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ABSTRACT 

 

Structural Modeling and Analysis of Structures in Aorta Images. (August 2011) 

Hai Xu, B.S., Tsinghua University (China;) 

M.S., Clemson University 

Chair of Advisory Committee: Dr. Jyh-Charn Liu 

 

Morphology change analysis of aorta images acquired from biological 

experiments plays a critical role in exploring the relationship between lamina thickness 

(LT), interlamellar distance (ILD) and fragmentation (furcation points) with respect to 

pathological conditions. An automated software tool now is available to extract elastic 

laminae (EL) and measure LT, ILD and fragmentation along their ridge lines in a fine 

detailed aspect. A statistical randomized complete block design (RCBD) and F-test were 

used to assess potential (non)-uniformity of LT and ILD along both radial and 

circumferential directions. Illustrative results for both normotensive and hypertensive 

thoracic porcine aorta revealed marked heterogeneity along the radial direction in nearly 

stress-free samples. Quantifying furcation point densities were also found that can offer 

new information about potential elastin fragmentation, particularly in response to 

increased loading due to hypertension. 

Furthermore, when biological scientists analyze the elastic lamina structure, how 

to automatically generate a macro-level geometric parameter mapping might greatly help 

them understand the over-all morphology changes of blood vessel cross section. In this 
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dissertation, another automated system is designed to quickly locate more pronounced 

EL branches to construct layer level abstraction of LT/ILD measurements and transform 

the sparse pixel level information to dense normalized Virtual Layer Matrix (VLM). The 

system can automatically compute the EL orientations, identify pronounced ELs, 

transform the denoised LT measurement points onto a VLM and then provide 

statistics/segmentation analysis. By applying the k-means segmentation technique to 

VLMs of LT-ILD, one can easily delineate regions of normal vs. hypertrophic and/or 

hyperplasia LT-ILD measurements for cross-image references. 
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CHAPTER I 

INTRODUCTION 

 

In hypertension, the arterial walls subjected to elevated blood pressure undergo 

marked growth and remodeling (G&R) processes that modify wall characteristics, 

especially the thickness [1-3]. Of the many structural constituents that make up the 

arterial wall, elastin plays a particularly important role in large arteries. Elastin endows 

these arteries with considerable distensibility, elasticity, axial prestretch, and overall 

durability; it similarly provides important biological cues for associated smooth muscle 

cells to remain quiescent and contractile [4, 5]. Not surprisingly, therefore, mounting 

laboratory and clinical evidence shows that damage to or loss of elastin contributes 

significantly to many arterial pathologies. For example, fatigue-induced fragmentation 

and degeneration of elastin are major contributors to the increased caliber, neointimal 

thickening, tortuosity, and stiffening that are hallmarks of arterial aging [6, 7], and 

thereby contribute to the associated increased pulse pressure and risk of heart attack, 

stroke, and kidney failure [8, 9]. Indeed, similar changes in elastin cause or are caused 

by hypertension and thereby contribute to its devastating role in the progression of many 

cardiovascular diseases [10]. Increasing evidence also suggests that a deficiency of 

fibrillin-1 (an elastin associated glycoprotein) in people having Marfan syndrome 

renders the arterial elastin more susceptible to degeneration and enzymatic degradation  
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[11], which in turn contributes to dilatation and eventual dissection of the ascending 

aorta. Degradation and loss of elastin is similarly thought to play a key role in the 

pathogenesis and subsequent enlargement of both abdominal aortic and intracranial 

aneurysms [12, 13], and it appears to play a role in both the development of 

atherosclerosis [14] and the restenosis that often follows balloon angioplasty or 

intravascular stenting [15]. There is, therefore, a pressing need to quantify changes in 

elastin organization within the arterial wall. 

The dynamic behaviors of such changes require consistent, automated 

measurement techniques, to assess relationships between biomechanical and functional 

changes. Recently developed porcine aortic coarctation model was used to study 

hypertension-induced G&R [1]. The porcine aorta represents a better choice than rodent 

arteries for studying potential stress-induced G&R because they have more elastic 

laminae across the vessel wall. The porcine vasculature is also more similar to that of 

humans in comparison to that of rodents. 

The altered circumferential wall stress in early hypertension is often 

hypothesized to be a key initiator of G&R. Medial SMCs, embedded in an abundant 

extracellular matrix, bear part of the initially increased circumferential stress. These cells 

may undergo hypertrophy (i.e., increased cell size) and/or hyperplasia (i.e., increased 

cell number), and they may abnormally synthesize and deposit different matrix proteins 

(e.g. collagen and elastin) as well as matrix metalloproteinases (MMP) and tissue-

inhibitors of MMPs (TIMP), which further regulate matrix turnover. Each of these 

processes plays an active role in G&R of the arterial wall. It is possible that the medial 
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SMCs may respond differently, based on their radial location in the arterial wall, to the 

altered stress/strain gradient or the growth factor concentration gradient due to 

hypertension. That is, the synthesis and deposition of matrix proteins, including elastin, 

may start to increase in the inner media at the onset of increasing blood pressure and 

progress to the outer media through the development of hypertension. As the tensile 

stress borne by the SMCs re-normalizes to its homeostatic value, due to enhanced 

laminar units, the G&R may cease.  

To validate these and many other hypotheses, an objective, quantitative 

measurement technique is needed for elastic laminae (EL) thickness across the arterial 

wall. In this dissertation, I propose an image analysis scheme to delineate spatial patterns 

of EL such as changes in its thickness across the arterial wall. Key features of my 

scheme include: 1) a Radon Transform based technique for automated orientation of the 

principal direction of EL, 2) localized measurement techniques for lamina thickness 

(LT), interlamellar distance (ILD), and lamina intensity gradient and 3) furcation point 

(FP) detection technique and density spatial distribution measurements, (4) statistical 

based experimental design to validate hypotheses related to regional non-uniformity of 

the elastic laminae in aorta, (5) Log-Gabor filter (LGF) based local greedy EL searching 

algorithm, and (6) An dense matrix abstraction for sparse pixel level measurements of 

LT/ILD. The approach presented in this dissertation thus enables a fully automated 

analysis system that includes EL extraction, alignment, point-wise and transmural 

thickness measurement, regional level analysis of virtual layer matrix (VLM) for macro-

domain aspect, and statistical hypothesis testing to assess the (non)-uniformity of LT and 
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ILD. The uniformity analysis of LT complements the homogeneity analysis of elastic 

laminae based on mechanical experiments [16]. It is also shown here that although 

automatic alignment of arterial sections by principal direction of elastic laminae is 

complicated by their inherent waviness, sectioning artifacts, and arbitrarily oriented 

specimens, a RT based algorithm can align histological images (typically 1500x2000 or 

larger) faster than traditional approaches such as linear fitting [17], 

eigenvector/eigenvalue analysis [18], and texture orientation measurement methods [19-

23]. 
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CHAPTER II 

GEOMETRIC PARAMETERS MEASUREMENT AND STATISTICAL 

HYPOTHESIS VALIDATION* 

 

2.1 Image preparation and system flow chart 

Cylindrical segments of excised porcine thoracic aorta from another study [1] 

were cut to release residual stresses and processed using standard histological methods 

(e.g., embedded, sectioned, and stained). Sections were stained with Verhoeff Van 

Gieson (VVG) to focus on intramural elastin (the main component of elastic laminae). 

Images were acquired using a research light microscope (Olympus BX51) coupled with 

a digital camera (Olympus DP70). The 1360 x 1024 digitized images were taken at 

1/500 second exposure time, ISO 200 sensitivity, and 20x zoom. When necessary, the 

“PanaVue Image Assembler” was used to stitch together snapshots to form a whole 

section of the aortic wall. All images were rotated into the same sequence of the three 

main layers (left to right): adventitia (outer layer), media (middle layer), and intima 

(inner layer), with attention directed primarily to the elastin-rich media (Figure 1). Note, 

therefore, that the elastic laminae are represented by the dark lines in Figure 1 whereas 

the pink/purple denotes remaining constituents, primarily collagen, smooth muscle, and 

ground substance matrix. The overall processing flow of the automated analysis system 

is depicted in Figure 2.  

 

 

 _____________________ 

*Reprinted with permission from “Automated measurement and statistical modelling of 

elastic laminae in arteries” by Hai Xu, Jin-Jia Hu, Jay D. Humphrey and Jyh-Charn 

Liu, 2010. Computer Methods in Biomechanics and Biomedical Engineering, Vol. 13, 

No. 6, 749–763, Copyright 2010 by Taylor and Francis. 
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(a) 

 

Figure 1. Light microscopic images of representative cross-sections of porcine thoracic 

aorta in a nearly stress-free configuration in (a) normotension (NT) and (b) 4-week 

hypertension (HT). Note the typical tri-layered structure (adventitia, media, and intima). 

The intramural constituents include the concentric elastic laminae (dark lines) and intra-

lamellar smooth muscle, collagen, and ground substance (pink). Two delimiting elastic 

laminae and the enclosed tissue define the basic structural and functional unit of the 

wall, a musculo-elastic fascicle or lamellar unit. The principal (circumferential) direction 

runs along the trajectory of elastic laminae whereas the perpendicular (radial) direction 

runs radially from intima to adventitia. 
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(b) 

 

Figure 1. Continued 
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Figure 2. Processing flow for automated elastic laminae structural analysis. 

 

 

 

2.2 Lamina detection 

It is relatively simple to extract elastic laminae from an original image when 

there is a sharp contrast between each lamina (foreground) and the non-elastin lamellar 

(background) constituents, particularly in the red channel of color images (Figure 3a).  

Yet, different threshold selections can yield different segmentation outcomes. For 

example, referring to a histogram for a representative histological sample (Figure 3b), 

there is a clear, but not distinct, boundary between foreground and background. To avoid 

the need for manual selection and decisions on the appropriate dividing threshold, I 
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adopted an adaptive threshold method [24] to segment the foreground (elastic laminae) 

and background: 

1. Empirically set an initial threshold I0 to 140.  

2. Segment image pixels as foreground or background based on I0. 

3. Compute the average intensity of pixels in the foreground as I1 and that of 

background as I2. 

4. Compute a new threshold ' 1 2
0

( )

2

I I
I . 

5. If '

0 0 1I I , then stop. Else, let '

0 0I I  and go back to step 2. 

Next, '

0I was used as a threshold to eliminate the background and generate a binarized 

map of the elastic laminae (Figure 3c). Small laminae (≤ 20 pixels) were assumed to be 

cutting artifacts or marginal tissues, and were either removed (laminae) or filled (inter-

lamellar regions) with a seed fill [24]. Centerlines (skeleton) of the elastic laminae 

(Figure 3d) were then extracted using a mathematic morphology based thinning 

algorithm [25, 26]. Once this step was completed, it was then possible to determine the 

mean principal direction (i.e., direction of primary “flow”, typically circumferential in an 

artery) of the elastic laminae (Figure 1) and then to determine other metrics of interest 

along the perpendicular direction (typically radial in an artery). The associated techniques 

to compute these metrics are discussed in order below.  
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(a) 

 

 
 

(b) 

 

Figure 3. (a) A representative non-aligned portion of an aortic cross-section, (b) an 

intensity histogram for the red channel from the raw image (x-axis is the grayscale 

intensity range [0 255], y-axis is the counts of image intensity), (c) the binarized map 

highlighting the elastic laminae, with an adaptive threshold = 121 (black area), and (d) a 

skeleton map of the laminae with artifacts (black lines). 
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(c) 

 
 

(d) 

 

Figure 3. Continued 
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2.3 Principal direction of elastic laminae 

In [27], I proposed an algorithm using an energy function derived from the well-

known RT (Radon Transform) to find the principal laminae direction, which is defined 

as the majority flow direction. The energy function was defined as: 

2

( ) ( , ) ( , ) ,e RT f x y RT f x y                        (1) 

 

where ( ) ( )d d , f is a function, (x,y) is the coordinate of a laminae point, and θ is 

the radon transform projection angle. By modelling elastic laminae as rectangular 

objects, the RT-based energy function becomes 

2

( , )
( , ) ,RT

dg x y
E x y dr

dr
                 (2) 

where r is the perpendicular distance from the origin to the straight line, with integration 

limits to infinity based on definition of radon transform, and 

( , ) tan {sgn csc min csc ,

sgn csc min csc , },

g x y p b ctg a p b ctg a

p b ctg a p b ctg a
        (3) 

 

where tan(·) is the tangent function, sgn(·) is the sign function, csc(·) is the cosecant, 

ctg(·) is the cotangent function, a is a constant which is obtained from the rectangle 

function, with distance p and angle θ defining the straight line. 

To verify the accuracy of my automatic method, I randomly picked 40 sample 

images and a “blinded” expert manually selected a principal direction three times. 

Differences between the average results for the manual and automatic methods are 

summarized in Table 1. The mean and standard deviation of the differences is 1.6±1.0 

degrees.  
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Table 1. Comparison of principal directions determined by manual and automatic 

measurement. 

 

Sample # 1 2 3 4 5 6 7 8 9 10 

Measure 1 -25 -16 -16 24 28 13 15 -12 23 25 

Measure 2 -24 -14 -14 25 29 12 16 -10 28 28 

Measure 3 -25 -13 -13 25 28 13 15 -10 21 22 

Auto Measurement -24 -12 -12 26 27 14 15 -10 26 22 

Difference 0.7 2.3 2.3 1.0 1.0 1.3 0.3 1.0 2.0 3.0 

Sample # 11 12 13 14 15 16 17 18 19 20 

Measure 1 21 -22 -20 -19 -9 8 11 10 14 18 

Measure 2 22 -21 -21 -18 -10 9 12 12 15 19 

Measure 3 21 -23 -23 -20 -10 10 11 11 15 20 

Auto Measurement 25 -19 -19 -18 -9 10 9 9 15 18 

Difference 3.7 3.0 2.3 1.0 0.7 1.0 2.3 2.0 0.3 1.0 

Sample # 21 22 23 24 25 26 27 28 29 30 

Measure 1 15 17 10 5 21 -31 -28 -41 -20 11 

Measure 2 14 16 11 4 25 -30 -25 -40 -21 11 

Measure 3 14 17 11 3 23 -30 -24 -40 -19 10 

Auto Measurement 13 18 11 1 20 -29 -23 -43 -22 10 

Difference 1.3 1.3 0.3 3.0 3.0 1.3 2.7 2.7 2.0 0.7 

Sample # 31 32 33 34 35 36 37 38 39 40 

Measure 1 -20 15 -25 -23 -26 23 -22 -14 -10 -15 

Measure 2 -24 17 -26 -21 -27 24 -20 -15 -9 -11 

Measure 3 -23 17 -27 -22 -27 25 -23 -15 -10 -13 

Auto Measurement -20 16 -26 -22 -23 23 -19 -12 -9 -12 

Difference 2.3 0.3 0.0 0.0 3.7 1.0 2.7 3.0 1.0 1.0 

 

 

Furthermore, I tested the RT algorithm and evaluated its accuracy by comparing 

results to those for a LF (linear fitting) [17] algorithm using a known, synthetic binary 

image (Figure 4). Each curve within the synthetic image was created using five different 

functions so that their shapes resemble that of elastic laminae. The functions are (from 

top to bottom):  
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1

2

3

4

5

0.6sin(0.5 ) 0.25sin(0.3 3) sin(0.1 4)

0.6sin(0.5 3) 0.25sin(0.3 3) sin(0.1 4)

0.3sin(0.6 -3) 0.5sin(0.71 3) 0.9sin(0.21 4)

0.36sin(0.7 -1) 0.75sin(0.41 2) 0.27sin(0.25 1)

0.41sin(

y x x x

y x x x

y x x x

y x x x

y 0.19 -1) 0.5sin(0.51 2) 0.3sin(0.65 1).x x x

       (4) 

 

 

 

 

Figure 4. A synthetic binary image consisting of five sinusoidal curves was used to 

verify the accuracy of my Radon Transform (RT) algorithm. The principal directions of 

all curves were forced to be 0º from horizontal, but the image was rotated by 30º, 60º, 

90º, 120º, 150º or 180º for different tests. After repeating ten times for each rotation, 

averaged outcomes for both RT and linear fitting (LF) algorithms were compared to 

assess their accuracies. 

 

 

 

All of the synthetic curves were created so that their principal directions had an 

initial zero degree orientation relative to horizontal. I then generated test images by 

rotating the original images from 30º to 180º, in 30º increments. Averages of ten 

experimental runs for RT and LF fitting methods are in Table 2, which reveals that the 

RT algorithm was consistently more accurate than the LF algorithm as expected.  
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Table 2. Comparison between the given principal direction and outcomes from RT and 

LF algorithms. Column one is the rotated degrees of  

Figure 4 from the prescribed principal direction. Columns two and four are, respectively, 

the principal directions computed by the LF and RT algorithms. The accuracies (θ1-

θ0)/θ0 are listed in columns three and five as percentages. 

 

True Rotation Degree 

θ0(º) 

LF result θ1 

(º) 

LF Accuracy 

(%) 

RT result θ2 

(º) 

RT Accuracy 

(%) 

30 30.11 0.4 30 0.0 

60 59.9 -0.2 60 0.0 

90 94.2 4.7 92 2.2 

120 120.51 0.4 120 0.0 

150 150.31 0.2 150 0.0 

180 180.17 0.1 180 0.0 

 

 

 

Furthermore, I chose five “representative” aortic cross-sectional images having 

the same resolution but different dimensions to compare the performance of these two 

methods. The LF scheme generated principal directions with good accuracy when the 

threshold for the laminae skeleton length (cf. Figure 3d) was selected properly. Figure 5 

illustrates the relationship between skeleton length threshold and estimated principal 

direction (for Figure 3a) using the LF method, with the threshold chosen to be 10 to 65 

pixels with a 5-pixel increment. Maximum and minimum vales were 27.02° and 35.89°, 

that is, about 8° different. Indeed, the estimated principal direction tended to a converged 

value even for large thresholds (> 40). Proper parameter selection for the LF-based 

algorithm is not an easy task, however. In contrast, the RT-based algorithm does not 

require thresholding; the input can be a grayscale image and the RT-based algorithm is 

shift-, rotation- and scale-free. I always obtained little error in the numerical experiments 

when removing any combination of the five curves. 
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Figure 5. Computed angle for the principal (circumferential) direction estimated by the 

LF-based method for the aortic image in Figure 3a, using different laminae skeleton 

length thresholds. The largest and smallest angles were 35.89° (threshold 10 pixels) and 

27.02° (threshold 45), respectively. The associated parameter-insensitive angle 

computed using the RT method was 27°. 

 

 

 

Finally, when smaller laminae were removed based on a length threshold of 20 

pixels, the remaining laminae skeleton was fit to a linear equation having slope k and y-

intercept b (i.e., y = kx + b). The direction of every fit line is tan
-1

(k). With all laminae 

fit, I chose the median value of all directions as the principal direction of the elastic 

laminae within the cross-sectional image. Accuracies and computing times for the RT-

based algorithm were compared against the LF-based method (Table 3), with 
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computation time averaged over the five different runs for each image. As it can be seen 

from the table, the RT-based method also had a marked speed gain over the LF 

counterpart. Given that most aortic images are large (e.g., 1360 x 1024), the RT-based 

method was found to be more suitable for large scale experiments. 

 

 

 

Table 3. Computation time and accuracy comparison between LF and RT-based 

algorithms. Column one is the number of sample images and their sizes (measured by 

pixel count). Columns two and three are the computing times for the two algorithms: 

linear fitting (LF) and Radon transform (RT). Columns five and six are the angles of the 

principal directions (PD) computed by the two algorithms. The last column is the 

difference between the results of the two methods. Despite similar accuracies, the RT 

based method outperformed the LF method because of its lower processing time for large 

images. 

 

 Computing Time Measurement Results 

Sample 

(dimension) 

LF Method 

Time 

t1(sec) 

RT 

Method 

Time 

t2(sec) 

Time 

Ratio (t2/ 

t1) 

PD from 

Linear Fitting 

P1 (º) 

PD 

from 

RT P2 

(º) 

PD 

error 

(P1- 

P2) 

1 (563 x 500) 4.565 5.97 1.31 78.5 80 -1.5 

2 (637x474) 5.025 6.71 1.33 88.2 87 1.2 

3 (806x744) 14.33 14.25 0.99 81.8 81 0.8 

4 (1866x1372) 118.78 66.32 0.56 77.5 77 0.5 

5 (2513x1382) 199.47 107.2 0.54 83.8 83 0.8 
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2.4 Lamina thickness sampling method, estimation, and modeling 

I adopted the definitions of LT (laminae thickness) and ILD (inter-lamellar 

distances) from [28], where LT is the shortest distance between two elastic laminae 

boundaries and ILD is the shortest distance between two neighboring laminae, and I 

used the method in [29] to measure the LT and ILD. Point-wise measurements of LT 

were based on a local search method along 18 directions within the cross-sectional 

image plane [27]. The ILD can be measured similarly for regions between neighboring 

elastic laminae. To verify the accuracy of this method, I randomly picked 97 points from 

seven different sample images. I compared the manual IL measurement with the 

automatic method; the difference was 0.4±0.3 pixels, which showed the reliability of my 

algorithm. 

A more challenging issue, however, was to assess the (non)-uniformity of LT 

distributions across different regions. If LT was mostly homogenous, a simple average 

of all point-wise measurements would suffice. Otherwise, regional measurements of LT 

would be required to study structural characteristics of LT across the wall. Because one 

can derive an overall average from regional measurements, I based my study on regional 

analysis techniques. Specifically, to determine possible regional homogeneities, one 

could first divide each image using r uniform vertical blocks that have the same heights 

as the image height, and then analyze the LT statistics in each block. Because such 

blocks could have different numbers of observations, however, this naïve approach could 

lead to biased statistical estimations. To eliminate such potential biases, I employed a 

randomized complete block design (RCBD) [30, 31] with a fixed number t of samples in 
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each block to test the homogeneity hypothesis. RCBD is one of the simplest blocking 

designs to control and reduce experimental errors. My analysis is confined to a 1D 

(vertical or horizontal) homogeneity analysis and consists of two steps (Figure 6): 

RCBD and standard F-test checks of homogeneity.  

 

 

 

 

 

Figure 6. Homogeneity test using both a Randomized Complete Box Design (RCBD) 

and a statistical F-test. 
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Based on the central limit theorem, one can assume that the measurement L over 

a homogenous area to be an independent and identically distributed random variable 

with a small standard deviation. For a randomly selected number t (not independent and 

identically distributed in different areas) of samples L1, L2, …, Lt within an analysis 

region w, the measurement mean 
1

1 t

i

i

L L
t

 approaches that for a Normal distribution 

N(µ,σ(t)), where µ and σ(t) are the usual mean and standard deviation. Equal size t can 

help yield reasonably small variance in all analysis areas. The aforementioned RCBD 

method was thus applied to reduce variations for experimental results on the 

distributions of transmural metrics of interest. The parameters for the RCBD are 

summarized in Table 4.  

 

 

 

Table 4. Statistical Randomized Complete Block Design (RCBD) for hypothesis testing 

of equal measurement means. The sample images are divided into r vertical regions 

(blocks) with heights equal to the image height. In each region, I randomly pick t 

measurements, e.g., LT or ILD. yij is the jth measurement in the region i. iy is mean of 

ith measurement within all regions,
jy  is mean within region j, and y is estimated true 

means of all measurements. 

 

Measurement Region 1 Region 2 … Region r Measurement- 

means 

1 y11 y12 … y1r 
1

y  
2 y21 y22 … y2r 

2
y  

… … … … … … 

t yt1 yt2 … ytr 
ty  

Block means 
1

y  2
y  

… 
r

y  y  
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In particular, I partitioned the medial layer into r non-overlapped columns 

(blocks) with the number of entries equaling the image height. In each region, I 

randomly picked t measurements (rows) where 10t n  and n  is the average number of 

sampling points over r regions within the whole image. Because the physical width of 

the regions could become unequal, the same number t of samples was used in each 

observation. I then applied a linear model for the i
th

 parameter measurement (i.e., 

diagnostic metric) within the j
th

 analysis region (block): 

yij = μ + τi + ρj + eij,               (5) 

 

where i = 1,2,…,t, j=1,2,…,r, μ is the true measurement mean, τi is the treatment effect 

which explains how much a measurement changes on an experimental unit and eij is the 

measurement error. The block effect ρj is the average deviation of L from μ within each 

analysis region (block) j. Recall that the number of analysis regions is r and the number 

of sampling points in each region is t. For simplicity, I assumed random sampling point 

locations. The measurement error eij was thus assumed to be distributed normally with 

zero mean and a common variance. The F statistic [30] used to test hypothesis H0 was: 

2

1
0

2

1 1

( ) ( 1)

,

( ) [( 1)( 1)]

t

i

i

t r

ij i j

i j

r y y t
MST

F
MSE

y y y y r t

    

      (6) 

where iy  is i
th

 measurement mean, y  is the estimated general mean, 
jy  is the j

th
 block 

mean, and yij is the measurement at i
th

 location and j
th

 block. 
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I used ANOVA [30] (analysis of variance) statistics to analyze results for LT and 

ILD in regions derived from the RCBD. The F statistic was used to test the null 

hypothesis H0: 

H0: µ1= µ2=…= µi ,               (7) 

where µi is the mean of LD or ILD at block i. I wanted to test whether or not there were 

significant differences between the measurement means along the principal (or, 

circumferential) and radial directions at a significant level α = 0.05. The test statistic α is 

the probability of exceeding the value of the test under the null hypothesis. The value 

labeled Prob > F in the last column of Table 5 is often referred as the “P-value”. In this 

dissertation, I chose the traditional significance level 0.05.  

A detailed analysis of LT and ILD was completed for one representative 

normotensive (NT) and one 4-week hypertensive (HT) sample (Table 5). For both NT 

and HT, I found LT to be significantly different among blocks (F = 0 < α) at α = 0.05, 

which implied that LT was not distributed uniformly along the radial direction. In 

contrast, the F-statistics for LT and ILD were all larger than α = 0.05 which suggested 

that LT or ILD were distributed uniformly along the circumferential direction for both the 

NT and 4-week HT cases. Their F-statistics are 0.9687, 0.2377, 0.9794 and 0.9916 

respectively. 
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Table 5. ANOVA tables for normotension and 4-week hypertension LT and ILD data. 

ANOVA (analysis of variance) in Table 5 (a-d) test the homogeneity of LT or ILD under 

normotension (NT) and hypertension (HT) along different directions. Column six 

explains the probability of homogeneity. If the probability is larger than α, I cannot 

reject the null hypothesis (no significant differences between the measurement means 

along the principal (circumferential) or radial direction) at α level. Otherwise, I might 

conclude heterogeneity. In rows two and three of each table, the block and row effects 

test the homogeneity along the radial and principal directions, respectively. Based on 

above definitions, LT and ILD are homogeneous along the circumferential direction for 

both the NT and HT cases. In contrast, LT and ILD are heterogeneous along the radial 

direction for both NT and HT. 

 

(a) ANOVA of the Normotension LT Data. 

Source Sum Square 

Error 

Degree of 

Freedom 

Mean Square 

Error 

F-Statistics Prob > F 

Blocks 27121.5 193 140.526 36.93 0 

Rows 1849.2 546 3.387 0.89 0.9687 

Errors 400946.3 105378 3.805   

Total 429917 106117    

(b) ANOVA of the 4-week Hypertension LT Data. 

Source Sum Square 

Error 

Degree of 

Freedom 

Mean Square 

Error 

F-Statistics Prob > F 

Blocks 39078.3 207 188.784 42.34 0 

Rows 1616.1 344 4.698 1.05 0.2377 

Errors 317531.4 71208 4.459   

Total 358225.8 71759    

(c) ANOVA of the Normotension ILD Data. 

Source Sum Square 

Error 

Degree of 

Freedom 

Mean Square 

Error 

F-Statistics Prob > F 

Blocks 1453516 193 7531.17 96.67 0 

Rows 44104.2 637 69.24 0.89 0.9794 

Errors 9578285.7 122941 77.91   

Total 11075905.9 123771    

(d) ANOVA of the 4-week Hypertension ILD Data. 

Source Sum Square 

Error 

Degree of 

Freedom 

Mean Square 

Error 

F-Statistics Prob > F 

Blocks 1189810.3 206 5775.92 87.87 0 

Rows 20542.8 375 54.78 0.83 0.9916 

Errors 5077828.7 77250 65.73   

Total 6288211.7 77831    
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Furthermore, comparison of images from 5 NT and 21 HT thoracic aortas 

revealed the following two key results: 

Result 1: LT and ILD exhibited regional heterogeneity along the radial direction 

for both NT and HT cases. All samples provided consistent F-statistics (close to 

0) to support the heterogeneity hypothesis of LT and ILD distributions. 

Result 2: LT and ILD exhibited regional homogeneity along the circumferential 

direction for both NT and HT cases. F-statistics of most samples were larger than 

α = 0.05 (4/5 NT for LT and 3/5 NT for ILD, and 16/21 HT for LT and 18/21 HT 

for ILD). These results suggested that, in most cases, LT and ILD can be 

considered uniformly distributed along the circumferential direction under both 

NT and HT.  

It is cautioned, however, that these results hold for the specific samples 

considered and should not be thought to be true for all loading conditions for all aortas 

or aortic segments in general. Nevertheless, despite my fundamentally different methods 

of analysis, my findings are consistent with those of [32], that is, LT is not uniformly 

distributed along the radial direction in general. As such, gross averages of point-wise 

measurements may fail to detect subtle changes of LT and ILD with time or location 

within the wall. The evaluation outcomes also validate the usefulness of the computer-

based analysis scheme, hence it can be applied reliably to large scale studies.  

Figure 7 illustrates representative distributions of LT and ILD along the radial 

direction of a NT (Figure 7a) and a 4-week HT (Figure 7b) aorta sample, where the x-

axis denotes a normalized media layer coordinate and the y-axis the averaged LT (with 
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the unit of measurement per pixel). All observations were normalized onto a [0,1] range 

to facilitate comparison between samples. Figure 7 (c) and (d) show the corresponding 

distributions of ILD from the same samples. Clearly, neither the LT nor the ILD 

distributions through the wall were uniform, consistent with the outcome of the 

hypothesis testing. The average LT was only slightly higher for the HT (= 4.32) than the 

NT (=3.81) aortas, but there was a tendency toward a higher value toward the lumen in 

the hypertensive cases (Figure 7b).  

 

 

 

(a) 

Figure 7. Computed elastic laminae thicknesses (a, b) and inter-lamellar distances (c, d) 

within the medial layers of representative normotensive (a,c) and 4-week hypertensive 

(b,d) thoracic aorta. Every point represents the average measurement within an analysis 

window for a fixed number of samples. Both the measurement locations (x-axis) and the 

measurements themselves (y-axis) were normalized to facilitate sample-to-sample 

comparisons; each data point is the result of the actual measurement divided by the 

maximum value of all measurements. The global mean and standard deviation of actual 

measurements are given at the bottom of each figure. 
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(b) 

 

(c) 

 

Figure 7. Continued 
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(d) 

 

Figure 7. Continued 

 

 

 

Various system indicators (or metrics) can be derived from the basic thickness 

maps for the elastic laminae. For instance, three different maps can be generated easily 

to visualize thickness patterns at a coarse level (Figure 8), where elastic laminae 

thickness LT is quantized into “below average” (LT < µ-σ), “average” (µ-σ < LT < µ+σ), 

and “above average” (LT > µ+σ). Visual inspection suggested that elastic laminae in the 

“below average” and “average” maps were fairly uniform whereas those in the above 

“average” map were less so. In other words, the non-uniform distribution of LT appeared 

to be due to those laminae having a greater thickness, particularly in hypertension. 
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(a) 

 
(b) 

 

Figure 8. Regional, spatial non-uniformities of the laminae thickness (LT) illustrated by 

a simple thresholding routine: (a) and (b) below average (LT < µ-σ), (c) and (d) average 

(µ-σ < LT <µ+σ), and (e) and (f) above average (LT > µ+σ). In above figures, (a), (c) 

and (e) are outcomes of NT. (b), (d) and (f) are outcomes of HT.  
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(c) 

 
(d) 

 

Figure 8. Continued 
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(e) 

 
(f) 

 

Figure 8. Continued 
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2.5 Aortic fragmentation measured via furcation point densities 

A furcation point (FP) is a point at which an elastic lamina divides into two or 

more branches. The FP density could thus indicate fragmentation, or tearing, of elastic 

laminae under different conditions. Although general techniques for detecting vascular 

networks [33, 34] can be used for FP detection, they are not applicable for my needs. For 

example, the common practice of merging closely located bifurcation points (bi-FPs) 

would introduce significant errors, and modeling bi-FPs as a supremum of openings 

having a morphological T shape [33] would introduce significant artifacts. Rather, I 

followed the basic model of FP detection described in [33] and used matching of 

templates (see Figure 9) within 3x3 analysis windows on the elastic laminae skeletons to 

get my results. 

By visual inspection, I found that the 22 templates defined in Figure 9a (note: the 

first two patterns have only one configuration, but the third to the seventh patterns have 

four orientations) were adequate for my needs, where a hollow circle is a skeleton pixel 

only, a gray circle is a skeleton pixel that cannot be a furcation point, and a solid black 

circle is a furcation point. Based on initial FP detection, as illustrated in Figure 9b, FP 

area density and line density were computed as: 

,

1

(1/ )
n

S FP CS i

i

S w

,               (8) 

 

,

1

(1/ )
n

L FP EL i

i

L w ,                (9) 

 

where n is the total number of FPs within a designated analysis area.  
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(a) 

 
(b) 

 

Figure 9. (a) Furcation Point (FP) Analysis using 22 standard templates (note: the first 

two patterns from the left allow one configuration each whereas the third to the seventh 

patterns allow four different orientation situations each). These templates were trained 

using sample images to locate furcation points, denoted by a black circle. A grey circle 

denotes a skeleton pixel not on a furcation point, and a hollow circle denotes a skeleton 

pixel. The block need not be considered if it does have any of the marks mentioned 

above. (b) Furcation points (marked in black dots) detected from skeleton lines (marked 

by light gray lines) for a representative magnified local section from an aortic image. 
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SCS is the total analysis surface area, LEL is the total length of elastic laminae 

within SCS, and wi is the weight of the i
th

 FP (the weight of a FP with m+1 branches is m-

1, for example, a bi-FPhas three branches and a weight of one). These two densities 

could be used to characterize elastin fragmentation or perhaps incompletely deposited 

fibrils under different conditions. Illustrative results are shown in Table 6 and Figure 10 

for five classes of aortic samples: surgical controls (normotensive) and 2-, 4-, 6- and 8-

week hypertensive (HT) samples. As it can be seen, the longer durations of hypertension 

resulted in larger differences in both FP metrics from control values, thus suggesting 

either greater fragmentation or perhaps the deposition of new elastic fibers that were not 

incorporated completely within extant laminae. Note that these differences are reflected 

by the changes ΔS and ΔL relative to the surgical controls (SC). 

 

 

 

Table 6. Area and line density of furcation points corresponding to Figure 10. 

 

 µS,FP (10-3) N ΔS (%) µL,FP (10-2) N ΔL (%) 

SC 2.62±0.26 17  3.98±0.15 14  

2-W 2.46±0.23 14 -5.86 4.03±0.30 17 1.44 

4-W 2.53±0.28 13 -3.32 4.17±0.25 10 4.89 

6-W 1.99±0.32 14 -23.87 3.62±0.34 15 -9.05 

8-W 1.31±0.20 19 -49.93 3.3±0.24 16 -17.09 

 

 

 

I list five groups of aorta in this table: surgery control (SC, which is 

normotensive), 2-week, 4-week, 6-week and 8-week hypertension (HT). The second and 

fifth columns are the FP area and line density measurements, average and standard 

deviation. The third and sixth columns are the sample image counts used in each group. 
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The fourth and seventh columns are differences relative to results for SC. I found µS, FP 

(furcation point area density) to decrease monotonically with the duration of HT and µL, 

FP (furcation point line density) to increase slightly at 2- and 4-weeks, and then decrease 

sharply. 

 

 

 

 

Figure 10. Furcation point area (line) density boxplots of data from Table 6. Both 

computations include five categories: surgery control (SC) and two-, four-, six- and 

eight-week HT aortic samples. X-axis shows the categories, y axis demonstrates the FP 

area (left) and line (right) densities. The middle line in each box is the median within 

each group. The upper and lower bound of each box is the lower (25%) and upper (75%) 

quartile.  
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Figure 10. Continued 

 

 

 

The FP area density distribution was relatively uniform under normotensive 

conditions (Figure 11a), but there was a spiked local increase and global elevation within 

the central region in hypertensive specimens (Figure 11b). It is not clear why there was 

more pressure-induced remodeling within the middle region of the media under 

hypertension while regions closer to intima and adventitia were less affected, but these 

are the types of observations that are needed to generate new hypotheses for the 

mechanobiology. 
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(a) 

 
(b) 

Figure 11. Furcation point (FP) area density measurements with a running average 

(window size is five) for representative (a) normotensive and (b) 4-week hypertensive 

samples. These results show a higher mean value of FP area density for the hypertensive 

sample, with a significant increase within the middle of the medial layer. Such 

measurements can be used to generate higher order statistics if desired.  
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Finally, although not shown, the mean length of elastic laminae was slightly 

greater in NT aortas near the outer (adventitial) layer, but uniform in other regions. In 

contrast, the elastic laminae were slightly longer in the central region in HT, but shorter 

in the region close to the intima. Average laminae length increased 6.6% from NT 

(=183.2 pixels) to 4-week HT (=195.3 pixels) while total length decreased by 35.5% 

from NT (=1746 pixels) to 4-week HT (=1127 pixels). In both conditions, maxima and 

minima occurred near the adventitia and intima, respectively. The area of the detected 

laminae also increased, by 11%, from NT (=717.0 pixels) to HT (=796.0 pixels), with 

maximum and minimum values occurring within the central region and near the intima, 

respectively. 
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CHAPTER III 

VIRTUAL LAYER 

 

3.1 Definition and purpose of virtual layer 

The main goal of the VL model is to support cross-image study of morphological 

changes of select organelles in the format of a dense numerical matrix, which is aligned 

to the principle direction of ELs. In [27, 35], I have developed an RT-based algorithm to 

compute the principal direction of ELs and obtain LT and ILD measurements from ridge 

lines of ELs. Those point measurements form a sparse matrix, in which only locations of 

EL ridge lines contain non-null values. It is numerically difficult to analyze this matrix 

as is by naked eye or computing algorithms. Moreover, the wavy, sometimes twisted 

ELs of different lengths make it very difficult to define EL layers from inner to outer 

aorta walls. The VLM of the LT/ILD map is abstraction of measured points so that for 

LT (ILD) morphological analysis, only LT observations of each image need to be 

mapped to its corresponding VLM. Columns of VLMs are aligned to principal directions 

of ELs, and all images are mapped to their VLMs of a same dimension. Interpolation of 

adjacent observation points in the original image onto its VLM also serves as a simple 

smoothing technique to reduce effects of local spikes. This way, noise (short EL 

branches) can be removed during the mapping process, and layer to layer morphological 

analysis can be done with much simplified computing algorithms.  

In my earlier work [27, 35], I have successfully used Radon transform to map 

ELs and their principal directions. To further reduce the number of calibration 
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parameters required for analysis, and to improve robustness against noise, in this work I 

develop a novel technique based on the Log-Gabor Filter (LGF) [36-42] and an adaptive 

search algorithm. At the first step, the image is filtered by LGF to generate a pixel level 

orientation map. Then, I apply the adaptive threshold- morphological thinning technique 

proposed in [24] to extract EL ridge lines from the original image. Ridge lines obtained 

from this step contain many minute branches due to imaging artifacts, cutting, etc. To 

eliminate high frequency noise, I develop an automated search routine to detect larger 

branches, using pixels with largest LT measurements as starting points. Using 

orientations of LGF values as inputs, the greedy search routine [43] searches for the best 

direction of the EL ridge pixel by pixel, until it meets termination conditions.  

Let the VLM of EL ridge map be denoted as an n x m dense matrix. Typically, 

the height of a ridge map ranges from 1000 to 2000, and there are 50 to 60 major EL 

ridge lines. Many branches and furcation points may concentrate on a small area. It has 

been shown earlier [27, 35] that, the EL thickness remains fairly constant along the 

principle direction of EL. As a result, for most cases I set n=m=256, so that all branches 

can be accounted for, and the square structure of VL makes it easier for numerical 

computations and analysis. Specific steps to map a ridge map of EL image to its VL 

representation are outlined as follows:  

(1) Rotate the orientation of the ridge line map to align the principle direction of 

ridge lines [27, 35] vertically. The rotated image is reduced to n rows in two 

steps. In the first step, top and bottom rows are trimmed until no row contains 
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null pixels (due to rotation). In the second step, non-null LT/ILD values on 

each row are linearly interpolated into m points onto the VLM.  

(2) The number of rows of the VL matrix is downsized from n to 256. This step 

helps smoothing minor local variations along the principle direction. 

Main computing steps required for automated generation of VLM are 

summarized in Figure 12. The example given in Figure 2 demonstrates the relationship 

between an original aorta image (Figure 13(a)), its EL and EL-ridge maps (Figure 13 (b) 

and (c)), and its VLM (Figure 13 (d)). This figure contains only a small fraction of an 

aorta image is used for better illustration of the mapping effects. Otherwise, a full aorta 

image would contain much more EL layers, making it difficult to visualize 

morphological structures of ELs. In Figure 13 (b), cross marks in green color represent 

automatically generated starting points for an EL ridge line search scheme.  

The VLM provides a smoothed representation of discrete LT/ILD points through 

the re-sampling and interpolation processes. An immediate benefit of VLM is clear 

visualization of localized LT/ILD regions or clusters, which would be otherwise very 

difficult to observe on the original image. One can apply/design automated 

segmentation/classification techniques for single-modal (LT or ILD alone) and modal-

correlated studies. My experiments show that statistics derived from VLM-based 

analysis are consistent with those derived from the EL map of a morphological thinning 

method [35]. The key differences are that (1) the VLM based method is more robust to 

noise, and (2) the VLM technique is much more effective in eliminating artifacts 
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introduced by minute EL branches. Details on design and robustness evaluation of the 

log-Gabor filter and EL search algorithm are discussed in the next two subsections. 

 

 

 

 
 

Figure 12. Computing steps for automated generation of VLM for an aorta image.  
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(a) 

 
(b) 

 

Figure 13. (a) An aorta image. In this image, ELs on the left side are thinner than those 

on the right side. (b) Automatically generated starting points (cross marks in green), and 

ELs (yellow lines). (c) Color coded LT map for LT values on EL ridge lines. d) The 

VLM of the LT map.  
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(c) 

 
(d) 

 

Figure 13. Continued 
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3.2 Log-Gabor filter 

Log-Gabor filter [40, 44] is essentially a logarithmic transformation of Gabor 

Filter, which is able to eliminate the DC-components in frequency domain. It is widely 

used for detection of orientation of patterns. The Log-Gabor filter can be expressed as 

follows: 

2 2

0 0( ) exp (log( )) 2(log( ))G w w w k w
,
               (10) 

 

where w0 is the center frequency of the filter, w is the frequency and k is a constant value. 

In this dissertation, a generalized Log-Gabor filter was applied to obtain the orientation of 

each pixel within the EL. An example and its enlarged outcome are in Figure 14. The  

A major advantage of LGF is its robustness against noise. In the following Figure 

15, Gaussian noise was applied to two images with different variances. It is obvious that 

the LGF based algorithm is able to detect the EL directions correctly even with strong 

noises. 

Based on the orientation calculated, I can decide how EL goes based on one 

predefined rules: EL always goes within ±π/2 degree range. It restricts that the 

orientation differences of neighboring two pixels will not larger than π. 

In the following image, I provided some seeking results. The top image is the 

original image. The bottom is the image processed with median filter. On the bottom, 

with each click, my algorithm will automatically seek a thread of EL based on the 

calculated orientation. It is easy to observe that the result is very accurate and the 

furcation point will not be a problem. To avoid of repetitive labeling (a part of EL thread 

was labeled twice), I define that: an EL can only be labeled once.  
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(a) 

 
(b) 

 
(c) 

 

Figure 14. (a) An original image, on which white regions represent EL, and black 

regions for smooth muscle cells and collagen. (b) The Log-Gabor map of the image. (c) 

a zoom-in view of a cropped area of (b). Red arrows show the local tissue orientation 

computed through LGF. If the local orientation is zero, it will show as one red dot.  
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Parameters Sample Image 1 Sample Image 2 

Original 
 

(a) 
 

(a') 

Orientation 

Map 
 

(b) 
 

(b') 

 

Figure 15. LGF based algorithm is robust to noises. (a) and (a’) are two different aorta 

cropping. (b) and (b’) are the orientation map. For a better visual effect, in (b) and (b’), 

only the directions on the ELs are shown in the figure. In (c),(c’), (e) and (e’), Gaussian 

noises with σ = 0.1 and 0.5 were applied to (a) and (a’). (d), (d’), (f) and (f’) are their 

orientation map respectively. 
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Figure 15. Continued 
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Figure 15. Continued 

 

 

 

3.3 Comparison between Gabor and Log-Gabor filters  

There are many other frequency domain filter based algorithms, Gabor filter is 

another choice. In the pattern recognition and image processing, Gabor filter is widely 

applied in edge detection, feature extraction and specified pattern recognition [45, 46]. 

Frequency and orientation representations of Gabor filter are similar to those of human 

visual system, and it has been found to be particularly appropriate for texture 

representation and discrimination. In the spatial domain, a 2D Gabor filter is a Gaussian 

kernel function modulated by a sinusoidal plane wave. The Gabor filters are self-similar 

– all filters can be generated from one parent wavelet by dilation and rotation. 

Its impulse response is defined by a harmonic function multiplied by a Gaussian 

function. Because of the multiplication-convolution property (Convolution theorem), the 

Fourier transform of a Gabor filter's impulse response is the convolution of the Fourier 

transform of the harmonic function and the Fourier transform of the Gaussian function.  
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To process images with clear patterns, such as the aorta lamina network 

structures, Gabor filter is not able to provide arbitrary bandwidth with a low DC 

component. This difficulty might make Gabor filter be prone to noises. I might have to 

apply multiple Gabor filters to maintain a wide coverage of the spectrum which is 

inconvenient. 

'2 2 '2 '

2
( , ; , , , , ) exp cos 2

2

x y x
g x y

,

         (11) 

 

where 
' cos sinx x y ,

' sin cosy x y , λ is the wavelength of the cosine 

factor, θ is the orientation of the normal to the parallel stripes of a Gabor function, ψ is 

the phase offset, σ is the standard deviation of the Gaussian function and γ is the spatial 

aspect ratio. 

To overcome this limitation, I chose Log-Gabor filter instead. The difference 

between Log-Gabor and Gabor filter is: Gabor filter has Gaussian transfer functions, but 

Log-Gabor filter [40] has a logarithmic frequency scale based kernel function.  

To compare the laminae direction computation results based on above two 

algorithms, directions overlapping original image was provided in Figure 16. In the 

highlighted yellow ellipse, the direction computed by Log-Gabor filter is smoother than 

Gabor filter. In the other area, the Log-Gabor filter can provide the same accuracy as 

Gabor filter. The disadvantage of Log-Gabor filter is computation burden because Log-

Gabor need to make calculation in frequency domain. FFT and IFFT will be called in 

each given direction to compute the energy. But Gabor filter only needs exponential 

function calculation which will be much faster. 
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(a) 

 
(b) 

 

Figure 16. EL flow direction detection results by (a) Gabor filter, and (b) Log-Gabor 

filter. The original image was blurred and superimposed with the detection maps to 

highlight detection details, and red small arrow at each pixel points to the detected EL 

flow direction. A yellow ellipse highlights one of many regions in which the Log-Gabor 

filter produces significantly better consistency of detected EL directions than the Gabor 

filter.  
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3.4 Searching mechanism definition of EL 

3.4.1 Searching criteria definition 

After getting the orientation with LGF, in this section, I will briefly explain how 

to identify the EL automatically with a local greedy search algorithm. To identify all 

pixels upon a lamina, there are three requirements: initial point (IP), orientations and 

stopping criteria. First of all, an initial point (IP) locating at (x,y) is selected on the EL. 

Then based on the orientation θ at (x,y) (from LGF), the next identified pixel P’(x′,y′) on 

the EL can be calculated as: 

  

              (12) 

where ∆ is a user defined searching step (in this dissertation, ∆=1). 

Next, the stopping criteria will be applied to each candidate pixel to guarantee 

they are on the EL. Finally, by repeating this processing, all pixels upon an EL thread 

will be identified. An searching algorithm outcome is illustrated in Figure 17. 
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Figure 17. Aorta image with searched ELs highlighted with yellow 

 

 

3.4.2 Aggregation of multiple search routes 

When I applying the Log-Gabor searching algorithm, I found might be a multi-

route problem: with one starting points, the searching result is the same without any 

problem. But if there is a small distortion of the initial point, the result might be far 

beyond the same, as Figure 18.  
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Figure 18. Multi-route issue: when searching the EL skeleton, based on different starting 

points, the searching results might be different. Then I might have a multi-route 

problem. In above figure, three routes were not completely overlapped. 

 

 

 

The reason of this problem is the searching strategy. For a searching candidate 

point p, an analysis sampling window w with size h will be generated along the 

perpendicular direction of p. In w, the pixels with the largest intensity will be treated as 

the next pixel on the searching route. The problem of this strategy is: 

1. If h is too large, the pixel with the largest intensity might be too far away from 

the center of the EL. 

2. Normally, the intensities of the pixels in w illustrate a Gaussian-like distribution. 

But if there are multi peaks in w, different starting points might lead us to 

different searching routes.  
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Figure 19. Simulation of pixel intensities within an analysis window. The intensity 

distribution distributes similar to a Gaussian. But multi peak phenomenon might happen. 

 

 

 

To overcome this issue, I revise the searching strategy by: 

1. As the EL intensity is Gaussian-like distribution (Figure 19) along the intersecting 

direction, I applied Gaussian high-pass filter to remove the high-frequency noises. 

2. Rather than searching the largest intensity pixel as a good pick, I start from previous 

candidate pixel. The closest peak to the candidate pixel will be treated as the next 

points on the route.  

3. A stop criterion was set. When there is too much deviation of the current candidate 

from the previous point, then the searching process will stop to avoid of providing 

wrong result. 

4. The searching window is set to be smaller to avoid of introducing noises. 

Then the EL searching outcome will not have multi-route issue, shown in Figure 20. 
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(a) 

 
(b) 

Figure 20. Multi-route issue solution: in above figures (a) and (b), five different starting 

points are randomly and sequentially selected. They were marked as yellow crossing. 

The searching routes were highlighted with different colors. In (a), tracing results based 

on the five different starting points are not overlapped. After applying three more 

searching criteria, all these five starting points will have a completely overlapped route 

in (b). 
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3.5 Virtual layer segmentation 

In my previous section, VLM visually illustrates some localized significantly 

thickened pattern, shown in Figure 13(d). In order to quantitatively classify this 

phenomenon, I applied k-means algorithm to segment the VLM into k regions (in this 

work, I choose k = 3).  

k-means is a widely known iterative segmentation algorithm [47] which is 

applied to partition n observations { }nxxxx ,...,, 21=
 into k (normally, k << n) presumed 

segments S. The purpose of k-means is to minimize the criterion function J , shown in 

(3), from the observation to its assigned centroid. Function J measures how well the 

observation set x is represented by the cluster centroids { }kµµµµ ,...,, 21= . k-means 

algorithm includes three major steps: 

1. Initialization: randomly or heuristically assign the n observations to k segments. 

2. Update the assignment based on criterion function J.  

3. Reassign n observations into k presumed segments. 

After initialization, step two and three will be iteratively applied until all 

observation assignments do not change. In this work, conventional Euclidean distance 

was chosen to be the criterion. 

2

1

1
where ,  is the number of observations within segment .

j i

j i

k

j i
i x S
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∈

= −

=

��

�
  (13) 

To implement k-means algorithm, first of all, cluster number need to be pre-

defined which might be a challenge task. For simplicity, I am interested with three 
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layers: thickened, thinner and close-to-average regions. Thereafter, the number of 

clusters will be defined to be three. 

To illustration the segmentation outcomes, shown in Figure 21 (d) and (f), I 

applied k-means technique to the VLM of one NT and one HT aorta sample images.  

 

 

 

 Normotensive Sample Hypertension Sample 

Original 

Image 

 
(a) 

 
(b) 

Figure 21. Porcine aorta LT morphology differences highlighted with k-means 

segmentation outcomes from VLM. (a) is a NT image, (b) is a HT sample, (c) and (d) 

are the generated VLM with Matlab pseudo color. Red represents high-value thickness 

and blue represents low-value. Green is a value in-between. (e) and (f) are the 

segmentation outcomes from k-means technique with three clusters pre-defined. Red 

color highlights the significantly thickened region. (g) and (h) are the outcomes by 

applying morphology operations (dilatation and removal) to smooth the segmentation 

outcomes. (i) and (j) are the smoothed segmentation outcome imposed over original 

images. 
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Figure 21. Continued 
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Figure 21. Continued 

 

 

 

3.6 Statistics analysis and hypothesis test of LT and ILD based on virtual layer matrix 

To analyze the morphology changes between NT and HT samples, I applied 

ANOVA [30] (analysis of variance) statistics to (1)averaged LT/ILD, (2)averaged VLM 

and (3)thickened area ratio of VLM. All following experiments are based on 13 NT and 

19 HT samples. The F statistic was used to test the null hypothesis H0: 

H0: µ1= µ2=…= µi ,             (14) 

 

where µi is the mean of sample i. I wanted to test whether or not there were significant 

differences between the measurement means at a significant level α = 0.1. The test 

statistic α is the probability of exceeding the value of the test under the null hypothesis. 

The value labeled Prob > F in the last column of is often referred as the “P-value”. 

In my first experiment, the averaged VLM of LT and ILD are compared, Figure 

22. The averaged LTs decreased 9.5% from 6.3 to 5.7 pixels. The p-value is 0.2988. The 

ILD increased 20% from 13 to 15.6 pixels. And the p-value is 0.0014 which means there 
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is a significantly ILD increase. These two statistics analysis outcomes are consistent with 

above experiments. 

 

 
a 

 
b 

Figure 22. Averaged VLM boxplots of data from averaged LT/ILD values of VLM. Both 

computations include three categories: NT and HT aortic samples. X-axis shows the 

categories which NT are a normotensive samples, HT are hypertensive samples. X axis 

demonstrates the averaged VLM of LT/ILD. The middle line in each box is the median 

within each group. The upper and lower bound of each box is the lower (25%) and upper 

(75%) quartile. 
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In my second experiment, I want to analyze the thickened LT/ILD ratio in the 

wall segment, Figure 23. I defined the LT or ILD which is thicker than average to be 

thickened ones. The thickened LT ratio increased from 41.8% to 54.9% with 31.3% 

increase, and the thickened ILD ratio increased from 40.6% to 56.1% with 38.2% 

increase. The p-values of them are 0.1004 and 0.0573.  

Summarizing all above statistics, I can conclude the following two key results: 

Result 1: Averaged LT statistically decreased from NT to HT group. 

Result 2: Averaged ILD statistically increased from NT to HT group. 

Result 3: For thickened LT and ILD ratio analysis, both to them pronounces a significant 

increase from NT to HT at significant level 0.1 

 
(a) 

Figure 23. Averaged VLM boxplots of data of thickened (a) LT ratio and (b) ILD ratio. 

Both computations include three categories: NT and HT aortic samples. X-axis shows 

the categories which NT are normotensive samples, HT are hypertensive samples. Y axis 

demonstrates the thickened LT ratio (range from 0 to 1. The middle line in each box is 

the median within each group. The upper and lower bound of each box is the lower 

(25%) and upper (75%) quartile. 
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(b) 

 

Figure 23. Continued 

 

 

 

3.7 VLM analysis discussion 

3.7.1 VLM statistics analysis and discussion 

In my previous research [27, 35], I provided EL thickness and ILD in both 1D 

and 2D distribution mapping, provides information of LT or ILD in the radial direction. 

The values variations can be explained as LT/ILD average changes in the radial 

direction. But the averaged mean might smear the changes in the principal direction 

(which is perpendicular to the radial direction), lots of special information were lost. 

And some abnormal information might be prominent. That is the reason why the 1D 

distribution is not smooth at all. I then also try to use 2D distribution to provide more 

meaningfully information, such as. In, LT/ILD was categorized into three tiers. In the 

above-average thickness tier, LT of HT was significantly aggregated than that of NT. 
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But as the sparseness of the measurement, the LT aggregation phenomenon is not 

significantly displayed. 

To overcome the limitation of these two methods, I will be able to map the EL 

thickness two-dimensional measurement to a highly-abstracted virtual layer mapping. 

The dimension of the target object was reduced from original image size, which is about 

thousands pixels in both direction, to a 256 by 256 matrix. By analyzing the 

segmentation results from above figures, it illustrates an obscured aggregated region 

which is close the intima layer of the aorta with hypertension. But in the normotensive 

vessels, this phenomenon is not significant. On the contrary, it illustrates a dispersed 

distribution. This observation is consistent with the related 1D LT distribution and my 

statistical hypothesis validation in section 2.4. The reason of the aggregation might 

because the intima layer will increase the speed of new-born cells to reduce the effects of 

hypertension.  

To further highlight the significantly thicker region, I segmented the virtual layer 

of LT into two segments. In Figure 22 (g) and (h), the thicker regions are marked as red 

and thinner regions are blue. Then mathematics morphology operations: dilate and erode 

were applied to remove smaller regions, showing in figure d and i. In the last 2 figure e 

and j, I overlapped the segmentation results with the original images. 

From the segmentation results, I will be able to conclude that LT distribution will 

illustrate a more aggregate phenomenon in hypertensive image than in normotensive 

one. This whole analysis process is fully automated with same parameters. It will be 
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very helpful to objectively differentiate the aorta walls into regions with different 

thickness. 

In normotensive aorta, the EL thickness is statistically uniformly distributed. I 

proved this phenomenon in my previous work [35]. I also found out the EL thickness 

distribution does illustrate a non-uniformly distribution. But it is quite difficult to 

delineate this observation with naked eyes. With the mythology provided in this 

dissertation, I will be able to automatically extract the EL, calculate their thickness. It 

can semi-auto trace each single lamina, isolate lamina network thread by thread and 

finally generate an abstract representation: virtual layer. From the virtual layer, I are 

easier to find out the EL thickened areas. I can also compare the VL between 

normotensive and hypertensive data to further confirm my conclusion: the EL thickness 

in hypertension aorta is much more aggregated than in normotensive vessels. 

 

3.7.2 Comparison to morphology thinning algorithm on lamina detection 

Morphology Thinning (MT) algorithm is another feasible algorithm to obtain the 

EL structure information, especially when there are some noises in the aorta sample 

image. Furthermore, to obtain the skeleton of the EL, I have to choose a threshold which 

highly depends on the image quality. In my previous research, I was only focus on high-

quality images. But to process relative low quality image or images with noises, 

morphology thinning algorithm might not be a good choice. 

 To illustrate the limitation of morphology thinning, two examples were listed as 
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Figure 24. In this comparison, I used a hard threshold 140 to binarized the grayscale 

image. Even though the original color image provides a good contrast, but when I 

convert the color image to grayscale, I am able to observe the much background noises 

and the rough boundary of the EL (marked as dotted circle in Figure 24). Under this 

circumstance, a hard threshold might provide a rough estimation of the ELs. Then, as the 

MT is highly depending on the binary image, MT will introduce many small branches 

and broken “lines”. All these outcome of MT might not provide clear and accurate LT 

distribution information. A length threshold might help to remove some noises and 

broken “lines”, but some useful globalize EL skeleton information might be lost as a 

compromise. And the parameter turning and signal-noise differentiation is still a 

challenge task.  

To compare the MT with my Log-Gabor based searching algorithm with some 

manually picked starting points in Figure 24, I obtain the skeleton of the EL. Each 

starting points were highlighted with a yellow crossing. Each searching route was 

highlighted with different colors. It is easy to see that the Log-Gabor based searching 

algorithm can provide a more continuous and clear EL skeleton. Furthermore, because 

the manual picked starting points were intended chosen on the thicker lamina, those 

smaller “signal” would not be chosen in the VL analysis. 
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Figure 24. Two aorta images (first row), their EL maps obtained using a morphology 

thinning algorithm (second row), and ELs by LGF-based search using manually selected 

initial points. This example illustrates that the morphology thinning algorithm is 

susceptible to high frequency noise. It also suggests that the LGF-based search algorithm 

is robust to noise with an optimal set of initial points for the search routine. 

  



67 

 

 

 

Log-Gabor based algorithm can also deal with discontinued laminae. There are 

some samples might have blur contrasts or broken tissue. By directly applying 

thresholding method, there might be lots of broken parts. For example, in Figure 25, 

there are some ELs have a loose connection. By direction applying the threshold, some 

parts might be completely broken which is highlighted with red circles. But with LGF 

based method, those discontinued parts were connected. 

 

 

 

 
(a) 

 

Figure 25. EL detection result comparison between morphology thinning algorithm and 

Log-Gabor Filter based algorithm. Three EL thread were chosen and marked as A, B and 

C respectively. From the original image, the ELs are continues. But with thresholding, 

the tissues are broken. In the orientation mapping, the flows of ELs are clearly 

continued. Thereafter, in my Log-Gabor based algorithm searching result, the EL tissues 

are connected. 
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(c) 

 

Figure 25. Continued 
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CHAPTER IV 

CONCLUSION 

 

The normal aorta is the prototypical elastic artery; it is characterized by 

prominent circumferentially oriented concentric elastic laminae within the media. Two 

delimiting elastic laminae, together with the enclosed layer of smooth muscle cells and 

collagen fibers, constitute the lamellar unit, the basic biomechanical unit for elastic 

arteries [48]. Both the laminae thickness (LT) and inter-lamellar distance (ILD) are 

thought to be distributed evenly within in the media under physiologic conditions [8-10], 

but can become non-uniformly distributed under non-physiologic conditions, as, for 

example, in hypertension. Wolinsky and Glagov [49] analyzed 26 segments of rabbit 

aorta and reported that ILD are distributed uniformly at and above the diastolic pressure 

in healthy vessels. In contrast, Sans and Moragas [32] found that ILD are significantly 

greater in inner compared to outer regions of the media based on histological sections 

from 55 autopsy specimens (29 hypertensive patients and 26 controls), with regional 

variations being more marked in the hypertensive patients than in controls. Given the 

importance of such measurements, a fast, reliable, automated procedure would clearly be 

of great help in large scale biomechanical studies. Note, therefore, that Wolinsky and 

Glagov [49] measured LT and ILD by simply using a centimeter scale and photographic 

magnification of light and electron micrographs. The mean of four “eye-balled” values 

were used as the estimation. Similarly, Jaeckel and Simon [50] measured LT and ILD 

from digitized images using micrometers. With the help of a light video microscope and 
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a SAMBA 2005 automatic image analyzer, Charpiot et al. [51] manually drew radial 

lines across the media (from the lumen to the adventitia) and the elastic laminae 

intercepted by the line were identified and determined on the intensity profile to compute 

LT and ILD. See also [52]. 

To my knowledge, the approaches proposed by Sans and Moragas [32] and Jiang 

et al. [28] are the only two computer-based algorithms designed specifically for 

determining arterial LT and ILD, yet neither computed transmural distributions or 

performed regional analyses, which can provide more complete information about 

morphologic changes in cases such as the progression of hypertension. Nonetheless, note 

that after identifying elastic laminae by interactive thresholding, Sans and Moragas [32] 

performed morphological opening to evaluate LT and ILD with five or six different 

thickness values in multiple iterations. Starting from the smallest value, binarized 

laminae having a thickness less than the setting would be removed and labeled as the 

value. While they recognized the importance of aligning the elastic laminae with the 

orientation of the structuring element, their assumption of orthogonality to the elastic 

laminae may not always hold. Based on my evaluations using known synthetic data, 

misaligned elastic laminae can lead to overestimations of LT by their method. Moreover, 

the need for manual selection of the shape and size of the structural element renders 

calibration prone to error. Jiang et al. [28] developed a geometric algorithm to derive LT 

and ILD based on assumptions that laminae are nearly straight and aligned and that only 

small changes exist in thickness distributions. Such assumptions may not hold for some 

specimens during transient changes in early disease progression. Finally, most prior 
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work focused on small regions of the aortic cross-section without offering complete LT 

and ILD information across wall. There is, therefore, virtually no systematical study on 

the (non)-homogeneity of LT and ILD distributions across different areas. Using such 

small portions of whole cross-sections for study (e.g., LT and ILD analysis) was due, in 

part, to the prior lack of computing power and reliable computing algorithms. 

The main contribution of this dissertation is the development and testing of a 

fully automated image analysis system that is capable of a broad range of analyses of 

elastic laminae within standard histological cross-sections of the arterial wall (e.g., 

metrics of importance such as LT, ILD, and FP-density). My solution scheme is 

accurate, robust to image variations, and fast; it uses as input a stained raw image and 

makes automated measurements with little to no parameter calibration. The system can 

also automatically assess the homogeneity or heterogeneity of measurements along the 

physiologic directions using hypothesis testing. This development also led to several 

important technical findings. Experimental results showed that both the LF (linear 

fitting) method and my RT (radon transform) method can align small images well. The 

main differences between these two methods, however, are that the RT-based approach 

does not require parameter adjustment while the LF-based approach is sensitive to 

parameter selection and is slower than RT for large images. Moreover, the RCBD 

(randomized complete block design) technique combined with an F-test was found to be 

a more cost effective method to assess homogeneity/heterogeneity of the LT and ILD 

than was piecemeal observations from a limited number of experiments [2]. Moreover, 

although global averages of point-wise measurements of LT or ILD in aortic cross-



72 

 

 

 

sections may be adequate in some cases, a localized (e.g., window based) measurement 

technique is more appropriate in general. Otherwise, subtle information about transmural 

variations in LT or ILD, especially those associated with different stages of disease, 

could be lost. Whether manual [4, 8, 10, 11] or computer-based [6, 8, 28, 32], image 

analysis techniques should be applied to a broader range of aortic areas, not just a few 

selected areas. 

On the basis of aforementioned observations, I made three different types of 

measurements: radially-oriented LT and ILD measurements, a two-dimensional 

expansion for LT, and also a two-dimensional measurement of FP-density for 

normotensive and hypertensive sections for side-by-side comparisons. As expected, 

localized structural changes can be detected by the region based measurement method, 

but such changes would be lost from global data aggregation techniques. Finally, with 

regard to the specific illustrative findings for normotensive (NT) and hypertensive (HT) 

porcine aorta, measurements in nearly stress-free configurations revealed potentially 

important increases in LT within the inner third of the media after 4 weeks of 

hypertension (Figure 7b). This is consistent with prior reports. Moreover, it appeared 

that this heterogeneity was due to the thicker, not thinner, sub-population of laminae ( 

Figure 8), thus suggesting possible increased deposition within the inner wall rather than 

increased degradation within the outer wall in hypertension. The FP-density was found 

to be another interesting metric for elastin structure. Recall that Table 6 revealed that FP-

density decreased monotonically with increased durations of hypertension – the 

phenomenon was not very pronounced during the first four weeks, but it increased 
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significantly at six and eight weeks: µS,FP was about 25% and 50% less than that for the 

surgical controls (SC), but µL,FP provided similar results. As a hypothesis, if lower FP 

densities imply more elastin tearing (less fractions), then a partial “healing process” 

could have served to reconnect some of the fragmented elastin during the first four 

weeks of hypertension. After six weeks, however, it appeared that any possible early 

reparative process was not sufficient to offset continued elastin tearing. More 

comprehensive studies are needed to test this and similar hypotheses.  

My technique can also be applied to measure transmural distributions of other 

geometric parameters, including (1) elastic laminae area SEL, (2) elastic laminae number 

nEL, that is, elastic laminae skeleton count perpendicular to the principal direction, (3) 

elastic laminae intensity IEL, that is, the grayscale value of an elastic laminae, (4) elastic 

laminae length lEL relative to the length of a skeleton, (5) elastic laminae average length

EL EL ELl l n , and (6) elastic laminae area ratio rEL relative to the SEL over detected 

interlamellar region area.  

In conclusion, automatic identification of elastic laminae in standard histological 

arterial sections can be used as a fast and reliable screening tool to guide subsequent 

analyses, such as immunohistochemistry. Compared to conventional methods, my 

technique is the first to objectively quantify transmural metrics of importance for the 

elastic laminae. Illustrative results from normotensive and hypertensive porcine aorta 

show that such metrics can provide important regional contrasts as a function of disease. 

Hence, my system can be applied to a much broader range of applications wherein 

elastin damage, denaturation, or degradation are expected. It can be used, for example, to 
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quantify medial changes in balloon- or stent-induced restenosis, in Marfan syndrome, 

and in aging. Correlation of potential transmural gradients in these structural features 

with gradients in wall stress/strain or growth factors, cytokines, or proteases may 

provide further insight into disease progression and thereby possibly offer new insights 

into possible treatments.  
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