared with deuterated water and heated at 90 °C for 24h (a) 0.5 TPA/C3; (b) 
0.5 TPA/0.25 TMA/C3; (c) 0.5 TPA/0.5 TMA/C3; (d) 0.5 TPA/1.0 TMA/C3. 
 
 

As shown in Figure 5-3, the presence of primary particles with a diameter of 

approximately 6 nm was found in all samples prior to heating and a slight increase in the 

particle size to approximately 5-10 nm is observed during heating  Also, the population 

of these heated primary particles remains high and stays stable for the first 24 hours.  
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These above observations are consistent with previous studies on TPA-TEOS-H2O 

systems upon hydrothermal treatment. 78, 147 

 

5.3.1   1H NMR of TPA-TMA-Silica Mixtures at Room Temperature 

The work reported in Chapter III investigated the silica nanoparticle-TPA 

interactions in TPA-silica and TMA-silica mixtures. The aim of the present chapter is to 

quantify how the addition of TMA to the TPA systems affects the TPA-silica 

interactions and thus zeolite formation.  TMA was chosen as the additional cation 

because it is more hydrophilic and is incapable of making pure silica-zeolite from clear 

solutions whereas TPA can direct silicalite-1 formation after 24 hours of heating.  It is 

expected investigations on the mixed organocation systems should provide insights 

related to how the silica-organocation interactions affect zeolite growth. Figure 5-4 

shows the 1H NMR spectra of the TPA/TMA mixtures with fixed TPA content at room 

temperature.  No apparent changes in the TPA resonances (3.13, 1.68, 0.95 ppm) were 

observed. The only change in the TMA resonance (3.23 ppm) was the expected increase 

in intensity upon increasing the TMA content.  
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Figure 5-4. 1H NMR spectra of 0.5 TPA/C3 and 0.5 TPA/x TMA/ C3 (x =0.125, 0.25, 
0.5, 1.0) mixtures at room temperature prior to heating.  
 
 

Given that PFG NMR data can be extended to 2D DOSY spectra with chemical 

shifts on one axis and self-diffusivity on the other, the diffusion coefficients of TPA and 

TMA in the same mixture can be obtained simultaneously (data processing and 

corresponding DOSY spectrum of the 0.5TPA/0.25TMA/C3 mixture at RT is shown in 

subsection 2.2.  Also to simplify the data analysis, mixtures were chosen where the TPA 

content is less than the value at full surface coverage (~ 9.2mM) shown in Chapter III. 

Figure 5-5 shows the observed diffusion coefficient (Dobs) of TPA and TMA versus 

moles of TPA for various TPA-TMA-silica mixtures.  As can be seen in Figure 5-5a, the 

diffusion coefficients of TPA increase with increasing TPA concentration and ultimately 

plateau at  the highest TPA amount (y = 1.25).  Also, the observed diffusion coefficient 

systematically increases for a given TPA content as the TMA content increases.  This 

result is consistent with the TMA displacing TPA from the nanoparticle surface.  The 
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TMA results (see Figure 5-5b) indicate the TMA self-diffusion coefficient is relatively 

insensitive to the TPA content. The diffusion coefficients of TPA and TMA in water-

ethanol mixtures are 4.0 x 10-10 m2/s and 7.6 x 10-10 m2/s, respectively (see Chapter III).  

Thus the results in Figure 5-5 indicate that TMA has a significantly reduced diffusion 

coefficient in the presence of silica and TPA as compared to TPA.  

 

 

 

Figure 5-5. Observed diffusion coefficients (Dobs) of (a) TPA and (b) TMA in a series of 
TPA-TMA-silica mixtures as function of TPA content. 
 

 

Since the chemical exchange of organocations between the free and bound state 

is fast compared with the diffusion time (see Figure 3-7), the measured diffusion 

coefficient (Dobs) is an averaged value of the two sites and can be described as equation 

3-1shown in Chapter III: 

obs b b f fD f D f D                                                       (5-1) 
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where the subscripts b and f denote the bound and free species, respectively.  The value 

of the free diffusion coefficient (Df) was estimated from the diffusion coefficient of TAA 

cations in water/ethanol mixtures with a composition equivalent to the C3 mixture 

without silica.  The bound diffusion coefficient (Db) can be estimated from DLS 

measurements of silica mixtures C3 (0.626 ± 10-10 m2/s). The PFG NMR combined with 

the DLS results above can be used to calculate the fraction of bound TAA and thus the 

concentration of bound TAA can be calculated by equation 3-2 show in Chapter III: 

[ ] [ ]bound b totalTAA f TAA                                           (5-2) 

Figure 5-6 shows the bound fraction (fb) of TPA and TMA as a function of TPA 

content of the mixtures shown in Figure 5-5.  An approximately 20 % decrease in the 

bound fraction of TMA is observed for 1.0TMA/ y TPA/ C3 mixtures whereas the bound 

fraction of TPA decreases significantly. A simple interpretation of Figure 5-5 and Figure 

5-6 is that TMA displaces TPA from the nanoparticle surface.  
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Figure 5-6. Bound fractions (fb) of (a) TPA and (b) TMA in a series of TPA-TMA-silica 
mixtures as a function of TPA amount. 
 
 

      Figure 5-7a shows the concentration of bound TPA versus total TPA concentration 

(i.e. binding isotherms) for the TPA-TMA-silica mixtures. The addition of more TMA 

significantly decreases the amount of TPA adsorbed compared with pure TPA systems 

(y TPA/C3) having the same total TPA concentration, which is reflected in the initial 

slope of the isotherms.  While silicate speciation is known to depend in part on the 

organocation identity, 150, 151 the most likely effect of the added TMA is to compete with 

TPA for adsorption sites on the nanoparticle surface.  This would be consistent with 

DLS data that does not show any substantive differences between the particle size 

distributions/populations for the various samples. To quantify this effect, the binding 

isotherm data in Figure 5-7 was analyzed using the Langmuir isotherm model: 

max

1

f

f

KC

KC                                                                   (5-1)
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where Γ and Γmax are the amount of adsorbed TPA in mixtures shown in Figure 5-7a and 

the value at maximum coverage, Cf is equilibrium concentration of free TPA in solution, 

and K is the adsorption equilibrium constant.  The details of the model fits are shown in 

Figure 5-7b.  

 

 

 
Figure 5-7. (a) Binding isotherms of TPA in a series of TPA-TMA-silica mixtures at 
room temperature and (b) the corresponding Langmuir isotherm fit.  
 
 

      Figure 5-8 shows a plot of Γmax and K as a function of the amount of TMA added.  

As can be seen the Γmax of TPA decreases rapidly with addition of TMA and gradually 

converges to a constant value.  This result is consistent with less TPA being adsorbed on 

the nanoparticles with increasing TMA content. This indicates that TMA is displacing 

TPA off the nanoparticle surface, consistent with our previous results that indicate TMA 

binds more strongly than TPA. However, the adsorption constant K displays the opposite 
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trend by increasing with increasing TMA content.  While this result at first appears 

counterintuitive, one interpretation is that the TPA which remains on the surface is the 

most strongly bound TPA, and that leads to an increase in K. In the most cautious 

interpretation, the results in Figure 5-8 indicate that TMA can effectively displace TPA 

off the surface of the nanoparticles, which shows that the TMA-silica complexes are 

more stable than TPA-silica complexes. 

 

 

 
Figure 5-8. Γmax and K for TPA as a function of the TMA concentration in TPA-TMA 
silica mixtures. 
 

 
5.3.2   1H NMR of TPA-TMA-Silica Mixtures upon Heating 

To investigate the stability of these systems further mixtures were heated at 90 

°C and then analyzed by PFG NMR. Figure 5-9 shows the observed diffusion coefficient 

(Dobs) of TPA and TMA as a function of heating time for 0.5TPA/ x TMA/ C3 mixtures 
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(x = 0-1.0) shown in Figure 5-4. As shown in Figure 5-9a, the diffusion coefficients of 

TPA as a function of time for the TPA-TMA-silica mixtures are qualitatively similar to 

the 0.5TPA/C3 sample, with the difference that the diffusion coefficient of TPA in the 

mixed organocation mixtures increases with increasing TMA content.  While there is an 

increase of the TMA diffusion coefficient observed (see Figure 5-9b), the increase 

relative to the diffusion coefficient of free TMA (7.5 × 10-10 m2/s) is much smaller than 

that for TPA, implying that a much higher fraction of TMA remains associated with the 

nanoparticles upon heating.  Consistent with this the TPA diffusion coefficient after 24 

hours heating is above 90% of the TPA free value (~ 4×10-10 m2/s), whereas for TMA 

the diffusion coefficient of the same mixtures is below 50% of its free value (~7.25-

7.82× 10-10 m2/s).  Also noteworthy is that the diffusion coefficient of TPA at a given 

time increases due to the addition of more TMA since the TPA content is fixed in these 

heated mixtures.  In contrast, after a sharp increase in the first few hours of heating, the 

diffusion coefficient of TMA is relatively constant. 
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Figure 5-9. Observed diffusion coefficients (Dobs) of (a) TPA and TMA (b) as a function 
of heating time for TPA-TMA-silica mixtures. 
 
 

The fraction of bound TPA and TMA as a function of time could be calculated 

through analyzing these heated mixtures using the two-site model.  Given the increasing 

precursor particle sizes shown in the DLS results, how the particle size (which changes 

from approximately 6 to approximately 10 nm during) influences this analysis was 

studied. The results are shown in Figure 5-10, and perhaps surprisingly the fraction of 

bound cation (fb) is insensitive to variations of Db over this size range.   
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Figure 5-10. Comparison of Bound fraction (fb) of TPA calculated on the basis of 
different particle sizes in 0.5 TPA/ x TMA/ C3 mixtures (clock wise from left to right) x 

= 0, 0.125, 0.25, 0.5 and 1.0. (Solid circle denote analysis if all particles are ~6 nm in 
diameter, and the hollow circle denote analysis if all particles are ~ 10 nm in diameter.) 
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Figure 5-11 shows the fraction of TPA and TMA bound to the precursor particles 

as a function of heating time for the mixtures shown in Figure 5-9.  This analysis 

indicates that in the absence of TMA, there is a pronounced decrease in the fraction of 

bound TPA upon heating.  In the presence of TMA the decrease in the fraction bound is 

not as pronounced given that the initial fraction bound is much lower.  The latter point is 

consistent with fewer bound TPA cations before heating in the presence of TMA.  The fb 

value of TMA decreases with time yet the decrease only varies between 15% and 20%, 

far less than that of TPA (note scales in Figure 5-11).  This difference indicates the TPA 

cations are less strongly associated with the nanoparticles and thus are more easily 

displaced than adsorbed TMA cations upon heating.   

 

 

 

Figure 5-11. Bound fraction (fb) of (left) TPA and (right) TMA as a function of heating 
time in TPA-TMA-silica mixtures. 
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Upon heating the nanoparticles undergo a complex process of dissolution, 

aggregation, and restructuring.  One would anticipate that for these events to take place 

that the organocations must first desorb.  The work above indicates that TMA can 

effectively displace TPA from the nanoparticle surface, and that more TMA remains 

bound to the particles upon heating. With the results above it is now possible to obtain 

the amount of desorbed TPA in these TMA-TPA-silica mixtures as a function of heating 

time from equation 4-2 as described in Chapter IV: 

[ ] ( )i o i
totaldes b bTPA TPA f f                                            (4-2) 

where i

bf  is the bound fraction shown in Fig. 5-10 and i

des
TPA  is the desorbed 

amount of cations (mM/kg) calculated for each heating time (t). To further quantify the 

effect of added TMA on TPA desorption process, the amount of desorbed TPA as a 

function of heating time for 0.5TPA/ x TMA/C3 samples (x = 0-1.0) was calculated via 

eq 4-2 and fitted with the pseudo-second-order kinetic model (equation 4-3b). 

2

1 1

t d e e

t
t

q k q q                                                    (4-3b)
 

where i

t des
q TPA , dk  is the desorption rate constant in (mM/kg)-1 h-1 and eq  is the 

equilibrium desorption capacity with units of mM/kg.  The parameters obtained from 

fitting these models are shown in Table 5-1. R
2 values of the pseudo-second-order 

kinetic model fit vary between 0.97 and 0.99, indicating that the experiments results fit 

this model well.  Figure 5-12 shows the linear plots of t/qt versus time t of TPA-TMA-

silica mixtures heated at 90 oC, from which the TPA desorption rate constant (kd) as a 

function of added TMA concentration can be obtained.  Given that the structure and 
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composition of the nanoparticles is dynamic during heating, the concept of an 

„equilibrium‟ between adsorbed and desorbed cations upon heating must be treated with 

some caution.  

 

 
Table 5-1. Fitting results for TPA desorption in TPA-TMA-silica mixtures using 

pseudo-second-order kinetic models. 

 
 
 

 

 

 

 

 

 

 

 

Figure 5-12. Pseudo-second-order kinetic plots of TPA desorption of TPA-TMA-silica 
mixtures. 

mole of TMA (x) R
2
 σ P-value 

0 0.987 0.684 <0.0001 

0.125 0.966 1.574 <0.0001 

0.25 0.969 1.675 <0.0001 

0.5 0.990 1.429 <0.0001 

1.0 0.990 1.292 <0.0001 
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To remove potential artifacts related to different TAA concentrations, TPA-silica 

mixtures with TPA content equivalent of the total moles of organocations in mixed TPA-

TMA systems were used as a comparison and the desorption rate constant (kd) of 

desorbed TPA for pure TPA-silica mixtures are shown in Figure 5-13. As can be seen, 

the kd value for TPA-TMA mixtures increases with addition of more TMA whereas the 

values for pure TPA-silica mixtures are insensitive to TPA concentration over the 

measured range. This observation is consistent with the premise that the TMA cations 

effectively displace TPA from the nanoparticle surface, and is also consistent with the 

Langmuir analysis. There are several possible origins for this.  Perhaps the simplest 

explanation is that TMA has a higher charge density than TPA and thus electrostatic 

effects are responsible for the observed preferential adsorption of TMA.  Alternatively, 

given the dynamic structure and composition of heated primary particles, steric effects or 

the more hydrophilic nature of TMA is responsible for the observed results.  Perhaps the 

most significant observation is that TMA appears to stabilize the nanoparticles during 

heating more strongly than TPA, and that may be one of explanations for the failure to 

make silicalite-1 from the mixed organocations samples with moles of TMA (x) above 

1.0.  More generally, the kinetic analysis of TMA and TPA in the same heated mixture 

using PFG NMR could be applied for studying porous materials formation assisted by 

dual-surfactant templates in a noninvasive way. One possible contribution to the 

difficulty of making siliceous zeolites in nanoparticle form from clear solution could be 

that some of the organocations stabilize the precursor particles too strongly, and thus the 

type of aggregation invoked by others cannot take place.  
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Figure 5-13. Comparison in TPA desorption rate constant (kd) in TPA-TMA-silica 
mixtures and TPA silica mixtures. 
 
 

5.4   Conclusions  

1H PFG NMR results of TMA-TPA-silica mixtures at room temperature show 

that the measured self-diffusion coefficient of TPA increases significantly with TMA 

addition whereas the effect of TPA content on diffusion coefficient of TMA is minor.  

Analysis of the PFG data with a two-site model and Langmuir adsorption formalism 

shows a decrease in the adsorbed amount of TPA upon increasing TMA content, 

indicating the TMA displaces TPA from the nanoparticle surface.  Upon heating the 

diffusion coefficient of TPA increases in both pure TPA-silica and TPA-TMA-silica 

mixtures, suggestion less bound TPA and a kinetically controlled desorption of TPA 

from the nanoparticles.  However, TPA desorption rate increases with TMA addition 

whereas this value remains constant upon increasing TPA content in the absence of 

TMA.  This result indicates that TMA has a promoting effect on the desorption kinetics 
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of TPA.  Taken together, the PFG NMR results present a quantitative comparison of 

TPA-silica nanoparticle interactions in mixed organocation systems to that in pure TPA-

silica mixtures.  These findings should further advance knowledge in the field of zeolite 

synthesis. 
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CHAPTER VI 

SPECIFIC ION EFFECTS ON TETRAALKYLAMMONIUM (TAA)-SILICA 

NANOPARTICLE INTERACTIONS* 

 

6.1   Introduction 

In this chapter, the effects of salt on the stability of TAA-silica nanoparticles and 

further on the organic-inorganic interactions were investigated.  Also a comparison of 

the adsorption equilibrium of tetramethylammonium (TMA) and tetrapropylammonium 

(TPA) on the silica particles during salt-induced aggregation is presented and various 

responsible interactions are discussed. The corresponding results provide implications 

for the colloidal properties of these primary particles and chemistry of aqueous silica 

involved in the aggregative growth mechanism for formation of zeolite crystals. 

 

6.2   Experimental 

 

6.2.1   Sample Preparation 

Siliica mixture C3, TPA-silica and TMA-silica mixture added with various LiCl, 

NaCl, CsCl are prepared as described in subsection 2.7.4.  

 
____________ 
*Reproduced with permission from “Specific ion effects on nanoparticle stability and 

organocation-particle interactions in Tetraalkylammonium-Silica mixtures” by Li, X and 

Shantz, D. F. Langmuir, 2010, 26, 18459-18467. Copyright 2010 American Chemistry 

Society. 
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6.2.2   Analytical 

Solution pH and conductivity, Dynamic Light Scattering (DLS) and NMR 

measurements were performed as described in subsection 2.2-2.5.  

 

6.3   Results 

 

6.3.1   pH and Conductivity 

The addition of electrolytes can induce particle aggregation by screening the 

electrostatic repulsion between the charged nanoparticles in silica mixtures, leading to 

variations of solution conditions.  The pH and conductivity of nanoparticle solutions 

(C3) with chlorides of Li+, Na+, Cs+ were measured and the results are shown in Figure 

6-1.  A slight decrease in pH value with increasing salt concentration was observed for 

all three salts, consistent with previous studies that show a decrease of pH in sodium 

silicate mixtures with salt addition.90 The drop of hydroxide concentration could be 

caused by silanol dissociation of soluble silica in the aqueous phase to form large 

polysilicates or nanoparticles with more SiO2 units. Also shown in Figure 6-1 is the ionic 

conductivity of the mixtures increases monotonically upon addition of salts.   
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Figure 6-1. pH and conductivity of silica mixtures with various salts as a function of salt 
concentration. The solid curve represents the predicted conductivities obtained from 
equation 6-1 using the measured pH values. 
 
 

To quantify the change in conductivity, the predicted conductivity for various 

salts is calculated from a variation of the Shedlovsky equation using the measured pH 

value. 152, 153   

iCi A B i Ci
1.5 D Ci                                           (6-1) 
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where Ci is the concentration of a charged ion and i is the corresponding limiting molar 

conductivity. The value of λ for charged silica is difficult to determine experimentally 

due to the presence of various oligomers as well as their low mobility.154 Thus only OH- 

and the monovalent ions, i.e, Li+, Na+, Cs+ and Cl-, are considered for analysis and their 

λ values are shown in Table 6-1. The constants A and B are the Debye-Huckel-Onsager 

coefficients for an aqueous solution with values of 60.2 (mS/cm)(mol/L)-1.5 and  0.23 

(mol/L)-1.2 respectively. 155 The empirical constants D and α are obtained from fitting 

conductivity values of NaOH solutions with various salts (see Figure 6-2) using equation 

6-1 and pH value of these solutions (see Table 6-2). The obtained constant D and α 

values for the C3 mixtures with NaCl and LiCl are -90.6 (mS/cm)(mol/L)-2.2 and 2.2, 

respectively, and for CsCl samples the values are -426.7 (mS/cm)(mol/L)-2.4  and 2.4.  

As shown in Figure 6-1, the deviations of experimental conductivity from calculated 

values at low salt concentration (2 mM) are likely due to a few charged soluble silica 

components, which are not expected to cause systematic errors in the measurements. 

 

 
Table 6-1.  Limiting molar conductivities of selected inorganic ions. 

156
 

 
Ion λi (

1 1mS M cm ) 

Li+ 38.90 

Na+ 50.10 

Cs+ 77.26 

OH- 198.30 

Cl- 76.40 
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Figure 6-2. Nonlinear regression fits for conductivity of NaOH solution as a function of 
added salt concentration.  
 
 
 
 

Table 6-2.  pH values of NaOH solution with added salts.* 

 

Added salt 
concentration 

(mM) 
pH (LiCl) pH (NaCl) pH(CsCl) 

0 12.59 12.59 12.59 

1 12.60 12.6 12.59 

5 12.62 12.62 12.67 

10 12.63 12.63 12.67 

20 12.62 12.63 12.70 

50 12.62 12.62 12.72 

75 12.62 12.62 12.74 

*Solution temperature of pH measurements varies between 24.3 ~ 24.9 oC. 
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6.3.2   DLS Measurements 

Dynamic light scattering (DLS) was performed on silica mixtures with differing 

concentrations monovalent salt to monitor the onset of particle aggregation.  Figure 6-3 

shows the particle size distribution of silica mixtures in the absence of salt and with salt 

concentrations of 5, 10, 50 mM.  As shown in Figure 6-3, primary particles with a size of 

approximately 6 nm were observed, consistent with previous studies.7, 73 No significant 

changes were observed in the size of the primary particles at 5mM salt concentration but 

a fraction of particles with a diameter of ~20 nm appears in 5mM CsCl sample. Upon 

addition of salt to 10 mM a second population of particle aggregates with size around 

100 nm is observed in NaCl (Figure 6-3b) and CsCl (Figure 6-3c) samples and their 

number density rises significantly as the salt amount increases to 50mM.  In addition, 

DLS results of LiCl samples (Figure 6-3a) show an increase in the primary particle size 

to 15 nm at 10 mM and a fraction of aggregates with a radius of approximately 50 nm in 

the sample with 50mM LiCl.  Taken together, the above results indicate addition of the 

three salts above 5 mM can induce the aggregation of primary particles.  The extent of 

aggregation is salt and concentration dependent as one would expect. According to the 

Hofmeister series 157, the ability of electrolytes to destabilize charged colloidal particles 

increases with increasing ionic size.  Thus the silica nanoparticle stability should 

increase as Cs+ < Na+ < Li+, which is confirmed by the particle size distribution shown 

in Figure 6-3. Despite the clear trend of salt-induced aggregation, it is difficult to 

distinguish the subtle salt effects at the beginning of aggregation using DLS. PFG NMR 

measurements were performed to measure the diffusion coefficients of TAA in these 

mixtures with various salts and the corresponding results are complemented with DLS, 
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giving a quantitative analysis of the nanoparticle stability as well as TAA-nanoparticle 

interactions as functions of the type and amount of added salts. 

 

 

 

 

Figure 6-3. Particle size distributions obtained from DLS data of silica mixtures with (a-
c) LiCl, NaCl and CsCl without organocations. 
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6.3.3   
1
H NMR 

NMR measurements were performed on 0.25TPA/C3 and 0.25TMA/C3 mixtures 

to monitor the organocation upon addition of different electrolytes.  TPA and TMA were 

chosen given the pronounced discrepancy in hydrophobicity/charge density of the two 

organocations, the TPA-particle interactions are expected to be quite different from the 

TMA-particle interactions under the same solution environment.  The molar ratio of 

TAA versus silica is minimized in the silica mixtures based on the detection limit of 

NMR to maximize the bound fraction of organocations and hence the noticeable 

variation of the cation diffusion coefficient with addition of various salts.  Another 

reason to investigate dilute TAA mixtures is that effect of the dilute TAA cations 

concentration (1.45mM/L) on total ionic strength of the solution mixtures is negligible 

compared with the effects of electrolytes. Figure 6-4 shows the 1H NMR spectra of 

0.25TAA/C3 samples with varying amount of salt. The resonances assigned to TPA 

cations in the mixtures are at 3.13, 1.68, and 0.95 ppm and TMA cations show a singlet 

at 3.25 ppm.  As shown in Figure 6-4, the TAA resonances broaden due to binding of the 

organocations onto the silica nanoparticles. No pronounced change in the line widths and 

line intensity is observed upon addition of all three salts. 
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Figure 6-4. 1H NMR spectra of 0.25 TAA/C3 mixtures in absence of salt and with salt 
concentration at 5, 10, 50mM. The y-axis is on the same scale. (a) ~ (c) 0.25 TPA/C3 
with LiCl, NaCl and CsCl, respectively. For clarity, the ethylene group (3.63 ppm) of 
ethanol is not shown. (d) ~ (f) 0.25 TMA/C3 with LiCl, NaCl and CsCl (# ethanol; $ 
TPA; % TMA; & 13 C side band; * DSS). 
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Figure 6-4. Continued. 

 
 

The relative intensity ratios (R) of the methyl group of TPA (0.95 ppm) and 

TMA (3.25 ppm) versus the methyl group of DSS (0 ppm) (as internal standard) are 

plotted against various salt concentrations and shown in Figure 6-5.  For the mixtures in 

absence of salt, the observed intensity ratios of TPA and TMA are 87 % and 97 % of 

their expected ratio, respectively, which indicates a negligible population of 

unobservable organocations. In general, the intensity ratios of both TMA and TPA 

increase upon addition of salt to 10 mM and then levels off.  However the change in the 

measured intensity ratio is comparable to 10-15 % experimental error of NMR 

integration. Therefore, it is not clear why the ratio increases above the theoretical 

maximum of 3.3 for TPA and 5.0 for TMA, which is calculated based on the molar ratio 

of TAA/DSS and total number of protons in their methyl groups. One simple 

explanation would be the reduction of particle surface area and surface charge as a 
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resultof salt induced aggregation that causes release of some adsorbed organocations to 

the solution.  Therefore, an increase in the number of TAA cations not associated with 

the nanoparticles can lead to the increase of the NMR signal.  PFG NMR is used to 

quantify the effect of added salt on TAA adsorption. 

 

 

 
Figure 6-5. Relative intensity ratio (R) of TAA cations versus DSS in TAA/C3 mixtures 
as a function of added salt concentration. (Left) 0.25 TPA/C3/0.1 DSS samples and 
(right) 0.25TMA/C3/0.05DSS samples. (R is the ratio of integration area of the CH3 
group of TAA versus the CH3 group of DSS.  The dash line represents the theoretical R 

value (3.3 for TPA and 5.0 for TMA.  The estimated variability in the values is between 
10 and 15% due to the low concentration of TAA and DSS.) 
 
 
 

Figure 6-6 shows the observed diffusion coefficient (Dobs) of TAA in 

0.25TAA/C3 mixtures as a function of salt concentration.  The figure shows that the 

observed self-diffusion coefficients both for TMA and TPA increase with increasing 

salt.  It is also clear from Figure 6-6 that the self-diffusion coefficient of TPA is much 
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more sensitive to added salt than TMA.  Figure 6-6 also shows the diffusion coefficient 

is dependent on the identity of the salt at a fixed salt content with Li+ < Na+ < Cs+.  This 

correlates with the DLS results that showed CsCl led to the most silica aggregation, 

indicating a larger decrease in the number of nanoparticles in CsCl samples.  A simple 

explanation for this is that the TPA is more effectively displaced from the nanoparticles 

than TMA in the presence of salt.  The results in Figure 6-6 are not due to a dramatic 

difference in the aggregation state of the silica.  DLS on 10 mM NaCl C3 mixtures 

containing 0.25 TMA and 0.25 TPA (Figure 6-3) indicates further aggregation of the 

nanoparticles as compared to the solutions without TMA or TPA, and so to a first 

approximation the number of aggregates in the TMA and TPA are similar.  Thus the 

differences observed in Figure 6-6 are most likely due to the fact that TMA interacts 

more strongly with the silica nanoparticles than TPA. 

 

 

 

Figure 6-6. Observed diffusion coefficient (Dobs) of (top left) TPA and (bottom left) 
TMA as a function of salt concentration. (Top right) and (bottom right) are enlargements 
of the low salt concentration region of TPA and TMA. 
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Figure 6-6. Continued. 

 
 

Upon addition of salt based on the DLS results aggregation takes place.  Further, 

particle restructuring could also be occurring given that the pH is changing.  These 

factors potentially complicate the analysis of the NMR results in Figure 6-4.  There are 

several factors that lead us to conclude that a two-state model of free cation and cation 

bound to the 5 nm nanoparticles will appropriately describe these systems.  The first has 

to do with the fact that the rotational diffusion coefficient of 100 nm aggregates is slow 

on the NMR time scale.  Thus we do not believe that organocations bound to the large 

aggregates will contribute to the NMR signal observed.  This is consistent with the data 

in Figure 6-5, and also with the observation that these aggregates have a small surface to 

volume ratio as compared to the 5 nm particles (see Figure 6-3).  Based on these points 

the analysis of the data in Figure 6-6 focuses on primary particles 5-10 nm in size. We 

have previously described the interactions between nanoparticles and organocations by a 
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two-state model, wherein the organocation can be either free in solution or bound to the 

nanoparticle. PFG NMR measurements show that the diffusion coefficients of TAA 

measured as a function of Δ are essentially independent of diffusion time (within 5-10%) 

(see Table 6-3). Thus, exchange is fast on the NMR time scale and the measured 

diffusion coefficient (Dobs) is an average value of the two sites as described by equation 

3-1 shown in Chapter III. 

Dobs f fDf fbDb                                                     (6-1) 

where Df and Db are the diffusion coefficient of free and bound cations, and ff and fb 

represent the free and bound fraction, respectively.  The value of Df was estimated from 

the diffusion coefficient of TAA in water/ethanol mixtures with compositions equivalent 

to C3 mixture but no silica.  These values for TPA and TMA are 3.915 ( 0.046) × 10-10 

m2/s and 7.817 ( 0.149) × 10-10 m2/s, respectively.  The value of Db has been estimated 

from DLS measurements (0.626 × 10-10 m2/s) and is an average value for the 

nanoparticles in C3 mixtures.  Therefore, the bound fraction (fb) of TAA as a function of 

added salt can be calculated from equation 3-1 and the results are shown in Figure 6-7.  

As can be seen the TPA bound fraction decreases systematically with addition of more 

salt and the amount of TPA bound trends as LiCl > NaCl > CsCl.  The bound fraction of 

TPA decreases much more rapidly than the bound fraction of TMA. 
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Table 6-3. Observed diffusion coefficient (Dobs) of TPA and TMA as a function of 

diffusion time (Δ/s) in silica mixtures. 

Samples 0.25TMA/C3   0.25TPA/C3  

Δ (s) Dobs×1010 m2/s Hmin/Ho* Δ (s) Dobs×1010 m2/s Hmin/Ho* 

0.05 0.883 ± 0.048 0.882 0.1 1.198± 0.296 0.542 

0.1 0.944 ± 0.033 0.747 0.2 1.216± 0.150 0.228 

0.5 1.108 ± 0.013 0.194 0.3 1.205± 0.051 0.283 

0.8 0.989 ± 0.018 0.109 0.5 1.202± 0.093 0.176 

   0.8 1.206± 0.136 0.171 

* Hmin/Ho is the ratio of peak height of methyl group of TAA obtained at 32 G/cm versus 
the one obtained at 1G/cm applied in PFG NMR measurements. The accurate diffusion 
coefficient can be measured within 10-15% decay of peak height at 1 G/cm. 
 
 

 

 

Figure 6-7. Bound fraction (fb) of (left) TPA and (right) TMA as a function of salt 
concentration and salt identity in 0.25 TAA/C3 mixtures. 
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The simplest conclusion from the results in Figure 6-7 is that TPA binding is 

much more sensitive to the presence of salt than TMA. This is analogous to the behavior 

observed previously where, upon heating TPA/silica and TMA/silica mixtures, the 

bound fraction of TPA was found to drop rapidly, whereas the change in the bound 

fraction of TMA is much less pronounced. That these binding fractions appear to be 

cation sensitive while the DLS data in Figure 6-3 does not makes us confident that what 

is being observed in the diffusion NMRis the more effective displacement of the TPA 

cations from the nanoparticle surface due to salt. While the 0.25 TMA and 0.25 TPA C3 

mixtures with 10 mM NaCl possess very similar particle size distributions, i.e., the salt 

appears to control nanoparticle aggregation, it is clear that the salt is much more 

effective in displacing the TPA from the nanoparticle surface. Given the results above, it 

was desired to understand how the mobility of TPA and TMA depended on 

concentration at a fixed (and low) salt content. Determining the fraction of bound cation 

as a function of organocation concentration will potentially give insight into the role of 

alkali-metal cations and soluble salts in the synthesis of microporous and mesoporous 

materials. 90, 158, 159  

The key finding from the results in Figure 6-6 and Figure 6-7 is that the stability 

of the precursor nanoparticles is clearly dependent on salt. The PFG-NMR results of salt 

effect on TAA-silica mixtures have not been reported previously, but are consistent with 

work by others in the field of colloidal science. 96, 160 Also, it was observed that the TPA 

cations are much more easily displaced from the nanoparticle surface than TMA. These 

finding potentially have important implications for zeolite synthesis. For instance, one 

challenge for the field is that, while silicalite-1 readily forms from such mixtures, it has 
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proven difficult to form other siliceous zeolites using this route. Given that as-made 

high-silica zeolites appear to be comparable from a thermodynamic point of view, it is 

unclear why it should not be possible to make others siliceous zeolites using this 

approach. On the basis of the work by Tsapatsis‟s lab, oriented aggregation is a likely 

route for silicalite-1 formation in clear solution. 11, 12, 71 In that mechanism, it is essential 

for a small number of the precursor nanoparticles to aggregate. Our lab has shown 

previously that in the presence of many organocations these precursor particles are 

extremely stable. 77 While large-scale aggregation of the nanoparticles may not be 

desirable, the current work indicates that the addition of salt is clearly one route for 

tuning the stability of the particles. Given the discrepancy between theories, which 

suggests salt should influence growth rates, and experiments, which do not report such 

an influence, 91 the results in Figure 6-7 indicate future work in this area is warranted. 

Another issue of importance is to understand how the bound fraction of 

organocation changes as a function of concentration at a given electrolyte content. 

Figure 6-8 shows the diffusion coefficient measured versus the moles of organocation 

added for TMA silica and TPA-silica mixtures with different salts at 5 mM 

concentration. As can be seen, the diffusion coefficient of both TPA and TMA increase 

with increasing cation, which can be described by the two-state model mentioned above. 

The diffusion coefficient measured increases as a result of the increasing number of free 

TAA cations. Also for a given TAA content, the diffusion coefficient increases with the 

ionic radius of the alkali cation, Li < Na< Cs. These results are consistent with the 

results in Figure 6-6. While the self-diffusion coefficient of TPA plateaus at the highest 

TPA content, the TMA value does not over the concentration range studied. Given the 
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lack of aggregation at this salt content, the use of the two-state model is unambiguous. 

Figure 6-9 shows the fraction of TPA and TMA bound in these mixtures. As expected, 

the amount of bound TPA decreases much more rapidly than the amount of bound TMA 

as a function of organocation content. Also cesium chloride leads to the most 

organocation displaced, and lithium chloride leads to the least. These trends are 

consistent with both the DLS results and the PFG-NMR results where the salt content 

was varied.  

 

 

 

Figure 6-8. Observed diffusion coefficients of (left) TPA and (right) TMA in silica 
mixtures with 5mM salt as a function of organocation content. 
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Figure 6-9. Bound fraction of (left) TPA and (right) TMA as a function of organocation 
content for a series of C3 mixtures with 5 mM salt. 
 
 
 

From the variable TAA concentration data shown in Figure 6-8 and Figure 6-9, it 

is possible to calculate the binding isotherms of TMA and TPA. This enables the 

determination of the amount of TMA and TPA adsorbed and the adsorption strength 

onto nanoparticles under the same solution ionic strength. Given that the bound fraction 

is known, the corresponding binding isotherms were obtained from the equation 3-2 

shown in Chapter III.   

  [ ] [ ]bound b totalTAA f TAA                                                   (6-2) 

Figure 6-10 shows the concentration of bound TAA versus total solution concentration 

(i.e, binding isotherms) derived from the data in Figure 6-8 and Figure 6-9 using 

equation 3-1 and equation 3-2. This data was then fit to the Langmuir isotherm model as 

described in subsection 5.3. 161 
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max

1

f

f

KC

KC                                                              
(6-1) 

where Γ and Γmax are the amount of adsorbed TAA and the value at maximum coverage, 

Cf is the equilibrium concentration of TAA in solution, and K is the adsorption 

equilibrium constant. The Langmuir model fit results are shown in Table 6-4. R2 values 

of all fits are between 0.967 (TMA/C3) and 0.998 (TPA/C3/5mM LiCl), indicating that 

experiment results fit this model well. To simplify the data analysis, the organocation 

content in the mixtures is kept less than the value at full surface coverage (9.2mM/kg for 

TPA and 11.7 mM/kg for TMA).   

 

 

Figure 6-10. Binding isotherms for (left) TPA-silica mixtures and (right) TMA-silica 
mixtures with 5mM various salts. (The solid curves represent the Langmuir fits.) 
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Table 6-4. Langmuir isotherm model fit results for TAA binding isotherms in silica 

mixture with added salt.  

 TPA TMA 

Salt R
2
 σ P-value R

2
 σ P-value 

None 0.991 0.06925 3.87×10-4 0.967 0.02423 3.94×10-4 

LiCl 0.998 0.04105 <0.0001 0.984 0.02359 1.01×10-4 

NaCl 0.991 0.10409 3.41×10-4 0.981 0.02930 1.34×10-4 

CsCl 0.997 0.08539 <0.0001 0.992 0.02093 <0.0001 

 

 

Figure 6-11 shows plots comparing the Langmuir constants obtained from fitting 

binding isotherms of TAA-silica mixtures with various salts. The identity of the three 

monovalent salts affects TMA and TPA adsorption very differently. Particularly, two 

key points are observed. First, the maximum adsorption capacity (Γmax) decreases as the 

ionic size of the added inorganic cations increases but shows a much stronger effect for 

TPA relative to that of TMA cations. Second, the adsorption constant K for TPA 

increase as Li < Na < Cs, whereas it displays an opposite trend for TMA. There are 

several possible interpretations. Given the two-fold decrease in the maximum amount 

adsorbed (Γmax) for TPA-silica mixtures, the TPA remaining on the surface is likely 

more strongly bound, resulting in an increase in the K value. Another view of this is that 

the surface binding sites have a distribution of energies, and the TPA displaced leaves 

low energy sites preferentially. Another possibility is that the solubility of the TPA 

associated with the nanoparticles decreases as water activity changes due to the salt, 
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which drives stronger adsorption. As the surface charge of the silica particles is 

increasingly screened with increasing ionic strength, the particle surface may become 

more hydrophobic, and the electrostatic forces may not be the dominant factor. The 

maximum amount of TMA adsorbed decreases slightly and is much larger than TPA. 

TMA cations have a decreasing potential for strong adsorption because of their stronger 

partitioning into the aqueous phase as the result of their larger charge to size ratio. Taken 

together, the results above show a quantitative comparison of nanoparticle stability in the 

presence of various monovalent salts and how the adsorption of organocations varies at 

the onset of particle aggregation. The results in Figure 6-8 to Figure 6-11 indicate that 

TPA is more easily displaced from the surface of precursor nanoparticles than TMA. 

Moreover, this is clearly dependent on the salt used, consistent with Hoffmeister series 

effects. 

 
 

 

Figure 6-11. Plots comparing (left) K and (right) Γmax of TAA-silica mixture with 5mM 
various salts (TAA=TMA, TPA). 
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6.4   Conclusions 

The silica nanoparticle precursors present in TAA silica mixtures can be rapidly 

driven to aggregate in the presence of simple electrolytes. Cesium chloride destabilizes 

the particles at much lower salt content than sodium or lithium chloride, consistent with 

Hoffmeister series. The PFG-NMR results of salt effect on TAA-silica mixtures have not 

been reported previously, but are consistent with work by others in the field of colloidal 

science. 
160, 161

 It is also observed that TPA binding to the nanoparticles is sensitive to 

the presence of small (<10mM) amounts of salt, where asTMA binding is on the whole 

much less sensitive. The current work highlights the complexities of these systems and 

potentially points to a route to modifying clear solution preps with the addition of 

monovalent salts, and possibly suggesting synthetic routes for accessing other siliceous 

zeolites via clear solution syntheses. 
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CHAPTER VII 

CONCLUSION AND FUTURE WORK 

 

7.1   Conclusions of Current Studies  

Chapters III to V reported quantitative analyses of TAA-silica precursor 

nanoparticle interactions prior to and during silicalite-1 synthesis. During aging at room 

temperature, such organic-inorganic interactions occur via binding of TAA cations onto 

the negatively charged surface of silica particles and the corresponding binding isotherm 

curves can be calculated. Furthermore, binding energetics of TPA and TMA with respect 

to different silica nanoparticle content was obtained by the Langmuir adsorption model 

fitting. TMA, with the highest surface charge density (C/N) the organocations, has a 

stronger adsorption strength and larger adsorption amount than TPA, which indicates 

electrostatic forces are likely the dominate forces controlling binding equilibrium. 

Chapter IV extended the NMR studies to monitor the mobility change of TPA in 

synthesis mixtures that have been heated and the results indicate a fraction of TPA 

adsorbed at room temperature dissociate from growing silica precursor nanoparticles, 

from which TPA desorption kinetic profiles  were obtained. Furthermore, various kinetic 

models were introduced to describe the TPA desorption, from which rate constants at 

different heating temperatures were calculated and the resulting activation energy is at 

the lower end of the values obtained from scattering measurements. Given the limit of 

NMR on detecting TPA assumed to be gradually occluded in the growing silica 

precursors, these kinetic studies were preformed during the early stages of silicalite-1 

nucleation.  
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Given that the organic SDA appears to control some kinetics of zeolite 

formation, addition of TMA as “competitors” to TPA adsorption onto silica precursor at 

RT and ultimately in directing silicalite-1 upon heating was discussed in Chapter V. The 

results showed the presence of TMA promoted TPA desorption and hindered silica 

particle growth via strong association between TMA and the particles. Increasing TMA 

amount above a certain point results in suppression of silicalite-1 formation in mixed 

orgnocation syntheses. Chapter IV determined how addition of monovalent salts impacts 

silica precursor particle stability and TAA-silica interactions. The extent of salt-induced 

aggregation increases with the ionic size of added alkali-metal cations, consistent with 

the Hoffmeister series. PFG NMR analysis indicates TPA adsorption is much more 

sensitive to the presence of salt and the resulting particle aggregation than TMA. Also 

noteworthy is that the TPA adsorption strength increases with increasing ionic size of 

added salt whereas this property of TMA shows an opposite trend. (see Figure 6-11 

(right)) This finding suggests one route for tuning the organic SDA-precursor particle 

interactions and thus possible affects some steps in the synthesis mechanism. Figure 7-1 

shows the XRD pattern of solid products obtained from 0.5TPA/1.5TMA/C3 mixtures 

added with 5 mM NaCl and in absence of salt this mixtures cannot produce silicalite-1. 
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Figure 7-1. XRD pattern of solids prepared from 0.5 TPA/1.5 TMA/C3 mixtures with 
5mM NaCl.  
 

 

7.2   Future Work 

Developing a comprehensive understanding of zeolite synthesis mechanism 

relies on detailed information on structure and composition of primary units, 

characterization of primary unit-SDA interactions, and elucidation of how these 

properties are affected by synthesis conditions.  This thesis studied silicalite-1 formation 

from clear solutions with silica nanoparticles as primary units and tetraalkalyammonium 

(TAA) as SDA. Thermodynamic and kinetic studies on silica particle-TAA interactions 

were performed using combined scattering and NMR techniques. Also the impact of 

varied heating temperature, TPA contents and solution ionic strength on this inorganic-

organic interaction were examed. Since pure-silica zeolites comprise a small fraction of 

the entire zeolite framework class, studies on silicalite-1 formation are a starting point 
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for conducting mechanistic investigations of porous materials syntheses. The following 

subsections summarize further experiments for expanding the scope of this thesis. 

 

7.2.1   PFG NMR Analysis of Inorganic-Organic Associations  

Indentifying organic-inorganic associations in porous silicate growth provides 

implications for developing novel materials as well as fundamental aspects of self-

assembly. 124, 162, 163 PFG NMR is a powerful technique to studying such association via 

changes in the molecule self-diffusion value.164 In Chapter II and Chapter III, we showed  

organic SDAs bind to the negatively charged silica particles to form a complex and the 

binding involved fast exchange on the time-scale of PFG NMR measurements. Thus the 

measured diffusion coefficient of SDA is a weighted averaged of diffusion of free and 

bound SDA, and the weighting factors being the relative number of the individual states. 

This methodology can be generally applied to numerous material synthesis assisted by 

organic molecules. The formation of uniform sized silica nanoparticles catalyzed by 

amino acid is a typical example. Yoki et al introduced a modified Stöiber method for 

synthesizing silica spheres with tunable size via TEOS hydrolysis using lysine instead of 

ammonia. 165, 166 An important observation is that the lysine-nanoparticle composites can 

be redispersed, indicating a possibly critical role of lysine in the particle assembly and 

arrangements Figure 7-2 shows the SAXS data of lysine-silica mixtures hydrolyzed at 70 

oC for 24h. The results indicate that no large (> 50 nm) particles were observed at any 

appreciable level as the intensity versus scattering vector plateaus at approximately 0.1–

0.12 nm-1. The PDDF (inset) indicates the particle radius is approximately 1.3 nm, and 

no large aggregates are observed. 
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Figure 7-2. SAXS data for lysine-silica mixtures hydrolyzed for 24h at 70°C.  (Inset) 
Corresponding pair distance distribution function. 
 

 

The NMR analysis of the dynamics of lysine involved in nanospheres formation 

would provide insights into this process. Figure 7-4 shows the 1H NMR spectra of 

lysine-TEOS-water mixtures hydrolyzed at different temperatures for 48 h. The 

resonances at 3.00 ppm and 2.90 ppm are assigned to the 2-H proton of lysine and the a-

H proton of DSS as internal standard, respectively (See Figure 7-3).  

 

 

 

Figure 7-3. Molecular structures of lysine (left) and DSS (right). 
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Figure 7-4.
 1H NMR spectra of lysine-TEOS-water mixtures hydrolyzed at (clockwise) 

room temperature, 45 oC and 70 oC. (For clarity, spectral region corresponding to the 2-
H resonance of lysine and a-H resonance of DSS are shown, and the y-axis is on the 
same scale.) 

 
 

As can be seen in Figure 7-4, no appreciable changes in the chemical shift values 

of lysine and DSS were observed except that for the 1-H of lysine, originally at 3.55 

ppm which merged progressively into the increasing ethanol signal due to TEOS 

hydrolysis. More important, the line width of the DSS resonance at 2.90 ppm remains 

unchanged whereas the 1-H of lysine gradually broadens as hydrolysis proceeds. Also 
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increasing the hydrolysis temperature leads to the observed broadening of the lysine 

signal occurring more quickly. A simple interpretation is that interactions between lysine 

and the formed nanoparticles lead to line broadening. Figure 7-5 (left) shows the 

observed diffusion coefficient (Dobs) of lysine in same mixtures shown in Figure 7-4, as 

a function of hydrolysis time.  As can be seen the diffusion coefficient value decreases 

with hydrolysis time and in all cases plateaus to a nearly constant value after 12-36h. A 

decrease in translational mobility of lysine suggests binding of lysine with the 

nanoparticles formed as TEOS hydrolyzes. One mode of interaction could be 

electrostatic attraction between the protonated amino group of lysine and anionic 

nanoparticle surface (pH~ 9.0). Thus we describe the lysine-silica interactions using the 

two-site model shown in Chapter II, wherein the lysine can be either „free‟ in solution or 

„adsorbed‟ to the formed silica particles. Figure 7-5(right) shows the kinetic profiles of 

lysine adsorption at different hydrolysis time. As can be seen in this figure, the amount 

of lysine adsorbed appears to plateau at nearly the same value, suggesting that the 

particles formed are insensitive to temperature. However, the increase in lysine 

adsorption is very dependent on increasing hydrolysis temperature, indicating 

temperature dependent TEOS hydrolysis (and thus nanoparticle formation).  
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Figure 7-5. (Left) Observed diffusion coefficient (Dobs) of lysine as a function of 
hydrolysis time for lysine-TEOS-water mixture hydrolyzed at various temperatures. 
(Right) corresponding lysine adsorption kinetics at different temperatures. 
 

 

The pseudo-second-order kinetic model (equation 4-3b) can be used to describe 

the lysine adsorption kinetics in Figure 7-5 and fit the adsorption rate at various 

temperatures. The linear regression plots for this kinetic model fit are shown in Figure 7-

6 (left) and resulting R
2 values range from 0.98 to 0.99 for the temperature studied, 

indicating lysine adsorption data were well described by this model. On the basis of the 

adsorption rate constants (kad) at different temperatures an Arrhenius plot can be 

developed and shown in Figure 7-6 (right). The activation energy (EA) for lysine 

adsorption during the reaction is found to be 38.3 ± 3.5 kJ/mol. This value is relatively 

low, indicating weak interactions between the silica spheres and lysine.  Thus the above 

work shows that kinetics studies of particle – stabilizer (here lysine) can be performed 

non-invasively using PFG NMR, and give insights into understanding in the case of 

organic molecule stabilization of silica nanoparticles. 
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Figure 7-6. (Left) Pseudo-second-order kinetic plots of lysine adsorption at various 
temperatures shown in Figure 7-5. (Right) Arrhenius plot of the lysine adsorption 
kinetics (R2 = 0.991). (The solid line represents the fit to the linear regression.) 
 
 

7.2.2   Study of Heteroatom Substituted Zeolites Synthesis 

Silicalite-1 from clear solutions has merged as an ideal model for mechanistic 

studies. However, it is desired to make zeolites with elements beside silicon in the 

framework. Control of zeolite frameworks for creating catalytic sites in zeolite can be 

performed either through varying organic SDA or through substituting silicon with 

different atoms (Al, B, Ge, Ga, etc.) in the frameworks. Also various zeolite frameworks 

can be obtained given a same organic SDA. 167-174 Despite an empirical understanding of 

synthesis of heteroatom substituted zeolites, this is a unsolved problem. To approach 

this, three principal aspects regarding to the mechanistic study should be considered: 1. 

how these heteroatoms partition into silica precursors and affect their structures, 2. how 

the properties of organic SDA-silica precursor interactions change in the presence of 
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heteroatoms, and 3. the transformation of organic-inorganic complex containing SDA, 

silicon and heteroatoms into zeolite nuclei. 

Quantitative analysis of organic SDA during zeolite synthesis using PFG NMR 

could provide thermodynamic and kinetics of organic-inorganic interactions with regards 

to the second aspect. Figure 7-7 shows the PFG NMR measurements of TPA in synthesis 

mixtures with varying Si/Ge or Si/B molar ratio. Figure 7-8 shows the XRD pattern for 

B-silicalite-1obtained from the mixtures shown in Figure 7-7, and mixtures with Si/B 

ratio below 25 cannot produce zeolites. On basis of diffusion coefficient change of TPA 

during MFI zeolite synthesis, one can determine the faction of adsorbed TPA as function 

of synthesis time, and relate the kinetic profiles in growth energies.  

 
 

  

Figure 7-7. Observed diffusion coefficient (Dobs) of TPA in 0.5 TPA/C3 mixture with 
varying (left) Si/Ge and (right) Si/B molar ratios. (Ge was added as Ge(OEt)4, and B was 
added as B(OEt)3.) 
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Figure 7-8. XRD pattern of B-silicalite-1solids obtained from 0.5 TPA/C3 synthesis 
mixtures with Si/B molar ratio ranging from 25 to 200.  
 
 

Given the complex chemistries involved in presence of heteroatoms, instruments 

for measuring aqueous solution and solid products should be introduced to analyze the 

precursors, intermediate species and final products present in synthesis processes. For 

instance, the structures of inorganic complex with heteroatoms can be indentified using 

electrospray ionization mass spectrometry (ESI-MS) and MS techniques. 175 Also small-

angle scattering (SAXS and SANS) is one useful tool for quantifying the compositional 

properties of precursors. In addition, 27Al, 11B and 29Si solution state NMR are 

appropriate methods to characterize the dissolved species including oligomers in 

precursor solutions yet the careful interpretation must be made. 6, 176 Furthermore, if the 

precursor solids could be separated at specific stages of zeolite synthesis, solid-state 

NMR and XPS, XRF analyses of their structures and compositions would offer 

insightful information for elucidating evolution of these precursors. 
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7.2.3   Effect of Synthesis Conditions on Zeolite Formation 

Since zeolite synthesis parameters can have a profound effect on the resulting 

zeolite growth, developing a universal mechanism to describe zeolite nucleation and 

crystallization is not difficult, so is the design of zeolite synthesis routes. Despite most of 

the advances in making novel zeolite come from trial-and-error discoveries, mechanistic 

studies on self-assembly, inorganic-organic complex involved in zeolite formation 

provides useful knowledge for rational design. The NMR results from Chapter V shows 

that the fraction of organocations (TAA) bound to silica precursors can be manipulated 

through control of added monovalent salts, leading to changes of the organic-inorganic 

interaction strengths. Since one would expect increasing ionic strength via addition of 

salts would decrease Debye length of the colloidal precursors, organic SDA‟s binding 

strength and amount would be affected. Thus, on the basis of Chapter V, tuning the 

binding energy of organic SDA-inorganic precursor could be an approach to open 

kinetic pathways to synthesis zeolites which is currently not feasible from solutions. 
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