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ABSTRACT 

 

A Comparison of Fault Detection Methods for a Transcritical Refrigeration System. 

(August 2011) 

Alex Karl Janecke, B.S., Texas A&M University 

Chair of Advisory Committee: Dr. Bryan Rasmussen 

 

 When released into the atmosphere, traditional refrigerants contribute to climate 

change several orders of magnitude more than a corresponding amount of carbon 

dioxide.  For that reason, an increasing amount of interest has been paid to transcritical 

vapor compression systems in recent years, which use carbon dioxide as a refrigerant.  

Vapor compression systems also impact the environment through their consumption of 

energy.  This can be greatly increased by faulty operation.  Automated techniques for 

detecting and diagnosing faults have been widely tested for subcritical systems, but have 

not been applied to transcritical systems.  These methods can involve either dynamic 

analysis of the vapor compression cycle or a variety of algorithms based on steady state 

behavior. 

 In this thesis, the viability of dynamic fault detection is tested in relation to that 

of static fault detection for a transcritical refrigeration system.  Step tests are used to 

determine that transient behavior does not give additional useful information.  The same 

tests are performed on a subcritical air conditioner showing little value in dynamic fault 

detection.  A static component based method of fault detection which has been applied to 
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subcritical systems is also tested for all pairings of four faults: over/undercharge, 

evaporator fouling, gas cooler fouling, and compressor valve leakage.  This technique 

allows for low cost measurement and independent detection of individual faults even 

when multiple faults are present.  Results of this method are promising and allow 

distinction between faulty and fault-free behavior. 
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NOMENCLATURE 

 

Ai Internal pipe wall area 

Ao External pipe wall area 

Cd Coefficient of discharge 

cp,a Specific heat of air 

wE  Rate of change of wall energy  

E(t) Error signal 

h Enthalpy 

k Compressor coefficient/thermal conductivity 

ksc,sh Empirical constant 

m  Mass flow rate 

n Number of nodes in FCV model/compressor coefficient 

P Pressure 

lossQ  Compressor heat loss 

T Temperature 

U  Rate of change of refrigerant energy 

u Input vector FCV model 

uvalve Valve input 

v Valve coefficient 

compW  Compressor power 
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x State vector FCV model 

α Heat transfer coefficient/charge sensor coefficient 

β Empirical coefficient 

ρ Density 

CΔ  Transcritical charge indicator 

sh scT −Δ  Subcritical charge fault indicator 

kroTΔ  Compressor valve leakage indicator 

Z(x,u) Matrix for FCV model 

f(x,u) Input vector for FCV model 

 

Subscripts 

a Air 

c Compressor 

e Evaporator 

gc Gas cooler 

hx Heat exchanger 

i Internal 

k Indexing variable 

n Number of nodes in FCV model 

o External 

r Refrigerant 

sh Superheat 



 viii

sc Subcooling 

v Valve 

w Pipe wall 

est Estimated 

in Inlet 

out Outlet 

nom Nominal 
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INTRODUCTION 

 As of 2001 the Department of Energy estimated that the percentage of household 

electricity usage for air conditioners, refrigerators, and freezers exceeded 30% [1].  With 

such a large proportion of energy consumption being used by HVAC&R systems, 

maximizing energy efficiency has become an important field of study.  Estimates of the 

waste caused by degradation of equipment or improper commissioning run as high as 15 

to 30% [2].   

 A variety of faulty behaviour can occur in HVAC equipment.  These faults can 

be present at the installation of the system, accumulate gradually over time, or happen 

abruptly.  Unlike other fields, there is generally no safety risk in these faulty conditions.  

Instead fault detection and diagnosis (FDD) will benefit the system through reduced 

energy consumption and lower maintenance costs; therefore, any successful algorithm 

for FDD must be not only accurate but low in cost. 

 Vapor compression cycles raise environmental concerns beside their energy use.  

According to the Intergovernmental Panel on Climate Change, eleven of the twelve 

years between 1995 and 2006 ranked with the highest temperatures since direct 

measurement has been available [3].  The use of hydroflourocarbons (HFCs) as 

refrigerants contributes to climate change.  Global warming potential (GWP) is a 

measure of how much a given substance affects climate change when released in the 

atmosphere.  The baseline value of one is given to one kilogram of carbon dioxide.   

____________ 
This thesis follows the style of IEEE Transactions on Control Systems Technology. 
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Table 1 shows the GWP given to the most common refrigerants as determined by the 

EPA [4]. 

Table 1. GWP of common refrigerants 

Refrigerant GWP
R-134a 1300
R-410 1725

R744 (CO2) 1  

 

 

 Because of the value in pursuing carbon dioxide as an alternative refrigerant, this 

thesis seeks to investigate different techniques for FDD within a carbon dioxide 

refrigeration system.  Testing will be done to determine what dynamic models may add 

to the accuracy and reliability of static FDD techniques.  Also a leading static method of 

FDD will be tested on the carbon dioxide system as well as a more traditional subcritical 

air conditioner using R410.  Emphasis will be placed on the changes necessary for this 

method to function properly in the transcritical cycle, which is used in carbon dioxide 

based systems. 

The Subcritical and Transcritical Cycles 

   The subcritical vapor compression cycle consists of four steps.  In the first a 

refrigerant is compressed so that it will have a high pressure and temperature.  The 

second step involves an isobaric cooling of this vapor in the condenser until it is a liquid.  

In the third step the refrigerant then enters a valve where it undergoes isentropic 
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expansion becoming a two-phase fluid.  Finally, in the fourth step the refrigerant 

receives isobaric heating in the evaporator leaving as a superheated vapor.   

The transcritical cycle differs from the subcritical cycle in one important way.  In 

the subcritical cycle the condenser cools the refrigerant leaving the compressor taking it 

from a gas to a two-phase fluid and generally to a pure liquid.  In a transcritical cycle, 

however, the discharge pressure of the compressor is higher than the critical point of the 

refrigerant.  Because there is no two-phase fluid the heat exchanger in which the cooling 

of the refrigerant after compression takes place is called a gas cooler instead of a 

condenser. Figure 1 shows the subcritical and transcritical cycles on a p-h diagram. 

 

 

 

Figure 1. Subcritical and transcritical cycles  
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Literature Review 

The emergence of FDD in HVAC is a more recent trend.   Comstock et al. 

surveyed manufacturers of chiller systems to estimate the cost and incidence of faults 

and failures in the field [5].  Katipamula and Brambley provided a two-part survey of 

different FDD techniques applied to air-conditioning and refrigeration systems for 

building units [2, 6]. In the first part techniques were classified as either qualitative or 

quantitative.  In part two algorithms from the literature on HVAC systems are compared. 

Dynamic Fault Detection 

Dynamic fault detection uses transient data and models to find and identify faulty 

system behavior.  Dynamic fault detection arose as a field in the 1970’s.  Wilsky 

summarized many of the early fault detection and diagnosis (FDD) schemes used [7].  

Clark gave an early observer based method with the example of a hydrofoil [8].  

Overviews of dynamic fault detection as a general field can be found in various sources 

[9-12]  

Although HVAC FDD tends towards steady state analysis, there is an existing 

literature on dynamic algorithms.  Wagner and Shoureshi developed an observer-based 

scheme for a vapour compression cycle with a fixed orifice device [13].  They model the 

system with a simplified lumped parameter approach allowing the use of a Kalman filter.  

Liang and Du produced an FDD method for an air handling unit (AHU) using a lumped 

parameter model [14].  Parameter estimation is used to update those parameters 

associated with faulty conditions and a support vector machine is used to diagnose which 

fault is occurring. 
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Black box approaches have also been employed in dynamic HVAC FDD.  Lee et 

al. used observer based techniques as well as structured residuals to predict fault in an 

AHU [15].  Data driven techniques, ARX and ARMAX, were used to model the system 

behaviour.  Physical faults were induced as well as bias in the sensors.   Zhou and Dexter 

took advantage of a fuzzy-relational model to account for nonlinearities in the system 

[16].  The faults studied were limited to fouling in the heat exchangers.   

 Keir and Alleyne explored the possibility of using more complex moving-

boundary models for FDD in vapour compression cycles [17].  Testing was performed 

on a subcritical vapour compression cycle.  A linearized form of the model was used to 

explore the sensitivity of each output to a variety of faults; however, no practical FDD 

algorithm is implemented.  This is the only example found in the literature of a 

sufficiently complex model being used to represent a vapor compression cycle as 

opposed to an AHU. 

 Attempts to apply FDD to closed loop systems have also been made.  Salsbury 

and Diamond investigated using feedforward control in conjunction with a PI controller 

on an AHU [18].  The feedforward controller supplied the normal amount of actuation to 

reach a set point and any input from the PI controller beyond a certain threshold was 

taken to be indicative of a fault.  Talukdar and Patra synthesized the control and FDD 

algorithms for an AHU [19].   

Steady State Fault Detection  

 Halm-Owoo and Suen explained many of the steady state methods in use for 

HVAC FDD [20].  FDD methods were broken into model-based techniques, knowledge-



 6

based methods, and signal processing techniques.  Examples were given of a model-

based method for detecting fouling in an AHU and of an ANN method for detecting 

faults in an AHU.  Zhou et al. used fuzzy models to identify faulty behaviour in a 

centrifugal chiller [21].  A neural network was then used to diagnose which fault was 

occurring.  Haves et al. used parameter estimation on a set of nonlinear first-principle 

functions to detect faults in a system [22].  To eliminate the difficulty of finding 

parameter values in a nonlinear function an intermediate layer of radial basis functions 

were used.   The analysis was limited to the cooling coil subsystem of an AHU.  Tassou 

and Grace implemented a artificial neural network to identify slow leaks of refrigerant 

and off-design charge levels in a vapour compression system [23].   

 Principal Component Analysis (PCA) has become a technique of interest for 

HVAC FDD.  Wang and Cui used a PCA algorithm to find bias in a dozen sensors of a 

centrifugal chiller system [24].  Chen and Lan used PCA to find fouling of the 

evaporator or condenser for a heat pump/water chiller in an office building [25].  Li 

investigated the use of wavelet-PCA and pattern matching-PCA on an AHU [26]. 

 Li and Braun developed a statistical rule based FDD scheme for use in a rooftop 

air conditioner [27].  Li and Braun later derived a scheme to enable the successful 

detection of simultaneous faults [28]. 

 More experimental techniques for HVAC FDD have also been employed.  Taylor 

and Corne tested a negative selection algorithm to detect evaporator frosting in a 

supermarket freezer [29].  An artificial immune system is used to differentiate between 

normal and faulty behaviour.   
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 The downside of these approaches is the need for large quantities of training data 

to establish normal operation.  Additional faulty data is also necessary if diagnostic 

capability is desired and absurd amounts of data are required to detect simultaneous 

faults.  Collection of this data is often costly and is specific to a given system.  For that 

reason the work of Li and Braun on component level virtual sensors for FDD is of great 

interest [30]. 

 Li and Braun also derived a virtual charge sensor based off of simple 

measurements [31].  Wichman and Braun expanded this approach to FDD on 

commercial coolers and freezers [32].  Decoupled fault sensors are derived from known 

physical relationships within the system.  This technique has several advantages.  It is 

based off of simple physical relationships within the vapor compression cycle.  This 

limits the need for large amounts of training data.  A specific fault indicator is assigned 

to each common fault and is insensitive to other faults that may occur simultaneously.  

Because of this, multiple simultaneous faults can be present without affecting accuracy.  

Li and Braun also derived a method to create virtual pressure measurements from 

cheaper thermocouples in the system, thereby lowering the cost of sensors [33].  This 

reduction of cost is an important part of any practical HVAC FDD method.  Transferring 

this method to a transcritical cycle will be the focus of this work due to all these 

advantages. 
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THEORETICAL APPROACH 

 The first aspect of this research was to investigate the use of system dynamics for 

FDD.  The majority of HVAC systems will regularly exhibit steady state or pseudo-

steady state behavior at regular intervals during their operation.  For example an 

automotive air conditioner, which will operate in transient during stop and go traffic, 

will enter steady state while on a freeway.  Most residential systems operate with on/off 

control.  By the end of the on cycle they will be very close to steady state conditions.  

Because both steady state and dynamic FDD are possible for most HVAC systems, focus 

was given on discovering whether knowledge of dynamic behaviour eases the task of 

discriminating between faulty and fault-free behaviour.   

Dynamic Models 

To test this, finite control volume (FCV) models of the transcritical refrigeration 

cycle were coded and verified with training data.  The resulting models were given step 

inputs with and without simulated faults and the transients were compared.  The 

presence of significant overshoot or change in rise time would indicate a situation in 

which a dynamic FDD algorithm could theoretically outperform a static algorithm which 

only has access to the error present at steady state conditions.  Figure 2 uses an arbitrary 

second order transfer function representing an error signal to illustrate the potential gains 

from a dynamic FDD method.  If overshoot is present, a larger error signal is present 

during transient operation.  If no overshoot is present, the dynamic model offers no new 

information while containing higher computational demands.  Additionally a large 
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change in the rise time can supply information about faulty behavior that is not available 

at steady state. 
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Figure 2. Example of the value of dynamic FDD 

The dynamic models of the transcritical vapour compression cycle were made in 

Simulink using modified versions of models coded for subcritical system.  In these 

models, each component is treated as an independent subsystem, linked to one another 

by inputs and outputs.   These components are the evaporator, the gas cooler, the 

electronic expansion valve (EEV), and the compressor.  Figure 3 shows the complete 

FCV model within Simulink.  The following paragraphs will briefly detail some of the 

assumptions used in the derivations of these models. 
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Figure 3. FCV model in Simulink 

 The FCV models of the evaporator and gas cooler are first made by treating the 

heat exchanger as one long tube.  The geometry and features such as fins are not directly 

accounted for; however, their effects can be approximated by modifying the effective 

parameters of heat exchanger.  The fluid flow is treated as one dimensional.  In reality 

there is often turbulent flow present.  A good selection of heat transfer coefficient will 

mask this. 



 11

 An assumption is made that there is little variation of refrigerant properties along 

the radial axis.  This assumption is valid as the heat transfer coefficient between the 

refrigerant and the tube wall is much lower than that within the refrigerant.  

Additionally, the tube wall is too thin to contain a large temperature differential in the 

radial direction. 

 The final assumption regards the pressure drop within the heat exchanger due to 

viscous friction in the fluid flow.  This is treated as negligible leaving each heat 

exchanger with constant pressure along its length.  The omission of this calculation 

greatly simplifies the construction of the model as well as improves run time. 

 The heat exchanger is broken up into n control volumes during the modelling 

process.  Each control volume is deemed to have uniform refrigerant properties, uniform 

wall temperatures, and uniform heat transfer coefficients.  The states of the equation are 

the refrigerant enthalpy at each node, the wall temperature at each node, and the overall 

pressure of the heat exchanger.  This gives a total of 2n+1 dynamic states.  Figure 4 

shows a diagram of the FCV heat exchanger. 
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Figure 4. FCV heat exchanger model 

 The derivation of the models springs from the conservation of energy and mass 

equations.  The conservation of energy is applied twice at each node.  The change in the 

refrigerant enthalpy within the node must be equal to total energy leaving the refrigerant 

to the wall added to any energy change from a difference in the inlet and outlet mass 

flow rates for the node.  An energy balance is also applied between to the tube wall at 

each node.  The change in the wall temperature must be equal to the difference in the 

energy moved inside the tube from the refrigerant and the energy moved outside the tube 

from the flow of air over the heat exchanger.  Finally, a mass balance is substituted at 

each node to remove the intermediate mass flow terms.  Eq. 1 shows the three 

conservation equations together in vector form. Eq. 2 through 4 give the structure for the 

heat exchanger models.  Details of the model and its derivation can be found in the 

appendix. 
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 The equations governing the evaporator and gas cooler are identical in their 

derivation.  Differences do arise when the models are implemented.  For example there 

is no two-phase region inside of the gas cooler.  It is a single-phase supercritical fluid for 

the entire length.  The other primary difference is in the internal heat transfer 

coefficients.  In each node at each time step the convective heat transfer coefficient must 

be calculated for both the internal surface and external surface of the heat exchanger.   
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Two sets of correlations are used in the evaporator.  The correlation of Thome 

and Hajal is used to calculate the internal coefficient in the two-phase regions [34].  It is 

a version of the general evaporative heat transfer correlation derived by Kattan et al. 

adapted specifically for carbon dioxide [35].  For the region which contains pure vapor, 

a correlation by Gnielinski for general vapor flow in heat exchangers [36].  For the gas 

cooler only one heat transfer correlation was required, that of Yoon et al. for use in 

supercritical cooling of carbon dioxide [37].  The equations governing these heat transfer 

coefficients are present in the Appendix.  

Because the dynamics are much faster than those of the evaporator or gas cooler, 

the dynamics of the valve and compressor are ignored.  Instead they are represented with 

static algebraic equations.  The EEV is modelled with the orifice equation, seen in Eq. 5.   

 ( )v d v e gc em C A P Pρ= −
 

(5)

Cd is the coefficient of discharge, is the mass flow rate of the valve, Av is the area of 

the valve opening, Pgc is the pressure of the gas cooler, Pe is the pressure of the 

evaporator, and ρe is the fluid density at the valve inlet.  

vm

The coefficient of discharge is an empirical quantity that is dependent on the 

geometry of the valve as well as the fluid properties.  The area of the valve opening is 

also not directly known, but is dependent on the input signal to the EEV.  Assuming a 

linear relationship over a small range, this equation can be rewritten into Eq. 6. 

 
1 2( ) (v valve e gcm v v u P Pρ= + − )e

(6) 
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Here v1 and v2 are empirical coefficients, and uvalve is the command sent to the EEV.  

Details of how to calculate v1 and v2 without a mass flow meter are explained by 

Hariharan [38]. 

  The model for the compressor is taken from previous work by Rasmussen and 

Alleyne [39].  Eq. 7 shows the algebraic formula used. 

 1/

1 2

n

gc
c c

evap

P
m k k

P
ρ

⎡ ⎤⎛ ⎞
⎢ ⎥= − ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎣ ⎦

 

(7) 

Here  is the mass flow rate of the compressor, ρc is the density of the refrigerant at the 

compressor inlet, and k1, k2 and n are empirical parameters found in the same manner as 

those for the EEV. 

cm

Static Fault Relationships 

 The goal of these relationships is to derive for the most common faults physical 

relationships within the vapour compression cycle that are responsive to one particular 

fault while being independent of all other faults.  Ideally, this should also be done while 

using a minimum of sensors and avoiding costly measurements such as mass flow or 

pressure.  The majority of these relationships are versions of those found in Wichman 

and Braun modified to work for a transcritical cycle [32]. 

Gas Cooler and Evaporator Fouling 

 Fouling occurs when debris blocks air flow over either of the heat exchangers on 

a HVAC system.  The first sensor for detecting fouling on the evaporator or gas cooler is 

based off a simple energy balance.  At steady state operation the amount of energy 
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leaving the refrigerant must equal that entering the air flow.  This relationship can be 

solved to obtain the mass flow rate of air over the heat exchanger as in Eqs. 8 and 9. 

 
,

,
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−
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 (9) 

For Eq. 8,  is the estimated mass flow rate of air over the gas cooler,  is the 

mass flow rate of the refrigerant as determined from the manufacturer’s compressor 

map, hgcri is the refrigerant gas cooler inlet enthalpy, hgcro is the refrigerant gas cooler 

outlet enthalpy, cp,a is the specific heat of air, Tgcao is the gas cooler inlet air temperature, 

and Tgcai is the gas cooler outlet air temperature.  For Eq. 9,  is the estimated mass 

flow rate of air over the evaporator, heri is the refrigerant evaporator inlet enthalpy, hero is 

the refrigerant evaporator outlet enthalpy, Teao is the evaporator inlet air temperature, and 

Teai is the evaporator outlet air temperature. 

,gca estm compm

,ea estm

Undercharge and Overcharge 

 The next faults under consideration were undercharge and overcharge of 

refrigerant.  Wichman and Braun suggest using the difference between superheat and 

subcooling to find this fault in the form of Eq. 10 [32].   

 
, ,( ) ( , )sh sc sc sh sh sh nom sc sc nomT k T T T T−Δ = − − − (10) 
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sh scT −Δ
 

is the fault indicator, ksc,sh is an empirical constant designed to remove 

sensitivity to inlet air temperatures, Tsh is the measured superheat, Tsh,nom is the normal 

superheat of the system, Tsc is the measured subcooling, and Tsc,nom is the normal 

subcooling of the system.  Superheat is defined as the difference between the evaporator 

exit temperature and the saturation temperature for the refrigerant at that pressure.  It is 

typically used to ensure that no liquid is entering the compressor.  Subcooling is the 

difference between the saturation temperature in the condenser and the condenser outlet 

temperature.  Unfortunately, a transcritical system lacks subcooling as refrigerant in the 

gas cooler is a supercritical fluid and never becomes a liquid. 

 For that reason an alternative approach was used.  A correlation can be made 

with the refrigerant densities at the entrance and exit of each heat exchanger and the 

overall system charge.  The densities can be calculated given the pressure and 

temperature measurements at each location Eq. 11 shows the resulting formula.  

 
1 2 3eri ero gcri gcroC ρ α ρ α ρ α ρΔ = + + +  (11) 

CΔ is the fault indicator, ρeri is the evaporator inlet density, ρero is the evaporator outlet 

density, ρgcri is the gas cooler inlet density, ρgcro is the gas cooler outlet density, and α1, 

α2, and α3 are empirical coefficients.  Training data for the coefficients only occurs at the 

nominal charge condition which simplifies the process of commissioning the system. 

Compressor Valve Leakage 

 The final fault to be tested was the compressor valve leakage.  This leads to a 

reduction in the volumetric efficiency of the compressor causing a drop in the 
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compressor outlet temperature.  Wichman and Braun suggested creating a virtual sensor 

for compressor outlet enthalpy [32].  Eq. 12 shows this formula. 

 
,

comp loss
kro est ero

comp

W Q
h h

m
−

= +  
 

(12) 

Here hkro,est is the compressor exit enthalpy to be estimated,  is the compressor 

work as determined from a manufacturer’s map, and  is the heat loss of the 

compressor which is found empirically.   

compW

lossQ

The formula Wichman and Braun recommend for  is based off and 

approximation of the compressor shell temperature [32].  However, this works poorly for 

a transcritical system due to a much higher compressor outlet temperature.  For that 

reason a correlation for  was made using the measured difference in inlet and exit 

enthalpy as displayed in Eq. 

lossQ

lossQ

13. 

 [ ]1 2 ( )loss kro ero compQ h hβ β= + − W  (13) 

β1 and β2 are empirically derived coefficients, which can be calculated from the same set 

of training data as those for the virtual mass sensor. 

 The fault indicator for the compressor valve leakage is given by Eq. 14. 

 
,kro kro est kroT T TΔ = −  (14) 

kroTΔ  is the fault indicator, Tkro,est is derived from Pgc and hkro,est, and Tkro is the 

measured compressor outlet temperature [38]. 
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EXPERIMENTAL APPARATUS 

 The experimental transcritical system, seen in Figure 5, is built using a donated 

drinks cabinet, such as would be found in a grocery or convenient store.  

 

 

Figure 5. Experimental transcritical CO2 system 

The system is a basic vapor compression cycle without any receiver, accumulator, or 

internal heat exchanger.  It consists of an electronic expansion valve (EEV), a 

compressor, a gas cooler and an evaporator.  A bypass valve was later added to simulate 
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the compressor valve leakage fault; however, it is normally kept closed.  Eight 

thermocouples have been installed.  Four are placed within the lines to measure the 

refrigerant temperature between each component.  The other four are placed before and 

after the heat exchangers on the air side to calculate inlet and outlet temperatures.  

Pressure sensors are located on the high and low side.  Only two are installed as pressure 

drops in the heat exchangers are assumed to be negligible.  The overall layout is given 

by Figure 6. 

 

 

 
Figure 6. Schematic of experimental system 
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 All piping connecting system components is ¼in stainless steel with Swagelok 

compression fittings.  Additionally, two safety features have been added to prevent 

injury in the case of high discharge pressure.  A pressure relief valve set to activate 

should the compressor outlet pressure rise above 13 MPa was added.  Also a pressure 

switch was added which opens the compressor circuit if the pressure rises above 11.2 

MPa.  Neither has any effect on normal system operation. 

The compressor is a TN-1410 prototype from Danfoss.  It is a fixed-speed 

reciprocating compressor powered by a 240 V signal at 50 Hz.  Because of the high 

discharge temperature, external cooling is supplied by the gas cooler fan.  The 

compressor provides approximately 0.5 kW of cooling while operating under normal 

conditions.  Figure 7 shows the TN-1410 compressor. 

 The gas cooler and the evaporator are both tube and fin type heat exchangers.  

The external fluid, air, moves over in cross flow.  The fans that provide this flow are 

variable voltage allowing for user control.  For the evaporator there is 10.8m of ¼in 

copper tubing in twenty-four passes with 124 external fins.  The gas cooler has 16.3m of 

tubing in forty-four passes with 62 external fins.  The gas cooler can be seen in Figure 8. 
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Figure 7. The compressor 

 

Figure 8. The gas cooler 



 23

 The EEV is a prototype UKV-J14D donated to the lab by Danfoss-Saginomiya.  

It is capable of providing cooling between 0.25 kW and 10 kW.  The UKV-A111 coil 

adjusts the opening of the valve.  Control of the EEV is accomplished by the LNE-ZP30 

board which in turn accepts a 0-10 V signal.  A view of the EEV without its external 

fittings is shown in Figure 9. 

 

 

 

Figure 9. The UKV-J14D EEV 

 The system’s bypass valve is the SS-4GUF4-G needle valve from Swagelok.  In 

the shut position it seals completely allowing no flow.  This allows the system to operate 

normally when the compressor valve leakage fault is not being simulated.  Control of the 

valve is accomplished via a manually operated handle.  Figure 10 shows the bypass 

valve connected across the compressor. 
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Figure 10. The bypass valve attached to the compressor 

 

Figure 11. Fan speed control boards 
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 The fans for the evaporator and the gas cooler are controlled by independent 

boards from Controls Resources.  They accept an input signal from the data acquisition 

computer.  Figure 11 shows the control boards for each fan 

 Temperature measurements are conducted with GJMQSS-125G-6 T-type 

thermocouples from Omega.  They are used to measure both refrigerant and air 

temperatures.  The thermocouples are accurate to ±0.5°C.  Processing of the data is done 

by a Measurement Computing PCI-DAS-TC thermocouple board.  One of the 

thermocouples is displayed in Figure 12. 

 

 

 

Figure 12. Type-T thermocouple 
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 The system pressures are measured using 84HP piezoresistive pressure sensors 

from Sensata.  They are capable of measuring pressures up to 17 MPa and are accurate 

to ±45kPa.  Figure 13 shows one of the pressure sensors attached to piping.   

 

 

 

Figure 13. Pressure sensor 

  

Table 2. Parts list for transcritical refrigeration system 

Part Manufacturer Part No. Quantity
EEV Danfoss Saginomiya UKV‐J14D (Prototype) 1

EEV Motor Danfoss Saginomiya UKV‐A111 1
EEV Control Board Danfoss Saginomiya LNE‐ZP30‐110 1

Compressor Danfoss TN‐1410 (Prototype) 1
Evaporator Unknown N/A 1
Gas Cooler Unknown N/A 1

Fan General Electric 5KSM81HFL3012S 2
Fan Controller Control Resources 180V800E 2
Bypass Valve Swagelok SS‐4GUF4‐G 1
Thermocouple Omega GJMQSS‐125G‐6 8
Pressure Sensor Sensata 84HP062X02500SS0C 2

High Pressure Cutoff Switch Sensata PS80‐21‐XXXX 1
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 A list of all major components can be seen in Table 2.  Control of the system is 

achieved with a data acquisition PC.  Various sensor modules from Dataforth allow the 

reading and output of electrical signals.  Wincon is the software used to operate the 

system.  It allows Simulink to be the user interface for the system.  Figure 14 shows the 

data acquisition computer while Figure 15 shows the software interface. 

 

 

 

Figure 14. The DAQ PC 
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Figure 15. Wincon and Simulink interface 

Subcritical System 

 The subcritical system selected for comparison was a TRANE residential air-

conditioning unit currently used in the Thermofluids Controls Lab.  It provides three 

tons of cooling and has actuation in the valve, both fans, and two-speed control in the 

condenser.  The refrigerant used is R-410a.  Other than the instrumentation, this unit 

would be equivalent to a high end home unit.  Figure 16 is a picture of the TRANE 

system and Figure 17 depicts the layout. 
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Figure 16. The TRANE subcritical air conditioner 

 

Figure 17. Schematic of the system's layout 
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DYNAMIC FAULT DETECTION 

 To test the potential efficacy of dynamic fault detection it is necessary to see 

whether any overshoot is present in the step responses of the transcritical system or 

whether its responses or primarily first order.  A first order response means that the 

maximum change in an error signal would occur at steady state.  This means that the 

error signal would not be larger during transients.  Because modeling the dynamics in a 

vapor compression system is much harder than deriving a static model, a first order 

response would reflect poorly on the practicality of any dynamic fault detection method. 

Dynamic Responses for Transcritical System 

Step tests were performed on the system for the valve, the gas cooler fan, and the 

evaporator fan to provide insight to normal system behavior.  Because of the inherent 

nonlinearities within the system, these responses would be slightly different if taken at 

other operating conditions; however, they are indicative of typical responses.   

Transcritical Step Responses 

The results of these steps in the system pressures as well as the superheat will be 

given.  A Butterworth filter has been used to reduce noise from the data.  Figure 18 

shows the response to a step decrease in the evaporator fan for the suction pressure, 

discharge pressure, and superheat. 
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Figure 18. Response to step input in evaporator fan under fault-free conditions 
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 No overshoot is present in any of these responses making it unlikely that any 

beneficial information could be added with a dynamic fault detection method over a 

static one.  There is also a great deal of noise present in the pressure measurements 

which makes the exact shape of the step response hard to discern.  Figure 19 shows the 

reaction of the same variables to a step increase in the valve’s position. 

 In the response to the valve there is some minor overshoot present.  This 

overshoot is confined to the response of the superheat and is only a small fraction of the 

size of the overall step.  Figure 20 shows the response to a step decrease in the gas cooler 

fan for evaporator pressure, gas cooler pressure and superheat. 

 For steps in the gas cooler fan there is little response in the evaporator pressure or 

superheat.  The gas cooler pressure has a large response due to a drop in cooling in the 

gas cooler; however, Figure 20 shows that there is no overshoot present. 

Transcritical Dynamic Error Signals 

 Because an enormous combination of faults and output variables exist, the FCV 

model of the transcritical refrigeration cycle was used to select the most promising 

combinations for actual testing.  Simulations were performed identifying three 

combinations of a fault, a step to an input, and a response variable that contained the 

most overshoot in the error signal.   
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Figure 19. Response to step input in the valve under fault free conditions 
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Figure 20. Response to step input in the gas cooler fan under fault-free conditions 
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The error signal in this case was defined as the absolute value of the difference between 

the normal response to a step input and the faulty response.   Eq. 15 defines the error 

signal. 

 ( ) ( ) ( )normal faultyE t x t x t= −
 

 

(15) 

 

Here E(t) is the error signal, xnormal (t) is the normal response, and xfaulty (t) is the faulty 

response.  Table 3 gives the three best candidates for dynamic fault detection. 

Table 3. Candidates for dynamic fault testing 

Fault Step Input Output Steady State Error Overshoot
Evaporator Fouling Evaporator Fan Pdis 39 kPa 8 kPa

Gas Cooler Fouling Valve Pdis 690 kPa 2 kPa

Undercharge Valve Pdis 700 kPa 15 kPa  

 

 

   All three combinations of faults and inputs have the gas cooler pressure as the 

variable in which overshoot is expected to occur.  Table 3 clearly shows that only trivial 

amounts of overshoot can be expected in the error signals.  No combination has enough 

overshoot to exceed the accuracy of the sensors.  Nonetheless testing for each of these 

combinations was performed.  As a note, the steady state error for the faults will not 

perfectly match the model as the faults induced during testing were not the same size and 

not at identical operation points. 
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 For evaporator fouling a decrease in the evaporator fan was selected as the most 

promising step input.  To simulate the fault a blockage was put in front of the evaporator 

fan.  The step input was a 30% decrease in the evaporator fan input voltage which 

corresponds to a 15% decrease in the mass flow rate of air over the evaporator.  No 

overshoot was detected in the error signal as well as no major changes in rise time.  

Figure 21 shows the error signal for this test.  As with the previous section, time is 

normalized such that all steps occur at 200 seconds. 

 In the presence of gas cooler fouling a step in the valve position was deemed 

most likely to induce overshoot in the gas cooler pressure.  To simulate gas cooler 

fouling the input voltage to the gas cooler fan was decreased by 30% corresponding to a 

20% reduction in the mass flow rate of air over the gas cooler.  The step was a 2% 

opening of the valve.  Figure 22 shows the error signal in the gas cooler pressure for this 

step test.  If any overshoot is present, noise in the system makes it undetectable.  Also no 

noticeable change in the rise time occurs. 
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Figure 21. Error in system to an evaporator fan step with evaporator fouling 
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Figure 22. Error in system to a valve step with gas cooler fouling 



 39

0 100 200 300 400 500 600
8500

9000

9500

10000

P
di

s (k
P

a)

Time (s)

0 100 200 300 400 500 600
3000

3500

4000

Time (s)

P
su

c (k
P

a)

 

 

Fault Free
Undercharged

0 100 200 300 400 500 600
0

5

10

15

20

S
up

er
he

at
 (o C

)

Time (s)

0 100 200 300 400 500 600
500

600

700

800

900
|E

rro
r Pd

is| (
kP

a)

Time (s)

 

 
Error Signal

 

Figure 23. Error in system to valve step while undercharged 
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 When the transcritical system is undercharged, the valve step was deemed most 

likely to induce overshoot.  To simulate the fault the system was charged 85% of its 

normal charge level.  The valve opening was given a 2% step increase.  Figure 23 gives 

the error signal in the gas cooler pressure for this test.  A small amount of overshoot is 

present; however, when it is compared with the steady state magnitude of the error signal 

it is trivial.  No significant changes in rise time are seen. 

 For the tested transcritical system there do not seem to be any faults or inputs that 

will cause large amounts of overshoot.  First order responses tend to dominate.  In the 

few cases where overshoot is present, it is extremely minor.  For this reason it is unlikely 

that the use of dynamic fault detection could offer much benefit over static methods and 

nearly impossible that it would justify the increased complexity of modelling dynamic 

system behavior. 

Comparison to Subcritical Dynamics 

 To render the results more general the same combinations of faulty conditions 

and step inputs were performed on the subcritical system.  The undercharge condition 

was dropped, though, due to the presence of a receiver which minimizes the effect of 

deviations in charge.  This comparison is not meant to exhaustively test the viability of 

dynamic fault detection in subcritical systems.  It is merely meant to be used to help 

evaluate the findings presented on transcritical dynamic fault detection. 
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Subcritical Step Responses 

 To begin step tests were given to each actuator as was done with the transcritical 

system.  The results of these steps on the condenser pressure, evaporator pressure, and 

superheat will be given.  The first step was given to the evaporator fan.  Figure 24 shows 

the responses in evaporator pressure, condenser pressure, and superheat.  None of the 

responses contain any detectable amount of superheat.  First order responses 

predominate. 

 For the next step test, a step was given to the expansion valve and the results 

were recorded.  Figure 25 gives the step responses for the evaporator pressure, condenser 

pressure, and superheat.  There is clearly no overshoot present in the condenser pressure 

or superheat.  A very small amount is visible in the evaporator response; however, 

relative to noise and measurement errors it is insignificant. 

 The final step test under normal conditions was given to the condenser fan.  

Figure 26 shows the reaction of the subcritical air-conditioning system to a sudden 

change in condenser fan speed.  No overshoot is present in the suction pressure or in the 

discharge pressure despite a large change in the latter.  A small amount can be seen in 

the superheat; however, it is only about 0.5°C.  None of the step responses to evaporator 

fan, valve, or condenser fan show great promise in terms of dynamic fault detection. 



 42

0 100 200 300 400 500 600
1980

1990

2000

2010

2020

P
di

s (k
P

a)

Time (s)

0 100 200 300 400 500 600
1000

1010

1020

1030

1040

P
su

c (k
P

a)

Time (s)

0 100 200 300 400 500 600
7

8

9

10

S
up

er
he

at
 (o C

)

Time (s)

0 100 200 300 400 500 600
-4

-3

-2

-1

0

1
E

va
po

ra
to

r F
an

 (V
)

Time (s)

 

Figure 24. Subcritical response to a step in the evaporator fan under fault-free conditions 
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Figure 25. Subcritical response to a step in the valve under fault-free conditions 
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Figure 26. Subcritical response to a step in the condenser fan under fault-free conditions 
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Subcritical Dynamic Error Signals 

 The tests to find overshoot in the error signals for the transcritical system were 

also replicated for the subcritical system.  First the effects of evaporator fouling were 

tested.  To simulate the fouling a blockage was placed over part of the evaporator air 

inlet.  A step was given to the evaporator fan equivalent to approximately a 20% 

reduction in evaporator mass flow.  The difference of the step test for faulty and fault-

free conditions was taken, and the error for the condenser pressure appears in Figure 27.  

There is little change in the error and no overshoot is present.  No change in rise time is 

visible. 

 The other fault simulated was condenser fouling.  To simulate that the condenser 

fan input voltage was lower until the air flow had been reduced by approximately 25%.  

The valve was opened by 3% to induce dynamics.  Figure 28 shows the error in the 

condenser pressure signal as the test was conducted.  No overshoot is found. 

 As with the transcritical dynamic tests no real amounts of overshoot were found 

during any of the scenarios tested.  The static errors in signals dwarf any additional 

information that may be gained from including dynamics.  This adds support to the 

notion that there is no value in incorporating dynamic analysis into HVAC fault 

detection and diagnosis. 
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Figure 27. Error in system to evaporator fan step with evaporator fouling present 
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Figure 28. Error in system to valve step with condenser fouling present 
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STATIC FAULT DETECTION 

 Testing for the static fault detection method was performed in one continuous 

test.  This was done to reduce any opportunities for confounding factors to appear.  All 

faults were tested individually as well as in binary pairs.  The transcritical system was 

completely drained of all carbon dioxide using a vacuum pump.  It was then filled to 

low-charge condition and testing was initiated.  Table 4 shows the order of the fault 

detection test.   

Table 4. Test order for static fault detection 

Order Fault 1 Fault 2
1 Undercharge None
2 Undercharge Gas Cooler Fouling (Air Flow)
3 Undercharge Evaporator Fouling (Air Flow)
4 Undercharge Compressor Valve (Air Flow)
5 None None
6 Gas Cooler Fouling (Air Flow) None
7 Gas Cooler Fouling (Air Flow) Evaporator Fouling (Air Flow)
8 Evaporator Fouling (Air Flow) None
9 Evaporator Fouling (Physical Blockage) None
10 Gas Cooler Fouling (Physical Blockage) None
11 Compressor Valve None
12 Compressor Valve Gas Cooler Fouling (Air Flow)
13 Compressor Valve Evaporator Fouling (Air Flow)
14 Overcharge Gas Cooler Fouling (Air Flow)
15 Overcharge None
16 Overcharge Evaporator Fouling (Air Flow)
17 Overcharge Compressor Valve  
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 The system was allowed to run for approximately twenty minutes in each 

configuration to achieve steady state operation.  There was also a section of data used for 

training some of the fault indicators that occurred in between configurations four and 

five.  This consisted of eight data points created with changes in the EEV, evaporator 

fan, and gas cooler fan.  Later this data was used to determine the empirical coefficients 

in the virtual sensors for charge level and compressor valve leakage.  Table 5 gives the 

values for the fault indicators during the test. 

Table 5. Fault indicators for each test 

Gas Cooler Evaporator
Charge Air Flow  Air Flow ΔTko

(kg/min) (kg/min)  (°C)
Undercharge None ‐36.1 6.4 4.9 0.4
Undercharge Gas Cooler Fouling ‐36.1 4.6 4.7 1.1
Undercharge Evaporator Fouling ‐33.9 7.0 3.2 ‐0.1
Undercharge Compressor Valve ‐19.9 7.1 5.2 4.7

None None ‐2.7 7.5 4.2 1.2
Gas Cooler Fouling None ‐1.0 5.0 4.0 0.8
Gas Cooler Fouling Evaporator Fouling ‐5.5 5.4 2.6 ‐0.1
Evaporator Fouling None ‐4.8 8.8 2.1 0.4

Evaporator Fouling (P) None ‐3.4 7.9 3.7 1.0
Gas Cooler Fouling (P) None ‐0.4 5.3 4.0 0.9
Compressor Valve None 2.3 8.2 4.5 2.3
Compressor Valve Gas Cooler Fouling 2.2 5.9 4.7 2.2
Compressor Valve Evaporator Fouling ‐2.1 11.6 3.4 1.2

Overcharge Gas Cooler Fouling 13.4 4.6 3.7 ‐0.7
Overcharge None 12.4 6.8 3.9 ‐0.5
Overcharge Evaporator Fouling 5.6 6.2 2.2 ‐0.9
Overcharge Compressor Valve 18.0 8.6 4.5 3.3

Faults Indicator

Fault 1 Fault 2
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 During the test for combined undercharge and compressor valve leakage, the 

system underwent a brief period of unstable behavior.  After this the system returned to a 

second different equilibrium point.  This behavior has been seen before during the 

construction and testing of this system.  As of now the cause of this is not confirmed.  

Possible explanations include contaminants in the refrigerant, flaws in some of the 

prototype equipment, or multiple equilibria in a transcritical system as suggested by 

Mehta and Eisenhower [40].  The results of the fault indicators at that point have been 

excluded from the rest of the data and will be presented separately in Table 6. 

The charge indicator was the only sensor that continued to function correctly.  

Both gas cooler and evaporator airflow were significantly overestimated, even though air 

flow was at the normal speed.  Additionally, the compressor exit temperature was 

accurately predicted by the sensor for compressor valve leakage even though it should 

not have been given that the compressor valve leakage fault was present. 

Table 6. Fault indicators for secondary equilibrium 

Fault Units Indicator
Charge None ‐43.0

Gas Cooler Air Flow kg/min 12.4
Evaporator Air Flow kg/min 11.0

ΔTko °C ‐0.2  
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Transcritical Results 

 In order to get a better assessment of the potential for false positives during 

operation, a secondary test was also run.  In it the system was run at the borders of its 

operating region for both high and low superheat conditions.  To do this the system was 

tested with both high and low fan speeds for each fan.  In the resulting data the transients 

were removed and the standard deviation of each indicator was taken.  In all of the 

following graphs the points three standard deviations from the normal operating 

condition will be marked.  Any points outside of this window show behavior that is 

statistically significant (p<0.01) either in terms of indicating a fault or showing some 

cross coupling between sensors.  Table 7 shows the standard deviations of each fault 

indicator. The values three standard deviations from the fault-free point and the point 

with no secondary fault will be shown on the figures. 

Table 7. Standard deviation of fault indicators for system operating region 

Indicator σ (68%) 3σ (99.7%)
Charge 2.78 8.34

Gas Cooler Fouling 0.102 0.306
Evaporator Fouling 0.174 0.522
Compressor Valve 0.7 2.1  

 

 

Virtual Pressure Measurements 

To reduce costs the evaporator pressure sensor can theoretically be replaced by a 

thermocouple measuring the temperature of the two-phase refrigerant as it enters the 
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evaporator.  Figure 29 compares the results of the two measurements.  The results are 

very close to the measurement error of the interpolated pressure of 50kPa caused by 

errors in the thermocouple readings of ±0.5°C. 
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Figure 29. Virtual sensor for pressure measurements 

Overcharge and Undercharge 

 For the undercharged configuration a deviation of -15% from nominal charge 

was used as the amount of fault induced for the test condition.  This was chosen to give a 

significant fault level while maintaining the discharge pressure above the critical 

pressure of carbon dioxide 7.37 MPa.  For the overcharged configuration a deviation of 

+10% from nominal charge was used.  This was limited by safety concerns as a 

combination of high charge and fouling in the gas cooler can cause pressures high 

enough in the gas cooler to trigger the high pressure cutoff switch, which would then 
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disable the compressor.  Table 8 shows the results of the test for the charge indicator.  

The results have been ordered from the lowest value to the highest. 

Table 8. Fault indicator for deviation in charge level 

Charge
(no units)

Undercharge Gas Cooler Fouling ‐36.1
Undercharge None ‐36.1
Undercharge Evaporator Fouling ‐33.9
Undercharge Compressor Valve ‐19.9

Normal Evaporator & Gas Cooler Fouling ‐5.5
Normal Evaporator Fouling ‐4.8
Normal Evaporator Fouling (Physical Blockage) ‐3.4
Normal None ‐2.7
Normal Compressor Valve & Evaporator Fouling ‐2.1
Normal Gas Cooler Fouling ‐1.0
Normal Gas Cooler Fouling ‐0.4
Normal Compressor Valve & Gas Cooler Fouling 2.2
Normal Compressor Valve 2.3

Overcharge Evaporator Fouling 5.6
Overcharge None 12.4
Overcharge Gas Cooler Fouling 13.4
Overcharge Compressor Valve 18.0

Charge Level Secondary Fault

 

 

 

 For charge detection is no case of overlap, in which a normally charged condition 

has a higher fault indicator than that of a faulty charge.  The evaporator fouling can 

falsely produce the effect of lowered charge or mask the appearance of overcharge; 

however, in order to cause a false positive or negative the magnitude of the fouling 

would have to be significantly greater than the 30% tested.  Figure 30 shows the effect of 
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evaporator fouling on the charge sensor.  No other secondary fault had significant impact 

on the virtual charge sensor. 
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Figure 30. Effect of evaporator fouling on charge sensor 

Gas Cooler Fouling 

 In simulating gas cooler fouling the gas cooler fan input control voltage was 

reduced by 30% which corresponds roughly to a 30% drop in mass flow rate.  Also in a 

separate test, 40% of the gas cooler surface area was physically blocked to compare 

methods of simulating the fault.  Unfortunately, there is no way of ensuring that the 

magnitude of the fault caused by the physical blockage corresponds to that of the 

reduction in fan speed.  Larger amounts of fouling were not tested for safety reasons; the 

Danfoss 1410N compressor requires air cooling while in operation which is supplied by 

the gas cooler fan in the experimental system.  As with all other faults, gas cooler 
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fouling was tested individually and with secondary faults present.  Table 9 shows the 

results of the gas cooler air flow indicator given in order from smallest to largest. 

Table 9. Gas cooler fouling indicator 

Gas Cooler
 Air Flow
(kg/min)

Yes Overcharge 4.6
Yes Undercharge 4.6
Yes None 5.0

Yes (Physical Blockage) None 5.3
Yes Evaporator Fouling 5.4
Yes Compressor Valve 5.9
No Overcharge & Evaporator Fouling 6.2
No Undercharge 6.4
No Overcharge 6.8
No Undercharge & Evaporator Fouling 7.0
No Undercharge & Compressor Valve 7.1
No None 7.5
No Evaporator Fouling  (Physical Blockage) 7.9
No Compressor Valve 8.2
No Overcharge & Compressor Valve 8.6
No Evaporator Fouling 8.8
No Compressor Valve & Evaporator Fouling 11.6

Gas Cooler Fouling Secondary Fault

 

 

 

 No overlap is present between the faulty and fault-free conditions.  As mentioned 

in the theory section, this fault indicator is not completely independent of the compressor 

valve leakage fault.  The compressor valve leakage fault renders the compressor map 

inaccurate and thus prevents its use.  For that reason the data points where no 

compressor valve leakage was present are presented separately in Figure 31.  A value of 
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zero on the x-axis indicates no fouling while a value of one indicates fouling is present. 

An uncertainty analysis was performed at the fault free point with the result of 13% 

uncertainty.  The sources of error correspond to the uncertainties in the sensors as given 

by the manufacturers.  Several assumptions were made in this analysis.  The compressor 

map is assumed to be completely accurate, the refrigerant properties are assumed to 

perfectly match those of a pure substance with no adjustments for entrained oil, and 

there is assumed to be no bias due to the placement of sensors.   

 The majority of the points are within the range of the uncertainty.  Those points 

outside of the uncertainty are there most likely due to violations of the aforementioned 

assumptions.  Because the compressor map is no longer accurate when the compressor 

valve leakage is present, it is replaced by a revised version of the compressor valve 

leakage sensor.   

Figure 32 shows the gas cooler fouling sensor without corrections for compressor 

valve leakage.  The mass flow rate of air is significantly overestimated.  Figure 33 shows 

the fouling sensor when the compressor valve leakage fault is included but corrected for.  

There is one outlier where the gas cooler air flow rate is overestimated, but otherwise the 

results are acceptable.  The calculated uncertainty for points with the compressor valve 

leakage fault also increases.  The uncertainty rises to 16% and this is with the 

assumption that the compressor valve leakage sensor is perfectly accurate, which it is 

not. 
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Figure 31. Gas cooler air fouling with compressor valve leakage excluded 
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Figure 32. Gas cooler virtual sensor without corrections for compressor valve leakage 
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Figure 33. Gas cooler fouling with corrections for compressor valve leakage 

Evaporator Fouling 

 For simulating evaporator fouling the evaporator fan input control voltage was 

decreased by 40% which is equivalent to a drop of one third in the mass flow rate of air.  

A physical blockage of 40% of the fan intake was separately tested for comparison.  This 

level of fouling was chosen to give a significant fault level while maintaining an 

appropriate level of superheat.  Larger amounts of fouling would have required adjusting 

the valve to keep superheat, thereby introducing a confounding factor.  Table 10 shows 

the results of the virtual sensor for evaporator air flow. 
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Table 10. Evaporator fouling indicator 

Evaporator
Air Flow
(kg/min)

Yes None 2.1
Yes Overcharge 2.2
Yes Gas Cooler Fouling 2.6
Yes Undercharge 3.2
Yes Compressor Valve 3.4

Yes (Physical Blockage) None 3.7
No Overcharge & Gas Cooler Fouling 3.7
No Overcharge 3.9
No Gas Cooler Fouling (Physical Blockage) 4.0
No Gas Cooler Fouling 4.0
No None 4.2
No Overcharge & Compressor Valve 4.5
No Compressor Valve 4.5
No Compressor Valve & Gas Cooler Fouling 4.7
No Undercharge & Gas Cooler Fouling 4.7
No Undercharge 4.9
No Undercharge & Compressor Valve 5.2

Evaporator Fouling Secondary Fault

 

 

 Once again there is no overlap between the sensor’s measurements for faulty and 

fault free conditions for the fouling simulated by a reduction in fan speed.  As with gas 

cooler fouling, the presence of the compressor valve leakage fault renders the 

compressor map useless for mass flow rate.  Figure 34 shows the virtual sensor for 

evaporator air flow without the compressor valve leakage present.  The uncertainty 

associated with these measurements is 8%.  The assumptions for this are the same as 

those for the gas cooler air flow virtual sensor with one additional assumption: the 

change in humidity in the air is ignored.  This is an assumption of convenience since 
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humidity sensors are sometimes unreliable and need frequent calibration.  These 

concerns limit their use in any practical implementation of a FDD method.   
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Figure 34. Evaporator fouling with compressor valve leakage excluded 

 Unlike the virtual sensor for gas cooler air flow, many of the data points are 

outside of the range of uncertainty.  This is most likely due to the effects of moisture in 

the air condensing on the coils of the evaporator.  As with the gas cooler air flow virtual 

sensor, the compressor valve leakage fault renders the compressor map inaccurate 

necessitating correction.  Figure 35 shows the virtual sensor when no correction is made 

for the compressor valve leakage fault.  The performance is extremely poor.  Figure 36 

shows the corrected data.  Performance improves significantly.  In the presence of the 
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compressor valve leakage uncertainty in the measurement of the evaporator air flow rate 

rises from 8% to 13%. 
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Figure 35. Evaporator fouling without corrections for compressor valve leakage 



 62

0 5 10 15 20 25 30 35 40
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Evaporator Fouling (%)

V
irt

ua
l A

ir 
Fl

ow
 (k

g/
s)

 

 

Comp Valve Leak
No Comp Valve Leak
3σ Fault Free
3σ Faulty

 

Figure 36. Evaporator fouling with corrections for compressor valve leakage 

Compressor Valve Leakage 

 To simulate the compressor valve leakage fault a bypass valve was installed near 

the compressor.  It is a needle valve which allows the flow of refrigerant from the exit of 

the compressor back to its entrance.  During the simulations the valve was opened 

approximately one eighth of a turn.  Because no mass flow meter is installed in the 

system, there is no way of measuring the relative magnitude of the fault outside of the 

virtual sensor.  Table 11 gives the results of the virtual sensor. 
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Table 11. Compressor valve leakage indicator 

ΔTko
 (°C)

Yes Undercharge 4.7
Yes Overcharge 3.3
Yes None 2.3
Yes Gas Cooler Fouling 2.2
No None 1.2
Yes Evaporator Fouling 1.2
No Undercharge & Gas Cooler Fouling 1.1
No Evaporator Fouling (Physical Blockage) 1.0
No Gas Cooler Fouling (Physical Blockage) 0.9
No Gas Cooler Fouling 0.8
No Undercharge 0.4
No Evaporator Fouling 0.4
No Evaporator & Gas Cooler Fouling ‐0.1
No Undercharge & Evaporator Fouling ‐0.1
No Overcharge ‐0.5
No Overcharge & Gas Cooler Fouling ‐0.7
No Overcharge & Evaporator Fouling ‐0.9

Compressor Valve Secondary Fault

 

 

 

 Of all the virtual sensors the performance of the compressor discharge 

temperature exhibited the poorest performance.  There is some overlap present between 

faulty and fault-free conditions.  The two largest sources of error are the compressor 

flow map and heat lost to the outside environment during compression.  The flow map 

supplied by Danfoss was not very detailed.  For each data point the discharge pressure 

was kept constant while the evaporation pressure was varied.  As a result the pressure 

ratio was used as the only input variable as opposed to the suction and discharge 

pressures.  Additionally, the compressor requires air cooling which increases the heat 
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loss to the surrounding environment which complicates the process of determining how 

much energy has been added to the refrigerant. 

 One observation in particular supports the notion that errors in the compressor 

map are the cause of this sensor’s inaccuracy.  Figure 37 shows that there is a strong 

clustering among the data points based off of the charge level.  This is indicative of 

errors in the map because the pressure ratio undergoes the most change when refrigerant 

is added or removed from the system.  Figure 38 illustrates the relationship that appears 

between the compressor outlet temperature residual and the pressure ratio. No 

uncertainty bars are included for the faulty-condition in Figure 37 as there is no a priori 

method of determining the magnitude of the fault outside of the virtual sensor.   
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Figure 37. Compressor valve leakage and its dependence on charge 
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Figure 38. A comparison of compressor outlet temperature residual and pressure ratio 

Transient Response of Virtual Sensors 

 Two of the faults, gas cooler and evaporator fouling, were chosen for dynamic 

testing of their virtual sensors.  These two faults are the only ones which are likely to 

manifest quickly while the system is in operation.  This was done to establish the speed 

at which sudden faults could be detected.  Figure 39 and Figure 40 show the transient 

response of each sensor to a reduction in air speed indicative of fouling over the gas 

cooler and evaporator respectively.  In both cases the dynamic response is good.  The 

virtual sensor picks up the fault smoothly as the system dynamics settle with no aberrant 

behavior. 
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Figure 39. Transient response of gas cooler virtual sensor to sudden gas cooler fouling 
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Figure 40. Transient response of evaporator virtual sensor to sudden evaporator fouling 
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 While the system was operating at a fault-free condition, a step change was given 

to the valve to determine how each sensor would respond to excitation from the EEV.  

Figure 41, Figure 42, Figure 43, and Figure 44 show the reactions of each fault sensor to 

this step change.  The step occurs at 50s.  In each case there is no change in the fault 

sensor due to the valve step. 
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Figure 41. Response of the charge sensor to a valve step at fifty seconds 
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Figure 42. Response of the gas cooler virtual sensor to a valve step at fifty seconds 
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Figure 43. Response of the evaporator virtual sensor to a valve step at fifty seconds 
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Figure 44. Response of the compressor outlet temperature sensor to a valve step at fifty seconds 

 
 

Subcritical Comparison 

 As a benchmark for comparison, a similar set of tests using virtual sensors for 

static fault detection was run on a subcritical air conditioner.  The major difference in 

these tests and those for the transcritical system is that no faults related to charge level 

were tested.  This is simply because the subcritical system in question contains a receiver 

after the condenser.  The receiver holds excess liquid refrigerant which negates the effect 

of any deviation in charge within certain limits.  Only when the refrigerant inside the 

receiver is totally vapor or totally liquid would the effects of a change in charge be 

noticeable.  Table 12 gives the order of testing.  As earlier the designation of each fault 

as “Fault 1” or “Fault 2” is arbitrary. 
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Table 12. Order for subcritical tests 

Order Fault 1 Fault 2
1 None None
2 Evaporator Fouling None
3 Evaporator Fouling Condenser Fouling
4 Condenser Fouling None
5 Compressor Valve Condenser Fouling
6 Compressor Valve None
7 Compressor Valve Evaporator Fouling  

 

 

 In each setting the air conditioner was allowed to come to steady state before a 

measurement was taken.  Training data for the compressor valve leakage sensor was 

collected before these tests were run.  Table 13 gives the results of each fault indicator at 

each testing point. 

Table 13. Virtual sensor results for subcritical tests 

Condenser Evaporator
Air Flow Air Flow ΔTko
(kg/s) (kg/s)  (°C)

None None 2.40 0.59 ‐0.4
Evaporator Fouling None 2.66 0.46 ‐0.4
Evaporator Fouling Condenser Fouling 1.67 0.48 0.1
Condenser Fouling None 1.59 0.58 0.2
Compressor Valve Condenser Fouling 1.55 0.55 3.8
Compressor Valve None 2.32 0.55 3.3
Compressor Valve Evaporator Fouling 2.40 0.44 3.8

Faults Indicator

Fault 1 Fault 2
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 As with the transcritical system, a test was performed to find the variation of the 

fault indicators in the operating region of the system.  Combinations of high and low fan 

speeds for the condenser and evaporator fans were tested.  The standard deviation of the 

steady state readings is shown in Table 14.  The values three standard deviations from 

the fault-free point and the point with no secondary fault will be shown on the figures. 

Table 14. Standard deviations of subcritical fault indicators in operating region 
Indicator σ (68%) 3σ (99.7%)

Condenser Fouling 0.13 0.38
Evaporator Fouling 0.01 0.03
Compressor Valve 0.34 1.02  

 

Virtual Pressure Measurements 

 In a subcritical system both the suction and discharge pressures can be 

determined through temperature measurements in regions where the refrigerant is two-

phase.   In this system no thermocouple is positioned in the two-phase region of the 

condenser making the direct measurement of pressure necessary; however, the 

refrigerant at the inlet of the evaporator is always two-phase which allows for indirect 

calculation of the evaporator pressure.  Figure 45 shows the correlation between the 

measured pressure and the virtual calculations based off of the saturation temperature.  

The agreement between the two is excellent. 
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Figure 45. Virtual sensor for evaporator pressure 

Condenser Fouling 

 For the simulation of condenser fouling the input control voltage to the 

condenser fan was dropped from 4V to 1V.  This roughly corresponds to a 35% decrease 

in mass flow of air over the condenser.  Table 15 gives the estimated condenser air flow 

in order of smallest to largest. 

No overlap is present between faulty and fault free conditions and overall the 

grouping of the data points is excellent.  Uncertainty analysis gives an error band of up 

to 22% based off of measurement errors.  This large uncertainty is due to a small 

temperature drop in the air across the condenser which magnifies the already large 

uncertainty of the thermocouples.  Because the pressure measurements are more accurate 

in the subcritical system, the change in uncertainty when the compressor valve leakage 
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fault is present is insignificant.  Figure 46 shows a graphical representation of the 

condenser air flow sensor. 

Table 15. Condenser fouling indicator 

Condenser
Air Flow
(kg/s)

Yes Compressor Valve 1.55
Yes None 1.59
Yes Evaporator Fouling 1.67
No Compressor Valve 2.32
No None 2.40
No Compressor Valve & Evaporator Fouling 2.40
No Evaporator Fouling 2.66

Condenser Fouling Secondary Fault
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Figure 46. Subcritical condenser fouling virtual sensor 
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Evaporator Fouling 

 To simulate evaporator fouling the input control voltage to the evaporator fan 

was dropped from 5V to -5V.  This roughly corresponds to a 30% decrease in the mass 

flow rate of air over the evaporator.  Table 16 gives the results of the virtual sensor for 

evaporator air flow at each test level ordered from lowest to highest.  

Table 16. Evaporator fouling indicator 

Evaporator
Air Flow
(kg/s)

Yes Compressor Valve 0.44
Yes None 0.46
Yes Condenser Fouling 0.48
No Compressor Valve & Condenser Fouling 0.55
No Compressor Valve 0.55
No Condenser Fouling 0.58
No None 0.59

Evaporator Fouling Secondary Fault

 

 

 
 There is no case of overlap between the faulty and fault-free conditions.  As with 

the condenser fouling the grouping of the data is very good.  The calculated uncertainty 

is 6%.  It is much lower than that of the condenser because of the larger shift in air 

temperature across the evaporator.  The addition of the compressor valve leak only 

increases the uncertainty of the measurement to 7%.  Figure 47 gives a graphical 

representation of the virtual sensor for evaporator air flow. 

 

 



 75

0 5 10 15 20 25 30
0

0.1

0.2

0.3

0.4

0.5

0.6

Evaporator Fouling (%)

V
irt

ua
l E

va
po

ra
to

r A
ir 

Fl
ow

 (k
g/

s)

 

 

Comp Valve Leak
No Comp Valve Leak
No Secondary Fault
3σ Fault Free
3σ Faulty

 
Figure 47. Subcritical evaporator fouling virtual sensor 

Compressor Valve Leakage 

 In order to simulate compressor valve leakage on the subcritical air conditioner, a 

bypass valve was opened allowing flow from the discharge side of the compressor back 

to the suction side.  The valve was opened a quarter of a turn to allow sufficient back 

flow.  Table 17 shows the fault indicator for compressor valve leakage ordered from 

greatest temperature differential to smallest.  

The results for this virtual sensor are excellent.  There is close clustering in both 

the faulty and fault-free data points and a large gap between the two conditions. 

Uncertainty gives an error of ±0.8°C based off of measurement error.  Figure 48 

provides a graphical representation of the virtual sensor for compressor valve leakage. 
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Table 17. Compressor valve leakage indicator 

ΔTko
 (°C)

Yes Evaporator Fouling 3.8
Yes Condenser Fouling 3.8
Yes None 3.3
No None 0.2
No Evaporator & Condenser Fouling 0.1
No Evaporator Fouling ‐0.4
No None ‐0.4

Compressor Valve Secondary Fault
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Figure 48. Subcritical compressor valve leakage virtual sensor 
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CONCLUSIONS 

 This thesis explored the feasibility of dynamic fault detection and diagnosis 

algorithms for transcritical vapor compression cycles.  Step tests were performed under 

normal and faulty operating conditions for the most promising cases as identified by 

computer models.  Responses were found to be largely first order.  This implies that 

transient behavior adds little information to distinguish between faulty and fault-free 

behavior.  The same tests were performed on a subcritical air conditioner and agree with 

the results for the transcritical refrigeration system. 

 A promising fault detection method for subcritical vapor compression cycles 

based off of the concept of virtual sensors was modified for use on a transcritical system.  

This technique reduces several common faults to the component level and allows for 

their detection to be independent of the incidence of other faults.  The modifications 

preserve the general structure of the method while accounting for fundamental 

differences in the cycles.  Testing of the virtual sensors for the transcritical system show 

that it provides acceptable ability to identify faults even when multiple faults are present.  

The same tests were performed on a subcritical air conditioner.  The results agree with 

those of the transcritical cycle as well as previously published results for the virtual 

sensor method. 

 Future research may continue to focus on the practicality of this algorithm.  

Transferring the virtual sensor technique to a transcritical system introduced the need for 

a costly pressure sensor.  While this hurts the economic feasibility of the method, many 

transcritical systems do have pressure sensors on the high side for control purposes. 
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APPENDIX 

 The complete derivation of the governing equations for the FCV heat exchanger 

follows.  Details of this derivation have been taken from the work of Gupta [41].  The 

derivation of these models starts with the conservation of energy and mass equations.  

Eq. 16 gives the energy balance for a particular node in its most general form, while Eq. 

17 shows the conservation expanded and applied to each control volume. 

 1 ,k k k wU H H Q−= − + k  (16) 
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(17) 

 

 

Here U refers to internal energy, H is the enthalpy, Qw is the heat from the pipe walls to 

the refrigerant, is the mass flow rate of the refrigerant, m iα  is the internal convective 

heat transfer coefficient, Ai is the internal pipe wall area for a control volume, Tw is the 

pipe wall temperature, and Tr is the refrigerant temperature. 

 The next set of equations is the energy balance applied to the pipe walls.  Eq. 18 

gives the general form of the pipe wall energy balance.  Once it is applied to individual 

control volumes and substitutions are made, Eq. 19 results. 

 w aE Q Qw= −  (18) 
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(19) 

 

Here Ew is the energy in the pipe wall, Qa is the heat from the air to the pipe walls, oα  is 

the external convective heat transfer coefficient, Ao is the external pipe wall area, and Ta 

is the inlet air temperature. 

The final cog needed to start the derivation is the conservation of mass for each 

control volume.  Eq. 20 shows the refrigerant mass balance.  The variable  

corresponds to the rate of change of the refrigerant mass in a control volume within the 

heat exchanger.  Eq. 21 gives the overall mass balance for the heat exchanger. 

hxm
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hx in outm m m= −  (21) 

 

 

These three balances can be combined to one large equation which will contain 

all the needed information.  Eq. 22  gives the conservation laws combined to a single set 

of vectors. 
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(22) 

 

 

 To create the final form of the heat exchanger model Eqs. 17 and 19 are 

combined and Eq. 20 will be used to remove unnecessary terms.  Additionally, a great 

deal of substitutions in terms of fluid properties and their derivatives must be made.  The 

goal of these substitutions is to leave only enthalpy and pressure as fluid states.  They 

will now be detailed.   

To begin the overall properties of the refrigerant must be replaced by the specific 

properties for ease of calculation.  Eq 23 and 24 give the internal energy of each control 

volume and its derivative in specific form.  Eq.  25 and 26 substitute to replace mass and 

density terms. 

 
,k hx kU m u=  (23) 

 

 

 
, ,k hx k k hx kU m u m u= + k  (24) 
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Here Vhx is the internal volume of a section of the heat exchanger, ρ  is the density of a 

control volume, and Phx is the pressure of the heat exchanger.  

 The internal energy of the refrigerant must be replaced by the enthalpy of the 

refrigerant.  To do this the formal definition of enthalpy will be used as given by Eq. 27.  

When this is placed in Eq. 26 and simplified, Eq. 28 results.  This completes the 

substitutions needed for the refrigerant energy balance. 
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 Once the internal energy has been removed, the next step is to replace  in Eq. 

22 with another expression.  Eq. 29 gives  as a sum of the individual control 

volumes.  Each of these intermediate terms can be defined by Eq. 30.  When the proper 

substitutions are performed Eqs. 31 and 32 result which allows removal of  from Eq. 

22. 

hx
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 Now the time derivative of wall energy must be made a function of the wall 

temperature.  This is a simple change if a uniform wall temperature is assumed for a 

given node.  Eq. 33 displays the needed substitution. 

 
, ,w k p w w w wE C Vρ=  (33) 

Here Cp,w is the wall’s specific heat, wρ  is the density of the wall, and Vw is the wall’s 

volume for that node. 

 The final step in the derivation is to remove the intermediate mass flow terms 

from the right side of Eq. 17.  This is accomplished using Eq. 20.  Eq. 34 shows the 

substitution needed to replace .  When this is placed into Eq. 28, Eq. 35 results.  

Moving all time derivatives to the left hand side results in Eq. 36. 
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 With that all necessary replacements have been made to put the equations into 

their final form.   

 ( , ) ( , )Z x u x f x u=  
(37) 
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The Z matrix can be broken down into its constituent parts.  Eq. 40 shows that Z is a 

block matrix.  Definitions of all of the sub-matrices can be found in Eqs. 41 to 49.  f(x,u) 

is a 2n+1 vector which is shown in Eq. 50. 
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Heat Transfer Correlations 

Two sets of correlations are used in the evaporator.  The correlation of Thome 

and Hajal is used to calculate the internal coefficient in the two-phase regions [34].  It is 

a version of the general evaporative heat transfer correlation derived by Kattan et al. 

adapted specifically for carbon dioxide [35].  For the region which contains pure vapor, 

a correlation by Gnielinski for general vapor flow in heat exchangers [36].  For the gas 

cooler only one heat transfer correlation was required, that of Yoon et al. for use in 

supercritical cooling of carbon dioxide [37].  The equations governing these heat transfer 

coefficients will now be presented. 
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The Gnielinski Correlation 

 The Gnielinski correlation can be broken into two pieces.  The first and simpler 

of these is the correlation for  turbulent flow typically with a Reynolds number above 

2400.  Eq. 51 shows the form for the correlation. 

 
1

22
3

8
1 12.7 Pr 1

8

Nu
f

(Re 1000) Prf −
=

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥+ −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 
(51) 

Here f is the friction factor, Re is the Reynolds number, Nu is the Nusselt number, and 

Pr is the Prandtl number. 

 For turbulent flow several equations are used in conjunction.  Eqs. 52 through 63 

give all necessary information.  Each equation can be solved using the values calculated 

from the previous equations. 

  

 4.364lNu =  (52) 

 Re 2400h =  (53) 

 
( )

0.5
2/31 12.7 Pr 1

8Re 1000
Pr

8

l l

f

Nu
f

⎛ ⎞+ −⎜ ⎟
⎝ ⎠= +

⎛ ⎞
⎜ ⎟
⎝ ⎠

 (54) 

 
1

22
3

(2400 1000) Pr
8

1 12.7 Pr 1
8

a
fNu

f

−
=

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥+ −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 
(55) 



 93

 
1

22
3

(2405 1000) Pr
8

1 12.7 Pr 1
8

b
fNu

f

−
=

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥+ −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 
(56) 

 
1

22
3

(2410 1000) Pr
8

1 12.7 Pr 1
8

a
fNu

f

−
=

⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥+ −⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠ ⎝ ⎠⎣ ⎦

 
(57) 

 4 3
10

b cNu Nu NuNuδ a− −
=  (58) 

 

( )3

2 2 (Re Re
Re Re

h l h

h l

Nu Nu Nua )lδ− − −
= −

−
 (59) 

 

( )

2 2

3

3Re ( ) Re 3 Re Re Re 2 Re
Re Re

h h l h h l h l l

h l

Nu Nu Nu Nu Nu Nub δ δ− − + − +
=

−

2δ
 (60) 

 

( )

2 2

3

6 Re Re ( ) 2 Re Re Re Re Re
Re Re

h l h l h l h l l

h l

Nu Nu Nu Nu Nuc δ δ δ− − + +
= −

−

3

 (61) 

 

( )

2 2 3 3

3

Re 3Re Re ( Re Re )

(Re Re Re Re ) Re
Re Re

l h h l l h h l

h l h l h l

h l

Nu Nu Nu

Nu Nud δ

− + −

+ − +
= −

−
 

(62) 

 3 2Re Re ReNu a b c d= + + +  (63) 

Thome-Hajal Correlation 

 This correlation is used for evaporative heat transfer inside the evaporator.  The 

first step is to calculate the thickness of the layer of liquid in the evaporator.  Eq. 64 

shows how to calculate this. 
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(1 )

4
Dδ γ= −  (64) 

Here δ is the thickness of the liquid layer, D is the diameter of the evaporator, and γ is 

the void fraction of the refrigerant. 

 The next step involves the calculation of the heat transfer due to nucleate boiling.  

Eq. 65 shows the correlation for nucleate boiling while Eq. 66 gives the adaptation for 

carbon dioxide. 

 [ ] 0.55 0.5 0.67
1055 log ( )

1000
r r

nb

P P M q
h

− −−
=  (65) 

 
, 2 0.71 3.970nb CO nbh h= +  (66) 

Here hnb is the heat transfer coefficient for nucleate boiling, Pr is the reduced pressure, M 

is the molar mass of the refrigerant, q is the heat flux, and hnb,CO2 is the modified term for 

carbon dioxide. 

 Then the contribution of convective boiling must be accounted for.  Eq. 67 gives 

the method of calculating convective boiling. 

 0.69 0.40.0133Re Pr
cb

kh
δ

=

k

 (67) 

Here hcb is the convective boiling term,  is the liquid Reynolds number,  is the 

liquid Prandtl number, and  is the thermal conductivity of the saturated liquid. 

Re Pr

 Because of the fluid flow in the evaporator some of the nucleate boiling is 

suppressed.  The suppression factor, calculated in Eq. 68, accounts for this.  Here S is the 

suppression factor and x is the fluid quality. 
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 Those sections of the pipe wall that are in contact with liquid have their heat 

transfer capabilities governed by a combination of the convective and nucleate boiling 

terms.  Eq 69 shows how hwet is calculated. 
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1/33 3
, 2wet nb CO cbh Sh h⎡ ⎤= +

⎣ ⎦  (69) 

 The proportion of the pipe wall which is actually in contact with the liquid 

refrigerant must also be calculated.  This can be estimated as a simple function of the 

void fraction of the refrigerant at a given point in the evaporator.  Eq. 70 gives the 

equation for dryθ  the angle of the pipe wall that is not in contact with the liquid. 

 2arcsin(2 1)dryθ π γ= + −  (70) 

With all of this the final two-phase heat transfer coefficient can be calculated.  Eq. 71 

shows how to calculate htp the overall two-phase heat transfer.  The Gnielinski 

correlation is used to determine hvapor. 

 ( )2
2

dry vapor dry wet
tp

h h
h

θ π θ

π

+ −
=  (71) 

Yoon et al. Correlation 

 This correlation is used in the gas cooler when the refrigerant is in a transcritical 

state.  It is simple and consists of two equations.  Eq. 72 is used when the temperature of 

the refrigerant exceeds the critical temperature and Eq. 73 is used if the refrigerant 
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temperature is below the critical temperature.  Here ρcp is the density of the fluid at the 

critical point. 

 1.6
0.050.013Re Pr cpNu

ρ
ρ

− ⎛ ⎞
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⎝ ⎠
 (72) 

 0.69 0.660.14 Re PrNu =  (73) 

Operating the CO2 System 

 This appendix provides all the necessary information to maintain and operate the 

transcritical refrigeration system.  Details will follow on charging the system, connecting 

the system to the data acquisition computer, preparing the system for operation, running 

the system through Wincon, and saving data for later analysis. 

Charging the CO2 system 

 The first step in adding charge to the transcritical system is to pull a vacuum.  

This is accomplished using the lab’s vacuum pump and manifold which are displayed in 

Figure 49 and Figure 50 respectively.  Figure 51 shows the junction where the CO2 tank 

and the manifold should be connected. 
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Figure 49. Vacuum pump 

 

 

Figure 50. Pressure manifold 
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Figure 51. Junction for adding charge 

 Once this is accomplished, open the regulator valve on either the 10lb or 50lb 

CO2 tank.  This will allow the addition of charge; however, the pressure in the tank will 

not be sufficient to fully charge the system.  For that you will need to run the system to 

lower the pressure on the suction side.  A scale can be used to ensure the correct amount 

of charge is added. 

Connecting to the DAQ PC 

 There are a total of eight thermocouple cables and six coaxial cables that will 

need to be connected to the data acquisition computer before the system can be run.  

Figure 52 shows the ports for connecting the system.  Table 18 details which sensors 

will be attached to which board. 
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Figure 52. Connections for data acquisition 

Table 18. Connections to DAQ PC 

Connection Type Board Number
Teai Thermocouple Thermocouple 1
Tkro Thermocouple Thermocouple 2
Tcro Thermocouple Thermocouple 3
Tero Thermocouple Thermocouple 4
Tcai Thermocouple Thermocouple 5
Teao Thermocouple Thermocouple 6
Tcao Thermocouple Thermocouple 7
Teri Thermocouple Thermocouple 8
EEV Coaxial Outputs 4

GC Fan Coaxial Outputs 5
Evap Fan Coaxial Outputs 6

Pe Coaxial Inputs 13
Pgc Coaxial Inputs 16

Power Coaxial 5VDC NA
Relay Coaxial Digital Board 25  
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Preparing the System 

 Before running the system, all the powered components must be connected.  The 

240V connection needs to be attached to its wall socket.  For safety reasons, before 

doing this, go into the hallway and open the circuit breaker panel P1.  Flip the 24/26 

circuit breaker into the off position, plug in the 240V connection, and then flip the circuit 

breaker back on.   

The other device that needs to be plugged in is the EEV control board.  The 

board is wired to a 24VDC power supply which can be simply connected to any normal 

wall socket.  There is also an on/off switch on the front of the box which must be turned 

on.  If this is left off, the valve will not respond to commands, but instead will remain 

entirely open.  Figure 53 shows the on/off switch on the EEV board. 

 

Figure 53. EEV control box 
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Running Wincon 

 Control of the system is achieved using Simulink and Wincon.  To begin 

operation start MATLAB.  In the MATLAB command window enter ‘load 

FluidProp_CO2’ to load the appropriate fluid properties into the workspace.  Next the 

Simulink model which contains the user interface must be opened.  While any number of 

programs can be constructed to accomplish specific tasks, the file ‘CO2_sys.mdl’ 

provides manual control of all actuators as well as a cascaded PID control for 

maintaining superheat with the EEV. 

 With the Simulink file, open the ‘Wincon’ menu from the taskbar.  Select ‘clean’ 

from the drop down menu.  This will eliminate any associated old files.  Open the 

‘Wincon’ menu again and select ‘build’.  At this point Wincon will start and prepare a 

new window for running the system.  This new window will have a button to start the 

system as well as a button to open the scopes present in the Simulink file.  This will 

allow operation of the system. 

 To save data open the ‘Datalog’ scope.  This contains all input and output 

signals.  Before starting an experiment the ‘buffer’ of the scope must be adjusted.  This 

governs how many seconds of data will be stored before old data starts to be eliminated.  

After a test is completed, open the menu and select ‘freeze plot’ before saving data.  This 

will stop any new data from being acquired.  Then the data may be saved as either a .m 

or .mat file depending on the user’s preference. 

  



 102

VITA 

 

Name: Alex Karl Janecke 

Address: 3123 TAMU, College Station, TX, 77843 
 
Email Address: ajanecke@gmail.com 
 
Education: B.S., Mechanical Engineering, Texas A&M University, 2009 
 M.S., Mechanical Engineering, Texas A&M University, 2011 
 


	ABSTRACT
	ACKNOWLEDGEMENTS
	NOMENCLATURE
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	INTRODUCTION
	The Subcritical and Transcritical Cycles
	Literature Review
	Dynamic Fault Detection
	Steady State Fault Detection 


	THEORETICAL APPROACH
	Dynamic Models
	Static Fault Relationships
	Gas Cooler and Evaporator Fouling
	Undercharge and Overcharge
	Compressor Valve Leakage


	EXPERIMENTAL APPARATUS
	Subcritical System

	DYNAMIC FAULT DETECTION
	Dynamic Responses for Transcritical System
	Transcritical Step Responses
	Transcritical Dynamic Error Signals

	Comparison to Subcritical Dynamics
	Subcritical Step Responses
	Subcritical Dynamic Error Signals


	STATIC FAULT DETECTION
	Transcritical Results
	Virtual Pressure Measurements
	Overcharge and Undercharge
	Gas Cooler Fouling
	Evaporator Fouling
	Compressor Valve Leakage
	Transient Response of Virtual Sensors

	Subcritical Comparison
	Virtual Pressure Measurements
	Condenser Fouling
	Evaporator Fouling
	Compressor Valve Leakage


	CONCLUSIONS
	REFERENCES
	APPENDIX
	Heat Transfer Correlations
	The Gnielinski Correlation
	Thome-Hajal Correlation
	Yoon et al. Correlation

	Operating the CO2 System
	Charging the CO2 system
	Connecting to the DAQ PC
	Preparing the System
	Running Wincon


	VITA

