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ABSTRACT

Essays on A Rational Expectations Model of Dividend Policy and Stock Returns.

(August 2011)

Changwoo Nam, B.A., Sung Kyun Kwan University;

M.A., Seoul National University; M.S., The University of Texas at Austin

Chair of Advisory Committee: Dr. Hwagyun Kim

We propose an asset pricing model in a production economy where cash flows are

determined by firms’ optimal dividend and investment decisions. Extensive and in-

tensive decision margins in dividend payout are modeled with cash holding and in-

vestment adjustment costs. The model implies that delays in dividend distribution

of young and growing firms play instrumental roles in explaining various asset pric-

ing anomalies. Quantitative results show that model-implied dividend policies and

investments are consistent with data, and the cross sections of stock returns are well

explained by the interactions between productivity shocks and the lumpy dividend

policies. Additionally, the model produces countercyclical variations in the market

risk premium.

In addition, we empirically investigate the relevance of firm characteristics and

aggregate productivity shocks in determining dividend payment propensity, thereby

asset prices. It is found that excess returns for dividend payers over nonpayers are

significantly linked to business cycles. Relative future returns are fairly predicted by

the spread of lagged propensities to pay dividends. Furthermore, the empirical results

document that each future return of payers and nonpayers increases in propensities to

pay out cash to shareholders. These results are consistent to our rational expectations

model of dividend policy, and contradictory to the catering theory of dividends.
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CHAPTER I

INTRODUCTION

It is well known that corporate decisions made by firm managers matter in explaining

the cross-sectional properties of stock returns. Especially, if decisions on investment

and dividend payout can affect cash flows of firms, these have direct implications on

the equity prices of firms, since the cash flow processes of firms are one of the two

main pillars determining stock prices. The other pillar, stochastic discount factor, is

closely related to the changes of market investor’s wealth given their attitudes toward

risk and uncertainty. Since the distributed cash flows of firms will constitute the

current and future wealths of market investors, corporate financial decisions related

to investments and dividends can have important links to variations in asset prices

via channels of both firms’ cash flows and investors’ discount factors. This paper

studies the implications of corporate dividend policies on stock returns in a general

equilibrium framework.

We develop a dynamic general equilibrium model of asset prices with many firms

whose dividend processes are endogenously determined by firms’ optimal dividend

policies and investment behaviors. In so doing, both extensive and intensive deci-

sion margins in dividend payout are modeled. Corporate managers will maximize

the present value of current and future cash flows net of dividends and the costs in-

volved with investment and cash holding. Cash holding is assumed costly to reflect

the agency cost or the conflict of interests between shareholders and firm managers.

Easterbrook (1984) and Jensen (1986) are the classic studies suggesting that firm

This dissertation follows the style of Econometrica.
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managers pursue self-interests, and increase cash holdings for various reasons. In

this case, they argue that dividends can help shareholders to reduce the associated

agency costs. Recently, Nikolov and Whited (2009) estimate a dynamic model of firm

investment and cash accumulation to find that agency problems affect corporate cash

holding decisions. They model three specific mechanisms that misalign managerial

and shareholder incentives: managerial bonuses on current profits, limited managerial

ownership of the firm, and a managerial preference for firm size. Our setup can be

viewed as an attempt to incorporate these findings in the corporate finance into a

general equilibrium framework.

The model features rich firm dynamics and generates several cross-sectional im-

plications of asset returns and firm characteristics. Regarding the firm dynamics,

both analytic and quantitative results show that younger firms with small capital

tend to invest more in capital, and they withhold paying dividends. These firms ini-

tiate dividend payouts mainly to reduce the increasing cash holding and investment

costs, as capital is accumulated. It turns out that this extensive decision margin on

firm cash flow depends on firm characteristics associated with productivity shocks.1

Thus, this model endogenizes not only the amount but also the timing of cash flows

distributed from firms to shareholders. Note that the latter is reminiscent of duration-

based explanations of the value premium examined by Lettau and Wachter (2007)

and Santos and Veronesi (2010). These papers view that growth stocks pay later,

while value firms pay now. Alas, if there exist long-run risks (persistent shocks in

economic growth, for instance) in an economy and the discount factor co-varies with

1These theoretical findings are consistent with the firm life cycle theory of divi-
dends. For more details, see Mueller (1972), Grullon, Michealy, and Swaminathan
(2002), DeAngelo, DeAngelo, and Skinner (2004), DeAngelo, DeAngelo, and Stulz
(2006). On the firm characteristics for the propensity to pay dividends, see Fama and
French (2001) and Denis and Osobov (2008).
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stock prices, counterfactual growth premiums can occur. To overcome this, Lettau

and Wachter (2007) assume that shocks to the discount factor do not co-vary with

cash flows shocks, and Santos and Veronesi (2010) assume that cash flows are highly

volatile. The former is difficult to justify in an equilibrium, while the latter needs an

abnormal amount of cash flow fluctuations. In our model, young and growing firms

typically do not pay dividends, and therefore covariations with the discount factor are

close to zero. Meanwhile mature firms with larger amounts of capital pay dividends,

and tend to have less room for growth. Thus, their short-run cash flows become risky

and accordingly priced. In this vein, our paper provides a novel explanation of the

value premium which extends and generalizes the insight from the durations of assets

based on firms’ cash flows.2

With this model in hand, we analyze the behaviors of stock returns generated

from the simulated cash flows of firms. According to our quantitative results, the

expected returns on value and size sorted portfolios are consistent with the historical

data (e.g., Fama and French (2007) and Chen, Petkova, and Zhang (2008)). In

addition, the simulated expected returns on decile portfolios sorted by book-to-market

equity ratio and size present features of value and size premia in the empirical facts

(Fama and French (1992)). Interestingly, pooling new decile portfolios sorted by fitted

propensity to pay dividends, the simulated expected returns on them consistently

increase in the likelihood of dividend payout. This implies that the factors affecting

dividend policy largely overlap with the characteristics used to form pricing factors.

Finally, the simulated market risk premiums and volatilities of aggregate dividend

and asset returns reveal endogenously countercyclical variations, again in line with

empirical evidence.

2The size premium can also arise due to the delay in dividend payout and the
profitability of firms in this model.
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Our work also belongs to another line of literature on the asset pricing model,

which extends Lucas (1978) to have many trees (dividends). Cochrane, Longstaff,

and Santa-Clara (2008) solve a model with two Lucas trees. They show that ex-

pected returns, excess returns, and return volatility as functions of dividend share

vary through time, and returns are predictable from price-dividend ratios. Mar-

tin (2009) further extends Cochrane, Longstaff, and Santa-Clara (2008) with many

trees. Menzly, Santos, and Veronesi (2004) propose a general equilibrium model with

multiple securities in which investors’ risk preferences, and expectations of dividend

growth are time-varying with external habit formation. Santos and Veronesi (2010)

show that substantial heterogeneity in firm’s cash-flow risk yields both a value pre-

mium as well as most of the stylized facts about the cross-section of stock returns,

but it generates a “cash-flow risk puzzle”. All these papers assume exogenous pro-

cesses for dividend processes. Therefore, these papers are restrictive in linking firm

characteristics to asset prices. In this context, our paper can be viewed as a general

equilibrium justification of Lucas models with multiple trees.

In addition, we empirically investigate the relevance of firm characteristics and

aggregate productivity shocks in determining dividend payment propensity and stock

returns, and we analyze the implications of serial correlations of stock returns. Our

rational expectations model of dividend policy shows that differences in dividend poli-

cies result from firm characteristics including the level of firm maturity and variations

in aggregate productivity shocks, and dividend policy, especially in extensive margin

can affect stock returns via shifting cash flows of firms. We further show that this

channel can explain some major asset pricing anomalies such as the value and size

premia. Therefore, without resorting to the existence of irrational investors such as

the catering theory of dividends (Baker and Wurgler (2004b)), it is possible to link

stock returns and propensity to pay dividends. Especially, we have shown that the
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propensity to pay dividend (PPD, hereafter) is positively related to the future stock

returns since the cash flow risk is definitely linked to the probability of dividend

payment in the next period and the cumulated cash flow risks in discount risk effect

(long-term dividend growth rate) must be associated to conditional PPDs. Therefore,

once we can appropriately find the proxy (fitted PPD by logit regression, Fama and

French (2001)) for the probability of dividend payment or payout, then it is possi-

ble to scrutinize the predictability of relative returns of dividend-payers’ stocks and

nonpayers’ stocks, payout stocks and nonpayout stocks (including stock repurchase).

The important issue is the comparison of rational expectations model and be-

havioral asset pricing model. Baker and Wurgler (2004b) posit that the decision on

paying dividends is made by prevailing investor demand for dividend payers. In other

words, investors prefer dividend-paying firms because they ignore some cost of excess

dividends to long-run growth of firms and rational firm mangers respond to this excess

demand up to some costs. This makes dividend premium exist and related to dividend

payment decisions. This so-called catering theory of dividend payment emphasizes

the roles of stock mispricing in explaining the relationship between dividend policy

and stock returns. The casual intuition suggests that the dividend premium and ini-

tiation effects are positively related to excess demand for payers. However, they find

that the difference in future returns of payers and nonpayers is negatively related to

this demand in empirical analysis because overpricing stocks by excess supply of div-

idends makes payers’ future returns relatively low. But, by our rational expectations

model of dividend policy, the relative returns of payers and nonpayers are explained

by PPDs dependent on business cycles, not by mispricing stocks. Especially, we show

that these relative returns are countercyclical due to the time-varying differences be-

tween rational investors’ risk premiums for dividend payers and nonpayers, or payouts

and non-payouts. In addition, the empirical results document that each future return
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of payers and nonpayers is positively correlated to propensities of paying out cash.

These results are consistent to our rational model of payout policies, but contradict

the catering theory of dividend because according to their security overpricing, future

returns should have been negatively linked to propensities and measures of dividend

payment.
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CHAPTER II

TO PAY OR NOT TO PAY: A DIVIDEND-BASED EXPLANATION OF ASSET

PRICING ANOMALIES

A. Introduction

Do corporate decisions made by firm managers matter in explaining the cross-sectional

properties of stock returns? Especially, if decisions on investment and dividend payout

can affect cash flows of firms, these have direct implications on the equity prices of

firms, since the cash flow processes of firms are one of the two main pillars determining

stock prices. The other pillar, stochastic discount factor, is closely related to the

changes of market investor’s wealth given their attitudes toward risk and uncertainty.

Since the distributed cash flows of firms will constitute the current and future wealths

of market investors, corporate financial decisions related to investments and dividends

can have important links to variations in asset prices via channels of both firms’ cash

flows and investors’ discount factors. This paper studies the implications of corporate

dividend policies on stock returns in a general equilibrium framework.

There are several studies that attempt to connect the investment and production

behaviors of firms to stock returns (e.g., Cochrane (1996), Gomes, Kogan, and Zhang

(2003), Zhang (2005), Li, Livdan, and Zhang (2009), and Livdan, Sapriza, and Zhang

(2009)). However, the existing literature pays little attention to dividend policy,

and the authors assume that dividends are given as residual cash flow. Simple as

it may be, the assumption of this residual dividend policy is not consistent with

empirical evidence. Figure 1 plots earnings per share and dividends per share of

several firms. Dividends appear to be managed with the following patterns: First,

there are periods of no dividend payments which make earnings much more volatile,
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and second, dividends and earnings share a common trend over time, though the latter

more volatile, other than the period of zero dividends.1 Thus, modeling whether and

when to pay dividends seems relevant in describing dividend policy.

Empirical studies report that highly related are the extensive/intensive margins

of dividend payout and key firm characteristics frequently used in empirical asset

pricing studies. Fama and French (2001) find that four characteristics have effects on

the decision to pay dividends: profitability, investment opportunities, market-to-book

ratio, and size. Larger and more profitable firms are more likely to pay dividends, and

paying dividends is less likely for firms with more investments. Grullon, Michealy,

and Swaminathan (2002) report that the firm profitability declines after a dividend

increase and rises after a dividend decrease. DeAngelo, DeAngelo, and Stulz (2006)

present evidence that the probability that a firm pays dividends is significantly related

to the mix of earned capital and contributed capital in its capital structure. Firms

with a greater proportion of earned capital are more likely to be dividend payers.

Bulan, Subramanian, and Tanlu (2007) use duration analysis to study the timing of

dividend initiations in a firm’s life cycle, and document that firms initiate dividends

after reaching the maturity phase in their life cycles. Putting together, initiators

are the firms that have grown larger and have fewer growth opportunities than do

non-payers at the same stage in their life cycles.

Based on these observations, we develop a dynamic general equilibrium model of

asset prices with many firms whose dividend processes are endogenously determined

by firms’ optimal dividend policies and investment behaviors. In so doing, both ex-

tensive and intensive decision margins in dividend payout are modeled. Corporate

1It is well known that, at the aggregate level, dividend payments tend to be smooth
relative to earnings, suggesting that corporate managers manage dividends (Lease,
John, Kalay, Lowenstein, and Sarig (1999)).
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managers will maximize the present value of current and future cash flows net of

dividends and the costs involved with investment and cash holding. Cash holding is

assumed costly to reflect the agency cost or the conflict of interests between share-

holders and firm managers. Easterbrook (1984) and Jensen (1986) are the classic

studies suggesting that firm managers pursue self-interests, and increase cash hold-

ings for various reasons. In this case, they argue that dividends can help shareholders

to reduce the associated agency costs. Recently, Nikolov and Whited (2009) estimate

a dynamic model of firm investment and cash accumulation to find that agency prob-

lems affect corporate cash holding decisions. They model three specific mechanisms

that misalign managerial and shareholder incentives: managerial bonuses on current

profits, limited managerial ownership of the firm, and a managerial preference for

firm size. Our setup can be viewed as an attempt to incorporate these findings in the

corporate finance into a general equilibrium framework.

The model features rich firm dynamics and generates several cross-sectional im-

plications of asset returns and firm characteristics. Regarding the firm dynamics,

both analytic and quantitative results show that younger firms with small capital

tend to invest more in capital, and they withhold paying dividends. These firms ini-

tiate dividend payouts mainly to reduce the increasing cash holding and investment

costs, as capital is accumulated. It turns out that this extensive decision margin on

firm cash flow depends on firm characteristics associated with productivity shocks.2

Thus, this model endogenizes not only the amount but also the timing of cash flows

distributed from firms to shareholders. Note that the latter is reminiscent of duration-

2These theoretical findings are consistent with the firm life cycle theory of divi-
dends. For more details, see Mueller (1972), Grullon, Michealy, and Swaminathan
(2002), DeAngelo, DeAngelo, and Skinner (2004), DeAngelo, DeAngelo, and Stulz
(2006). On the firm characteristics for the propensity to pay dividends, see Fama and
French (2001) and Denis and Osobov (2008).
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based explanations of the value premium examined by Lettau and Wachter (2007)

and Santos and Veronesi (2010). These papers view that growth stocks pay later,

while value firms pay now. Alas, if there exist long-run risks (persistent shocks in

economic growth, for instance) in an economy and the discount factor co-varies with

stock prices, counterfactual growth premiums can occur. To overcome this, Lettau

and Wachter (2007) assume that shocks to the discount factor do not co-vary with

cash flows shocks, and Santos and Veronesi (2010) assume that cash flows are highly

volatile. The former is difficult to justify in an equilibrium, while the latter needs an

abnormal amount of cash flow fluctuations. In our model, young and growing firms

typically do not pay dividends, and therefore covariations with the discount factor are

close to zero. Meanwhile mature firms with larger amounts of capital pay dividends,

and tend to have less room for growth. Thus, their short-run cash flows become risky

and accordingly priced. In this vein, our paper provides a novel explanation of the

value premium which extends and generalizes the insight from the durations of assets

based on firms’ cash flows.3

With this model in hand, we analyze the behaviors of stock returns generated

from the simulated cash flows of firms. According to our quantitative results, the

expected returns on value and size sorted portfolios are consistent with the historical

data (e.g., Fama and French (2007) and Chen, Petkova, and Zhang (2008)). In

addition, the simulated expected returns on decile portfolios sorted by book-to-market

equity ratio and size present features of value and size premia in the empirical facts

(Fama and French (1992)). Interestingly, pooling new decile portfolios sorted by fitted

propensity to pay dividends, the simulated expected returns on them consistently

increase in the likelihood of dividend payout. This implies that the factors affecting

3The size premium can also arise due to the delay in dividend payout and the
profitability of firms in this model.
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dividend policy largely overlap with the characteristics used to form pricing factors.

Finally, the simulated market risk premiums and volatilities of aggregate dividend

and asset returns reveal endogenously countercyclical variations, again in line with

empirical evidence.

This paper is related to growing literature that links the cross-sectional properties

of stock returns to firm characteristics. Gomes, Kogan, and Zhang (2003) construct

a dynamic general equilibrium production economy to explicitly link expected stock

returns to firm characteristics such as the firm size and the book-to-market equity

ratio. Zhang (2005) shows that the value premium occurs from the asymmetric cost

of reversibility and the countercyclical price of risk, and assets in place are riskier than

growth options especially in bad times when the price of risk is high. Li, Livdan, and

Zhang (2009) use a simple q-theory model, and ask if it can explain external financing

anomalies, both qualitatively and quantitatively. Livdan, Sapriza, and Zhang (2009)

analyze the effect of financial constraints on risk and expected returns by extending

the investment-based asset pricing framework to incorporate retained earnings, debt,

costly equity, and collateral constraints on debt capacity. However, this paper differs

from all these studies in that our model explains the cross section of stock returns

using endogenous dividend policies as well as production and investment. As men-

tioned earlier, models missing this feature can have counterfactual implications on

the relationships between stock returns and firm characteristics.

Our work also belongs to another line of literature on the asset pricing model,

which extends Lucas (1978) to have many trees (dividends). Cochrane, Longstaff,

and Santa-Clara (2008) solve a model with two Lucas trees. They show that ex-

pected returns, excess returns, and return volatility as functions of dividend share

vary through time, and returns are predictable from price-dividend ratios. Mar-

tin (2009) further extends Cochrane, Longstaff, and Santa-Clara (2008) with many
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trees. Menzly, Santos, and Veronesi (2004) propose a general equilibrium model with

multiple securities in which investors’ risk preferences, and expectations of dividend

growth are time-varying with external habit formation. Santos and Veronesi (2010)

show that substantial heterogeneity in firm’s cash-flow risk yields both a value pre-

mium as well as most of the stylized facts about the cross-section of stock returns,

but it generates a “cash-flow risk puzzle”. All these papers assume exogenous pro-

cesses for dividend processes. Therefore, these papers are restrictive in linking firm

characteristics to asset prices. In this context, our paper can be viewed as a general

equilibrium justification of Lucas models with multiple trees.

The outline for the rest of this chapter is as follows: The recursive competitive

equilibrium with dynamic problems is described in Section B, and our theoretical

findings about the firm characteristics and the cross-section of stock returns are ex-

plored in Section C. Section D outlines the quantitative analysis of cross-sectional

stock returns including the baseline calibration, and discusses the consistency of our

findings related to similar literature. Finally, Section E concludes.

B. Model

1. Individual Firm Dynamics

This section sets up the dynamic and stochastic problem of firms. The economy is

composed of a continuum of competitive firms that produce a homogeneous prod-

uct. Firms are subject to an aggregate productivity shock (xt) and a firm-specific

productivity shock (zit)
4. The aggregate shock, xt, develops according to a first-

order autoregressive stationary and monotone Markov transition function, denoted

4This convention is based on recent macro-finance literature: Zhang (2005), Li,
Livdan, and Zhang (2009), and Livdan, Sapriza, and Zhang (2009).
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by dQx (xt+1|xt) ,

xt+1 = µx (1− ρx) + ρxxt + εxt+1,

in which εx follows truncated N (0, σ2
x), and xt serves as the driving force of economic

fluctuations and systematic risks. xt has the finite support as [x, x̄] . Similarly, the

firm specific productivity shocks, {zit}i∈[0,1] with dQz (zit+1|zit) are uncorrelated across

firms, and follow

zit+1 = ρzzit + εit+1,

in which εi follows truncated N (0, σ2
z), and εxt+1 is independent of εit+1 for all i. zit

has the finite support as [z, z̄] .

The production function is given by

yit = ezit+xtKθ
it,

in which Kit is the capital of firm i at time t, and has the compact support of
[
K, K̄

]
.

The assumption on capital implies that firms have limited investment opportunities

as firms accumulate capital close to the upper bound. The production function ex-

hibits decreasing returns to scale: the curvature parameter satisfies 0 < θ < 1. The

operating profit is, then, defined as,

Π (Kit, xt, zit) = ezit+xtKθ
it − f,

in which f is the nonnegative fixed production cost, which is paid in every period5.

With this production technology in hand, we now describe the firm’s decision

process below. In the beginning of period t, firm i observes current aggregate and

firm-specific shocks. Then, it decides whether to pay dividends to shareholders (ait =

5For mathematical simplicity, we assume that f is zero in driving our theoretical
results.
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1 : paying dividends, ait = 0 : not-paying dividends). In particular, the dividend

payment (Dit) is determined by a fixed payout ratio 0 < δ < 1 as

(2.1) Dit = aitδΠ (Kit, xt, zit) = aitδe
zit+xtKθ

it.

To motivate our choice of dividend policy dictated by (2.1), we plot Figure 1. As

mentioned earlier, Figure 1 illustrates the existence of zero dividend periods for in-

dividual firms. Although we do not tabulate here, a significant number of firms do

not pay dividends at any given point of time. Thus, we believe that it is pertinent to

include the discrete decision of dividend distribution. In addition, this figure suggests

that dividend and corporate earnings follow a common trend, excluding the period

of no dividend, which makes (2.1) a reasonable approximation of reality. We further

investigate this issue in Figure 2. Panel (A) in Figure 2 displays the aggregate payout

ratios in the U.S. stock market during 1950 and 2009. Although there exist some

variations, the payout ratio is stable around 0.5. To see if the variations result from

the usual suspects such as profitability and investments, we run rolling regressions

of the aggregate payout ratio onto those variables. We find that both variables are

mostly not different from zero, and the negative sign of the profitability is inconsistent

with the related theory.

After the decision of paying dividends, the firm manager of firm i chooses the

optimal investment Iait to maximize the present value of future cash streams under the

operating profit less dividends. This cash accumulation decision is motivated from the

empirical findings in the corporate finance literature6. Related, firms often need to

hold a significant amount of funds (cash and marketable securities) to allow for future

6For instance, Nikolov and Whited (2009) argues that although numerous empiri-
cal researchers have studied the effects of agency conflicts on cash holding, this topic
remains of interest because no single prominent conclusion has emerged from these
exercises.
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acquisitions and to cover its considerable legal and business risks (Harford (1999)).7

It is also well known that there exists an agency conflict between managers and equity

providers, and increasing cash holdings further intensify this type of agency problem.8

That is, increasing the cash holdings of firms is a costly business. Incorporating this

stylized fact, we set up a firm’s dynamic decision problem with a non-convex agency

cost function in the following way.

Vi (Sit) = max
{ait=0,ait=1}

V ait
i (Sit) for all (Kit, xt, zit) ≡ Sit ∈ S,(2.2)

V ait
i (Sit) = max

Iait

{vait − Ξ (vait, Kit, xt, zit) + βEt [Vi (Sit+1) |Sit]} ,

in which V ait=0 is the present value of future cash streams reserved when it does not

pay dividends, V ait=1 is the present value of future cash flows held by a firm paying

dividends, vait is the current cash held and used by the firm manager before the cost of

reserving the cash, Ξ (vait, Kit, xt, zit) is the cash holding cost, S is a compact product

space of state variables, and Et is the expectation operator at time t.9 Thus, the firm

i maximizes the present value of the net cash flows into the corporate cash holdings,

defined as vaitit −Ξ(vaitit , Kit, xt, zit) with the decision of paying or not paying dividends

7From the perspective of corporate governance, Harford (1999) states that cash is
an important tool for firms operating in imperfect capital markets. However, firms of-
ten build up much more cash than they need to meet expected financing requirement,
which also provides another rational on why managers accumulate cash reserves, and
it is subject to a source of agency cost. Harford, Mansi, and Maxwell (2008) find
that firms with weaker corporate governance structures actually have smaller cash
reserves, and weakly controlled managers tend to spend cash quickly on acquisitions
and capital expenditures.

8Readers are referred to Jensen and Meckling (1976), Jensen (1986), Easterbrook
(1984) for more on this issue.

9The superscript a is sometimes suppressed, when it is not confusing, for the
purpose of expositional ease. For instance, when we integrate over i, we will simply
use vit instead of vait.
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each period as well as an investment decision.10 Furthermore, we define vait as

vait ≡ Π (Kit, zit, xt)−Dit − Φ (Iait, Kit) ,

and

Φ (I,K) ≡ φ

2

(
I

K

)2

K + I,

in which Φ is a quadratic investment adjustment cost with a constant φ > 0.

Regarding the cash holding cost, Ξ (vaitit , Kit, xt, zit) , we assume the following

quadratic form:

Ξ (v,K, x, z) ≡ ξ1e
ξ2(x+z)

2

( v
K

)2

K,

in which ξ1, ξ2 > 0 are constant parameters. This reflects the idea that sharehold-

ers would expect more dividends to be paid in good times, and increasing the cash

holdings of firms becomes more costly. The law of motion for capital is expressed as

Kit+1 = Iait +
(
1− δ̄

)
Kit,

in which δ̄ is a constant depreciation rate of capital stocks. This setup allows that

capital in the next period may depend upon dividend policy, especially around the

time of initiating dividend payment, since whether a firm pays a proportion of cash

flow from the profit as dividend to a shareholder determines the amount of investment

given the investment opportunity set.

Recall that firm managers are subject to costs due to the agency problem men-

tioned above. This not only has a direct implication on the payout policy of firms,

but also affects firms’ capital accumulation paths over time. Furthermore, note that

the total cost defined as Φ + Ξ is state-dependent, depending on the firms’ choices

10We can define a felicity function for firm manager, F such that her periodic utility
is F (vait − Ξ (vait, Kit, xt, zit)), where F ′ > 0, and F ′′ ≤ 0. In this context, our setup
assumes that firm managers are risk-neutral.
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of extensive margins on the dividend payout. Specifically, even if each of Φ and Ξ is

a convex function, total cost function is non-convex in investment. Figure 3 displays

this feature. Notice that the level of investment corresponding to the minimum cost

of non dividend payment, (Φ0 + Ξ0) is bigger than that of the minimum cost when

paying dividend, (Φ1 + Ξ1) . This property results from the fact that dividend pay-

ment effectively reduces the range of possible investments by lowering down cash flow

in hand. In addition, the total cost function shifts to the right as capital increases.

Once a firm has enough cash in hand and fewer marginal profitable investment op-

tions, it has the incentive to pay dividends to reduce the cash holding cost as well as

the investment adjustment cost.

The recursive problem of firm (2.2) is well defined, and the existence of a solution

can be easily established, summarized in the following proposition.

Proposition II.1. There exists a solution to the functional equation (2.2) .

Proof. We refer to Theorem 9.6 in Stokey and Lucas (1989).

Now we characterize the firm dynamics implied by our model. In light of optimal

dividend policy, the probability of paying dividends is described as

P {a = 1|S} = 1

if and only if V 1 > V 0 given the state vector S ∈ S. In this context, the propensity

to pay dividends (PPD, hereinafter) following Fama and French (2001) is defined as,

(2.3) P {at+u = 1|St} ≡
∫
S
at+udQ (St+u|St) ,

in which dQ is the transition density of S. This PPD measure is reminiscent of a

hazard function in that a firm usually does not pay dividends at its initiation, yet it

tends to pay dividends as it matures. In addition, (2.3) states that capital, aggregate



18

shock, and firm-specific shock (i.e., the elements of St) determine optimal dividend

policy, and can be related to the size and the profitability of firms. Although we will

investigate this issue in detail through numerical analysis, we show some theoretical

predictions consistent with the empirical findings by Fama and French (2001) below.

For the purpose of illustration, we make a simplifying assumption that there are

some dividend payers and non-payers who will not change their types for this and

next sections.11

Assumption II.2. There exist compact sets S0 and S1 such that for bounded positive

integer sets {u0} and {u1} ,

S
(
u0
)
≡
{
St ∈ S| P {at+s = 0|St} = 1, ∀0 ≤ s ≤ u0

}
, and

⋃
{u0}

S
(
u0
)

= S0,

and

S
(
u1
)
≡
{
St ∈ S| P {at+s = 1|St} = 1, ∀0 ≤ s ≤ u1

}
, and

⋃
{u1}

S
(
u1
)

= S1.

Assumption II.2 describes that if a firm’s state vector is located in S0, then

it currently does not pay dividends and it has no propensity to pay dividends to

shareholders in a near future. But, in S1, a firm is paying a proportion of operating

profit as dividends for some periods. Then, we show the following.

Proposition II.3. Suppose that φ = 1 in the investment adjustment cost function

for simplicity, for S ∈ S0 and Π
3
< I0 ≤ Π. Under the technical Assumption IV.1 in

Appendix A,

∂I0 (S)

∂K
> 0,

∂I0 (S)

∂x
> 0, and

∂I0 (S)

∂z
> 0,

in which I0 is the optimal investment when a firm does not pay dividends.

11This exogeneity is not used in our main quantitative section.
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Proof. See Appendix A.

According to Proposition II.3, the optimal investment increases in capital, ag-

gregate shock, and firm-specific shock, when a firm does not pay dividends. If a firm

starts to pay out, we find that this relationship becomes non-monotonic and is unable

to show. The complexity comes from the shift in conditional likelihood of initiating

dividend payment as either productivity shock or level of capital varies. For instance,

if the aggregate productivity shock xt increases, then investment increases when there

is no dividend payment. But, the increases in firm profitability can also increase the

value of firm with or without dividend payment. Note that increases in productivity

can give more pressure to the firm manager toward paying dividends via the agency

cost channel. Then, the conditional probability of dividend payment can increase as

x or z goes up. This is illustrated in Figure 4. As x increases, the level of capital

that triggers dividend payment shifts leftward, implying that dividend is going to be

distributed at an earlier stage of firm maturity.

We expect that the optimal investment experiences a one-time reduction as divi-

dend starts getting paid, followed by a gradual increase of investment in capital. This

conjecture is confirmed in our numerical and empirical analysis (Section 2).

2. Preferences and Asset Prices

We assume that there is a representative household in this economy. The household

holds a continuum of stocks from a set of firms. This setting is borrowed from Lucas

tree model (Lucas (1978), Cochrane, Longstaff, and Santa-Clara (2008), and Martin

(2009)). The preference of this household is given by

Et

[
∞∑
u=0

βu
C1−γ
t+u

1− γ

]
,
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in which β ∈ (0, 1) , and γ > 1. The budget constraint of the representative household

is written as

(2.4) Ct +

∫
Pitϕit+1di =

∫
ϕit (Pit +Dit) di,

where ϕit is an outstanding share of stock i publicly traded from firm i in the stock

market, Pit is the price of asset of firm i at time t, and Dit is the dividend from firm

i at time t. We assume that ϕit for all i and t is equal to one, hence

(2.5) Ct =

∫
Ditdi.

This is a Lucas tree model with multiple assets. But, it is important to note that

the dividend processes of firms, {(Di)t}i∈[0,1] are endogenously determined by the firm

problem we developed previously, in lieu of using exogenous processes for endowments.

In addition, our setup incorporates financial frictions as well as real frictions, allowing

interactions between the two main pillars in corporate decision making.

Given the simplicity of the household setup, we can readily compute the fun-

damental asset pricing equation through the Euler equation of the representative

household as

(2.6) Pit = Et

[
∞∑
u=1

Mt,t+uDit+u

]
,

in which Mt,t+u is the stochastic pricing kernel such that,

Mt,t+u = βu
(
Ct+u
Ct

)−γ
= βu

(∫
Dit+udi∫
Ditdi

)−γ
.

Cochrane, Longstaff, and Santa-Clara (2008) show that the volatility of consumption

growth is endogenously related to a non-linear function of dividend shares (Dit/Ct) ,

which leads to time-variations in risk premium. Our model shares this feature, and
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endogenizes the dividend processes of individual firms, and aggregate dividend to

explicitly link economic factors to asset returns, without relying on some ad-hoc

statistical processes.

Recently, there are several papers studying asset returns via variables related

to the investment and production sides of firms (See Zhang (2005), Li, Livdan, and

Zhang (2009), and Livdan, Sapriza, and Zhang (2009)). However, we depart from this

literature by emphasizing the role of endogenous dividend policy to explain the cross-

sectional behaviors of asset returns. In addition, they assume a version of stochastic

risk aversion to generate time-varying risk premium unlike this model in which the

risk premium is endogenously countercyclical.

Expected returns, market sizes, book-to-market equity ratios and some sort of

risks are functions of three state variables Kit, zit and xt. The risk and expected

return of firm i satisfy

Et [Rit+1] = Rft + βitλMt or Et [rit+1]− rft = βitλMt.

The quantity of risk is given by

βit ≡ −
Covt [Mt,t+1, Rit+1]

Vart [Mt,t+1]
,

the price of risk is given by

λMt ≡
Vart [Mt,t+1]

Et [Mt,t+1]
.

and the maximum conditional Sharpe ratio is given by∣∣∣∣Et [Rt+1]−Rft

σt [Rt+1]

∣∣∣∣ ≤ σt [Mt,t+1]

Et [Mt,t+1]
,

in whichR is assumed to be located on the mean-standard deviation frontier (Cochrane

(2005)). The market size is Pit since we already assume that a supplied outstanding
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share of stock i, ϕit is one. Then, book-to-market equity ratio is defined as

BEit
MEit

≡ Kit

Pit
.

3. Equilibrium

By developing a recursive competitive equilibrium model, we characterize the aggre-

gate behaviors of the economy. We assume that aggregate demand is automatically

cleared at the aggregate output. Asset prices (Pit) are real prices normalized by

the output price, and we can suppress the output price. Let µt denote the measure

over the capital stocks and idiosyncratic shocks for all the firms at time t and let

Ψ (µt, xt, xt+1) be the law of motion for the firm distribution µt. Then Ψ (µt, xt, xt+1)

can be stated formally as

(2.7) µt+1 (S;xt+1) = T (S, (Kt, zt) ;xt)µt (Kt, zt;xt) ,

in which the operator T is defined as

(2.8) T (S, Kt, zt;xt) ≡
∫ ∫

1{It+(1−δ̄)Kt,zt+1∈S}dQz (zt+1|zt) dQx (xt+1|xt) ,

in which 1{·} is the indicator function. The operator T determines the law of motion

of the firm distribution µt.

The total economic output can be written as

Yt ≡
∫
y (Kt, zt;xt) dµt (Kt, zt) ,

in equation (2.9). The resource constraint for this economy is given by

(2.9) Yt =

∫
(Dit + vit + Φit) di.

Definition II.4. A recursive competitive equilibrium is characterized by (a) an op-
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timal investment rule I∗ (St), an optimal dividend policy D∗ (St) as well as a value

function V ∗ (St) for each firm, (b) an optimal consumption C∗ (µt, xt) for a represen-

tative household given asset prices P (St), and (c) a law of motion of firm distribution

Ψ∗ such that:

1. I∗ (St) and D∗ (St), hence v∗(St) solve the value-maximization problem (2.2) for

each firm,

2. C∗ (µt, xt) solves the household utility-maximization problem,

3. P (St) is determined in (2.6) ,

4. Consistency: (2.9) holds for the consistency of the production of all firms in the

industry with the aggregate output Yt. (2.7) and (2.8) hold for the consistency

of the law of motion of firm distribution Ψ∗ with firms’ optimal decisions.

5. Market clearing condition: from (2.5) and (2.9) ,

Yt = Ct +

∫
(vit + Φit) di,

and ϕit = 1 for all i and t.

Proposition II.5. There exists a unique recursive general equilibrium.

Proof. See Appendix A.

C. Cross Sections of Stock Returns

Since our model incorporates key aspects of corporate decision making on capital

accumulation and dividend payout which, in turn, determine the wealth of investors in

equilibrium, the model offers a theoretical laboratory to analyze the stylized facts from

the empirical asset pricing studies, such as (Fama and French (1992)). In particular,
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we focus on the value and size premia. The first step is to illustrate the theoretical

possibility via simple examples, paving the way to the quantitative analysis.

1. The Value Premium

The expected excess return is decomposed into a term indicating the discount risk

effect and the other term representing the cash flow risk effect following (Santos and

Veronesi (2010)) as

(2.10) Et [Rit+1]−Rft =
(
βcf
it + βdisc

it

)
λMt,

in which

βcf
it = −

Covt
[
Mt,t+1,

Dit+1

Pit

]
Vart [Mt,t+1]

,

βdisc
it = −

Covt
[
Mt,t+1,

Pit+1

Pit

]
Vart [Mt,t+1]

.

Alternatively, the expected stock return can be explained in two parts, the expected

rate of capital gain (expected long-term dividend growth rate) and the expected

dividend price ratio (Fama and French (2002), and Chen, Petkova, and Zhang (2008))

such that,

(2.11) Et [Rit+1] =
Et [Pit+1]

Pit
+

Et [Dit+1]

Pit
.

Now we show that the value premium can result from both the discount risk and cash

flow risk under some conditions.

Proposition II.6. Suppose that there are only two assets in the economy with K1t <

K2t, P1t = P2t with the Assumptions II.2 and IV.2. Further, we assume that

(K1t, xt, z1t) ∈ S0 and (K2t, xt, z2t) ∈ S1.
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Then, the following relationships hold.

βcf
1t < βcf

2t, β
disc
1t < βdisc

2t ,

hence,

Et [R1t+1] < Et [R2t+1] .

Proof. See Appendix A.

The firm 1 with small capital is a growth stock compared to the firm 2 with

larger capital, a value firm by construction. Then the proposition states that the

value premium prevails, as long as the growth firm has not been paying the dividend

(S0), while the value firm pays (S1). It is worth mentioning that both the premiums

from the cash flow and discount risks are higher for the value firm. Admittedly the

assumptions used in this proposition are rather strong, which we do not impose in

our quantitative analysis. However, this permits us to gain insight on the roles of

lumpy dividend policy and the life cycle of firms in producing the value premium.

In this example, the cash flow beta (βcf
t ) of the value firm is higher than that of

the growth firm, because the latter will not distribute its cash to a shareholder for a

while, and the resulting conditional covariations will be zero. Thus, as long as it is

a reasonable assumption that non-dividend paying firms are the growth firms, which

will be shown in the next section, equity holders of those firms are exposed to lower

cash flow risks, since they are unlikely to pay dividends in a near future.

Interestingly, this intuition carries over in evaluating the discount effect as well.

According to the proposition, the equity of the firm 2 (value firm) will involve the

higher risk than that of the firm 1 (growth firm) for betting on long-term dividend

growths (βdisc
1t < βdisc

2t ). At first glance, this result seems counterintuitive, because

growth firms are assets with high durations, implying that the more sensitive are
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their prices to changes in the discount factor. It is well known that this leads to

counterfactual growth premiums. Lettau and Wachter (2007) assume that the dis-

count rate shock is uncorrelated with the aggregate dividend growth to turn this

channel off, while Santos and Veronesi (2010) increase idiosyncratic cash flow risks

to counter the effect. Although the same channel still exists in the model, there is

another discount effect from the short-run fluctuations in our case: Stocks currently

paying dividends (value firms) can be exposed to more discount risk than those not

paying dividends (growth firms) which has zero covariations with changes in the dis-

count rate until they start paying. If this dominates the effect of high duration, the

value firm involves higher risks from the shocks to discount rate.

More concretely, under the assumptions in Proposition II.6, we have the following

relation

(2.12) βdisc
2 − βdisc

1 ∝ −
u0−1∑
u=1

Covt

[
Mt,t+1, (Et+1 − Et)

((
D2t+u+1

D2t+1

)−γ
D2t+u+1

)]
,

where

(2.13) Covt

[
Mt,t+1, (Et+1 − Et)

[(
D2t+u+1

D2t+1

)−γ
D2t+u+1

]]
< 0

for u = 0, 1, · · ·u0. The term (2.13) exhibits the discount risk effect of the value

firm (firm 2) during a period in which the growth firm does not pay dividends. If

the differences in future dividends are relatively small by the time both firms pay

dividends (Assumption IV.2), value premium can prevail because of the differences

in dividend policy in the next upcoming periods. Assumption IV.2 is a quantitative

concern, which we closely examine in the next section. Notice from (2.12) that the

value premium increases in u0 that measures how long the firm 1 will delay dividend

payment, i.e., persistence in dividend policy. As the growth firm delays paying divi-

dends for a longer period, the value premium is likely to be higher. In sum, a firm’s
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decisions on whether to pay dividend and its duration matter to generate the value

premium in our model. Of course, the assumption on the equal market value of the

two firms (P1 = P2) completely ties the firm’s book value (K) with the book-to-

market equity ratio (K/P ). However, the following proposition shows that if firms

with larger (smaller) book values (K) are those who (do not) pay dividends, their

book-to-market equity ratios are consistent with the rank order of book values.

Proposition II.7. Suppose that there are only two assets without firm-specific shocks

in the economy with K1t < K2t, the Assumption II.2, and some parametric restric-

tions. If (K1t, xt) ∈ S0 and (K2t, xt) ∈ S1 additionally hold, then

K1t

P1t

<
K2t

P2t

.

Proof. See Appendix A.

The existing models such as Gomes, Kogan, and Zhang (2003) and Zhang (2005)

have the property that a growth firm pays more dividend than a value firm, which is

counterfactual. On the contrary, the above proposition suggests that, even without

firm-specific shocks, the firm paying dividends (firm 2) is more likely to be a value

stock compared to the firm 1 who is not paying dividends. Because the firm 1 has

relatively higher marginal profitability and a larger opportunity set, its value of growth

options given capital is greater than that of firm 2, inferred from the firm dynamics.

2. The Size Premium

This section explores the possibility of the size premium via dividend policy using a

simple Gordon model. We assume that there exist only two firms with K1t < K2t

indexed by 1 and 2 in the economy. We further assume that D1t = δKθ
1t and D2t =

δKθ
2t, if dividends are distributed. Similar to the previous examples, for simplicity,
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we assume that the firm 1 decides not to pay dividends until t+ u0 + 1, and the firm

2 pays dividends now. In addition, firms continue to pay dividends once it started.

Finally, to control for the value premium, two firms are assumed to have the same

book-to-market equity ratio, i.e.,

K1t

P1t

=
K2t

P2t

.

The firm 1 (2), by construction, is a small (large) firm in this simple example.

Stock prices of the firms are then written as

P1t =
∞∑

u=u0+1

δKθ
1t

(
1 + ∆P1/P1

1 + r

)u
=

(1 + ∆P1/P1)u
0+1 δKθ

1t

(1 + r)u
0

(r −∆P1/P1)
,

P2t =
∞∑
u=1

δKθ
2t

(
1 + ∆P2/P2

1 + r

)u
=

(1 + ∆P2/P2) δKθ
2t

(r −∆P2/P2)
,

in which ∆P1/P1 and ∆P2/P2 are long-term dividend growth rates in Gordon model,

and r is a constant opportunity cost of capital in the financial market. ∆P1/P1 and

∆P2/P2 are less than r to have finite stock prices. We then solve for the difference of

two long-term dividend growth rates under the assumption of equal book-to-market

equity ratios to show that

∆P1

P1

− ∆P2

P2

∝
(
K2t

K1t

) θ−1

u0

.

(K2t/K1t)
θ−1 is the ratio of marginal profitability of firm 2 to marginal profitability

of firm 1, which must be less than 1 according to the assumption. The difference

between two long-term dividend growth rates has the positive relation to u0, which

presents the firm 1’s dividend policy. This property implies that in the stock market,

the expected long-term dividend growth rate of the firm 1 is higher than the firm

2, even though the firm 1 has the same book-to-market equity ratio as the firm 2.

While the firm 1 starts to pay dividends later, the condition of equal book-to-market
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equity ratios makes its long-term dividend growth rate expected to be higher. Plus, if

the firm 1 has the smaller capital, it will invest more in capital, postpone further the

initiation time of dividend payout by due to the increases in its marginal profitability.

Consequently, the expected capital gain of firm 1 must be higher than before. If the

firm 2’s expected dividend price ratio is sufficiently low, then the firm 1’s expected

stock return must be higher than the firm 2, implying the small firm’s size premium.

One caveat of this explanation is the lack of risk adjustment, and further quantitative

analysis is desired.

To summarize, time-varying, persistent, and stochastic extensive margins in div-

idend policy have potentials to explain cross-sectional variations in stock returns.

However, as emphasized in the beginning of this section, dividend policy is a highly

endogenous process depending on the fundamental and firm specific shocks. To delve

into this issue, we now turn our attention back to the full model, and quantitatively

analyze it.

D. Quantitative Analysis

1. Calibration

We calibrate 12 parameters
(
δ̄, ρx,σx,ρz, σz, φ, δ, β, µx, θ, ξ1, ξ2

)
both in monthly and

quarterly frequencies to facilitate the comparison of our results with those from the

empirical literature. The monthly model is denoted as Model M, and the quarterly

model, as Model Q. The first parameter set
(
δ̄, ρx,σx,ρz, σz, φ, δ, β

)
is calibrated out-

side the models, and the second parameter set (µx, θ, ξ1, ξ2) is calibrated inside the

models following the idea of generalized method of moments. Table I reports the

parameter values that we use to solve and simulate the models.

The monthly depreciation rate δ̄ is 1%, which implies an annual rate of 12%
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(Abel and Eberly (2002)). The persistence of the aggregate productivity process (ρx)

is 0.95 and its conditional volatility (σx) is 0.007, which are quarterly values. 0.983

and 0.0023 are the monthly values of those parameters, ρx and σx, respectively. These

values are consistent with Cooley and Prescott (1995). For the persistence (ρz) and

conditional volatility (σz) of the firm-specific productivity shock, we set ρz = 0.97

and σz = 0.10 for monthly frequency. These values are chosen from the related

literature (e.g., Zhang (2005), Li, Livdan, and Zhang (2009), and Livdan, Sapriza,

and Zhang (2009)) to generate a plausible amount of dispersion in the cross-sectional

distribution of firms. We set ρz = 0.912 and σz = 0.30 for quarterly frequency. The

average payout ratio (δ) is calibrated to be 60%, borrowed from the average value

of aggregate payout ratios from 1981 to 2007 in CRSP/COMPUSTAT merged data.

We choose the time preference parameter, β = 0.998 on monthly and β = 0.994 on

quarterly.

Regarding the second set of parameters (µx, θ, ξ1, ξ2), we calibrate those param-

eters using the following procedure.12

1. Set initial values for group Λ0 = (µ0
x, θ

0, ξ0
1 , ξ

0
2) .

2. Solve the value function V (Sit) such that,

(a) Each grid on the compact set S represents each firm in the market.

(b) By backward induction, solve the V 0 (Sit) and V 1 (Sit) on each iteration,

and pick the bigger value.

3. From the converged value function V (Sit) , we have the operating profit func-

tion (profitability) and endogenous policy functions (investment-capital ratio,

12The convexity parameter of investment adjustment cost (φ) is normalized to one
to conserve the number of parameters used in our numerical study.
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disinvestment-capital ratio, and dividend policy) such that,

Zit =

(
Π (Sit)

Kit

,
I+ (Sit)

Kit

,
I− (Sit)

Kit

, ait; Λ

)′
,

in which, I+ is the net investment and I− is the net disinvestment.

4. Define the generalized moments of policy functions as,

1

n

n∑
i=1

Zit − E [Zit] = Z̄ (Λ)−Z,

in which n is nK × nx × nz, (nK : number of grids on SK , nx: number of states

of x, and nz: number of states of z).

5. By iterating the process from step 1 to step 4, we solve the minimization problem

for the parameters as follows,

Λ̂ = arg min
Λ

(
Z̄ (Λ)−Z

)′
W
(
Z̄ (Λ)−Z

)
,

in which W is a weight matrix, and we use identity matrix in this study.

Our method is not the same as the conventional simulated method of moments

since we do not generate random numbers to compute the moments of endogenous

policy functions. Rather, generated moments are the average numbers of target val-

ues from points on all grids of the compact state space while iterating value functions

regarding the values of Z. The average monthly profitability defined as the oper-

ating profit to the capital ratio (Π/K) is 1.25%, the value of the average monthly

net investment ratio (I+/K) is 1.25%, for the net disinvestment (I−/K), 0.17% is

the average value on monthly frequency. These values are reported by Abel and

Eberly (2002). The average proportion of firms in CRSP that paid dividends in a

period from 1926 to 1999 is 49%. This number is borrowed from Fama and French

(2001). The calibrated parameters are Λ = (−2.0, 0.68, 323, 0.084) for Model M and
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(−1.71, 0.65, 458, 0.044) for Model Model Q. The curvature parameter in the produc-

tion function (θ) is monthly 0.68 and quarterly 0.65, close to the values suggested

by Livdan, Sapriza, and Zhang (2009) or the average values estimated by Cooper

and Ejarque (2001), Cooper and Ejarque (2003), Hennessy and Whited (2005), and

Hennessy and Whited (2007). The long-run average level of aggregate productivity

(µx) is −2.0 for Model M and −1.71 for Model Q, which are higher than other free

cash flow asset pricing models (e.g., Zhang (2005), Li, Livdan, and Zhang (2009),

and Livdan, Sapriza, and Zhang (2009)). The difference may come from the way this

parameter is retrieved. They calibrate µx and time-varying γ exogenously by fitting

the first and second moments of risk-free rate data. Meanwhile, we use only firm

characteristics data to calibrate it. Convexity parameter of the cash holding cost (ξ1)

and procyclical parameter of cash holding cost (ξ2) are 323, 458, and 0.084, 0.044 on

monthly and quarterly frequencies, respectively.

2. Investment, Dividend Policy, and Cash Holdings

Panel (A)’s in Figures 5-8 display optimal investment behaviors as a function of

capital and productivity shocks (K, x, z). First, we observe that optimal investments

increase until capital stock (K) reaches level at which dividend payouts begin. When

this occurs, investment drops off by about the half of where it used to be. As discussed,

x and z determine the amount of investments, and they have positive relationships

with investment.

Panel (B)’s in Figures 5-8 show that the investment-capital ratios (I/K) given

x and z decrease as capital stock increases, because of diminishing returns to scale of

capital. This is consistent with the view that young firms are more likely to invest

their resources in capital compared to mature firms. What is new in our model is that

a firm will execute a one-time discrete reduction of investment in its life cycle, as it
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grows. The discrete shift in investment results from the lumpy behavior of dividend

policy, as we discussed earlier, because dividend payment substitutes for the amount of

investment. However, we want to emphasize that this does not necessarily imply that

investment and dividend payout will feature negative correlation, since adjustment

is costly for both investment and dividend and therefore, frequent changes of these

variables are unlikely to prevail. Only a few observations show conditionally negative

correlations, and the unconditional correlation between investment and dividend does

not need to be negative, because it can depend more on firm profitability, level of

capital, and related, firm age.

Firms with the smaller amount of capital invest more, and the investment de-

creases rather abruptly as capital is accumulated. Panel (C)’s in Figures 5-8 show

the optimal dividend policies. Zero dividend equity ratios mean that firms are not

paying dividends, and positive numbers show that the firms pay dividends. Firms

with higher x and z are more likely to initiate their dividend payouts earlier, since

those firms will accumulate capital faster, hence they tend to mature earlier than

other firms. Recall that our model has the cash holding cost motivated in part by

the agency cost resulting from the tension between equity holders and the firm man-

ager. Thus, accumulated capital will lead to larger operating incomes which trigger

dividend payout.

It is natural to think that the propensity to pay dividends (PPD), P {a = 1|S}

and firm-characteristics such as profitability, investment, and the market value of

capital are associated with each other. Figures 5-8 suggest that our model indeed

replicates the stylized facts in Fama and French (2001) as mentioned earlier: Asset

prices generated by the model are consistent with the firm characteristics.

Panel (D)’s in Figures 5-8 plot the value functions of firm dynamics (2.2) which

are the present values of cash flows into cash holdings. These figures show that as K,
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x, and z increase, a young firm’s present value of cash flows increases, but the value

of a mature firm which pays dividends decreases. For a young firm, the increases in

x and z make its managerial cost increase due to the procyclical cash holding cost,

and force the young firm to invest more cash in capital. Then, this procyclical effect

expedites the young firm’s initiation of dividend payouts earlier than when it has lower

x and z. For a mature firm, although it also shares this procyclicality channel, it will

face a relatively limited investment opportunity set due to its large capital. Thus,

the mature firms are bound to solve a more constrained optimization to minimize the

total managerial cost. This renders the mature firms to incur higher cash holding

cost than when it was young. This also makes them to pay more dividends to reduce

the cash holding cost. Thus, the present values of cash flows for the mature firms will

become smaller than those of younger firms, and decrease in x and z, ceteris paribus.

3. Analyzing Stock Returns

Now, to analyze the expected market return and cross sections of expected stock

returns, we simulate 200 artificial panels, each of which has 2703 firms on each state

x. Model M simulates average 2100 months to generate one panel, and Model Q

simulates average 1200 quarters on each panel. The cash flows are discounted by

the computed pricing kernels and summed up to P j
it in each panel j, where j =

1, ...200, until all P j
it’s converge, following the pricing formula (2.6). Then, the final

stock price of firm i at time t, Pit, is computed by the average value of {P j
it}200

j=1 .

Finally, the expected stock returns are computed using Markov transition matrices

of x and z approximated by the method in Adda and Cooper (2003). We calculate

the expected value-weighted stock returns on each state, x, and consider them as the

market portfolio returns, or the wealth portfolio returns. In addition, the risk-free

rate is computed by the reciprocal of the average value of Mt,t+1 using the simulated
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data.

a. Aggregate Market Values

Table II reports the unconditional moments of market variables such as equity pre-

mium, risk-free rate, price-dividend ratio, book-to-market equity ratio, aggregate

dividend growth, and the volatilities of those variables as well. The U.S. historical

data are collected from various sources. The average equity premium ranges from 4%

to 8% according to the related literature. The volatility of market return is 19.4%,

according to Guvenen (2009), computed using Standard and Poor’s 500 index during

the period of 1890-1991. The empirical Sharpe ratio is 0.50, which is from Cochrane

(2005). The fitted model generates reasonable values for the expected equity pre-

miums compared to the data. Model M with γ = 3 and Model Q with γ = 3.5

have the volatilities of stock market returns of 20.1% and 20.9%, which is close to

19.4%. The cross-sectional volatility of individual stock returns is from 25% to 32%

reported by Zhang (2005). ModelM reports higher volatilities than this, but Model

Q reports somewhat lower values. The actual rates of capital gain and dividend price

ratio are 2.1% and 4.70% from Fama and French (2002) covering from 1872 to 2000.

This means that the dividend price ratio is about 123% larger than the capital gain

in constituting the market equity return. The dividend price to capital gain ratios

(Dt+1/∆Pt+1) from all models are around 2.5, which is close to the empirical value.

Turning to the risk-free rate, annualized U.S. risk-free rate is 1.8% with volatility

of 3.0% according to Zhang (2005). The corresponding risk-free rates in Model M

are relatively higher than data. The historical standard deviation of risk-free rate

is more volatile compared to the simulated values in Model M. Model Q creates

more volatile risk-free rates than ModelM. However, there are several other studies

reporting that the risk-free rate has much lower volatility, and therefore, we believe



36

that our result on the risk-free rate is reasonable.

Regarding the Sharpe ratio, the simulated Sharpe ratios have a wide range from

0.23 to 0.59 in Model M, and the range from 0.27 to 0.54 in Model Q. When

relative risk aversion is between 3 and 4, our results are consistent with the empirical

counterpart. ModelM generates aggregate dividend growths around 2.40%, with the

aggregate dividend growth volatilities at about 11.4%. Model Q generates somewhat

higher aggregate dividend growth volatilities of around 13%, which is close to the data,

13.4%, reported by Guvenen (2009), and the aggregate dividend growths are around

2.56%, which is fairly close to the empirical value, 2.5%. The average book-to-market

equity ratio (BE/ME) is 0.67 and its standard deviation is 0.23 according to Zhang

(2005). Model Q represents values of 0.62 and 0.24 respectively, which are again fairly

close to the data. We also compute (BE/ME)payer / (BE/ME)non-payer which is the

ratio of average book-to-market equity ratios of dividend payers and non-payers. The

empirical value is 1.32, computed using the CRSP/COMPUSTAT merged data. This

value states that high book-to-market firms are more likely to pay dividends (Smith

and Watts (1992) and Baker and Wurgler (2004b)), and it is consistent with our

theory for the value premium. All of our simulated values are greater than 1, and

Model Q has values close to the data. For the average price-dividend ratio, as relative

risk aversion increases, models yield lower rates of price dividend ratios, but higher

volatilities of them. Results suggest that our model explains the data reasonably well

with relative risk aversion around 3.

Thus, the model replicates the moments of key financial market variables in both

monthly and quarterly versions. Note that all the parameters are fitted by matching

the moments of variables related to firm characteristics, not financial variables. The

model can capture the level and volatility of the historic equity premium, while keep-

ing plausible values for the first two moments of the risk-free rates. However, we must
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mention that our model does not resolve the equity premium puzzle. Since our model

uses the equilibrium condition that the aggregate consumption is entirely financed by

the sum of dividend shares, the aggregate consumption volatility coincides with that

of aggregate dividend. This makes consumption growth highly volatile compared to

empirical evidence. To break this tight link between consumption and dividend, one

can include labor income or other types of capital or source of income not directly

traded in the market. Alternatively, modifying the preference function to generate a

sufficient volatility size of the stochastic discount factor would be desired, following

Santos and Veronesi (2010).

b. Conditional Risk Premiums and Betas

Cochrane, Longstaff, and Santa-Clara (2008) and Martin (2009) extend Lucas (1978)

to set the aggregate endowment process as the sum of multiple trees exogenously

given, and show that the implied aggregate dividend (or consumption) volatility is

time-varying, and dependent on the dividend share. The intuition behind this result

is that the idiosyncratic shocks of each dividend process (tree) will induce dividend

shares to fluctuate via the binding equilibrium condition that consumption equals the

sum of these dividends. Then, the conditional moments of the aggregate consumption

and dividend growth will vary over time, as the relative contribution of each tree to

the aggregate process changes over time.

The model also has the feature of multiple dividend processes with the binding

equilibrium condition, and therefore, time-varying and stochastic volatilities of the

aggregate dividend can prevail as dividend shares vary. However, this does not provide

much economic insight regarding the nature of this time-variability because dividend

processes are exogenously given. In contrast, endogenous evolution of dividend pro-

cesses, especially from the infrequent adjustments, arises in the model and this has
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additional implications on the time-series behaviors of the conditional moments on

the related stochastic discount factor.

We illustrate the point using a simple version of our model developed in the

previous section. Suppose that there exist only two firms indexed by 1 and 2 in

the economy, and these firms have only an aggregate shock, xt without firm-specific

shocks, and zero depreciation rate. In addition, K1t is assumed to be less than K2t

(K1t < K2t � K̄). Then, the proposition 2.1.3 and the equilibrium condition state

that the second firm must pay the dividend, while the first firm may or may not pay

the dividend. That is, the condition (a1, a2) ∈ {(0, 1), (1, 1)} holds in equilibrium

and (a1, a2) = (1, 1) occurs only when x is sufficiently high. Therefore, we can view

(a1, a2) = (0, 1) as the recession in this simple example. It is easy to show that the

conditional mean and variance of the aggregate dividend growth vary over time.

Et
[(

D1t+1 +D2t+1

D1t +D2t

)]
=

e(1−ρx)(µx−xt)
{

(K1t + I1t)
θ Et [eεxt+1a1t+1] + (K2t + I2t)

θ e
σ2
x
2

}
a1tKθ

1t +Kθ
2t

,

Var
[(

D1t+1 +D2t+1

D1t +D2t

)]
=
e2µx(1−ρx)+2(ρ−1)xt (K1t + I1t)

2θ

(a1tKθ
1t +Kθ

2t)
2

Var [eεxt+1a1t+1] .

This implies that the maximum conditional Sharpe ratio varies over time given the

definition of the stochastic discount factor. How do they change in response to changes

in business condition?

Figures 9 and 10 plot the countercyclical business cycle patterns of risk premiums,

Sharpe ratios, and the quantities of risks (β) for the full version of the model. The

expected stochastic discount factor in Panel (A) Et [Mt,t+1] , increases in the aggregate

shock by intertemporal substitution, which means that the shareholder’s marginal

utility for the future is low in good times and high in bad times. So, the risk-free

rate is lower in good times, but higher in bad times, meaning that investors in good
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times are likely to save more than in bad times from the argument of consumption

smoothing. Panels (B) and (C) numerically show that the volatility of the stochastic

pricing kernel and the maximum conditional Sharpe ratio have the countercyclical

pattern.

Panels (A) to (C) in Figure 10 depict that conditional expected market returns

in Models M and Q have countercyclical variations over time, while Panels (B) and

(D) in Figure 10 demonstrate the same relationship via the quantities of risk (βM) in

Models M and Q.

c. Cross-Sectional Analysis of Stock Returns

Factor Portfolios and Size-BE/ME Portfolios To examine the value and size pre-

mia, we follow the Fama-French method: Pool the factor portfolios, SMB (small minus

big) and VMG (value minus growth, previously HML), and the six value-weighted

size−BE/ME portfolios (Fama and French (2006)). Firms below the median size

are defined as small (S) and those above are big (B). We assign firms to growth (G),

neutral (N), and value (V) groups if their BE/ME is in the bottom 30%, middle

40%, or top 30% of simulated firms. The six portfolios, small and big growth (SG

and BG), small and big neutral (SN and BN), and small and big value (SV and

BV) are the intersections of these sorts. SMB is the simulated expected return on

the three small-size stock portfolios minus the expected returns on the three big-size

stock portfolios such that,

SMB =
SG + SN + SV

3
− BG + BN + BV

3
,

and

VMG =
SV + BV

2
− SG + BG

2
,
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in which the value-growth factor, VMG is the difference between the expected returns

on the two value portfolios and the two growth portfolios. The empirical values in

Table III are from Fama and French (2007), and Chen, Petkova, and Zhang (2008).

Fama and French (2007) analyze the financial market data from 1927 to 2006, and

Chen, Petkova, and Zhang (2008) deal with the data from 1945 to 2005. In both

studies, value and size premia prevail, and the average value premium is about twice

bigger than the average size premium, and the capital gain effect outperforms the

dividend price effect on both value and size premiums. On a more disaggregated level

with six portfolios, Fama and French (2007) report that the expected capital gain

(long-term dividend growth) has stronger effect than the expected dividend price,

while Chen, Petkova, and Zhang (2008) show that the latter has stronger effect when

they use the return with and without dividends. When they use annuity formula to

measure long-term dividend growth, they find that the expected long-run dividend

growth effect is bigger than the expected dividend-price effect in smaller stocks, and

the latter is bigger in larger stocks.

Our model produces results broadly consistent with data and Model Q shows

better performances. In case of Model M, Table III says that VMGs have the range

from 14.3% to 19.9%, and SMBs have the range from 3.85% to 12.6%. Although

these numbers are bigger than the empirical data, the dividend price effect is rela-

tively smaller than the long-term dividend growth effect, which is consistent with the

empirical pattern described above. In addition, on small stock portfolios (SG, SN,

SV), the simulated capital gain effects are bigger than the simulated dividend price

effects, while the opposite is true for bigger stocks (BG, BN, BV), consistent with

Fama and French (2007), and Chen, Petkova, and Zhang (2008). Quarterly version of

our model (Model Q) is similar to ModelM, but these fit the data better. One caveat

is that the model generates negative returns for big growth (BG) firms in monthly



41

models. One can observe that the negativity of the equity returns from big growth

firms comes from the expected capital gain effect (∆P/P ). We suspect that this is

partly due to the fact that our setup has a stochastic discount factor formed by a

simple power utility function, given that this problem appears to be mitigated as risk

aversion increases.

To demonstrate the countercyclical time-variation in VMG and value spread13,

we plot VMGs and value spreads at quarterly frequency with γ = 3.5 in Figure

11. Zhang (2005) argues that the exogenous countercyclical price of risk and the

value firm’s inflexibility of reversibility make the value premium and value spread

countercyclical. Meanwhile, we focus on the extensive margins of dividend policy

and investment behaviors and these frictions in financial and real sectors lead to

countercyclical value premiums and value spreads as well as other cross-sectional

variations in stock returns.

We now pool decile portfolios sorted by the BE/ME and the size following the

Fama-French method (Fama and French (1992)). The individual stocks are grouped

into 10 portfolios sorted by book-to-market equity ratios and market values. The

annualized expected portfolio returns are calculated as the equal-weighted portfolio

returns. Additionally, we generate new 10 portfolios sorted by âit values, which are

fitted propensities to pay dividends such that,

P̂ {ait = 1|Sit} ≡ âit = α̂a + b̂a1 lnMEit + b̂a2BE/MEit + b̂a3Iit/Kit + b̂a4Πit/Kit,

in which α̂a = −1.42, b̂a1 = 0.30, b̂a2 = 0.73, b̂a3 = −12.4, and b̂a4 = 10.7 on average

13The value spreads are computed by the difference between the logBE/ME of
the value portfolio and the logBE/ME of the growth portfolio (Cohen, Polk, and
Vuolteenaho (2003)).
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values.14 Each coefficient is significant, and they represent the effects of the size, the

book-to-market equity ratio, the investment, and the profitability, respectively. The

signs of all coefficients are consistent with the empirical results in Fama and French

(2001), and Denis and Osobov (2008).

Figure 12 based on Models M and Q shows that the value premium prevails

even with a finer grid of value portfolios (Panels (A) and (D)). The value premiums

projected by our model outperform the simulated data of Gomes, Kogan, and Zhang

(2003) and Zhang (2005). The graphs show the robustness of our model for the value

premium at each frequency. Panels (B) and (E) present that the size portfolios have

the size premium correspondent to the empirical facts. Especially, the expected size

premiums on the first and second decile portfolios are coherent to the movement of

the empirical data due to non-existence of dividend price effect. However, the size

premiums on other portfolios disappear as CRRA increases. The 10 portfolios sorted

by PPD (âit) have risk premiums consistently increasing in PPD (Panels (C) and

(F) in Figure 12). BE/ME and PPD are theoretically associated with each other

since PPD represents the probability of occurrence of cash flow into shareholders,

and the book-to-market equity is positively related to the cash flow risk as stated in

Proposition II.6. Thus, these Panels (C) and (F) demonstrate that the propensity to

pay dividends captures the risk factor on cross-sectional behaviors of individual stock

returns.

E. Conclusion

This paper considers an important dimension of corporate decision, dividend policy, to

construct a general equilibrium model of production and investment with many firms

14lnMEit denotes the log market size that is generated by lnPit in our model.
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to analyze stock returns. This model not only links firm characteristics such as size

and book-to-market equity ratio to stock returns, but also explains the relationships

of these variables with the propensity to pay dividends and the profitability of firms.

We focus on the extensive margin of dividend policy such that dividend policy can be

highly persistent with occasional discrete shifts. According to the model, firms pay

no dividend if they are either young and growing or showing very poor performances.

On the other hand, dividend-paying firms are the mature firms with relatively high

book-to-market equity ratios or showing very good performances. The existence of

persistently zero dividend payouts makes cash flow risks smaller due to the lack of

covariations of these risks with the stochastic discount factor. This can generate

the value and size premia, because of the diverse patterns of dividend payment for

those respective firms. Quantitative results show that the model can explain the

cross sections of stock returns by interactions between dividend payouts and other

firm variables, which cries out for more rigorous studies. Modeling more corporate

financial features, such as stock repurchases and capital structure, is a natural next

step to further analyze this aspect.

Finally, the potential lumpiness in individual cash flows has a few interesting

implications for the time-series behaviors of aggregate variables as well. Specifically,

the model, despite simple preferences used for the stochastic discount factor, generates

countercyclical variations in market risk premiums and time-varying volatilities of

aggregate dividend and asset returns. More realistic stochastic discount factors and

the inclusion of labor or non-tradable goods market will be useful additions to better

understand this feature. We leave these to future works.
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CHAPTER III

DIVIDEND PAYMENT PROPENSITY, BUSINESS CYCLES AND STOCK

RETURNS

A. Introduction

In this chapter, we empirically investigate the relevance of firm characteristics and

aggregate productivity shocks in determining dividend payment propensity and stock

returns, and we analyze the implications of serial correlations of stock returns. Chap-

ter II shows that differences in dividend policies result from firm characteristics, in-

cluding the level of firm maturity and variations in aggregate productivity shocks,

and dividend policy, especially in extensive margin, can affect stock returns via shift-

ing cash flows of firms. We further show that this channel can explain some major

asset pricing anomalies such as the value and size premia. Therefore, without resort-

ing to the existence of irrational investors such as the catering theory of dividends

(Baker and Wurgler (2004b)), it is possible to link stock returns and propensity to

pay dividends. Especially, we have shown that the propensity to pay dividend (PPD,

hereafter) is positively related to the future stock returns (Proposition II.6 in Chapter

II) since the cash flow risk is definitely linked to the probability of dividend payment

in the next period and the cumulated cash flow risks in discount risk effect (long-term

dividend growth rate) must be associated to conditional PPDs. Therefore, once we

can appropriately find the proxy (fitted PPD by logit regression, Fama and French

(2001)) for the probability of dividend payment or payout, then it is possible to

scrutinize the predictability of relative returns of dividend-payers’ stocks and non-
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payers’ stocks, payout stocks and nonpayout stocks (including stock repurchase1). In

addition, the countercyclicality of these relative returns are confirmed based on our

rational expectations model of dividend policy in Chapter II.

The important issue is the comparison of rational expectations model and be-

havioral asset pricing model. Baker and Wurgler (2004b) posit that the decision on

paying dividends is made by prevailing investor demand for dividend payers. In other

words, investors prefer dividend-paying firms because they ignore some cost of excess

dividends to long-run growth of firms and rational firm mangers respond to this excess

demand up to some costs. This makes dividend premium exist and related to dividend

payment decisions. This so-called catering theory of dividend payment emphasizes

the roles of stock mispricing in explaining the relationship between dividend policy

and stock returns. The casual intuition suggests that the dividend premium and ini-

tiation effects are positively related to excess demand for payers. However, they find

that the difference in future returns of payers and nonpayers is negatively related to

this demand in empirical analysis because overpricing stocks by excess supply of div-

idends makes payers’ future returns relatively low. But, by our rational expectations

model of dividend policy, the relative returns of payers and nonpayers are explained

by PPDs dependent on business cycles, not by mispricing stocks. Especially, we show

that these relative returns are countercyclical due to the time-varying differences be-

tween rational investors’ risk premiums for dividend payers and nonpayers, or payouts

and non-payouts. In addition, the empirical results document that each future return

of payers and nonpayers is positively correlated to propensities of paying out cash.

These results are consistent to our rational model of payout policies, but contradict

1Skinner (2008) shows that repurchases are increasingly used in place of dividends,
even for firms that continue to pay dividends. However, the propensity to repurchase
stock is still below the propensity to pay dividends in our empirical analysis.
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the catering theory of dividend because according to their security overpricing, future

returns should have been negatively linked to propensities and measures of dividend

payment.

The outline for the rest of this chapter is as follows: The set of testable hypotheses

is described in Section B. We introduce data variables for empirical analysis and

interpret the empirical results in Section C. Finally, Section D concludes.

B. Testable Hypotheses

In this section, we describe the testable hypotheses to support our rational expec-

tations model against the dynamics in disequilibrium, which defends that investor

demand for dividends fluctuates faster than firms can or do adapt.

Testable Hypothesis III.1. The propensity to pay out cash to shareholders (in-

cluding dividend payment and stock repurchase) are related to firm characteristics:

profitability, investment, market-to-book ratio and firm size, and the aggregate pro-

ductivity shock.

In Chapter II, we theoretically explain that the propensity to pay dividend are

linked to firm characteristics: profitability, investment, and firm size. Fama and

French (2001) already show that more profitable, older and bigger firms are more

likely to pay dividends, but younger firms with more investment opportunity sets

are less likely to be payers. In this chapter, propensities of cash payouts including

dividend payment and stock repurchase are tested in cross-sectional logit regression

models, also those propensities would be tested for relation to the business cycles.

Testable Hypothesis III.2. The market risk premium, value premium, and future

excess return for payers over nonpayers are countercyclically linked to the aggregate

productivity shock.



47

Zhang (2005) already explains that the asymmetric cost for the reversibility pre-

vents value firms disinvesting relative to growth firms. It means that value firms

are bonded to more unproductive capital in bad times, and the value spread and

value premium are higher in these times. However, in our model, value firms paying

dividends are more exposed to current systematic risks by investors’ rational expec-

tations. This means that they expect value firms to be riskier in bad times because

growth firms do not have effects on short-term consumption growth rate but rather

on long-term consumption growth. Therefore, the countercyclicality of market risk

premium and value premium should be tested in empirical analysis.

Additionally, Zhang (2005) is not able to explain the relationship between divi-

dend premium (premium for dividend payers) and value spread because in his model,

the growth stocks pay more dividends than value stocks. This result is inconsistent

with the empirical findings. On the contrary, Chapter II explicitly documents that

dividend payers are more likely to be value stocks than growth stocks. In other words,

the value spread (value premium) can be a negative proxy for demand (premium) on

dividend payers, and it explains why the increase in dividend premium (minus value

spread) induces the decrease in difference between future returns of payers (value

stocks) and nonpayers (growth stocks). Thus, the countercyclicality of excess re-

turn for dividend payers are intuitively reasonable since the value spread or dividend

premium is supposed to be linked to business cycles.

Testable Hypothesis III.3. The future excess returns for payers over nonpayers

are predicted by the spread between PPDs of payers and nonpayers. Propensities to

pay out cash are positively correlated to each future stock return of firms that pay out

cash to shareholder and firms that do not.

Baker and Wurgler (2004a) show that fluctuations in the propensity to pay divi-



48

dends and catering incentives for dividend payers are closely linked, and fluctuations

in PPD and dividend premiums are negatively correlated to payers-minus-nonpayers

strategy. Furthermore, they insist that these results are explained by managers’

decisions as rational responses to security mispricing. However, by our rational ex-

pectations model of dividend, PPDs are related to business cycles since profitability

and investment must be linked to the aggregate productivity shocks. In addition,

propensities of payers and nonpayers are positively related to the future stock re-

turns (Proposition II.6 in Chapter II) since the cash flow risk is definitely linked to

the probability of dividend payment in the next period and the cumulated cash flow

risks in discount risk effect (long-term dividend growth rate) must be associated to

conditional PPDs. Therefore, we should investigate relationships of separate stock

returns of dividend payers and nonpayers with PPD and dividend payment variables

from Baker and Wurgler (2004b). Once future stock returns of payers or nonpayers

are positively linked to the propensity to pay dividends and dividend payment vari-

ables, the catering theory of dividends can be rejected empirically since overpricing

the stocks should induce the decreases in future stock returns by investors’ adjust-

ments based on Baker and Wurgler (2004b). Thus, we can confirm that time-varying

risk premiums make relative returns of payers and nonpayers countercyclically time-

varying.

C. Empirical Analysis

1. Data Variables for Empirical Analysis

To find the business cycles, we compute Solow residuals (total factor productivity,

hereafter referred to as TFP) from

Yt = extKθ
tH

1−θ
t ,



49

such that

(3.1) ∆xt ≡ xt−xt−1 = lnYt−lnYt−1−θ (lnKt − lnKt−1)−(1− θ) (lnHt − lnHt−1) ,

in which Yt is real GNP, Kt is GNP: consumption of fixed capital which is deflated by

GNP deflator, Ht is annual average weekly hours of production and nonsupervisory

employees: manufacturing. θ (the capital share) is 0.3 (Cooley and Prescott (1995)).

Thus, the business cycles are extracted from (3.1).2

Following Fama and French (2001), we estimate propensities to pay dividends

using firm characteristics: profitability (Πit/Ait : Πit is EBITDA (earnings before

interest, taxes, depreciation and amortization) and Ait is assets - total), investment

(Iit/Ait : Iit is CAPX (capital expenditures) minus SPPE (sale of property)), market-

to-book ratio (Mit/Ait), and size (percent in stock market, PMEit) such that

(3.2) P {Payerit = 1} = logit

(
a1 + b1

Πit

Ait
+ c1

Iit
Ait

+ d1
Mit

Ait
+ e1PMEit

)
+ uit.

Those characteristics are computed from CRSP/COMPUSTAT merged data. We fit

average propensities to pay dividends such that

̂P {Payert = 1|Payert = 1} ≡ âDt =
1

nDt

nDt∑
i=1

âDit ,

̂P {Payert = 1|Payert = 0} ≡ âNDt =
1

nNDt

nNDt∑
i=1

âNit ,

and âDt =
1

nt

nt∑
i=1

âit,

in which nDt is the number of firms that pay dividend at t, and the difference between

2In all figures, the shadow area shows the recession periods defined by NBER.
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average propensities of dividend payers and nonpayers is

DSD−NDt ≡ âDt − âNDt ,

which is the supply factor for dividends such as the measurements of dividend payment

in Baker and Wurgler (2004b).

For total payouts: dividend payment or stock repurchase, the propensity to pay

out cash to shareholders using firm characteristics can be estimated such that

(3.3) P {TotalPayit = 1} = logit

(
a2 + b2

Πit

Ait
+ c2

Iit
Ait

+ d2
Mit

Ait
+ e2PMEit

)
+ uit,

then,

̂P {TotalPayt = 1|TotalPayt = 1} ≡ âPt =
1

nPt

nPt∑
i=1

âPit ,

̂P {TotalPayt = 1|TotalPayt = 0} ≡ âNPt =
1

nNPt

nNPt∑
i=1

âNPit ,

âPt =
1

nt

nt∑
i=1

âit and TP P−NP
t ≡ âPt − âNPt ,

in which nPt is the number of firms that pay out cash at t, and this is a supply factor of

total payouts: dividend payments and stock repurchases. Additionally, we estimate

the propensity to repurchase the stock (purchases of common and preferred stock

minus sales of common and preferred stock) as cash payout such that

(3.4) P {StockRpit = 1} = logit

(
a3 + b3

Πit

Ait
+ c3

Iit
Ait

+ d3
Mit

Ait
+ e3PMEit

)
+ uit,
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and

̂P {StockRpt = 1|StockRpt = 1} ≡ âRt =
1

nRt

nRt∑
i=1

âRit ,

̂P {StockRpt = 1|StockRpt = 0} ≡ âNRt =
1

nNRt

nNRt∑
i=1

âNRit ,

âRt =
1

nt

nt∑
i=1

âit and SRR−NR
t ≡ âRt − âNRt ,

in which nRt is the number of firms that repurchase stocks at t. As you see Figure

14, all PPDs have the non-linear time trends. Thus, we use PPDs detrended by H-P

filter as supply factors for dividends.

Baker and Wurgler (2004b) propose that the decision on paying dividends is

made by prevailing investor demand for dividend payers. In other words, managers

cater to investors by paying dividends according to their stock price premium on

payers. They develop four measures as the dividend premium, investor demand for

payers. In this paper, we use one of them, equal-weighted dividend premium, which

is the difference between the logs of the dividend payers’ and nonpayers’ average

market-to-book ratios3 such that

(3.5) PD−N
t ≡ ln

([
Mt

At

]D)
− ln

([
Mt

At

]ND)
,

where M is the firm’s market value and A is the firm’s book value.

We propose the difference between the logs of nonpayers’ and dividend payers’

average book-to-market equity ratios as the investors demand for dividend payers

since the investors are more likely to consider the relative variations in market values

3Once we use the value-weighted average procesure for variables, they are more
likely to be nonstationary. Thus, unless we note, variables are equally weighted for
stationarity.
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of equities between dividend payers and nonpayers.

(3.6) BMN−D
t ≡ ln

([
BEt
MEt

]ND)
− ln

([
BEt
MEt

]D)
,

which would be supposed to have the same movement with PD−N
t . BE is the book

value of equity and ME is the market value of equity. In addition, we use the minus

value spread (growth-minus-value) as the alternative proxy for demand on payers

such that

(3.7) V SG−Vt ≡ ln

([
BEt
MEt

]G)
− ln

([
BEt
MEt

]V)
,

which is also supposed to have the same movement with PD−N
t .

These variables, PD−N
t , BMN−D

t , and V SG−Vt are proxies of demand on payers

over nonpayers. Additionally, we should consider dividend-supply factors such as

Baker and Wurgler (2004b)’s measurements of dividend payment: Initiatet, Continuet

and Listpay t such that

Initiatet =
New Payers t

Nonpayers t − Delist Nonpayers t
,(3.8)

Continuet =
Old Payers t

Payers t − Delist Payers t
,(3.9)

Listpay t =
List Payers t

List Payers t + List Nonpayers t
.(3.10)

Listpay is detrended by H-P filter since Listpay t is persistent and has the non-linear

time trend. Initiate and Continue are still persistent but they do not have any linear

or non-linear time-trends. Thus, we use Initiate and Continue without any detrending

procedure.

The data for market return (rM) , risk-free rate (rf ) , value premium
(
rV − rG

)
,

size premium
(
rS − rB

)
, and momentum factor

(
rMOM

)
are from the Fama and

French library. Returns for equal-weighted indexes of dividend payers and nonpayers
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(
rD, rN

)
and excess return realized from distribution of dividends (rD) are computed

by using CRSP/COMPUSTAT merged data. Returns for equal-weighted indexes of

firms that repurchase stocks and firms that do not repurchase them are rR and rNR. In

addition, returns for equal-weighted indexes of firms that pay out cash to shareholders

and firms that do not pay out are rP and rNP .4

2. Empirical Tests for Testable Hypotheses

In Table IV, we see the results of logit regression models following Fama and French

(2001). The propensity to pay dividend is significantly correlated to firm charac-

teristics: profitability, investment, market-to-book ratio and firm market size. Even

logit regressions extend to propensities of total payout including stock repurchase,

those characteristics are still significant on firm managers’ payout policy decisions.

Before going to the analysis of relationship between stock returns and PPDs, we have

to check the relationship between dividend premiums and measures of dividend pay-

ment as the supply side for dividends. In Table V, dividend premiums definitely cause

dividend supply to increase, business cycles have especially significant effects on the

supply side for dividends. Additionally, empirical results show

∂ât+1

∂∆xt
> 0,

for dividend payers and nonpayers, and firms that pay out cash to shareholders and

firms that do not. PPDs are procyclically time-varying, which is consistent with our

rational expectations model of dividend policy. Furthermore, differences of PPDs have

countercyclical time-variations. This means that the PPD spread between payers and

4See Appendix B for the detail.
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nonpayers, or payouts and non-payouts are narrower in good times such that

∂
[
âDt+1 − âNDt+1

]
∂∆xt

< 0 and
∂
[
âPt+1 − âNPt+1

]
∂∆xt

< 0.

The sensitivity of nonpayers’ PPD for business cycles is higher than that of pay-

ers because marginal movements of payers’ PPD are relatively smaller than those

of nonpayers by persistence of dividend policy. In other words, both groups of pay-

ers and nonpayers are more likely to pay dividends according to investors’ rational

expectations and business cycles, but the PPD spread between them are higher in

recessions.

In Table VI, TFP (∆xt) and dividend premiums
(
PD−N
t , BMN−D

t , V SG−Vt

)
are

positively correlated to each other5. Especially, TFP is significantly linked to PD−N
t

and V SG−Vt , the latter of which is the minus value spread. This means that the

value spread is wider in recession times. The business cycles and minus value spread(
V SG−Vt

)
are negatively correlated to value premium in the next period

(
rVt+1 − rGt+1

)
.

This shows the countercyclical time-variations of value spread and value premium.

The market risk premium (rMt+1 − rft+1), risk-free rate (rft+1), excess return for

dividend payers over nonpayers
(
rDt+1 − rNt+1

)
are countercyclically time-varying even

though statistical inferences are not significant in Table VI. Similar to Baker and Wur-

gler (2004b), dividend premiums are negatively correlated to payer-minus-nonpayer

at the significance level of 5% at most. Thus, the empirical results fairly support

Testable Hypothesis III.2.

It is reasonable that the propensity to pay dividend is positively related to the

future stock returns since the cash flow risk is definitely linked to the probability of

dividend payment in the next period and the cumulated cash flow risks in discount

5In Figure 13, we see that TFP and dividend premiums have the same movements.
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risk effect (long-term dividend growth rate) must be associated to conditional PPDs.

From firm dynamics and Proposition II.6 in Chapter II, given {Dit+j}∞j=1 for any firm

i,

Et [∆Pit+1]

Pit
≈
∑∞

j=1 ∆âit+jDit+j

Pit
and

Et [Dit+1]

Pit
≈ âit

Dit+1

Pit
,

in which ∆âit+j is the change in conditional âit+j from t to t + 1. Then, individual

stock returns increase in PPDs such that

∂rit+1

∂âit
> 0,

and it is rational that excess returns of payers over nonpayers increase in âDit − âNDit
because this PPD spread explains the difference between dividend policies of payers

and nonpayers, and that spread must be related to relative risk premium that is

countercyclically time-varying. We document empirical results in Table VII, which are

consistent with our logic about the relation between PPDs and future stock returns.

According to total payouts: dividend payment and stock repurchase, we still have

consistent results.

Baker and Wurgler (2004b) insist that managers cater to investors by paying

dividends and the relative overpricing for payers makes future returns of payers and

nonpayers negatively related to excess supply of dividends. Then, future stock returns

of payers and nonpayers should be negatively correlated to PPDs of payouts and

measures of dividend payment such as Initiatet, Continuet and Listpay t. However,

in Table VII, future returns of payers and nonpayers, and total payouts and non-

payouts are positively linked to PPDs and measures of dividend payment. These

results which are consistent with our rational expectations model of dividend policy

reject the catering theory of dividends. In addition, when we execute horse racing

with our PPDs and Initiatet in Table VIII, PPDs have more power in explaining
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future stock returns of payers and nonpayers, and total payouts and non-payouts.

In addition, it is shown that even though the signs of coefficients for regressions of

the market risk premium (rMt+1 − rft+1) are consistent to the theory, they are not

significant except TP P−NP . Therefore, our rational expectations model of dividend

policy fairly explains features of stock returns such as predictability and relative risk

spread of payers and nonpayers, and payouts and non-payouts relative to catering

theory of dividends.

D. Conclusions

In the previous chapter, we introduce a rational expectations model of dividend pol-

icy in order to explain cross-sectional anomalies such as the value premium and size

premium, and this model produces rich implications related to business cycles. Fur-

thermore, we simulated the countercyclicality of market risk premium, value spread

and value premium. This countercyclicality is produced by the lumpiness in individ-

ual cash flows by managers’ rational decisions in response to aggregate productivity

and idiosyncratic productivity. Therefore, we build up a set of testable hypotheses by

these countercyclical time-variations about relative risk premiums of dividend payers

and nonpayers, and firms that pay out cash to shareholders including stock repur-

chases and firms that do not, and relationships between propensities to pay dividends

as dividend-supply factors and future stock returns.

First, we find that propensities of dividend payment and stock repurchase are

significantly linked to firm characteristics: profitability, investment, market-to-book

ratio and firm market size. These propensities are positively correlated to business

cycles. Also, the value premium and value spread are significantly countercyclical

time-varying even though the market risk premium and risk free rate are counter-
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cyclical but not significantly. Second, it is found that excess returns for dividend

payers over nonpayers, or firms that pay out cash to shareholders over firms that do

not are significantly linked to business cycles, especially relative future returns are

fairly predicted by the countercyclical spread of fitted propensities to pay dividends

or to pay out cash including stock repurchases. In addition, we compare our rational

expectations model of dividend policy with the catering theory of dividends. The

empirical results document that each future return of payers and nonpayers increases

in PPDs, which is contradictory to the catering theory because security overpricing

should have been negatively related to PPDs or measures of dividend payment.
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CHAPTER IV

CONCLUSION

We consider an important dimension of corporate decision, dividend policy, to con-

struct a general equilibrium model of production and investment with many firms to

analyze stock returns. This model not only links firm characteristics such as size and

book-to-market equity ratio to stock returns, but also explains the relationships of

these variables with the propensity to pay dividends and the profitability of firms.

We focus on the extensive margin of dividend policy such that dividend policy can be

highly persistent with occasional discrete shifts. According to the model, firms pay

no dividend if they are either young and growing or showing very poor performances.

On the other hand, dividend-paying firms are the mature firms with relatively high

book-to-market equity ratios or showing very good performances. The existence of

persistently zero dividend payouts makes cash flow risks smaller due to the lack of

covariations of these risks with the stochastic discount factor. This can generate

the value and size premia, because of the diverse patterns of dividend payment for

those respective firms. Quantitative results show that the model can explain the

cross sections of stock returns by interactions between dividend payouts and other

firm variables, which cries out for more rigorous studies. Modeling more corporate

financial features, such as stock repurchases and capital structure, is a natural next

step to further analyze this aspect. Finally, the potential lumpiness in individual

cash flows has a few interesting implications for the time-series behaviors of aggre-

gate variables as well. Specifically, the model, despite simple preferences used for

the stochastic discount factor, generates countercyclical variations in market risk pre-

miums and time-varying volatilities of aggregate dividend and asset returns. More

realistic stochastic discount factors and the inclusion of labor or non-tradable goods
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market will be useful additions to better understand this feature. We leave these to

future works.

In addition, we empirically investigate the relevance of firm characteristics and

aggregate productivity shocks in determining dividend payment propensity and stock

returns, and we analyze the implications of serial correlations of stock returns. First,

we find that propensities of dividend payment and stock repurchase are significantly

linked to firm characteristics: profitability, investment, market-to-book ratio and firm

market size. These propensities are positively correlated to business cycles. Also, the

value premium and value spread are significantly countercyclical time-varying even

though the market risk premium and risk free rate are countercyclical but not signif-

icantly. Second, it is found that excess returns for dividend payers over nonpayers,

or firms that pay out cash to shareholders over firms that do not are significantly

linked to business cycles, especially relative future returns are fairly predicted by the

countercyclical spread of fitted propensities to pay dividends or to pay out cash in-

cluding stock repurchases. In addition, we compare our rational expectations model

of dividend policy with the catering theory of dividends. The empirical results doc-

ument that each future return of payers and nonpayers increases in PPDs, which is

contradictory to the catering theory because security overpricing should have been

negatively related to PPDs or measures of dividend payment.
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APPENDIX A

TECHNICAL ASSUMPTIONS AND PROOFS

Technical Assumptions

Assumption IV.1. We assume that

Et [VKK ] > − ex+zKθ−4

18β (1− δ)

 ξ2e
(ξ2+2)x+2zK2θ + 6K

(
K + ξ1e

(1+ξ2)x+zKθ (θ − 1)
)

+6α21e
ξ2xK2 (3θ − 2)

 ,

Et [VKx] >
ξ1e

(1+ξ2)x+zKθ−3
(
K + ex+zKθ

) (
ξ2e

x+zKθ − 2K
)

2β
,

and

Et [VKz] > −
ξ1e

(1+ξ2)x+zKθ−2
(
3K + ex+zKθ

)
3β

.

Assumption IV.2. If S1t+u1 and S2t+u1 are in S1, and P1t = P2t, then∑∞
u=u1 (Et+1 [Mt,t+uDit+u]− Et [Mt,t+uDit+u])

P1t

−
∑∞

u=u1 (Et+1 [Mt,t+uDjt+u]− Et [Mt,t+uDjt+u])

P2t

= o (1) .

Proofs of Propositions

Proof of Proposition II.3

We suppress subscripts and superscripts for the simplicity. From (2.2) , the first order

conditions for the investment is

− (I +K)
(
ξ1e

ξ2xI2 + 2K
(
ξ1e

ξ2xI +K − ξ1e
(ξ2+1)x+zKθ

))
2K3

+

βEt [VK (I + (1− δ)K, x, z)] = 0.
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By the implicit function theorem, ∂I/∂K is

(A.1)  3ξ1e
ξ2xI3 + 2IK

(
K + ξ1e

ξ2x
(
3I + ex+zKθ (θ − 2)

))
+2ξ1e

ξ2xK2
(
I + ex+zKθ (θ − 1)

)
+ 2β (1− δ)K4Et [VKK ]


K (3ξ1eξ2xI2 + 2ξ1eξ2xK2 + 2K (K − ξ1eξ2x (ex+zKθ − 3I))− 2βK2Et [VKK ])

.

We know that Et [VKK ] < 0 since the value function of dynamic programming is

concave in Stokey and Lucas (1989). From the assumption ex+zKθ < 3I0 and the

first condition of Assumption A.1.1, the numerator and denominator of (A.1) are

positive, hence

∂I

∂K
> 0.

For ∂I/∂x, we have

(A.2)
−ξ1e

ξ2x (I +K)
(
ξ2I

2 − 2K
(
−ξ2I + ex+zKθ + ξ2e

x+zKθ
))

+ 2βK2Et [VKx]

3ξ1eξ2xI2 + 2ξ1eξ2xK2 + 2K (K − ξ1eξ2x (ex+zKθ − 3I))− 2βK2Et [VKK ]
.

From the second condition in Assumption A.1.1., the numerator of (A.2) is positive,

thus

∂I

∂x
> 0.

For ∂I/∂z, the following is

(A.3)

∂I

∂z
=

2K
(
ξ1e

(1+ξ1)x+zKθ (I +K) + βK2Et [VKz]
)

3ξ1eξ2xI2 + 2ξ1eξ2xK2 + 2K (K − ξ1eξ2x (ex+zKθ − 3I))− 2βK2Et [VKK ]
.

We have the assumption such that

Et [VKz] > −
ξ1e

(1+ξ2)x+zKθ−2
(
3K + ex+zKθ

)
3β

,

then, the numerator of (A.3) is positive, therefore,

∂I

∂z
> 0,
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which completes the proof.

Proof of Proposition II.5

We refer to Proposition II.1. Our recursive general equilibrium model is based on

the industry equilibrium model (Hopenhayn (1992)). We can apply Theorem 2 in the

proof of Proposition 2 of Appendix A in Zhang (2005).

Proof of Proposition II.6

First, the cash flow risk effect is,

−
Covt

[
Mt,t+1,

D1t+1

P1t

]
Et [Mt,t+1]

+
Covt

[
Mt,t+1,

D2t+1

P2t

]
Et [Mt,t+1]

= 0 +
Covt

[(
D2t

D2t+1

)γ
, D2t+1

P2t

]
Et [Mt,t+1]

< 0.

For the discount risk effect, from (2.6) , by the law of iterated expectation, we can

show the following:

Et [P1t+1 − P1t] = Et

[
∞∑
u=1

(
βuEt+1

[(
Ct+1

Ct+u+1

)γ
D1t+u+1

]
− βuEt

[(
Ct
Ct+u

)γ
D1t+u

])]

=
∞∑

u=u0

(
βuEt

[(
Ct+1

Ct+u+1

)γ
D1t+u+1

]
− βu+1Et

[(
Ct

Ct+u+1

)γ
D1t+u+1

])
.

The innovation between ∆P1t+1 and Et [∆P1t+1] is

∞∑
u=u0

βu
(
Et+1

[(
Ct+1

Ct+u+1

)γ
D1t+u+1

]
− Et

[(
Ct+1

Ct+u+1

)γ
D1t+u+1

])
.

Similarly, for the stock of the firm 2,

∆P2t+1 − Et [∆P2t+1] =

∞∑
u=1

βu
(
Et+1

[(
Ct+1

Ct+u+1

)γ
D2t+u+1

]
− Et

[(
Ct+1

Ct+u+1

)γ
D2t+u+1

])
.
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By Assumption IV.2, the difference between the innovations of expected capital gains

is

∆P̄t+1 − Et
[
∆P̄t+1

]
≡ ∆P1t+1 − Et [∆P1t+1]

P1t

− (∆P2t+1 − Et [∆P2t+1])

P2t

= o (1) .

Then, by the independence of xt, z1t and z2t, the difference of discount risk effects of

firm 1 and 2 is

−
Covt

[
Mt,t+1,

P1t+1

P1t

]
Et [Mt,t+1]

−

−Covt
[
Mt,t+1,

P2t+1

P2t

]
Et [Mt,t+1]

 =
−Covt

[
Mt,t+1,∆P̄t+1

]
Et [Mt,t+1]

,

and

−Covt
[
Mt,t+1,∆P̄t+1

]
= o (1) .

Then, for 1 ≤ u ≤ u0 − 1,

Covt
[
Mt,t+1, β

u

(
Et+1

[(
D2t+1

D2t+u+1

)γ
D2t+u+1

]
− Et

[(
D2t+1

D2t+u+1

)γ
D2t+u+1

])]
= Et

[(
D2t

D2t+1

)γ
βu+1

(
Et+1

[(
D2t+1

D2t+u+1

)γ
D2t+u+1

]
− Et

[(
D2t+1

D2t+u+1

)γ
D2t+u+1

])]
,

Let γ = 1, then by Jensen’s inequality,

Covt [Mt,t+1, β
u (Et+1 [D2t+1]− Et [D2t+1])]

= βu+1Et
[
D2t

D2t+1

Et+1 [D2t+1]

]
− βu+1Et

[
D2t

D2t+1

Et [D2t+1]

]
= βu+1D2t

(
1− Et

[
1

D2t+1

]
Et [D2t+1]

)
< 0,

and

−Covt
[
Mt,t+1,∆P̄t+1

]
< 0.
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Now, we want to generalize the result above for γ ≥ 2. Before the start, we assume

that there do not exist firm-specific shock, µx = 0, and the investment process is

determined at time t1. Then,

Covt
[
Mt,t+1, β

u

(
Et+1

[(
D2t+1

D2t+u+1

)γ
D2t+u+1

]
− Et

[(
D2t+1

D2t+u+1

)γ
D2t+u+1

])]
= βu+1D2t

(
Et

[
Dγ−1

2t+1Et+1

[
1

Dγ−1
2t+u+1

]]
− Et

[
1

D2t+1

]
Et

[
Dγ

2t+1

Dγ−1
2t+u+1

])
.

For u = 1,

Et

[
Dγ−1

2t+1Et+1

[
1

Dγ−1
2t+2

]]

= Et
[
e(γ−1)ρxxt+(γ−1)εt+1Et+1

[
e−(γ−1)ρ2

xxt−(γ−1)ρxεxt+1−(γ−1)εxt+2

]](Kθ
2t+1

Kθ
2t+2

)γ−1

= e(γ−1)ρx(1−ρx)xt+
(γ−1)2(1−ρx)2σ2

x
2

+
(γ−1)2σ2

x
2

(
Kθ

2t+1

Kθ
2t+2

)γ−1

,

and

Et
[

1

D2t+1

]
Et

[
Dγ

2t+1

Dγ−1
2t+2

]

= Et
[
e−ρxxt−εxt+1

]
Et
[
eγρxxt+γεxt+1

]
Et
[
e−(γ−1)ρ2

xxt−(γ−1)ρxεxt+1−(γ−1)εxt+2

](Kθ
2t+1

Kθ
2t+2

)γ−1

= e(γ−1)ρx(1−ρx)xt+
σ2
x
2

+
γ2σ2

x
2

+
(γ−1)2ρ2xσ

2
x

2
+

(γ−1)2σ2
x

2

(
Kθ

2t+1

Kθ
2t+2

)γ−1

,

also, for γ ≥ 2,

(γ − 1)2 (1− ρx)2 σ2
x

2
−
(
σ2
x

2
+
γ2σ2

x

2
+

(γ − 1)2 ρ2
xσ

2
x

2

)

= −σ2
x

(
γ + ρx − 2γρx + γ2ρx

)
< 0,

1The first two restrictions are assumed for only mathematical simplicity.
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which shows Jensen’s inequality effect, and leads to

Et

[
Dγ−1

2t+1Et+1

[
1

Dγ−1
2t+2

]]
− Et

[
1

D2t+1

]
Et

[
Dγ

2t+1

Dγ−1
2t+2

]
< 0.

This is the same as when γ = 1. In addition, by Jensen’s inequality for 2 ≤ u ≤ u0−1,

Et

[
Dγ−1

2t+1Et+1

[
1

Dγ−1
2t+u+1

]]
− Et

[
1

D2t+1

]
Et

[
Dγ

2t+1

Dγ−1
2t+u+1

]
< 0.

Thus, for γ ≥ 1,

−Covt
[
Mt,t+1,∆P̄t+1

]
Et [Mt,t+1]

< 0.

This result implies that

−
Covt

[
Mt,t+1,

P1t+1

P1t

]
Et [Mt,t+1]

< −
Covt

[
Mt,t+1,

P2t+1

P2t

]
Et [Mt,t+1]

≡ βdisc
1 < βdisc

2 .

The proof is completed.

Proof of Proposition II.7

From (2.6), for some integer u0 > 0

P1t

K1t

=
∞∑

u=u0+1

βuEt
[
Mt,t+u

D1t+u

K1t

]
and

P2t

K2t

=
∞∑
u=1

βuEt
[
Mt,t+u

D2t+u

K2t

]
.

The dividend equity ratio is

at+uδe
xt+uKθ

t+u

Kt

,

in which

Kt+u = It+u−1 +
(
1− δ̄

) (
It+u−2 +

(
1− δ̄

)
Kt+u−2

)
...

=
u∑

w=1

(
1− δ̄

)w−1
It+u−w +

(
1− δ̄

)u
Kt.
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Then, dividend-equity ratios for firm i = 1, 2 are

Dit+u

Kit

=
ait+uδe

xt+u

K1−θ
it

[
u∑

w=1

(
1− δ̄

)w−1 Iit+u−w
Kit

+
(
1− δ̄

)u]θ
.

For simplicity, let us assume that δ̄ = 0. We know that Kt+1 is determined at t. That

is,

Et
[
Mt,t+u

D1t+u

K1t

]
− Et

[
Mt,t+u

D2t+u

K2t

]
= Et

[
Mt,t+u

(
D1t+u

K1t

− D2t+u

K2t

)]
> 0,

since for any u0 +1 ≤ w ≤ u , I/K is monotone decreasing with respect to K because

of the diminishing return to scale, i.e.,

I1t+u−w

K1t

>
I2t+u−w

K2t

.

The minimum of expected difference between D1t+u

K1t
and D2t+u

K2t
is defined as, for any

u ≥ 0,

d ≡ minEt
[
D1t+u

K1t

− D2t+u

K2t

]
> 0.

Then, for γ > 1,(
P1t

K1t

− P2t

K2t

)
1

Dγ
2t

≥ −
u0∑
u=1

βuEt

[
1

Cγ−1
t+u

1

K2t

]
+ d

∞∑
u=u0+1

βuEt
[

1

Cγ
t+u

]

=
d
(
β + g (γ)

)u0+1

1− β − g (γ)
Et

[
1

Cγ
t+u0+1

]

−
β
(

1− (β + ḡ (γ − 1))u
0
)

(1− β − ḡ (γ − 1))K2t

Et

[
1

Cγ−1
t+1

]
,
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in which

g (γ) ≡ min

{
Et
[
C−γt+u+1

]
− Et

[
C−γt+u

]
Et
[
C−γt+u

] }
,

ḡ (γ − 1) ≡ max

Et
[
C
−(γ−1)
t+u+1

]
− Et

[
C
−(γ−1)
t+u

]
Et
[
C
−(γ−1)
t+u

]
 .

g (γ) is the minimum for growth rates of expected marginal utilities of consumption

with γ, and ḡ (γ − 1) is the maximum for growth rates of expected marginal utilities of

consumption with γ−1. If parametric restrictions are held such that Et
[
1/Cγ

t+u0+1

]
>

Et
[
1/
(
Cγ−1
t+1 dK2t

)]
and

(
β + g (γ)

)u0+1

1− β − g (γ)
>
β
(

1− (β + ḡ (γ − 1))u
0
)

1− β − ḡ (γ − 1)
,

then,

P1t

K1t

− P2t

K2t

> 0⇒ K1t

P1t

<
K2t

P2t

,

which completes the proof.
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APPENDIX B

DATA AND VARIABLE DEFINITIONS

Our variables in this paper are derived from aggregations of CRSP/COMPUSTAT

merged data. The observations in the underlying 1962 to 2009 sample (annual sample

size is 48) are selected as in Fama and French (2001), but some rules are different from

them. We include firms with book equity (BEt) below $250, 000 or assets (At) below

$500, 000. The CRSP sample for computing equal-weighted returns of dividend payers

and nonpayers includes NYSE, AMEX, and NASDAQ securities with exchange code

of 1, 2 and 3. A firm must have market equity data (price and shares outstanding)

for December of year t to be in the CRSP sample for that year. We include utilities

and financial firms from both samples since we investigate not only patterns of PPD

but also the relationship between PPDs and stock returns, and we had previously

observed that lumpy dividend policies of utilities and financial firms are similar to

other industrial firms.

Derived Variables

The market-to-book ratio is the ratio of the market value of the firm to its book

value. Market value is equal to market equity at fiscal year end (Common Shares

Outstanding (CSHO) * Price Close - Annual Fiscal Year (PRCC F)) plus book debt

(Debt in Current Liabilities (DLC)). Book value of a firm is assets (Assets - Total

(AT)). Book equity is equal to common equity value (Common/Ordinary Equity Total

(CEQ)). The book-to-market equity ratio is the ratio of the market equity of the firm

to its book equity. The value stocks are the upper 30% of book-to-market equity

ratios, and growth stocks are the lower 30% of book-to-market equity ratios.
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Dividend Payers and Nonpayers

We count a firm-year observations as a payer if it has positive dividends per share by

the ex data in the fiscal year t, or else it is a nonpayer. This method follows Baker and

Wurgler (2004b). To aggregate this firm-level data as a supply factor for dividends

into useful time series, two aggregate identities are helpful:

Payer t = New Payer t + Old Payer t + List Payer t,

Old Payer t = Payer t−1 − New Payer t − Delist Payer t.

The first identity defines the number of payers and the second shows the evolution.

Payers is the total number of payers, New Payers is the number of initiators among

last year’s nonpayers, Old Payers is the number of payers that also paid last year,

List Payers is the number of payers this year that were not in the sample last year,

New Nonpayers is the number of omitters among last year’s payers, and Delist Payers

is the number of last year’s payers not in the sample this year. Note that analogous

identities hold if one switches “Payers” and “Nonpayers” everywhere (Baker and

Wurgler (2004b)). In addition, Baker and Wurgler (2004b) note that lists and delists

are with respect to their sample, which involves several screens. But, in our sample,

new lists include established COMPUSTAT firms when they first survive the screens.

It also includes the established NASDAQ firms that appeared in COMPUSTAT for

the first time in the 1970s. Likewise, delists include both delists from COMPUSTAT

and firms that fall below the screens. Then, we define the three variables to capture

dividend supply dynamics ((3.8) , (3.9) and (3.10)).
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Stock Repurchase

Fama and French (2001) use the change in treasury stock and the difference between

purchases and sales of common and preferred stock in year t as the net repurchase.

But, we only use the difference between purchases and sales of common and preferred

stock in year t since we analyze the relationship between events of stock repurchase

and stock returns. Furthermore, data for purchases and sales of common and preferred

stock have longer sample size (since 1972) than data for treasury stock (since 1980s).

Index Returns

Most index returns are from the French and Fama library. rM − rf , the excess return

on the market, is the value-weight return on all NYSE, AMEX, and NASDAQ stocks

(from CRSP) minus the one-month Treasury bill rate (from Ibbotson Associates).

BE/ME portfolios are constructed at the end of June. BE/ME is book equity

at the last fiscal year end of the prior calendar year divided by ME at the end of

December of the prior year. rV − rG is the difference between equal-weighted returns

of the upper 30% of BE/ME and the lower 30% of BE/ME. ME portfolios are

constructed at the end of June. rS − rB is the difference between equal-weighted

returns of the upper 30% of ME and the lower 30% of ME. rDt+1 − rNt+1 is the equal-

weighted excess return on payers over nonpayers in year t+ 1, and rPt+1 − rNPt+1 is the

equal-weighted excess return on firms that pay out cash to shareholders over firms

that do not pay out in year t + 1. In these cases, we remove firms with more than

300% annual returns.
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APPENDIX C

TABLES AND FIGURES

Table I. Benchmark Parameter Value Sets

Parameter Model M (Monthly) Model Q (Quarterly) Description

Calibrated Outside the Model
δ̄ 0.01 0.03 Capital depreciation rate
ρx 0.983 0.95 Persistence coefficient of aggregate productivity
σx 0.0023 0.007 Conditional volatility of aggregate productivity
ρz 0.97 0.912 Persistence coefficient of firm-specific productivity
σz 0.10 0.30 Conditional volatility of firm-specific productivity
φ 1 1 Convexity parameter of investment adjustment cost
δ 0.6 0.6 Long-run average level of dividend payout ratios
β 0.998 0.994 Time preference coefficient

Calibrated Inside the Model
µx −2.0 −1.71 Long-run average level of aggregate productivity
θ 0.68 0.65 Curvature in the production function
ξ1 323 458 Convexity parameter of cash holding cost
ξ2 0.084 0.044 Procyclical parameter of cash holding cost

This table lists the benchmark parameters used to solve and simulate the model. We calibrate 12 parameters(
δ̄, ρx,σx,ρz , σz , φ, δ, β, µx, θ, ξ1, ξ2

)
in monthly frequency and quarterly frequency to be consistent with the empirical

literature. The monthly model is denoted as Model M, and the quarterly model, as Model Q. We categorize all
parameters into two groups. The first parameter group

(
δ̄, ρx,σx,ρz , σz , φ, δ, β

)
is calibrated outside models, and the

second parameter group (µx, θ, ξ1, ξ2) is calibrated inside models by the method using the idea of generalized method of
moments. The moments to be used in this calibration are from average values of policy functions converged on grids of
compact state space: profitability (Π (Sit) /Kit) , investment-capital ratio (I+ (Sit) /Kit), disinvestment-capital ratio
(I− (Sit) /Kit), and paying or not-paying dividend policy (ait) .
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Table II. Unconditional Moments of Market Values

U.S. Data Model M Model Q
Annualized Data (%) γ = 2 γ = 3 γ = 4 γ = 2 γ = 3 γ = 3.5

Market Return and Risk-Free Rate
rM − rf 4 to 8 1.14 4.67 11.2 1.40 5.81 8.75
σ [rM ] 19.4 13.3 20.1 27.3 11.6 17.7 20.9
σ [ri] 25 to 32 47.1 48.7 51.1 21.8 22.6 22.8
∆Pt+1/Pt 2.10 2.02 2.51 3.20 1.49 2.16 2.58
Dt+1/Pt 4.70 3.87 6.06 9.40 3.64 5.18 6.17
rf 1.80 4.75 3.90 1.42 3.73 1.54 0.00
σ
[
rf

]
3.00 0.93 1.14 1.23 1.17 2.06 1.62

σ [M ] 0.49 0.22 0.37 0.57 0.26 0.43 0.54
Sharpe Ratio 0.50 0.23 0.38 0.59 0.27 0.44 0.54

Aggregate Dividend Growth
∆ logD 2.50 2.40 2.39 2.40 2.59 2.56 2.56
σ [∆ logD] 13.4 11.5 11.4 11.4 13.9 13.8 13.6

Book-to-Market
BE/ME 0.67 0.16 0.24 0.37 0.37 0.52 0.62
σ [BE/ME] 0.23 0.07 0.10 0.15 0.15 0.20 0.24

(BE/ME)payer

(BE/ME)non-payer 1.32 2.34 2.27 2.20 1.70 1.65 1.63

Price-Dividend Ratio
P/D 22.1 26.3 16.8 10.9 28.9 20.5 17.3
σ [logP/D] 26.3 8.49 16.8 24.6 12.0 23.5 29.2

This table reports a set of key unconditional moments of market values under the benchmark models M and Q with
parameters in Table I. The empirical range of equity premium

(
rM − rf

)
is from the variety of finance literature.

The volatility of market return (σ [rM ]) is from Guvenen (2009) that is computed by Standard and Poor’s 500 index
covering 1890-1991. The cross-sectional volatility of individual stock returns (σ [ri]) is reported by Zhang (2005).
The capital gain (∆Pt+1/Pt) and dividend price ratio (Dt+1/Pt) effects of market returns are reported by Fama and
French (2002). The risk-free rate

(
rf

)
, its volatility

(
σ
[
rf

])
, BE/ME, and σ [BE/ME] are from Zhang (2005).

(BE/ME)payer / (BE/ME)non-payer is the ratio of average book-to-market equity ratios of dividend payers and non-
payers. It is computed using CRSP/COMPUSTAT merged data. Empirical Sharpe ratio is reported by Cochrane
(2005). The average of price dividend ratio (P/D), the average volatility of log of price dividend ratio (σ [logP/D]),
the aggregate dividend growth and its volatility (∆ logD,σ [∆ logD]) are reported by Guvenen (2009).
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Table III. Size and Value Factors and the Size-BE/ME Portfolios

Factor Portfolios Size-BE/ME Portfolios
rM − rf SMB VMG SG SN SV BG BN BV

Annualized Data(%)
1927-2006 data (Fama and French (2007))

4 to 8 1.67 4.19 8.69 12.9 14.4 9.18 10.0 11.8
∆Pt+1/Pt 2.51 3.43 5.70 9.04 11.2 5.80 5.54 7.13
Dt+1/Pt −0.84 0.77 2.98 3.87 3.21 3.39 4.49 4.69

1945-2005 data (Chen, Petkova, and Zhang (2008))
4 to 8 2.70 5.20 8.60 12.4 15.1 7.80 8.50 11.7

∆Pt+1/Pt 3.00 4.95 2.10 5.50 10.3 2.70 1.80 4.40
Dt+1/Pt −0.30 0.25 6.50 6.90 4.80 5.10 6.70 7.30

Estimated Expected Values (Chen, Petkova, and Zhang (2008))
4 to 8 2.13 6.10 4.80 9.30 13.2 5.60 6.00 9.30

∆Pt+1/Pt 3.06 4.40 2.10 5.50 9.40 2.40 1.50 3.90
Dt+1/Pt −0.93 1.70 2.70 3.80 3.80 3.10 4.50 5.40

Model M (Monthly)

γ = 2 1.14 12.6 19.9 4.61 7.02 23.6 −14.4 5.19 6.54
∆Pt+1/Pt 16.4 17.7 4.29 4.74 20.6 −18.7 −1.45 0.45
Dt+1/Pt −3.82 2.2 0.33 2.28 2.99 4.32 6.64 6.09

γ = 3 4.67 8.88 17.4 5.93 9.04 20.7 −9.97 8.90 10.1
∆Pt+1/Pt 15.6 15.2 5.39 5.65 16.0 −19.0 −1.48 0.69
Dt+1/Pt −6.74 2.22 0.54 3.39 4.62 9.03 10.4 9.38

γ = 4 11.2 3.85 14.3 8.05 11.7 20.9 −0.62 14.7 15.1
∆Pt+1/Pt 14.3 11.1 7.19 6.77 13.8 −14.7 −1.44 0.88
Dt+1/Pt −10.4 3.21 0.86 4.92 7.12 14.1 16.1 14.2

Model Q (Quarterly)

γ = 2 1.40 3.28 6.17 4.06 5.78 9.99 −0.50 4.59 5.91
∆Pt+1/Pt 7.40 2.62 4.02 5.53 9.09 −0.50 −2.73 −0.34
Dt+1/Pt −4.13 3.55 0.04 0.25 0.90 0.00 7.32 6.25

γ = 3 5.81 1.60 6.97 4.94 7.08 10.5 0.76 7.91 9.09
∆Pt+1/Pt 7.47 2.17 4.89 6.76 9.44 0.76 −2.61 0.53
Dt+1/Pt −5.87 4.80 0.05 0.32 1.10 0.00 10.5 8.56

γ = 3.5 8.75 0.48 6.90 5.65 7.82 11.4 2.68 10.1 10.7
∆Pt+1/Pt 7.43 1.48 5.59 7.41 10.2 2.67 −2.73 0.99
Dt+1/Pt −6.95 5.41 0.06 0.41 1.21 0.01 12.8 9.69

This table lists the size and value factors and the six size-BE/ME portfolios. We follow the Fama-French method
to pool the factor portfolios, SMB (small minus big) and VMG (value minus growth, previously HML), and the
six value-weighted size-BE/ME portfolios (Fama and French (2006)). Firms below the median size are small (S)
and those above are big (B) in simulated 2703 firms. We assign firms to growth (G), neutral (N), and value (V)
groups if their BE/ME is in the bottom 30%, middle 40%, or top 30% of simulated firms. The six portfolios, small
and big growth (SG and BG), small and big neutral (SN and BN), and small and big value (SV and BV) are the
intersections of these sorts. In our models M and Q, SMB is the simulated expected returns on the three small-size
stock portfolios minus the returns on the three big-size stock portfolios such that, SMB= SG+SN+SV

3
− BG+BN+BV

3
,and

VMG= SV+BV
2

− SG+BG
2

, which is the value-growth factor, VMG is the expected returns on the two value portfolios
minus the expected returns on the two growth portfolios. The empirical capital gain (∆Pt+1/Pt), dividend price
ratio (Dt+1/Pt) effects, and returns for size and value portfolios are reported by Fama and French (2007), and Chen,
Petkova, and Zhang (2008).
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Table IV. Logit Regressions of Propensities of Payouts: Dividend Payment and Stock

Repurchase, 1962 to 2009

Πit
Ait

Iit
Ait

Mit
Ait

PMEit

Payerit 7.55 -3.44 -0.63 1.64
[14.5] [-5.5] [-11.9] [12.4]

Totalpayit 6.65 -3.16 -0.58 1.54
[14.3] [-5.44] [-12.2] [11.2]

StockRpit 2.53 -2.18 -0.31 0.02
[7.70] [-3.60] [-6.10] [2.73]

This table lists cross-sectional Logit regressions for propensities of dividend payment and stock repurchase such that

P {Payerit = 1} = logit

(
a1 + b1

Πit

Ait
+ c1

Iit

Ait
+ d1

Mit

Ait
+ e1PMEit

)
+ uit,

P {TotalPayit = 1} = logit

(
a2 + b2

Πit

Ait
+ c2

Iit

Ait
+ d2

Mit

Ait
+ e2PMEit

)
+ uit,

and P {StockRpit = 1} = logit

(
a3 + b3

Πit

Ait
+ c3

Iit

Ait
+ d3

Mit

Ait
+ e3PMEit

)
+ uit.

Coefficients and t-values in brackets are averages of annual values.
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Table V. Statistics for Measures of Payout: Dividend Payment and Stock Repurchase,

Solow Residual and Dividend Measures, 1962 to 2009

ρ (AR(1)) Unit Root Solow Residual Dividend Premium

∆xt PD−N
t BMN−D

t V SG−V
t

Initiatet+1 0.76 -2.61 0.21 0.81 0.73 0.61
[0.00] [0.10] [0.15] [0.00] [0.00] [0.00]

Continuet+1 0.59 -2.61 0.44 0.17 0.16 0.62
[0.00] [0.10] [0.00] [0.24] [0.27] [0.00]

Listpayt+1 0.14 -5.71 -0.03 0.21 0.32 0.09
[0.33] [0.00] [0.81] [0.15] [0.03] [0.58]

âDt+1 0.78 -2.14 0.03 0.06 0.05 0.37
[0.00] [0.23] [0.85] [0.67] [0.76] [0.01]

âNDt+1 0.71 -2.95 0.21 0.41 0.55 0.31
[0.00] [0.05] [0.15] [0.01] [0.00] [0.03]

DSD−N
t+1 0.60 -3.52 -0.26 -0.48 -0.71 -0.01

[0.00] [0.01] [0.07] [0.00] [0.00] [0.93]

âPt+1 0.63 -2.91 0.11 0.12 0.14 0.26
[0.00] [0.05] [0.46] [0.42] [0.34] [0.07]

âNPt+1 0.61 -3.37 0.25 0.45 0.65 0.19
[0.00] [0.02] [0.09] [0.00] [0.00] [0.20]

TPP−NP
t+1 0.54 -3.66 -0.22 -0.46 -0.70 -0.02

[0.00] [0.00] [0.13] [0.00] [0.00] [0.87]

âRt+1 0.39 -3.85 0.27 0.06 0.04 0.12
[0.02] [0.01] [0.09] [0.73] [0.82] [0.45]

âNRt+1 0.33 -4.29 0.31 0.16 0.18 0.10
[0.04] [0.00] [0.05] [0.31] [0.26] [0.54]

SRR−NR
t+1 0.30 -4.03 0.08 -0.16 -0.25 0.12

[0.09] [0.00] [0.63] [0.31] [0.13] [0.47]

This table lists the statistics for Initiatet+1, Continuet+1 and Listpayt+1 (detrended by H-P filter) such that Ini-

tiatet =
New Payerst

Nonpayerst−Delist Nonpayerst
, Continuet =

Old Payerst
Payerst−Delist Payerst

, and Listpayt =
List Payerst

List Payerst+List Nonpayerst
.

Also, propensities to pay out cash to shareholders (dividend payment and stock repurchase) in Table IV are detrended
by H-P filter. It shows the correlations between them and total factor productivity (aggregate productivity shock,

∆xt), dividend premium
(
PD−N
t

)
, difference between average book-to-market equity ratios of nonpayers and payers(

BMN−D
t

)
and the minus value spread

(
V SG−V

t

)
, and p-values are in brackets. ρ is coefficient of AR (1) to test

the unit-root using Dickey-Fuller test.
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Table VI. Statistics for Solow Residual, Demand for Dividend Measures and Stock

Returns, 1962 to 2009

ρ (AR(1)) Unit Root Solow Residual Dividend Premium

∆xt PD−N
t BMN−D

t V SG−V
t

∆xt 0.16 -4.37 1
[0.21] [0.00]

PD−N
t 0.85 -2.21 0.25 1

[0.00] [0.20] [0.09]

BMN−D
t 0.73 -2.93 0.19 0.73 1

[0.00] [0.05] [0.20] [0.00]

V SN−D
t 0.82 -2.18 0.32 0.63 0.43 1

[0.00] [0.22] [0.02] [0.00] [0.00]

rMt+1 -0.12 -8.41 -0.07 0.06 0.05 0.06
[0.35] [0.00] [0.60] [0.67] [0.72] [0.64]

rft+1 0.86 -1.91 -0.07 -0.05 -0.55 -0.05
[0.00] [0.33] [0.62] [0.71] [0.00] [0.71]

rMt+1 − rft+1 -0.12 -8.41 -0.06 0.07 0.13 0.07
[0.34] [0.00] [0.67] [0.63] [0.35] [0.61]

rVt+1 − rGt+1 0.11 -6.73 -0.21 -0.13 -0.12 -0.21
[0.36] [0.00] [0.11] [0.40] [0.41] [0.15]

rSt+1 − rBt+1 0.26 -5.68 -0.07 0.28 0.34 0.01
[0.04] [0.00] [0.60] [0.06] [0.02] [0.94]

rDt+1 − rNt+1 0.07 -6.16 -0.12 -0.38 -0.45 -0.30
[0.63] [0.00] [0.40] [0.01] [0.00] [0.04]

rDt+1 0.64 -3.01 -0.25 -0.06 -0.06 -0.36
[0.00] [0.04] [0.08] [0.66] [0.67] [0.01]

This table lists the statistics for TFP (∆xt) , dividend premium
(
PD−N)

, difference between average book-to-market

equity ratios of nonpayers and payers
(
BMN−D)

, the minus value spread
(
V SG−V )

, market return (rM ) , risk free

rate
(
rf

)
, market risk premium

(
rM − rf

)
, value premium

(
rV − rG

)
. These data are from the Fama and French

library. Excess return of dividend payers over nonpayers
(
rD − rN

)
, and excess return of dividend distribution over

capital gain (rD) are analyzed. It shows the correlations between them and p-values are in brackets. ρ is coefficient
of AR (1) to test the unit-root using Dickey-Fuller test.
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Table VII. Measures of Payout: Dividend Payment and Stock Repurchase and Stock

Returns, 1962 to 2009

Initiatet Continuet Listpayt âDt âNDt DSD−N
t

rVt+1 − rGt+1 -0.09 -0.28 -0.00 -0.20 -0.19 0.05
[0.58] [0.06] [0.98] [0.18] [0.19] [0.72]

rSt+1 − rBt+1 0.40 0.03 -0.02 0.02 0.35 -0.48
[0.01] [0.85] [0.91] [0.90] [0.01] [0.00]

rDt+1 − rNt+1 -0.44 -0.22 -0.13 -0.16 -0.44 0.43
[0.00] [0.14] [0.40] [0.27] [0.00] [0.00]

rDt+1 0.19 -0.12 -0.07 0.10 0.24 -0.22
[0.20] [0.42] [0.60] [0.49] [0.09] [0.13]

rNt+1 0.35 0.03 0.01 0.15 0.39 -0.37
[0.02] [0.83] [0.93] [0.30] [0.01] [0.01]

rPt+1 − rNPt+1 -0.40 -0.21 -0.12 -0.15 -0.42 0.42
[0.00] [0.16] [0.43] [0.30] [0.00] [0.00]

rPt+1 0.21 -0.11 -0.06 0.11 0.26 -0.24
[0.16] [0.48] [0.70] [0.46] [0.08] [0.10]

rNPt+1 0.34 0.03 0.02 0.15 0.38 -0.37
[0.02] [0.84] [0.92] [0.31] [0.01] [0.01]

This table lists the correlations between propensities to pay out cash to shareholders (dividend payment and stock
repurchase) in Table IV, and Initiatet+1, Continuet+1 and Listpayt+1 in Table V and value premium

(
rVt+1 − rGt+1

)
,

size premium
(
rSt+1 − rBt+1

)
. These returns are from the Fama and French library. In addition, excess return of

dividend payers over nonpayers
(
rDt+1 − rNt+1

)
, payers’ equal-weighted return

(
rDt+1

)
, nonpayers’ equal-weighted return(

rNt+1

)
, excess return of total payers over nonpayers

(
rPt+1 − rNPt+1

)
, total payers’ equal-weighted return

(
rPt+1

)
and

nonpayers’ equal-weighted return
(
rNPt+1

)
are analyzed in this Table. p-values are in brackets.
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Table VII. Continued

âPt âNPt TPP−NP
t âRt âNRt SRR−NR

t

rVt+1 − rGt+1 -0.19 -0.18 0.09 -0.21 -0.26 -0.02
[0.20] [0.20] [0.54] [0.19] [0.11] [0.89]

rSt+1 − rBt+1 0.19 0.44 -0.43 0.17 0.28 -0.14
[0.20] [0.00] [0.00] [0.31] [0.08] [0.39]

rDt+1 − rNt+1 -0.20 -0.51 0.49 -0.03 -0.24 0.38
[0.17] [0.00] [0.00] [0.82] [0.15] [0.01]

rDt+1 0.18 0.32 -0.28 0.03 0.15 -0.23
[0.23] [0.02] [0.05] [0.84] [0.35] [0.17]

rNt+1 0.22 0.47 -0.44 0.04 0.23 -0.35
[0.13] [0.00] [0.00] [0.80] [0.16] [0.03]

rPt+1 − rNPt+1 -0.17 -0.48 0.48 -0.01 -0.21 0.40
[0.23] [0.00] [0.00] [0.96] [0.21] [0.01]

rPt+1 0.18 0.35 -0.30 0.03 0.17 -0.24
[0.21] [0.02] [0.04] [0.83] [0.32] [0.14]

rNPt+1 0.21 0.48 -0.44 0.03 0.22 -0.37
[0.15] [0.00] [0.00] [0.85] [0.17] [0.02]
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Table VIII. Regressions of Stock Returns on Measures of Payout: Dividend Payment

and Stock Repurchase, 1962 to 2009

Initiatet DSD−ND
t TPP−NP

t âDt âPt R2

rDt+1 − rNt+1 -1.68 0.19
[-3.11]

2.37 0.19
[4.47]

-1.00 1.85 0.26
[-1.32] [2.31]

rPt+1 − rNPt+1 -1.50 0.16
[2.96]

2.11 0.23
[5.11]

-0.75 1.78 0.28
[-0.97] [2.65]

rMt+1 − rft+1 0.03 0.00
[0.07]

-0.50 0.01
[-0.70]

-1.37 0.06
[-2.32]

0.54 0.01
[0.88]

0.76 0.02
[1.33]

This table lists regressions of excess return of dividend payers over nonpayers
(
rDt+1 − rNt+1

)
, excess return of total

payers over nonpayers
(
rPt+1 − rNPt+1

)
, and market risk premium

(
rMt+1 − rft+1

)
on Initiatet, propensities to pay

out cash to shareholders (dividend payment or stock repurchase) in Table IV such that

yt+1 = α+ β1Initiatet + β2

(
DSD−ND

t or TPP−NP
t

)
+ β3 (âDt or âPt) + ut.

t-values adjusted by Newey-West autocorrelation consistent covariance estimators are in brackets.
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Fig. 10. Conditional Expected Market Returns and βM
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Fig. 11. Time-Varying VMG and Value Spread in Quarterly Frequency
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Fig. 12. Expected Returns on 10 Portfolios Formed on BE/ME and Market Size
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Fig. 13. Solow Residual and Dividend Premiums, 1962 to 2009
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Fig. 14. Propensities of Payouts: Dividend Payment and Stock Repurchase, 1962 to

2009
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