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ABSTRACT

Efficient Semiparametric Estimators for Biological, Genetic, and Measurement Error

Applications.

(August 2011)

Tanya Pamela Garcia, B.S., University of California, Irvine;

M.S., University of California, Berkeley;

M.S., University of Western Ontario

Chair of Advisory Committee: Dr. Yanyuan Ma

Many statistical models, like measurement error models, a general class of survival models,

and a mixture data model with random censoring, are semiparametric where interest lies in

estimating finite-dimensional parameters in the presence of infinite-dimensional nuisance

parameters. Developing efficient estimators for the parameters of interest in these models

is important because such estimators provide better inferences.

For a general regression model with measurement error, we utilize semiparametric the-

ory to develop an unprecedented estimation procedure which delivers consistent estimators

even when the model error and latent variable distributions are misspecified. Until now,

root-n consistent estimators for this setting were not attainable except for special cases,

like a polynomial relationship between the response and mismeasured variables. Through

simulation studies and a nutrition study application, we demonstrate that our method out-

performs existing methods which ignore measurement error or require a correct model error

distribution.

In randomized clinical trials, scientists often compare two-sample survival data with a

log-rank test. The two groups typically have nonproportional hazards, however, and using
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a log rank test results in substantial power loss. To ameliorate this issue and improve

model efficiency, we propose a model-free strategy of incorporating auxiliary covariates

in a general class of survival models. Our approach produces an unbiased, asymptotically

normal estimator with significant efficiency gains over current methods.

Lastly, we apply semiparametric theory to mixture data models common in kin-cohort

designs of Huntington’s disease where interest lies in comparing the estimated age-at-death

distributions for disease gene carriers and non-carriers. The distribution of the observed,

possibly censored, outcome is a mixture of the genotype-specific distributions where the

mixing proportions are computed based on the genotypes which are independent of the trait

outcomes. Current methods for such data include a Cox proportional hazards model which

is susceptible to model misspecification, and two types of nonparametric maximum likeli-

hood estimators which are either inefficient or inconsistent. Using semiparametric theory,

we propose an inverse probability weighting estimator (IPW), a nonparametrically imputed

estimator and an optimal augmented IPW estimator which provide more reasonable esti-

mates for the age-at-death distributions, and are not susceptible to model misspecification

nor poor efficiencies.
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CHAPTER I

INTRODUCTION

A vast majority of statistical models are semiparametric, where interest lies in estimat-

ing finite-dimensional parameters of interest in the presence of infinite-dimensional nui-

sance parameters. Examples of infinite-dimensional nuisance parameters are unknown er-

ror distributions in regression and unknown baseline hazard functions in survival analysis.

Leaving these error distributions, baseline hazard functions, and other nuisance parameters

unspecified leads to more general models. Consequently, results based on these general

models are more appealing as they tend to be robust and have greater applicability.

To describe a semiparametric model in general, consider independent, and identically

distributed random vectors X1, . . . , Xn which are drawn from a class of densities indexed

by a parameter θ,

{Pθ : θ ∈ Θ}.

In the semiparametric case, θ is composed of a p-dimensional parameter β, and an infinite-

dimensional parameter η. In some instances, θ is conveniently written as (β, η), and in

others, we write β as a function, β(θ). A main objective for these models is to prove

general estimation procedures for β and determine the efficient estimator within a class of

regular, semiparametric estimators. We restrict our attention to regular estimators to avoid

estimators with unfavorable local properties (Newey, 1990).

To derive consistent, regular asymptotically linear (RAL) and locally efficient estima-

tors under the semiparametric theory framework, we use so-called influence functions. An

The format and style follow that of Biometrics.
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influence function uniquely characterizes the RAL estimator β̂n for β based on the observed

random vectors Xi through

n1/2(β̂n − β0) = n−1/2

n∑
i=1

φ(Xi) + op(1),

where the influence functions φ(Xi) are independent, identically distributed, mean zero

random vectors of length p. In the above, β0 is the true parameter value and op(1) is a

term converging in probability to zero as n tends to infinity. The asymptotic variance of β̂n

equals the variance of φ. As the influence function with the smallest variance yields the

most efficient RAL estimator, the search for the efficient RAL estimator is equivalent to

determining the most efficient influence function.

To facilitate characterizing influence functions, we take a geometric approach so that

influence functions are viewed as elements of a Hilbert space H composed of mean zero,

finite variance functions. All influence functions of interest are in fact orthogonal to the

so-called tangent space in H. The general method for determining (efficient) semiparamet-

ric estimators is thus to specify the Hilbert space H, determine the tangent space and its

orthogonal complement, and, within the latter space, identify the influence function with

smallest variance, i.e., the most efficient RAL estimator. Further details about this proce-

dure are available in Tsiatis (2006).

In this dissertation, we apply this methodology to three specific semiparametric mod-

els: a measurement error model, a general class of survival models, and a mixture data

model with random censoring. In the chapters that follow, we explore each model, provide

a general class of semiparametric estimators and characterize the properties of the optimal

estimator therein. The consequences of this work are outlined below.

In Chapter II, under the semiparametric framework, we construct root-n consistent,

asymptotically normal and locally efficient estimators for regression with errors in covari-

ates and an unspecified model error distribution. Until now, root-n consistent estimators
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for this setting were not attainable except for special cases, such as a polynomial relation-

ship between the response and mismeasured variables. The proposed method is the first

to deliver root-n consistent estimators when the distributions for both the model error and

the mismeasured variable are unknown and can be misspecified. The estimators are based

on the semiparametric efficient score which is calculated under several possibly incorrect

distribution assumptions resulting from the misspecified model error distribution, from the

misspecified error-prone covariates’ distribution, or from both. A simulation study demon-

strates that the method is robust and outperforms methods which either ignore measurement

error, or allow measurement error but require a correctly specified model error distribution.

A real data example illustrates the performance of our method.

In Chapter III, we consider randomized clinical trials, where we are often concerned

with comparing two-sample survival data. Although the log-rank test is usually suitable

for this purpose, it may result in substantial power loss when the two groups have nonpro-

portional hazards. In a more general class of survival models of Yang and Prentice (2005),

which includes the log-rank test as a special case, we improve model efficiency by incorpo-

rating auxiliary covariates that are correlated with the survival times. In a model-free form,

we augment the estimating equation with auxiliary covariates, and establish the efficiency

improvement using the semiparametric theories in Zhang et al. (2008) and Lu and Tsiatis

(2008). Under minimal assumptions, our approach produces an unbiased, asymptotically

normal estimator with additional efficiency gain. Simulation studies and an application to

a leukemia study show the satisfactory performance of the proposed method.

Lastly, we apply semiparametric theory to mixture data models common in kin-cohort

designs (Struewing et al., 1997; Wacholder et al., 1998) and interval mapping of quan-

titative traits (QTL, Lander and Botstein, 1989). In these studies, the distribution of the

observed, possibly censored, outcome is a mixture of the genotype-specific distributions

where the mixing proportions are computed based on the genotypes which do not depend
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on the trait outcomes. In this work, we examine estimators for a kin-cohort study of Hunt-

ington’s disease where interest lies in comparing the estimated age-at-death distributions

for disease gene carriers and non-carriers. Current literature on statistical methods for

such data include a Cox proportional hazards based approach (Diao and Lin, 2005) and

other parametric approaches (Moore et al., 2001) which are too restrictive and susceptible

to model mis-specification. Current nonparametric approaches include two types of non-

parametric maximum likelihood estimators (NPMLEs, Chatterjee and Wacholder, 2001;

Wacholder et al., 1998), but we demonstrate one is not efficient while the other is not even

consistent. Using a semiparametric approach, we propose several estimators including an

inverse probability weighting (IPW) estimator, a nonparametrically imputed (IMP) esti-

mator and an optimal augmented IPW (AIPW) estimator. We show the validity of these

estimators and derive their asymptotic properties. Through simulation experiments and an

application to the study data for Huntington’s disease, we demonstrate that the proposed

estimators lead to more reasonable estimates for the age-at-death distributions, and are not

susceptible to model mis-specification nor poor efficiencies.

Finally, we conclude with summary remarks in Chapter V about the three models

explored in this work.
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CHAPTER II

SEMIPARAMETRIC ESTIMATORS FOR RESTRICTED MOMENT MODELS WITH

MEASUREMENT ERROR

2.1 Introduction

Regression is arguably the most familiar topic in statistics and has motivated a vast amount

of literature. Yet consistent estimation in regression with classic measurement error is only

resolved for certain models, e.g. when the mean model is a polynomial or the model error

distribution is specified. Our work develops the first consistent, regular asymptotically lin-

ear estimator (Newey, 1990) available for regression with errors-in-covariates in a general

setting.

A general regression model characterizes the relationship between a response variable

Y and covariates (X,Z) under minimal model assumptions. Regression relates Y to (X,Z)

through

Y = m(X,Z; β) + ϵ,

where m is decided up to the p-dimensional parameter β and the model error ϵ is only

assumed to satisfy E(ϵ|X,Z) = 0. Without distributional assumptions imposed on ϵ, this

general regression model is also known as a restricted moment model (RMM). The RMM

is a semiparametric statistical model with consistent estimators being the solutions to the

linear estimating equation

∑n
i=1A(Xi, Zi){Yi −m(Xi, Zi; β)} = 0,

where A(X,Z) is an arbitrary function in Rp×1 which does not cause the above esti-

mating equation to degenerate. The efficient estimator is obtained when A(Xi, Zi) =
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∂m(Xi, Zi; β)/∂βE(ϵ2i |Xi, Zi)
−1, commonly known as the optimal generalized estimat-

ing equation (Liang and Zeger, 1986).

We consider the situation when part of the covariates, say Z is precisely measured,

while the remaining covariates, say X , are measured with error. In place of X , a surrogate

variable W is observed. Surrogacy means Y and W are conditionally independent given

(X,Z). We adopt here a modern functional measurement error model framework (Carroll

et al., 2006, Chapter 7.2), which assumes that the conditional distribution of X given Z

and the distribution of Z are completely unspecified. Our assumptions are motivated by the

fact that many common regression models have measurement error along with an unknown

model error distribution. Compared to the models considered in Tsiatis and Ma (2004),

our model is less stringent because it allows an unspecified model error distribution and

unspecified covariate distribution, not just the latter.

With an unspecified model error distribution, the RMM with measurement error is a

very different problem compared to the model considered in Tsiatis and Ma (2004), where

the model error distribution has a known parametric form. Consequently, the semiparamet-

ric treatment here is also drastically different. Our problem is also much more difficult than

the model of Tsiatis and Ma (2004) both in terms of mathematical derivation and numerical

computation. The RMM subject to measurement error possesses three unknown distribu-

tions: the conditional distribution of X given Z, pX|Z(x|z), the model error distribution of

ϵ given (X,Z), pϵ|X,Z(ϵ|x, z), and the unknown density for the observed covariates pZ(z).

The first two distributions become nuisance parameters of infinite dimension that cannot be

ignored and are difficult to model. Arbitrarily adopting a distribution for ϵ or for X given Z

may cause bias, and estimating them is difficult. First of all, pX|Z(x|z) is a model for unob-

servable variables. Its estimation would thus involve deconvolution (Stefanski and Carroll,

1990) which results in a very slow rate (Carroll and Hall, 1988; Fan, 1991). When the

measurement error is not additive or is correlated with X given Z, pX|Z(x|z) may not even
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be identifiable. The estimation of pϵ|X,Z(ϵ|x, z) is equally challenging because residuals

are not obtainable in measurement error models, even if model parameters were known.

Possibly due to these difficulties, aside from special m functions such as polynomials

(Chan and Mak, 1985; Cheng and Schneeweiss, 1998; Cheng et al., 2000), general regres-

sion with errors in covariates has not been well studied. No consistent estimator is known

in the literature, even though measurement error models have received extensive attention

in recent years. Chen et al. (2009) use a Sieve approach to treat an error-in-variables prob-

lem under unknown error distribution, but requires the covariates to be discrete. Hu and

Schennach (2006) treated a similar problem via a deconvolution approach. Their major

focus is on identifiability while here we focus on estimation and inference.

Although regression with errors in covariates is semiparametric, it is different from

the models of Liang et al. (1999) or Liang and Li (2009). There, the semiparametric nature

arises from an unknown smooth function of an error free variable. For an overview and

recent developments on measurement error models, see Fuller (1987) for earlier results

in linear models and Carroll et al. (2006) for modern approaches in linear and nonlinear

models.

Until now, for an RMM with measurement error, no existing method allows an unspec-

ified model error distribution and still guarantees consistency. Our proposed method is the

first to give consistency while allowing misspecification in both the model error distribution

pϵ|X,Z(ϵ|x, z) and the conditional latent variable distribution pX|Z(x|z).

2.2 Main results

2.2.1 Semiparametric estimation

Our method for deriving consistent, regular asymptotically linear (RAL) and locally effi-

cient estimators relies on semiparametric theory (Bickel et al., 1993). From a semipara-

metric perspective, efficient estimators correspond to efficient influence functions which
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are viewed as elements of a Hilbert space H composed of mean zero, finite variance func-

tions. The efficient influence function is a normalized element orthogonal to the so-called

nuisance tangent space in H. Our approach thus requires specifying the Hilbert space,

characterizing the nuisance tangent space and its orthogonal complement, and, within the

latter space, identifying the influence function with smallest variance. See Appendix A for

a more detailed description and Tsiatis (2006) for a thorough introduction of this method.

While our method uses the fundamentals of Bickel et al. (1993) and Tsiatis (2006), it is not

a simple application of their results. As shown below, the efficient influence function may

not be solved for directly and requires a particular mapping between the space of observed

and unobservable variables so as to utilize the properties of the RMM without measurement

error.

To help the readers focus on the core methodology, we assume, for now, the condi-

tional density of pW |X,Z contains no additional unknown parameters. We explain how to

handle additional parameters in pW |X,Z in Section 2.3. To place the RMM with measure-

ment error in the semiparametric model framework, we write the probability density func-

tion of the observable random variables (W,Y, Z) as pW,Y,Z(w, y, z; β, η1, η2, η3) which

equals ∫
pW |X,Z(w|x, z)η1(x, z)η2{y −m(x, z; β), x, z}η3(z)dx, (2.1)

where β is the finite p-dimensional parameter of interest, η1(x, z) ≡ pX|Z(x|z), η2(ϵ, x, z) ≡

pϵ|X,Z(ϵ|x, z), and η3(z) ≡ pZ(z) are infinite dimensional nuisance parameters. Doing

so, we see that pW,Y,Z , the RMM with measurement error, is tightly linked to the RMM

without measurement error with probability density expressed as pX,Y,Z ≡ η1(x, z)η2{y −

m(x, z; β), x, z}η3(z). The lack of measurement error in the latter model implies that X ,

in addition to Z, is precisely observed there.

Proposition 1 in Appendix A describes the Hilbert space, nuisance tangent space and
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the orthogonal complement for the RMM without measurement error. Based on (2.1) and

the results in Proposition 1, we characterize the corresponding spaces for the measurement

error model as shown below.

Theorem 1. For the RMM with measurement error, the Hilbert space is equal to H =

{f(W,Y, Z) : E(f) = 0, var(f) < ∞}; the nuisance tangent space is defined as Λ =

[E{f(X, Y, Z)|W,Y, Z} : E(fϵ|X,Z) = 0, E(f) = 0, var(f) < ∞]; the nuisance tangent

space orthogonal complement is

Λ⊥ = [f(W,Y, Z) : E{f(W,Y, Z)|X,Y, Z} = g(X,Z)ϵ],

where g is an arbitrary function of (X,Z) with finite variance; the score vector with respect

to β is Sβ = −E{m′
β(X,Z; β)∂logη2(ϵ,X, Z)/∂ϵ|W,Y, Z}, where m′

β(X,Z; β) denotes

∂m(X,Z; β)/∂β.

The proof of Theorem 1 is in Appendix A It is worth emphasizing that the description

of the orthogonal complement Λ⊥ above only requires the distribution pW |X,Z . In other

words, Λ⊥ is invariant to misspecification of both nuisance parameters η1 and η2. This

result is critical because it means even with an incorrectly specified η1 and η2, and con-

sequently an incorrect H and Λ, one will still obtain a correct Λ⊥ and, hence, consistent

semiparametric RAL estimators for β.

Since the orthogonal complement Λ⊥ contains all possible influence functions of

semiparametric estimators, any function f satisfying the requirement of Λ⊥ leads to a

semiparametric estimator for β. Theorem 1 thus implies that if an arbitrary f satisfies

E(f |X, Y, Z) = g(X,Z)ϵ for some g(X,Z), then it would yield a semiparametric estima-

tor for β as the solution to the estimating equation
∑n

i=1 f(Wi, Yi, Zi; β) = 0. In particular,

the efficient score vector Seff(W,Y, Z) lies in Λ⊥ and satisfies E{Seff(W,Y, Z)|X,Y, Z} =

g(X,Z)ϵ for some g(X,Z). Consequently, the efficient score is used to construct estimat-

ing equations whose solution will be a semiparametric efficient estimator for β.
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To this end, we express Seff(W,Y, Z) as a function of elements from the RMM with-

out measurement error model so as to exploit the properties already established in Theo-

rem 1 and Proposition 1. Specifically, first define conjugate linear operators K and K∗ as

K{f(X,Y, Z)} = E{f(X, Y, Z)|W,Y, Z} and K∗{f(W,Y, Z)} = E{f(W,Y, Z)|X, Y, Z}.

Through a careful analytic derivation using conjugacy (see Appendix A ), we show that

Seff(W,Y, Z) = K{d(X, Y, Z)}, where d(X,Y, Z) satisfies

ϵE(dϵ|X,Z) +K∗ ◦ K(d)E(ϵ2|X,Z)− ϵE{K∗ ◦ K(d)ϵ|X,Z} = m′
β(X,Z; β)ϵ. (2.2)

Here ◦ means the composite operation. Certainly, K∗ can be calculated. If η1, η2

were known, we could also calculate K and the operation E(·|X,Z). In practice however,

η1, η2 are both unknown. To circumvent this difficulty, we recommend proposing arbitrary

models for η1 and η2, and carrying out the two operations K and E(·|X,Z) under the

proposed models. Our proposed estimation procedure is thus as follows.

Procedure for estimating β:

1. Posit arbitrary models for η1 and η2 that follow the usual distribution requirements

and such that η2 satisfies E(ϵ|X,Z) = 0.

2. Perform K,K∗, E(·|X,Z) under the known pW |X,Z and the proposed η1, η2 models,

then solve for d(X,Y, Z) from (2.2).

3. Form the score vector S(W,Y, Z; β, η1, η2) = K(d) by calculating K under the pro-

posed η1 model.

4. Solve the estimating equation
∑n

i=1 S(Wi, Yi, Zi; β, η1, η2) = 0 for the estimator β̂.

Having Λ⊥ invariant to misspecification of η1, η2 ensures several robust consistency prop-

erties as we state in the following remarks.

Remark 1. When the covariate distribution η1 is misspecified, the above algorithm still

yields a consistent estimator.
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Remark 2. When η2, i.e. the conditional distribution of the model error ϵ on (X,Z), is

misspecified, the above algorithm still yields a consistent estimator. This robust property

is especially useful since it allows misspecification of the variance-covariance structure of

η2. This is in contrast to all existing methods in the literature, including that from Tsiatis

and Ma (2004), which are extremely sensitive to the variance-covariance misspecification.

Remark 3. When both η1, η2 are misspecified, the algorithm still provides a consistent

estimator.

Remark 4. Finally, for correctly specified nuisance parameters η1 and η2, this procedure

gives the optimal estimator, in that its estimation variance achieves the semiparametric

efficiency bound. Such results follow because, in this case, the resulting estimator indeed

solves the true efficient score estimating equation defined as
∑n

i=1 Seff(Wi, Yi, Zi; β) = 0.

A proof of Remark 3, which encompasses Remarks 1 and 2, is given in Appendix A.

2.2.2 Theoretical properties

We now establish the theoretical properties of the proposed estimation procedure in Theo-

rem 2, and provide an outline of its proof in Appendix A.

Theorem 2. For any function f(W,Y, Z; β) such that E(f |X,Y, Z) = g(X,Z){Y −

m(X,Z; β)} for some function g(X,Z), under suitable regularity conditions, the root of

the estimating equation
∑n

i=1 f(Wi, Yi, Zi; β) = 0, denoted β̂, is an RAL estimator with

influence function E{f(W,Y, Z)ST
β (W,Y, Z)}−1f(W,Y, Z; β0). Therefore,

√
n(β̂ − β0) → N{0, A−1B(A−1)⊤}

in distribution when n → ∞, where the terms A = E{∂f(W,Y, Z; β)/∂β⊤|β0} and B =

var{f(W,Y, Z; β0)}.

Remark 5. Our algorithm in Section 2.2.1 ultimately solves for β̂ from an estimating

equation of the form
∑n

i=1 S(Wi, Yi, Zi; β, η1, η2) = 0 where S(W,Y, Z; β, η1, η2) = K(d).
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K(d) as a function lies in Λ⊥ and satisfies E{K(d)|X, Y, Z} = g(X,Z)ϵ for some g(X,Z),

which is required in Theorem 2. Thus, from Theorem 2, the resulting β̂ from our proposed

estimating procedure is indeed a consistent RAL estimator.

Not only does our algorithm lead to consistent estimators, but under certain conditions,

it also leads to estimators with the same asymptotic efficiency as that of the true model.

To justify this explicitly, suppose we posit parametric models for η1(x, z) and η2(ϵ, x, z)

denoted by η1(x, z; γ1) and η2(ϵ, x, z; γ2), respectively, where γ1 and γ2 are finite dimen-

sional parameters. The truth is denoted by η10(x, z) = η1(x, z; γ10) and η20(ϵ, x, z) =

η2(ϵ, x, z; γ20). Let γ = (γ1, γ2)
⊤, γ0 be the true value of γ, and γ̂ be a root-n consistent

estimator.

Assume β̂ solves
∑n

i=1 f(Wi, Yi, Zi; β, γ̂) = 0, and, for f satisfying the conditions in

Theorem 2, β̃ solves
∑n

i=1 f(Wi, Yi, Zi; β, γ0) = 0. Our previous analysis has warranted

that both β̂ and β̃ are root-n consistent estimators. A stronger result here is that β̂ and β̃ also

have the same asymptotic efficiency, even though the former is derived from an estimating

equation involving the estimated γ̂, and the latter, the true value γ0.

Theorem 3. Consider parametric submodels for η1(x, z) and η2(ϵ, x, z) denoted through

η1(X,Z; γ1) and η2(ϵ,X, Z; γ2), respectively, with the truth defined at γ0 = (γ10, γ20)
⊤.

Assume γ̂ is such that n1/2(γ̂ − γ0) is bounded in probability. Let f be such that it satisfies

E(f |X, Y, Z) = g(X,Z)ϵ for some function g(X,Z). The efficiency of the estimator

β̂ obtained as the root of
∑n

i=1 f(Wi, Yi, Zi; β, γ̂) = 0 is asymptotically equivalent to the

estimator obtained from solving
∑n

i=1 f(Wi, Yi, Zi; β, γ0) = 0. Both n1/2(β̂ − β0) and

n1/2(β̃ − β0) are asymptotically normal with mean zero and covariance

V = C−1var{f(W,Y, Z; β0, γ0)}(C−1)⊤,

where C = E[∂/∂β⊤{f(W,Y, Z; β0, γ0)}].

Details of the proof of Theorem 3 are provided in Appendix A.
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Remark 6. A particularly interesting case is when f is the efficient score Seff . Since Seff ∈

Λ⊥, Theorem 3 tells us that if correct parametric models are used for η1(x, z), η2(ϵ, x, z),

and root-n estimators can be found for the nuisance parameters, then it is as if η1(x, z),

η2(ϵ, x, z) are known precisely. In this case, we achieve the optimal semiparametric effi-

ciency. This is a stronger statement than that in Remark 4.

In practice, a correct parametric model is certainly not easy to obtain. We may be

obliged to estimate η1(x, z) and η2(ϵ, x, z), both of which depend on estimated densities

of X , W , Z, and Y . Doing so can lead to a complicated procedure which is sensitive to

numerical procedures. If efficiency is an important issue, we suggest proposing a relatively

large model for η1 and η2, and proceeding with the locally efficient estimator.

2.3 Extensions for the measurement error distribution

We now extend our method to the case where the conditional probability density pW |X,Z

contains an additional unknown parameter α, denoted by pW |X,Z(W |X,Z;α). Estimating

α typically involves either using additional information, or resorting to more sophisticated

methods when no additional information is available. We now discuss both in detail.

2.3.1 With additional information

Additional information for estimating α include results from an outside experiment or from

additional information such as replicated W values. Following Carroll et al. (2006), this

outside information is used in forming the estimating equation

∑m
j=1 φ(Wj, Zj;α) = 0,

from which consistent estimators of α can be obtained. Here φ(W,Z;α) is an appropriate

estimating function for α, and is based on independent, identically distributed data (Wj, Zj)

different from the data used to estimate β.
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Under this modification, Step 2 of our “Procedure for Estimating β” would first in-

volve obtaining the consistent estimator α̂ as the root of the above estimating equation, and

then calculating the relevant components of (2.2) under pW |X,Z(w|x, z; α̂). That is, K, K∗

and E(·|X,Z) are calculated under pW |X,Z(w|x, z; α̂) and the proposed η1, η2 models. The

subsequent steps in the procedure would follow as given. Letting β̂n(α̂) denote the result-

ing estimator under the calculated α̂, we demonstrate in Appendix A that β̂n(α̂) retains the

consistency and robustness properties under misspecified η1, η2. The estimation variance is

also shown to be Vβ(α0) + β′(α0)
2Vα(α0) where Vβ(α0) is the estimation variance under

the known α given in Theorem 2 evaluated at α0, and Vα(α0) is the estimation variance for

α evaluated at α0. In contrast to the case of known α, the estimation variance for β̂n(α̂) is

larger due to the extra variability incurred by having to estimate α.

2.3.2 Without additional information

Sometimes, a problem is still identifiable even when no additional information is available.

In this situation, we modify the procedure discussed in Section 2.2.1 to estimate α along

with β. To be specific, for θ = (βT , αT )T , the probability density of (Y,W,Z) now equals

pW,Y,Z(w, y, z; θ, η1, η2, η3) =

∫
pW |X,Z(w|x, z;α)η1(x, z)η2{y −m(x, z; β), x, z}η3(z)dx,

and the score vector with respect to θ is Sθ = [ST
θ,1, S

T
θ,2]

T , where

Sθ,1 = −E{m′
β(X,Z; β)∂logη2(ϵ,X, Z)/∂ϵ|W,Y, Z},

Sθ,2 = E{∂logpW |X,Z(w|x, z;α)/∂αT |W,Y, Z}.

For this new model, the nuisance tangent space Λ and its orthogonal complement Λ⊥ have

the same forms as given in Theorem 1, where β is replaced by θ. Consequently, θ can be

estimated using the same procedure described in Section 2.2.1 and consistency results for

the estimator θ̂ still hold even when η1, η2, or both are misspecified. A proof of this consis-

tency result is identical to the one provided in Appendix A, where everywhere β is replaced
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by θ and the expectations are calculated under the forms of η1, η2 and pW |X,Z(w|x, z;α).

Likewise, the results on asymptotic normality and estimation variance and efficiency estab-

lished in Theorems 2 and 3 continue to hold in the same form with β replaced by θ.

2.4 Simulations

2.4.1 Implementation of the proposed method

Constructing the semiparametric estimator for β involves solving the integral equation in

(2.2) for d(X,Y, Z). Our general idea for implementation is to approximate d(X,Y, Zi) at

each observed Zi, i = 1, . . . , n, by a linear combination of basis functions and then solve

for the coefficients.

To make explicit our method, let h1, . . . , hq and g1, . . . , gq denote sets of real-valued

basis functions, where the chosen number of bases q gives an accurate approximation and

permits fast computation. The actual basis functions are also chosen to minimize the error

between d and its summand approximation; typical basis functions that meet this criteria

include Hermite polynomials, Chebychev polynomials, Fourier series, and Legendre poly-

nomials. We express d as

d(X,Y, Z) =
∑q

j,k=1 cjk,Zhj(X)gk(Y ),

where each cjk,Z is a p-dimensional vector of unknown coefficients for j, k = 1, . . . , q.

The operators in (2.2) involve computing expectations under posited, unknown dis-

tributions η1(x, z) and η2(ϵ, x, z). To handle the unknown η1, we discretize the posited

density for η1(x, z) at r points x1, . . . , xr across the support of X with weights given by

η1(x, z)=
∑r

s=1 ps(z)I(x = xs) and
∑r

s=1 ps(z) = 1 for all z in the support of Z.

Under this setup, the linear integral equation (2.2) can be written as

∑q
j,k=1 cjk,Z {ajk,Z(X, Y )σ2(X,Z) + bjk,Z(X,Y )}
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where σ2(X,Z) =
∫
ϵ2η2(ϵ,X, Z)dϵ, and

ajk,Z(X,Y ) ≡ K∗ ◦ K{hj(X)gk(Y )}

=

∫ ∑r
s=1 hj(xs)gk(Y )pW |X,Z(w|xs, Z)η2(ϵ, xs, Z)ps(Z)∑r

s=1 pW |X,Z(w|xs, Z)η2(ϵ, xs, Z)ps(Z)
pW |X,Z(w|X,Z)dµ(w),

and

bjk,Z(X,Y ) ≡ ϵE{hj(X)gk(Y )ϵ|X,Z} − ϵE{K∗ ◦ K{hj(X)gk(Y )}ϵ|X,Z}

= {Y −m(X,Z; β)}
∫

ajk(X, Y, Z)ϵη2(ϵ,X, Z)dϵ

−{Y −m(X,Z; β)}
∫

hj(X)gk{m(X,Z; β) + ϵ}ϵη2(ϵ,X, Z)dϵ.

To ultimately solve for the coefficients defining d(X,Y, Zi) at each observed Zi, i =

1, . . . , n, the functions ajk,Zi
(X, Y ), bjk,Zi

(X,Y ), and m′
β(X,Zi; β){Y −m(X,Zi; β)} are

evaluated at q2 points (xℓ, ym) for ℓ,m = 1, . . . , q. Doing so leads to p linear systems of

size q2 × q2, from which we may solve for cjk,Zi
’s. The process is repeated for each Zi,

i = 1, . . . , n.

Upon solving for the coefficients, we invoke the relation K(d) = S(W,Y, Z; β, η1, η2)

to form
∑n

i=1 S(Wi, Yi, Zi; β, η1, η2) = 0 whose root, β̂, is the desired estimate. Specifi-

cally, S(W,Y, Z; β, η1, η2) = K{d(X,Y, Z)} equals∑r
s=1

∑
j,k cjk,Zhj(xs)gk(Y )pW |X,Z(W |xs, Z)η2(ϵ, xs, Z)ps(Z)∑r

s=1 pW |X,Z(W |xs, Z)η2(ϵ, xs, Z)ps(Z)
,

and is evaluated at the observed data (Wi, Yi, Zi), i = 1, . . . , n.

2.4.2 Simulation examples

To illustrate the performance of our method, we consider two simulated examples where

Y is related to unobserved covariates X through a nonlinear function m(X; β), and the

measurement error is normal additive.

Our first model is

Y = 0.7 exp(−βX2) + ϵ, W = X + U,
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where β = 0.5, U is normally distributed with mean 0 and variance 0.1, and the covariate

X has a uniform distribution on [1.1 −
√
0.9, 1.1 +

√
0.9]. To demonstrate the robustness

of our method, we considered two situations for the nuisance parameters where the posited

densities for η1 and η2 were different from the true densities.

Situation 1: The true distribution for model error ϵ is a t-distribution with 5 degrees of

freedom, whereas the posited density η2 is N(0, 0.42). To contrast from the uniform

distribution of the covariate X , we posited a misspecified η1 as N(1.1, 0.1).

Situation 2: Secondly, we considered the true distribution for ϵ as a mixture of normals,

N(0.5, 0.42) and N(−0.5, 0.42), with equal weights. In comparison, we posited a

misspecified η2 as N(0, 0.29). As in Situation 1, the posited and misspecified distri-

bution for η1 is N(1.1, 0.1).

As an extension to the first model, the second model under consideration is

Y = β2 exp(−β1X
2) + ϵ,

W = X + U,

where β = (0.5, 0.7)T . The rest of the simulation set-up is identical to the first model.

Following the procedure described in Section 2.4.1, d(X, Y ) in (2.2) was approxi-

mated using five basis functions, with Hermite polynomials being the sets of real-valued ba-

sis functions h1, . . . , hq and g1, . . . , gq approximating d(X, Y ). The posited density η1(x),

was discretized at r = 200 grid points allocated evenly across the range of µX ± 3σX

where µX and σX represent the mean and standard deviation, respectively, for η1(x); that

is, µX = 1.1 and σX =
√
0.1. The values for q and r were selected empirically, and

provided numerically accurate and stable results for all situations considered. The func-

tions ajk(X,Y ), bjk(X,Y ), and m′
β(X; β){Y −m(X; β)} described in Section 2.4.1 were

evaluated at q2 Hermite quadrature points (xℓ, ym) for ℓ,m = 1, . . . , q. All integrals were
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calculated using Gauss quadrature approximation. Finally, the estimator β̂ was obtained

using a modification of the Powell hybrid method (Moré et al., 1984).

To illustrate the performance of our method we compared it with three other candidate

methods. First, to demonstrate that the measurement error is not ignorable, we considered

the “naive” estimator which employs least squares and assumes X and W are the same.

A possible competing method is the Tsiatis and Ma (2004) method (TM) which accounts

for misspecification in the covariate distribution, but requires a correctly specified model

error distribution. In particular, to demonstrate the sensitivity of the variance-covariance

structure of posited η2 in the TM method, we specified two variance structures of η2 for

each situation described above: (1) homoscedastic variance, σ2
ϵ and (2) heteroscedastic

variance, σ2
ϵx

2. In each simulation, we compared our method to the Tsiatis-Ma estimator

assuming homoscedastic model errors (TM-Hom), and the Tsiatis-Ma estimator assum-

ing heteroscedastic model errors (TM-Het). Because our semiparametric estimator is free

of assumptions about the variance-covariance structure of the model error, we expect our

method (Semipar) to be robust and outperform the TM method when the variance structure

is misspecified.

For each scenario described, 1000 simulations with sample size n = 500 were con-

ducted. The variance-covariance matrix for the estimator was estimated using the empirical

version of the variance described in Theorem 2, and the coverage rate of the estimated 95%-

confidence interval was also calculated. Results are summarized in Tables 1, 2 and 3.
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Table 1: Bias of the parameter estimates (bias), sample variances (var), the mean of esti-
mated variances (v̂ar), and estimated 95% confidence interval coverage probabilities (CI)
for the parameter β in Model 1 and under the two proposed situations. The true parameter
is βtrue = 0.5. Data is generated with homoscedastic model errors (Gen. Hom. Error) and
with heteroscedastic model errors (Gen. Het. Error). Methods reported include the naive
method (Naive), Tsiatis-Ma method for homoscedastic model errors in estimation proce-
dure (TM-Hom) and for heteroscedastic model errors in estimation procedure (TM-Het),
and our proposed method (Semipar).

Situation 1
Naive TM-Hom TM-Het Semipar

Gen. Hom. Error
bias -0.026 0.002 -0.057 0.001
var 0.004 0.004 0.003 0.004
v̂ar 0.005 0.004 0.004 0.004

CI (%) 88.3 94.1 78.3 94.1
Gen. Het. Error

bias -0.017 -0.036 -0.019 0.008
var 0.007 0.004 0.006 0.007
v̂ar 0.008 0.004 0.006 0.007

CI (%) 93.0 87.6 91.9 94.5

Situation 2
Naive TM-Hom TM-Het Semipar

Gen. Hom. Error
bias -0.022 0.007 0.025 0.003
var 0.012 0.006 0.016 0.007
v̂ar 0.013 0.007 0.017 0.007

CI (%) 91.4 96.0 95.5 94.8
Gen. Het. Error

bias -0.013 -0.018 -0.004 0.004
var 0.008 0.0102 0.008 0.008
v̂ar 0.008 0.011 0.008 0.009

CI (%) 94.9 96.8 95.1 95.5
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Table 2: Bias of the parameter estimates (bias), sample variances (var), the mean of esti-
mated variances (v̂ar), and estimated 95% confidence interval coverage probabilities (CI)
for the parameter β̂ in Model 2 and under Situation 1. Data is generated with homoscedas-
tic model errors (Gen. Hom. Error) and with heteroscedastic model errors (Gen. Het.
Error). The true parameter is βtrue = (0.5, 0.7)T . Methods reported include the naive
method (Naive), Tsiatis-Ma method for homoscedastic model errors in estimation proce-
dure (TM-Hom) and for heteroscedastic model errors in estimation procedure (TM-Het),
and our proposed method (Semipar).

Situation 1 Naive TM-Hom
β̂1 β̂2 β̂1 β̂2

Gen. Hom. Error
bias -0.088 -0.054 0.004 0.004
var 0.005 0.002 0.009 0.003
v̂ar 0.009 0.003 0.009 0.003

CI (%) 91.0 90.4 95.6 95.0
Gen. Het. Error

bias 0.074 -0.049 -0.042 -0.026
var 0.021 0.002 0.009 0.002
v̂ar 0.021 0.003 0.009 0.002

CI (%) 68.0 93.9 91.0 90.4

TM-Het Semipar
β̂1 β̂2 β̂1 β̂2

Gen. Hom. Error
bias 0.251 0.187 -0.022 -0.015
var 0.064 0.023 0.007 0.003
v̂ar 0.065 0.023 0.009 0.002

CI (%) 63.7 48.0 95.6 95.1
Gen. Het. Error

bias -0.035 -0.003 -0.038 0.023
var 0.005 0.0004 0.024 0.010
v̂ar 0.006 0.0005 0.025 0.011

CI (%) 91.4 96.6 97.7 94.7
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Table 3: Bias of the parameter estimates (bias), sample variances (var), the mean of esti-
mated variances (v̂ar), and estimated 95% confidence interval coverage probabilities (CI)
for the parameter β in Model 2 and under Situation 2. Data is generated with homoscedas-
tic model errors (Gen. Hom. Error) and with heteroscedastic model errors (Gen. Het.
Error). The true parameter is βtrue = (0.5, 0.7)T . Methods reported include the naive
method (Naive), Tsiatis-Ma method for homoscedastic model errors in estimation proce-
dure (TM-Hom) and for heteroscedastic model errors in estimation procedure (TM-Het),
and our proposed method (Semipar).

Situation 2 Naive TM-Hom
β̂1 β̂2 β̂1 β̂2

Gen. Hom. Error
bias -0.085 -0.054 0.010 0.003
var 0.009 0.003 0.015 0.005
v̂ar 0.010 0.004 0.015 0.005

CI (%) 78.3 83.6 94.0 94.3
Gen. Het. Error

bias -0.081 -0.055 -0.028 -0.018
var 0.012 0.003 0.014 0.004
v̂ar 0.014 0.004 0.013 0.003

CI (%) 80.3 84.2 90.4 91.9

TM-Het Semipar
β̂1 β̂2 β̂1 β̂2

Gen. Hom. Error
bias 0.035 0.022 -0.017 -0.011
var 0.041 0.010 0.010 0.004
v̂ar 0.041 0.010 0.011 0.004

CI (%) 93.2 94.3 95.4 95.4
Gen. Het. Error

bias -0.026 0.001 -0.025 -0.014
var 0.013 0.003 0.017 0.005
v̂ar 0.014 0.004 0.018 0.005

CI (%) 91.4 95.0 95.4 93.9
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Parameter estimates from the naive method are largely biased, indicating that the mea-

surement error is significant enough and cannot be ignored. Furthermore, the naive method

has the worst coverage probabilities compared to the other methods, with coverage proba-

bilities tending to be less than the nominal 95%. The TM method improves over the naive

method when the model error variance structure is correctly specified. Under this scenario,

the TM method has one less nonparametric term than the Semipar method and thus is more

precise. In these cases, the TM method has little bias and nearly perfect nominal coverage

probabilities. However, the TM method heavily relies on the correctness of the model error

variance assumption. When the variance structure is misspecified, the TM method performs

poorly compared to the Semipar method. The large bias and smaller coverage probabili-

ties are most notable for the results of Situation 1 in Table 1 both when the true variance

structure is homoscedastic while we employ TM-Het, and when the true variance struc-

ture is heteroscedastic while we employ TM-Hom. Even worse, in Table 2 for Situation 1

when the true variance structure is homoscedastic and we use TM-Het, we see very large

bias and coverage probabilities less than 65%. In these notable cases and throughout, the

Semipar method consistently had little bias, the average of the estimated variances closely

approximates the sample variances, and the estimated 95% confidence interval coverage

probabilities were close to nominal.

These results demonstrate that measurement error cannot simply be ignored as the

naive method certainly leads to unreliable parameter estimates. Even after accounting for

measurement error, our results show that using a method (i.e., TM) which relies on a cor-

rectly specified variance structure for the model error also gives incorrect results when

the assumption does not hold. In practice, specifying the model error variance structure

correctly is almost impossible since residuals are not obtainable in the measurement er-

ror models. In summary, the Semipar method is a significant improvement over the TM

method, giving unbiased parameter estimates with actual coverages close to nominal for
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the general regression with measurement error when the model error and latent variable

distributions are misspecified.

2.5 A case study in nutrition

Flag et al. (2000) carried out a study to evaluate the validity of a Nutrition Survey con-

ducted by the American Cancer Society in 1992-1993. Four-hundred forty one participants

completed four 24 hour dietary recall interviews given over a one-year period, as well as a

second FFQ survey similar to that from the original study. The data consist of estimates for

energy, calorie percentages from fat intake, and estimates of saturated fat intake. Interest

lies in understanding the relationship between Percent Calories from Fat (Y ) and Saturated

Fat intake. Because Saturated Fat intake was calculated through repeated measurements,

only an approximation is available.

In our analysis, we considered the male subgroup of respondents which consisted of

317 individuals, each with two repeated measurements of Saturated Fat intake. With a log

transformation, the difference of the two measurements is acceptably normally distributed;

see Figure 1 for the qqplot of the difference of these measurements before and after the log

transformation. This condition was further evaluated through a Pearson Chi-squared test

where we used 10 to 20 bins for testing and obtained a p-value at least as large as 0.63,

thus assuring the normality assumption. We denote the log transformation of Saturated

Fat intake X , and the corresponding average of the two measurements W . Our analysis

warrants assuming W = X + U , where U is a mean zero normal random variable with

variance 0.3322. Because nutrition models usually assume Percent Calories from Fat is

related to Saturated Fat intake through a linear regression, we have

Y = β1 exp(X) + β2 + ϵ, W = X + U, E(ϵ|X) = 0, U ∼ N(0, 0.3322).
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Figure 1: Quantile-quantile plots of the measurement error U for the original first and third
readings of the 24 hour recall surveys (top) and after the logarithm transform (bottom).
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To estimate β1 and β2 using our method, we posited a normal distribution with mean

zero and variance 0.316 for the covariate distribution η1(x), and a normal model with mean

zero and variance 0.29 for the density of the model error given X , η2(ϵ, x). Furthermore, we

calculated the corresponding estimated variances using the sandwich estimator described

in Theorem 2. For comparison, we also included the naive estimate calculated as the max-

imum likelihood estimator assuming X and W are the same.

The naive estimate yields β̃ = (0.709,−0.819)T with estimated variances var(β̃1) =

0.0064 and var(β̃2) = 0.0117. In contrast, the proposed method yields estimates β̂ =

(1.611,−1.768)T with estimated variances var(β̂1) = 0.0164 and var(β̂2) = 0.0243. The

stark contrast between the estimates obtained from the naive approach and from the semi-

parametric method approach indicates that the measurement error here needs to be taken

into account. If either the distribution of X or ϵ given X is misspecified, then the classical

maximum likelihood estimator, even taking into account the measurement error, would be

inconsistent. Our method, however, allows for both distributions to be misspecified and

gives a more reasonable relationship. Results from our method imply that a one unit in-

crease in Saturated Fat (X) is associated with an estimated increase of 1.611 units in the

mean of Percent Calories (Y ), more than twice as large as the naive estimates would con-

clude. Hence, ignoring the measurement error gravely underestimates how much Saturated

Fat intake affects an individual’s Calorie Percentage.

2.6 Discussion

For the measurement error problem in restricted moment models, identifiability of β is

relatively easy to analyze. The proof of identifiability usually resorts to deconvolution and

invokes basic results from Fourier inversion. More formal justifications of identifiability are

discussed in Hu and Schennach (2006) and Chen et al. (2009). Based on the established

identifiability, our focus here is on statistical methodology which provides consistent esti-
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mators when both the measurement error and latent variable distributions are unknown, and

on valid inference tools. The proposed estimator is derived via a semiparametric procedure

different from that in Tsiatis and Ma (2004), and is the first known in its generality that is

robust to various distribution mis-specifications.
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CHAPTER III

EFFICIENCY IMPROVEMENT IN A CLASS OF SURVIVAL MODELS THROUGH

MODEL-FREE COVARIATE INCORPORATION*

3.1 Introduction

In randomized two-arm clinical trials, we are often interested in comparing patient sur-

vival between treatment and control groups. Typically, the log-rank test is used to examine

the survival differences, and under a proportional hazards assumption (Cox, 1972), the log-

rank test is known to be optimal. However, under nonproportional hazards, especially when

the two survival curves cross, the log-rank test may incur substantial power loss. Exten-

sive research has been carried out to extend the scope of the proportional hazards model.

For example, Hess (1994) explored nonparametric modifications of the Cox model, and

Verweij and Van Houlwelingen (1995) studied time-varying coefficients in the regression

model. Hsieh (2001), Bagdonavicius et al. (2004), and Zeng and Lin (2007) studied more

general classes of hazard regressions. To accommodate nonproportional hazards, Yang and

Prentice (2005) proposed a novel class of survival models, which includes the proportional

hazards and the proportional odds structures (Bennet, 1983), and other flexible modeling

structures in between. In this paper, we demonstrate that incorporating auxiliary covariates

into the general class of survival models by Yang and Prentice (2005) improves estimation

efficiency and provides a better approach to comparing survival curves.

In regression models, covariates are generally included to account for their effects on

* Reprinted with kind permission from Springer Science+Business Media: Lifetime Data
Analysis, “Efficiency improvement in a class of survival models through model through
model-free covariate incorporation”, 18, 2011, p. 1-14, by Tanya P. Garcia, Yanyuan Ma,
and Guosheng Yin.
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treatment for post-randomization adjustment. For an extensive overview of covariate anal-

ysis, see Senn (1989), Hauck et al. (1998), Koch et al. (1998), Tangen and Koch (1999),

Lesaffre and Senn (2003), Grouin et al. (2004), and Zhang et al. (2008). Although including

covariates such as patients’ health conditions and demographic information can generally

lead to improved parameter estimates, this efficiency gain is not always guaranteed. For

logistic regression, Robinson and Jewell (1991) demonstrated that directly modeling non-

confounding predictive covariates using nonlinear regression may actually lead to a loss of

precision. The interpretations of the parameters in the unadjusted and covariate-adjusted

logistics models are different; in the former, the parameters characterize the unconditional

odds ratios, and in the latter, they refer to the conditional odds ratios. Likewise, Wickrama-

ratne and Holford (1989) provided an example with 2×2×2 contingency tables where the

variance of the stratified estimate is higher than that of the estimate using the pooled (log)

odds ratio. Therefore, one needs to be cautious when incorporating covariates into a model

to avoid worsened precision and conflicting parameter interpretations.

In the analysis of time-to-event data, the aforementioned general classes of survival

models typically handle auxiliary covariates in the usual regression setting. On the other

hand, Lu and Tsiatis (2008) proposed incorporating covariates through augmented estimat-

ing equations in the log-rank test. Their method does not impose extra modeling assump-

tions and may gain substantial efficiency. To improve modeling efficiency and robustness

in the flexible class of Yang and Prentice (2005), we propose incorporating auxiliary co-

variates via the semiparametric principles in Zhang et al. (2008) and Lu and Tsiatis (2008).

Accordingly, we take an unbiased estimating equation and augment it with auxiliary co-

variates that carry extra information about the times to events beyond the treatments. For

an appropriate, model-free choice of the augmentation term, we can produce a consistent,

more efficient estimator, and avoid model misspecification. The resulting model is also a

generalization of the results by Lu and Tsiatis (2008) which only handles the proportional
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hazards setting.

The rest of this chapter is organized as follows. Section 3.2 introduces the notation

and model assumptions needed for improving efficiency through covariate augmentation.

We also briefly describe the class of survival models of Yang and Prentice (2005) along

with asymptotic results. We propose the augmented estimating equations with auxiliary

covariates, and develop the asymptotic properties using semiparametric theory in Section

3.3. Simulation studies in Section 3.4 and an application to the leukemia study in Section

3.5 demonstrate the satisfactory performance of the proposed method.

3.2 Notation and semiparametric models

In a typical randomized two-arm study, we observe independent and identically distributed

data (Yi, δi, Zi,Wi) for i = 1, . . . , n. Here, Yi = min(Ti, Ci) denotes an individual’s event

time, where Ti is the survival time and Ci is the censoring time; δi = I(Ti ≤ Ci) is the

censoring indicator; the treatment indicator Zi = 0 if the subject is in the control group and

1 otherwise; and Wi is a vector of auxiliary covariates that are correlated with Ti, such as a

patient’s age, health condition and demographic information.

Intuitively, when T and W are correlated conditional on Z, i.e., W contains extra

information about T given Z, then inclusion of W in a regression model would improve

efficiency. To ensure consistency and asymptotic normality of the resulting improved esti-

mator, we require the following two assumptions. First, we assume Z and W are indepen-

dent,

Z ⨿W, (3.1)

which is generally satisfied by randomization, where the randomization probability P (Z =

1) = π, 0 < π < 1, is usually known. Condition (3.1) ensures that our model-free

incorporation of W will produce an unbiased estimator based on (Y, δ, Z,W ). Second, we
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assume C and (T,W ) are independent conditional on Z,

C ⨿ (T,W )|Z,

which implies independent censoring and thus guarantees model identifiability.

Before illustrating the method of covariate augmentation, we first briefly describe the

general class of survival models by Yang and Prentice (2005), in which the auxiliary covari-

ate W is not considered. For j = 0, 1, let λj(t) denote the hazard function under treatment

j and Sj(t) = exp{−
∫ t

0
λj(s)ds} denote the survival function. Yang and Prentice (2005)

proposed the following general class of survival models:

λ1(t) =
γ1γ2

γ1 + (γ2 − γ1)S0(t)
λ0(t), 0 < t < τ, (3.2)

where τ = sup{t : S0(t) > 0}, and γ1, γ2 > 0. Under model (3.2), the hazard ratio

λ1(t)/λ0(t) has several appealing properties: it monotonically increases when γ2 > γ1,

and monotonically decreases when γ2 < γ1, leading to a broad range of nonproportional

hazards models; it includes the Cox proportional hazards model when γ1 = γ2, and the

proportional odds model when γ2 = 1. In addition, as

γ1 = lim
t↓0

λ1(t)

λ0(t)
, γ2 = lim

t↑τ

λ1(t)

λ0(t)
,

γ1 and γ2 are naturally interpreted as the short- and long-term hazard ratios, respectively.

In two-arm clinical trials, it may happen that one group initially exhibits a higher

survival rate, but later shows a lower survival rate, or vice versa. Such phenomenon may

lead to nonproportional hazards, or even crossing survival curves, a feature captured by

model (3.2). To see this, define the odds function of the treatment 0 group as

R(t) =
1− S0(t)

S0(t)
.

Then the survival function for each treatment satisfies

S0(t) = {1 +R(t)}−1, S1(t) =

{
1 +

γ1
γ2

R(t)

}−γ2

,
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from which it can be seen that S0(t) and S1(t) would cross when γ1 < 1 and γ2 > 1, or

γ1 > 1 and γ2 < 1. Figure 2 shows examples of crossed survival curves for R(t) = t.

To better understand treatment short- and long-term effects, Yang and Prentice (2005)

developed a pseudo-likelihood procedure for estimating γ1, γ2, or equivalently, β = (β1, β2)
′

where each component βj = logγj for j = 1, 2. Define the estimated martingale as

M̂i(t; β) = δiI(Yi ≤ t)−
∫ t

0

I(Yi ≥ s)
dR̂(s; β)

exp(−β1Zi) + exp(−β2Zi)R̂(s; β)
,

where the estimated version of R(t) is

R̂(t; β) =
1∏

s≤t{1−∆Ψ̂(s; β2)}

×
∫ t

0

∏
u≤s−

{1−∆Ψ̂(u; β2)}
∑n

i=1 δi exp(−β1Zi)I(Yi ≤ s)∑n
i=1 I(Yi ≥ s)

ds,

and ∆Ψ̂(t; β2) is the jump size of Ψ̂ at t for

Ψ̂(t; β2) =

∫ t

0

∑n
i=1 δi exp(−β2Zi)I(Yi ≤ s)∑n

i=1 I(Yi ≥ s)
ds.

The estimator β̂ is the zero of

U(β) =
n∑

i=1

∫ τ

0

gi(t; β)dM̂i(t; β), (3.3)

where gi = (g1i, g2i)
′ with

g1i(t; β) = Zi
exp(−β1Zi)

exp(−β1Zi) + exp(−β2Zi)R̂(t; β)
,

g2i(t; β) = Zi − g1i(t; β).
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Figure 2: Crossing survival curves when R(t) = t, with (a) γ1 = 0.6 and γ2 = 2; (b)
γ1 = 2 and γ2 = 0.6.
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Yang and Prentice (2005, Thm. A.2) showed that under regularity conditions,

U(β) =
n∑

i=1

∫ τ

0

ζi(t; β)dMi(t; β)

with ζi = (ζ1i, ζ2i)
′ defined in Appendix B and Mi(t; β) analogous to M̂i(t; β) except with

R̂(t; β) replaced by R(t). Furthermore, β̂ is a consistent estimator of the true parameter β0,

and is asymptotically normal with covariance Γ−1Ω(Γ−1)′ where

Γ = E

{
− ∂

∂β′U(β)|β=β0

}
, Ω = E

[{∫ τ

0

ζ(t; β0)dM(t; β0)

}⊗2
]
,

with v⊗2 = vv′ for any vector v.

3.3 Improving efficiency through covariate augmentation

Following Zhang et al. (2008) and Lu and Tsiatis (2008), we develop a more efficient

estimator for β than that obtained from (3.3) by appropriately incorporating auxiliary co-

variates. In this regard, under the semiparametric theory framework (Tsiatis, 2006), we

construct estimating equations for β based on (Y, δ, Z,W ) by augmenting (3.3) with aux-

iliary covariates:

UAUG(β) =
n∑

i=1

{∫ τ

0

gi(t; β)dM̂i(t; β)− (Zi − π)Γh(Wi)

}
.

Here, h(W ) is an arbitrary function of W which could depend on some additional param-

eter α, in which case we write h(W ;α). Independence of Z and W from (3.1) ensures

consistency of the estimator of β regardless of the choice of h. Our augmented estimating

equation above differs from that suggested in Zhang et al. (2008) in that we involve Γ,

whereas they do not. We demonstrate below that involving Γ in the augmentation term will

ensure improved efficiency of β̂AUG, the root of UAUG(β) = 0, over β̂ regardless of the

posited choice of h. For optimality, with h as

h(W ) =
1

π(1− π)
E

{
(Z − π)Γ−1

∫ τ

0

g(t; β)dM̂(t; β)
∣∣W}

, (3.4)
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the resulting estimator will exploit the most information from the correlation of T and

W (Zhang et al., 2008, Appendix). The derivation leading to h(W ) in (3.4) requires that∫ τ

0
g(t; β)dM̂(t; β)−(Z−π)Γh(W ) and (Z−π)Γh(W ) are orthogonal to each other. This

orthogonality implies that when h(W ) is as in (3.4), the augmented estimating equation has

less variability than the unadjusted estimating equation. Consequently, if (3.4) were exactly

known, the estimator β̂AUG would indeed be more efficient than β̂.

Due to the difficulty involved in calculating the unknown conditional expectation of

(3.4), we follow Zhang et al. (2008) and Lu and Tsiatis (2008) to circumvent this challenge

by imposing a parametric model for h(W ) denoted h(W ;α). For each component of h,

we take hj(W ;αj) = α′
jqj(W ), j = 1, 2, so that hj(·) is simply a linear regression model

with the unknown coefficients αj , and qj(W ) is a vector of arbitrary known functions of

W such as polynomials or splines. Under this parametrization, we choose the elements of

α = (α′
1, α

′
2)

′ to minimize the trace of

cov

[
Γ̂−1

n∑
i=1

{∫ τ

0

gi(t; β̂)dM̂i(t; β̂)− (Zi − π)Γ̂h(Wi;α)

}]
,

where β̂ is the unadjusted estimator from (3.3) and Γ̂ is the sample version of Γ evaluated

at β̂. Simple algebra shows that

α̂j =

{
π(1− π)

n∑
i=1

qj(Wi)q
′
j(Wi)

}−1

(3.5)

×
n∑

i=1

qj(Wi)(Zi − π)

∫ τ

0

{Γ̂−1gi(t; β̂)}jdM̂i(t; β̂)

is the desired minimizer for j = 1, 2, where {Γ̂−1gi(t; β̂)}j corresponds to the jth row of

the matrix product Γ̂−1gi(t; β̂). Thus the augmented estimator β̂AUG solves UAUG(β) = 0,

where Γh(W ) is replaced by Γ̂h(W ; α̂), and α̂ = (α̂′
1, α̂

′
2)

′ is given in (3.5).

To make explicit the efficiency improvement of β̂AUG over β̂, we first characterize the

asymptotic behavior of β̂AUG. Following similar arguments in Yang and Prentice (2005),
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we have that when the augmentation term in UAUG(β) is a simple linear regression as above,

then

UAUG(β) =
n∑

i=1

{∫ τ

0

ζi(t; β)dMi(t; β)− (Zi − π)Γh(Wi;α
∗)

}
,

with the components of α∗ defined as in (3.5) except with Γ̂g(t; β) replaced by Γζ(t; β) and

everywhere evaluated at β0 instead of β̂. The estimator β̂AUG is consistent, asymptotically

normal with covariance Γ−1ΩAUG(Γ
−1)′, where

ΩAUG = E

[{∫ τ

0

ζ(t; β0)dM(t; β0)− (Z − π)Γh(W ;α∗)

}⊗2
]
.

In practice, estimating the covariance matrix corresponds to utilizing the sample versions

Γ̂ and Ω̂AUG, where M(t; β0), R(t) and β0 are replaced by M̂(t; β̂AUG), R̂(t; β̂AUG) and

β̂AUG, respectively.

The estimator β̂ will have more variability than β̂AUG if the difference of their cor-

responding covariances results in a matrix with positive diagonal elements. Our proposed

method, however, ensures this positivity by the construction of α∗. Simple algebra shows

that α∗ actually minimizes the diagonal element values of Γ−1(Ω − ΩAUG)(Γ
−1)′. That

is, for j = 1, 2, α∗
j = {cov(Bj)}−1cov(Aj, Bj) where Aj is the jth row of the matrix

product Γ−1
∫ τ

0
ζ(t; β0)dM(t; β0) and Bj = (Z − π)qj(W ). With α∗ as defined, the jth

diagonal element of Γ−1(Ω − ΩAUG)(Γ
−1)′ equals cov(Aj, Bj){cov(Bj)}−1cov(Aj, Bj)

′,

which is certainly positive. Consequently even if the proposed form of qj(W ) in hj(W ;α)

is misspecified, our method for augmentation will lead to more efficient estimators.

For completeness, we outline the algorithm for computing β̂AUG:

(1) Solve the unadjusted estimating equation U(β) = 0 for β̂. For j = 1, 2, define

hj(W ;α) = α′
jqj(W ) and obtain the ordinary least square estimator α̂j which de-

pends on β̂ as defined in (3.5).
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(2) Plug α̂ = (α̂′
1, α̂

′
2)

′ in UAUG(β) = 0 with Γh(W ) replaced by Γ̂−1h(W ; α̂), and solve

for β̂AUG.

We implemented the two-stage algorithm in Fortran 90 by invoking a quick sorting algo-

rithm (Singleton, 1969) and a modification of the Powell hybrid method (Moré et al., 1984)

as the root-finding method. The program is available upon request.

3.4 Simulations

We conducted Monte Carlo simulation studies to compare the efficiencies of β̂AUG and β̂.

We took the odds function R(t) ≡ t, the identity function, which led to the hazard function

for subject i as

λ(t|Zi) =
1

exp(−β1Zi) + exp(−β2Zi)t
, i = 1, . . . , n.

We generated independent treatment indicators Z from a Bernoulli(π) distribution; and

(W,V ) from a bivariate normal density with zero mean, variances 1, and correlation ρ.

Setting the survival time

T = (γ2/γ1)
z [{1− Φ(V )}−1/γz

2 − 1
]
,

where Φ(·) denotes the cumulative distribution function of the standard normal distribution,

simple algebra shows that the conditional distribution of T given Z is

FT |Z(t|z; γ1, γ2) = 1−
{

1

1 + (γ1/γ2)
z t

}γz
2

,

which coincides with the conditional distribution generated by the individual hazard func-

tion given above. To estimate the augmented expectation, we used a parametric model of

the form hj(W ;αj) = αj0 + αj1W + αj2W
2 for j = 1, 2. Finally, we generated inde-

pendent censoring variables from a log-normal distribution where the normal distribution

had mean c and standard deviation 0.5. Varying the value of c achieved different censoring

proportions.
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To exemplify the flexibility of the general class of survival curves discussed in Sec-

tion 3.2, we considered two sets of β-values. First, β = (0, 0)′ yields the Cox propor-

tional hazards model and corresponds to the situation of no treatment effect. Second,

β = (0.5,−0.5)′ yields a nonproportional hazards model where the survival curves cross.

In this case, the treatment effect is initially non-evident but slowly becomes positive. In all

scenarios, treatment assignment probability π is 0.5, and we chose c to yield 0% and 30%

censoring. We set ρ = 0.4 and ρ = 0.7 which led to a conditional correlation between T

and W given Z of 0.15 and 0.27, respectively, when β = (0, 0)′. When β = (0.5,−0.5)′,

ρ = 0.4 and ρ = 0.7 led to a conditional correlation of 0.11 and 0.19, respectively. Under

each censoring proportion, β and ρ values, and sample sizes of 250, 350 and 400, we ran

1000 Monte Carlo simulations. Ultimately, we were interested in examining the bias of

each estimator, the improvement of the sample and estimated standard errors for β̂AUG, and

the coverage probabilities.

As seen from Tables 4 and 5, in general, all the resulting estimators for β̂ and β̂AUG

are consistent; the sample standard errors and the estimated standard errors are quite close;

and the coverage probabilities of the 95% confidence intervals match the nominal level. By

covariate augmentation, we can generally see improvements of β̂AUG over β̂ in terms of the

standard errors. The fact that small correlations between T and W still lead to improved

efficiencies demonstrates the practical usefulness of our method. As the conditional cor-

relation between T and W given Z increases, the efficiency gain becomes more evident.

Overall, our simulations demonstrate that the augmented estimating equation can produce

consistent estimators with improved efficiency while not imposing additional modeling

structures.
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Table 4: Simulation with β = (0, 0)′ and different sample sizes n. The conditional correla-
tion between T and W given Z is 0.15 (ρ = 0.4) and 0.27 (ρ = 0.7). Bias, sample standard
error (se), median of estimated standard errors (ŝe), and the 95% coverage probability (CI)
are given for unadjusted estimator β̂ and adjusted estimator β̂AUG, respectively.

0% Censoring 30% Censoring

n β̂1 β̂2 β̂AUG,1 β̂AUG,2 β̂1 β̂2 β̂AUG,1 β̂AUG,2

ρ = 0.4
250 bias 0.019 -0.003 -0.005 0.020 0.047 -0.033 0.039 -0.026

se 0.269 0.278 0.222 0.257 0.312 0.455 0.301 0.454
ŝe 0.262 0.264 0.211 0.236 0.303 0.462 0.286 0.450
CI (%) 95.9 94.8 94.2 92.7 96.4 95.6 95.8 94.7

350 bias 0.012 -0.005 0.009 -0.002 0.024 0.001 0.021 0.006
se 0.226 0.225 0.217 0.224 0.259 0.399 0.254 0.393
ŝe 0.220 0.221 0.207 0.218 0.253 0.389 0.241 0.382
CI (%) 94.5 94.5 93.6 94.5 95.4 95.5 94.3 94.8

400 bias 0.011 -0.003 0.009 -0.001 0.019 0.008 0.017 0.012
se 0.212 0.213 0.203 0.213 0.235 0.365 0.228 0.363
ŝe 0.206 0.207 0.194 0.203 0.236 0.365 0.225 0.361
CI (%) 94.8 95.2 94.6 94.0 95.9 96.4 95.7 95.4

ρ = 0.7
250 bias 0.017 0.001 -0.006 0.023 0.050 -0.014 0.021 0.004

se 0.274 0.282 0.225 0.261 0.307 0.463 0.262 0.448
ŝe 0.263 0.264 0.211 0.237 0.302 0.457 0.247 0.428
CI (%) 95.6 94.5 93.9 91.6 96.4 95.5 94.8 94.0

350 bias 0.011 -0.001 -0.003 0.015 0.024 0.010 0.007 0.026
se 0.223 0.226 0.188 0.209 0.256 0.397 0.220 0.380
ŝe 0.220 0.221 0.177 0.198 0.251 0.393 0.209 0.370
CI (%) 95.0 95.0 93.5 93.7 95.8 95.6 94.7 94.6

400 bias 0.008 0.001 -0.002 0.013 0.019 0.009 0.005 0.028
se 0.210 0.210 0.173 0.195 0.236 0.362 0.201 0.349
ŝe 0.206 0.207 0.166 0.185 0.236 0.363 0.195 0.344
CI (%) 95.3 95.5 94.4 94.2 96.4 96.2 94.8 95.5
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Table 5: Simulation with β = (0.5,−0.5)′ and different sample sizes n. The conditional
correlation between T and W given Z is 0.11 (ρ = 0.4) and 0.19 (ρ = 0.7). Bias, sample
standard error (se), median of estimated standard errors (ŝe), and the 95% coverage proba-
bility (CI) are given for unadjusted estimator β̂ and adjusted estimator β̂AUG, respectively.

0% Censoring 30% Censoring

n β̂1 β̂2 β̂AUG,1 β̂AUG,2 β̂1 β̂2 β̂AUG,1 β̂AUG,2

ρ = 0.4
250 bias 0.059 -0.087 0.053 -0.081 0.059 -0.087 0.053 -0.081

se 0.326 0.268 0.313 0.267 0.326 0.268 0.313 0.267
ŝe 0.315 0.257 0.296 0.252 0.315 0.257 0.296 0.252
CI (%) 96.7 94.8 95.6 94.1 96.7 94.8 95.6 94.1

350 bias 0.043 -0.083 0.041 -0.081 0.056 -0.086 0.054 -0.083
se 0.271 0.214 0.263 0.214 0.307 0.332 0.300 0.330
ŝe 0.262 0.215 0.248 0.211 0.297 0.334 0.286 0.327
CI (%) 95.7 94.6 94.9 94.5 96.4 94.7 95.3 94.3

400 bias 0.039 -0.081 0.037 -0.079 0.053 -0.089 0.051 -0.087
se 0.249 0.198 0.240 0.197 0.277 0.296 0.269 0.295
ŝe 0.245 0.201 0.232 0.197 0.280 0.312 0.269 0.308
CI (%) 96.1 94.5 95.9 93.7 96.5 95.7 96.7 94.5

ρ = 0.7
250 bias 0.057 -0.083 0.029 -0.060 0.065 -0.070 0.045 -0.061

se 0.329 0.264 0.272 0.244 0.361 0.399 0.311 0.383
ŝe 0.315 0.257 0.252 0.229 0.359 0.396 0.297 0.366
CI (%) 96.5 94.7 94.7 93.9 96.9 95.4 95.5 94.6

350 bias 0.038 -0.077 0.021 -0.062 0.053 -0.080 0.039 -0.071
se 0.269 0.215 0.225 0.197 0.311 0.336 0.263 0.316
ŝe 0.260 0.214 0.209 0.191 0.297 0.334 0.248 0.311
CI (%) 96.3 94.7 94.7 93.7 96.5 94.9 95.4 93.5

400 bias 0.035 -0.076 0.022 -0.064 0.047 -0.083 0.036 -0.073
se 0.247 0.196 0.201 0.180 0.276 0.299 0.231 0.280
ŝe 0.244 0.201 0.196 0.179 0.278 0.312 0.232 0.288
CI (%) 96.5 94.9 95.5 93.5 96.6 95.5 95.3 94.9



40

3.5 Application to leukemia study

We applied our method to a leukemia study (Tsimberidou et al., 2006) at M.D. Anderson

Cancer Center which consisted of 130 patients diagnosed with Richter’s syndrome through

biopsy or fine-needle aspiration. Richter’s syndrome is a type of high grade non-Hodgkin’s

lymphoma, which usually develops in patients with chronic lymphocytic leukemia. It is

a rare type of leukemia and often quickly evolves into fatal cancer. In the study, fifty-one

patients were randomized into treatment 0 (chemoimmunotherapy with rituximab), and the

rest, into treatment 1 (chemotherapy). With the event time being the time of death, roughly

12% of the data is censored. Gender and age for each patient were also collected for the

study. Ages ranged between 29 and 77 with the median being 60 years, and the patient’s

gender was encoded as 1 for males. The overall objective of the study is to understand

the effectiveness of each treatment and ultimately determine which treatment led to better

survival rates.

Figure 3 displays the Kaplan-Meier survival curves for the treatments, and it is evident

that the curves are nonproportional hazards. To capture this nonproportional hazards fea-

ture and estimate the short- and long-term effects of the treatments, we applied the flexible

model of Yang and Prentice (2005). Initially disregarding the auxiliary covariate informa-

tion, we first obtained the unadjusted parameter estimates β̂1 = 1.1375 and β̂2 = −0.7055

with estimated standard errors 0.7102 and 0.6272, respectively. The results imply that the

estimated short-term hazard ratio is exp(β̂1) = 3.1192 and the estimated long-term hazard

ratio is exp(β̂2) = 0.4938 when not accounting for patients’ ages and gender.

To verify the need for incorporating the auxiliary covariates (i.e., determine if the

covariates and event times are correlated), we plotted the Kaplan-Meier survival curves

for each gender and differing age groups (using 60 years as the cutoff). As the estimated

survival curves for males and females in Figure 4 (a) and (b) are distinctly different from
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Figure 3: Kaplan-Meier survival curves under different treatments in the leukemia study.

each other, the data indicate that gender is correlated with survival times. Likewise, the

different estimated survival curves based on age groups seen in Figure 4 (c) and (d) also

demonstrate that age is correlated with survival times. With this evidence of correlation

between the auxiliary covariates and survival times, we applied the covariate augmentation

method to possibly produce more efficient estimators without imposing extra modeling

structures.

In particular, we posited a linear model with an interaction for each component of

the augmentation term h(W ;α). That is, for j = 1, 2, we set each hj(W ;αj) = αj0 +

αj1W1 + αj2W2 + αj3W1W2, where W1 is an indicator covariate corresponding to gender,

and W2 is the continuous covariate for age. The proposed method yielded the adjusted
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Figure 4: Kaplan-Meier survival curves for (a) males; (b) females; (c) individuals with ages
less than 60 years; (d) individuals with ages over 60 years. Survival curves in each case
are stratified by treatment where the solid line corresponds to chemoimmunotherapy with
rituximab, and the dashed line corresponds to chemotherapy.

parameter estimates β̂AUG,1 = 1.0751 and β̂AUG,2 = −0.7611. The respective estimated

standard errors are 0.6099 and 0.5259, which correspond to approximately 36% and 42%

efficiency gains over the unadjusted estimator β̂. In this case, the estimated short-term

hazard ratio is 2.9303, and the estimated long-term hazard ratio is 0.4672. Incorporating

the auxiliary covariates leads to reduced estimates of the short- and long-term hazard ratios,

and significant efficiency improvements in the estimates.
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3.6 Discussion

Our practical method for incorporating auxiliary covariates in nonproportional hazards

models demonstrates improved efficiency inferences, even in the case of small correla-

tion between the event times and covariates. Following a strategy suggested by Zhang et al.

(2008) and Yang and Prentice (2005), we posit a simple linear form for the augmented

term, with the actual form being motivated by scatter plots of the terms in the unadjusted

estimating equation against the covariates. Even if the posited form for the augmented

expectation term is incorrectly specified, the resulting β̂AUG displays improved efficiency

over the unadjusted estimator β̂. The proposed method permits the flexibility of having

more efficient estimators when direct modeling of T and W is not necessary.
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CHAPTER IV

SEMIPARAMETRIC ESTIMATION FOR CENSORED MIXTURE DATA WITH

APPLICATION TO THE COOPERATIVE HUNTINGTON’S OBSERVATIONAL

RESEARCH TRIAL

4.1 Introduction

In kin-cohort studies (Struewing et al., 1997; Wacholder et al., 1998; Gail et al., 1999)

and quantitative trait locus studies (QTL, Lander and Botstein, 1989; Wu et al., 2007), a

common scientific goal is to estimate the cumulative distribution function of an outcome,

subject to right censoring, from mixture data of scientifically meaningful subpopulations.

Current methods include parametric methods (Moore et al., 2001) which are often too re-

strictive and two types of nonparametric maximum likelihood estimators (NPMLEs, Chat-

terjee and Wacholder, 2001; Wacholder et al., 1998) which are either inefficient or inconsis-

tent. To improve upon these methods, we propose several nonparametric estimators which

are efficient, robust to model misspecification, and easy to implement.

Kin-cohort studies are recent novel designs proposed to estimate the age-specific cu-

mulative risk of a disease in deleterious mutation carriers applicable to rare mutations.

Prior to their development, population-based cohort designs or case-control family studies

(Whittemore, 1995; Li et al., 1998) were used to estimate the cumulative risk, but both

have disadvantages. While population-based cohort designs provide direct data on estimat-

ing the disease risk, for rare genetic exposures, they require a large number of subjects to

be screened to identify the sufficient number of mutation carriers. Case-control studies al-

low over-sampling of subjects with rare exposures, but case-control data alone only permit

estimation of relative risk or odds ratio, not absolute risk. The kin-cohort study combines

prospective or case-control probands with disease histories in family members. Similar to a
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case-control study, a kin-cohort study can enrich the sample of mutation carriers. However,

unlike a case-control design, a kin-cohort study substantially extends our understanding

of knowledge by enabling estimation of all aspects of the distribution of a disease given a

genotype such as absolute cumulative risk.

In a kin-cohort study, firstly, probands possibly enriched with mutation carriers are

sampled and genotyped. Next, family histories of the disease of interest in relatives of

the probands are collected by administering a reliable, validated interview (Marder et al.,

2003) to probands, or preferably the relatives themselves. Due to practical concerns of the

cost of in-person assessments to collect blood samples, genotype information is usually

not available on relatives though disease status (phenotype) information is available from

systematic interview. Therefore phenotype data arise from a combination of genotype-

specific subpopulations. Despite unknown genotypes in relatives, the probability of each

relative having a certain genotype can be estimated from his or her relationship with the

proband and the observed proband’s genotype. Distributions of the observed phenotypes

in the relatives are therefore a mixture of genotype-specific distributions. The missing

genotype information in relatives creates complications in the analysis where the interest is

on conditional distribution given the genotypes.

This mixture data structure also arises in other scientific experiments such as the inter-

val mapping of quantitative traits (Lander and Botstein, 1989). Here, the trait distributions

are mixtures of the quantitative trait locus (QTL) genotype-specific distributions where the

mixing proportions are computed based on the flanking marker genotypes and recombina-

tion fractions between the marker and the putative QTL. Therefore in many controlled QTL

experiments such as backcross the mixing proportions are easily obtained, and interest lies

in estimating the genotype-specific distributions.

A common scientific goal of kin-cohort and QTL studies is to make inference on

genotype-specific subpopulation distributions where observed data is from a mixture of
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subpopulations with mixing proportions that vary across subjects but which can be ob-

tained from available genotype data on probands or flanking markers. The focus of the

current paper is to analyze such mixture data under the context of censoring. For mixture

data in QTL mapping and kin-cohort studies, maximum likelihood based parametric meth-

ods are typically used (Lander and Botstein, 1989; Wu et al., 2002; Moore et al., 2001).

Sometimes, the biological underpinning of the development of a disease trait suggests a

suitable parametric function which offers meaningful interpretation of the biological struc-

ture (Wu et al., 2000). Still, for many situations, there may not be sufficient biological

knowledge to warrant such a parametric function, and concerns of model mis-specification

naturally arise. To alleviate these issues, more flexible semiparametric modeling and es-

timation of the distribution functions become essential (Zhao and Wu, 2008; Yu and Lin,

2008; Liu et al., 2006). Jin et al. (2007) used the exponential tilt to model the relation

between different genotype-specific distributions, and provided likelihood based inference.

Diao and Lin (2005) and Liu et al. (2006) proposed a Cox proportional hazards model for

QTL experiments. However, a proportional hazards assumption may not be satisfied for

some real data such as Huntington disease (HD) data (Langbehn et al., 2004). Ma and

Wang (2011) adopted a pure nonparametric model of the conditional distributions, pro-

posed a general class of semiparametric estimators and identified the efficient member of

the class for non-censored observations.

For nonparametric time-to-event model with event time subject to censoring, Wang

et al. (2007) proposed methods for kin-cohort data when the censoring times are observed

for all subjects. When censoring times are random and not all observed, Wacholder et al.

(1998) proposed a nonparametric maximum likelihood estimator (type I NPMLE) con-

sisting of a combination of several NPMLEs and a linear transformation. Chatterjee and

Wacholder (2001) proposed a direct maximization of the nonparametric likelihood (type II

NPMLE) with respect to the conditional distributions and used an EM algorithm to find the
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maximizer. Although in many situations, NPMLEs are efficient, we demonstrate here the

surprising results that these two types of NPMLE have their respective limitations: the type

I is inefficient and the type II is inconsistent.

Due to the shortcomings of the two NPMLEs, we take a semiparametric approach and

cast this problem in a missing data framework. Given a complete data influence function

(i.e., no censoring), we propose an inverse probability weighting (IPW) estimator, and then

add an augmentation term to obtain the optimal estimator. We also propose an imputa-

tion (IMP) estimator which is easy to implement and does not require additional modeling

assumptions for the imputation step. We demonstrate the asymptotic properties of these

estimators and examine their finite sample performance through simulation studies and an

application to Huntington disease data.

4.1.1 The Cooperative Huntington’s Observational Research Trial (COHORT)

Huntington disease is a degenerative, genetic disorder which targets nerve cells in the brain

and leads to cognitive decline, involuntary muscle spasms, and psychological problems.

Affected individuals typically begin to see neurological and physical symptoms around 30-

50 years of age, and eventually die from pneumonia, heart failure or other complications

10-25 years after the disease onsets. The severity of the disease has prompted the develop-

ment of several organizations, like the Huntington Study Group (Huntington Study Group,

2011b), which are devoted to studying the causes, effects, and possible treatments for HD.

A particular study organized by roughly 42 Huntington Study Group research centers in

North America and Australia is the Cooperative Huntington’s Observational Research Trial

(COHORT, Huntington Study Group, 2011a). The COHORT is designed for collecting on-

going information from affected adults and at-risk family members 15 years of age and

older who choose to participate.

Huntington disease is caused by unstable CAG repeats in the HD gene (Ross, 1995). In
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a clinical counseling setting, CAG repeats ≥ 36 is defined as positive for Huntington gene

mutation, or carrier, and CAG <36 is defined as negative, or non-carrier (Rubinsztein et al.,

1996). Each year, proband participants undergo a clinical evaluation, where blood samples

are genotyped for being a carrier or non-carrier of HD mutation. While the HD mutation

status is ascertained in probands, high costs of in-person interviews on family members,

prevents collection of blood sample in the relatives. Based on a subject’s relationship with

the proband and the proband’s mutation status, the genotype distribution of a relative can

still be obtained. Distribution of the relatives’ age-at-death is therefore a mixture of the

genotype-specific distributions with known mixing proportions. As the survival functions

in HD mutation carriers is of great clinical interest, we apply the proposed estimators to

the COHORT data to determine the cumulative risk of death from possessing the HD gene

mutation.

4.2 Existing estimators for censored mixture data

Censored mixture data consist of independent, identically distributed triplets (Qi = qi, Xi =

xi,∆i = δi). For the ith individual, Qi is a p-dimensional vector of random mixture pro-

portions with associated probability mass function pQ which has finite support u1, . . . , um.

Also, Xi = min(Ti, Ci) denotes a subject’s event time where Ti is a continuous outcome

(i.e., survival time) and Ci is a random continuous censoring time independent of Ti; and

∆i = I(Ti ≤ Ci) denotes the censoring indicator. We let f(·) denote the p-dimensional,

unspecified probability density function of T given the mixing group membership, and F (·)

denote its corresponding conditional cumulative distribution function. Interest lies in esti-

mating F (t) for any fixed time t, where the jth component, Fj(t), j = 1, . . . , p, denotes the

conditional distribution of a trait given that the gene mutation status is the jth kind. For the

COHORT study, p = 2 and F1(t) and F2(t) correspond to the age-at-death distribution for

individuals with an HD carrier and non-carrier gene, respectively. Throughout, we assume
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event times x1, . . . , xn have no ties, and that the censoring distribution is common for all p

populations. Then, letting G(·) denote the survival function of C and g(·) is corresponding

density, the log-likelihood of n observations is

n∑
i=1

log
(
pQ(qi)

{
qTi f(xi)G(xi)

}δi [{
1− qTi F (xi)}g(xi)

}]1−δi
)
, (4.1)

where we use the fact that qTi 1p = 1 with 1p a p-dimensional vector of ones.

4.2.1 The type I NPMLE and its inefficiency

The type I NPMLE was proposed in the literature to analyze kin-cohort data (Wacholder

et al., 1998). It first maximizes (4.1) with respect to qTi f(xi)’s, then recovers F (t) through

a linear transformation. Although an NPMLE based estimator is usually efficient, it is not

so for the mixture data context, and the magnitude of efficiency loss is non-ignorable.

To describe the type I NPMLE, we reformulate the maximization problem by evoking

the assumption that Q has finite support u1, . . . , um and by letting sj(xk) = uT
j f(xk) and

Sj(xk) = 1− uT
j F (xk). The type I NPMLE then maximizes the equivalent target function

m∑
j=1

n∑
i=1

log
{
sj(xi)

δiSj(xi)
1−δi

}
I(qi = uj) (4.2)

with respect to sj(xi)’s and subject to
∑n

i=1 sj(xi)I(qi = uj) ≤ 1, sj(xi) ≥ 0 for

j = 1, . . . ,m. Obviously this is equivalent to m separate maximization problems, each

concerning sj(·) and Sj(·) only, so that the maximizers are the classical Kaplan-Meier es-

timators. That is,

Ŝj(a) =
∏

xi≤a,qi=uj

{
1− δi∑

qk=uj
I(xk ≥ xi)

}

and sj(a) = Sj(a
−) − Sj(a) for all a. Using the linear relation uT

j F (t) = 1 − Sj(t) for

j = 1, . . . ,m, we then recover the type I NPMLE estimator as

F̃ (t) =
(
UTU

)−1
UT{1m − Ŝ(t)},
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where Ŝ(t) = {Ŝ1(t), . . . , Ŝm(t)}T , and U = (u1, . . . , um)
T . In this notation, S(t) =

1m − UF (t). The consistency of the Kaplan-Meier estimator of S(t) ensures the consis-

tency of F̃ (t). The inefficiency of F̃ (t), however, is evident considering that F̃w(t) =

(UTΣ−1U)−1UTΣ−1{1m − Ŝ(t)} with Σ denoting the variance-covariance matrix of Ŝ(t)

yields a more efficient estimator. In this case, because each of the m components of Ŝ(t) is

estimated using a distinct subset of the observations, Σ is a diagonal matrix. Hence, F̃w(t)

is simply a weighted version of the type I NPMLE, and this simple weighting scheme

improves the estimation efficiency.

4.2.2 The type II NPMLE and its inconsistency

The type II NPMLE is considered an improvement over the type I NPMLE (Chatterjee and

Wacholder, 2001). The type II NPMLE maximizes the same log likelihood (4.2), but with

respect to f(xi)’s in contrast to sj(xi) = uT
j f(xi) as for the type I NPMLE, and subject

to
∑n

i=1 f(xi) ≤ 1p, and f(xi) ≥ 0 component-wise. In general, no closed form solution

exists, and the Expectation-Maximization (EM) algorithm is usually implemented to obtain

the F (xi)’s. To be specific, we regard the genotypes Gi = 1, . . . , p as missing data, and

derive the complete data log likelihood of the observations oi = (Gi = gi, Xi = xi,∆i =

δi), i = 1, . . . , n, as

Lcomp
type II{o1, . . . , on; f(xi), F (xi), i = 1, . . . , n}

=
n∑

i=1

p∑
k=1

I(gi = k)log
[
fk(xi)

δi{1− Fk(xi)}1−δi
]
.

The EM algorithm is an iterative procedure, where at the lth iteration, the E-step is:

E
[
Lcomp

type II{o1, . . . , on; f(xi), F (xi), i = 1, . . . , n}|f (l)(xi), F
(l)(xi), i = 1 . . . , n

]
=

p∑
k=1

n∑
i=1

[
δiqikf

(l)
k (xi)∑p

k=1 qikf
(l)
k (xi)

logfk(xi) +
(1− δi)qik{1− F

(l)
k (xi)}∑p

k=1 qik{1− F
(l)
k (xi)}

log{1− Fk(xi)}

]
.
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The M-step maximizes the above expression with respect to f(xi) and F (xi)’s subject to

f(xi) ≥ 0 and 1 ≥ F (xi) ≥ 0. To this end, let

c
(l)
ik = δi

qikf
(l)
k (xi)∑p

k=1 qikf
(l)
k (xi)

+ (1− δi)
qik{1− F

(l)
k (xi)}∑p

k=1 qik{1− F
(l)
k (xi)}

denote the known quantity based on the lth iteration. Then, the M-step reduces to p separate

maximization problems of the form

n∑
i=1

c
(l)
ik [δilogfk(xi) + (1− δi)log{1− Fk(xi)}] ,

for k = 1, . . . , p. Viewing this as the log likelihood of weighted observations, where the

ith observation represents c(l)ik observations of the same value, the maximizer is a modified

Kaplan-Meier estimator:

1− F̌
(l+1)
k (t) =

∏
xi≤t,δi=1

{
1−

∑n
j=1 I(xj = xi, δj = 1)c

(l)
jk∑n

j=1 c
(l)
jkI(xj ≥ xi)

}

=
∏

xi≤t,δi=1

{
1− c

(l)
ik∑n

j=1 c
(l)
jkI(xj ≥ xi)

}
.

Iterating the E- and the M-steps until convergence ultimately leads to the type II estimator.

As natural as the type II NPMLE appears, we show in Appendix C the surprising re-

sult that it is an inconsistent estimator of F (t). To understand this intuitively, notice that

the type II NPMLE maximizes the product of m different likelihoods formed by all ob-

servations with respect to a collection of parameters, but each of these parameters should

concern only one of these likelihoods formed by a subset of the observations. For exam-

ple, with an uncensored observation where Qi = (0.5, 0.5) and Ti = ti, the event time ti

will carry an equal weight with the type II estimator for each of the two subpopulations.

However, if this observation belongs to the first subpopulation, then ti should not be in-

cluded in the support when estimating F2(·). Likewise, if this observation belongs to the

second subpopulation, then ti should not be included in the support when estimating F1(·).
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Since we do not observe which subpopulation an observation comes from, it is difficult for

the type II NPMLE to correctly identify the support for each subpopulation. In contrast,

the type I NPMLE does not suffer from this difficulty: when regarding Sj(t) = uT
j F (t)

as an unknown parameter, the type I correctly assigns the support of Sj(·) to include all

observations with qi = uj . Such a computation is feasible as all qi are observed.

4.2.3 Estimators through a Cox Proportional Hazards Model

Motivated by the work of Diao and Lin (2005) for QTL studies, we also consider the Cox

proportional hazards model for genotype-specific distributions. We consider genotype Gi

as missing data, and let Zi(Gi) denote a p-dimensional coding vector for the genotype

effect. For simplicity, we take the Gith component of Zi(Gi) to be one and the remaining

components as zero. Other codings to indicate dominant, recessive, and additive effects

can also be used.

Viewing the coding vectors Zi(·) as covariates, the censored data is modeled through

a proportional hazards model, where the hazard function for subject i is

λ(x|Gi = k) = λ0(x) exp{βT zi(k)}.

In the above, λ0(x) denotes an unspecified baseline hazard function and β is a p-dimensional

parameter. Throughout, let Λ0(t) denote the baseline cumulative hazard function. The

Cox-based estimator corresponds to replacing the f(xi)’s and F (xi)’s in (4.1) with their

parametric forms under the proportional hazards assumption, and then maximizing it with

respect to β and Λ0(t). The final estimates, denoted β̂PH and Λ̂0(t) , respectively, are then

used to form the Cox-based estimator F̂PH(t), where the jth component, j = 1, . . . , p, is

F̂PH,j(t) = 1− exp{− exp(β̂PH,j)Λ̂0(t)}.

As this maximization has no closed form, we obtain estimates for β and Λ0(t) through an

EM algorithm described in Appendix C.
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Considering that the Cox-based estimator assumes event times follow a proportional

hazards model, it is evident that this estimator will result in biased estimates when the

condition is not met. For example, in the COHORT data, assuming proportional hazards

is inappropriate given that the distributions for the carrier and non-carrier groups cross at

around age 38.

4.3 Proposed nonparametric estimators for censored mixture data

4.3.1 The IPW and the optimal augmented IPW estimators

To compensate for the poor performance of the NPMLEs and parametric restrictions of

the Cox-based estimator, we now propose a class of nonparametric estimators based on

the inverse probability weighting (IPW) which are easy to implement and have satisfactory

performance. Previously, Bang and Tsiatis (2000, 2002) used the IPW to estimate mean and

median medical cost when the event times are subject to right censoring. For the mixture

data with censoring, the IPW estimator is obtained through solving

n−1

n∑
i=1

δiϕ(qi, xi)

Ĝ(xi)
= 0,

where ϕ denotes a general influence function for non-censored data (see Ma and Wang,

2011) and Ĝ(t) is the Kaplan-Meier estimator of G(t):

Ĝ(t) =
∏
xi≤t

{
1− 1− δi∑n

j=1 I(xj ≥ xi)

}
.

To simplify notation in what follows, let Yi(u) = I(xi ≥ u), Y (u) =
∑n

i=1 Yi(u),

N c
i (u) = I(Xi ≤ u,∆i = 0), λc(·) be the hazard function for the censoring distribution,

M c
i (u) = N c

i (u)−
∫ u

0

I(Xi ≥ s)λc(s)ds

denote the censoring martingale; and

B(h, u) = E {h(·)|Ti ≥ u} =
E{h(·)I(Ti ≥ u)}

S(u)
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where h is any p length function.

To characterize the asymptotic behavior of the IPW estimator, we show in Appendix

C that the ith influence function for the IPW estimator is

ϕipw(qi, xi, δi) = ϕ(qi, ti)−
∫

dM c
i (u)

G(u)
{ϕ(qi, ti)− B (ϕ, u)} .

The two terms in ϕipw are uncorrelated given that for filtration F(u), the set of σ-algebras

generated by σ{qi, I(Ci ≤ r), r ≤ u; I(Ti ≤ x), 0 ≤ x < ∞, i = 1, . . . , n}, ϕ(qi, xi) is

F(0) measurable. Hence, the estimation variance of the IPW estimator is

Vipw = cov{ϕ(Qi, Ti)}+ E

{∫
B(ϕ⊗2, u)− B(ϕ, u)⊗2

G2(u)
λc(u)Yi(u)du

}
,

and a corresponding consistent estimator is

V̂ipw = n−1

n∑
i=1

δiϕ(qi, xi)ϕ
T (qi, xi)

Ĝ(xi)
+ n−1

n∑
i=1

∫
B̂1(ϕ

⊗2, u)− B̂1(ϕ, u)
⊗2

Ĝ2(u)
dN c

i (u),

where B̂1(h, u) =
1

nŜ(u)

n∑
i=1

δih(qi, xi, δi)I(xi ≥ u)

Ĝ(xi)
for an arbitrary function h(qi, xi, δi).

Although intuitive and easy to implement, the IPW estimator is inefficient. A modi-

fication motivated by Robins and Rotnitzky (1992), however, leads to a more efficient es-

timator. Using the complete data influence function ϕ, the authors provided the following

general class of influence functions for censored data:

ϕ(qi, ti)−
∫

dM c
i (u)

G(u)
{ϕ(qi, ti)− B(ϕ, u)}+

∫
dM c

i (u)

G(u)
[h{āi(u), u} − B(h, u)] . (4.3)

In the mixture problem, ai(u) = {qi, I(u < Ti)} and āi(u) contains the functions ai(ũ) for

all ũ ≤ u. Compared to the influence function for the IPW estimator, the estimator from

(4.3) contains an augmentation term that may improve the estimation efficiency, and is thus

termed the augmented IPW (AIPW) estimator. Among all the choices for h, Robins et al.

(1994) and Van der Laan and Hubbard (1998) showed that

h∗
eff{āi(u), u} = E{ϕ(Qi, Ti)|Ti ≥ u, āi(u)}

= {I(u < Xi) + I(u = Xi, δi = 0)}E{ϕ(Qi, Ti)|qi, Ti ≥ u}+ I(u = Xi)δiϕ(qi, u)



55

with u ≤ Xi yields the optimal efficiency. Denoting heff,i(u) = E{ϕ(Qi, Ti)|qi, Ti ≥ u},

we have that h∗
eff{āi(u), u} and heff,i(u) are identical except when u = Xi and δi = 1.

The functional h∗
eff only appears in the censoring martingale integral, so using heff,i(u)

instead of h∗
eff{āi(u), u} yields the same influence function.

For most problems, constructing the efficient estimator usually relies on additional

model assumptions and thus prevents the estimator from achieving the efficiency bound.

We now demonstrate that the AIPW estimator for the mixture data does achieve the optimal

efficiency. We first note that heff,i can be estimated consistently using a sample version of

(4.3) with IPW:

ĥeff,i(u) =

∑n
j=1 I(qj = qi)ϕ(qj, xj)Yj(u)δj/Ĝ(xj)∑n

j=1 I(qj = qi)Yj(u)δj/Ĝ(xj)
, (4.4)

where we use the global estimation of G(u) since we assume the censoring distribution

is common for all p populations. We may relax this assumption, however, and use only

observations with the same qi values to obtain group specific censoring distributions. Fur-

thermore, because heff,i(u) is not a function of Ci, the independence between the censoring

and survival process gives

B(heff, u) =
E
{
heff,i(u)I(Ti ≥ u)I(Ci ≥ u)

}
E{I(Ti ≥ u)I(Ci ≥ u)}

=
E
{
heff,i(u)Yi(u)

}
E{Yi(u)}

.

Therefore, we can approximate B(heff, u) with

B̂(heff, u) =

∑n
i=1 heff,i(u)Yi(u)

Y (u)
,

which satisfies
n∑

i=1

∫
λc(u)I(xi ≥ u)

Ĝ(u)

{
ĥeff,i(u)− B̂(ĥeff, u)

}
du = 0.

This enables us to obtain the optimal estimator F̂ (t) practically by solving
n∑

i=1

δiϕ(qi, xi)

Ĝ(xi)
+

∫
dN c

i (u)

Ĝ(u)

{
ĥeff,i(u)− B̂

(
ĥeff, u

)}
= 0. (4.5)
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The estimator is very easy to implement especially comparing to many other semipara-

metric problems where the efficient estimator often involves additional model assumptions

(Tsiatis and Ma, 2004; Wang et al., 2010), solving integral equations (Rabinowitz, 2000)

and iterative procedures (Lu and Tsiatis, 2008; Zhang et al., 2008).

In Appendix C, we demonstrate that the AIPW estimator indeed has the efficient influ-

ence function, which corresponds to replacing h(·) with heff,i(u) in (4.3). We also demon-

strate the variance of the efficient estimator is

Veff = cov{ϕ(Qi, Ti)}+ E

∫ B{(ϕ− heff)
⊗2, u}

G2(u)
λc(u)Yi(u)du,

which can be estimated consistently via

V̂eff = n−1

n∑
i=1

δiϕ(qi, xi)ϕ
T (qi, xi)

Ĝ(xi)
+ n−1

n∑
i=1

∫ B̂1{(ϕ− ĥeff)
⊗2, u}

Ĝ2(u)
dN c

i (u).

4.3.2 An imputation (IMP) estimator

Lipitz et al. (1999) proposed a conditional estimating equation for regression with missing

covariates by conditioning the complete data estimating equation on the observed data.

Similarly, with censored observation, we replace the unknown complete data influence

function with its conditional expectation given that the event happens after the observed

censoring time. Doing so yields the following imputed estimating equation:

0 =
n∑

i=1

[δiϕ(qi, xi) + (1− δi)E {ϕ(Qi, Ti)|Ti > xi, qi}]

=
n∑

i=1

{
δiϕ(qi, xi) + (1− δi)heff,i(xi)

}
.

In practice, we obtain the IMP estimator by solving

0 =
n∑

i=1

{
δiϕ(qi, xi) + (1− δi)ĥeff,i(xi)

}
,

with ĥeff,i(u) as in (4.4).
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While in many cases the imputation method could lead to bias if the model of the miss-

ingness is mis-specified, it is straightforward to see that our proposed imputation estimator

is always consistent. In practice, we often, but not always, observe that it performs compet-

itively or even favorably in comparison with the optimal AIPW estimator. For inferences,

we derive the influence function of the IMP estimator in Appendix C and find that it has

a complex form containing nested conditional expectations and hence is hardly practically

useful. Asymptotic analysis for imputation based estimation is often complex and can be

rather involved even in parametric imputation procedures (Wang and Robins, 1998; Robins

and Wang, 2000), which partially explains why the bootstrap method is usually favored in

its inference.

One interesting discovery we made is that when the data arise from a single distri-

bution (i.e., p = 1), the IPW, AIPW, IMP and the two NPMLEs are all equivalent to the

familiar Kaplan-Meier estimator. This indicates the complexity arising from the mixture

nature.

4.4 Simulations

We conducted three Monte Carlo simulation studies to illustrate the finite sample perfor-

mance of five groups of estimators, yielding a total of twelve different estimators. The

first group of estimators includes the IPW, optimal AIPW and IMP estimator based on the

complete data ordinary least square (OLS) influence function. The second and third groups

include the same three estimators based on the complete data weighted least square (WLS)

and efficient (EFF) influence functions, respectively. Finally, the fourth group of estimators

contains the two NPMLEs and the fifth, the Cox-based estimator.

The first two simulation studies exemplify the sensitivity of the Cox-based estima-

tor and the robustness of the nonparametric estimators with respect to the data assump-

tions. To illustrate this sensitivity, we took F (t) as a two-dimensional vector (i.e., p = 2),
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and let q assume any one of 4 different possible vector values (i.e., m = 4). In the

first simulation experiment, we generated data from a proportional hazards model; that

is the two components in the true F (t) have truncated exponential form where F1(t) =

{1−exp(−t/4)}/{1−exp(−2.5)} on the interval (0, 10) and F2(t) = F1(t)
0.98 on the inter-

val (0, 5). In the second simulation experiment, we generated data from a non-proportional

hazards model where F1(t) = [{1 − exp(−t/4)}/{1 − exp(−2.5)}]0.5 on (0, 10) and

F2(t) = {1 − exp(−t/2)}/{1 − exp(−2.5)} on (0, 5). For both data generation proce-

dures, our sample size is 500 and we generated a uniform censoring distribution to achieve

moderate (20%) and high (50%) censoring rates. For each scenario, we ran 1000 Monte

Carlo simulations and demonstrate the performance of the twelve estimators in Tables 6

and 7.

The results in Tables 6 and 7 indicate that only when the data are generated from a

proportional hazards model does the Cox-based estimator have small bias, have estimated

coverage probabilities matching the nominal level, and outperforms all the nonparametric

estimators. When the data follow a non-proportional hazards model, however, the Cox-

based estimator deteriorates and produces highly biased estimates. These results suggest

that the Cox-based estimator should not be used when the proportional hazards assumption

is in doubt. It is worthy to point out that when the proportional hazards assumption does

hold, the proposed AIPW estimators have similar empirical standard errors as the Cox-

based estimator, indicating minimal efficiency loss of the nonparametric estimators.
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Table 6: Bias, empirical standard deviation (emp sd), average estimated standard devia-
tion (est sd), 95% coverage (95% cov) of the first simulation with proportional hazards
generated data, sample size n = 500, 20% and 50% censoring rate, 1000 simulations.

F1(t) = 0.5837 F2(t) = 0.5748
Estimator bias emp sd est sd 95% cov bias emp sd est sd 95% cov

Group 1: OLS based, censoring rate =20%
IPW 0.0005 0.0430 0.0428 0.9420 0.0003 0.0418 0.0417 0.9510

AIPW 0.0006 0.0410 0.0402 0.9480 -0.0000 0.0397 0.0393 0.9490
IMP 0.0005 0.0410 0.0400 0.9360 0.0000 0.0396 0.0391 0.9500

Group 2: WLS based, censoring rate =20%
IPW 0.0006 0.0430 0.0428 0.9410 0.0003 0.0418 0.0417 0.9510

AIPW 0.0006 0.0410 0.0402 0.9480 -0.0000 0.0397 0.0393 0.9490
IMP 0.0005 0.0410 0.0400 0.9370 0.0000 0.0396 0.0391 0.9520

Group 3: EFF based, censoring rate =20%
IPW 0.0003 0.0432 0.0432 0.9480 0.0001 0.0429 0.0433 0.9510

AIPW 0.0007 0.0412 0.0405 0.9450 -0.0001 0.0400 0.0398 0.9430
IMP 0.0006 0.0412 0.0402 0.9410 -0.0001 0.0399 0.0393 0.9450

Group 4: NPMLE, censoring rate =20%
type I 0.0002 0.0478 0.0468 0.9410 0.0008 0.0921 0.0891 0.9240
type II -0.0140 - - - 0.0098 - - -

Group 5: Cox PH, censoring rate =20%
COX 0.0002 0.0447 0.0448 0.9541 -0.0001 0.0381 0.0378 0.9431

Group 1: OLS based, censoring rate =50%
IPW 0.0087 0.0719 0.0683 0.9260 -0.0024 0.0672 0.0666 0.9430

AIPW 0.0010 0.0469 0.0458 0.9430 -0.0006 0.0450 0.0449 0.9400
IMP 0.0052 0.0495 0.0497 0.9390 0.0018 0.0469 0.0478 0.9540

Group 2: WLS based, censoring rate =50%
IPW 0.0087 0.0721 0.0682 0.9280 -0.0024 0.0673 0.0666 0.9430

AIPW 0.0010 0.0469 0.0458 0.9450 -0.0006 0.0450 0.0449 0.9390
IMP 0.0052 0.0495 0.0497 0.9390 0.0018 0.0469 0.0478 0.9540

Group 3: EFF based, censoring rate =50%
IPW 0.0037 0.0705 0.0700 0.9340 -0.0036 0.0739 0.0741 0.9420

AIPW 0.0002 0.0484 0.0463 0.9410 0.0004 0.0461 0.0456 0.9520
IMP 0.0043 0.0501 0.0509 0.9470 0.0028 0.0475 0.0487 0.9590

Group 4: NPMLE, censoring rate =50%
type I 0.0000 0.0547 0.0539 0.9460 -0.0013 0.1069 0.1024 0.9120
type II -0.0415 - - - 0.0337 - - -

Group 5: Cox PH, censoring rate =50%
COX -0.0010 0.0479 0.0499 0.9620 -0.0011 0.0464 0.0470 0.9460
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Table 7: Bias, empirical standard deviation (emp sd), average estimated standard deviation
(est sd), 95% coverage (95% cov) of the second simulation with non-proportional hazards
generated data, sample size n = 500, 20% and 50% censoring rate, 1000 simulations.

F1(t) = 0.5063 F2(t) = 0.5132
Estimator bias emp sd est sd 95% cov bias emp sd est sd 95% cov

Group 1: OLS based, censoring rate =20%
IPW 0.0071 0.0475 0.0436 0.9220 -0.0008 0.0437 0.0425 0.9410

AIPW 0.0069 0.0433 0.0391 0.9250 -0.0013 0.0402 0.0388 0.9370
IMP 0.0011 0.0408 0.0394 0.9470 -0.0009 0.0397 0.0387 0.9390

Group 2: WLS based, censoring rate =20%
IPW 0.0071 0.0476 0.0436 0.9210 -0.0009 0.0437 0.0425 0.9410

AIPW 0.0069 0.0433 0.0391 0.9240 -0.0013 0.0402 0.0388 0.9360
IMP 0.0011 0.0408 0.0394 0.9470 -0.0009 0.0398 0.0387 0.9390

Group 3: EFF based, censoring rate =20%
IPW 0.0064 0.0467 0.0433 0.9290 -0.0010 0.0436 0.0423 0.9400

AIPW 0.0074 0.0431 0.0391 0.9280 -0.0020 0.0405 0.0387 0.9390
IMP 0.0025 0.0409 0.0394 0.9420 -0.0023 0.0398 0.0388 0.9380

Group 4: NPMLE, censoring rate =20%
type I 0.0007 0.0476 0.0459 0.9410 0.0002 0.0925 0.0879 0.9130
type II -0.0227 - - - 0.0168 - - -

Group 5: Cox PH, censoring rate =20%
COX -0.0304 0.0520 0.0492 0.8832 0.0191 0.0334 0.0348 0.9112

Group 1: OLS based, censoring rate =50%
IPW 0.0113 0.0847 0.0779 0.9250 -0.0047 0.0787 0.0761 0.9260

AIPW 0.0013 0.0509 0.0474 0.9340 -0.0025 0.0488 0.0487 0.9390
IMP 0.0088 0.0573 0.0567 0.9480 0.0018 0.0535 0.0551 0.9470

Group 2: WLS based, censoring rate =50%
IPW 0.0116 0.0855 0.0778 0.9220 -0.0048 0.0790 0.0760 0.9300

AIPW 0.0013 0.0510 0.0473 0.9340 -0.0026 0.0489 0.0487 0.9390
IMP 0.0088 0.0573 0.0567 0.9490 0.0018 0.0535 0.0551 0.9470

Group 3: EFF based, censoring rate =50%
IPW 0.0043 0.0801 0.0774 0.9290 -0.0056 0.0769 0.0758 0.9270

AIPW -0.0008 0.0525 0.0476 0.9250 -0.0006 0.0497 0.0488 0.9410
IMP 0.0074 0.0579 0.0580 0.9550 0.0031 0.0536 0.0557 0.9520

Group 4: NPMLE, censoring rate =50%
type I 0.0009 0.0584 0.0570 0.9360 -0.0044 0.1194 0.1080 0.8820
type II -0.0490 - - - 0.0377 - - -

Group 5: Cox PH, censoring rate =50%
COX 0.0273 0.0581 0.0597 0.9311 -0.0213 0.0466 0.0467 0.9261
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Irrespective of the underlying data assumptions, all the nonparametric estimators we

propose have ignorable finite sample bias, while the type II NPMLE is clearly biased. This

inconsistency is especially evident when the censoring rate is low, and becomes somewhat

masked when the censoring rate increases, especially when compared to the type I NPMLE.

This may have contributed to the type II NPMLE being regarded as a consistent estimator

in the literature. Moreover, this bias is not a finite sample bias since even at a sample size

of n = 2000, the bias persists. Compared to the proposed estimators, the type I NPMLE

has, for the most part, larger estimation variability, and the increased variability is rather

substantial for F2(t) estimation. When the censoring rate increases, the bias of the type

I NPMLE increases rather quickly, despite its asymptotic consistency. This is because in

the estimation procedure, the mixture nature of the model is not taken advantage of at the

maximization step. The Kaplan-Meier estimation in some subgroups could be based on

very small sample sizes which can make the overall estimation unreliable.

In contrast, the three proposed nonparametric estimators have satisfactory small bias

and are more efficient compared to the type I NPMLE. The optimal AIPW and IMP esti-

mators both provide improvement over IPW in terms of estimation efficiency. When the

censoring rate is moderate, IMP and AIPW perform similarly, while when the censoring

rate increases, the superiority of the optimal AIPW over IMP becomes more notable. The

similarity of the results in the first three groups of estimators suggests that the estimation

efficiency is not sensitive to the choice of the complete data influence function ϕ. The same

insensitivity of estimation efficiency to the choice of influence function is also evident in

Ma and Wang (2011) for the complete data case. This phenomenon proves beneficial espe-

cially in the censoring data analysis since Robins and Rotnitzky (1992) have remarked that

the best complete data influence function does not necessarily yield an optimal censoring

data influence function, and finding the optimal member usually requires a computationally

intensive procedure. Finally, the estimated standard error matches reasonably well with the
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sample standard error, while the 95% confidence interval is close to the nominal level, with

the only exception of the type I NPMLE. This is a consequence of the small subgroup sam-

ple size, and in simulation results not reported here, when we increase the sample size to

1000, the performance becomes satisfactory.

Our third simulation study mimics the COHORT study data. We generated 1000 data

sets of sample size n = 1000 from a mixture of two distributions similar to the estimated

distribution functions of the real data. According to Langbehn et al. (2004) and our own

examination of the COHORT data, it is unlikely that age-at-death distribution for HD car-

riers and non-carriers follow a Cox model, so we did not use one. Figure 5 depicts the

survival curves used where the higher curve corresponds to that for non-carriers, and the

lower curve for carriers. We censored 65% of the observations with a uniformly distributed

censoring process, and performed a similar analyzes as before. The results in Table 8 in-

dicate that the estimators behave similarly as before in that all proposed nonparametric

estimators have ignorable bias, and the AIPW estimator is, in general, most efficient. The

type II NPMLE and Cox-based estimators have non-ignorable bias where the latter results

from the true underlying model not satisfying the proportional hazards assumption.

In Figure 5, we depict the entire estimated survival curve 1 − F (t) using the effi-

ciency based imputation estimator (EFFIMP) and the efficiency based AIPW estimator

(EFFAIPW) as representatives of the proposed estimators, and compare them with the two

NPMLEs and the Cox-based estimator. The figure displays the true and resulting mean

estimated survival curves from 1000 data sets along with the 95% pointwise confidence

bands. The EFFIMP and EFFAIPW estimators perform satisfactorily throughout the en-

tire range of t, while the type I NPMLE starts to exhibit small sample estimation bias as

time progresses. This confirms our observation that the type I NPMLE suffers from the

small subgroup sample size difficulty and the instability of the Kaplan-Meier estimation

procedure near the end of the range of the event times.
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Figure 5: Simulation 3. True survival curve (solid) and the mean of 1000 simulations at
each time point (short-dashed for carrier group, long-dashed for non-carrier group), 95%
pointwise confidence band (upper band dotted, lower band dash-dotted) of the estimated
survival curves. The mean and true survival curves are indistinguishable in EFFIMP and
EFFAIPW estimators. Sample size is 1000, censoring rate is 65%.
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Table 8: Bias, empirical standard deviation (emp sd), average estimated standard deviation
(est sd), 95% coverage (95% cov) of the third simulation replicating the COHORT data,
sample size n = 1000, 65% censoring rate, 1000 simulations.

F1(t) = 0.7580 F2(t) = 0.3446
Estimator bias emp sd est sd 95% cov bias emp sd est sd 95% cov

Group 1: OLS based
IPW 0.0007 0.0310 0.0304 0.9490 0.0083 0.0579 0.0544 0.9410

AIPW 0.0010 0.0281 0.0271 0.9400 0.0072 0.0550 0.0505 0.9230
IMP 0.0015 0.0289 0.0286 0.9480 0.0089 0.0557 0.0538 0.9450

Group 2: WLS based
IPW 0.0007 0.0310 0.0304 0.9460 0.0084 0.0575 0.0543 0.9400

AIPW 0.0010 0.0280 0.0270 0.9420 0.0072 0.0547 0.0505 0.9240
IMP 0.0013 0.0288 0.0284 0.9430 0.0089 0.0555 0.0538 0.9460

Group 3: EFF based
IPW 0.0005 0.0309 0.0303 0.9460 0.0067 0.0560 0.0537 0.9400

AIPW -0.0010 0.0284 0.0270 0.9350 0.0095 0.0543 0.0501 0.9240
IMP 0.0005 0.0289 0.0286 0.9430 0.0097 0.0555 0.0532 0.9380

Group 4: NPMLE
type I -0.0005 0.0496 0.0509 0.9440 -0.0003 0.0939 0.0858 0.8820
type II -0.0143 - - - 0.0925 - - -

Group 5: Cox PH
COX -0.0156 0.0376 0.0373 0.9250 0.0389 0.0455 0.0419 0.9041



65

The type II NPMLE and the Cox-based estimators show a non-ignorable bias for a

wide range of t’s. Finally, the Cox-based estimator performs poorly, both in terms of bias

and its inability to capture the small crossing effect around age 38.

4.5 Analysis of the COHORT data

Data from the COHORT study consists of 4587 relatives who were assigned one of 6 dif-

ferent mixing proportions for being carriers or non-carriers of the HD gene. Letting pc

denote the probability of being a carrier and (pc, 1 − pc) denote a mixture proportion,

roughly 29.87% of the subjects were classified in the (0,1) proportion group, 42.93% in the

(0.5,0.5) group, 22.61% in the (0.97,0.03) group, 0.044% in the (0.75,0.25) group, 3.03% in

the (0.25,0.75), and 1.53% in the (1,0) group. The event time of interest is age of death, and

roughly 68% of the data is censored. The overall objective of the study is to estimate the

age-at-death distribution for HD gene carriers, or equivalently the corresponding survival

function, and compare it with non-carriers. The severity of Huntington disease warrants

that non-carriers tend to live longer, so we expect to see lower survival rates for the latter

group, especially post 30-50 years old, the typical age of onset of Huntington disease. As

the survival rates for non-carriers in the US should behave similarly to the general US pop-

ulation, we use the Kaplan-Meier estimated survival curve for the general US population

in 2003 (Arias, 2006) as a base comparison.

Figure 6 displays the estimated survival curves for the carrier and non-carrier groups

of the COHORT study data using the type I NPMLE estimator, the efficiency based AIPW

and IMP estimators, and the Cox-based estimators. As evident in the figure, the type I

NPMLE poorly estimates the survival rates, and suggests an atypical repeated crossing of

the two survival curves. The contradictory behavior of this estimator is also numerically

evident in Table 9 which shows the survival rates and 95% confidence intervals at different

ages.
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Figure 6: Estimated survival curves and 95% point-wise confidence bands (upper band dot-
ted, lower band dash-dotted) for Huntington disease data using the efficient complete data
influence function based optimal AIPW and IMP, the Cox-based, and the type I NPMLE
estimator. The short-dashed curve denotes survival rates for persons possessing a carrier
gene, the long-dashed curve for persons possessing a non-carrier gene, and the solid curve
corresponds to survival rates for general US population in 2003.
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Table 9: Estimated survival rates and 95% confidence intervals (in parentheses) for carrier
(C) and non-carrier (NC) groups in COHORT data.

Estimators

Age Gene US Pop 2003 EFFAIPW EFFIMP
40 C 0.952 (0.941, 0.963) 0.937 (0.925, 0.949)

NC 0.965 (0.964, 0.966) 0.972 (0.964, 0.980) 0.957 (0.948, 0.967)
50 C 0.875 (0.856, 0.895) 0.859 (0.838, 0.880)

NC 0.938 (0.936, 0.939) 0.950 (0.937, 0.963) 0.927 (0.913, 0.942)
60 C 0.675 (0.641, 0.710) 0.662 (0.623, 0.700)

NC 0.883 (0.881, 0.885) 0.881 (0.858, 0.904) 0.836 (0.810, 0.863)
70 C 0.411 (0.365, 0.457) 0.439 (0.386, 0.492)

NC 0.766 (0.764, 0.769) 0.762 (0.725, 0.798) 0.723 (0.684, 0.762)
80 C 0.144 (0.098, 0.189) 0.157 (0.097, 0.216)

NC 0.546 (0.543, 0.549) 0.488 (0.441, 0.534) 0.449 (0.402, 0.496)
90 C 0.044 (0.016, 0.071) 0.051 (0.002, 0.099)

NC 0.223 (0.220, 0.225) 0.173 (0.134, 0.213) 0.135 (0.094, 0.176)

type I NPMLE Cox
40 C 0.985 (0.979, 0.992) 0.950 (0.943, 0.958)

NC 0.965 (0.947, 0.983) 0.982 (0.979, 0.986)
50 C 0.945 (0.917, 0.973) 0.885 (0.872, 0.898)

NC 0.922 (0.890, 0.955) 0.958 (0.952, 0.965)
60 C 0.852 (0.804, 0.900) 0.704 (0.679, 0.729)

NC 0.847 (0.803, 0.891) 0.886 (0.873, 0.899)
70 C 0.686 (0.546, 0.827) 0.427 (0.396, 0.459)

NC 0.710 (0.640, 0.780) 0.746 (0.723, 0.770)
80 C 0.398 (0.119, 0.676) 0.132 (0.104, 0.160)

NC 0.476 (0.390, 0.561) 0.498 (0.468, 0.528)
90 C 0.352 (0.097, 0.606) 0.010 (0.003, 0.017)

NC 0.169 (0.087, 0.250) 0.205 (0.175, 0.234)
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Notice, in particular, the type I NPMLE suggests that being an HD carrier gives no

worse chance of survival than a non-carrier, a notion contrary to the debilitating effects of

Huntington disease. The wide confidence bands, especially for the carrier group, results

from the inefficiency of the type I NPMLE. This poor performance is most likely a result

of some proportion groups having small sample sizes; only 0.044% of patients in the study

are classified in the (0.75, 0.25) group. While removing these two individuals may lead

to more sensible estimates of the type I NPMLE, the overall inefficiency of this estimator

may, in general lead to invalid inferences.

In contrast to the type I NPMLE, the superior performance of the AIPW suggests that

carrying an HD gene mutation increases a subject’s cumulative risk of death significantly

in the age range 45 to 80. For example, referring to Table 9, the cumulative risk of death

for carriers at age 50 is 12.4% (95%CI: 10.4%, 14.4%) compared to 5.0%(95% CI: 3.7%,

6.2%) in non-carriers. The corresponding rate at age 70 is 58.9% (95%CI: 54.2%, 63.5%)

in carriers versus 23.8% (95%CI: 27.4%, 20.2%) in non-carriers. Such numerical evidence

reinforces the severity of Huntington disease and the importance of groups like the Hunt-

ington Study Group for finding treatments to reduce this fatality risk.

A reason to prefer the results of the AIPW estimator, compared to the type I NPMLE

say, is that the estimated cumulative risk of death in non-carriers is very similar to the

US population rates estimated from the US Census data (Arias, 2006), which is expected

since the risk in non-carriers reflects the general population. Likewise, the efficiency based

IMP estimator provides similar estimates as AIPW, with slightly higher estimated standard

errors, a consequence of the higher censoring rate. The estimation results from IMP and

AIPW estimators differ only in the age range of 70 and 80, where the IMP estimator sug-

gests a steeper decline in survival rates for patients with an HD gene mutation. Still, in

general, both the AIPW and IMP estimators agree in the overall behavior of the cumulative

risk of death for both the HD carrier and non-carrier groups.
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Finally, as a sensitivity analysis, we also applied the Cox-based estimator to the CO-

HORT data. In Figure 6, we see that while all other estimators considered provide evi-

dence that the two distributions cross at age 38, the Cox-based estimator does not do so.

Moreover, while, post age 40, it appears that the Cox-based estimator provides reasonable

estimates for the cumulative risk of death in non-carriers as compared to the US population

rates, Table 9 shows that the AIPW estimator does better. For example, at ages 40, 50, 60

and 70 (and ages in between, not shown), the AIPW estimator gives survival rates for the

non-carrier group that are more similar to the US population rates than are the Cox-based

estimates. This result agrees with an earlier observation by Langbehn et al. (2004) about

the unlikeliness of the age-ag-death distribution for HD carriers and non-carriers to follow

a Cox model.

4.6 Discussion

We propose two IPW based estimators and an IMP estimator for censored mixture data,

among which the optimal AIPW achieves the optimal efficiency based on a fixed complete

data influence function. These estimators are easy to compute and do not involve any

iterative procedures. When the sample size is small and the censoring rate is moderate,

the IMP estimator can sometimes compete or even outperform the asymptotically optimal

AIPW estimator. We also point out the surprising results of the non-optimality of the type

I NPMLE and the inconsistency of the type II NPMLE proposed in the literature. Our

finite sample simulations suggest that the efficiency loss of the type I NPMLE and the bias

of the type II estimator can be quite substantial, and the finite sample bias of the type I

NPMLE can be non-ignorable when the sample size is small or the estimation region is

close to the upper end of the distribution support. Through various simulation studies, we

demonstrate the sensitivity of a Cox-based estimator to the underlying model assumptions.

When the underlying model follows a proportional hazards model, the Cox-based estimator
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outperforms all nonparametric estimators in consistency and efficiency, as expected. When

these assumptions are in doubt, however, the Cox-based estimator shows a non-ignorable

bias. In contrast, the proposed AIPW is robust to the underlying model assumptions and

even has similar empirical standard errors to the Cox-based estimator when the proportional

hazards assumption holds, thus indicating minimal efficiency loss of this nonparametric

estimator.

Applying these estimators to the COHORT data, we see that the inefficiency of the

type I NPMLE leads to misleading conclusions about the fatality rates of patients with and

without the HD gene mutation. The optimal AIPW and IMP estimators, in contrast, show

reasonable survival rate estimates as measured by the closeness of the estimates for the

non-carrier group to the estimates for the general US population in 2003. Both estima-

tors also indicate that patients with an HD gene mutation have higher mortality rates than

patients without the gene between ages 45 and 80. These results are in agreement with

earlier observations of Huntington disease, thus exhibiting the usefulness of our proposed

estimators.
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CHAPTER V

CONCLUSION

Using the results of semiparametric theory, we have derived the general class of semi-

parametric estimators and characterized the properties of the optimal estimator therein for

parameters in (1). a restricted moment model with measurement error; (2). a general class

of survival models; and (3). a model with data of censored, mixed observations, typical

in kin-cohort studies. The underlying statistical basis for these models is semiparamet-

ric theory which provides general procedures to obtain practically important parameters

in the presence of nuisance parameters. For each of the three models considered, nuisance

parameters correspond to unknown error distributions in regression, unknown baseline haz-

ard functions in survival analysis, and unknown conditional distributions in outcomes given

group membership in a mixture data model. The versatile applications of semiparametric

theory led to the following findings from this work.

Prior to this work, existing methods for a restricted moment model with measurement

error did not allow an unspecified model error distribution and still guaranteed consistency.

To the best of our knowledge, the estimation procedure developed in Chapter II is the

first to give consistency while allowing misspecification in both the model error distribu-

tion pϵ|X,Z(ϵ|x, z) and the conditional covariate distribution pX|Z(x|z). The estimators are

based on the semiparametric efficient score which is calculated under several possibly in-

correct distribution assumptions resulting from the misspecified model error distribution,

or unobservable covariates’ distribution, or both. Through various simulation studies which

accounted for different variance structures in the model error distribution, we demonstrated

that our method is robust and delivers impressive results with considerably less bias than

a method which ignores measurement error. Moreover, our method performs considerably
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better than a competing method by Tsiatis and Ma (2004) which does allow misspecifica-

tion in the latent variable distribution but requires a correct model error distribution. Future

work entails extending these results to having instead of just two infinite dimensional pa-

rameters corresponding to the unknown model error and latent variable distributions, we

have k, say, infinite dimensional nuisance parameters. This extension incorporates many

problems, including the more difficult problem of quantile regression, where k = 1 and the

nuisance parameter corresponds to the unspecified error distribution which has conditional

τ th quantile as zero.

The developments in Chapter III integrate the results of Yang and Prentice (2005),

Zhang et al. (2008), and Lu and Tsiatis (2008) to provide a simple and direct illustration

for comparing nonproportional hazards functions with the beneficial supplement of having

improved efficiency of inferences through incorporating auxiliary covariates. Although

the results are intended for comparing non-proportional hazards, the flexibility of the base

model from Yang and Prentice (2005) permits a wider range of comparisons, including

those for proportional hazards and the proportional odds model. The proposed method

takes an unbiased estimating equation without auxiliary covariates and augments it by a

term adjusted for covariates. An appropriate choice of the augmentation term leads to a

consistent and more efficient estimator than the corresponding unadjusted estimator. The

approach of incorporating covariates does not raise the issue of model misspecification, nor

does it risk any possible loss of precision. Moreover, the proposed method generalizes the

results by Lu and Tsiatis (2008) which incorporates auxiliary covariate information only in

a proportional hazards setting. Even when the correlation between the auxiliary covariates

and the times to events is small, the method still provides more efficient estimators than the

corresponding ones without covariate adjustment.

Finally, we use semiparametric theory to develop three nonparametric estimators for

estimating the age-at death distributions for Huntington disease gene carriers and non-
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carriers from a kin-cohort study. The three estimators are consistent, easy to compute, and

are not susceptible to model misspecification nor parametric restrictions. We demonstrated

that among all estimators considered, the optimal augmented inverse probability weight-

ing (AIPW) estimator delivered the best estimates for the age-at-death distributions in the

carrier and non-carrier groups. We concluded this because the estimated survival curve

for the non-carrier group behaved similarly to the Kaplan-Meier estimated survival curve

for the general US population in 2003. The estimated distributions from the AIPW esti-

mator demonstrated that non-carriers tend to live longer, and carriers had lower survival

rates, especially post 30-50 years old, the typical age of onset of Huntington’s disease.

These results agreed with previous analysis of survival rates for Huntington’s disease. Al-

though useful, the proposed estimators excluded auxiliary covariate information typically

collected in clinical trials. Future work involves using the methods proposed in Chapter III

to incorporate the auxiliary information in a model free manner.
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER I

Semiparametric Theory

We highlight the semiparametric theory and critical steps in this approach. First, an RAL

estimator for the p-dimensional parameter β based on observed random variables (Wi, Yi, Zi)

for i = 1, . . . , n is uniquely characterized by its influence function through

n1/2(β̂n − β0) = n−1/2
∑n

i=1 φ(Wi, Yi, Zi) + op(1),

where the influence functions φ(Wi, Yi, Zi), i = 1, . . . , n are independent, identically dis-

tributed, mean zero random vectors with length p. Here, β̂n denotes the RAL estimator, β0

the true parameter value, and op(1) converges in probability to zero as n tends to infinity.

The asymptotic variance of β̂n equals the variance of φ. Hence the influence function with

the smallest variance yields the most efficient RAL estimator.

From a geometric viewpoint, influence functions are elements of a Hilbert space

H consisting of all functions h(W,Y, Z) such that E{h(W,Y, Z)} = 0 and such that

E{h(W,Y, Z)⊤h(W,Y, Z)} < ∞. Here and throughout, the expectation is always per-

formed under the true distribution. Influence functions are normalized and orthogonal to

a nuisance tangent space Λ, which is a subspace of H. The general approach of deriving

influence functions thus consists of deriving Λ and its orthogonal complement Λ⊥. All the

influence functions, including the efficient one, lie in Λ⊥.

The efficient influence function, denoted φeff(W,Y, Z), satisfies E(φS⊤
β ) = I , where

Sβ is the score vector with respect to β and I is the p × p identity matrix. The exact

form of the efficient influence function involves the efficient score vector Seff(W,Y, Z)
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defined as the projection of Sβ(W,Y, Z) onto Λ⊥, or Seff(W,Y, Z) = Π{Sβ(W,Y, Z)|Λ⊥}.

Normalizing Seff(W,Y, Z), we obtain the efficient influence function as φeff(W,Y, Z) =

[E{Seff(W,Y, Z)S⊤
eff(W,Y, Z)}]−1Seff(W,Y, Z).

Results for RMM without measurement error

For the RMM without measurement error (full data model), the conditional distribution

of X given Z, η1(x, z), the conditional distribution of ϵ given (X,Z), η2(ϵ, x, z), and

the distribution of Z, η3(z), are unknown and are nuisance parameters of infinite dimen-

sion. We emphasize that covariates (X,Z) are precisely observed in the case of no mea-

surement error. The joint probability density function for (X, Y, Z) is pX,Y,Z(x, y, z) =

η1(x, z)η2{y − m(x, z; β), x, z}η3(z) such that
∫
ϵη2(ϵ, x, z)dϵ = 0 for all x, z where β

is the parameter of interest. Applying semiparametric theory to the RMM without mea-

surement error, the nuisance tangent space, its orthogonal complement and the efficient

influence function are summarized in the following proposition. A detailed derivation is

available in Chapter 4 of Tsiatis (2006).

Proposition 1. For the full data restricted moment model, we have that the Hilbert space

HF = {f(X,Y, Z) : E(f) = 0, var(f) < ∞}. In estimating β, the nuisance tangent

space is ΛF = {f(X,Y, Z) : E(fϵ|X,Z) = 0, E(f) = 0, var(f) < ∞}; the nuisance tan-

gent space orthogonal complement is Λ⊥F = {g(X,Z)ϵ} = [g(X,Z){Y −m(X,Z; β)}],

where g is an arbitrary function of (X,Z) such that E(gTg) < ∞; the score vector

with respect to β is SF
β = −m′

β(X,Z; β)∂logη2(ϵ,X, Z)/∂ϵ; the efficient score SF
eff =

m′
β(X,Z; β)E(ϵ2|X,Z)−1ϵ, where m′

β(X,Z; β) denotes ∂m(X,Z; β)/∂β; and the effi-

cient influence function is of the form φF
eff = E{E(ϵ2|X,Z)−1m′

βm
′T
β }m′

βE(ϵ2|X,Z)−1ϵ.
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Proof of Theorem 1

The description of Λ follows immediately from the fact that the score vector Sηi(W,Y, Z)

is equal to E{Sηi(X,Y, Z)|W,Y, Z} for i = 1, 2; see (Rao, 1973, p. 330). It thus suf-

fices to demonstrate Λ⊥ is as given. We first show that any element f(W,Y, Z) satisfy-

ing E{f(W,Y, Z)|X,Y, Z} = g(X,Z)ϵ is orthogonal to all elements of Λ. To this end,

the inner product of f and an arbitrary element E{h(X,Y, Z)|W,Y, Z} ∈ Λ satisfying

E{h(X, Y, Z)ϵ|X,Z} = 0 indeed shows orthogonality since

E[E{hT (X,Y, Z)|W,Y, Z}f(W,Y, Z)] = E{hT (X,Y, Z)f(W,Y, Z)}

= E[hT (X, Y, Z)E{f(W,Y, Z)|X, Y, Z}] = E{hT (X, Y, Z)g(X,Z)ϵ} = 0.

Conversely, we now demonstrate that any f ∈ Λ⊥ must satisfy E(f |X,Y, Z) =

g(X,Z)ϵ. Let k(X, Y, Z) = E(f |X,Y, Z) and consider

h(X, Y, Z) = k(X, Y, Z)− g(X,Z)ϵ, (A.1)

where g(X,Z) = E(kϵ|X,Z)/E(ϵ2|X,Z). From E(f) = 0 and E(ϵ|X,Z) = 0 we

immediately have that E(hϵ|X,Z) = 0 and E(h) = 0 implying that E(h|W,Y, Z) ∈ Λ.

Now with f(W,Y, Z) ∈ Λ⊥ and E(h|W,Y, Z) ∈ Λ, we have that the inner product of these

two terms is zero, and so

0 = E[fT (W,Y, Z)E{h(X,Y, Z)|W,Y, Z}] = E{fT (W,Y, Z)h(X, Y, Z)}

= E[E{fT (W,Y, Z)|X,Y, Z}h(X, Y, Z)] = E{kT (X, Y, Z)h(X, Y, Z)}

= E(hTh) + E[g(X,Z)TE{ϵh(X,Y, Z)|X,Z}] = E(hTh),

where the last equality holds since E(hϵ|X,Z) = 0. Thus, by properties of Hilbert spaces,

whenever E(hTh) = 0, we must have h = 0 almost surely. This and (A.1) demonstrate

that E(f |X, Y, Z) = g(X,Z)ϵ almost surely, and consequently, Λ⊥ is as defined.
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Sufficiency and necessity of condition (2.2) for Seff

First, K and K∗ are conjugates of each other because < K∗{f(W,Y, Z)}, g(X, Y, Z) >

equals

E[E{fT (W,Y, Z)|X,Y, Z}g(X,Y, Z)] = E{fT (W,Y, Z)g(X,Y, Z)}

= E[fT (W,Y, Z)E{g(X,Y, Z)|W,Y, Z}] =< f,K{g(X, Y, Z)} > .

From Proposition 1 and Theorem 1, we have the following relationships:

Sβ(W,Y, Z) = K{SF
β (X, Y, Z)}, Λ = K(ΛF ), K∗(Λ⊥) ⊂ Λ⊥F . (A.2)

By definition, the efficient score vector Seff(W,Y, Z) = Sβ(W,Y, Z)−Π{Sβ(W,Y, Z)|Λ},

where Π{Sβ(W,Y, Z)|Λ} denotes the projection of Sβ onto Λ. Using the above relation-

ships, we proceed to write Seff(W,Y, Z) as a function of elements from the full-data model,

allowing us to take advantage of the properties from Proposition 1.

Since Π{Sβ(W,Y, Z)|Λ} is an element of Λ and Λ = K(ΛF ), there exists some

aF (X,Y, Z) ∈ ΛF such that Π{Sβ(W,Y, Z)|Λ} = K{aF (X, Y, Z)}. Likewise, the score

vector Sβ(W,Y, Z) is such that Sβ(W,Y, Z) = K{SF
β (X, Y, Z)} = K[SF

eff(X,Y, Z) +

Π{SF
β (X, Y, Z)|ΛF}]. Together, these results imply that the efficient score vector satisfies

Seff(W,Y, Z) = Sβ(W,Y, Z)− Π{Sβ(W,Y, Z)|Λ}

= K[SF
eff(X, Y, Z) + Π{SF

β (X, Y, Z)|ΛF} − aF (X, Y, Z)]

= K{d(X, Y, Z)},

where d(X, Y, Z) = SF
eff(X,Y, Z)−bF (X,Y, Z) and we have bF (X, Y, Z) = aF (X,Y, Z)−

Π{SF
β (X, Y, Z)|ΛF}. Now having expressed Seff(W,Y, Z) as K{d(X, Y, Z)}, we derive

the properties of d(X, Y, Z) so that d(X,Y, Z) may be solved explicitly.

The function d(X,Y, Z) is formed by two elements, SF
eff(X, Y, Z) and bF (X, Y, Z)
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where the former lies in Λ⊥F and the latter in ΛF . By properties of projection and orthog-

onality, the projection of d onto Λ⊥F gives

Π{d(X, Y, Z)|Λ⊥F} = Π{SF
eff(X,Y, Z)− bF (X, Y, Z)|Λ⊥F} = SF

eff(X, Y, Z).(A.3)

Above we showed that K{d(X, Y, Z)} = Seff(W,Y, Z) which implies that K∗ ◦

K{d(X, Y, Z)} = K∗{Seff(W,Y, Z)}. Since the efficient score vector Seff(W,Y, Z) is an

element of Λ⊥, relation (A.2) implies K∗ ◦ K{d(X, Y, Z)} = K∗{Seff(W,Y, Z)} ∈ Λ⊥F .

Hence, orthogonality implies that d(X,Y, Z) must also satisfy

Π[K∗ ◦ K{d(X, Y, Z)}|ΛF ] = 0.

Combining the properties of d(X, Y, Z) in (A.3) and in the above display, the efficient

score vector Seff(W,Y, Z) is such that Seff(W,Y, Z) = K{d(X, Y, Z)} where d(X, Y, Z)

satisfies

Π{d(X, Y, Z)|Λ⊥F}+Π[K∗ ◦ K{d(X, Y, Z)}|ΛF ] = SF
eff(X,Y, Z),

which simplifies into expression (2.2).

Up to now, we have shown the existence of a function d(X,Y, Z) such that Seff =

K(d). To complete the demonstration, we show that any function d(X,Y, Z) satisfying

(2.2) yields the correct Seff . First, supposing that d does satisfy condition (2.2), it immedi-

ately follows that

Π(d|Λ⊥F ) = SF
eff , Π{K∗ ◦ K(d)|ΛF} = 0.

The first result and the definition of the efficient score vector implies

d(X, Y, Z) = SF
eff(X, Y, Z) + aF (X,Y, Z) = SF

β (X, Y, Z) + bF (X, Y, Z)

for some aF , bF ∈ ΛF .
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But this immediately implies that K{d(X, Y, Z)} equals

K{SF
β (X, Y, Z) + bF (X, Y, Z)} = Sβ(W,Y, Z) + b(W,Y, Z)

= Seff(W,Y, Z) + a(W,Y, Z),

where a, b ∈ Λ. The first equality above holds because Sβ = K(SF
β ) and Λ = K(ΛF ),

and the second holds by the definition of the efficient score vector. Note that we have so

far shown that K{d(X, Y, Z)} equals Seff(W,Y, Z) + a(W,Y, Z). Our argument will be

complete once we show a(W,Y, Z) ∈ Λ is exactly zero.

To this end, recall that d satisfying (2.2) means Π{K∗◦K(d)|ΛF} = 0, and so K∗◦K(d)

is an element of Λ⊥F . More exactly, the implication yields

K∗ ◦ K{d(X, Y, Z)} = K∗{Seff(W,Y, Z)}+K∗{a(W,Y, Z)} ∈ Λ⊥F .

The inner product of K∗{a(W,Y, Z)} ∈ Λ⊥F and any bF (X,Y, Z) ∈ ΛF must be zero,

hence

0 =< K∗{a(W,Y, Z)}, bF (X,Y, Z) >=< a(W,Y, Z),K{bF (X,Y, Z)} >,

where the latter equality holds from the conjugacy of K and K∗. But K{bF (X, Y, Z)} ∈

Λ, so because the inner product of a(W,Y, Z) and K{bF (X, Y, Z)} is zero, we must

have a(W,Y, Z) ∈ Λ⊥. Consequently, a(W,Y, Z) ∈ Λ⊥ ∩ Λ, which holds only when

a(W,Y, Z) = 0. Therefore, d satisfying (2.2) requires K{d(X, Y, Z)} = Seff(W,Y, Z).

Proof of consistency even with misspecified η1, η2

Consistency follows upon showing that the score vector S(W,Y, Z; β, η1, η2) from Step 3

in our algorithm is an element of Λ⊥. For any, perhaps misspecified, η1 and η2, our algo-

rithm implies that the score vector satisfies S(W,Y, Z; β, η1, η2) = K(d) where d(X, Y, Z)

satisfies (2.2). Immediately, then, E{S(W,Y, Z; β, η1, η2)|X, Y, Z} = K∗ ◦ K(d). A sim-

ple rearrangement of (2.2) shows E{S(W,Y, Z; β, η1, η2)|X, Y, Z} = K∗ ◦ K(d) which
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equals (m′
β(X,Z; β) − E[{d − K∗ ◦ K(d)}ϵ|X,Z])E(ϵ|X,Z)−1ϵ. Hence we have that

E{S(W,Y, Z; β, η1, η2)|X, Y, Z} = g(X,Z)ϵ with g(X,Z) = m′
β(X,Z; β)−E[{d−K∗◦

K(d)}ϵ|X,Z])E(ϵ|X,Z)−1 and so S(W,Y, Z; β, η1, η2) ∈ Λ⊥. Given that E(ϵ|X,Z) = 0,

we have that

E{S(W,Y, Z; β, η1, η2)} = E{g(X,Z)ϵ} = E{g(X,Z)E(ϵ|X,Z)} = 0.

Together, the above results imply that the estimator from
∑n

i=1 S(Wi, Yi, Zi; β, η1, η2) = 0

is consistent, even for misspecified η1 and η2.

Outline of the proof of Theorem 2

Given the form of the nuisance tangent space orthogonal complement Λ⊥, it is obvious that

f ∈ Λ⊥. Hence, its normalized correspondence is an influence function. Under regularity

conditions specified in Newey (1990), the β̂ that solves

∑n
i=1 f(Wi, Yi, Zi; β) = 0

is an RAL estimator and satisfies

n1/2(β̂ − β0) = n−1/2
∑n

i=1E{f(W,Y, Z)ST
β (W,Y, Z)}−1f(W,Y, Z; β0) + op(1).

Therefore, n1/2(β̂ − β0) → N [0, E(fST
β )

−1var(f){E(fST
β )

−1}T ]. Obviously, E(fST
β ) =

A, hence the results hold.

Proof of Theorem 3

To see that the resulting estimators from solving
∑n

i=1 f(Wi, Yi, Zi; β, γ̂) = 0 and from

solving
∑n

i=1 f(Wi, Yi, Zi; β, γ0) = 0 have the same asymptotic efficiency, we show that
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their first order expansions are the same. To this end, we analyze β̂ first.

0 = n−1/2
∑n

i=1 f(Wi, Yi, Zi; β̂, γ̂)

= n−1/2
∑n

i=1 f(Wi, Yi, Zi; β0, γ0) + n−1/2
∑n

i=1
∂f(Wi,Yi,Zi;β

∗,γ∗)
∂β⊤ (β̂ − β0)

+n−1/2
∑n

i=1
∂f(Wi,Yi,Zi;β

∗,γ∗)
∂γ⊤ (γ̂ − γ0)

= n−1/2
∑n

i=1 f(Wi, Yi, Zi; β0, γ0)

+n1/2

[
E

{
∂f(W1, Y1, Z1; β0, γ0)

∂β⊤

}
+ op(1)

]
(β̂ − β0)

+n1/2

[
E

{
∂f(W1, Y1, Z1; β0, γ0)

∂γ⊤

}
+ op(1)

]
(γ̂ − γ0), (A.4)

where β∗ lies on the line connecting β̂ and β0 and γ∗ on the line connecting γ̂ and γ0.

We now demonstrate that the last term, (A.4), is zero and thus the result holds. Our

construction ensures that f(W,Y, Z; β0, γ) ∈ Λ⊥ under all γ, so∫
f(W,Y, Z; β0, γ)pW,Y,Z(W,Y, Z; β0, γ)dµ(W,Y, Z) = 0

for all γ. Taking derivative with respect to γ, we obtain

0 =

∫
∂f(W,Y, Z; β0, γ)

∂γ⊤ pW,Y,Z(W,Y, Z; β0, γ)dµ(W,Y, Z)

+

∫
f(W,Y, Z; β0, γ)S

⊤
γ (W,Y, Z; β0, γ)pW,Y,Z(W,Y, Z; β0, γ)dµ(W,Y, Z),

for all γ, where Sγ is the score vector with respect to γ. Evaluating the above equation at

γ0 gives

E

{
∂f(W,Y, Z; β0, γ0)

∂γ⊤

}
+ E

{
f(W,Y, Z; β0, γ0)S

⊤
γ (W,Y, Z; β0, γ0)

}
= 0.

However, by construction f ∈ Λ⊥ while Sγ ∈ Λ, hence E(fS⊤
γ ) = 0. This implies that

E
{

∂f(W,Y,Z;β0,γ0)
∂γ⊤

}
= 0. Equation (A.4) therefore reduces to

0 = n−1/2
∑n

i=1 f(Wi, Yi, Zi; β0, γ0) + n1/2E

{
∂f(W1, Y1, Z1; β0, γ0)

∂β⊤

}
(β̂ − β0) + op(1),

which is exactly the same first order expansion for β̃.
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Estimator properties under unknown α

Let β∗(α̂) = limn→∞ β̂n(α̂). Then, given α̂, n1/2{β̂(α̂) − β∗(α̂)} achieves the asymptotic

normality results of Theorem 2. Based on this result, we now investigate the properties of

n1/2{β̂(α̂)− β0}.

With n1/2(β̂− β0) = n1/2(β̂− β∗) + n1/2(β∗ − β0), we have that E{n1/2(β̂− β0)} =

E[E{n1/2(β̂−β∗)|α̂}]+E{n1/2(β∗−β0)} = E{n1/2β′
0(α)(α̂−α0)} = 0, where the second

equality follows from the results of Theorem 2 and using Taylor’s expansion of β∗(α̂) about

α0, and the last equality follows from the consistency of α̂. Similarly, var{n1/2(β̂ − β0)}

equals

E[var{n1/2(β̂ − β0)|α̂}] + var[E{n1/2(β̂ − β0)|α̂}] = E[var{n1/2(β̂ − β∗)|α̂}]

+var{n1/2(β∗ − β0)} = E{Vβ(α̂)}+ var{n1/2β′
0(α)(α̂− α0)}

≈ Vβ(α0) + β′
0(α0)

2Vα(α0),

where Vβ(α0) denotes the estimation variance under the known α given in Theorem 2

evaluated at α0, and Vα(α0) = var{n1/2(α̂− α0)}.
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER II

Definition of ζ

For ζi = (ζ1i, ζ2i)
′,

ζji(t; β) = gji(t; β)−
exp(−β1Zi) + exp(−β2Zi)R̂(t; β)∑n

i=1 I(Yi ≥ t)

n∑
k=1

Gjk(t)

+
{exp(−β1Zi) + exp(−β2Zi)R̂(t; β)}

∏
s≤t−{1−∆Ψ̂(s; β2)}∑n

i=1 I(Yi ≥ t)

×
∫ τ

t

{
n∑

k=1

Gjk(s)Vk(s)−
∑n

k=1Gjk(s)
∑n

k=1 Vk(s)∑n
i=1 I(Yi ≥ s)

}
dR̂(s; β)∏

u≤s{1−∆Ψ̂(s; β2)}

with

Gjk(t) =
gjk(t; β)I(Yk ≥ t)

exp(−β1Zk) + exp(−β2Zk)R̂(t; β)
,

Vk(t) =
exp(−β2Zk)I(Yk ≥ t)

exp(−β1Zk) + exp(−β2Zk)R̂(t; β)
.
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APPENDIX C

SUPPLEMENTARY MATERIAL FOR CHAPTER III

Inconsistency of the type II NPMLE

From section 4.2.2, it is easy to see that the type II optimization should only assign positive

weights to the observed event times, and the estimating procedure proceeds to form

F̌ (t) =
n∑

i=1

δiI(xi < t)f̌(xi).

If a set of f(xi)’s is the maximizer of (4.2) under the type II NPMLE constraints, then

qTi f(xi)’s are all non-negative and satisfy 0 ≤ qTi F (xi) ≤ 1. Thus, if we denote by

H(xi; q1, . . . , qn) = qTi F (xi) and h(xi; q1, . . . , qn) = qTi f(xi) for all i = 1, . . . , n, then

the maximization is obtained at the MLE estimator of the hypothetical H . Note that H

depends on qi’s which take m different values, and we view these m values as known

parameters. For notational simplicity, we write H(x; q1, . . . , qn) as H(x). Thus, if one

thinks of uT
j F (x) as a particular mixture of F (x), then H contains all m mixtures. In

addition, H is not necessarily a valid distribution function since it may not be monotone.

Denote the maximum of H as Ȟ . One can then recover the F (xi)’s through F̌ (xi) =

(qTi ri)
−1riȞi for some length p vector ri (i.e., ri = F (xi)). If a suitable selection of ri’s

exists to ensure 0 ≤ (qTi ri)
−1riHi ≤ 1 and monotonicity, then we have a solution of the

type II optimization problem.

Assuming to the contrary this solution is consistent, then the resulting F̌ (t) would

satisfy

uT
j F̌ (t) = 1− Šj(t)

for all j = 1, . . . ,m, where Šj(t) is a consistent estimator of Sj(t). Here Sj(t) has the
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same definition as in the type I NPMLE and is the survival function of the observations that

have the common mixing proportion, uj . Obviously, F̌ (t) = F̌ (xi), where xi is the largest

x value that satisfies xi ≤ t and δi = 1. Without confusion, we assume the corresponding

qi = uj , thus we have

uT
j F̌ (t) = Ȟi = 1− Šj(t).

Because Šj is a consistent estimator of Sj , we must have Ȟi converges to 1− Sj(t). How-

ever, this leads to a contradiction, since 1 − Sj(t) = uT
j F (t) is the distribution function

corresponding to the jth mixing vector uj , while Ȟ(t) aims at estimating the hypothetic H

function which contains all m different mixtures.

It is not always possible or easy to find the Ȟi’s or to identify the ri’s. For this reason,

the type II NPMLE is hardly ever solved through obtaining Ȟi’s and ri’s. Instead, the EM

algorithm introduced earlier is used to obtain the f(xi)’s. However, the above explanation

reveals the underlying reason why the type II NPMLE fails.

Conceptually, identifying the F1, . . . Fp functions is equivalent to identifying the func-

tions S1, . . . , Sm. The type II NPMLE maximizes the product of m different likelihoods

formed by all observations with respect to a collection of parameters, but each of these

parameters should concern only one of these likelihoods formed by a subset of the obser-

vations. To help further understand the mistreatment of different conditional likelihoods

of the type II NPMLE, one may consider maximizing a marginal likelihood. Denoting

nj =
∑n

i=1 I(qi = uj), j = 1, . . . ,m, this would correspond to maximizing

n∑
i=1

log
m∑
j=1

nj

{
uT
j f(xi)

}δi {1− uT
j F (xi)}1−δi

with respect to f(xi)’s. This estimator uses all observed xi’s to form a common marginal

likelihood, hence is consistent. However it completely ignores the pair information pro-

vided in the data hence could be highly inefficient.
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EM algorithm for Cox proportional hazards model

The complete data log likelihood of the observations oi = (Gi = gi, Xi = xi,∆i = δi) is

Lcomp
COX{o1, . . . , on; β,Λ0(·)} =

n∑
i=1

p∑
k=1

I(gi = k)log(λδi(xi|k) exp[−Λ0(xi) exp{βT z(k)}]).

At the lth iteration of the EM algorithm, with current values for β̂PH and Λ̂0(·) denoted by

β̂
(l)
PH and Λ̂

(l)
0 (·), respectively, the E-step is

E[Lcomp
COX{o1, . . . , on; β,Λ0(·)}|xi, δi, i = 1, . . . , n]

=
n∑

i=1

p∑
k=1

p
(l)
ik (xi, δi)[δi{logλ0(xi) + βT zi(k)} − Λ0(xi) exp{βT zi(k)}],

where

p
(l)
ik (xi, δi) =

qik exp[δi{β(l)}T zi(k)] exp(−Λ
(l)
0 (xi) exp[{β(l)}T zi(k)])∑p

k=1 qik exp[δi{β(l)}T zi(k)] exp(−Λ
(l)
0 (xi) exp[{β(l)}T zi(k)])

denotes the conditional distribution of the missing genotype Gi = k given (xi, δi). The

M -step corresponds to using a Nelson Aalen type estimator for Λ0(t) and maximizing the

log likelihood in the E-step with respect to β. Doing so leads to a new estimate for β̂PH,

denoted β̂
(l+1)
PH , as the root of the estimating equation

n∑
i=1

δi

[
p∑

k=1

p
(l)
ik (xi, δi)zi(k)−

∑n
j=1 I(xj ≥ xi)

∑p
k=1 p

(l)
jk (xj, δj) exp{βT zj(k)}zj(k)∑n

j=1 I(xj ≥ xi)
∑p

k=1 p
(l)
jk (xj, δj) exp{βT zj(k)}

]
.

Lastly, the new estimated baseline hazard function is

Λ̂
(l+1)
0 (t) =

n∑
i=1

δiI(xi ≤ t)∑
j I(xj ≥ xi)

∑p
k=1 p

(l)
jk (xj, δj) exp[{β̂(l+1)

PH }T zj(k)]
.

These E- and M -steps are repeated until both β̂PH and Λ̂0(t) converge, and final estimates

are used to form the Cox-based estimator F̂PH(t).
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Influence function of the IPW estimator

To derive the influence function of the IPW estimator, we first note the following several

useful facts (Bang and Tsiatis, 2000; Robins and Rotnitzky, 1992)

Y (t) = nĜ(t−)Ŝ(t−)

Ĝ(t)−G(t)

G(t)
= −

∫ t

0

Ĝ(u−)

G(u)

dM c(u)

Y (u)

δi
G(xi)

= 1−
∫

dM c
i (u)

G(u)
.

Using the above relations, we expand the IPW estimator as

n−1/2

n∑
i=1

δiϕ(qi, xi)

Ĝ(xi)
= n−1/2

n∑
i=1

δiϕ(qi, ti)

G(xi)
+ n−1/2

n∑
i=1

δiϕ(qi, ti)

Ĝ(xi)

∫ xi

0

Ĝ(u−)

G(u)

dM c(u)

Y (u)

= n−1/2

n∑
i=1

δiϕ(qi, ti)

G(xi)
+ n−1/2

n∑
i=1

∫
B̂1{ϕ, u}Ŝ(u)dM c

i (u)

G(u)Ŝ(u−)

= n−1/2

n∑
i=1

ϕ(qi, ti)− n−1/2

n∑
i=1

∫
{ϕ(qi, ti)− B(ϕ, u)} dM c

i (u)

G(u)

+op(1).

Because the complete data influence function ϕ(qi, ti) has the general form of d(qi, ti)−

F (t) (Ma and Wang, 2011), we have that ∂ϕ/∂F T (t) = −Ip. This, in combination with

exchanging integration and differentiation of the above expansion, implies that the ith in-

fluence function for the IPW is ϕipw as stated. The two terms in ϕipw are uncorrelated

because ϕ(qi, ti) are F(0) measurable. Therefore we can compute the variance of the IPW
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estimator as

Vipw = cov{ϕ(Qi, Ti)}+ E

[∫
{ϕ(Qi, Ti)− B(ϕ, u)}⊗2

G2(u)
λc(u)Yi(u)du

]

= cov{ϕ(Qi, Ti)}+ E

{∫
B(ϕ, u)⊗2

G2(u)
λc(u)Yi(u)du

}
+ E

[∫
E
[{
ϕ(Qi, Ti)

⊗2 − 2ϕ(Qi, Ti)B(ϕ, u)T
}
I(Ti ≥ u)|Ci

]
I(Ci ≥ u)

G2(u)
λc(u)du

]

= cov{ϕ(Qi, Ti)}+ E

{∫
B(ϕ⊗2, u)− B(ϕ, u)⊗2

G2(u)
λc(u)Yi(u)du

}
.

Influence function of the AIPW estimator

From (4.5), we have

0 = n−1/2

n∑
i=1

δiϕ(qi, xi)

Ĝ(xi)
+ n−1/2

n∑
i=1

∫
dN c

i (u)

Ĝ(u)

{
ĥeff,i(u)− B̂

(
ĥeff, u

)}
= n−1/2

n∑
i=1

δiϕ(qi, xi)

Ĝ(xi)
+ n−1/2

n∑
i=1

∫
dM c

i (u)

Ĝ(u)

{
ĥeff,i(u)− B̂

(
ĥeff, u

)}

= n−1/2

n∑
i=1

ϕ(qi, ti)− n−1/2

n∑
i=1

∫ {
ϕ(qi, ti)− heff,i(u)

}
dM c

i (u)

G(u)
+ op(1),

where the last equality follows from B(ϕ− heff, u) = 0. Similar to the IPW case, the two

terms in the influence function are uncorrelated which suggests that we can compute the

variance of the efficient estimator as

Veff = cov{ϕ(Qi, Ti)}+ E

∫
{
ϕ(Qi, Ti)− heff,i(u)

}⊗2

G2(u)
λc(u)Yi(u)du


= cov{ϕ(Qi, Ti)}+ E

∫ B{(ϕ− heff)
⊗2, u}

G2(u)
λc(u)Yi(u)du.
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Influence function of the imputation estimator

We now analyze the asymptotic properties of the imputation estimator.

0 = n−1/2

n∑
i=1

{
δiϕ(qi, xi) + (1− δi)ĥeff,i(xi)

}
= n−1/2

n∑
i=1

{
δiϕ(qi, xi) + (1− δi)heff,i(xi)

}
+n−1/2

n∑
i=1

(1− δi)
{
ĥeff,i(xi)− heff,i(xi)

}
.

We now inspect the last term. In our approximation in (4.4), ĥeff,i(u) is estimated using

weighted sample averages, with the subset of data that have a common qi value. We now

analyze ĥeff,i(u) in the kth subsample. For notational simplicity, we assume the first nk

observations have the common q value. We have

ĥeff,i(xi)− heff,i(xi)

=
n−1
k

∑nk

j=1 ϕ(qj, xj)I(xj ≥ xi)δj/Ĝ(xj)

n−1
k

∑nk

j=1 I(xj ≥ xi)δj/Ĝ(xj)
− E{ϕ(qi, T )I(T > xi)|qi, xi}

E{I(T > xi)|qi, xi}

=
n−1
k

∑nk

j=1 ϕ(qj, xj)I(xj ≥ xi)δj/Ĝ(xj)− E{ϕ(qi, T )I(T > xi)|qi, xi}
E{I(T > xi)|qi, xi}

−heff,i(xi)
n−1
k

∑nk

j=1 I(xj ≥ xi)δj/Ĝ(xj)− E{I(T > xi)|qi, xi}
E{I(T > xi)|qi, xi}

+ op(n
−1/2
k ).

Using derivations similar to the IPW analysis, we first get some basic facts. For any func-

tion f(qi, xi), we have

nk∑
j=1

δjf(qj, xj)

Ĝ(xj)
=

nk∑
j=1

δjf(qj, tj)

G(xj)
+ n−1

nk∑
j=1

δjf(qj, xj)

Ĝ(xj)

∫
Yj(u)

G(u)

dM c(u)

Ŝ(u−)

=

nk∑
j=1

δjf(qj, tj)

G(xj)
+

nk

n

∫
E{f(q̃k, T )I(T ≥ u)|q̃k}dM c(u)

G(u)S(u)
+ op(n

1/2
k ).
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Here we use q̃k to represent the common qi value in the kth group. Using the above result,

we have

n−1
k

nk∑
j=1

ϕ(qj, xj)I(xj ≥ xi)δj/Ĝ(xj)− E{ϕ(qi, T )I(T > xi)|qi, xi}

= n−1
k

nk∑
j=1

δjϕ(qj, tj)I(tj ≥ xi)

G(xj)
− E{ϕ(qi, T )I(T > xi)|qi, xi}

+
1

n

∫
E{ϕ(qi, T )I(T ≥ xi)I(T ≥ u)|qi, xi}dM c(u)

G(u)S(u)
+ op(n

−1/2
k ),

n−1
k

nk∑
j=1

I(xj ≥ xi)δj/Ĝ(xj)− E{I(T > xi)|qi, xi}

= n−1
k

nk∑
j=1

δjI(tj ≥ xi)

G(xj)
− E{I(T > xi)|qi, xi}

+
1

n

∫
E{I(T ≥ xi)I(T ≥ u)|qi, xi}dM c(u)

G(u)S(u)
+ op(n

−1/2
k ).

Inserting these forms, we have

ĥeff,i(xi)− heff,i(xi)

=
n−1
k

∑nk

j=1 δjϕ(qj, tj)I(tj ≥ xi)/G(xj)

E{I(T > xi)|qi, xi}
−

n−1
k

∑nk

j=1 heff,i(xi)δjI(tj ≥ xi)/G(xj)

E{I(T > xi)|qi, xi}

+
1

E{I(T > xi)|qi, xi}
1

n

∫
E{ϕ(qi, T )I(T ≥ xi)I(T ≥ u)|qi, xi}dM c(u)

G(u)S(u)

−
heff,i(xi)

E{I(T > xi)|qi, xi}
1

n

∫
E{I(T ≥ xi)I(T ≥ u)|qi, xi}dM c(u)

G(u)S(u)
+ op(n

−1/2
k ).

Summing up the nk such terms in the kth group, exchanging the summation on i and j, and

writing a(qi, ti) = E{heff,i(C)I(C ≤ ti)|qi}, we obtain
nk∑
i=1

(1− δi)
{
ĥeff,i(xi)− heff,i(xi)

}
=

nk∑
i=1

δiϕ(qi, ti)

G(xi)
{1−G(ti)} −

nk∑
i=1

δi
G(xi)

a(qi, ti)

+
nk

n

∫
E[ϕ(qi, T ){1−G(T )}I(T ≥ u)|q̃k]

dM c(u)

G(u)S(u)

−nk

n

∫
E {a(q̃k, T )I(T ≥ u)|q̃k}

dM c(u)

G(u)S(u)
+ op(n

1/2
k ).
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In the above derivation, we used the fact that the censoring survival function in the group is

the same as the global survival function G(t). Now summing up all the m groups, we have

n−1/2

n∑
i=1

(1− δi)
{
ĥeff,i(xi)− heff,i(xi)

}
= n−1/2

n∑
i=1

δiϕ(qi, ti)

G(xi)
− n−1/2

n∑
i=1

δiϕ(qi, ti)− n−1/2

n∑
i=1

δi
G(xi)

a(qi, ti)

+n−1/2

n∑
i=1

∫
B (ϕ, u)

G(u)
dM c

i (u)− n−1/2

n∑
i=1

∫
B {ϕ(q, t)G(t), u}

G(u)
dM c

i (u)

−n−1/2

n∑
i=1

∫
B {a(q, t), u}

G(u)
dM c

i (u) + op(1).

Thus, we have obtained

0 = n−1/2

n∑
i=1

{ϕ(qi, ti)− a(qi, ti)}

−n−1/2

n∑
i=1

∫
{ϕ(qi, ti)− a(qi, ti)− B(ϕ− a, u)} dM c

i (u)

G(u)

+n−1/2

n∑
i=1

(1− δi)heff,i(xi)− n−1/2

n∑
i=1

∫
B {ϕ(q, t)G(t), u}

G(u)
dM c

i (u) + op(1).

Using similar arguments as in the IPW and AIPW cases,

{ϕ(qi, ti)− a(qi, ti)} −
∫

{ϕ(qi, ti)− a(qi, ti)− B(ϕ− a, u)} dM c
i (u)

G(u)

+(1− δi)heff,i(xi)−
∫

B {ϕ(q, t)G(t), u}
G(u)

dM c
i (u)

is the ith influence function of the imputation estimator.
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