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ABSTRACT

Dimension Reduction and Covariance Structure for Multivariate Data, Beyond

Gaussian Assumption. (August 2011)

Mehdi Maadooliat, B.S., Sharif University of Technology;

M.S., Marquette University

Co-Chairs of Advisory Committee: Dr. Jianhua Huang
Dr. Jianhua Hu

Storage and analysis of high-dimensional datasets are always challenging. Di-

mension reduction techniques are commonly used to reduce the complexity of the

data and obtain the informative aspects of datasets. Principal Component Analysis

(PCA) is one of the commonly used dimension reduction techniques. However, PCA

does not work well when there are outliers or the data distribution is skewed.

Gene expression index estimation is an important problem in bioinformatics.

Some of the popular methods in this area are based on the PCA, and thus may

not work well when there is non-Gaussian structure in the data. To address this

issue, a likelihood based data transformation method with a computationally efficient

algorithm is developed. Also, a new multivariate expression index is studied and the

performance of the multivariate expression index is compared with the commonly

used univariate expression index.

As an extension of the gene expression index estimation problem, a general pro-

cedure that integrates data transformation with the PCA is developed. In particular,

this general method can handle missing data and data with functional structure.

It is well-known that the PCA can be obtained by the eigen decomposition of the
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sample covariance matrix. Another focus of this dissertation is to study the covari-

ance (or correlation) structure under the non-Gaussian assumption. An important

issue in modeling the covariance matrix is the positive definiteness constraint. The

modified Cholesky decomposition of the inverse covariance matrix has been consid-

ered to address this issue in the literature. An alternative Cholesky decomposition

of the covariance matrix is considered and used to construct an estimator of the co-

variance matrix under multivariate-t assumption. The advantage of this alternative

Cholesky decomposition is the decoupling of the correlation and the variances.



v

DEDICATION

my mom, dad, sisters for their continuous support and my wife for her priceless love.



vi

ACKNOWLEDGEMENTS

I would like to express my greatest gratitude to all the people who made this dis-

sertation possible. I am deeply indebted to my supervisor, Professor Jianhua Huang,

whose guidance, encouragement, patience, and support during my entire doctoral

study enabled me to finish my Ph.D. successfully. Prof. Huang provided invaluable

ideas and help on every single goal I have accomplished. He is the best and the

kindest professor I have ever met.

My special thanks goes to my co-advisor, Dr. Jianhua Hu, for her trust in giving

me the opportunity to get involve in modeling the gene expression project and to

work under her supervision at the MD Anderson Cancer Center.

Special thanks to my committee members, Profs. Mohsen Pourahmadi, Faming

Liang, and Peng Li, for taking their valuable time and serving as my committee

members. I especially thank Prof. Pourahmadi for all his invaluable advice. I have

learned a lot from him.

I would also like to thank Professor Gholamhossein G. Hamedani at Marquette

University who provided much support in my being here. I am grateful for his guid-

ance. Special thanks to my great friend Ali Nakhaee for his endless support in every

aspect.

I thank my dear friends, Maysam, Negin, Mahmood, Ehsan, Ameneh, Saeed,

all Maryams, Alis, Mohammads, Vahids, Arashs, Anh, Alex, Maurice, Youjin, Tri-

jya, Tanya, Ying, Brian, Priya, Sahar, Shahrooz, Elham, Roozbeh, Saleh, Hassan,

Mostafa, Salman, Fatemeh, Armin, Ahmad, Bijan, Hessam, Hoda, Amin, Emad,

Sadegh, Alireza, and the rest of my unnamed friends in College Station. I honor

their friendship and so many good memories throughout my journey at Texas A&M



vii

University.

I would like to thank my beloved Zahra, my parents, and my sisters for their

patience, care, and endless devotion. I can never thank my dad Reza, enough for

teaching me to be thoughtful like him, my mom Susan, for her dedicated love, my

sisters Soheila and Leila, for their strong support during the past years. I do not have

the words to express my gratitude to my lovely wife Zahra, for the emotional and

unconditional support she has brought into my life.



viii

TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

CHAPTER

I INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . 1

II ANALYZING MULTIPLE-PROBE MICROARRAY: ESTI-
MATION AND APPLICATION OF GENE EXPRESSION
INDEXES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Profile Likelihood Based Expression Index Estimation 8
2.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . 13
2.4 Application to a Benchmark Spiked-in Data . . . . . . 17
2.5 Discussion of Two Practical Issues . . . . . . . . . . . 27

III INTEGRATING DATA TRANSFORMATION IN PRINCI-
PAL COMPONENTS ANALYSIS . . . . . . . . . . . . . . . . . 35

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Methodology . . . . . . . . . . . . . . . . . . . . . . . 39
3.3 Data Analysis . . . . . . . . . . . . . . . . . . . . . . 49

IV ROBUST ESTIMATION OF THE CORRELATION MA-
TRIX OF LONGITUDINAL DATA . . . . . . . . . . . . . . . . 58

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . 58
4.2 MCD and ACD of a Covariance Matrix . . . . . . . . 62
4.3 MLEs for the ACD Model: The Multivariate tν . . . . 63
4.4 Data Analysis . . . . . . . . . . . . . . . . . . . . . . 70



CHAPTER

ix

Page

4.5 Technical Details . . . . . . . . . . . . . . . . . . . . . 80

V CONCLUSION . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

VITA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98



x

LIST OF TABLES

TABLE Page

1 Comparisons between the PSVD and entropy-based methods in
four cases of residual distribution. . . . . . . . . . . . . . . . . . . . . 14

2 Comparisons between proposed transformation and no transfor-
mation model under different values of β. . . . . . . . . . . . . . . . . 54

3 Simulating data from Σmcd or Σacd and fitting Poly(3, 3) . . . . . . . 72

4 Simulating data from Σmcd or Σacd and fitting Poly(3, 1) . . . . . . . 75

5 Average estimates for γ,λ, `max and BIC and the median estimate
for ν based on 500 replications . . . . . . . . . . . . . . . . . . . . . . 76

6 Comparison of `max, number of parameters, and BIC values for
some Poly(d, q) choices of ACDN and ACDT models. . . . . . . . . . 79

7 Parameter estimates for the best two Poly(d, q) choices of ACDN
and ACDT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



xi

LIST OF FIGURES

FIGURE Page

1 The top panel contains the plot of the profile log-likelihood for β . . . 15

2 The results with no transformation, and the results after the trans-
formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3 Standard errors of estimated expression indexes of the nonspiked-
in genes using the Li-Wong and PSVD methods . . . . . . . . . . . . 20

4 Model fitting using only one singular vector and two singular vectors 22

5 K-means clustering using univariate and two-dimensional expres-
sion index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 K-means clustering using Li-Wong model . . . . . . . . . . . . . . . . 26

7 ROC curve and the rank plot for the PSVD Model . . . . . . . . . . 31

8 Rank plot for the 16 spiked-in genes based on the PSVD Model . . . 32

9 ROC curve and the rank plot for the Li-Wong Model . . . . . . . . . 33

10 Rank plot for the 16 spiked-in genes based on the Li-Wong Model . . 34

11 The FPCs of the non-transformed data . . . . . . . . . . . . . . . . . 51

12 Normality of the residuals for the FPCA and the FPSVD for the
simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

13 Residual plots and the QQ plots for the FFM data . . . . . . . . . . 56

14 Call Center data: FPCs for the FPCA model . . . . . . . . . . . . . . 57

15 Profile plot of the tumor data, and the plots of GMAPs and log-
innovation standard deviation. . . . . . . . . . . . . . . . . . . . . . . 78

16 The profile plot, GARPs and log-innovation standard deviation
plots for the MCDN model . . . . . . . . . . . . . . . . . . . . . . . . 85



1

CHAPTER I

INTRODUCTION

Having a valid model is the key to obtain satisfactory results from any given

statistical procedure. There are a variety of tools to check the validity of model

assumptions, but they are sometimes ignored by the end users. The packages given

in statistical softwares could be called by the clients without checking the model

conditions, and hence, the results in such cases could be misleading. Therefore, it

is common to perform some preprocessing steps on the raw dataset to ensure that

model assumptions are satisfied before the model fitting. One of these preprocessing

methods is the transformation technique. The data transformation can be performed

such that the transformed data appear to more closely meet the assumptions of a

statistical procedure that is to be applied.

In the next two chapters we discuss the use of the data transformation tech-

nique as a preprocessing tool before PCA and functional PCA analysis, and provide

applications for the proposed models. The motivation for the first part of the work

is the Gene expression index estimation. Microarray technologies have been used to

monitor expression intensities of thousands of genes simultaneously in a wide range

of organisms. In the popular Affymetrix short oligonucleotide array platform, each

gene is represented by multiple oligonucleotide probes, or a “probe set.” A probe set

contains 10-20 probe pairs whose expression intensities are measured via hybridiza-

tion to the targeted sample cRNA. Each probe pair consists of the perfect match

The style of this dissertation follows Journal of Statistical Planning & Inference.
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(PM) probe with the target mRNA sequence of 25 nucleotides and the counterpart

mismatch (MM) probe that is identical to the PM probe except for a base change

at the middle (13th) position.

A number of statistical methods have been proposed to address the gene expres-

sion index problem. GeneChip software (MAS version 5.0; Affymetrix 2004) com-

putes a robust form of mean differences between PM and MM probes. Chu et al.

(2002) applied mixed linear models to account for the dependence among logarithm-

transformed probe intensities. Li and Wong (2001) proposed a multiplicative model-

based expression index, which has been used and implemented in the dChip software

(www.dchip.org). Its superiority over several existing methods has been shown in

Lemon et al. (2002) via both analytic arguments and empirical data. Hu et al. (2006)

observed the heterogeneity of the residuals obtained from the Li-Wong model, and

they proposed to use the transformation model based on the ad-hoc entropy criteria.

In Chapter II we explore this problem in details and propose a principled statistical

procedure to obtain informative expression indexes and stabilize the variance of the

residuals based on a data transformation routine.

In the second phase of this thesis we change the gear toward the use of the data

transformation technique in the PCA for some special cases (i.e., functional data

structure, presence of missing observations, and/or non-Gaussian behavior). The

data transformation technique has been commonly used before the PCA and the

functional PCA analysis (i.e., Huang et al., 2008; Hu et al., 2006). Usually, the au-

thors proposed the transformation based on evidences of non-normality. The necessity

of the Gaussian assumption comes from the fact that the aforementioned dimension

reduction methods are essentially based on finding the directions with the highest

variability (variance) in the dataset. Also, it is well known that the variance com-

ponent, explains the properties of the dataset best, under the normality assumption.
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The importance of the connection between the variance structure and the normality

assumption clarifies the poor performance of the PCA and the functional PCA un-

der the skewed and/or the heavy-tail distributed datasets. Moreover, the normality

of the residuals have been considered in some of the missing data imputation tech-

niques. Hence, it is quite possible to obtain unreliable imputed values for the missing

observations in such techniques for heavy-tailed, asymmetric error distributions.

The essence of the relationship between the normality assumption and the vari-

ance structure motivates the search for a desired transformation to obtain normal

behavior for the transformed dataset. The transformation usually comes from exten-

sive data analysis, previous studies or the experience of expertise. Therefore, there

is no automatic data driven procedure to select the appropriate transformation and

it has been done manually in the literature. Chapter III focuses on the integration

of the data transformation technique in the functional PCA based on an automatic

data driven statistical procedure. First, we propose a probabilistic model to describe

the problem. Based on the proposed model we explore some solutions for handling

the missing data issue. Finally, in the later part of this chapter the focus goes toward

the smoothed transformed functional principal components analysis.

Instead of using transformation to obtain the normality, one can use a rich fam-

ily of the distributions (i.e., heavy tail distributions) in the modeling. In the last

chapter, we consider the modeling of the covariance (correlation) matrix using the

multivariate t-distribution. The most important concern is to take in to account the

positive definiteness constraint. The modified Cholesky decomposition (MCD) of the

inverse covariance matrix is one of the known solutions that has been widely used

in the literature (Pourahmadi, 1999; Holan and Spinka, 2007). Most existing works

have used precision matrix Σ−1, though Rothman et al. (2010) have proposed sparse

estimation of Σ itself using its MCD.



4

Pourahmadi (2007) suggests that, if one replaces the modeling of MCD of a

covariance matrix by its alternative Cholesky decomposition (ACD) introduced in

Chen and Dunson (2003), then one obtains independent structure for the modeling of

the correlation and the variances. Following this suggestion and pushing further the

multivariate normality assumption of the data toward the multivariate t-distribution

(similar to Lin and Wang, 2009), we are able to obtain parsimonious and robust esti-

mation of the correlation matrix (not the covariance). The work in Chapter IV helps

to understand the structural, computational and statistical differences that may exist

between the MCD used in Pourahmadi (1999) and the ACD in Chen and Dunson

(2003). Note that the former corresponds to the class of autoregressive (AR) models

and the latter to the moving average (MA) models from time series analysis. There-

fore, one expects more computational difficulties in computing the MLE parameters

of the ACD.
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CHAPTER II

ANALYZING MULTIPLE-PROBE MICROARRAY: ESTIMATION AND

APPLICATION OF GENE EXPRESSION INDEXES

Gene expression index estimation is an essential step in analyzing multiple probe

microarray data. Various modeling methods have been proposed in this area. Amidst

all, a popular method proposed in Li and Wong (2001) is based on a multiplicative

model, which is similar to the additive model discussed in Irizarry et al. (2003a) at

the logarithm scale. Along this line, Hu et al. (2006) proposed data transformation

to improve expression index estimation based on an ad hoc entropy criteria and naive

grid search approach. In this work, we re-examined this problem using a new profile

likelihood-based transformation estimation approach that is more statistically ele-

gant and computationally efficient. We demonstrate the applicability of the proposed

method using a benchmark Affymetrix U95A spiked-in experiment. Moreover, We

introduced a new multivariate expression index and used the empirical study to shows

its promise in terms of improving model fitting and power of detecting differential

expression over the commonly used univariate expression index. As the other im-

portant content of the work, we discussed two generally encountered practical issues

in application of gene expression index: normalization and summary statistic used

for detecting differential expression. Our empirical study shows somewhat different

findings from the MAQC project (MAQC, 2006).

2.1 Introduction

Microarray technologies have been used to monitor expression intensities of thou-

sands of genes simultaneously in a wide range of organisms. We focus on the popular
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Affymetrix short oligonucleotide array platform (Lockhart et al., 1996; Parmigiani

et al., 2003).

The first part of this work concerns an important statistical problem in analyzing

affymetrix array data, that is, estimation of gene expression based on the multiple-

probe information. The so-called Li-Wong Reduced (LWR) model was proposed based

on the differences between PM and MM intensities. Since the MM probes are de-

signed originally for measuring the background/nonspecific intensities, the differences

are considered to be the signal intensities in LWR. The model is expressed as

PMij −MMij = θiφj + εij, (2.1)

where PMij and MMij are the PM and MM intensity values for the ith (i = 1, · · · , I)

array and the jth (j = 1, · · · , J) probe pair for the gene, θi is the true expression index,

φj is the rate of response in the corresponding PM probe, and the residuals εij ∼

N(0, σ2). The model identifiability is ensured by posing the constraint
∑

j φ
2
j = J .

Later work showed that the underlying distribution assumptions of normality and

constant variance across the probes do not hold and data transformation techniques

can be used to resolve this problem (Geller et al., 2003; Hu et al., 2006).

Hu et al. (2006) established the connection between the Li-Wong model and

the first characteristic mode of the singular value decomposition (SVD) of the probe

intensity matrix, and proposed a parametric transformation model on PM intensities.

More specifically, they proposed a grid search over a parametric transformation family

(e.g., Box-Cox) and selected the optimal value of the transformation parameters by

maximizing the normalized discrete Shannon entropy defined on the singular values

of the residual matrix. Note that, the empirical results provided in their paper show a

good level of improvement in homogeneity of variance of the residuals and efficiency of

the expression index. Moreover, the transformation model does not require knowledge
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of the experimental design.

We propose a more statistically principled estimation method than the entropy-

based procedure in Hu et al. (2006). The transformation model can be written as

f(yij|η) = θiφj + εij, (2.2)

where f(·|η) is a monotonic transformation, η is the vector of transformation pa-

rameters, and εij’s are independent normal random errors with mean 0 and constant

variance σ2. The goal of this transformation model is to stabilize the variance of

the residuals and thus achieve an efficient estimates for the gene expression index

under normality assumption. This is similar in spirit to performing logarithm trans-

formation often seen in analyzing microarray experiments, as discussed in Geller et al.

(2003); Hu et al. (2006) and Irizarry et al. (2003b). We consider a wider class of trans-

formations which contains the logarithmic transformation and LWR model (identity

transformation) as a special case. We expect to achieve a better performance based

on the general model, since our empirical investigation shows that the logarithm

transformation is not always optimal.

The proposed likelihood based method and the entropy based procedure in Hu

et al. (2006) are closely related since the normal distribution has the maximum en-

tropy property. However, our simulation study as reported in the supplementary

material shows that the proposed method exhibits smaller variability of parameter es-

timation than the ad hoc entropy procedure. Application to a benchmark Affymetrix

U95A spiked-in experiment (Irizarry et al., 2003a,b) also indicates that the proposed

method has superior performance in terms of reflecting the true patterns in a con-

trolled experiment, comparing to the Li-Wong model.

We also introduce a new multivariate gene expression index obtained through

the connection between the multiplicative model and SVD. It is noted that all the
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existing methods concern only the univariate expression index. Through extensive

real data exploration, we show the benefit of using the multivariate index in terms of

model fitting and applications, such as differential expression detection.

The second part of the work is devoted to discussion of two practical issues in

analysis of microarray data using estimated gene expression index, namely, normal-

ization and summary statistic used for detecting differential expression. These issues

are important but still under debate. MAQC (2006) used empirical studies over some

of the known techniques, and concluded that normalization has little impact on the

result of detecting differentially expressed genes, and p-value has no gain over fold-

change in terms of gene ranking of differential expression. We use the benchmark

spiked-in data to re-investigate these two issues for the expression indexes based on

our proposed model. Our empirical study seems telling a different story from MAQC

project.

We describe the likelihood based estimation procedure and introduce the two-

dimensional expression index model in subsection 2.2. We use the well known bench-

mark human spiked-in dataset to demonstrate the applicability of the proposed ex-

pression index estimation method in subsection 2.4, and explore the two practical

issues of normalization and summary statistic for detecting differential expression in

subsection 2.5. Some final remarks are given in Chapter V.

2.2 Profile Likelihood Based Expression Index Estimation

2.2.1 Estimation Procedure

We consider the transformation model (2.2) in which yij takes the value of pre-

processed and normalized multiple-probe index. We denote the parameter vector

Θ = (ηT ,θT ,φT , σ2)T , where θ = (θ1, . . . , θI)
T , φ = (φ1, . . . , φJ)T , and write out the
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log-likelihood function as

`(Θ) = −IJ
2

log(σ2) +
I∑
i=1

J∑
j=1

{
log|f ′(yij|η)| −

(
f(yij|η)− θiφj

)2

2σ2

}
. (2.3)

It is noticeable that maximization of (2.3) with respect to Θ simultaneously is compu-

tationally expensive. Hence, we turn to the profile likelihood method which comprises

of two phases.

In the first phase, we consider the transformation parameter vector η to be

fixed at η0. The parameters to be estimated are only θ,φ, and σ2. The maximum

likelihood estimates (MLEs) of the parameters can be viewed as functions of η0, and

can be easily obtained using the nice result of connection between SVD and the least

square estimates (or equivalently MLEs with normal residuals) established in Hu et al.

(2006). The explicit forms of the parameter estimates are

θ̂(η0) = u1
σ1√
J
, φ̂(η0) = v1

√
J, (2.4)

σ̂2(η0) =
1

IJ

I∑
i=1

J∑
j=1

(
f(yij|η0)− θ̂(η0)iφ̂(η0)j

)2
,

where, u1 and v1 are the left and right singular vectors, respectively, corresponding

to the largest singular value σ1 by performing SVD on the matrix {f(yij|η0)}. We

do not need the full SVD decomposition, and efficient algorithm for low-rank matrix

approximation can be used to speed up the calculation of the leading vectors (e.g.

Achlioptas and Mcsherry, 2007).

In the second phase, we aim to obtain the estimate of η via maximizing the

profile log-likelihood function

`p(η) = − IJ

2
log(σ2(η))

+
I∑
i=1

J∑
j=1

{
log|f ′(yij|η)| −

(
f(yij|η)− θ(η)iφ(η)j

)2

2σ2(η)

}
. (2.5)
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Notice that the profile log-likelihood function only contains the vector of parameters

η with all the other parameters being expressed as the functions of η. The variety

of appropriate optimization techniques such as Downhill Simplex or gradient based

algorithms (e.g. Avriel, 1976) can be used subject to the structure of the family of

transformations. It is worth emphasizing that the obtained estimates based on the

profile likelihood are the MLEs of the parameters, and thus have good theoretical

properties.

We abbreviate the whole profiling and singular value decomposition procedure

as PSVD. The general iterative optimization procedure follows:

1. Start from an initial estimate of η, denoted by ηt (t = 0). Usually we pick the

initial estimate associated to the model with no transformation.

2. Let Xt be the I × J matrix with (i, j)th entry f(yij|ηt). Perform SVD Xt =

UΣV T and use (2.4) to obtain θ̂(ηt), φ̂(ηt), and σ̂2(ηt).

3. Obtain the updated value of ηt+1 via an optimization algorithm to increase the

value of the profile log-likelihood function `p(ηt) defined in (2.5).

4. Iterate between the last two steps until convergence is reached.

Up to this stage our development is only for a single gene. However, we encounter

thousands of genes in real microarray experiments and aim at estimating a common

transformation for all these genes. Our algorithm can be easily extended to handle this

general case. Let H denote the total number of genes. For each gene h (h = 1, . . . , H),

the log-likelihood `h(Θ) is similar to (2.3) and is given by

`h(Θ) = −IJ
2

log(σ2
h) +

I∑
i=1

J∑
j=1

{
log|f ′(yijh|η)| −

(
f(yijh|η)− θihφjh

)2

2σ2
h

}
,
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and the profile log-likelihood `hp(η) is similar to (2.5) as following

`hp(η) = −IJ
2

log(σ2
h(η)) +

I∑
i=1

J∑
j=1

{
log|f ′(yijh|η)| −

(
f(yijh|η)− θ(η)ihφ(η)jh

)2

2σ2
h(η)

}
.

In this scenario, the objective function to be maximized is
∑H

h=1 `h(Θ). In terms

of algorithm implementation, we only need to make a modification to step 3 of the

described procedure, in which ηt is updated to increase the value of
∑H

h=1 `hp(η).

Despite of the huge dimensionality, the SVD technique enables the computational

feasibility of handling all the genes simultaneously in our procedure.

Given this general framework, we focus on the popular Box-Cox transformation

family as an example hereafter. Let Y denote the untransformed data. The Box-Cox

transformation for each element of Y is defined as

f(yij|β) =


yβij − 1

β
, β 6= 0,

log(yij) , β = 0.

(2.6)

Since the transformation parameter η = β is one dimensional, the 3rd step of the

PSVD procedure becomes a simple optimization problem for a univariate concave

function. In our implementation, we adopt the popular L-BFGS-B optimization al-

gorithm (Byrd et al., 1994).

We conducted simulation studies to make comparisons between the PSVD method

and the entropy-based procedure in Hu et al. (2006). We studied both cases of nor-

mally and non-normally distributed data. The observation is that the PSVD method

yields more efficient parameter estimate than the entropy-based procedure. The sim-

ulation study also demonstrates the advantage of data transformation in improving

the model fit. We include the detailed description of the simulation studies in the

supplementary material.
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2.2.2 Multivariate Expression Index

It is aforementioned that the MLE of θ,φ in model (2.2) are the singular vectors

corresponding to the largest singular value of data matrix {f(yij|η)}. It is also known

that the data matrix can be represented as the sum of rank-one matrices based on

SVD. The most important rank-one matrix is associated with the largest singular

value and it captures the highest “energy” in the data, where “energy” is defined by

either the 2-norm or Frobenius norm(e.g. Trefethen and Bau, 1997) of the matrix.

An intuitive question is whether this rank-one matrix is sufficient to capture the

majority of energy in the data and it is interesting to investigate if the rank-one matrix

corresponding to the second largest singular value contains nontrivial information

about gene expression index.

One of the typical way of assessing the relative importance of the low-rank ma-

trices generated by the SVD is to look at the ratio of the corresponding singular

values. Following this practice, we include the rank-one matrix associated with the

second largest singular value in expression index estimation only if
d2

d3

> c, where di

denotes the ith largest singular value of the transformed data f(yij|β̂) in (2.2). In our

empirical investigation, we take the relatively conservative threshold c = 3. This idea

also has been used in Hu et al. (2009). The model can be explicitly written as

f(yij|β̂) =


θiφj + εij ,

d2

d3

6 c,

θ
(1)
i φ

(1)
j + θ

(2)
i φ

(2)
j +$ij ,

d2

d3

> c.
(2.7)

When a gene can be represented using one component, we take θi as its univariate

expression index for array i; Otherwise, we take the vector (θ
(1)
i , θ

(2)
i ) as its two-

dimensional expression index.

Note that more components can be considered in the similar way. Our empir-

ical investigation suggests that the third and higher-order singular vectors mainly
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contain noises for short oligonucleotide array experiments and thus they will not be

considered. More detailed description is deferred to subsection 2.4.2.

2.3 Simulation Studies

We conducted simulation studies to evaluate the performance of the PSVD

method in terms of parameter estimation and make comparisons to the entropy-based

procedure in Hu et al. (2006).

For the purpose of demonstration, we simulated the expression intensity data

using model (2.2) for H = 100 genes with I = 59 (arrays) and J = 16 (probes).

For each gene, we generated θi’s from gamma distribution with shape parameter 3

and rate 1, multiplying by 150. We generated φj’s from normal distribution with

mean 1 and standard deviation 0.1 , and then scaled them to satisfy the constraint∑
j φ

2
j = J . We considered β = 2 in the Box-Cox transformation throughout the

simulation studies. We investigated four cases of the error distribution.

2.3.1 Normal Errors

We generated the errors (εij’s) from mean zero normal distribution with the

standard deviation of 25. The simulated data was generated from

yij = f−1(θiφj + εij|β = 2), i = 1 . . . I j = 1 . . . J. (2.8)

The PSVD estimate of β using all the data of 100 genes is 2.029, while the entropy

method estimate of β is 2.023. The plot of profile log-likelihood versus the value of β

is contained in the top panel of Figure 1. A smooth concave function is clearly seen

and the maximum location is indicated by the vertical line. It is not surprising for β

estimates to be similar between the PSVD and entropy based methods in the normal

case.
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Table 1: Comparisons between the PSVD and entropy-based methods in four cases
of residual distribution.

Error Distribution PSVD Entropy
Normal 2.026(0.081) 2.017(0.176)
t with df = 3 1.977(0.226) 1.961(0.609)
Double Exp(1.5) 2.034(0.127) 2.001(0.258)
Skew Normal(1) 2.017(0.084) 2.024(0.183)

The normal quantile-quantile plots of the estimated residuals before and after the

transformation are shown in the left and right middle panels of Figure 1, respectively.

It is obvious that the residual distribution is closer to normal with the transformation.

We also displayed the plot of mean expression estimates (θ̂iφ̂j)’s obtained from the

Li-Wong model (i.e., without transformation) versus yij in the left bottom panel and

that of mean expression estimates obtained from the transformation model versus

f̂(yij)’s in the right bottom panel. It is notable that the transformation results in

more or less homoscedastic residuals, indicating good model fit.

To assess the variability of parameter estimation, we implemented the PSVD and

entropy based methods for each gene separately and obtained 100 estimates of β using

each method. We reported the average value of β̂ and the corresponding standard

error in Table 1. We observe that the two methods yielded very similar mean values

(close to the true value of 2) but the standard error using the PSVD method is only

45.5% of that using the entropy based method.

2.3.2 Non-normal Errors

We also investigated the robustness of the two methods through three non-normal

cases. We considered model (2.2) with errors generated from the following zero-mean

distribution: (a) The t distribution with 3 degrees of freedom, multiplied by 15;

(b) The double exponential distribution with the scale parameter 1.5; (c) The skew
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Figure 1: The top panel contains the plot of the profile log-likelihood for β. The
second row contains the QQ-plot of residuals for the Li-Wong and PSVD models;
The left bottom panel contains the plot of (θ̂iφ̂j)’s obtained from LWR (without
transformation) versus yij; and the right bottom panel contains the plot of mean

expression estimates obtained from the transformation model (PSVD) versus f̂(yij).
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normal distribution with location parameter being
1√
π

, scale parameter 1 and shape

parameter 1. We again obtained the simulated data using (2.8). The last three rows

of Table 1 contain the average values of β̂ and the corresponding standard errors.

The parameter estimation variability of the entropy method is always at least twice

as large as that of the PSVD method, which is consistent with the finding in the

normal distribution case.

2.3.3 Sensitivity to Model Misspecification

Lastly, we considered the case β = 1, and studied the sensitivity of the proposed

model to misspecification of the error distribution. We have generated the pseudo-

observations yij’s, where yij = θiφj + εij, and εij’s are from either non-normal or

unequal variances distributions. We observed that fitting model (2.2) is essentially

finding a transformation model (f(yij|β̂) = θ̂iφ̂j+ε̂ij), that automatically incorporates

the followings: 1- After the transformation, the distribution of the residuals (ε̂ij) is as

closest as possible to homogeneous mean zero normal distributions. 2- The variability

of the transformed observations (i.e., f(yij|β̂)) has been explained mainly by a single

index model (θ̂iφ̂j). We have tried different mean zero heavy tailed and skewed

distributions for the error terms. Most of them suggested β̂ to be close to 1, which is

equivalent to no transformation is necessary.

For evaluating the performance of the model for unequal variance errors, we

generated the errors (εij’s) from normal distributions with mean zero and the standard

deviation 25 times the magnitude of φj’s. It’s clear that here we loose the constant

variability assumption across different probs. The PSVD algorithm suggested almost

a log-transformation (β = 0.06) to obtain the equality of variances across the probs.

Figure 2 shows the advantage of using such transformation model for a randomly

chosen gene. The increasing pattern of variability disappears after the transformation.
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This can be seen in the residual plots and the plot of mean expression estimates

obtained from the PSVD model versus f̂(yij).

2.4 Application to a Benchmark Spiked-in Data

We used a benchmark Affymetrix U95A spiked-in experiment as an example.

It consists of 12, 610 genes non-differentially expressed across all the arrays, and 16

genes spiked-in at 14 known concentration levels ranging from 0 to 1, 024 picomolars,

each of which has at least 3 replicate arrays. A Latin square design was used for the

arrangement of 16 genes at different concentration levels in 59 arrays. The detailed

description of the experimental design can be found in Irizarry et al. (2003a,b).

In real data analysis, we need to first perform data preprocessing procedure.

Irizarry et al. (2003a,b) introduced quantile normalization and an alternative back-

ground intensity estimation method rather than directly using MM intensities as

the Li-Wong model. Because of its good empirical performance, this preprocessing

procedure has been widely used. Therefore, we adopted this approach and took the

background adjusted and normalized PM probe intensities PM∗
ij as the data value

prior to transformation in our development.

2.4.1 Comparisons of Expression Index Estimates

We estimated the expression indexes of all the genes using the Li-Wong and

PSVD methods, respectively. The PSVD method applied to all the genes simultane-

ously yields the estimate of the transformation parameter β̂ = 0.177. We notice there

is a difference of the data scale among the two methods: the Li-Wong method is con-

ducted at the original scale, and the PSVD procedure is conducted at the nonlinear

scale of the specific Box-Cox transformation. Because of the different scales in the

Li-Wong and PSVD models, we transform the estimated expression index using the
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Figure 2: (Left column:) The results with no transformation, and the (Right
columns:) results after the transformation. The upper row is the residual plots. The
left bottom panel contains the plot of (θ̂iφ̂j)’s obtained from LWR (without transfor-
mation) versus yij; and the right bottom panel contains the plot of mean expression

estimates obtained from the transformation model (PSVD) versus f̂(yij).
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PSVD method back to the original scale for fair comparison. This can be performed

using θ̂final
i = (θ̂i + 1)

1

β̂ for i = 1, . . . , I, where θ̂final
i is a reasonable approximate for

the expression index in the original scale.

It is known that all the genes but the spiked-in ones should be constantly ex-

pressed. So a good method should yield small variations in estimated expression

indexes of the non-spiked-in genes across all the arrays. The left panel in Figure 3

shows the box plot of the standard errors of the estimated expression indexes of the

nonspiked-in genes for both of the methods at logarithmic scale. The PSVD method

is clearly superior to the Li-Wong method with overall smaller and less variable stan-

dard errors. The average (sample standard deviation) of the standard errors of all

the genes are 40.49(77.53), and 11.05(25.41), respectively, for the Li-Wong and PSVD

methods.

We also interrogated the 16 spiked-in genes spotted to the arrays at 14 concen-

tration levels of 0, 0.25, 0.5, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 and 1024 picomolars.

It is intuitive to assess the correlation between the estimated expression indexes and

the corresponding true concentration levels for each gene. Because the concentration

levels are designed in the two-fold fashion, we examined the Pearson’s correlation co-

efficient posterior to base 2 logarithm transformation of both the concentration levels

and θ̂final. The box plots of the correlation coefficients of the 16 genes are displayed

in the right panel of Figure 3. We can see that the PSVD method outperforms the Li-

Wong model. The average (sample standard deviation) of the correlation coefficients

for the Li-Wong and PSVD methods are, respectively, 0.98(0.02) and 0.99(0.01). In

summary, the PSVD method empirically performs better than the Li-Wong method.
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Figure 3: (Left panel:) Standard errors of estimated expression indexes of the
nonspiked-in genes using the Li-Wong and PSVD methods. (Right panel:) Pear-
son’s correlation coefficients between expression index(θ̂final) and true concentration
in base 2 logarithm of the spiked-in genes using the Li-Wong and PSVD methods.
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2.4.2 Value of Multivariate Expression Index

We used the same dataset to explore applicability of the two-dimensional ex-

pression index. First, we observed that the second component is required by none

of the 16 spiked-in genes without the transformation (or under the Li-Wong model)

but required by 6 genes with the transformation (Box-Cox with β̂ = 0.177), based on

the criterion defined in subsection 2.2.2. On the other hand, the second component

is required by 1, 044 nonspiked-in genes without the transformation, but only by 38

with the transformation.

We focus on the 6 spiked-in genes that require the two dimensional expression

index for further investigation. Figure 4 shows an example gene 546 at, in which the

left upper panel corresponds to the case of using only the first singular vector and the

left lower panel corresponds to the case of using the first two singular vectors. In both

panels, the probes having the largest and the second largest residual variance upon

fitting model (2.2) are highlighted with the symbols of the cross and the black circle,

respectively. The plot of the residuals εij upon using only the first singular vector and

the residuals $ij upon using the first two singular vectors against the transformed

data are contained in the left column. It is clearly seen that the residuals of the

most variable probes using just one singular vector become much more homogeneous

by using two singular vectors. We also examined the normal quantile-quantile plots

of the residuals and observed that the residual distribution is closer to the normal

distribution using two singular vectors.

The right column of Figure 4 indicates that the fit of the most variable probe 15,

indicated by the crosses, is unsatisfying using the rank-one matrix approximation. It

is intriguing to interrogate the benefit of using the two singular vectors for this probe.

Model (2.2) tells that a linear relation between the transformed data f(PM∗
ij|β̂) and
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Figure 4: Model fitting using only one singular vector (upper panels) and two singular
vectors (lower panels). The left column contains the plot of residuals versus the
transformed data. The right upper panel contains the plots of the transformed data

f(PM∗
ij|β̂) versus the estimated expression index θ̂

(1)
i for probe 15 of gene 546 at;

The right lower panel contains the plots of residuals f(PM∗
ij|β̂)− θ̂(1)

i φ̂
(1)
j versus θ̂

(2)
i

for the same probe.
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the univariate expression index θ̂i (i = 1, · · · , I) should be observed for any probe j

if the probes behave consistently. Such a plot for probe 15 is displayed in the right

upper panel of Figure 4 and a random pattern is shown. We examined the normally

behaved probes and observed a clear linear pattern for all of them. In the right lower

panel, we presented the plots of θ̂
(2)
i versus f(PM∗

ij|β̂) − θ̂(1)
i φ̂

(1)
j obtained using the

two-component model. We can observe a clear linear pattern for probe 15, implying

that the second singular vector contains important information about this probe and

makes substantial contribution to θ̂
(2)
i .

The discussion above demonstrates the merit of using the second singular vector

from the perspective of model fitting. Next, we investigate its empirical value us-

ing the known feature of the spike-in experiment. We focus on two spiked-in genes:

1091 at and the earlier discussed 546 at. With the known concentration level of each

array for a spiked-in gene, we can examine the capability of distinguishing different

concentration levels by using the two-dimensional expression index. For this pur-

pose, we adopt K-means clustering procedure implemented using R function “pam”

(Theodoridis and Koutroumbas, 2006). For gene 546 at, we focused on the arrays

at the concentration levels of 32, 64, 128, 256, 512, and 1024 picomolars. The other

gene 1091 at uses the arrays with the lowest concentration levels of 0, 0.25, 0.5, and

1 picomolars. This represents the most difficult case for discrimination because the

concentration levels are the most close to each other. We apply the K-means pro-

cedure to cluster the arrays into three classes, using separately the univariate and

two-dimensional expression indexes as the input. Performance of the two expression

indexes will be evaluated based on the output of the K-means procedure.

An expression index is considered to be good if the corresponding clustering suc-

ceeds in assigning the same group membership to the arrays at the same concentration

level and cluster together the arrays with the concentration levels at the similar mag-
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nitude. Figure 5 contains the plots of the concentration levels of the arrays versus

their group membership produced by clustering. The left and right panels correspond

to the univariate and two-dimensional expression index, respectively. Genes 546 at

and 1091 at are shown respectively in the upper and lower regions, separated by the

middle line in black, of the two panels. For gene 546 at and based on univariate

expression index, we observe that an array is assigned to cluster B while two others

are assigned to cluster A at the concentration level of 64 picomolar, and similarly

an array is assigned to cluster C while two others are assigned to cluster B at the

concentration level of 256 picomolar. In contract, the two-dimensional expression

index succeeds in clustering all the replicate arrays together and grouping the arrays

at different concentration levels correctly according to the order of the concentration

magnitudes. For gene 1091 at, the two-dimensional expression index again shows its

promise in differentiating groups of different concentration levels.

For the genes 546 at, and 1091 at we repeated the K-means procedure to cluster

the arrays into three classes using the expression indexes obtained from the Li-Wong

model. The result is given in the Figure 6. Here again we can see the outperformance

of the PSVD over the Li-Wong model.

It is common to use two-sample t-test between two groups of arrays to check for

differentially expressed genes. Also the negative of p-values for such tests are com-

monly used for ranking the genes. In the proposed model, given that there will be a

mixture of univariate and multivariate indexes we can use the t-test and Hotelling’s

T-square statistics (Mardia et al., 1979) respectively. The p-values of such tests can

be used for testing the difference in the expression indexes or the gene ranking. For

gene 1091 at we performed Hotelling’s T-square test between two groups of arrays

composed of low concentration levels `1 = {0, 0.25}, and `2 = 0.5. The first group in-

cludes two concentration levels because of their small array replicates. For the test of
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Figure 5: K-means clustering using univariate(left column) and two-dimensional(right
column) expression index. The upper region corresponds to gene 546 at at the con-
centration levels of 32, 64, 128, 256, 512, and 1024 picomolars; The lower region cor-
responds to gene 1091 at at the concentration levels of 0, 0.25, 0.5, and 1 picomolars.
Each panel contains the plot of the concentration levels of the arrays versus their
group memberships produced by K-means clustering.
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versus their group memberships produced by K-means clustering.
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equal mean expression intensities between the two groups, using the univariate expres-

sion index obtains the p-value of 0.2 and the 95% confidence interval of (−0.14, 0.51),

while using the two-dimensional expression index obtains the p-value of 0.02 and the

simultaneous 95% confidence interval of (−0.29, 0.66) and (−0.82,−0.07) for two di-

mensions of the expression indexes. Note that the two-dimensional expression index

is the result of SVD and hence it is with respect to two orthogonal directions. There-

fore, the two-dimensional expression index shows better power of detecting differential

expression than the univariate expression index.

In summary, our empirical investigation shows that usage of the second singular

vector has the empirical value in terms of improvement of both the model fit and

capability of detecting differential expression.

2.5 Discussion of Two Practical Issues

There is much discussion of array normalization in the literature. Many re-

searchers view normalization as a way to make intensities of arrays comparable. For

example, Bolstad et al. (2003) studied various normalization methods and demon-

strated the good performance of quantile normalization. Quantile normalization in-

tends to make a set of quantiles identical across the arrays and was incorporated in the

robust multi-array analysis (RMA) method described in Irizarry et al. (2003b). The

detailed discussion of normalization techniques is referred to Bolstad et al. (2003).

The data preprocessing steps including normalization are conducted to perform more

meaningful downstream analysis, in which detection of differential expression is usu-

ally a primary task. This problem is typically tackled using some classical test statis-

tics or equivalently the associated p-value. For example, ordinary two-sample t test

statistic is usually used for two-group comparison and preferred over the naive sum-

mary statistic, fold-change (FC, ratio of mean group intensity) rule, which does not
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account for the variation among the samples.

On the other hand, MAQC (2006) drew rather different conclusions via some

real data studies. In particular, they showed that the impact of array normalization

on detection of differential expression is trivial for various existing techniques and the

classical test statistics or the corresponding p-values do not show the advantage over

the simple fold change rule in terms of gene ranking.

Herein we re-examine these two issues using the same Affymetrix U95A spiked-in

data set. The known truth associated with the specific design of this data set allows

assessing various criteria including the performance of gene ranking. Our studies are

based on gene expression index estimates obtained from both our PSVD and the

Li-Wong model.

In this data set, all except for 16 spiked-in genes have constant expression across

all the 59 arrays. The Latin square design creates multiple sets of 12 arrays where all

the arrays in a set have the common concentration levels for each of the 16 spiked-in

genes. Therefore, such 12 arrays in a set can be treated as array replicates. Also

among the sets, a spiked-in gene has different concentration levels. In our study, we

focus on two such sets of 24 arrays and are interested in comparison of the arrays

between these two groups.

We obtained the expression index estimates without normalization and with

quantile normalization, respectively. Then we consider both the p-value obtained

from the two-sample test and the simple absolute value of logarithm-transformed fold

change (FC score) as the score for each gene. Negative p-value is used as the p-value

score to be concordant with the order of the FC score. Intuitively, we expect the

spiked-in genes to have smaller p-values and larger FC scores than all the other non-

spiked-in genes. So it is sensible to assess the performance of gene summary score

in terms of the power to distinguish between the two groups of non-spiked-in and
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spiked-in genes. For this purpose, we take a look at the receiver operating charac-

teristic (ROC) curve and its commonly used summary statistic, the area under the

curve (AUC) measurement. The results based on PSVD expression index estimates

are shown in Figure 7. The ROC curves without normalization and using quantile

normalization are plotted in the left upper and lower panels, respectively. In each

panel, the p-value score and the FC score are plotted in solid and dotted lines, re-

spectively, and the AUC measurements of the two scores are shown. We observe

that quantile normalization clearly improves the discriminatory power of both scores

over no normalization and the p-value score also has better performance than the FC

score.

We also study the performance of gene ranking from another perspective. We

plot the ranks of all the genes based on the p-value score along with those based on

the FC score in the right panels of Figure 7. The 16 spiked-in genes are indicated

as the bold dots. In truth, the 16 genes should have higher ranks than all the other

genes and, thus, they should locate in the extreme right upper corner. Clearly, the

normalization performs better than the no normalization case. The p-value score also

outperforms the FC score, whereas the latter has more non-spiked-in genes ranking

higher than the spiked-in ones.

Next, we focus on study of the 16 spiked-in genes since their true concentra-

tion levels are known on all the arrays. Figure 8 shows the plot of ranks of the 16

genes based on each score along with their ranks based on the absolute difference of

concentration levels between the two groups. We expect a score and the absolute con-

centration difference to be positively correlated. The cases without normalization and

with quantile normalization are displayed in the upper and lower rows, respectively;

and the FC score and the p-value score are displayed in the left and right columns, re-

spectively. The corresponding Spearman’s correlation coefficient is displayed in each
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panel. We notice that no normalization obtains correlation coefficients closer to zero

than quantile normalization. The advantage of the p-value score is obvious over the

FC score when the quantile normalization is applied, with the correlation coefficients

of 0.202 and −0.141, respectively. The FC score yields the negative correlation coef-

ficient and shows group-splitting pattern where some genes are positively correlated

while the others show the opposite pattern. In the contrast, the p-value score in the

right lower panel shows the highest correlation in the correct direction. This panel

shows clearly that most genes are positively correlated, except for the three outliers

in the right low corner. It appears that all the three genes have the highest concen-

tration levels in at least a group, and thus this phenomenon could be caused by the

saturation problem.

We obtained the similar results based on the expression index estimates of the

Li-Wong model. The results are included in the supplementary material.

In summary, our empirical investigations provide some evidence that: (1) nor-

malization has significant impact on detection of differentially expressed genes; (2)

p-value has favorable performance in terms of ranking over the naive fold change

score.

The Figures 9 and 10 contain the results based on the expression index estimates

of the Li-Wong model. They are similar to Figures 7 and 8 of the results based on the

PSVD method, respectively. In summary, we obtain the similar results as described

for the PSVD model.
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Figure 7: ROC curve and the rank plot for the PSVD Model. ROC curve for com-
paring the p-value and FC scores is given in the left column, and the rank plot for
the rank(p-value score) vs. rank(FC score) is given in the right column. Upper row
represents no normalization and the lower row represents the quantile normalization
technique.
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Figure 8: Rank plot for the 16 spiked-in genes based on the PSVD Model. Rank plot
for the rank(FC score) vs. rank(abs(cons. diff.)) is given in the left column, and
the rank plot for the rank(p-value score) vs. rank(abs(cons. diff.)) is given in the
right column. Upper row represents no normalization and the lower row represents
the quantile normalization technique.
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Figure 9: ROC curve and the rank plot for the Li-Wong Model. ROC curve for
comparing the p-value and FC scores is given in the left column, and the rank plot
for the rank(p-value score) vs. rank(FC score) is given in the right column. Upper row
represents no normalization and the lower row represents the quantile normalization
technique.
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Figure 10: Rank plot for the 16 spiked-in genes based on the Li-Wong Model. Rank
plot for the rank(FC score) vs. rank(abs(cons. diff.)) is given in the left column, and
the rank plot for the rank(p-value score) vs. rank(abs(cons. diff.)) is given in the
right column. Upper row represents no normalization and the lower row represents
the quantile normalization technique.
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CHAPTER III

INTEGRATING DATA TRANSFORMATION IN PRINCIPAL COMPONENTS

ANALYSIS

The collected data points over time sequences and/or in ordinal spatial struc-

ture motivate the use of functional Principal Component Analysis (FPCA). However,

PCA and FPCA does not work well when there are outliers or the data distribution

is skewed. One popular solution is to transform the data to resolve this abnormal

behavior caused from skewness or presence of outliers. Usually, such transformations

can be obtained based on extensive data analysis, previous studies, or prior knowl-

edge of expertise. In this work, we present an automatic procedure to achieve this

goal based on a statistical model with extensions for handling the missing data and

functional data structure. The proposed technique transforms the data to vanish the

skewness of the data distribution; and simultaneously perform the functional PCA

procedure. The new method is cast into a profile likelihood framework for efficient

computation.

3.1 Introduction

In general, the necessity of a transformation can come from the particular statis-

tical analysis to be performed, i.e., assumption of mean zero Gaussian distribution for

residuals. Furthermore, the data transformation technique can help for better visual-

ization as well as interpretability of the results. Also, variance-stabilizing transforma-

tions aim to remove the mean/variance relationship, i.e., Hawkins (1989) discussed the

asymptotic distribution of the Fisher transformation applied to the sample correla-

tion. Furthermore, Bar-Lev and Enis (1988) introduced a class of variance stabilizing
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transformations, which includes the Anscombe transform (Anscombe, 1948) for Pois-

son, binomial and negative binomial distributions. One of the most popular method

is the Power transformation (Box and Cox, 1964). The power (Box-Cox) transform

is parameterized by a nonnegative parameter β, that includes the logarithm, square

root, and multiplicative inverse as special cases. Since the power transform family

includes the identity transform as a special case, the estimation of the parameter β

can be used to identify a transformation that is approximately the best for the pro-

vided model setting if it is necessary. This method is widely used in various fields of

statistical data analysis, medical research, modeling of physical processes, and geo-

chemical data analysis. In regression analysis, this approach is known as the Box-Cox

technique. In this work, we want to extend this technique to the functional Principal

Component Analysis.

PCA is commonly known dimension reduction technique that transform a class

of correlated variables into a smaller class of uncorrelated variables called principal

components. PCA is known for more than 100 years, and closely related to the

factor analysis. It can be obtained by either eigenvalue decomposition of the sample

covariance or the singular value decomposition (SVD) of the data matrix. It is well

known that this technique is sensitive to outliers, and skewness. Various robust

alternative procedures have been proposed (see for example Croux and Ruiz-Gazen,

2005; Higuchi and Eguchi, 2004; Hubert et al., 2002; Locantore et al., 1999; Maronna,

2005; Hubert et al., 2009). PCA also can be used as a key tool for unsupervised

functional data analysis (Ramsay and Silverman, 2005). Rice and Silverman (1991)

and Silverman (1996) presented the functional principal components by maximizing

the variance of a standardized linear combination of variables based on two different

approaches to impose smoothness on principal components using roughness penalty.

Huang et al. (2008) proposed an alternative approach using Penalized lower rank
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matrix approximation to the data matrix. In this study, the focus is based on the

latter approach.

The Data transformation technique has been used as a preprocessing tool before

PCA and functional PCA analysis (i.e., Huang et al., 2008; Hu et al., 2006). Similarly

it has been used before investigating the structure of the covariance matrix (i.e., Zim-

merman and Núñez Antón, 2009), which has a close connection with PCA. However,

there is no automatic statistical procedure to obtain such transformations. Generally

the authors proposed their transformation based on evidences of non-normality of the

data. They showed normal behavior of the dataset after the desired transformation.

Mostly, the proposed transformation has been obtained based on extensive data anal-

ysis, previous studies or the experience of expertise. Therefore, there is no automatic

procedure to select the appropriate transformation and it has been done manually in

the literature. In order to produce the automatic procedure we need to utilize the

connection of functional PCA and a probabilistic model. Herein we propose a statis-

tically elegant procedure to estimate the appropriate transformation automatically.

The transformation model can be written as

f(yij|η) = (Ψi.)
>Φj. + εij, (3.1)

where f(·|η) is a monotonic function, η is the vector of transformation parameters,

yij is the measurement of the jth variable for the ith observation, ({f(yij|η)} is an

n×m matrix), εij’s are independent normal random errors with mean 0 and constant

variance σ2, Ψ is an n × d and Φ is an m × d matrices (d ≤ min(m,n)). The

goal of this transformation model is to stabilize the variance of the residuals and

satisfy the normality assumption of the residuals. Ψ and Φ represents the mappings

of observations and variables to the smaller dimensions respectively. In the FPCA

context the columns of Φ contains the functional principal components.
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For simplicity, at the first step we skip the functional structure of the principal

components and obtain an estimation procedure for the proposed model disregarding

the smoothness penalty term and discuss the possible difficulties in the optimization

procedure for this special case. Next, we consider another common restriction seen

by data analysts. The reports of missing observations are commonly observed fact in

variety of studies, but not always there is a quick solution to incorporate these missing

data appropriately in the modeling structure. Studying the missing data mechanism

is a crucial step and it has been studied widely in literature i.e., Daniels and Hogan

(2008). The proposed model is highly tied to the SVD of the data matrix and hence

it captures the most informative dependence structure based on the leading singular

vectors of the dataset. However, we are not able to use the SVD directly in pres-

ence of missing observations. We showed that, considering the proposed probabilistic

PCA model this concern can be handled based on some iterative procedures. Finally

our focus in the later part of this work goes to the smoothed functional principal

components analysis. The Functional data, observed in discrete observation points

t1, . . . , tm is considered and by using penalized likelihood approach we extend our

model to the functional domain.

We review the likelihood based estimation procedure to obtain the transformation

parameters automatically in subsection 3.2.1. Handling the missing data and the

implementation of the functional structure for the variables are given in subsections

3.2.2, and 3.2.3 respectively. We use simulations and two datasets to demonstrate

the applicability of the proposed model in subsection 3.3. Some concluding remarks

are given in Chapter V.
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3.2 Methodology

3.2.1 PSVD Algorithm

We consider the transformation model (3.1), and denote the parameter vector

Θ, as Θ = (η>, vec(Ψ), vec(Φ), σ2)>, and write out the log-likelihood function as

`(Θ) = − 1

2σ2
||{f(yij|η)} −ΨΦ>||2

−nm
2

log(σ2) +
n∑
i=1

m∑
j=1

{
log|f ′(yij|η)|

}
. (3.2)

One can note that for any invertible matrix ∆, by letting Ψ̃ = Ψ(∆)>, and Φ̃ =

Φ(∆)−1, we obtain the same log-likelihood function as with Ψ and Φ. We resolve this

identifiability issue by the following constraints:

• Ψ>Ψ is a diagonal matrix.

• Φ>Φ is the identity matrix.

It is noticeable that maximization of (3.2) with respect to Θ simultaneously is compu-

tationally expensive. Hence, we turn to the profile likelihood method which comprises

of two phases. In the first phase, we consider the transformation parameter vector

η to be fixed at η0. The parameters to be estimated are only Ψ,Φ, and σ2. The

maximum likelihood estimates (MLEs) of the parameters can be viewed as functions

of η0, and can be easily obtained using the nice result of connection between SVD

and the least square estimates (or equivalently MLEs with normal residuals) referred

to Stewart (1993) as the Approximation theorem (a.k.a EckartYoung theorem). The

explicit forms of the parameter estimates are

Ψ̂(η0) = UdΣd, Φ̂(η0) = Vd, (3.3)

σ̂2(η0) =
1

nm
||{f(yij|η0)} − Ψ̂(η0)Φ̂(η0)

>
||2,
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where having the SVD matrix of the {f(yij|η0)} = UΣV >, Ud and Vd are the first

d columns of U and V , respectively, corresponding to the d largest singular values

in a diagonal matrix, Σd. We do not need the full SVD, and efficient algorithm for

low-rank matrix approximation can be used to speed up the calculation of the leading

vectors (e.g. Achlioptas and Mcsherry, 2007).

In the second phase, we aim to obtain the estimate of η via maximizing the

profile log-likelihood function

`p(η) = − 1

2σ2(η)
||{f(yij|η)} −Ψ(η)Φ(η)>||2

−nm
2

log(σ2(η)) +
n∑
i=1

m∑
j=1

{
log|f ′(yij|η)|

}
. (3.4)

Notice that the profile log-likelihood function only contains the vector of parameters

η with all the other parameters being expressed as the functions of η. The variety

of appropriate optimization techniques such as Downhill Simplex or gradient based

algorithms (e.g. Avriel, 1976) can be used subject to the structure of the family of

transformations. It is worth emphasizing that the obtained estimates based on the

profile likelihood are the MLEs of the parameters, and thus have good theoretical

properties.

We abbreviate the whole profiling and singular value decomposition procedure

as PSVD. The general iterative optimization procedure are as follows:

1. Start from an initial estimate of η, denoted by ηt (t = 0). Usually we pick the

initial estimate associated to the model with no transformation.

2. Let Xt be the n ×m matrix with (i, j)th entry f(yij|ηt). Perform SVD Xt =

UΣV > and use (3.3) to obtain Ψ̂(ηt), Φ̂(ηt), and σ̂2(ηt).

3. Obtain the updated value of ηt+1 via an optimization algorithm to increase the

value of the profile log-likelihood function `p(ηt) defined in (3.4).
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4. Iterate between the last two steps until convergence is reached.

Given this general framework, we focus on the popular Box-Cox transformation fam-

ily as an example hereafter. Let Y denote the untransformed data. The Box-Cox

transformation for each element of Y is defined as

f(yij|β) =


yβij − 1

β
, β 6= 0,

log(yij) , β = 0.

(3.5)

Since the transformation parameter η = β is one dimensional, the 3rd step of the

PSVD procedure becomes a simple optimization problem for a univariate concave

function. In our implementation, we adopt the popular L-BFGS-B optimization al-

gorithm (Byrd et al., 1994).

3.2.2 Handling the Missing Data

Dealing with missing values is one of the practical issues in variety of statistical

methods. Different approaches have been developed to resolve the incompleteness

of the datasets. While some uses an objective function, i.e., maximum likelihood

estimation, others rely on imputation techniques. In the cases that the missing values

are non-ignorable or so called “MNAR” (Missing Not at Random), the sample will

not be an unbiased representative for the population of the interest. Therefore, it

is difficult to correctly estimate the population parameters, and we need to take in

to account the missing data mechanism. The detailed explanation can be found

in Daniels and Hogan (2008). Here we consider the missing observations have the

ignorable structure. Now let’s consider the case that we did not observe the whole

data matrix Y , instead we have the data matrix Ym with some missing observations.

Let’s define an indicator matrix Im such that, the (i, j)th elements of Im is set to be

1, if it has been observed and it is set to be 0, otherwise. Similarly we can define
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the logical matrix Icm to be 11> − Im. Let’s use the symbol � for the Schur product,

which is defined as the entrywise product of two matrices of the same dimensions,

and in analogy we can also define symbol � for the Schur division. One can easily

note that, for a fixed transformation parameter η0, there is no closed form solution

for the model (3.1) anymore, since we can not obtain the SVD of the incomplete

data matrices. Although there is no immediate solution based on the SVD technique,

we present two algorithms which are highly tied to the SVD of the complete data

matrices and consequently we have all of the nice properties of the SVD of a matrix.

Without loss of generality, let’s fix the transformation parameter to be η0. We

would like to obtain the MLEs based on observed data for the given η0. This can

be done using the “Generalized Expectation-Maximization Algorithm” (a.k.a. GEM

Algorithm, Dempster et al., 1977). Let’s define X to be the complete m × n data

matrix, where the observed elements are Im�{f(yij|η0)}, and Icm�X are the missing

elements. Consider the following complete log-likelihood function:

`c(Θ) = − 1

2σ2
||X −ΨΦ>||2 − nm

2
log(σ2)

= − 1

2σ2

{ ∑
(i,j)∈Im

(xij − (Ψi.)
>Φj.)

2 −
∑

(i,j)∈Icm

(xij − (Ψi.)
>Φj.)

2

}
−nm

2
log(σ2).

In the E-step, let’s define Q(Θ|Θ(t)) = E(`c(Θ)|Im � X,Θ(t)), where Θ(t) is the

estimated parameters in the tth step. It’s easy to see that

Q(Θ|Θ(t)) = − 1

2σ2

{ ∑
(i,j)∈Im

(xij − (Ψi.)
>Φj.)

2 −N(Icm)σ(t)2

}
−nm

2
log(σ2),

where N(Icm) is the number of missing observations. In the M-step we need to max-

imize the Q(Θ|Θ(t)) which does not seems to be intuitive, while by introducing the
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new matrix Z(t) as following:

Z(t) =

 Ψ
(t)>
i. Φ

(t)
j. , (i,j) is missing,

xij , otherwise,

we can define a new objective function Q̃(Θ|Θ(t)), as

Q̃(Θ|Θ(t)) = − 1

2σ2
||Z(t) −ΨΦ>||2

−nm
2

log(σ2)− N(Icm)σ(t)2

2σ2
.

Defining the SVD of the matrix Z(t) = UΣV >, the updated values for Θ(t+1) which

maximizes the Q̃(Θ|Θ(t)), will have the following form:

Ψ(t+1) = UdΣd, Φ(t+1) = Vd,

σ(t+1)2 =
1

nm
||Z(t) −Ψ(t+1)Φ(t+1)>||2 +

N(Icm)σ(t)2

nm
.

Note that Θ(t+1) that maximizes Q̃(Θ|Θ(t)) will satisfy the following condition:

Q(Θ(t+1)|Θ(t)) ≥ Q(Θ(t)|Θ(t)),

and hence the following algorithm is the results of merging the GEM steps:

Algorithm 1:(GEM Algorithm)

1. Let X0 = Im � {f(yij|η0)}+ Icm � {0}. Set t← 0.

2. Obtain the SVD for the matrix Xt (Xt = UΣV >).

3. Define Xt+1 = Im � {f(yij|η0)}+ Icm � (UdΣdV
>
d ). Set t← t+ 1.

4. Iterate between the last two steps until convergence is reached.

The obtained GEM Algorithm has been reported previously in Beckers and Rixen

(2003). Hereby we showed that this algorithm has connection with the MLEs of
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the missing values under the normal model. It has the advantage of obtaining the

first d components of the SVD simultaneously together based on the maximizing the

complete log-likelihood function; but similar to the other EM approaches, it is very

slow. Faster solutions can be obtained by extending the known power algorithm based

on the observed data as given in the following algorithm.

Algorithm 2:(Power Algorithm)

1. Let X = Im � {f(yij|η0)}+ Icm � {0}. Set k ← 1.

2. Obtain the rank one approximation matrix to X as σ0u0v
>
0 . Set t← 1.

3. Set ut+1 = {(Im �X)vt} � {Imv2
t }, and vt+1 = {(Im �X)>ut} � {I>mu2

t}. Set

t← t+ 1, and normalize ut, and vt to the norm one vectors.

4. Repeat step 3 until convergence. After convergence, let U.k = ut, V.k = vt, and

Σkk =
u>t (Im �X)vt
u2>
t Imv2

t

.

5. Set k ← k + 1. If k ≤ d then

{let X = X − Im � (ΣkkU.kV
>
.k ), and go to step 2.}.

The second algorithm is the generalization of the power algorithm based on the

observed values to obtain the first d components of SVD sequentially. It is much faster

than the first algorithm; but it may suffer from the higher computational inaccuracy

based on the round-off error arising on the sequential procedure. Note that, it can be

shown that the simultaneous iteration of the power algorithm cannot be extended to

obtain the SVD components together when the missing values are involved. In each

run of the simultaneous iteration (Trefethen and Bau, 1997), the QR decomposition

is called to obtain orthogonalized directions, so the reason that the simultaneous
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iteration fails in this setup is not considering the missing data structure in obtaining

the QR decomposition.

Proposition 1. Using the algorithms 1 or 2, the MLEs of the parameters for model

(3.1) in presence of missing values based on the observed log-likelihood is

Ψ̂(η0) = UdΣd, Φ̂(η0) = Vd, (3.6)

σ̂2(η0) =
1

N(Im)
||Im �

(
{f(yij|η0)} − Ψ̂(η0)Φ̂(η0)

>)
||2,

where N(Im) is the total number of the observed data points, and Ud, Vd, and Σd are

obtained from one of the above algorithms.

It can be shown that, the algorithms 1 and 2 are the maximizer of the following

observed profile log-likelihood function for a fixed η0:

`p(η) = − 1

2σ2(η)
||Im �

(
{f(yij|η)} −Ψ(η)Φ(η)>

)
||2

−N(Im)

2
log(σ2(η)) +

∑
(i,j)∈Im

{
log|f ′(yij|η)|

}
. (3.7)

As a direct consequence of the Proposition 1, we may update the PSVD algorithm to

the PSVDM (PSVD with missing data). The main differences are: 1- The Ψ̂(η0), Φ̂(η0),

and σ̂2(η0) will not be the direct solution of the SVD of the data matrix anymore

and we need to use either the GEM algorithm or the Power algorithm to obtain it

in the 2nd step of the algorithm. 2- The objective function in the 3rd step is not

the profile log-likelihood (3.4) anymore and we should substitute it with the observed

profile log-likelihood (3.7). Hence the PSVDM Algorithm can be written as follows:

1. Start from an initial estimate of η, denoted by ηt (t = 0). Usually we pick the

initial estimate associated to the model with no transformation.

2. Use either the GEM or the Power algorithms and (3.6) to obtain Ψ̂(ηt), Φ̂(ηt),

and σ̂2(ηt).



46

3. Obtain the updated value of ηt+1 via an optimization algorithm to increase the

value of the observed profile log-likelihood function `p(ηt) defined in (3.7).

4. Iterate between the last two steps until convergence is reached.

3.2.3 Functional Data Structure

Three different approaches from Rice and Silverman (1991), Silverman (1996),

and Huang et al. (2008) to smoothed functional principal components analysis (FPCA)

were proposed. The two early works are based on maximizing the variance but with

different penalties, while the latest approach is based on penalized rank one approx-

imation of the data matrix. We would like to take in to account the smoothness

of the principle components to our PSVD model similar to the Huang et al. (2008)

works, since (a) it is invariance under scale transformation of the measurements;

(b) it can naturally incorporates spline smoothing of discretized functional data; (c)

the connection with smoothing splines let us to use cross-validation or generalized

cross-validation criteria for smoothing parameter selection; (d) different smoothing

parameters are permitted for different FPCs.

The penalized profile log-likelihood based on η, `∗p(η) can be obtained by intro-

ducing a roughness penalty matrix Ω over Φ and including this term in (3.4), so we

have

`∗p(η) = `p(η)− pen(Φ).

Following the Huang et al. (2008), we can define the penalty term based on different

smoothing parameters αks as follows:

`∗p(η) = `p(η)−
d∑

k=1

αkΨ(η).kΨ(η).k
>Φ(η).kΩΦ(η).k

>.

This is the penalized profile log-likelihood function in general framework, which has

the advantage of allowing different smoothing parameters for different FPCs. In a
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simpler case we can have a common smoothing parameter α for all of the FPCs,

`∗p(η) = `p(η)− αtr(Ψ(η)Ψ(η)>Φ(η)ΩΦ(η)>). (3.8)

We focus on the last equation, that is given in (3.8), and derive the first d functional

principal components together. Using a single smoothness parameter makes it easier

to interpret the results, but the proposed algorithm is general; and similar results

can be derived based on different smoothness penalties for different smoothed PC

functions. Now by fixing η, and Φ(η); and letting Y (η) = {f(yij|η)}, the Ψ(η) that

maximizes the (3.8) is

Ψ(η) = Y (η)Φ(η){Φ(η)>(I + αΩ)Φ(η)}−1.

Plugging the Ψ(η) back to the penalized profile log-likelihood, it can be shown that

our criterion function is maximizing the

tr
(

Φ(η)>Y (η)>Y (η)Φ(η){Φ(η)>(I + αΩ)Φ(η)}−1
)
,

with respect to Φ(η). This is essentially the Silverman (1996) approach which we

briefly describe it here. Let X(·) stands for a random function that can be observed

repeatedly. To find the jth smooth principal component weight function γj(·), the

Silverman approach maximizes
var(

∫
γX)∫

γ2 + α
∫
γ′′2

, subject to α
∫
γ′′γ̂′′k = 0 for k < j.

For a fixed parameter η, we can use one of the two proposed algorithm given

in Huang et al. (2008) to obtain the smoothed PCs. The first method is a variate

of power algorithm and the second method is based on half smoothing. Moreover,

they have proposed a cross-validation technique to choose the smoothness parameter,

which can be borrowed in our algorithm as well.

Here the challenge is to estimate η based on the likelihood function and simulta-

neously tune up the smoothness parameter α based on the cross validation technique.
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It is clear that relationship between this two parameters are twisted; therefore we use

the back-fitting procedure to provide a reasonable estimate for these parameters in

our algorithm.

First let’s give a short explanation about the half-smoothing technique. Maxi-

mizing the penalized profile log-likelihood for fixed parameters η, and α with respect

to Ψ, and Φ can be simplified to the minimization of the following penalized recon-

struction error criterion

||Y (η)−ΨΦ>||2 + αtr
(
Ψ>ΨΦ>ΩΦ

)
,

and that can be simplified further to

||Y (η)||2 − ||Ỹ (η)||2 + ||Ỹ (η)−ΨΦ̃>||2.

Here Ỹ (η) = Y (η)S1/2(α), and Φ̃ = S−1/2(α)Φ, where S(α) = (I + αΩ)−1. Hence Ψ,

and Φ̃ can be easily estimated based on the first d components of the SVD of Ỹ (η).

Interpreting S1/2(α) as a half-smoothing operator, the transformed matrix Ỹ (η) is

obtained by half-smoothing the rows of the transformed data matrix Y (η). After Φ̃ is

obtained as the first d right singular vectors of Ỹ (η), we half-smooth it to obtain the

smoothed PC function Φ = S1/2(α)Φ̃. Following the given descriptions we provide

the Functional PSVD (FPSVD) algorithm as below:

1. Start from an initial estimate of η, denoted by ηt (t = 0). Usually we pick the

initial estimate associated to the model with no transformation.

2. Let Xt be the n×m matrix with (i, j)th entry f(yij|ηt). Use the cross-validation

technique given in subsection 3.2.3.1 to obtain the α for fixed ηt.

3. Define X̃t = XtS
1/2(α). Perform SVD X̃t = UΣṼ > and let V = S1/2Ṽ and use

(3.3) to obtain Ψ̂(ηt), Φ̂(ηt), and σ̂2(ηt).
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4. Obtain the updated value of ηt+1 via an optimization algorithm to increase the

value of the penalized profile log-likelihood function `∗p(ηt) defined in (3.8).

5. Iterate between the last three steps until convergence is reached.

3.2.3.1 Choosing the Smoothing Parameter

Huang et al. (2008) developed computationally efficient cross-validation(CV) and

generalized cross-validation (GCV) criteria for selecting smoothing parameters. For a

fixed parameter η, we would adopt the CV and GCV criteria, similar to the selecting

the spline tuning parameter α in Green and Silverman (1994) for FPCA. The CV

score is defined as

CV (α) =
1

m

m∑
j=1

[{(I − S(α))(Y (η)>Ud)}jj]
(1− {S(α)}jj)

,

and the GCV score is defined as

GCV (α) =
||VdΣd − Y (η)>Ud||2/m
{1− tr(S(α))/m}2

.

Here we used the SVD of Y (η)S1/2(α) = UΣṼ and defined V = S1/2(α)Ṽ . Ud and Vd

are the first d columns of U and V respectively, and Σd is a diagonal matrix formed

based on the d largest singular values of Σ.

The CV and the GCV scores given above can indeed be derived from the basic

idea of cross-validation and generalized cross-validation (Craven and Wahba, 1979).

The main difference here, compared to those for smoothing splines is that in this

context we delete one column of Y (η) at a time, rather than a point deletion (Huang

et al., 2008).

3.3 Data Analysis

In the previous Section first we motivated the PSVD model, next we discussed the

missing data scenario (PSVDM), and finally we explored the FPCA for the proposed
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model (FPSVD). In this Section we implement these techniques in simulations and

two different datasets to demonstrate the applicability of each method in analyzing

the real dataset.

3.3.1 Simulation

We conducted the following simulation studies to evaluate the performance of

the FPSVD method. The data generating model is:

xij = ui1v1(tj) + ui2v2(tj) + εij, i = 1, . . . , n; j = 1, . . . ,m,

where ui1
i.i.d∼ N(0, σ2

1), ui2
i.i.d∼ N(0, σ2

2), and εij
i.i.d∼ N(0, σ2). The parameters set to

be n = m = 101, σ1 = 40, σ2 = 10, σ = 4, and the 101 grid points tj are considered

equally distance. Denote the underlying functional principal components as following:

v1(t) =
1

s1

{t+ sin(πt)} and v2(t) =
1

s2

cos(3πt),

where s1 and s2 are the normalizing constants to make v1 and v2 normalized unit

vectors. First, we considered β = 0.25 in the Box-Cox transformation in the above

simulation setup and generate one hundred simulated data set. We generated the

errors (εij’s) from mean zero normal distribution with the standard deviation of σ.

The simulated data was generated from

yij = f−1(xij|β = 0.25), i = 1 . . .m, j = 1 . . . n. (3.9)

The FPSVD estimate of β based on the hundred datasets has the mean value

of 0.2465 with the standard deviation 0.0256. The plot of the FPC components of

the non-transformed data is contained in the top row panel of Figure 11. We also

displayed the FPC components based on the FPSVD procedure in the bottom panel.

The gray dashed line is used to show the true simulated FPC components. the noisy

black curve is the result of the PCA and the black dashed line indicates the results
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Figure 11: (First row:) The FPCs of the non-transformed data. (Last row:) the FPCs
based on the FPSVD procedure. The gray dashed line is the true simulated FPCs.
The noisy black curve is the result of the PCA and the black dashed line indicates
the results of the FPCA.

of the FPCA. Although there is not much differences in the estimates of the first

FPCs in this example, it is clear that by not using the FPSVD procedure we miss the

true structure of the second FPC, and we may need to consider the third component

while we know that the data has been generated from just two functional principal

components. This is becoming worse as we decrease the value of β in the simulation

setup.

We defined two measurements to compare the proposed model FPSVD, with the

FPCA model. 1- The “Residual SVR” is defined to be the ratio of the first largest
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singular value to the second largest singular value obtained from SVD of the residual

matrix. Since after subtracting the two FPCs, the residuals should be noninformative,

obtaining a ratio close to one is desirable. 2- Since we know the true value of the

FPCs at each grid tj, j = 1, . . . ,m, we define the “SAD” to be the total sum of

absolute deviation of the true FPCs and estimated FPCs. It is clear that, the smaller

SAD is equivalent to better estimation of the FPCs.

Table 2 compares the transformed FPCA (T. FPCA) versus FPCA model for

four different values of β, {0.5, 0.25, 0.1, 0.01}. For each β we generated one hundred

simulated data sets based on the setup given as before. It is clear that using the

FPSVD model the “SAD” and “Residual SVR” are independent of the value of β

and those values are close to the true values. One can see that by not using the

FPSVD the results that we are obtaining from the FPCA procedure becomes less

reliable as the value of β is decreasing and it that become more crucial as we get

closer to the logarithmic transformation. It is noticeable as the true β becomes closer

to zero, the results obtained from the regular FPCA tends to become more unreliable.

We also performed the Shapiro Wilks test for normality of residuals in all of the

cases and as we expected for the FPSVD procedures we obtained large p-values and

for the common FPCA procedures the p-values are almost zero and we obviously

reject the normality of residuals. Figure 12 shows this fact for the case β = 0.25. The

top row panel is associated to the FPCA model and we see highly skewed pattern

while in the transformed FPCA model we can see the normality of the residuals in

the bottom row panel has been obtained.



53

 Histogram

residual

F
re

qu
en

cy

−5000 0 5000 15000

0
10

00
30

00
50

00

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●●

●

●

●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●

●

●
●●

●

●

●

●

●
●●

●

●

●

● ●

●

●

●
●

● ●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

● ●
●

●●

●●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●●
●●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●
●

●●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●●

●
●

●
●

●

●

●

●

●●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●

●

●
●

●
●

●

●

●
●

●

●
●●

●
●

●

●

●●
● ●

●

●
●

●

●

●

●

●
●

●

●●

●●

●

●

●
●

●

●

●

●

●●

●

●●
●●●

● ●

●

●
●

●

●

●

●

●

●

●
●

●●

● ●
●

●

●

●

●

●

●

●

●●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●
●

●●

●

●

●●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

−3 −2 −1 0 1 2 3

−
50

00
0

50
00

10
00

0

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Transformed model Histogram

residual

F
re

qu
en

cy

−20 −10 0 10

0
50

0
10

00
15

00

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●●
●●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●●

●●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●●

●

●●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

−3 −2 −1 0 1 2 3

−
15

−
5

0
5

10
15

Normal Q−Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Figure 12: Normality of the residuals for the FPCA (first row) and the FPSVD (last
row) for the simulation. The true β is 0.25.
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Table 2: Comparisons between proposed transformation and no transformation model
under different values of β.

Model-True β β̂ SAD Residual SVR Normality test
FPCA - 4.55 1.04 0
β = 0.5 - (0.48) (0.37) -
T. FPCA 0.4965 1.53 1.03 0.48
β = 0.5 (0.0516) (0.32) (0.02) -
FPCA - 11.52 1.09 0
β = 0.25 - (1.10) (1.58) -
T. FPCA 0.2465 1.57 1.03 0.47
β = 0.25 (0.0256) (0.43) (0.02) -
FPCA - 15.24 1.34 0
β = 0.1 - (1.68) (4.38) -
T. FPCA 0.0997 1.59 1.03 0.48
β = 0.0 (0.0029) (0.29) (0.02) -
FPCA - 18.12 4.93 0
β = 0.01 - (1.17) (18.02) -
T. FPCA 0.0101 1.56 1.03 0.45
β = 0.01 (0.0012) (0.30) (0.02) -

3.3.2 Datasets

3.3.2.1 Fruit Fly Mortality Data

To illustrate and assess the performance of our approach in presence of miss-

ing data, we consider the “fruit fly mortality” (FFM) data (Zimmerman and Núñez

Antón, 2009). The FFM data are age-specific measurements of mortality for 112

cohorts of a common fruit fly, “Drosphila melanoster”. Everyday, dead flies were

counted for each cohort, and these counts were pooled into 11 5-day intervals. The

raw mortality rate was recorded as −log
(
N(t+1)
N(t)

)
, where N(t) is the number of alive

flies in the cohort at the beginning of time t(t = 0, 1, . . . , 10). For an unknown reasons

22% of the data is missing. We would like to investigate under what transformation

we obtain more normally distributed responses with constant variability.
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3.3.2.2 Call Center Data

The data contains the number of calls that got connected to a call center during

every quarter hour from 7 : 00AM to midnight, weekdays between January 1 and

October 26 in the year 2003. In total, there are 42 whole weeks and each day consists

of 68 quarter hours. Let’s denote the call volume during the jth time interval on

day i with yij. Huang et al. (2008) used the square-root transformation to stabilize

variance and make the distribution close to normal. They choose the square root

transformation manually, based on exploring the dataset and experience of expertise

(i.e., Brown et al., 2005; Shen and Huang, 2008, used the same transformation pre-

viously). Here we would like to check the performance of the FPSVD algorithm in

finding the appropriate transformation automatically and simultaneously obtaining

the smooth principal components.

3.3.3 Results

First we considered the FFM data. Since it’s a longitudinal study, so it is rea-

sonable to obtain the functional principal components. Considering the 22% of the

missing values, one can use the given algorithm in Beckers and Rixen (2003) to fill in

the missing values and obtain the FPCs. Figure 13, shows the residual plot obtained

from the FPCA procedure in the first row panel. It is clear that the residuals are far

from normal, and presence of outliers confirms the heavy tail distribution of the errors

which makes the imputation procedure to be not reliable. This opposes the normality

assumption given in the Proposition 1. We have performs the FPSVD procedure and

obtained the estimate of β̂ = 0.007. This is very close to logarithmic transformation

that has been suggested by Zimmerman and Núñez Antón (2009). Looking to the

residuals obtained from the FPSVD algorithm in the last row panel of the Figure 13,

the behavior of the FPSVD residuals seems to be very close to normal family with
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Figure 13: Residual plots and the QQ plots for the FFM data. First row: the FPCA
results. Last row: the FPSVD results.

constant variability.

Finally, the FPSVD has been implemented for the call center data and the re-

sult for the estimated value of β̂ is 0.517, which is almost same as the square root

transformation. Here the suggested transformation has been obtained automatically

and confirms the ad-hoc findings in Huang et al. (2008); Shen and Huang (2008), and

Brown et al. (2005). Figure 14, the left panels shows the FPCA results. The bottom

left panel for the residual plot indicates the non constant variability of the residuals,

while the bottom right residual plot associated to the FPSVD model seems to have

constant variability. The top right panels are associated to the FPCs of the FPSVD.
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Figure 14: Call Center data: FPCs for the FPCA model (top left panels). FPCs for
the FPSVD model (top right panels). Residual plots based on FPCA model (bottom
left), and FPSVD model (bottom right).
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CHAPTER IV

ROBUST ESTIMATION OF THE CORRELATION MATRIX OF

LONGITUDINAL DATA

We propose a double-robust procedure for modeling the correlation matrix of

a longitudinal dataset. It is based on an alternative Cholesky decomposition of the

form Σ = DLL>D where D is a diagonal matrix proportional to the square roots of

the diagonal entries of Σ and L is a unit lower-triangular matrix determining solely

the correlation matrix. The first robustness is with respect to model misspecifica-

tion for the innovation variances in D, and the second is robustness to outliers in

the data. The latter is handled using heavy-tailed multivariate t-distributions with

unknown degrees of freedom. We develop a Fisher scoring algorithm for computing

the maximum likelihood estimator of the parameters when the non-redundant and

unconstrained entries of (L,D) are modeled parsimoniously using covariates. We

compare our results with those based on the modified Cholesky decomposition of the

form LD2L> using simulations and a real dataset.

4.1 Introduction

Longitudinal data arise frequently in the biomedical, epidemiological and social

sciences, where subjects are measured repeatedly over time and the observations on

the same subject are intrinsically correlated (Diggle et al., 2002). The technique

of generalized estimating equations (GEE) introduced in Liang and Zeger (1986) is

widely used when the focus is on modeling the mean. In GEE and many of its exten-

sions, in the interest of expediency, parsimony and ensuring the positive-definiteness

of the estimated correlation matrix, it is common to pick a working correlation ma-
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trix, from a long menu of structured correlation matrices. Although consistency of the

estimators of the mean parameters is not affected, misspecification of the correlation

may result in a great loss of efficiency (Wang and Carey, 2003) and may lead to invalid

inferences (Cannon et al., 2001; Carroll, 2003). The correlation matrix itself might be

of scientific interest (Diggle and Verbyla, 1998) in which case it is desirable to develop

a bona fide data-based framework for modeling correlation matrices following the fa-

miliar three stages of model formulation, estimation and diagnostics in the modeling

process for the mean vector (McCullagh and Nelder, 1989). Attempts to develop such

methods have been made in recent years by Chiu et al. (1996), Pourahmadi (1999,

2000), Pan and MacKenzie (2003), Ye and Pan (2006), Lin and Wang (2009), Leng

et al. (2010) and references therein, using the spectral and Cholesky decompositions

of covariance matrices, respectively.

A methodology based on the modified Cholesky decomposition (MCD) of the

covariance matrix Σ of a random vector y = (y1, . . . , yp)
> has proved quite successful

for longitudinal data in the sense that the positive-definiteness of the estimated co-

variance is guaranteed and parsimony can be achieved using covariates. However, it

seems for historical reasons the focus has been mostly on specific transitional models

of autoregressive (AR) type for the actual successive measurements on a subject:

yt = φt,t−1yt−1 + . . .+ φt,1y1 + εt, t = 1, 2, . . . , p, (4.1)

where the φt,j’s are the so-called generalized autoregressive parameters (GARPs)

with φ1,0 = 0, and εt’s are the prediction errors or innovations with V ar(εt) = σ2
t ;

see Pourahmadi (1999, 2000), Pan and MacKenzie (2003), Ye and Pan (2006), Lin

and Wang (2009), and Leng et al. (2010). Although the idea of inverting the AR

model (4.1) and writing it as a moving average (MA) of the actual response in terms

of the present and past innovations was mentioned in (Pourahmadi, 2001, Sec. 3.5;
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Rothman et al., 2010), the idea and its potential has not been pursued vigorously

in the literature of longitudinal and correlated data. Given the duality and synergy

between the AR and MA models in the theory of finite parameter stationary time

series (Brockwell and Davis, 1991), one would expect a level of similar fruitful con-

nections to exist between such type of models for nonstationary longitudinal data.

For example, inverting (4.1) gives rise to the generalized moving average parameters

(GMAPs) which are known (Pourahmadi, 2001, Sec. 3.5; Rothman et al., 2010) to

be useful in parsimonious modeling and guaranteeing the positive-definiteness of Σ

itself. These models, whether of AR or MA type, lead to a factorization of the form

Σ± = LD2L>, where L,D are generic unit lower triangular and diagonal matrices,

respectively. Since D2 is trapped in the middle, the correlation matrix corresponding

to Σ± depends on the innovation variances represented by the diagonal entries of D2,

and hence is not necessarily robust to their model misspecifications.

By contrast, there is an alternative Cholesky decomposition (ACD), due to Chen

and Dunson (2003), which is of the generic form Σ = DLL>D with the diagonal

matrix D of innovation standard deviations placed outside. Consequently, such fac-

torization amounts to directly modeling the covariance matrix but in a manner that

its estimated correlation matrix R does not depend on the quality of modeling and

estimation of the innovation variances σ2
t ’s, see (4.3). In other words, estimation of

R is robust to misspecification of models for σ2
t ’s, the component shared by both the

MCD and ACD. Other than this theoretical observation, not much is known about

the consequences of using ACD in modeling covariance and correlation matrices other

than Chen and Dunson (2003), and Cai et al. (2006) in the context of random-effects

selection. This factorization is more closely related to the MA representation of a

“standardized” version of repeated measures on a subject, see (4.2), Pourahmadi

(2007) and Rothman et al. (2010).
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In this paper, our primary objective is to study some of the consequences of mod-

eling the components of the ACD factorization on estimating the correlation matrix

of longitudinal data. The secondary objective is to have procedures for estimating

correlation matrices that are robust to outliers. We use the multivariate t distribu-

tions with ν the degrees of freedom unknown, as a model for the data and focus on

accurate estimation of the df .

We point out some other structural, computational and statistical differences

that exist between the MCD in Pourahmadi (2000) and the ACD in Chen and Dun-

son (2003). For example, recognizing that the MCD and ACD of a covariance matrix

correspond to AR and MA representations of the underlying nonstationary longitu-

dinal data (Pourahmadi, 2001, Sec. 3.5; Pourahmadi, 2007; Rothman et al., 2010),

therefore one expects more computational difficulties in computing the MLE of the

parameters of the ACD than those from MCD (Brockwell and Davis, 1991, Chaps 5

and 9). It is common to think of the MCD framework as being related to modeling

the precision matrix, though recently, Rothman et al. (2010) have proposed sparse

estimation of Σ itself based on its MCD and a related regression/MA interpretation

of the entries of the factors. They show that there are significant structural and

computational differences when working with Σ, Σ−1 and their respective correlation

matrices. A somewhat surprising result is that banding the Cholesky factor of the

precision matrix coincides with constrained maximum likelihood, but banding the

Cholesky factor of the covariance matrix itself does not. Such results are based on

some interesting relationships between zero patterns of covariance matrices and their

Cholesky factors. For example, the Cholesky factor of either the covariance matrix

or its inverse is k-banded if and only if the corresponding matrix itself is k-banded,

see Propositions 1-3 in Rothman et al. (2010).

The outline of the paper is as follows: In subsection 4.2, MCD and ACD are
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reviewed along with the statistical interpretations of the entries of their Cholesky

decompositions. Subsection 4.3 discusses the multivariate t-distribution and the MLE

of its parameters with a particular focus on the orthogonality of the parameters

estimate. Subsection 4.4 illustrates the methodology using a real dataset, and assess

its performance using a simulation experiment. Some conclusions are given in Chapter

V.

4.2 MCD and ACD of a Covariance Matrix

In this Section, we review properties of two distinct Cholesky decompositions

of the positive-definite covariance matrix of a longitudinal dataset, and discuss their

roles in estimating the correlation matrix.

It is known that any p×p positive-definite covariance matrix can be factorized as

Σ = CC>, referred to as its standard Cholesky decomposition, where C is a unique

lower triangular matrix with positive diagonal entries. What are the statistical rele-

vance of the diagonal and sub-diagonals entries of C? Letting D = diag(c11, . . . , cpp),

this factorization can take the following two distinct forms depending on whether the

matrix D is inserted between the two lower triangular matrices or outside.

The MCD for Σ keeps D2 inside:

Σ = CD−1DDD−1C> = LD2L>,

where L = CD−1 is a “standardized” version of C, dividing each column by its

diagonal entry. Defining T = L−1, it is known (Pourahmadi, 1999) that the entries of

T and D2, respectively, are negative of the GARPs in (4.1) and the prediction error

variances σ2
t ’s, when a measurement is regressed on its predecessors. Details of formu-

lating parsimonious models using graphical tools like regressograms and estimating

the ensuing parameters of T and D are given in Pourahmadi (1999).
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The ACD in Chen and Dunson (2003) keeps D outside:

Σ = DD−1CC>D−1D = DLL>D,

where now L = D−1C is obtained fromC using a slightly different “standardization”,

namely dividing each row of C by its diagonal entries. In Pourahmadi (2001, 2007),

the statistical interpretation of entries of L is given as the moving average coefficients

when a standardized measurement is regressed on its past and present innovations,

see also Rothman et al. (2010). Let (y1, . . ., yp)
> be a zero mean random vector with

covariance matrix Σ. Denote Lp×p = (θtj) and Dp×p = diag(σt). It’s clear that

D−1y has the covariance LL>. More precisely, defining ε = (DL)−1y, it follows

that cov(ε) = Ip and then D−1y = Lε, from which we obtain a variable-order,

varying-coefficients moving average representation for the standardized yt/σt as

yt/σt = εt +
t−1∑
j=1

θtjεj. (4.2)

From (4.2), for any 1 ≤ s, t ≤ p, it follows that

cov(ys, yt) = σsσt

s∧t∑
j=1

θtjθsj,

so that the correlation between ys and yt given by

corr(ys, yt) =

∑s∧t
j=1 θsjθtj√√√√(∑s

j=1 θ
2
sj

∑t
j=1 θ

2
tj

) , (4.3)

is solely determined by the Lmatrix. This property is a great motivation for modeling

a correlation matrix using ACD, so that it is robust to model misspecifications for

the innovation variances, σ2
t , t = 1, . . . , p.

4.3 MLEs for the ACD Model: The Multivariate tν

The assumption of multivariate normality commonly made for the vector of re-

peated measures on a subject may not be tenable in many practical situations when
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outliers exist or the underlying data exhibit heavy-tails. In this situation, a number

of authors have used the multivariate t-distribution for robust estimation of the pa-

rameters of general linear models (Zellner, 1976; Lange et al., 1989); Lin and Wang

(2009) has used it for robust estimation under the MCD decomposition. Robust esti-

mation for linear mixed models using the multivariate t-distribution has been studied

by Welsh and Richardson (1997) and Pinheiro et al. (2001).

In the sequel, for i = 1, . . . , n, we assume that the vector of repeated measures

on the i-th subject yi ∼ t(µi,Σ, ν). This means that the p-dimensional vector yi is

following a multivariate t-distribution with degrees of freedom (df) ν, location vector

µi and scale matrix Σ with the probability density function given as

f(yi|µi , Σ, ν) =
Γ
(ν + p

2

)
Γ
(ν

2

)
(πν)p/2

|Σ|−1/2

×

(
1 +

(yi − µi)>Σ−1(yi − µi)
ν

)−(ν+p)/2

,

where ν is a positive real number. For ν > 1 the mean vector is defined to be µi, the

covariance matrix exists for ν > 2 and is equal to
ν

ν − 2
Σ.

Following the general approach in Pourahmadi (2000); Lin and Wang (2009) we

model µi,L = (θtj) and D = diag(σt) as

µi = Xiβ, θtj = d(ztj,γ), logσt = v(zt,λ), (4.4)

where d(·, ·), v(·, ·) are known functions, Xi, ztj and zt are p ×m, d × 1 and q × 1

matrices of covariates, β = (β1, . . . , βm)>,γ = (γ1, . . . , γd)
> and λ = (λ1, . . . , λq)

> are

parameters of the mean, log-innovation and the moving average parameters y in the

ACD, respectively. When d(·, ·), v(·, ·) are polynomials, we use the notation Poly(d, q)

as a shorthand for two distinct polynomials of degrees d, q in the lagged times (t− j)

and t for θtj and logσt, respectively. Specifically, in this case the covariates zt and ztj
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are of the form:

ztj = (1, (t− j), . . . , (t− j)d)>, j = 1, . . . , t− 1,

zt = (1, t, . . . , tq)>, t = 1, . . . , p.

For example, in most of our simulation work we use Poly(3, 3) as models for the

components of L,D.

Assuming m, q, and d are known, let θ = (β>, γ>,λ>, ν)> be the partitioned

vector of all parameters in the model, then the log-likelihood function `(θ) is

`(θ) =

(
logΓ

(ν + p

2

)
− logΓ

(ν
2

)
− p

2
log(πν)

)

− n

2
log|D2| − 1

2
(ν + p)

n∑
i=1

log
(

1 +
∆i(β,γ,λ)

ν

)
,

where ∆i(β,γ,λ) := (yi−Xiβ)>Σ−1(yi−Xiβ). We suppress its arguments and use

the abbreviation ∆i in the sequel.

4.3.1 Maximum Likelihood Estimation Using Fisher Scoring

In this Section, we study some computational and statistical implications of

using covariates in the parsimonious modeling of L in (4.4) as compared to the same

approach in modeling T in the MCD approach studied in Pourahmadi (2000); Lin and

Wang (2009). It turns out that there is no closed-form solution for the MLEs of ACD

models under the multivariate tν setup, thus iterative algorithms like the Newton-

Raphson or Fisher scoring as in Pourahmadi (2000) and Lin and Wang (2009) is

developed here.

The Fisher scoring algorithm is developed in this subsection. For the partitioning

of θ as above, the blocks of the score function U(θ) =
(
U>(β), U>(γ), U>(λ), U(ν)

)>
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can be obtained and simplified as

U(β) =
n∑
i=1

ωiX
>
i Σ−1ri,

U(γr) = tr

(
(TD−1)

( n∑
i=1

ωiSi

)
(TD−1)>TLγr

)
,

U(λs) = tr

((( n∑
i=1

ωiSi

)
Σ−1 − nI

)
D−1Dλs

)
,

U(ν) =
1

2

n∑
i=1

(
φ
(ν + p

2

)
− φ

(ν
2

)
− p

ν

− log
(

1 +
∆i

ν

)
+
ωi
ν

∆i

)
,

where r = 1, . . . , d, s = 1, . . . , q, Lγr =
∂

∂γr
L, Dλs =

∂

∂λs
D, ωi =

ν + p

ν + ∆i

, ri =

(yi −Xiβ), Si = rir
>
i and φ(x) = d

dx
logΓ(x).

Now, we have the necessary ingredients to present the Fisher information in

terms of the blocks of a partitioned 4 × 4 matrix corresponding to β,γ,λ, and ν.

The blocks of the Fisher information that involve β (the location parameter) are as

follows:

I11(β) = −E(`ββ) =
ν + p

ν + p+ 2

n∑
i=1

X>i Σ−1Xi,

I12(β,γ) = −E(`βγ) = 0,

I13(β,λ) = −E(`βλ) = 0,

I14(β, ν) = −E(`βν) = 0.

In addition, we obtain other blocks of the Fisher information matrix using Proposition

4 of Lange et al. (1989). We state two versions of the result corresponding to the

parameterizations based on MCD and ACD.

Let ϕ denote a generic parametrization of either Σ or Σ−1 for the p-variate tν

distribution with the scale matrix Σ, the contribution of a single observation to the
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Fisher information block for the scale parameter and the degrees of freedom are as

follows:

Ii,j(ϕ) =
1

2(ν + p+ 2)

[
(ν + p)tr

(
Σ−1ΣϕiΣ

−1Σϕj

)
−tr
(
Σ−1Σϕi

)
tr
(
Σ−1Σϕj

)]
=

1

2(ν + p+ 2)

[
(ν + p)tr

(
ΣΣ−1

ϕiΣΣ−1
ϕj

)
−tr
(
ΣΣ−1

ϕi

)
tr
(
ΣΣ−1

ϕj

)]
,

Ii(ϕ, ν) = − 1

(ν + p+ 2)(ν + p)
tr
(
Σ−1Σϕi

)
= − 1

(ν + p+ 2)(ν + p)
tr
(
ΣΣ−1

ϕi

)
.

The equations involving Σϕ

(
i.e.,

∂Σ

∂ϕ

)
are useful for the ACD model, while those

involving Σ−1
ϕ

(
i.e.,

∂Σ−1

∂ϕ

)
can be used for modeling Σ−1. In the application to

model (4.4), ϕ> = (γ>,λ>)> is for parameterizing the scale matrix.

Once the information matrix is computed, the iterative Fisher scoring algorithm

can be used to compute the MLE of the parameters by updating the current value of

θ̃ to θ̂:

θ̂ = θ̃ + I−1(θ̃)U(θ̃).

Note that when using linear link functions for d(·, ·), and v(·, ·) in (4.4), simpler

structures for the score function and the Fisher information will result. Also, when

ν → ∞, the results in this Section reduce to those for an iterative procedure for

computing the MLEs of the ACD model parameters under the multivariate normal

setup.

Computation and the form of the entries of the Fisher information matrix are

slightly different for ACD and MCD and are summarized in the following two sub-

sections.
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4.3.2 Fisher Information Matrix for ACD

As an immediate consequence of the results given in subsection 4.3.1 we obtain

the Fisher information blocks for the parameters of the components of the scale matrix

and the degrees of freedom for the ACD model.

I22,rs(γ) =
(ν + p)n

ν + p+ 2
tr(LγrL

>
γsT

>T ),

I33,rs(λ) =

[
tr
(
LL>DλrΣ

−1Dλs +D−2DλrDλs

)
−2tr(D−1Dλr)tr(D

−1Dλs)

(ν + p)

]
n(ν + p)

ν + p+ 2
,

I44(ν) =
n

4

[
ψ
(ν

2

)
− ψ

(ν + p

2

)
− 2p(ν + p+ 4)

ν(ν + p)(ν + p+ 2)

]
,

I23,rs(γ,λ) =
(ν + p)n

ν + p+ 2
tr(DLγrL

>DλsΣ
−1),

I24,r(γ, ν) = 0,

I34,s(λ, ν) = − 2n

(ν + p+ 2)(ν + p)
tr(D−1Dλs),

where ψ(x) = d2

dx2
logΓ(x) stands for the trigamma function.

Letting ν → ∞ in the above identities, we obtain the corresponding results

for the multivariate normal model where the log-likelihood function `(θ), up to an

additive constant is

− 2

n
`(θ) = log|D2|+ n−1

n∑
i=1

∆i =

p∑
t=1

logσ2
t + trSΣ−1.

The score function and the Fisher information for the multivariate normal distribution

is easy to obtain by considering the following facts and substituting in the previous

results:

ωi → 1,
(ν + p)n

ν + p+ 2
→ n,

2n

ν + p+ 2
→ 0,
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and
∑n

i=1 ωiSi = nS, where S = n−1
∑n

i=1 rir
>
i .

4.3.3 Comparison with the Fisher Information Matrix for MCD

In this Section, we find the Fisher information matrix for the MCD and compare

it with that for the ACD models. For simplicity, we use the same notation for the

information matrices corresponding to ACD and MCD. Using the result given in sub-

section 4.3.1, the entries of the Fisher information associated to the scale parameter

and the degrees of freedom for the MCD model are

I22,rs(γ) =
(ν + p)n

ν + p+ 2
tr(T>γrD

−2TγsΣ),

I33,rs(λ) =
n

2(ν + p+ 2)

[
(ν + p)tr(D−4D2

λrD
2
λs)

−tr(D−2D2
λr)tr(D

−2D2
λs)

]
,

I23,rs(γ,λ) = 0,

I24r(γ, ν) = 0,

I34,s(λ, ν) = − n

(ν + p+ 2)(ν + p)
tr(D−2{D2}λs).

Comparing similar entries in the two Sections, it is evident that their forms and values

are quite different for the ACD and MCD models even for general link functions d(·, ·),

v(·, ·). However, some notable and computationally useful differences are singled out

below:

1. The parameters γ and λ are asymptotically orthogonal in the MCD, but not in

the ACD. It is known that for the multivariate normal distribution, the γ and

λ are asymptotically orthogonal in the MCD model (Ye and Pan, 2006; Holan

and Spinka, 2007), but not in the ACD model (Pourahmadi, 2007). Here we

have shown the same to be true for the multivariate tν setup. Our finding is

different from that in Lin and Wang (2009), p. 3016.
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2. The parameters ν and γ are asymptotically orthogonal in both the ACD and

MCD models, this is not the case for ν and λ, the parameters of the innovation

variance.

3. Since D = diag(σt) is a diagonal matrix, letting log(σt) := z>t λ, the derivative

of D with respect to λs is Dλs = (ZD,s)D, where

ZD,s = diag(z1,s, . . . , zp,s), s = 1, . . . , q.

Thus, replacing the matrix D−1Dλs by ZD,s using the above results lead to

simpler forms for parts of the score function and the Fisher information that in-

volve λ. Also, using the log-linear models for the innovation standard deviation,

both MCD and ACD models have the same quantity for I34(λ, ν).

4.4 Data Analysis

In this Section, we compare the robustness and capabilities of the ACD and MCD

for modeling various correlation structures using simulated and real data. We denote

the MCD and ACD when used in conjunction with the multivariate normal and t

distributions as MCDN and ACDN, MCDT and ACDT, respectively.

We compare estimators of correlation matrices using the following two loss func-

tions and their corresponding risks:

∆1(R,G) = trR−1G− log|R−1G| − n,

and ∆2(R,G) = tr(R−1G− I)2,

whereR is the target correlation matrix andG is another positive-definite correlation

matrix of the same size. The loss ∆1(R,G) is known as the entropy loss and ∆2(R,G)

as the quadratic loss. Both of these loss functions are 0, when G = R and positive,
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when G 6= R. Their corresponding risk functions are

Ri(R,G) = ER{∆i(R,G)}, i = 1, 2.

An estimator R̂ is better than R̃, if its associated risk is smaller, that is, Ri(R, R̂) <

Ri(R, R̃).

4.4.1 Simulation

We fix the true parameters (mean, covariance/correlation matrix) for the simu-

lation setup using those of the well-known Kenward (1987)’s cattle data. Here the

weight of thirty cattle were recorded 11 times over a 133-day period, the dataset

has been analyzed by several authors Zimmerman and Núñez Antón (2009). As in

Pourahmadi (1999), cubic polynomials were fitted to the Cholesky factors T ,D of

the sample covariance matrix of the treatment A of the cattle data.

For simulating data, we construct two true 11 × 11 covariance matrices cor-

responding to those of the cattle data fitted with MCDN-Poly(3, 3) and ACDN-

Poly(3, 3) denoted by Σmcd and Σacd, respectively. Thus, the true covariance (corre-

lation) matrices are known and correspond to the above fits.

We generated m = 100 datasets from a multivariate tν-distribution with the

mean vector equal to the sample mean of the cattle data and the scale matrix equal

to Σmcd and Σacd, respectively, and for the following combinations of (ν, n): “ν =

4, 50”(df), “n = 25, 100”(sample sizes). We calculated the entropy and quadratic risks

after fitting MCDN, MCDT, ACDN and ACDT using the Fisher scoring algorithm

described in subsection 4.3. Note that here we fit cubic polynomials both to the

GARPs (GMAPs) and the log-innovation variances, the same models as their true

counterparts. The results in Table 3(a) show that the risks in the third and forth

columns are much smaller than those in the first two columns of both panels. This
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Table 3: (a) Simulating data from Σmcd and fitting Poly(3, 3) (cubic fit for innovation
variance). Values within parentheses are empirical standard errors. (b) Simulating
data from Σacd and fitting Poly(3, 3) (cubic fit for innovation variance).

(a)

Simulating from Σmcd

ν = 4 ν = 50
Risk type ACDT ACDN MCDT MCDN ACDT ACDN MCDT MCDN

n=25 0.8379 1.1563 0.4009 0.7870 0.9169 0.9334 0.5043 0.5144
Entropy (0.4901) (0.8780) (0.3581) (0.8900) (0.4661) (0.4563) (0.3958) (0.4043)
n=25 2.4038 3.5832 0.9126 1.9400 2.5983 2.6308 1.1184 1.1392
Quadratic (2.0487) (3.9302) (1.2406) (2.8187) (1.7479) (1.7201) (1.1642) (1.1911)

Entropy 0.6206 0.7224 0.1215 0.2653 0.6555 0.6544 0.1118 0.1124
n=100 (0.1591) (0.2539) (0.0920) (0.2827) (0.1857) (0.1825) (0.1189) (0.1205)
Quadratic 1.7016 2.0171 0.2490 0.5677 1.8151 1.8118 0.2470 0.2480
n=100 (0.5412) (0.8908) (0.1976) (0.6303) (0.6137) (0.6037) (0.3166) (0.3227)

(b)

Simulating from Σacd

ν = 4 ν = 50
Risk type ACDT ACDN MCDT MCDN ACDT ACDN MCDT MCDN

n=25 0.3460 0.7072 0.5866 0.9780 0.3583 0.3641 0.6337 0.6516
Entropy (0.3597) (0.9609) (0.3735) (0.9712) (0.2682) (0.2813) (0.3476) (0.3820)
n=25 0.8250 1.8045 1.0928 2.1981 0.7807 0.7846 1.0805 1.0848
Quadratic (1.2135) (3.6170) (1.1615) (4.6778) (0.7516) (0.7764) (0.5850) (0.5876)

n=100 0.0917 0.2681 0.3283 0.5041 0.0826 0.0849 0.3116 0.3152
Entropy (0.0747) (0.4659) (0.1573) (0.4378) (0.0807) (0.0830) (0.1597) (0.1597)
n=100 0.1813 0.6898 0.5320 0.9643 0.1694 0.1750 0.5146 0.5204
Quadratic (0.1495) (2.1286) (0.2159) (1.7977) (0.1819) (0.1883) (0.2425) (0.2425)



73

indicates the improved performance of MCD over ACD, when the data are actually

generated from the same MCD covariance (correlation) structure. Furthermore, in the

left panel corresponding to ν = 4, a smaller degrees of freedom, the risks for MCDT

and ACDT are much smaller than MCDN and ACDN, and this difference disappears,

as expected, for ν = 50. Similar statements can be made about the results in Table

3(b) where the data are generated using the ACD covariance structure, but now one

can see that the first two columns of the two panels are smaller than their counterparts

in the last two columns. In summary, the simulation results reported in Table 3 show

the importance of knowing the structure of the underlying covariance matrix, where

the MCD works better for datasets coming from MCD structure, and the ACD fits

the covariance matrix better if the data is coming from an ACD structure.

Next, the theoretical result in Chen and Dunson (2003) and subsection 4.2 sug-

gest that the estimate of the correlation matrix is robust to model misspecification of

the innovation variances when using the ACD. To verify this empirically, we rely on

the same dataset used for the simulations in Table 3, but for log-innovation variances

we fit a linear structure rather than the true cubic polynomial. The impact of this

innovation variance misspecification on estimating the correlation matrix can be seen

in Table 4. More precisely, we observe the followings:

1. Comparing the first two ACD columns of Table 3 with the first two columns of

Tables 4 in both panels, shows that the correlation estimation is robust to the

model misspecification for innovation variances. This conclusion seems to be

independent of the structure of the covariance matrix used for the simulation

(Σmcd or Σacd).

2. The last two MCD columns of Table 3(a) (Simulation from Σmcd) have smaller

risks compare to the last two columns of Table 4(a) in both panels. This confirms
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that the correlation estimation is not robust to the model misspecification for

innovation variances in the MCD structure.

Finally, we undertook a simulation study to examine the performance and flexi-

bility of the proposed ACDT approach. The main objective is to study the robustness

or sensitivity to the true distribution. For example, it is important to know when

data are from a t distribution, how bad the MCD or ACD will perform when we use

the normal distribution to estimate the parameters, and vice versa? For the sake of

diversity, now the true parameters are set to be those of the tumor data (discussed

in subsection 4.4.2) analyzed next and fitted with ACDT-Poly(3, 3), except that the

df is specified at two different settings. For the df ’s, we take a low value (ν = 4)

corresponding to heavy-tailed distributions and a high value (ν = 50) corresponding

to near normality. The two sample sizes were from small (n = 25) to a relatively large

(n = 100). Simulations were run with m = 500 replications for each combination of

ν and n and each simulated data set was fitted under ACDT and ACDN scenarios.

The detailed numerical results, including the average ML estimates for the fixed ef-

fects, the moving average parameters and the scale innovation variances, the average

of maximized log-likelihood values `max, the average of associated BIC values and

the median estimates for the df , together with their standard errors in parentheses,

are summarized in Table 5. It shows that for smaller ν the point estimators of the

parameters under the ACDT and ACDN scenarios are generally the same, but their

SE’s differ with the normal distributions leading to larger SE’s. Furthermore, the

estimated df has a downward bias for the smaller sample size n = 25.

4.4.2 The Tumor Growth Data

We apply our methodology to the in vivo growth of lung tumor for the control

group of 22 xenografted nude mice, which has been also analyzed in Lin and Wang
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Table 4: (a) Simulating data from Σmcd and fitting Poly(3, 1) (linear fit for innovation
variance). Values within parentheses are empirical standard errors. (b) Simulating
data from Σacd and fitting Poly(3, 1) (linear fit for innovation variance).

(a)

Simulating from Σmcd

ν = 4 ν = 50
Risk type ACDT ACDN MCDT MCDN ACDT ACDN MCDT MCDN

n=25 0.8651 1.1367 0.7890 1.0247 0.9580 0.9846 0.8655 0.8867
Entropy (0.4200) (0.7285) (0.3993) (0.7108) (0.4393) (0.4437) (0.3905) (0.3985)
n=25 2.4347 3.3864 2.1492 2.9354 2.6603 2.7305 2.3016 2.3523
Quadratic (1.7953) (3.1821) (1.5791) (2.9867) (1.6925) (1.7229) (1.4214) (1.4603)

n=100 0.6523 0.7618 0.5892 0.6865 0.6739 0.6742 0.6072 0.6071
Entropy (0.1467) (0.2444) (0.1431) (0.2362) (0.1449) (0.1429) (0.1470) (0.1473)
n=100 1.7762 2.0849 1.5803 1.8342 1.8601 1.8593 1.6486 1.6466
Quadratic (0.5336) (0.8488) (0.4979) (0.7583) (0.5209) (0.5124) (0.5060) (0.5064)

(b)

Simulating from Σacd

ν = 4 ν = 50
Risk type ACDT ACDN MCDT MCDN ACDT ACDN MCDT MCDN

n=25 0.3942 0.7456 0.4181 0.7617 0.4552 0.4665 0.4592 0.4712
Entropy (0.2791) (0.8003) (0.2773) (0.8229) (0.3258) (0.3577) (0.3159) (0.3406)
n=25 0.8791 1.8830 0.8315 1.8184 0.7768 0.7818 0.7841 0.7868
Quadratic (0.4917) (2.4344) (0.5498) (2.6867) (0.5345) (0.5773) (0.5383) (0.5585)

n=100 0.1289 0.3237 0.2158 0.4358 0.1276 0.1323 0.1995 0.2042
Entropy (0.1548) (0.8596) (0.1412) (0.8468) (0.1383) (0.1390) (0.1234) (0.1242)
n=100 0.2295 0.7257 0.3456 0.7676 0.2030 0.2102 0.3294 0.3364
Quadratic (0.2135) (1.7008) (0.1913) (1.7750) (0.1978) (0.1982) (0.1780) (0.1778)
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Table 5: Average estimates for γ,λ, `max and BIC and the median estimate for ν
based on 500 replications. Values within parentheses are empirical standard errors.

Param. True n=25 n=100
Param. ν = 4 ν = 50 ν = 4 ν = 50

ACDT ACDN ACDT ACDN ACDT ACDN ACDT ACDN

γ0 0.9318 0.9293 0.9261 0.9381 0.9373 0.9326 0.9288 0.9268 0.9268
(0.0085) (0.0115) (0.0081) (0.0081) (0.0040) (0.0060) (0.0037) (0.0038)

γ1 0.0962 0.1230 0.1442 0.1533 0.1538 0.1106 0.1220 0.0979 0.0988
(0.0200) (0.0275) (0.0183) (0.0183) (0.0091) (0.0141) (0.0086) (0.0086)

γ2 0.0898 0.1012 0.1119 0.1116 0.1101 0.0985 0.1020 0.0935 0.0942
(0.0100) (0.0127) (0.0095) (0.0095) (0.0047) (0.0072) (0.0045) (0.0045)

γ3 0.3041 0.3087 0.3095 0.3076 0.3063 0.3076 0.3053 0.3011 0.3015
(0.0054) (0.0074) (0.0052) (0.0052) (0.0027) (0.0043) (0.0025) (0.0025)

λ0 -1.6379 -1.6706 -1.7175 -1.7031 -1.6693 -1.6919 -1.6668 -1.6690 -1.6468
(0.0044) (0.0064) (0.0022) (0.0021) (0.0020) (0.0037) (0.0011) (0.0010)

λ1 -0.5685 -0.5801 -0.5989 -0.5844 -0.5821 -0.5760 -0.5799 -0.5721 -0.5725
(0.0071) (0.0099) (0.0068) (0.0069) (0.0033) (0.0050) (0.0033) (0.0033)

λ2 0.5416 0.5241 0.5121 0.5280 0.5264 0.5396 0.5307 0.5375 0.5376
(0.0058) (0.0075) (0.0055) (0.0055) (0.0026) (0.0045) (0.0026) (0.0027)

λ3 -0.2795 -0.2766 -0.2745 -0.2812 -0.2822 -0.2800 -0.2776 -0.2774 -0.2774
(0.0044) (0.0061) (0.0040) (0.0040) (0.0021) (0.0031) (0.0021) (0.0021)

ν 4.1040 . 34.5796 . 4.0612 . 49.7055 .
(0.2006) . (2.8122) . (0.0329) . (2.7051) .

`max 121.67 89.560 76.112 75.110 451.18 297.40 275.4831 273.40
(1.3179) (1.9102) (0.6318) (0.6385) (2.4676) (4.4406) (1.2285) (1.2430)

BIC -7.0301 -4.5897 -3.3851 -3.4337 -8.0566 -5.0270 -4.5426 -4.5470
(0.1054) (0.1528) (0.0505) (0.0511) (0.0494) (0.0888) (0.0246) (0.0249)
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(2009) using MCDT. Figure 15 shows the profile plot of the logarithm of tumor growth

volumes over an unequally spaced 28-day period for the 22 mice, together with the

sample regressograms of the generalized moving average parameters (GMAPs), and

the sample innovation standard deviations. It should be noted that our analysis is

based on the saturated model for the mean function. In fact, following the analysis

of Lin and Wang (2009) and using the design matrix for the mean response to be

Xi = [1 k], where 1 = (1, 1, . . . , 1)> , k = (0, 1, 2.5, 3.5, 4.5, 6, 7, 8, 10, 11.5, 13, 14)>,

the optimization procedure using the Newton-Raphson algorithm for the ACDT

model will converge only to a local maximum which depends noticeably on the choice

of the initial values. However, using the saturated mean model the algorithm con-

verges to the global maximum for both ACDT and ACDN. We fit the tumor data

using ACDN and ACDT for various choices of the degrees of the Poly(d, q) models.

The values of `max, together with the corresponding number of parameters and BIC

values for selected pairs(d, q) are listed in Table 6. Judging from the BIC values,

Poly(6, 5) is the best and also Poly(3, 5) is relatively parsimonious and a competitive

choice for both ACDN and ACDT models. Table 7 shows the ML estimates and

the associated standard errors for the best two fitting ACDN and ACDT. It is note-

worthy that the estimates of the df for the two fitted ACDT are somewhat small,

suggesting that the error distribution has a larger tail than the normal distribution,

which confirms the finding of Lin and Wang (2009). Finally note that, based on the

different interpretation of ACD and MCD parameters, the GMAPs and GARPs are

not comparable.
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standard deviation.
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Table 6: Comparison of `max, number of parameters, and BIC values for some
Poly(d, q) choices of ACDN and ACDT models.

Poly(d, q) # of param. `max BIC
ACDN ACDT ACDN ACDT ACDN ACDT

(1,1) 4 5 -26.94 -9.575 4.697 3.259
(1,2) 5 6 -14.64 -0.134 3.719 2.541
(1,3) 6 7 -14.21 1.661 3.821 2.519
(1,4) 7 8 -13.70 3.041 3.915 2.534
(1,5) 8 9 -10.17 5.541 3.734 2.447
(1,6) 9 10 -10.15 5.596 3.873 2.582
(2,1) 5 6 -24.36 -8.929 4.603 3.341
(2,2) 6 7 -14.17 1.244 3.817 2.556
(2,3) 7 8 -14.01 2.168 3.943 2.613
(2,4) 8 9 -13.48 3.577 4.036 2.625
(2,5) 9 10 -10.09 5.982 3.868 2.547
(2,6) 10 11 -10.07 6.021 4.007 2.684
(3,1) 6 7 -22.01 -7.462 4.530 3.348
(3,2) 7 8 -13.10 2.239 3.860 2.606
(3,3) 8 9 -11.68 5.364 3.872 2.463
(3,4) 9 10 -10.44 8.812 3.899 2.290
(3,5) 10 11 -7.911 10.42 3.810 2.284
(3,6) 11 12 -7.909 10.43 3.951 2.424
(4,1) 7 8 -22.01 -7.362 4.670 3.479
(4,2) 8 9 -13.06 2.428 3.998 2.730
(4,3) 9 10 -11.65 5.822 4.010 2.562
(4,4) 10 11 -10.00 8.928 4.000 2.420
(4,5) 11 12 -6.377 11.21 3.811 2.353
(4,6) 12 13 -6.328 11.23 3.947 2.492
(5,1) 8 9 -21.96 -7.316 4.807 3.616
(5,2) 9 10 -13.06 2.768 4.138 2.839
(5,3) 10 11 -11.62 6.695 4.147 2.623
(5,4) 11 12 -9.914 9.848 4.133 2.477
(5,5) 12 13 -4.365 13.98 3.769 2.241
(5,6) 13 14 -4.242 14.34 3.898 2.349
(6,4) 12 13 -7.730 12.34 4.075 2.391
(6,5) 13 14 -2.415 16.81 3.732 2.125
(6,6) 14 15 -2.247 16.84 3.857 2.263
(7,4) 13 14 -7.481 12.40 4.193 2.526
(7,5) 14 15 -2.297 16.81 3.862 2.266
(7,6) 15 16 -2.145 16.84 3.989 2.404
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Table 7: Parameter estimates for the best two Poly(d, q) choices of ACDN and ACDT.

Poly(6, 5) Poly(3, 5)
ACDN ACDT ACDN ACDT

MLE SE MLE SE MLE SE MLE SE
γ0 1.0026 0.1828 0.9755 0.1957 0.9393 0.1722 0.9292 0.1845
γ1 0.4299 0.4335 0.0853 0.4538 0.3374 0.4037 0.0841 0.4290
γ2 0.1969 0.2155 0.1426 0.2372 0.1463 0.2007 0.1666 0.2260
γ3 0.4648 0.1451 0.5574 0.1585 0.2430 0.1137 0.3917 0.1270
γ4 0.3352 0.1172 0.2655 0.1207 . . . .
γ5 0.1627 0.0922 0.1616 0.0926 . . . .
γ6 -0.1458 0.0679 -0.1693 0.0679 . . . .
λ0 -1.4098 0.0435 -1.7097 0.1003 -1.3890 0.0435 -1.6733 0.0981
λ1 -0.7341 0.1505 -0.5697 0.1597 -0.6866 0.1501 -0.5311 0.1584
λ2 0.5473 0.1204 0.6631 0.1271 0.5148 0.1244 0.6080 0.1308
λ3 -0.1595 0.0961 -0.2767 0.1001 -0.1500 0.1010 -0.2727 0.1049
λ4 -0.1174 0.0850 -0.2006 0.0849 -0.0436 0.0864 -0.1522 0.0870
λ5 -0.2492 0.0752 -0.2164 0.0731 -0.1348 0.0716 -0.1080 0.0711
ν . . 3.4490 1.1747 . . 3.6626 1.2688

4.5 Technical Details

4.5.1 Lγ and Dλ, for Linear Link Functions v(·, ·) and d(·, ·)

Considering θtj = d(ztj,γ) := z>tjγ and log(σt) = v(zt,λ) := z>t λ, where the

matrices L and D has been defined as following:

L =



1 0 0 . . . 0

θ21 1 0
. . .

...

θ31 θ32 1
. . . 0

...
. . . . . . . . . 0

θp1 . . . θp(p−2) θp(p−1) 1


and D =



σ1 0 . . . 0

0 σ2
. . .

...

...
. . . . . . 0

0 . . . 0 σp


Simply, taking termwise derivative of L and D with respect to γr and λs lead us to

the following:

Lγr = ZL,r, and Dλs = (ZD,s)D,
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where

ZL,r =



0 0 0 . . . 0

z21r 0 0
. . .

...

z31r z32r 0
. . . 0

...
. . . . . . . . . 0

zp1r . . . zp(p−2)r zp(p−1)r 0


and ZD,s =



z1s 0 . . . 0

0 z2s
. . .

...

...
. . . . . . 0

0 . . . 0 zps


.

Using the above linear link functions, make the score function and the Fisher infor-

mation matrix more simpler. U(β), U(ν) remain unchanged but U(γr), and U(λr)

becomes simpler as following:

U(γr) = tr

(
(TD−1)

( n∑
i=1

τiSi

)
(TD−1)>TZLr

)
,

U(λs) = tr

((( n∑
i=1

τiSi

)
Σ−1 − nI

)
ZD,s

)
,

Also the Fisher information that involves β remains unchanged

I11(β) =
ν + p

ν + p+ 2

n∑
i=1

X>i Σ−1Xi, I12(β,γ) = I13(β,λ) = I14(β, ν) = 0.

Finally I24(γ, ν) and I44(ν) remain the same but the rest of Fisher information have

the following simpler form:

I22,rs(γ) =
(ν + p)n

ν + p+ 2
tr(ZL,rZ

>
LsT

>T ),

I33,rs(λ) =
(ν + p)n

ν + p+ 2
tr

(
(ZD,r +LL>ZD,rT

>T )ZD,s

)
− 2n

ν + p+ 2
tr(ZD,r)tr(ZD,s),

I23,rs(γ,λ) =
(ν + p)n

ν + p+ 2
tr(ZL,rL

>ZD,sT
>T ),

I34,r(λ, ν) = − 2n

(ν + p+ 2)(ν + p)
tr(ZD,r).
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4.5.2 Fisher Scoring for the Multivariate Normal distribution

We can let ν → ∞, and obtain the associated score function and the fisher

information for the multivariate normal distribution. Since we did not find the results

in the literature, it’s worth to be included here. The log likelihood function `(θ), up

to an additive constant is

− 2

n
`(θ) = log|D2|+ n−1

n∑
i=1

r>i Σ−1ri =

p∑
t=1

logσ2
t + trSΣ−1. (4.5)

4.5.2.1 The Score Function

Under the normality assumption given in (4.5), the score function can be obtained

using the results given in subsection 4.5.4 with some simplification as following:

Ur(β) =
n∑
i=1

( ∂

∂βr
µi
)>

Σ−1ri ⇒ U(β) =
n∑
i=1

X>i Σ−1ri,

U(γr) = ntr

(
(TD−1)S(TD−1)>TLγr

)
,

U(λs) = ntr

(
(SΣ−1 − I)D−1Dλs

)
.

Therefore the U(θ) =
(
U>(β), U>(γ), U>(λ)

)>
is easy to calculate.

4.5.2.2 The Fisher Information

Fisher information I(θ) has been considered as a 3 × 3 matrix of submatrices

based on expectation of Hessian matrix as following:

H(θ) =


H(β) H(β, γ) H(β,λ)

H>(β, γ) H(γ) H(γ,λ)

H>(β,λ) H>(γ,λ) H(λ)

 ⇒

I(θ) = −E(H(θ)) =


I11(β) I12(β, γ) I13(β,λ)

I21(γ,β) I22(γ) I23(γ,λ)

I31(λ,β) I32(λ, γ) I33(λ)

 .
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Now by using the score function U(θ) and the results given in subsection 4.5.4, we

can obtain the elements in each submatrices that involves β as following:

hrs(β) =
n∑
i=1

{( ∂

∂βs

( ∂

∂βr
µi
))>

Σ−1ri −
( ∂

∂βr
µi
)>

Σ−1
( ∂

∂βs
µi
)}
,

hrs(βr, γs) =
n∑
i=1

( ∂

∂βr
µi
)>(

Σ−1
)(γs)

ri,

hrs(βr, λs) =
n∑
i=1

( ∂

∂βr
µi
)>(

Σ−1
)(λs)

ri.

Hence the associated submatrices of the Fisher information could be obtained by

following:

I11(β) =
n∑
i=1

X>i Σ−1Xi, I12(β, γ) = 0, I13(β,λ) = 0.

In addition we can use the results given in subsection 4.5.3 and obtain the rest of the

elements in the Fisher information matrix as following:

I22,rs(γ) = E(−`γrγs) = E(`γr`γs) = ntr(LγrL
>
γsT

>T ),

I33,rs(λ) = E(−`λrλs) = E(`λr`λs) = ntr(D−2DλrDλs +LL>DλrΣ
−1Dλs),

I23,rs(γ,λ) = E(−`γrλs) = E(`γr`λs) = ntr(DLγrL
>DλsΣ

−1).

4.5.2.3 Lγ and Dλ, for Linear Link Functions v(·, ·) and d(·, ·).

Similar to the subsection 4.5.1, we could take θtj = d(ztj,γ) := z>tjγ and

log(σt) = v(zt,λ) := z>t λ. The resulting score function and the Fisher informa-

tion becomes much simpler as following:

U(β) =
n∑
i=1

X>i Σ−1ri,

U(γr) = ntr

(
(TD−1)S(TD−1)>TZLr

)
,

U(λs) = ntr

(
(SΣ−1 − I)ZD,r

)
.
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Also the Fisher information that involves β remains unchanged

I11(β) =
n∑
i=1

X>i Σ−1Xi, I12(β, γ) = I13(β,λ) = 0.

Finally the rest of Fisher information have the following form:

I22,rs(γ) = ntr(ZL,rZ
>
LsT

>T ),

I33,rs(λ) = ntr

(
(ZD,r +LL>ZD,rT

>T )ZD,s

)
,

I23,rs(γ,λ) = ntr(ZL,rL
>ZD,sT

>T ).

4.5.2.4 Penalized Normal Likelihood

Similar to the Pourahmadi (1999), one can use the regressogram for the sam-

ple covariance to obtain the appropriate design matrices zt for modeling the log-

innovation standard deviation and ztj for modeling the generalized moving average

parameters. Figure 16 is showing the regressogram for the Kenward (1987)’s cattle

data and the least square and maximum likelihood estimates based on a cubic MCDN,

ACDN and ACDT models respectively. However, not always regressogram provides

reasonable relationship to obtain such design matrices. Alternative approach is to use

the penalized likelihood for the large sparse covariance structure. Huang et al. (2006)

provided the penalized normal likelihood(L1 and L2 penalty) to model the inverse of

the covariance matrix. We extend their algorithms to obtain a similar machinery for

estimating the shrinkage estimate of the Σ directly. The difference is just adding the

penalty term to (4.5), and maximizing the following objective function:

`p(θ) = −n
2

log|D2| − n

2
trSΣ−1 − α

2

p∑
t=2

t−1∑
j=1

|θtj|p. (4.6)

We can extend our Fisher scoring algorithm by using the associated quadratic form

to the L2 penalty or approximating the associated L1 penalty with a reasonable

quadratic form (which leads to the special case of MM algorithm).
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Figure 16: (First row:) The profile plot, GARPs and log-innovation standard de-
viation plots for the MCDN model. (Second row:) is associated to the ACDN fit
and associated profile plot, GMAPs and the log-innovation standard deviation plots,
and (Last row:) is for the ACDT model. Green color is for the sample covariance
estimates, red indicates the MLEs and blue color is associated to the LSEs.
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4.5.3 Quadratic Forms

If ε is a vector of n random variables, and Λ is a symmetric matrix, then the

ε>Λε is known as a quadratic form in ε. It is known that

E(ε>Λε) = tr(ΛΣ) + µ>Λµ,

where µ and Σ are the expected value and covariance matrix of ε, respectively. Here,

the normality of ε is not required. In general, the variance of a quadratic form depends

greatly on the distribution of ε.

4.5.3.1 The Multivariate Normal

Assuming ε follow a multivariate normal distribution and Λ is a symmetric ma-

trix. The variance of the quadratic form can be obtained as

var(ε>Λε) = 2tr(ΛΣΛΣ) + 4µ>ΛΣΛµ.

In fact, this can be generalized to find the covariance between two quadratic forms

on the same ε (once again, Λ1 and Λ2 must both be symmetric),

cov(ε>Λ1ε, ε
>Λ2ε) = 2tr(Λ1ΣΛ2Σ) + 4µ>Λ1ΣΛ2µ.

4.5.3.2 Multivariate tν

If ε follow a multivariate tν distribution, using Kim and Mallick (2003) we have:

var(ε>Λε) =
2ν2

(ν − 2)(ν − 4)
tr(ΛΣΛΣ)+

2ν2

(ν − 2)2(ν − 4)
(tr(ΛΣ))2+

4ν

ν − 2
µ>ΛΣΛµ,

or more generally:

cov(ε>Λ1ε, ε
>Λ2ε) =

2ν2

(ν − 2)(ν − 4)
tr(Λ1ΣΛ2Σ)

+
2ν2

(ν − 2)2(ν − 4)
tr(Λ1Σ)tr(Λ2Σ)2 +

4ν

ν − 2
µ>Λ1ΣΛ2µ.
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4.5.3.3 Non-Symmetric Λ

The case for general Λ can be derived by noting that ε>Λ>ε = ε>Λε so that,

ε>Λ̃ε = ε>
(
Λ + Λ>

)
ε/2. But this is a quadratic form in the symmetric matrix

Λ̃ =
(
Λ + Λ>

)
/2, therefore the mean and variance expressions are the same, provided

Λ is replaced by Λ̃ therein.

4.5.4 Multivariate Calculus and Some Useful Identities

Let x be a vector, andA(y),X,Y andW four different matrices. Using Petersen

and Pedersen (2008) we have the following useful results:

• ∂

∂x
X> =

(
∂

∂x
X

)>
.

• ∂

∂x
(XY ) =

(
∂

∂x
X

)
Y +X

(
∂

∂x
Y

)
.

• ∂

∂x
tr(X) = tr

(
∂

∂x
X

)
.

• ∂X−1

∂x
= −X−1∂X

∂x
X−1.

• ∂

∂y

(
ln(det(A(y)))

)
= tr

(
A−1(y)

∂A(y)

∂y

)
.

• ∂

∂y

((
(x−A(y)

)>
W
(
x−A(y)

))
= −2

(
∂

∂y
A(y)

)
W
(
x−A(y)

)
.
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CHAPTER V

CONCLUSION

First, we proposed a profile likelihood approach to estimate a transformation

model for affymetrix short oligonucleotide array data. The proposed method is more

statistically principled and efficient than the ad-hoc entropy based method introduced

in Hu et al. (2006) that is evident by our simulation studies. Its computationally

efficiency comes with the simple SVD method used for parameter estimation. The

real data example shows its superiority of empirical performance to the popular Li-

Wong model. We also introduced a multivariate expression index which utilizes the

first two singular vectors. Our empirical investigation shows the promise of using

multivariate index in terms of both model fitting and differential expression detection.

In addition, we re-examined two important practical issues in gene expression analysis,

the value of normalization and statistical p-values. Our study shows that, when using

the proposed method for generating expression indexes, normalization has impact on

differential expression detection and statistical p-values have better performance than

the simple fold change criterion in terms of gene ranking.

Next, we introduced a probabilistic model based on statistically principled pro-

cedure to obtain an appropriate transformation for the PCA and the FPCA analysis

that commonly has been selected by researchers based on some ad-hoc explanations.

The proposed method tends to obtain non-informative homogeneous normally dis-

tributed residuals from a likelihood based approach. It has been illustrated that how

crucial it could be to choose the right transformation for obtaining the FPCs using

simulations and a real data example (Call Center data). The automaticity and the

high performance of the proposed profile likelihood approach are the main advantages
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of this routine. Also we considered two algorithms for imputing the missing values,

and we studied the connection of those algorithms with normality of the residuals.

Using the proposed PSVDM method for imputation in the “fruit fly mortality” data,

we showed another importance of the proposed automatic procedure to obtain the

right transformation.

Finally, we have established the role of an alternative Cholesky decomposition

of the covariance matrix of a longitudinal dataset in providing robust estimator of its

correlation matrix. Robustness to outliers is handled using heavy-tailed multivariate

t-distributions with unknown degrees of freedom. Newton-Raphson algorithm with

Fisher scoring for computing the maximum likelihood estimators of the parameters

of the alternative Cholesky decomposition turns out to be more complicated than

the standard Cholesky decomposition. This computational complexity is comparable

to maximum likelihood estimation of parameters of the moving average models from

time series analysis.
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