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ABSTRACT 

 

Fast History Matching of Time-Lapse Seismic and Production-Data for High Resolution 

Models. (August 2011) 

Alvaro Jose Rey Amaya, B.S., Universidad Industrial de Santander;  
M.S., Universidad de los Andes, Colombia 

  
Chair of Advisory Committee: Dr. Akhil Dattagupta  

Seismic data have been established as a valuable source of information for the 

construction of reservoir simulation models, most commonly for determination of the 

modeled geologic structure, and also for population of static petrophysical properties (e.g. 

porosity, permeability). More recently, the availability of repeated seismic surveys over 

the time scale of years (i.e., 4D seismic) has shown promising results for the qualitative 

determination of changes in fluid phase distributions and pressure required for 

determination of areas of bypassed oil, swept volumes and pressure maintenance 

mechanisms. Quantitatively, and currently the state of the art in reservoir model 

characterization, 4D seismic data have proven distinctively useful for the calibration of 

geologic spatial variability which ultimately contributes to the improvement of reservoir 

development and management strategies. Among the limited variety of techniques for the 

integration of dynamic seismic data into reservoir models, streamline-based techniques 

have been demonstrated as one of the more efficient approaches as a result of their 

analytical sensitivity formulations. Although streamline techniques have been used in the 

past to integrate time-lapse seismic attributes, the applications were limited to the 

simplified modeling scenarios of two-phase fluid flow and invariant streamline geometry 

throughout the production schedule. 

 

This research builds upon and advances existing approaches to streamline-based seismic 

data integration for the inclusion of both production and seismic data under varying field 

conditions. The proposed approach integrates data from reservoirs under active reservoir 
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management and the corresponding simulation models can be constrained using highly 

detailed or realistic schedules. Fundamentally, a new derivation of seismic sensitivities is 

proposed that is able to represent a complex reservoir evolution between consecutive 

seismic surveys. The approach is further extended to manage compositional reservoir 

simulation with dissolution effects and gravity-convective-driven flows which, in 

particular, are typical of CO2 transport behavior following injection into deep saline 

aquifers. As a final component of this research, the benefits of dynamic data integration 

on the determination of swept and drained volumes by injection and production, 

respectively, are investigated. Several synthetic and field reservoir modeling scenarios 

are used for an extensive demonstration of the efficacy and practical feasibility of the 

proposed developments. 
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*

 

CHAPTER I 

INTRODUCTION AND STUDY OBJECTIVES 

 

Seismic data have been a valuable source of information for the construction of reservoir 

models and widely used for the determination of the structure, and for the population of 

petrophysical properties (e.g. porosity, permeability) when combined with well 

information. More recently the availability of repeated seismic surveys in conjunction 

with refined high resolution seismic processing methods and seismic inversion 

algorithms have shown promising results for determination of the changes in fluid 

distribution and pressure as the reservoir evolves through time. Imaging techniques and 

sophisticated visualization software have made the 4D seismic an attractive monitoring 

tool that can be used for quantitative evaluation of the state of the reservoir. Geologists, 

geophysicists and reservoir engineers study the effects of changes detected in a variety 

of seismic attributes and the elastic properties of the rock in order to design effective 

reservoir management strategies to optimize production and increase recovery.  

 

The next natural step is to calibrate the static model using the seismic surveillance data. 

This is particularly attractive because of the large areal coverage of the seismic data. 

This large quantity of information can be utilized to infer reservoir properties far from 

the wells. However, this is a complex task. First, the areal resolution of the seismic data 

must be comparable with the horizontal size of the cells in the geologic model (i.e., to 

make effective use of this information we should consider a high resolution inversion). 

The amount of information and the variability of the pressure and fluid saturation 

changes are major challenges for the implementation of derivative-free techniques for 

inversion. Other methods that have traditionally been recognized for their efficiency in 
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sensitivity calculation, such as the adjoint techniques, can be computationally prohibitive 

when dealing with large 4D seismic data sets (Dong and Oliver, 2005). More recent 

methods such as the Ensemble Kalman Filter have problems with sampling error due to 

the large amount of dynamic data and practical limitations related to the ensemble size. 

 

Streamline techniques have proven to be particularly efficient to calibrate static 

properties from dynamic well responses (e.g. tracer data, water cut, gas oil ratio and 

interference tests). They have also been applied for integrated changes using seismic 

amplitude. However, the application was limited to the case of minimal changes in 

pressure and field conditions between the base and consecutive seismic surveys (Vasco 

et al., 2004). One of the most attractive properties of the streamline-based data 

integration algorithms is their ability to calculate analytical sensitivities of the 

production data with respect to continuous reservoir parameters (Vasco and Datta-Gupta, 

1997). Furthermore, data integration based on travel time sensitivities leads to a 

minimization procedure that exhibits quasi-linear properties, converging in a smaller 

number of iterations and with better performance (in the context of getting trapped into a 

local minima) compared to amplitude inversion algorithms (Luo and Schuster, 1991; 

Vasco et al., 1999; Cheng et al., 2005a). The advantages of streamline methods in 

relation to the calculation of sensitivities, even under complex geological descriptions, 

make them appealing for history matching procedures using high resolution seismic 

data. 

 

This research aims to extend the previous streamline-based history matching workflows 

for the inclusion of production and seismic data under varying field conditions. The 

proposed approach integrates data from reservoirs under active reservoir management, 

and the corresponding simulation models can be constrained using highly detailed 

schedules. We propose a new set of seismic sensitivities that can represent a complex 

reservoir evolution between consecutive seismic surveys, and we have extended the 

approach to handle compositional reservoir simulation with dissolution effects and 
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gravity-convective-driven flows typical of CO2 injection into deep saline aquifers. One 

of the practical and practically relevant characteristics of our approach is the ability to 

use seismic inverted attributes (e.g., soft maps of water saturation) expressed as 

differences between consecutive seismic surveys instead of absolute values, i.e., we can 

perform the inversion on data expressed as a change in time rather than as maps of the 

fluid distribution at a particular time. We also study the effects of noise associated with 

the results of a geophysical seismic inversion (Feng and Mannseth, 2010) on the 

performance of the proposed methods. Finally, we investigate the benefits obtained by 

data integration in the determination of swept and drained volumes. Synthetic and field 

examples are used extensively to demonstrate the power and practical feasibility of our 

proposed approaches. 

 

1.1. Overview of Model Calibration and Reservoir Management 

 

Reservoir engineers dedicate their efforts to increase petroleum recovery and maximize 

the return on investment. The main objective is to ―understand‖ the reservoir and learn 

the mechanisms that provide energy (flow potential that drives the movement of 

hydrocarbons) and the underlying heterogeneity (that affects the pathways of the fluids 

from the sources to the producers). Reservoir simulation is the most comprehensive tool 

applied to design strategies that modify the fluid motion in the subsurface (e.g. infill 

wells, changes in injection and production rates, external driving mechanisms, smart 

wells) in order to improve recovery. The model is constructed using all possible sources 

of data (including seismic, well logs, cores, etc.) to make the best possible representation 

of the physical system. Of all data types, seismic data are fundamental to infer the 

structure of the reservoir. Geological analogs are often used to determine the facies 

distribution. Core data are used to determine flow and transport properties. The 

seismically constrained model is typically up-scaled and prepared for reservoir 

simulation. Reservoir simulation is the exercise of numerically solving a set of partial 

differential equations (PDE‘s) that define the conservation laws (mass, momentum and 
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energy) and a set of constitutive equations that determine the behavior of fluids in the 

formation (thermodynamic properties, special core analysis [SCAL] properties), subject 

to a set of boundary conditions (well locations, rates, pressures, aquifer, gas cap, etc) and 

initial conditions (oil water contacts, gas oil contact, initial pressure, fluids in place, etc), 

in order to forecast the production of fluids at the field facilities. The objective is to 

generate multiple scenarios for the development of the field and also multiple 

realizations of the reservoir model for uncertainty assessment. The responses are used to 

select a business development plan which aims to maximize the recovery while 

minimizing the operational cost with some acceptable level of risk.  

 

The reservoir surveillance data play a fundamental role in the improvement of the 

reliability of the predictions, reducing the uncertainty of the model and enhancing our 

understanding of the drive mechanisms of the reservoir. The main objective of this 

research is to develop an efficient workflow that can integrate areally sparse production 

data with seismic-derived parameters such as acoustic impedance to reduce the 

uncertainty associated with the reservoir model; thus, improving the ability to assess the 

changes resulting from reservoir management activities. 

 

1.2. Objectives 

 

We‘ll now outline the stages of this research and the specific objectives associated with 

each phase. 

 

1.2.1. Model Calibration with Production Data 

 

Although the benefits of the GTTI technique have been extensively covered in the past 

(He et al., 2002; Wu and Datta-Gupta 2002; Cheng et al, 2005a; Cheng et al, 2005b); a 

common problem for the misfit calculation is the performance of the cross-correlation 

with highly detailed production data. Under the influence of rapid variations of the 
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production responses, the cross-correlation may present non-convexity making it 

difficult to determine the maximum. The common procedure to avoid this limitation is to 

smooth the production responses; however, a time-domain smoothing does not guarantee 

the elimination of the high frequency details. It can quickly deteriorate the resolution of 

the production responses, thereby reducing the GTTI technique into a single travel time 

inversion. We present a new approach for re-sampling of the production information that 

eliminates the high frequency details while preserving the shape of the production 

responses. 

 

1.2.2. Two Phase Time-lapse Seismic Data Integration  

 

We propose an approach that deals with seismic-derived information in two phase 

reservoirs. The workflow utilizes maps of changes in the saturation state of the reservoir 

between two different seismic surveys or changes in acoustic impedance. We assume 

that those changes have been obtained as a result of a previous geophysical inversion 

and use a poroelastic model for relating the reservoir dynamic variables with the 

seismic-derived acoustic impedance. This information is then integrated with other 

sources of dynamic data (specifically the arrival of water at the producers). In order to 

utilize the seismic data in the calibration of the static model, we develop a set of 

sensitivities of the changes in seismic attributes with respect to continuous reservoir 

parameters (e.g., porosity and permeability). These sensitivities incorporate the effects of 

varying field conditions that can drastically affect the state of the velocity field in the 

reservoir (e.g., changes in rate, infill wells, aquifer interaction, etc.).  

 

We investigate the use of seismic-derived information as either the sole source of 

surveillance data, or in combination with the arrival time of the water phase at the 

producers. Our aim is to propose an efficient method of jointly integrating the seismic 

surveillance data and production data at the well level. 
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1.2.3. Compositional Seismic Data Integration 

 

We extend the algorithms developed for the seismic data integration using streamline-

derived sensitivities to the case of injection of CO2 (e.g. sequestration in deep saline 

aquifers). In the proposed approach, we overcome the limitations of the streamline 

techniques related to their inability to capture transverse dynamic effects that are not 

aligned to the streamlines. This transverse component of the driving force is particularly 

significant in the case of CO2 movement due to the buoyancy effects originating from 

the difference in densities between the fluids in the reservoir. We use compositional 

streamlines that capture the state of the reservoir dynamics at any particular time. The 

streamlines are traced using the fluxes from a compositional reservoir simulator that 

includes all the significant physical and chemical effects associated with the injection of 

CO2. We calculate the sensitivities of the changes of the CO2 plume with respect to the 

permeability. In order to formulate our sensitivity calculations, we use the relationship 

between the streamlines, the underlying heterogeneity and the location of the CO2 

plume. Finally, we use the sensitivities to perform a gradient based minimization using a 

least squares algorithm, to calibrate the movement of the CO2 plume using seismic data. 

 

We investigate the effects of the buoyancy forces in the performance of our proposed 

inversion workflow. These effects can be captured by analyzing the influence of the 

viscous-gravity ratio number in the inversion procedure. Finally, we are interested in the 

benefits of integrating the dynamic data to better understand the underlying 

heterogeneity and the capacity to store CO2. 
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CHAPTER II 

ASSISTED HISTORY MATCHING IN THE PRESENCE OF FREQUENT WELL 

INTERVENTION* 

 

Streamline based assisted and automatic history matching techniques have shown great 

potential in reconciling high resolution geologic models to production data. Several field 

applications have demonstrated the efficiency of streamline-based sensitivity 

calculations together with the generalized travel time inversion (GTTI) for history 

matching. The GTTI has been shown to be particularly effective because of its quasi-

linear properties. However, a limitation of the current GTTI based production data misfit 

calculations is that it is best suited for continuous and monotonic production histories. 

Field applications very often include reservoir management decisions that involve well 

shut-in, recompletions and pattern conversions. These introduce significant 

discontinuities and non-monotonic effects in the production response. 

 

In this chapter we propose an efficient and novel technique that handles production 

discontinuities through a re-sampling of the production data, eliminating high frequency 

production details in a transform domain. The technique also reduces non-monotonic 

behavior and results in a response more suitable for the GTTI based misfit calculations. 

Our proposed approach has been applied to an offshore turbidite reservoir with extensive 

well intervention resulting in highly detailed production responses. The static model 

contains more than three-hundred-thousand cells, complex sand depositional distribution 

combined with fault structures, four pairs of injector-producers, deviated producing 

                                                
* Part of this chapter is reprinted with permission from ―Assisted History Matching in an 
Offshore Turbidite Reservoir with Active Reservoir Management‖ by Rey, A., Ballin, 
P., Park, J., Vitalis, C., Kim, J. and Datta-Gupta, A., 2009. Paper SPE 92873 presented at 
the 2009 SPE ATCE, New Orleans, LA, 4-7 October. Copyright 2009 by the Society of 
Petroleum Engineers.  
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wells and more than 8 years of production history. Previous history matching attempts 

using traditional approaches had difficulties matching production response at the 

individual well level. With our proposed modifications to the GTTI approach, a 

significant improvement was obtained on the well level match quality. Most importantly, 

by visualizing the streamlines and the dynamic adjustment of flow paths during history 

matching, we could easily identify the areas of inconsistency between the geologic 

model and the production data. The calibrated geologic model and streamline trajectories 

provided important insight about communication within sand channels, differences in 

flow paths and barriers that have not been included in the previous geologic and seismic 

interpretation. 

 

2.1. Chapter Introduction 

 

Reconciling geological models with the field production information is one of the most 

demanding tasks in reservoir characterization. The information contained in the dynamic 

data such as transient pressure, tracer or multiphase production histories can be used to 

identify high permeability channels and low permeability barriers in the geologic model. 

In addition, the dynamic information is fundamental to our understanding of the 

interaction between heterogeneity and fluid flow in the reservoir and the boundary 

conditions such as the interaction between the aquifer and the reservoir. It is well known 

that the geological features play a key role in decisions related to reservoir management 

and field development strategies (Landa et al., 2000). Traditionally the integration of 

production data has been performed by reservoir engineers using local and regional 

multipliers of reservoir properties such as permeability and porosity. This procedure is 

highly subjective, requires a great deal of experience and can lead to loss of geologic 

realism (Williams et al., 1998). More recently assisted or automatic history matching 

using inverse modeling has shown potential benefits related to preserving spatial 

continuity and geologic realism during history matching (Yang and Watson, 1988, 

Cheng et al., 2004; Reynolds et al., 1999; Landa and Horne., 1997; Brun et al., 2001). 
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However, the solution of the inverse problem can be computationally expensive as it 

involves multiple solutions of the flow and transport equation to establish the 

relationship between the production response and the uncertain reservoir parameters 

(Datta-Gupta and King, 2007). 

 

Related to the process of reconciling the model response and the historical production 

data, several algorithms have been proposed in the literature. These can be categorized 

into three distinct groups: Gradient-based methods, sensitivity-based methods and 

derivative-free methods. Although the derivative free methods are the simplest to 

implement, they are generally limited to a small number of parameters because of the 

computational demand (Oliver et al., 2001). Gradient-based methods are robust but they 

generally exhibit slow convergence rates (Gill et al., 1981, McCormick and Tapia, 

1972). The sensitivity based methods have the fastest convergence rates but require the 

calculation of the parameter sensitivities which are partial derivatives of the production 

response with respect to the reservoir parameters. This collection of techniques is often 

referred to as automated history matching methods in the literature (Cheng et al., 2005a). 

 

Parameter sensitivities are an integral part of history matching as they quantitatively 

relate the changes in the production response to the changes in the reservoir properties. 

Several techniques have been proposed for calculating the sensitivities and these can be 

broadly categorized into three groups. First, the perturbation methods that are based on 

introducing small changes in the reservoir properties and computing the corresponding 

changes in the production response through flow simulation. For large number of 

parameters, the perturbation method can be computationally prohibitive. Second, the 

adjoint methods (Li et al. 2003) that use the optimal control theory. Although 

computationally efficient, they are mathematically complex and require access to the 

source code of the forward simulator which may not be available. Finally, the 

streamline-based sensitivities utilize an analytic approach that involves 1-D integral 

along streamlines to efficiently compute the parameter sensitivities using a single 



 10 

forward simulation. Because the streamlines can be readily obtained from the fluid 

fluxes, the approach can be implemented using both finite-difference or streamline 

simulators. (Cheng et al., 2005b). 

 

The streamline-based travel time inversion for history matching of production data uses 

a direct analogy between the streamlines methods and the seismic waveform inversion 

(Vasco et al., 1999; Datta-Gupta et al., 2001). There are several advantages to the travel 

time inversion compared to the more traditional ‗amplitude‘ inversion during history 

matching (Cheng et al, 2005a). Among them, particularly noteworthy are the properties 

related to the quasilinear behavior and rapid convergence during the minimization of the 

misfit between the observed and computed production response(Luo and Schuster, 1991; 

Cheng et al., 2005a). The travel time matching approach was extended to changing field 

conditions by Wu and Datta-Gupta (2002) and He et al (2002). In the proposed 

generalized travel time inversion (GTTI), an analogy with the travel time tomography is 

exploited to preserve the favorable characteristics of the travel time inversion and at the 

same time to obtain an improved match to the production history. Thus, instead of 

matching a particular time in the production history, the misfit is calculated as the 

‗optimal‘ shift in time that maximizes the correlation between the simulated and the 

observed production responses at all times. Because the GTTI approach leads to a single 

time misfit per well for the whole production history, the parameter sensitivities for this 

time misfit has been shown to be averages over all available time points of the 

production history (He et al., 2002). 

 

The GTTI history matching technique has been applied in a large number of field cases 

with two-phase oil-water flow (Qassab et al., 2003; Cheng et al., 2004; Hohl et al., 2006) 

and more recently to three-phase and compressible conditions (Cheng et al., 2007). 

Oyerinde et al. (2009) reported the difficulties in the calculation of the ‗optimal‘ time 

shift in the presence of non-monotonic production profiles, particularly for the gas-oil 

ratios at the wells. Similar difficulties are also encountered with highly detailed and 
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discontinuous production histories resulting from active reservoir management and 

interventions leading to well shut-ins and production/injection re-allocations. In this 

chapter, we focus on generalizing the GTTI calculations for history matching highly 

non-monotonic production histories arising from continuous reservoir management. 

Specifically, we propose a new and robust methodology to calculate the GTTI misfit and 

improved calculations of the GTTI sensitivities. 

 

In this chapter we first introduce the fundamentals of the GTTI technique. After that, the 

concept of a ‗production time‘ is introduced. This concept is used for resampling the 

dynamic data and to compute the parameter sensitivities. Next, we introduce the 

modifications in the calculation of the GTTI sensitivities, and illustrate the general 

workflow using a synthetic example. We then review the mathematical formulation of 

the sensitivities in the streamline coordinate system. Finally, the results from data 

integration in a highly faulted field application with frequent intervention are discussed 

demonstrating the power and applicability of the proposed methodology. 

 

2.2. Approach 

 

The streamline-based history matching is a maturing technique that has evolved in 

parallel with the streamline simulation. It has been successfully applied to inversion of 

production data with high resolution geologic models using streamline simulators. In 

recent years the technique has been generalized to allow the use of finite difference 

simulators (FDS) (Cheng et al 2005b, Hohl et al. 2006). In this approach, the FDS is 

used for solving the pressure equations and calculating the phase fluxes which are then 

utilized for the streamline tracing. Using the streamline trajectories, we transform the 

computation domain from the Eulerian finite difference formulation to the Lagrangian 

perspective. This representation is well suited for convection dominated flows in the 

reservoir (for example, the tracer transport or the water-oil displacement). Embedded in 

this transformation is the concept of the streamline travel time or time of flight 
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coordinate system, which allows expressing the conservation or the saturation equations 

as a series of one dimensional transport equations (Datta-Gupta and King, 2007). 

Decoupling the complex flow geometry of the cellular grid into 1-D streamlines is the 

fundamental element in the computation of streamline-based sensitivity coefficients. 

This is mainly because the sensitivities are evaluated as numerical integrals along the 

streamlines. Once the sensitivities are mapped back into the geo-cellular grid, the 

dynamic data integration is performed utilizing an iterative least squares minimization of 

a generalized travel time misfit (He et al. 2002; Cheng et al., 2005a). To ensure spatial 

continuity and geologic realism the misfit function is generally augmented by additional 

regularization terms, (Yoon et al., 2001.). In this research, our goal is to extend the 

applicability of the streamline-based generalized travel time inversion to highly detailed 

and non-monotonic production profiles as commonly encountered in reservoirs under 

active managements. For this, our proposed modifications to the standard GTTI history 

matching technique are discussed below. 

 

2.2.1. Resampling the Production Response: Time vs Cumulative Production 

 
Reservoir responses in highly detailed schedules contain rapid fluctuations in production 

data that it is not well-suited for the GTTI technique (Fig. 2.1). This is because the GTTI 

misfit calculation relies on cross-correlating the observed and computed production 

response and high frequency content of the data frequently lead to false correlations.  

Also, much of the fluctuations in the production data are often reflection of the operating 

conditions and well interventions rather than reservoir heterogeneity. For history 

matching purposes we have to resample the production data to reflect the reservoir flow 

patterns. Specifically we need to emphasize the early time that contain information about 

the flow pattern and barriers. The conventional resampling based on equal time intervals 

attempts to reduce the high frequency detailed based on coarsening the time intervals 

into larger time periods. However, such sampling does not ensure removal of production 

discontinuities such as shut in periods (Fig. 2.2). To circumvent this difficulty, the 

longer periods of well inactivity enforce longer smoothing time periods and higher 
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information loses. This eventually compromises the quality of sampling of the 

production data, especially at the beginning of the well history when the majority of the 

produced volumes and the higher production rates occur. To overcome this problem, we 

propose a resampling based on expressing the production response at equal volumes of 

oil produced at surface conditions. 

 

 
Fig. 2.1Water cut response under active reservoir management, details of the high frequency 

information and the discontinuities in the production history. 

 

There are several benefits associated with the use of cumulative oil produce instead of 

time for production data resampling. This is illustrated in Fig. 2.3. The advantages 

became apparent when we compare Fig. 2.3 with Fig. 2.2. First, the operational 

conditions are decoupled from the actual state of the reservoir and do not introduce 

discontinuities in the production history. Expressing the production history at ‗equal 

volumes of produced oil‘ makes the time intervals more flexible, longer towards the end 

of the production history when well interventions are potentially more frequent, and 

shorter at the early times of production when the majority of the large scale 
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heterogeneity can be captured (Datta-Gupta et al., 1998; Vasco and Datta-Gupta, 1997). 

Second, the discontinuities in the production history resulting from well shut-in are 

automatically eliminated. This makes the production history more suitable for the 

generalized travel time misfit calculations. 

 

 
Fig. 2.2Resampling of production data based in equal intervals in time: Green line is the original 

signal, red line the smoothed version.  

 

 
Fig. 2.3Comparison between equal volumes of oil produced and the corresponding time intervals.  

 

2.2.2. An Illustration of the Method 
 

We will discuss the mathematical details in the next section. To start with, we first 

illustrated the benefits of our proposed approach using a synthetic example. The 
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Synthetic example consists of waterflooding in a nine spot pattern with one injector 

located at the center and eight producers in the periphery. The geological model consists 

of a two dimensional 50x50 cellular grid with constant porosity and a lognormal 

permeability distribution with a north-east direction of continuity (Fig. 2.4a.). The 

example involves two phase flow with voidage balance and the hydrocarbon phase is 

undersaturated oil for the entire production history. For introducing non-monotonicity 

and discontinuities in the production response as will be the case for a reservoir under 

active management, a series of shut in times were introduced for the wells located at the 

corners. However, the wells located on the sides of the model were treated as control 

wells exhibiting a continuous production profile. The initial permeability field used for 

history matching is shown in Fig. 2.4b.  

 

 
Fig. 2.4(a) Reference permeability field and distribution of producers and injectors in the nine 

spot synthetic example, (b) Initial permeability field used in inversion. 

 

The water cut responses from the initial model and the reference model are shown in the 

Fig. 2.5. The presence of production discontinuities introduces higher frequencies in the 

observed and model production response. In the conventional GTTI technique, these 

production responses will be used in order to determine the best shift in time which 

maximizes the correlation between the two responses (Fig. 2.6a).  
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Fig. 2.5Original production response illustrating the discontinuities in the production profile. 

The discontinuous pattern is only present in the corner wells of the nine spot synthetic example. 

 

 
(a) (b) 

Fig. 2.6 (a) Schematic of the GTTI procedure (b) GTTI misfit calculations. The figure presents the 

calculation when signals include high frequency components, and after filtering using the proposed 

procedure. 
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However the presence of higher frequencies introduces multiple peaks in the cross-

correlation curve and no clear shift time can be identified. After resampling the time 

based on the cumulative oil production, we only retain the low frequency components of 

the signal, making it more suitable for the GTTI misfit computation (Fig. 2.6b). Fig. 2.7 

shows the water cut responses after filtering the production response using the proposed 

approach. 
 

 
Fig. 2.7Water cut response after applying a resampling based on volumes of oil produced at the 

surface conditions. 

 
Fig. 2.8a shows the match on the water cut using our proposed time resampling 

technique while Fig. 2.8b shows the match on the original time space. Clearly, the 

proposed approach makes the shape of the production curves more suitable for the GTTI 

technique. Also, matching the resampled data has also resulted in an equally good match 

in the original time domain. 
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Fig. 2.9 shows the original permeability field and the updated permeability field 

obtained via inversion of the water cut data.  Fig. 2.9a is the initial permeability, and 

Fig. 2.9b is the final model after the inversion procedure. The difference between the 

initial model and the reference model is shown in Fig. 2.9c.  

 

 
(a) (b) 

Fig. 2.8History match in the transformed domain. (a) Matching of water cut data at the 

resampled times based on equal volumes of oil produced  (b)  Corresponding matches. using all 

times. 

 

This difference represents the changes needed in the initial model. Fig. 2.9d shows the 

difference between the initial model and the final update. This difference represents the 

changes made during inversion. On comparing the figures Fig 2.9c and Fig. 2.9d, we 

can see that many of the features in the reference permeability field are captured after 

inversion. 
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Fig. 2.9 (a) Initial Permeability, (b) Final Updated Permeability, (c) Changes Needed, (d) Changes 

Made. 

 

2.3. Mathematical Formulation 

 

In this section we briefly discuss the basic mathematical formulation for the proposed 

history matching workflow. More details can be found out in published papers (He et al, 

2002; Vasco and Datta-Gupta, 1997; Cheng et al, 2005a; Cheng et al, 2005b). We first 

define the sensitivities of the fractional flow with respect to reservoir parameters, 

followed by the determination of the best time shift and the resampling of the water cut 

response. 

 

2.3.1. Sensitivity Calculation for the Fractional Flow 

 

The streamline time of flight (TOF) variable,  is the pivotal concept that allow us to 

transform the flow domain from the three dimensional physical coordinate system to the 

(a) (b)

(c) (d)
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streamline coordinates (Datta-Gupta and King, 2007). Conceptually, the time of flight is 

simply the travel time of a neutral tracer along streamlines and can be expressed as. 

 

 dxxs=τ
Σ


 ......................................................................................................... (2.1)

 

 

Here the variable s(x) is called the ―slowness‖ and is defined as the reciprocal of the 

interstitial velocity as follows.  
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With the definition of the time of flight, we can derive the operator identity for the 

coordinate transformation from the physical coordinate to the streamline coordinate. It is 

given by (Datta-Gupta and King, 2007) 
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Using the time of flight operator identity in Eq. (2.3), we can write the mass balance 

equation along streamlines for a two phase incompressible flow as follows (Datta-Gupta 

and King, 2007), 
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Assuming that small local changes in the reservoir properties, for example individual 

grid block porosities or permeabilities, will not shift the streamline paths (negligible 
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changes in the pressure/velocity field), a perturbation in the time of flight can be written 

as follows, 

 dxxs=τ
Σ



 ...................................................................................................... (2.5) 
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In Eq. (2.5), by relating the change in time of flight to local changes in slowness, we 

have assumed that the streamline trajectories have not changed because of the 

perturbation. This has been shown to be a reasonable approximation for most practical 

situations (Cheng et al., 2005a). Unlike porosity, permeability can range over orders of 

magnitude within a reservoir. Hence, in this work we will treat reservoir permeability as 

the primary unknown. Thus, we are interested in the relationship between the 

streamlines time of flight to a producer and cell permeability. 
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Equation (2.6a) relates the reservoir property (permeability) to a streamline variable, viz. 

the time of flight (Vasco et al., 1999). We can further relate the time of flight to the 

waterfront arrival time, ft  in the mass balance equation in Eq. (2.4) through the chain 

rule (He et al, 2002). 
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This completes the derivation of the sensitivity of the waterfront arrival time with 

respect to cell permeability. It is important to realize that these sensitivities are 1-D 
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integrals along streamlines and can be readily computed after each flow simulation. No 

additional simulation runs are needed.  

 

2.3.2. The GTTI Sensitivities 

 

He et al. (2002) showed that the generalized travel time sensitivity can be computed as 

the averaged value of the sensitivities for all time points at which production data is 

available. Thus, we can utilize the results from Equation (2.6) to obtained the 

generalized travel time sensitivity as follows, 
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In the above expression, m is the reservoir parameter which is permeability for our case. 

Typically, the GTTI sensitivity is computed by evaluating Equation (2.7) by sampling 

production data at equal time intervals. This accentuates the problems associated with 

discontinuities in the production data arising from well shut-ins. Such discontinuities 

also complicate the GTTI calculations.  In this work, instead of sampling the production 

data at equal time intervals, we compute the GTTI sensitivities based on time intervals 

defined by equal volumes of oil production at surface conditions.  
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Thus, the time points are chosen in terms of equal oV  and the time intervals are no 

longer the same. This approach naturally removes discontinuities in the production 

response associated with well shut-ins and improves the GTTI calculations. As an added 
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benefit, the proposed approach also results in more frequent sampling at early times 

compared to the later times in the reservoir life when well interventions tend to be more 

frequent. 

 

2.3.3. Transformation of the Production Variables 

 

In the GTTI approach production data misfit is defined in terms of an ‗optimal‘ shift in 

time that maximizes the correlation between the observed and calculated production 

responses. It is mathematically defined in Eq. (2.9) for the continuous case and the 

discrete form is expressed in the Eq. (2.10). 
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The cross correlation function (CCF) reflects the shared frequencies between two 

signals. The maximum value of the CCF contains the shift in time that also maximizes 

the relation in the frequency domain. Unfortunately, higher frequency components can 

add levels of complexity in the calculation of the best time shift (Marple, 1987). 

Similarly, production discontinuities are potential source of complexity that must be 

eliminated because it cannot be correctly captured by the cross correlation function. Fig. 

2.10 shows the power spectral density for the original and the filtered signal for a very 

complex reservoir response (the reservoir will be described in more detail in the field 

application section). Integrating the data using appropriate time intervals will eliminate 

the high frequency detail, retaining the lower frequency components which are more 

suitable for the cross-correlation calculations. 

 

Considering the observed and calculated fractional flow in time as the input signals, we 

consider two options for smoothing the data.  If we consider a fixed time interval, then  
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(a) (b) 

Fig. 2.10Frequency details of the signals: (a) Frequency components of a signal before the 

smoothing, (b) Frequency components after smoothing. 
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In Eq. (2.11), cumulative volumes of water and oil produced during a fixed time interval   

are used for smoothing the response signal. An alternative and preferred approach is to 

fix a desired incremental volume of oil produced and then to calculate the incremental 

production time and the volume of produced water as follows,  
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2.4. Field Example 

 

The proposed approach has been applied to an offshore turbidite reservoir with frequent 

reservoir intervention and highly detailed production information. The static model 

contains more than three-hundred-thousand cells, complex sand depositional distribution 

combined with fault structures, four pairs of injector, deviated producing wells, and 

more than 8 years of production history. Previous history match attempts using 

traditional approaches achieved good results at the field level for the reservoir and well 

pressure data, but were not as successful in matching the oil and water rates at an 

individual well level. The biggest challenge was matching water cut timing and trend in 

the wells. More details about the model, results previously obtained, and the results 

achieved particularly regarding the improved reservoir characterization are presented 

below. 

 
2.4.1. Field Description 

 

The selected offshore turbidite reservoir has a depositional sequence of multiple sands 

with highly variable levels of overlap or superposition resulting in a very complex 

interconnected system. A detailed seismic interpretation integrated with well log and 

core data was performed in order to identify and map individual sand occurrences. Fig. 

2.11a shows a schematic representation of the depositional concept used in this 

interpretation combined with individual sands identified in a seismic cross-section. 

 
The reservoir quality variation inside individual sands was captured in the static model 

by the net to gross distribution, which was then used to populate the attribute parameter 

NETG in the 3D grid – Fig. 2.11b shows a top view. The contrast on the petrophysical 

properties among the multiple sands was captured by the average property values 

estimated from their corresponding intersections with well log data.  
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Fig. 2.11 (a) Schematic representation of the depositional concept used in the interpretation and  

individual sands identified in a selected seismic cross-section, (b) Net to gross over the multiple 

sands – top view, (c) Horizontal permeability populated as average by individual sand occurrence – 

top view. 

 

Fig. 2.11c shows the distribution of horizontal permeability in the x direction (KX) 

populated into the 3D grid from a top view. This figure also shows the location of the 

vertical well injectors (I wells) and the highly deviated well producers (P wells). The 

calibration of these estimated individual average property value by sands was one of the 

targets of the history match previously performed in the field (PHM). 

 

This complex interconnected depositional system is combined with a system of sub-

parallel faults present mainly in the lower part of the field. Fig. 2.12 displays this fault 

system also indicating the well locations. The available production and pressure data in 

the field allowed identifying that the sequence of faults between P1 and P4 were 

completely isolating the reservoir region around the latter; such that it can be subdivided 

into Reservoir 1 and Reservoir 2 as indicated in Fig. 2.11c. However, the transmissibility 

across the other faults was uncertain and their calibrations were other targets of the 

history match previously performed. 

 

Reservoir 1

Reservoir 2

(a) (b) (c)
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The significant achievement of the reservoir characterization described above and the 

history match previously performed led to the ability of reproducing individual well RFT 

data, which had not been achieved in any modeling attempts performed for this field 

before. Fig. 2.13 shows the final RFT match for well P3. 

 

 

Fig. 2.12Reservoir fault structure with well locations. 

 

 

Fig. 2.13Reservoir RFT history match for the well P3: Red line is observed data and blue line is 

the simulated data. 
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2.4.2. Characteristics of the Water Cut Responses on the Field 

 

The water cut response for all the wells is characterized by a rather continuous profile at 

the beginning of production with an intense well intervention towards the end. Some of 

these well operations are associated with changes in the active completions on the 

producers and injectors. The recompletions are introduced in order to isolate areas with 

early water breakthrough. A recompleted well presents production responses with non 

monotonic profiles and complex dynamic responses. 

 

 
Fig. 2.14Initial water cut response and the corresponding cross correlation calculation for the 

complete data in the wells P1 and P2. 

 

We want to investigate the effects of these complex responses when calculating the cross 

correlation between observed and simulated data during the GTTI misfit calculations. In 

Fig. 2.14 the water cut and the corresponding cross correlation calculation for the wells 

P1 and P2 are plotted. We can clearly observe how the higher frequency components 

present in the original data contaminates the cross-correlation, producing a maximum 

near the zero shifts in time. This behavior underscores the inability to deconvolve the 

lower frequencies and the noise between observe and simulated responses. As a result, 

the best shift in time is erroneously computed to be zero. 

 
Production data filtering can improve the cross-correlation calculations. For example, 

sampling the production data at coarse time intervals can reduce the effects of high 

frequency components. Fig. 2.15 shows the result of introducing a different time 

sampling in the shape of the cross correlation function. By smoothing the data, the best 

time shift is gradually moving away from the zero position for the well P1. However, 
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there are still some difficulties to determine the maximum correlation for the well P2. 

The cross correlation calculation now has multiple peaks making it impossible to 

determine a unique value for the GTTI misfit. 

 

 
Fig. 2.15Water cut response and the corresponding cross correlation calculation after resampling 

the schedule in an equal time base for the wells P1 and P2. 

 

 
Fig. 2.16Water cut response and cross correlation calculation using the proposed transformation. 

Wells P1 and P2 

 

Fig. 2.16 shows the water cut profiles and the cross correlation curve using the proposed 

data resampling. The cross correlation now presents a smooth shape that allows us to 

easily identify the maximum and therefore, the best time shift that maximizes the 

correlation between the two responses. This smooth behavior is not related to any 

particular threshold in terms of volumes of oil produced. Fig. 2.17 shows the cross 

correlation calculation for different levels of produced oil volume used for filtering the 

well response. Observing the shape of these curves, it can be concluded that the 

proposed transformation is able to make the production responses suitable for the GTTI 

inversion and is not very sensitive to the cumulative produced volume of oil interval 

used while sampling the data 
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Fig. 2.17Shape of the cross correlation function after resampling for  different values of 

cumulative oil for different wells of the reservoir. 

 

 
Fig. 2.18Objective function behavior during the minimization process, on the left the sum of 

squares for the misfit over all the wells, on the right objective function behavior on a well basis. 
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Fig. 2.18 shows the performance of the data integration for various sampling 

approaches. The blue line represents the inversion algorithm using the complete data set. 

After twelve iterations the minimization has only reduce the initial misfit by a fifteen 

percent. When we observe the individual well performance it becomes clear that the 

wells P1, P2 and P3 do not show any significant signs of improvement. The red line 

shows the results of the minimization using a smoothing in time. This procedure 

improves the performance when compared to the results of using the original data set 

and the objective function decreases by twenty five percent. However, some of the wells 

show minor improvements. In fact, the well P1 is diverging and finishes the history 

matching with a higher misfit than the original. Finally the red curve represents the 

minimization using the proposed data transformation based on equal volumes of 

incremental oil produced.  

 

 

Fig. 2.19Fine tuned history match of water cut starting from the previous model calibration 

(PHM) in the Transform Space (smooth version of the original signal). Blue lines represent the 

observed data, dashed red lines the initial model response, solid green lines the response after the 

streamline proposed procedure. 
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By selecting samples at equal intervals of produced oil, we substantially improve the 

history matching, reducing the objective function by more than 60 percent. The 

improved matches can also be seen on an individual well basis. 

 
Fig. 2.19 shows the results of the final history match of water cut. Initial geologic model 

for this case is a previously history matched model obtained from the business unit. The 

objective of this exercise was to improve the individual well match quality, allowing the 

inversion algorithm to perform large changes in the reservoir parameters in order to 

investigate the previous reservoir architecture description. Fig. 2.20a shows the history 

match in terms of the normalized produced cumulative volumes of water and the 

improvements are more clearly visible here. Finally, Fig. 2.20b shows the water cut 

history match in the original time domain. Clearly, a better quality match using the 

resampled data is also reproduced in the original time space. 

 

 

(a) 

Fig. 2.20Comparison of the different history match models, including the previous history 

match and the fine tuned using the streamlines inversion (a) Water cut per well (WWCT) vs 

Time, (b) Normalized cumulative water produced per well (WWPT) Vs Time. 
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(b)  

Fig. 2.20(cont.) 

 

2.4.3. Impact of the Improved History Match on the Geologic Model 

 

The application of streamlines enables the identification and display of flow paths as 

well as the characterization of different sources of energy support to any individual well 

producer. Fig. 2.21 displays the streamline time of flight (TOF) at a production time 

when all four wells are producing; in the color scale purple indicates the reservoir 

regions with smaller time of flight, that is, faster communication. The analysis of TOF 

for all producers indicates that well P4 has the fastest connectivity region, followed by 

wells P3 and P2. Fig. 2.22 displays different energy sources identified for each well 

producer also labeled as well-pair regions. Fig. 2.22a shows the interaction of the well-

pairs with the main aquifer region (purple color cells), which significantly supports most 

of the producers. Fig. 2.22b however, shows almost no interaction with the small gas-

cap (red color cells). 
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Fig. 2.21Streamline time of flight (TOF) indicating intersand and well communications. Sand 

related and fault related non- communication. 

 

 
 

(a) (b) 

Fig. 2.22Streamlines colored by well-pair regions and their interaction with (a) aquifer and (b) gas 

cap. 

 

The fine-scale model calibration with the streamline-based inversion described here had 

basically no impact on the reservoir area in the vicinity of the injector I1 and the 
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producer well P1, which already had a good match from the previous history match. Fig. 

2.23 displays model KX before and after the streamline based inversion for a selected 

representative grid layer indicating minor changes. As desired, the streamline-based 

inversion process did not affect reservoir regions already having good characterization.  

 

 
Fig. 2.23Details of the history match at well P1 showing minor changes in KX from the previous 

HM for a selected representative layer. 

 

However, the reservoir regions around the other well producers were more affected by 

the streamline-based inversion. Fig. 2.24 displays the characteristics of the horizontal 

permeability KX in three different stages: a) in the initial geological model; b) the final 

result with streamline-based inversion for the region around producer well P3 c) the 

differences between the initial and the final permeability field. The streamlines TOF for 

the model after previous HM and after final inversion are also displayed indicating that 

in the final model: a) there is an enhanced support of the aquifer region from the lower 

sand (indicated by the arrows), and b) there is a reduced interaction with injector I3, 

shown by fewer faster TOF streamlines with purple color inside the grey circles 

corresponding to the region between injector and producer. 
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Fig. 2.24Details of the history match at the well P3 showing the horizontal permeability for initial 

model, and after streamline calibration. Corresponding streamline TOF indicate increase on aquifer 

support (arrows) and reduction on injector support (circles) from previous HM. 

 

Fig. 2.25 displays the horizontal permeability KX in the region around producer well P4 

(this well is located close to the gas cap in the upper region of the reservoir). This well 

has a strong direct communication with the injector I4. The final model was able to 

improve the liquid production match by significantly reducing the direct support from 

the injector, This systematic reduction in conductivity is related with the late arrival of 

the water observed at the producer. However, other sources of dynamic data (e.g. bottom 

hole pressure) were not consistent with this results.  Another scenario consistent with the 

late arrival of the water is the possibility of a different thickness of the sand body where 

the pair injector-producer is located. This scenario was investigated through a structural 

reinterpretation of the reservoir.  
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Fig. 2.25Details of the history match at the well P4 showing the horizontal transmissibility for 

initial model, previous HM and after streamline calibration. Corresponding streamline TOF 

indicate a significant reduction on injector support and an increase on aquifer support from 

previous HM, but still at lower level than in the initial model. 

 

Fig. 2.26 displays similar analysis of the 3 models for the reservoir region around 

producer well P2. This was the well that required the most significant changes from the 

model generated by the previous HM. Since the construction of the model was based on 

the average permeability values for each sand, in order to achieve an improved match on 

the well liquid productions it was necessary to expand the flexibility in terms of 

permeability changes in the streamline based inversion. This was done by allowing 

minimum and maximum values estimated from the inversion to be outside the actual 

value ranges in the initial model or from the previous HM. The estimated changes from 

the inversion are local grid cell values that are closer to the limits observed in the well 

log data than to the whole sand average values used in the model. Minimum and 

maximum limits used were 0.2 mD and 2D respectively. Those limits however, were not 

enough for well P2 and the model was rerun removing the fault transmissibilities used in 

the previous HM, which resulted in some improvements. For additional model 

investigation and fine tuning, the maximum permeability limit was expanded to 10 D, 

which provided the best match. Fig. 2.26 also shows locations with transmissibility 

increases and the cells in the 3D grid filtered with permeability above the realistic limit 

of 2D. The filtered cells show a localized feature with many cells still reaching the upper 

limit of 10 D (in red color). This region is near well P2 and possibly indicates a 

structural interpretation error being compensated by the large permeability increase. 

Potential sources of error in this region can be a higher net to gross value or a thicker 
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interval than in the original interpretation used in the model. The procedure used for 

opening the uncertainty limits demonstrates that if done properly, it can be very helpful 

in identifying major discrepancies in the model. Another important feature of Fig. 2.26 

is the systematic transmissibility increase in the extreme right, mid to upper part of the 

sand, which indicates an increase of communication between the injector to the producer 

along the longer path which impacts the later water production at well P2. This 

systematic increase is consistent with the presence of a larger or more conductive 

channel in that part of the model. The identification of potential local features is a unique 

characteristic of the streamline-based inversion that is one of its major advantages when 

compared with other inversion techniques. 

 

 
Fig. 2.26Details of the history match at the well P2 showing horizontal permeability initial, final 

and the difference for a selected representative layer indicating increase connectivity with injector 

(potential channel), and an increase on permeability in the vicinity of the producer beyond actual 

KX limit from field data. 

 

The model changes identified and described in this study preceded significant production 

and 4D seismic data that became available later. When presented to the field Asset Team 

it was acknowledged that these observations were consistent with the newly obtained 

data except for well P4, and that most of the changes in the model were consistent with 

the geological depositional system and corresponding uncertainties. 
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 2.5. Chapter Summary 

 

In this research, we propose a method for production data integration using the 

generalized travel time inversion in the presence of active reservoir management. 

Because of frequent well interventions, the production data can be highly non-monotonic 

with multiple shut-ins and production discontinuities. The high frequency components in 

the production data introduce difficulties in computing the data misfit in terms of a travel 

time shift. We propose a smoothing via resampling of the production data in terms of 

equal volumes of oil produced at surface conditions. This approach naturally removes 

production discontinuities and makes the production response more amenable to a travel 

time inversion. A comparison of the proposed transformation of the production data with 

the traditional equal time interval filtering is also presented. Finally, the robustness of 

the proposed approach is first demonstrated using a synthetic example and then on a real 

field application with active production management characterized by many shut-in‘s 

and several recompletions at different sands.  

 
The application of the streamline-based assisted HM allowed a refined reservoir 

characterization from a previous history match and provided improved production match 

quality at individual well level. The refined reservoir characterization was achieved by 

localized and targeted changes only when and where needed to improve the production 

match. The localized changes also helped identify places with potential interpretation 

problems either in terms of reservoir quality (net to gross) or sand thickness. Most of the 

changes proposed by this study were consistent with the geological depositional system 

and corresponding uncertainties as well as with later production data and 4D seismic 

survey. 
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CHAPTER III 

RAPID STREAMLINE-BASED INTEGRATION OF TIME-LAPSE SEISMIC AND 

PRODUCTION DATA INTO HIGH-RESOLUTION GEOLOGIC MODELS 

 

In this chapter we present an efficient history matching approach that simultaneously 

integrates 4D repeat seismic surveys with well production data. This approach is 

particularly well-suited for the calibration of the reservoir properties (porosity and 

permeability) of high-resolution geologic models because the field-scale seismic data are 

areally dense while the production data are effectively averaged over inter-well spacing. 

The joint history matching procedure is performed using streamline-based sensitivities 

derived from either finite-difference or streamline-based flow simulation. 

 

In our proposed approach the inverted seismic data (i.e., changes in elastic impedance or 

fluid saturations) are distributed as a 3D high-resolution grid cell property or as a 

vertically integrated two-dimensional map. We compute the sensitivities of the seismic 

and production surveillance data to perturbations in absolute permeability at individual 

grid cells using efficient analytical streamline techniques. We generalize previous 

formulations of streamline-based seismic inversion to incorporate realistic field 

situations such as changing field conditions due to infill drilling, pattern conversion, etc. 

A commercial finite-difference flow simulator is used for reservoir simulation and to 

generate the time dependent velocity fields from which we compute streamlines and 

multi-parameter sensitivity coefficients. The commercial simulator allows us to 

incorporate detailed physical processes including compressibility and non-convective 

forces, e.g., capillary pressure effects, while the streamline trajectories provide a rapid 

evaluation of the sensitivities. 

 

The efficacy of our proposed approach is demonstrated with synthetic and field 

applications. The synthetic example is the SPE benchmark Brugge field case. The field 
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example involves waterflooding of a North Sea reservoir with multiple seismic surveys. 

For both the synthetic and the field cases, the  advantages of incorporating the time-lapse 

variations are clearly demonstrated through improved estimation of the permeability 

distribution, fluid saturation evolution and swept and drainage volumes. The value of the 

seismic data is clearly demonstrated in terms of identifying the spatial continuity of 

reservoir sands and barriers, and the preservation of geologic realism during the history 

matching process. 

 

3.1. Chapter Introduction  

 

Seismic data is extensively used in the oil and gas industry, occupying a fundamental 

role in the exploration for and development of reservoirs. These data provide one of the 

principal sources of information for the determination of reservoir structure, and at sub-

structural scales are also of considerable use for reducing the uncertainty associated with 

inter-well reservoir heterogeneity characterization, particularly when used in 

combination with high vertical resolution well logs (Behrens et al., 1998). However, the 

potential application of seismic data as a source of dynamic data was only assessed in 

the mid 1980s when rock physics studies (Nur et al., 1984; Wang and Nur, 1986; Nur, 

1989) proved the concept that repeated seismic images can be used to infer changes in 

rock elastic properties that result from changes in fluid saturation, pressure and 

temperature. Early applications of dynamic seismic data were constrained to high 

contrast fluid property interactions such as steam flooding (Pullin et al., 1987; Eastwood 

et al., 1994; Jenkins et al., 1997), CO2 injection (Arts et al., 2000) and gas injection 

(Johnstad et al., 1995). Later, developments in seismic processing combined with the 

introduction of techniques that improve repeatability and noise filtering made possible 

the use of 4D seismic for the monitoring of reservoir waterflood performance (Wang et 

al., 1991; Behrens et al., 2002; O‘Donovan et al., 2000; Khazanehdari et al., 2005). The 

application of time lapse seismic data has subsequently evolved proving unique value as 

a reservoir management tool (Fanchi, 2001; Clifford et al., 2003), with published 
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guidelines describing the feasibility and applicability of these techniques (Lumley and 

Behrens, 1998). 

 

There are many technical challenges associated with the use of repeated 3D seismic 

surveys to infer changes in the state of the reservoir (Lumley, 2001; Behrens et al., 

2002). Nonetheless, 4D seismic data have demonstrated success as a monitoring tool for 

mapping changes in phase saturations and pressure and, therefore, the inference of areas 

of bypassed oil, fluid contacts and pressure compartmentalization (Foster, 2007). 

Appropriately, 4D seismic is at present most commonly recognized as a reservoir 

management tool, where a number of successful field experiences of reservoir 

management have used time lapse seismic information (Behrens et al., 2002; Cooper et 

al., 2005; Landro et al., 1999). The logical progression of this technology is for the 

application of the dynamic information, inferred through time lapse seismic 

interpretation, in reservoir model calibration. Specifically, in high-resolution geologic 

models the areally dense characteristics of the seismic data are expected to compensate 

for the lack of production data resolution, particularly away from well locations. 

Nonetheless, the reconciliation of reservoir model heterogeneity with temporal changes 

in seismic attributes is a remarkably complex task (Gosselin et al., 2001). Several such 

dynamic data integration algorithms have been proposed in the literature, which we 

categorize as two distinct types: (1) methods that use direct seismic attributes (e.g., 

reflection amplitude) and (2) methods that use seismic inverted properties derived from a 

geophysical inversion (e.g., elastic acoustic impedance, compressional velocity, 

saturation changes, etc). 

 

The former group, or methods that use direct seismic data, have the advantage of not 

bearing the uncertainties associated with a seismic inversion to litho-physical properties. 

It general they require the computation of the reservoir properties at the grid cell scale 

and later the use of a rock physics model to relate the elastic properties of the rock with 

the state of the reservoir (Mavko et al., 1998; Dadashpour et al., 2007; Falcone et al., 
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2004). A typical workflow begins with the population of acoustic impedance as a grid 

cell reservoir model property. Then, a seismic wave propagation model is applied to the 

reservoir interval (vertical thickness) and the overburden rock in order to calculate the 

seismic attributes throughout the high resolution grid. This is a computationally 

demanding process as it requires the iterative application of the seismic propagation 

model and may be prohibitive for an inversion workflow (Gosselin et al., 2003), as to 

date there are few publications that use direct seismic attributes for model calibration. 

Huang et al. (1997) used the reflection amplitude obtained from seismic forward 

modeling over a volume of synthetic acoustic impedance and matched both production 

and seismic data by updating porosity and permeability maps using simulated annealing 

together with the Metropolis-Hasting algorithm for parameter update acceptance. Vasco 

et al. (2004) also used reflection amplitude to update grid cell porosity and permeability, 

although with a gradient based algorithm in which the sensitivity of seismic amplitude to 

reservoir properties is analytically computed using streamline trajectories. The tradeoff 

to the efficiency of their sensitivity formulation is the requirement of streamline 

invariance between the base and monitoring surveys. Kjelstadli et al. (2005) used maps 

of the summation of negative amplitude (SNA) as the observation data and calibrated 

zonal heterogeneity multipliers with a Genetic Algorithm. For the integration of the 

estimated reservoir properties with the seismic data, they used the convolution of a 

wavelet with the seismic reflection coefficients, creating a set of synthetic amplitude 

traces, from which the maps of SNA were subsequently generated. 

 

In the second category of seismic data integration approaches are the workflows that 

evaluate the seismic match quality in terms of inverted seismic parameters. The inverted 

parameters can be derived from the traditional post stack data inversion such as the 

sparse spike inversion (e.g., seismic volumes of acoustic impedance), or from direct 

saturation and pressure front detection using an amplitude versus offset inversion of pre 

stack seismic data (Tura and Lumley, 2000; Landro et al., 2001). From a computational 

stand point, these methods are preferred because of the improved efficiency with respect 
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to the use of the seismic reflection attributes, which require only a single inversion of the 

seismic volumes as a separate component of the model calibration workflow. Gosselin et 

al. (2003) emphasize this benefit in terms of the consistency maintained between the 

geophysical inversion and the calibration workflow when the data misfit is expressed in 

terms of rock properties. In support of these assertions, there are at present a greater 

number of publications that apply seismic inverted parameters for reservoir model 

calibration compared to those that apply direct seismic attributes. For example, Landa 

and Horne (1997) used saturation changes as the calibration dataset that they assume can 

be obtained directly from inverted time lapse seismic data. Gosselin et al. (2001) applied 

synthetic acoustic impedance maps generated with a rock physics model, together with a 

heterogeneity parameterization based on grad zone analysis, for model calibration. 

Arenas et al. (2001) used the compressional velocity to calibrate the permeability field at 

a set of pilot points, which were used as conditioning data at each iteration of a gradient-

based data misfit reduction for population of the complete field by Kriging. They 

additionally investigated the effects of the uncorrelated noise associated with the 

geophysical inversion of seismic volumes on calibration performance. Dong and Oliver 

(2005) assumed the availability of differences in acoustic impedance after a geophysical 

seismic inversion, data with which they calibrated grid cell porosity and permeability 

using a quasi-Newton method, computing the objective function gradient by an adjoint 

method. In a stochastic approach, Skjervheim et al. (2007) used the Ensemble Kalman 

Smoother to assimilate time lapse seismic data of changes in acoustic impedance and 

compressional velocity. Fahimuddin et al. (2010) similarly used seismic impedance as 

the observation data with the Ensemble Kalman Filter with a covariance localization 

strategy. Finally, Feng and Mannseth (2010) applied pseudo-seismic data in the form of 

maps of saturation changes and investigated the impact of the seismic data in the 

presence of noise on permeability estimation. 
 

Building upon these approaches, in this chapter we present a streamline-based 

methodology for 4-D seismic data integration in the presence of varying field conditions 

and non convective forces. The method is based on the streamline techniques and the 
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trajectory-based analytical sensitivities previously presented by Vasco et al. (2004). 

Notably, we modify the streamline formulation to allow for seismic data integration 

under varying field conditions, including vertical segregation forces. The method is 

particularly efficient as only a single reservoir simulation is required to calculate the 

multiple parameter sensitivities applied in a gradient-based inversion. Further, we 

combine the seismic data with production data, and also investigate the benefits of the 

inclusion of aerelly dense seismic information with different levels of background noise. 

Finally, the method can integrate seismic information both as saturation changes or as 

changes in the elastic rock properties, e.g., changes in acoustic impedance. 

 

The outline of this chapter is as follows. We first introduce the general workflow for the 

seismic and production data integration into high-resolution reservoir models under 

water flood condition, illustrating the essential components of our proposed reservoir 

heterogeneity calibration using a two-dimensional synthetic example. We next review 

the mathematical formulations of our technique for computing the analytical, trajectory-

based sensitivity of seismic-derived attributes to high-resolution reservoir heterogeneity, 

including the simplifying assumptions required for use in fields with varying boundary 

conditions from infill drilling, reservoir management and changes in reservoir drive 

mechanisms. Next, we present the rock physics model and the elastic properties used to 

generate the synthetic acoustic impedance that we require for the inversion, and also the 

sensitivity of the acoustic impedance to perturbations of the pertinent reservoir 

parameters. Last, we apply the technique in synthetic and field applications. The 

synthetic application is the Brugge comparative field study, where seismic data is 

provided as grid cell properties of fluid saturation and pressure changes inverted from 

pseudo-seismic data. Of note, this application illustrates the benefits of the incorporation 

of seismic information in combination with production data. For the production (water 

cut) data integration we utilize the Generalize Travel Time Inversion (GTTI) technique 

together with our proposed seismic data integration. This application highlights the 

benefits of the dynamic time-lapse information on improvement in the calibrated front 



 46 

location and also on the general improvement of the geological realism of the calibrated 

model. We also present the difference in the swept and drainage volumes before and 

after the calibration, stressing the benefit to reservoir management. In a final case study, 

the proposed approach is applied to a set of interpreted acoustic impedance differences 

together with production data from the Norne field located in the Norwegian Sea. 

 

3.2. Approach 

 

In this section we review our proposed approach to the joint integration of time lapse 

seismic and production data in water flooded reservoirs. Presented first is an overview of 

the complete data integration workflow in which the key components and contributions 

of this study are highlighted. Then, before a presentation of the corresponding 

mathematical formulations, we illustrate the inversion workflow in a stepwise manner 

using a simple synthetic example. 
 

3.2.1. Seismic Data Integration 

 

The first step of the data integration workflow is to compute the sensitivity of the state 

variables, such as saturation, to perturbations in the continuous reservoir parameters. 

Depending on the type of seismic data available, the partial derivative of the seismic 

attribute with respect to the state variable (i.e., derivatives of the acoustic impedance 

with respect to the saturation of water, gas or pressure) may also require calculation. 
 

Sensitivity of Time-Lapse Attributes to Reservoir Properties. The streamline-based 

approach of seismic attribute integration into high resolution models is founded upon the 

analytical relationship between the arrival time of a propagating fluid front in the 

reservoir and the properties of the medium, e.g., porosity and permeability, through 

which the front traverses (Vasco et al., 2004). Using an asymptotic solution for the 

problem of the propagation of a two phase front, it is possible to define a self similar 

variable along the characteristic curves (i.e., the streamlines) that has the property of 
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transforming the spatial perspective of fluid propagation from an Eulerian to a 

Lagrangian representation (Vasco and Datta-Gupta, 2001). In the transform domain, 

which is defined by the trajectory of the particles and the travel time, or Time of Flight 

(TOF), along the defined path, the coordinate transformation enables an expression of 

the equations governing fluid motion as a series of one-dimensional equations. The 

simplicity of the sensitivity formulation then manifests from an analytical relationship 

between the travel time and the location of the fluid front along the streamline 

trajectories. The technique is remarkably efficient as it requires only a single forward 

simulation to compute the sensitivities (Vasco et al., 2004). We present the mathematical 

formulation of the analytically computed sensitivities following the demonstration of our 

proposed approach. 

 

Seismic Data Misfit and Petro Elastic Model (PEM). When the time lapse seismic data 

are presented in the form of changes in acoustic impedance, we use a PEM to calculate 

the elastic properties of the rock that vary in time as a result of changes in the fluid 

saturation or reservoir pressure. The seismic responses of the rock such as reflection 

amplitude are directly correlated to the rock elastic properties; therefore, a geophysical 

inversion delivers seismic cubes of reservoir properties such as the acoustic impedance. 

This dependency is characterized by Gassmann‘s equations (Gassmann, 1951) for 

computation of the elastic modulus of the saturated rock. The model uses the fluid, solid 

rock and matrix elasticity, where the matrix has the effect of rock stiffness reduction 

caused by porosity. We also assume that the shear velocity is almost unaffected by 

changes in the pore fluid. In our field application, a linear relationship is assumed 

between the frame bulk modulus and the porosity of the rock (Mavkov et al., 1998). The 

mathematical form and the specific values for the properties are presented in the 

appropriate section of this chapter. 
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3.2.2. Production Data Integration 

 

After definition of the parameter sensitivities and of the objective function defined from 

the seismic data misfit, the production data are included in the inversion workflow in one 

of two approaches. The inclusion can be performed in sequence, after the seismic data 

history match, or by augmenting the objective function with a production data misfit 

term, thereby facilitating a joint inversion. In the latter case, consideration must be given 

to the difference in the convergence rates of the two dynamic data terms. 
 

Sensitivity of the Water Arrival at the Producers. We use the grid cell fluxes extracted 

from a finite difference black oil simulator to trace streamline trajectories originating at 

wells using a generalization of the Pollock algorithm for corner point geometry (Pollock 

1988; Jimenez et al., 2007). It is important to understand that the streamline trajectories 

and time of flight implicitly characterize the underlying heterogeneity of the field 

relevant to flow and transport. If each streamline trajectory is assumed invariant to small 

variations in transport properties, then an increment in the conductivity or velocity will 

decrement the arrival time inside the reservoir, therefore establishing a relationship 

between the parameters and the time of flight along the streamlines. That is, production 

data sensitivity to heterogeneity along streamlines at grid cell resolution is posed in 

terms of time of flight to producers. Furthermore, through the mass conservation 

equations when posed in a Lagrangian form, the relationship between the propagation of 

a sharp front (e.g., water-oil or oil-gas displacement) and the arrival time of a neutral 

tracer can be computed for each phase, thereby enabling heterogeneity calibration to 

individual phase production rates. As these concepts have been developed in parallel 

with streamline simulation techniques, a rich body of literature exists that addresses the 

details, assumptions and relevant applications of the streamline-based approach (Vasco 

et al., 1999; Cheng et al., 2005a; Cheng et al., 2007). 
 

Generalized Travel Time Misfit Calculation. The concept of streamline-based travel time 

inversion is a technique inspired by seismic travel time tomography. In this approach, 
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the calibration objective function does not consider the amplitude of the surface response 

at the producer, but rather measures the temporal difference between the simulated and 

observed production data, or characterizes data misfit as a time shift. There are several 

benefits related to parameter estimation in the travel time domain; however, there is a 

limitation in the assumption of invariant streamline trajectories, and also in the definition 

of the optimal horizontal shift which defines the objective function magnitude. To 

address the limitations of the travel time inversion, He et al. (2002) introduced the 

Generalized Travel Time Inversion (GTTI). The improved calibration performance of 

this approach results from definition of the data misfit as the time shift at which the 

cross-correlation between the observed and simulated responses is maximized. Also in 

the GTTI, the sensitivities are time averaged, calculated as the expected value over a set 

of time intervals selected throughout the production history. Both improvements enable 

the application of streamline-based travel time inversion on field cases with complex 

reservoir heterogeneity and high-resolution production schedules. 

 

3.2.3. Inversion Algorithm and Time-lapse Data Integration 

 

Once the sensitivities for the production and time lapse seismic data are available, the 

data integration is performed using a single objective function that considers data types 

of two uniquely different spatial resolutions. One term of the objective function 

considers the production data, which represents a sparse data set in the sense that they 

present a reduced capacity to infer static properties with increasing distance from the 

well. The second term considers the seismic data which, although areally dense with a 

resolution of tens of meters, has associated multiple levels of uncertainty (Feng and 

Mannseth, 2010). The seismic data can be posed in several forms in the objective 

function. For example, the data can be defined as the absolute values of the state at a 

particular time, or as relative values of the state by computing the difference over survey 

intervals. In either case, the objective function can be augmented for inclusion of the 

initial state to constrain the inversion and improve non-uniqueness (e.g., Dong and 
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Oliver, 2005; Landa and Horne, 1997). In this study, after the sources of dynamic data 

and the different formulations of the seismic information are defined, we assemble the 

system of inverse modeling equations which are composed of the sensitivities, the data 

misfit and a set of regularization terms. The non-linear inverse problem is therefore 

posed as a linear system which we iteratively solve using a sparse least squares 

algorithm. At each iteration the algorithm updates the calibrated parameters, or reservoir 

heterogeneity defined at individual grid cells, to minimize the misfit in a least squares 

sense. The regularization terms are included to ensure spatial continuity and geologic 

realism (Yoon et al., 2001). 

 

3.2.4. Illustration of the Procedure with a Two Dimensional Example 

 

Before presenting the mathematical formulation of the proposed techniques, we first 

illustrate the major steps involved in the data integration procedure using a two-

dimensional synthetic application. The calibrated reservoir model is characterized as a 

50501 cell lognormal permeability field with heterogeneity defined by maximum 

continuity in the north-east orientation (Fig. 3.1). 

 

 
Fig. 3.1Initial permeability and reference permeability used in the illustrative example. 
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The example involves reservoir production in a 5-spot pattern with four producers 

located at the corners and one central injector. In order to maintain pressure and 

minimize the effects of phase evolution, the reservoir is produced under voidage 

balance. Also, the injection program starts simultaneously with the production of the 

reservoir. The initial or prior permeability field applied for the history matching exercise 

is shown in Fig. 3.1 together with the reference permeability heterogeneity that we 

attempt to approximately reproduce using the observed time-lapse seismic and 

production data. The temporal water front movement through the prior and reference 

models is shown in Fig. 3.2. 

 

 
Fig. 3.2Water front movement comparison between the initial and reference model in the 

streamline coordinate system. 

 

Consistent with expectations, the underlying heterogeneity largely determines the 

difference in front evolution between the prior and reference models. The propagation of 

the water in the reference model depicts a preferential movement along the high 

permeability streak. On the contrary, frontal progression through the less heterogeneous 

prior model depicts a more radial distribution. In order to illustrate the different sources 

of dynamic data in the time lapse integration, we consider two different examples. In the 

first case the seismic data are expressed in the form of inverted water saturation changes 
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available after a geophysical seismic inversion. In the second case, the inversion is based 

on integration of seismic data in the form of maps of the elastic acoustic impedance. 

Both cases integrate seismic data alone and do include production data in the objective 

function. 
 

 
Fig. 3.3Calculation of the seismic saturation changes and the seismic misfit. 

 

Fig. 3.3 shows the how the seismic observation data are defined for the first case of 

saturation changes. The observed data set is computed as the change in water saturation 

between the time lapse intervals, at grid cell resolution, using the reference model. This 

saturation difference map therefore reflects how the static field properties influence the 

waterflood. The simulated data set is computed in the same manner although using the 

prior model. Therefore, the data misfit (i.e., objective function) is computed as the 

difference between the saturation change using the prior permeability model and the 

saturation change using the reference model, again at grid cell resolution. Fig. 3.4 shows 

the results of the model calibration procedure, comparing the front evolution through the 

calibrated (prior) model against the reference (i.e., target) fluid movement. Notable 

results of the inversion procedure are an improved description of the front evolution at 
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the time of the base survey, and also an improvement in the prediction of consecutive 

surveys. The improvement in the location of the front evolution is based solely on 

integration of the change in water saturation maps, which reduces the effect of noise in 

the seismic data and also reduces the affects of poorly determined rock elastic 

parameters. Therefore, when the interpreted seismic attributes are subtracted, the fluid 

evolution is amplified. 

 

 
Fig. 3.4Saturation evolution for the initial, reference and the calibrated model. 

 

In the ideal scenario, i.e., in the theoretical application, the seismic data do not have 

associated noise and there is no ambiguity in the data related to the rock elastic 

parameters. In this case the seismic data prove useful in the improvement of production 

responses at the well level. In Fig. 3.5 is plotted the water cut response at each producer 

over a production time of 2000 days. There is a marked improvement in the match 

quality of each well response that results from the integration of the seismic difference 

maps between the surveys at 280 and 780 days. The quality of the match is also 

preserved for times beyond the scope of the seismic interval, indicating that the forecast 

is also improved by seismic data integration. 
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Fig. 3.5Water cut responses at the production wells after seismic data integration. 

 

In practical geophysical seismic inversion, it is more common to obtain maps of the rock 

acoustic impedance rather than of changes in water or gas saturation. We therefore 

investigate the performance of our proposed algorithm when the seismic data are 

provided as changes in acoustic impedance over some production period. For this 

exercise, the time-lapse change in acoustic impedance in the reference model, at grid cell 

resolution, is applied as the observation data set for calibration of the prior permeability 

model. This calibration dataset is shown in Fig. 3.6, and is also shown with added white 

noise that represents sources of uncertainty inherent to the geophysical seismic 

inversion. These data are applied in the inversion algorithm as is, without filtering or 

smoothing, to test the robustness of the algorithm, and also to assist in the understanding 

of the influence of noise on the calibrated model. 
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Fig. 3.6 (Top) Observed data in the form of changes in acoustic impedance, and (bottom) the 

uncorrelated noise added to the data. 

 

Fig. 3.6 also presents the data misfit computed as the difference between the observed 

(from the reference model) and simulated (from the prior model) acoustic impedance 

maps over a period of 780 days. We use these data, or the difference in acoustic 

impedance between surveys, as the observation data set for the calibration of reservoir 

permeability heterogeneity. 
 

 
Fig. 3.7Comparison of the acoustic impedance changes for the initial, reference and the calibrated 

model. 
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Fig. 3.7 shows a comparison of the changes in acoustic impedance corresponding to the 

permeability field before and after calibration, which required 40 iterations of the 

inversion algorithm. Fig. 3.8 shows the changes in the evolution of the water saturation 

before and after the data integration. It is the evolution of the water saturation along the 

each streamline that forms the underlying basis of our inversion approach. That is to say, 

at each single cell it is the change in the water composition of the rock, characterized as 

a saturation front that is evolving through all streamlines intersecting the cell,  that 

produces a change in its elastic properties. Both figures depict the ability of the time 

lapse seismic data, through inverse modeling, to effectively capture the water movement 

in the reference case, even when containing large levels of noise. 

 

 
Fig. 3.8Comparison of the water front movement for the initial, reference and calibrated model in 

the streamline coordinate system. 

 
Another criterion for evaluation of the model calibration quality is achieved by 

comparing the changes needed in the model with the changes introduced after the history 

match. Fig. 3.9 presents the calibrated permeability, which characterizes the underlying 
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heterogeneity of the model, and its several primary characteristics that are associated 

with the reference permeability. In particular, there is a low permeability barrier present 

in the reference model with a northeast orientation that is captured after the integration 

of the changes in acoustic impedance. The proper identification of this and other primary 

heterogeneity features reveals that the single-term objective function, enforcing only the 

changes observed in the time lapse seismic evolution, enable the characterization of 

heterogeneity that also influence production responses. We assess this capacity from 

inspection of match quality improvement in the water cut at the producers. Fig. 3.10 

shows a mild deterioration in the match quality in comparison to Fig. 3.5, which is the 

result of the uncorrelated noise present in the acoustic impedance changes, and also the 

variation in the field pressure captured by modification of the stiffness of the rock. The 

combined effect introduces a non-linearity between the rock elastic properties and the 

heterogeneity that is more difficult to resolve or calibrate than for the case of the 

saturation maps, although there is still overall improvement in the water cut responses. 

The predictability of the model is also reduced by the use of changes in acoustic 

impedance in comparison to the use of saturation changes. 

 

 
Fig. 3.9Final permeability after the data calibration, for references the changes needed in the 

permeability model and the changes introduced after the history matching. 
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Fig. 3.10Left the history matching results for the water cut response after the seismic inversion, 

on the right the performance of the minimization procedure. 

 

3.3. Mathematical Approach 

 

The streamline techniques are based on a Lagrangian approach that decomposes the 

physical domain into a series of one-dimensional equations characterized by the 

streamline geometry and the travel time along the streamline, or time of flight. Within 

the streamline domain the determination of changes in the state resulting from a 

perturbation in the underlying heterogeneity is remarkably inexpensive. These 

streamline sensitivities, which relate time of flight to perturbations in transport 

properties such as permeability and porosity, are based on the reasonable assumption 

that small changes in these properties do not affect the streamline trajectory. The 

extension of these sensitivities to other production responses (e.g. water and gas arrival 

time) requires only the determination of partial derivatives obtained from the mass 

conservation law for the water and gas phases in the streamline coordinates. The 

streamlines can also be used to account for changes in the phase composition at a fixed 

location. In the streamline coordinates the saturation along the streamlines can be 

expressed as a functional dependency of a self similar variable such that a perturbation 

of the state of a phase composition can be directly correlated with a perturbation in the 
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arrival time along the streamline. The self similarity assumptions can be extended for 

problems with changes in the streamline geometry that originate from variations in the 

field boundary conditions or from the effect of transverse, diffusive forces that are 

unrelated to the streamline coordinate system. In this section we will cover the details 

related to the time of flight sensitivities, including the transport behavior associated with 

the arrival of the water phase at the producers, the saturation of water along streamlines, 

and changes in water saturation in the streamline domain. We then establish the inverse 

problem as the minimization of an objective function using a damped least squares 

algorithm to solve for the model updates. 

 

3.3.1. Sensitivity for the Arrival Time of a Neutral Tracer 

 

The derivation of the analytical streamline sensitivities is based on the simplicity of the 

transport equations when expressed in a Lagrangian representation. The key element is a 

coordinate transformation from the physical domain to the streamline domain that is 

based upon the bi-streamfunctions and an additional time of flight coordinate.  

Streamlines are, by definition, the tangential curves to the instantaneous velocity field 

and, under steady state conditions, equivalent to pathlines of individual particles 

traveling through a continuous system. We can define a streamline that is everywhere 

tangential to the velocity field by introducing the bi-streamfunctions, 



 and 



 (Datta-

Gupta and King, 2007), as 
 

 u


.  ................................................................................................... (3.1) 
 

An important underlying concept behind our approach is the concept of ‗time of flight‘, 

τ, which is defined simply as the travel time of a neutral tracer along the streamline 

trajectory  , or as 
 




 drrszyx )(),,(
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The variable s(r) is called the ―slowness‖ and is defined as the reciprocal of the Darcy 

velocity divided by porosity (Datta-Gupta and King, 2007), 
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A streamline is defined by the intersection of a constant value of 



 with a constant value 

of 



. In the streamline perspective we need to define a transformation operation from the 

physical (Eulerian) to the streamline (Lagrangian) domain. This transformation is 

characterized by the Jacobian, 
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For sensitivity computations we are primarily interested in defining the streamline 

trajectories. The saturations in each cell from the finite difference solution are mapped 

along these streamlines to relate the saturation changes to the changes in reservoir 

properties, thereby defining the parameter sensitivities. 

 

Assuming that small changes in the reservoir parameters will not shift the streamline 

paths (i.e., assuming negligible changes in the pressure and velocity field), a perturbation 

in the time of flight can be written as follows,  
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The slowness derivatives are given by the following (Vasco et al., 1999), 
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3.3.2. Sensitivity for the Arrival Time of Water 

 

We can write the mass balance equation for two phase incompressible flow as 
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Considering a small volume of water that travels along the streamline we define a 

perturbation in the state variable  
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That yields the following functional dependency between the arrival of a neutral tracer 

and the arrival of the water phase, 
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Combining Eq. (3.10) with the mass balance for the water phase (He et al., 2002) finally 

provides the useful relationship between travel time (or physical time) and time of flight, 
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3.3.3. Sensitivities of the Time Lapse Saturation Differences of Water Saturation   

 

In order to calculate sensitivities for the water saturation at a particular location along 

the streamline, we recognize that the streamlines are the characteristic curves of Eq. 

(3.8). We are interested in determination of the functional relationship between the 

streamline coordinates (i.e., geometry and time of flight) and the saturation distribution 

along the streamline. A self-similar variable enables a reduction in the number of 

independent variables such that 
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Where  is the self similar variable and is defined as 
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Therefore, a perturbation in the saturation along a streamline can be written as 
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Or, expanded in terms of the primary variables, as 
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In the previous equation we assume that the streamlines do not vary during the time 

interval between the base and the monitoring surveys. This is a strong assumption 
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because there are a myriad of factors that can affect the velocity field and therefore the 

geometry of the streamline field. To substantiate this assumption we extend the concept 

utilized in streamline simulation, where transport calculations along the streamlines are 

defined over time intervals of invariant streamline geometry. In our particular case we 

assume that the saturation not only depends on the dimensionless location of the front 

along the streamlines, represented by the time of flight over the simulation time variable, 

but also on the previous state of the saturation, or the (physical) time at which the 

streamline geometry was refreshed using a new set of fluxes from finite difference 

simulation. These assumptions are formulated as 
 









 1-n

w

n

w

n

w S,
τ

SS
t  ...............................................................................................  (3.17) 

 
From this is it possible to perturb the state of the saturation at time n as a function of the 

streamline geometry and the dimensionless position of the water front along the 

streamline. It is important to understand that the perturbation is also dependent on the 

state of the saturation at the previous time step when the streamlines were regenerated, 

that is, 
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A recursive relationship is therefore defined in which a perturbation of the saturation 

state at time n is expressed directly in terms of a perturbation at the previous time step n-

1, and therefore to all M time steps between the base survey and the current monitoring 

survey. The recursion backwards in time may be terminated early if a point in time is 

reached at which the velocity field is no longer perturbed. The recursion is formulated as  
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We further make the reasonable assumption that changes in the background saturation 

are slow relative to adjustment of the streamline geometry during the pressure updates, 

which permits the use of self-similarity within the time steps of constant streamline 

geometry. Also, rather than correcting the saturation front for changes in the streamline 

geometry (
2-n

w
1-n

w SS  ), we correct the state directly using the phase saturations solution 

of the finite difference simulator. Thus, the sensitivity metric defined as the change in 

saturation with respect to permeability during the time lapse interval is formulated as   
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3.3.4. Petro Elastic Model and Sensitivities of the Acoustic Impedance 

 

The elasticity of the reservoir rock and, therefore, its ability to propagate mechanical 

waves is determined by the rock matrix properties, the pore fluids and the reservoir 

pressure. For low frequency waves, the Gassmann‘s equation (Gassmann, 1951) is 

adequate for representation of the elasticity of the bulk rock volume. The equation 

relates the bulk modulus of the porous rock, also called the bulk modulus of the frame 
)(frK , which is a function of porosity and the lithostatic pressure, the bulk modulus of 

the structural rock )(Kdry/grains c , which is an intrinsic property of the rock configuration 

and can be assumed to be constant under varying conditions, such as variations in the 

fluid occupying the porous space, and finally the fluid bulk modulus ),,,,(Kf TPSSS gow , 

which is a function of the elastic properties of the complete mixture. The Gassmann‘s 

equation is 
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The composite fluid bulk modulus, fK , is calculated from the properties of the 

fundamental components and using the Rouss average or harmonic average of the 

properties weighted by the relative amount of each individual component. The Rouss 

average guarantees the lowest value of the modulus obtained by combining the 

individual elements (Mavko et al., 1998). The formulation is 
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In the case of our field application (Norne reservoir model), the dependency of the frame 

modulus, frK , with respect to the porosity of the rock has been determined by laboratory 

observations made on cores and is expressed as the linear equations 
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The density, , is computed as the weighted average of the densities of the individual 

components of the rock 
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With the density and bulk modulus of the saturated rock, the compressional and shear 

velocities can be estimated under the assumptions of an isotropic media and of 
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insensitivity of the shear modulus to the fluid inside the porous media. The 

compressional or p-wave velocity, Vp, is estimated as 
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The seismic impedance, Z, can be written in terms of Vp as 
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From the above relationships, the acoustic impedance is a function of the reservoir static 

parameters, such as porosity, and also of the changes of fluid composition of the rock, 

that is, 
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In this research we study waterflooded reservoirs and therefore consider only the 

contribution of the changes in water front movement to the changes in acoustic 

impedance. This assumption simplifies the derivation of our sensitivities and is adequate 

for our field application where the majority of the changes in acoustic impedance are 

related to changes in the saturation content of the rock (El Ouair et al., 2005). 

 

3.3.5. Joint Integration of Seismic and Production Data  

 

We perform the data integration using a deterministic approach in which we minimize a 

penalized misfit function composed of the seismic data misfit and additional 

regularization terms. The regularization terms consist of a ‗norm‘ constraint and a 

‗roughness‘ constraint and are introduced to preserve the spatial continuity and the 

geological realism in the updated model. In this manner, the model calibration is a 
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balance between reducing the data misfit and minimizing the changes to the prior model, 

thereby maintaining geologic consistency. The penalized misfit function )( kf is defined 

as 
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  ............... (3.28) 

 
In Eq. (3.28), seisd  is the vector of the misfit between the change in acoustic impedance 

derived after a geophysical seismic inversion and the change in simulated acoustic 

impedance. seisG  is the sensitivity matrix containing the partial derivatives of the 

changes in acoustic impedance with respect to the reservoir parameters, i.e., grid cell 

permeabilities. The production information is incorporated to an extent controlled by a 

weighting factor  , which is defined from the degree of confidence in the seismic data. 

In fact, based on the amount of noise and the resolution of the seismic information, a 

weight can be selected such that the seismic information is applied as a second 

smoothness constraint (Feng and Mannseth, 2010). The quantity k is the vector of 

changes in the reservoir permeability. The first penalty term is the ‗norm‘ constraint that 

minimizes deviation from the prior model. The second penalty term is the ‗roughness‘ 

constraint, where the operator L computes the second difference of each cell 

permeability and has an effect analogous to the imposition of a prior variogram or 

covariance constraint (He et al., 2002). An objective function minimum is obtained using 

an iterative least-squares solution of the augmented linear system of equations given by 

Eq. (3.29),  
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where the scalars 1  and 2  determine the relative strengths of the ‗norm‘ and 

‗smoothness‘ constraints. While the selection of these weights can be somewhat 



 68 

subjective, they are minimally enforced only to the extent that implausible geologic 

features resulting from updates along streamline trajectories are avoided. 

 

3.4. Results and Discussions  

 

In this section we discuss the application of our proposed methodology to a field scale 

semi-synthetic example, the Brugge reservoir model, and also to the Norne field case. 

The Brugge field is a comparative example designed by TNO (a Dutch research 

organization) to compare different history matching and production optimization 

strategies. The case study was constructed with the objective of incorporating realistic 

operational conditions and geological features (Peters et al., 2010). The effectiveness of 

the proposed time lapse seismic inversion algorithm is tested in this application where a 

series of reservoir management activities including infill drilling of producers and 

injectors, and also changes in reservoir driving mechanisms as a result of aquifer 

depletion, are performed between the time span of the base and monitoring surveys. The 

model provides a good test scenario for our proposed inversion algorithm because the 

varying field conditions result in highly variable streamline geometries throughout the 

production time. The second application considers the Norne field, operated by Statoil 

and located offshore in the Norwegian Sea, providing field production data beginning 

from 1997 and also a set of repeated seismic surveys available for the E-segment of the 

reservoir. The base survey was acquired in 2001 and two monitoring surveys were 

completed in 2003 and 2004. The Norne reservoir model brings the complexity of the 

seismic inversion together with the uncertainty associated with the inversion of the 

seismic attributes to rock elastic parameters. In particular, the Norne model presents a 

strong candidate to test the applicability of our proposed technique because the changes 

in acoustic impedance are mainly considered to result from changes in the water 

saturation of the rock (El Ouair et al., 2005). 
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3.4.1. Brugge Field Seismic Data Integration 

 

The Brugge reservoir represents a typical North Sea Brent-type field. The structure 

consists of an east-west elongated half-dome with an interior fault with moderate throw. 

The reservoir model has a corner-point grid with more than 60,000 active grid cells, 

twenty producers located in the dome, and ten infill water injectors located in the 

surrounding aquifer that, in addition to the aquifer, provide pressure support. The prior 

facies structure represents a fluvial environment constructed trough sequential indicator 

simulation and contains a channelized zone in the bottom of the reservoir. The 

permeability is populated deterministically using a correlation with porosity. Fig. 3.11 

shows the location of the producers, injectors and interior north-east fault, together with 

the prior permeability, porosity and net to gross mapped onto the grid.  Further details of 

the geologic description and the static and fluid properties of the reservoir can be found 

in Peters et al. (2010). 

 

Production data are given in the form of water and oil rates, and also bottom-hole 

pressure, at each of the twenty producers over a ten year period. The reservoir is 

produced above the bubble point with the fluid modeled as a dead oil. Inverted 4D 

seismic data are provided over the 10 year history matching period in the form of water 

saturation changes. The data were provided as a geocellular property and averaged 

vertically within the four primary formations (Scheld, Maas, Wall and Schie) that 

constitute the reservoir. This saturation difference is provided with uncorrelated noise. 

Fig. 3.12 shows the saturation changes for the reservoir after 10 years of production. In 

this inversion exercise, we use this data set as the seismic observation with the intent of 

calibrating permeability heterogeneity to minimize the difference of the observed and 

simulated changes. For flow simulation we use the ECLIPSE 100 black oil simulator. 
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Fig. 3.11Permeability distribution for the different geologic zones in the Brugge reservoir. 

 

 
Fig. 3.12Seismic derived saturation changes averaged over the 4 different zones of the reservoir. 

 

The production schedule begins with production at a limited number of producers. Fig. 

3.13 shows the main events that modify the streamline geometry as the reservoir evolves 

from the start of production, depicted as the streamline field at different points in time 

through the ten year history. The first noticeable event, which considerably alters 

streamline trajectories, is the drilling of infill producers close to the dome. Later at about 

six hundred days, the reservoir begins to lose pressure support and the water injection 

program is initiated with the completion of infill injectors at the periphery of the 

reservoir. The main reason for this intervention is to maintain reservoir production above 

the bubble point. A large adjustment to reservoir flow behavior is made at eight hundred 
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days when the aquifer support is depleted and the producers establish pressure 

communication primarily with the injectors. This event forces the streamline field to 

significantly evolve as the reservoir driving mechanisms are fundamentally altered. 

 

In order to calibrate the model to reproduce the changes in water saturation observed in 

the time lapse seismic data, we run the forward simulator, trace streamlines and 

simultaneously calculate the sensitivities of the saturation changes with respect to the 

permeability at grid cell resolution. In order to deal with the noise present in the 

observed data, we perform the inversion algorithm using several different threshold 

values of saturation change, i.e., any values in the observation data below this cut off are 

ignored during the inversion. After defining the data misfit, a sensitivity-based 

minimization of the objective function is performed using a sparse least squares 

algorithm. Fig. 3.14 at the left shows the results of the minimization after 40 iterations 

and using three different threshold values which effectively filter the influence of noise 

from the observed data. Also shown is the reduction in the amount of data available 

when larger filtering thresholds are applied. This reduction in the amount of observation 

data propagates through the inversion workflow in the form of a slower convergence rate 

as shown in Fig. 3.15. At the right in Fig. 3.14, the permeability updates are presented 

and appear targeted following the same direction of continuity that is present in the 

initial model; however, the calibration significantly reduces the differences between the 

observed and simulated results. 
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Fig. 3.13Reservoir dynamics during the production time of the Brugge reservoir. 

 

  
Fig. 3.14Results of the history matching procedure. Left, data misfit after data calibration for the 

Schelde reservoir zone with different levels of filtering in the observed data. Right, permeability 

update for Schelde zone after data calibration.  
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Fig. 3.15Match quality for different values of the filtering in the inversion algorithm. 

 

Fig. 3.16 at left shows the water cut response at each producer before and following the 

seismic data integration. Only wells are shown at which the water cut misfit improved by 

performing the calibration using the seismic data alone. It is evident that the use of only 

the seismic data is insufficient to improve the water cut response at all of the wells. 

Therefore, the production data are used for a joint inversion together with the seismic 

data. In Fig. 3.16 is shown the water cut history match corresponding to the joint 

inversion for all of the wells. The majority of the wells show an improvement in match 

quality except for producer P-16. This well is located near the interior fault boundary at 

a location of complex flow behavior and shows improvement in the water cut response 

only upon larger, geologically inconsistent changes in the underlying heterogeneity. As a 

final step we assess the impact of the model calibration on reservoir management. 

Following the same methodology applied by Idrobo et al. (2000), we estimate the 

drainage volume for some of the producers before and after the calibration (Fig. 3.17). 

The correct representation of these volumes as affected by the producers is essential 

information for the determination of infill locations. 
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Fig. 3.16 (Left) Improvement in the water cut response for selected wells following the inversion 

using only the seismic data, and (right) the history matched water cut at each producer following the 

joint inversion. 

 
 

 
Fig. 3.17Streamline time of flight, beginning from selected producers, indicates the drainage 

volume of the producers. 
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3.4.2. Norne Field Seismic Data Integration 

 

The Norne field is an offshore reservoir located in the northern part of Norway. The field 

was discovered in 1991 and production started in 1998. The Norne contains multiple 

faults and is geologically partitioned into several segments.  Segments C, D and E 

constitute the Garn formation which contains the largest hydrocarbon accumulation in 

the reservoir, with a gas cap of approximately 75 meters. The other segment, G, is a 

secondary leg of the reservoir that is mostly an oil accumulation. The reservoir rocks are 

lower to middle Jurassic sandstones of a high quality, with an average porosity of 25 

percent and permeability in the range of 200 to 2000 mD. The reservoir model consists 

of more than one-hundred twenty thousand cells and contains two different rock types 

separated by a shale layer that hydraulically disconnects the stratigraphic layers above 

and below. The first rock type comprises the upper part of the reservoir (layers 1 to 3) 

and is saturated mostly by gas, while the second type is located mainly below the shale 

barrier (layers 5 to 22) and is saturated by oil accumulations and the aquifer. Fig. 3.18 

shows the top horizon of the reservoir and the respective segments (C, D, E, G) and 

wells. Fig. 3.18 also shows the initial phase distribution accompanied by the porosity 

and permeability cellular properties for the initial model. 

 

 
Fig. 3.18Top surface of the Norne reservoir indicating the different segments. In the bottom the 

initial fluids in place, horizontal permeability and initial porosity.  
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The production data include water, oil and gas rates in addition to bottom hole pressure. 

These data are provided exclusively for the wells located in the E segment; therefore, we 

will concentrate the calibration of the reservoir model over this segment, thus defining 

our case study. Fig. 3.19 shows the location of the three producers (E3H, E2H, E3AH) 

and two injectors (F1H, F3H), together with their hydraulic connectivity depicted by 

streamline trajectories that are colored per injector-producer pair. This graphic is an 

essential tool for visualization of the affect of faults and barriers on the flow geometry. 

In addition to the production data, a set of 4D seismic surveys was acquired over the 

years 2001, 2003 and 2004. The seismic data were externally processed and provided for 

use in model calibration as post stack volumes of the reflection amplitude together with 

the corresponding horizons for the top and base of the reservoir. Seismic volumes of the 

differences in reflection amplitude were additionally provided with interpreted horizons 

used for identification of movement in the water oil contact.  

 

The first step in our data calibration procedure is to invert the seismic volumes of 

reflection amplitude to changes in acoustic impedance. Fig. 3.20 shows the results of the 

geophysical inversion and the upscaling of the seismic volume from the seismic grid 

resolution (25m x 25m) to the reservoir grid resolution (100m x 100m). Collocation of 

the seismic data in the reservoir grid allows us to perform a grid-by-grid evaluation of 

the match quality during the calibration procedure. Fig. 3.20 also shows the extent of the 

seismic volume of the E segment compared to the size of the entire reservoir. 

Considering the small time span between the consecutive surveys, it is reasonable to 

assume that the porosity did not vary as a result of subsidence of the reservoir. Thus, we 

assume that only the acoustic impedance varied as the result of changes in fluid phase 

saturations or pressure in the reservoir. In support of this assumption, the inverted 

seismic volume indicates the rise of the water oil contact in the E segment (Fig. 3.20). 

The red color in the graphic is associated with a positive change in acoustic impedance. 

Therefore, we can infer that these changes are produce by an incremental increase in the 
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stiffness of the rock during the production interval. In this case, the increment in the 

saturated bulk modulus is produce by an increase in the water saturation. 

 

 
Fig. 3.19Flow Geometry for the surveys at 2001 and 2003. 

 

 
Fig. 3.20Changes in the acoustic impedance of the rock, the red color indicates hardening of the 

rock and the blue color softening associated with changes in pressure or gas saturation. 
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The next step is to calculate the acoustic impedance using the results from the reservoir 

simulator. For this purpose we use the PEM and the state of the saturation and pressure. 

We calculate the differences in the acoustic impedance between the times when the 

seismic surveys were acquired. Fig. 3.21 shows the influence of the water saturation, gas 

saturation and the porosity in the calculation of the absolute impedance. From these 

results we observe that porosity is the parameter that has the largest impact on 

determination of the elastic properties of the saturated rock. Porosity is a poorly resolved 

parameter that carries high levels of uncertainty. Therefore, defining the data integration 

in terms of changes in acoustic impedance allows us to emphasize the effect of changes 

resulting from the fluid evolution in the reservoir, while minimizing the effect of the 

uncertain static parameters. 

 

 
Fig. 3.21PEM for the Norne reservoir and the absolute acoustic impedance calculated on the 

reservoir grid. 

 
Our strategy of history matching the Norne data consists of a hierarchical approach that 

is performed in a sequential manner. First we calibrate the global parameters, and then 

we history match the production responses at the well level. The observed seismic and 
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the simulated responses are then defined on the same grid, from which we at last define 

the match quality as a cost function that is minimized using a gradient-based approach 

that updates the reservoir parameters on a cell-by-cell basis. Fig. 3.22 shows the results 

of the history matching procedure using the well and seismic data. A zone of compaction 

is clearly identified that is characterized by an increment in the acoustic impedance in 

the seismic volume. In this figure the water saturation changes over the same period of 

time are also shown using the same grid alignment. Notable is the estimation of the 

water oil contact in the initial model (i.e., the model calibrated at the well level); through 

the seismic data calibration the extent of the changes in water saturation are fine tuned 

for improved consistency with the observed increment in the acoustic impedance. This 

behavior is more clearly observed when we compare the changes in acoustic impedance 

after the data calibration in a layer-by-layer basis. Fig. 3.23 shows the extent of the 

modifications to the acoustic impedance for selected layers. 

 

 
Fig. 3.22Results of the data calibration procedure, comparison of the water saturation changes in 

the reservoir grid to the positive changes of acoustic impedance in the seismic volume. 

  

In Fig. 3.23 we have averaged the changes in acoustic impedance over the interval 

between layers five and nine, and also separately between layers eleven and thirteen. It is 

observed that the majority of negative changes are located in the area affected by 
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compaction. These areas experience a reduction in acoustic impedance, located 

especially in areas that are fully saturated with water. The reason for this reduction in the 

bulk modulus is not related to changes in the saturation at those cells, but rather by 

changes in the average pressure over that area. We have to emphasize that neither our 

sensitivities nor the rock physics model are capable of capturing this reduction in the 

acoustic impedance related to changes in field pressure thus we will concentrate in the 

positive changes. 

 

In previous history matching exercises (Osdal et al., 2006; El Ouair et al., 2005), 

researchers have used inverted 4D seismic data in the form of changes in acoustic 

impedance over the production interval. After assisted history matching of the well 

responses and 4D seismic data, they concluded that the vast majority of the observable 

changes in acoustic impedance over the E segment were related to replacement of the oil 

by water. This makes our results consistent with those available in the literature. 

Furthermore, we can conclude that with the limited effect of gas replacing oil or water in 

the E segment, any reduction in the acoustic impedance must be related to changes in the 

formation pressure. Reconciling the model to the pressure effects involves the 

calibration of larger global parameters that are more related with the energy and 

compartmentalization of the reservoir. The calibrated parameter along this exercise is the 

permeability field which does not have a significant impact on the field pressure (Yin et 

al, 2010).  

 

Finally we want to assess the quality of our history match measured at the well level. 

Fig. 3.24 shows the responses for the water, oil and gas production rates before and after 

the calibration procedure. The observed response of the field is also included. A careful 

look at the rates before and after calibration highlights the improvement over the match 

quality achieved by our automated history matching algorithm. 
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Fig. 3.23Changes in acoustic impedance in a layer by layer basis for the initial, observed and the 

calibrated model. 

 

 
Fig. 3.24Final response at the well levels after data calibration. 



 82 

3.5. Chapter Summary 

 

We have developed an efficient approach for the model calibration using 4D seismic and 

production data in high resolution models. The algorithm is able to reconcile the model 

with different data types such as changes in acoustic impedance or fluid saturation. The 

technique is based on a deterministic procedure for the minimization of an objective 

function that can include seismic and production data simultaneously using a gradient-

based minimization that utilize streamline derived sensitivities of production and seismic 

responses with respect to continuous reservoir parameters.  

 

Through the use of synthetic examples we have shown the value of the seismic data to 

calibrate reservoir models. This is especially evident in cases that are free of noise and 

there are no additional levels of non-linearity between the seismic data and the states 

predicted by the reservoir simulator.  In some idealized cases the seismic data integration 

algorithm was able to calibrate the well responses. We have also shown the impact of the 

noise in the seismic data reflected in some deterioration in the match quality at the well; 

nonetheless, our algorithm is able to reproduce the main features observed in the seismic 

data.  

 

A notable advantage of our technique is the efficiency in the computation of 

sensitivities, making our algorithms particulary suitable for large field applications and 

complex geological descriptions. Additionally, we have demonstrated that our algorithm 

is capable of representing complex dynamic evolution. Our field scale synthetic 

application has exhibited improvement in the representation of the water phase front and 

in the production responses for some wells. We have also performed the inversion 

procedure using simultaneously the seismic and production data, successfully matching 

the front evolution and the fractional flow responses. Upon calibration of the underlying 

heterogeneity, we have investigated the effects of incorporating the dynamic data in the 

estimation of the drainage volume. 
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The power of our proposed methodology was finally demonstrated through the 

application to the E-sector of the Norne field. The algorithm was able to improve the 

positive changes in the acoustic impedance, fine tuning the vertical estimation of the 

water oil contact and improving the vertical location of the water front. The automatic 

history matching algorithm in combination with good engineering judgment 

(understanding the benefits and limitation of our proposed techniques), shows promising 

results to exploit the benefits of the 4D seismic data for quantitative calibration of 

reservoir models.  
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CHAPTER IV 

USE OF TIME-LAPSE SEISMIC DATA FOR HETEROGENEITY 

CHARACTERIZATION DURING CO2 SEQUESTRATION IN SALINE AQUIFERS*  

 

The effects of heterogeneity in Carbon Capture and Storage (CCS) in saline aquifers 

have been investigated extensively and are known to have important bearings on the 

storage capacity of the aquifer. In CCS projects, the time-lapse seismic survey has been 

proposed as a valuable tool for monitoring of CO2 movement. However, the potential of 

the time-lapse seismic data for heterogeneity characterization and geologic model 

updating has not been fully explored. One of the biggest challenges in the quantitative 

use of time-lapse seismic data during CCS is the complex movement of the CO2 

influenced by compositional effects, geochemical reactions, phase changes and gravity 

segregation.  

 

In this work, we first introduce compositional streamlines to understand and visualize 

the flow and transport of CO2 in the presence of mineral precipitation/dissolution, 

residual trapping and buoyancy effects. To start with, individual component fluxes are 

generated by a finite difference fully implicit compositional simulator incorporating all 

the relevant physics of CO2 sequestration. The fluxes are then utilized in novel 

streamline tracing algorithms to generate phase and component streamlines depicting the 

movement and the trapping of CO2 in the aquifer. Next, we utilize the compositional 

streamlines to determine the sensitivity of the time-lapse seismic attributes specifically, 

interpreted saturation differences, to changes in reservoir properties such as permeability 

                                                
* Part of this chapter is reprinted with permission from ―Use of Time-Lapse Seismic Data 
for Heterogeneity Characterization during CO2 Sequestration in Saline Aquifers‖ by 

Rey, A., Taware, S. and Datta-Gupta, A., 2010. Paper SPE 139519 presented at the 2010 
SPE International Conference on CO2 Capture, Storage, and Utilization, 10-12 
November, New Orleans. Copyright 2010 by the Society of Petroleum Engineers. 
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and porosity. The sensitivities are then used in an inverse modeling algorithm to 

calibrate the geologic model to time-lapse seismic data. The outcome is an improved 

description of permeability heterogeneity that is consistent with the 4-D seismic 

response and improved predictions of the CO2 storage capacity.  

 

We have investigated the benefits of time-lapse seismic data integration in improving the 

performance assessment of CO2 sequestration using examples involving CO2 injection 

under realistic conditions. The first example examines the value of the 4-D seismic data 

integration in the estimation of storage capacity. The second example systematically 

studies the impact of viscous to gravity ratio on the performance of time-lapse seismic 

monitoring and heterogeneity characterization during CCS.  

 

4.1. Chapter Introduction  

 

Carbon sequestration in brine aquifers faces many different challenges in both 

engineering and economical aspects. There are several sources of uncertainties 

associated with the injection of CO2 in deep saline aquifers. Engineering problems such 

as the leakage of CO2 can compromise the integrity of fresh waters, ecosystems and the 

health of populations exposed to high concentration of CO2 (Ha-Duong and Keith, 2003; 

Gasda et al., 2004). There are also economic threats associated with legal disputes and 

fines imposed by regulatory agencies.  

 

Monitoring, verification and accounting (MVA) are the activities directed to determine 

the location of the injected CO2 and the presence of possible leaks in order to provide 

public assurance.  Many techniques have been developed for monitoring the 

performance of CO2 injection projects and the migration of CO2 in geologic formations. 

Time lapse seismic surveillance data is one of the most mature and effective techniques 

for monitoring changes in the fluid saturation and pressure and has been extensively 

used by the oil industry.  
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The viability of time lapse seismic data as a monitoring tool has been investigated in 

laboratory and field experiments (Wang and Nur 1986; Wang 1997; Korneev et al 2004; 

Hovorka et al 2006; Daley et al 2008). The characteristics of seismic responses under the 

complex compositional and geochemical interactions of the injected CO2 in geologic 

formations have been modeled by Kumar et al. (2008). Also, the effectiveness of 

traditional rock physics models to invert the seismic responses into changes in the 

acoustic impedance of the rock during CO2 sequestration has been investigated by 

Vanorio et al. (2010).  

 

In petroleum reservoir characterization, the time lapse seismic data has been a valuable 

source of information to calibrate reservoir models using automatic history matching 

procedures. Because of the high spatial density, seismic data can help estimate and 

constrain reservoir properties beyond the wells. For example, time lapse observations 

have been used to infer reservoir properties such as porosity and permeability during 

reservoir characterization (Huang et al, 1997; Vasco et al., 2004; Dong and Oliver, 

2005).   

 

There are many previous studies related to the integration of seismic data for calibrating 

reservoir simulation models. Huang and Kelkar (1996) integrated production and seismic 

data using the simulated annealing method to improve history matching. Landa and 

Horne (1997) used 4D seismic data to calibrate reservoir models to production data by 

changing porosity and permeability. Waggoner et al. (2003) used seismic history 

matching to incorporate 4D seismic data for a gas condensate reservoir in the Gulf of 

Mexico. Their objective was to match acoustic impedance by using a rock physics 

model. Input to the rock physics model e.g. porosity and saturation were changed to 

calibrate reservoir models to production data. Kretz et. al (2004) used  a gradual 

deformation of petro-physical properties to calibrate reservoir flow model with 4D 

seismic data.  
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Fanchi (2003) used Han-Eberhart-Phillips petro-physical algorithm which is an 

extension of the Gassmann model to generate seismic attributes from flow simulation. 

The rapid generation of seismic attributes (P- impendence) helped compare observed 

seismic data with the simulated seismic data. Yamamoto et al. (2004) used 4D seismic 

survey to monitor a CO2 miscible injection in the Weyburn field, Canada. They also 

used the seismic data to characterize the reservoir and calibrate the flow model to 

production and P-impendence data. A joint objective function incorporating normalized 

P-impendence and production data was used to quantify the data misfit during the 

history matching process.  

 

Among the many available techniques developed for history matching time lapse seismic 

responses, the approach proposed by Vasco et al. (2004) offers great promise to 

overcome the challenges of large field applications and complex geologic descriptions. 

This technique utilizes a trajectory based approach that takes advantage of the 

streamlines associated with fluid flows and semi-analytic solutions of the transport 

equations along streamlines. The fluid saturation is related to a self-similar variable that 

allows for calculation of the parameter sensitivities using a single forward simulation. 

The parameter sensitivities relate changes in the time-lapse response because of small 

changes in reservoir properties and are a crucial part of the seismic data integration 

procedure. Compared to petroleum-related applications, there are relatively few 

applications dealing with automatic history matching of time lapse seismic data in CCS 

projects. The focus of this work is centered on the inversion of the interpreted time lapse 

seismic responses for quantitative interpretation of the movement of the CO2 plume in 

the subsurface, specifically in saline aquifers (Chadwick et al, 2005, Chadwick et al, 

2010; Delepine et al, 2011). A crucial element in our work is accounting for the gravity 

segregation of the injected CO2 and the resulting implications on the quantitative 

interpretation of the time-lapse seismic response. 
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We present a streamline-based method for 4-D seismic data integration in the presence 

of gravity segregation as in the case of CO2 sequestration. The method takes advantage 

of the convective nature of the injection process by linking the location of the CO2 front 

along streamlines and the aquifer parameters, specifically porosity and permeability. 

Non-convective processes such as dissolution, precipitation and phase trapping are 

included in the simulation model and their effects on the distribution of the CO2 plume 

are fully accounted for using a finite-difference compositional simulator and streamline 

tracing algorithms that utilizes the phase fluxes from the compositional simulator. 

Gravity segregation of CO2 plays an important role and the shape of the CO2 plume will 

be influenced by the competition between the viscous and gravity forces (Stone, 1982; 

Jenkins, 1984; Nordbotten et al, 2005; Silin et al 2009). Compositional streamlines are 

used in order to characterize the motion of different phases, and to account for the 

upward movement of the injected CO2.  

 

The outline of this work is as follows. First, we introduce the general procedure for the 

seismic data integration into high-resolution aquifer models. We then illustrate the 

workflow using a two-dimensional synthetic example. This is followed by a review of 

the mathematical formulations of our proposed technique. We discuss the underlying 

assumptions of self similarity and the fundamentals of the time-lapse seismic derived 

sensitivities for propagation of the CO2 front. Next, we introduce the compositional 

streamline tracing. By utilizing streamline tracing in a compositional finite difference 

simulator, we are able to incorporate all the relevant physics in the CCS process. The 

technique is further tested and the results of seismic data integration in a 3-D 

heterogeneous deep saline aquifer are presented. This application highlights the benefits 

of calibrating the model with the dynamic time-lapse information to improve the 

estimate the storage capacity of the aquifer. Finally, we investigate the effect of the 

gravity segregation on the performance of our proposed approach to characterize the 

aquifer and infer permeability heterogeneity. 

 



 89 

4.2. Approach 

 

In this section we briefly outline the major steps in our approach for integrating time 

lapse seismic data in CCS projects and illustrate the procedure using a 2D example. 

 

4.2.1. Compositional Flow Simulation of CO2 Sequestration  

 

There are a variety of physical and chemical mechanisms that interact together when 

modeling the CO2 sequestration process. The CO2 is normally injected under 

supercritical conditions but depending on the pressure, temperature and salinity of the 

brine, it can exist either as a gas or liquid phase. The injected CO2 can also initiate a 

variety of chemical reactions resulting from the acidification of the aquifer brine and 

precipitate in a solid form of carbonate mineral. Eventually, over a long period of time, 

mineral precipitation can induce changes in the formation modifying transport properties 

like porosity and permeability (Kumar et al., 2008). Although CO2 mineralization is the 

most effective method of CO2 sequestration, it occurs over very long time scales. Other 

mechanisms by which CO2 is sequestered in the reservoir are structural trapping, 

residual trapping and dissolution in reservoir brine. Structural trapping of CO2 is 

dependent on the quality and integrity of the structural seal. This is one of the major 

uncertainties of CCS projects.  Residual trapping is related to immobile phase trapping 

of CO2 as the CO2 rises up because of buoyancy and travels through the water phase. 

This residual trapping is dependent on rock-fluid properties such as permeability, 

relative permeabilities and also the phase behavior of the reservoir fluids and the injected 

CO2. Dissolution of CO2 in reservoir brine is typically small (about 3–7% by mass) and 

depends on the salinity of reservoir brine and reservoir pressure and temperature 

(Leonenko and Keith, 2008). We have used a commercial compositional simulator 

(Eclipse300TM) with the CO2 sequestration option that allows us to model all of the 

three above-mentioned mechanisms of CO2 sequestration. The CO2 storage model 

includes three phases: A CO2 rich phase, a H2O rich phase and a solid phase. The CO2 
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rich phase is mostly in the gaseous state while H2O-rich phase is mostly in the liquid 

state. The solid state consists of salts, for example, CaCl2 and NaCl. Phase splitting 

between CO2 and H2O is modeled after Spycher and Preuss (Spycher et. al, 2003). Salts 

are present in the liquid as well as the solid phase. All the relevant geochemical reactions 

arising from the acidification of brine from the injected CO2 and salt precipitation are 

modeled. Mobility reduction because of solid precipitation is also accounted for. In this 

work, we have used four components in the compositional simulation which are CO2, 

H2O, NaCl and CaCl2.  

 

4.2.2. Compositional Streamline Tracing  

 

We have used a compositional finite-difference simulator to model CO2 sequestration in 

the aquifer. Given the component fluxes from the simulator, we reconstruct the phase 

fluxes in order to trace the total velocity streamlines relating the CO2 plume movement 

and the ‗time of flight‘ which is simply the travel time of a neutral tracer along the 

streamlines (Datta-Gupta and King, 2007). After we compute the time of flight, we can 

calculate sensitivities of this variable with respect to reservoir parameters. We will 

discuss the procedure for the compositional streamline tracing and sensitivity 

computations in more detail in the mathematical model section. 

 

4.2.3. Sensitivity of Time-Lapse Attributes to Reservoir Properties  

 

The streamline methodology to integrate seismic attributes into high resolution models is 

based on the analytical relationship between the arrival time of a propagating fluid front 

and the reservoir properties like porosity and permeability (Vasco et al, 2004). Using an 

asymptotic solution for the propagation of a two phase front, it is possible to find a self 

similar variable along the characteristic curves that has the property of transforming the 

spatial domain from an Eulerian representation to a Lagrangian perspective (Vasco and 

Datta-Gupta, 2001). This technique is very efficient and requires a single forward 
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simulation to calculate the sensitivities (Vasco, 2004).  In this work, we derive analytic 

sensitivities which are partial derivatives of the time-lapse response with respect to 

reservoir properties of interest. These sensitivities are an integral part of our proposed 

methodology. 

 

4.2.4. Inversion Algorithm and Time-lapse Data Integration   

 

Once the sensitivities are calculated, the data integration is performed utilizing an 

iterative least squares minimization of the differences in the interpreted saturation of 

CO2 between two consecutive seismic surveys. To ensure spatial continuity and 

geologic realism, the misfit function is augmented by additional regularization terms 

(Yoon et al., 2001.).  We assume that the time-lapse seismic data has been inverted and 

interpreted in terms of saturation differences. Hence, the data misfit is calculated as 

differences in CO2 saturation between surveys (Feng and Mannseth, 2010).  

 

4.3. Illustration of the Procedure Using a 2D Example  

 

The mathematical details of our formulation will be discussed in the next section. Before 

that, we first illustrate the major steps in our proposed approach using a two dimensional 

example. The example consists of a deep saline aquifer with one injector in the center 

which is perforated all the way through the formation. The geological model consists of 

a two dimensional 50x50 cellular grid with a lognormal permeability distribution having 

a north-east direction of continuity (Fig. 4.1). The parameters used in the compositional 

simulation are given in Table 1 representing 2D model of an aquifer.  

 

The example involves the injection of CO2 generated from a 1000 MW coal power 

plant. We ensure sufficient injection capacity through transmissibility and pore volume 

multipliers applied to the periphery of the aquifer model. Because of dissolution of CO2 

in the brine, we expect the formation of acids and mineral precipitation. The initial 
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permeability field used for history matching is shown in Fig. 4.1 along with the 

reference permeability field that we will attempt to reproduce using the time-lapse 

seismic data. The CO2 plume movements for the initial model and the reference model 

are shown in Fig. 4.2. As expected, the difference in the direction of continuity of the 

permeability field significantly affects the direction of propagation of the CO2 front. 

Fig. 4.3 shows the CO2 saturation distribution for the base survey and the second survey 

after a period of 5 years for both the initial and the reference model. In the same figure, 

we have also shown the changes in CO2 saturation.  

 

TABLE 1 SIMULATION PARAMETERS FOR COMPOSITIONAL 

SIMULATION AND THE 2D MODEL OF AQUIFER 

 
 

 
Fig. 4.1Initial and reference permeability fields for the two dimensional CO2 injection case. 
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Fig. 4.2Comparison of the movement of the CO2 plume saturation between the reference model 

and the initial model. 

 

For inversion purposes, the saturation changes from the reference model are considered 

to be the data derived from time-lapse seismic surveys and will be used to update the 

initial permeability distribution. The data misfit consisting of the difference between the 

observed (from the reference model) and simulated (from the initial model) changes in 

the saturation front over a period of 5 years is shown in the Fig. 4.4. We will use this 

data in the inversion algorithm in order to calibrate the flow properties viz. permeability.  
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Fig. 4.3Saturation differences between the surveys acquired after five years of injection and the 

base survey. 

 

Fig. 4.5 shows the performance of the objective function and the convergence of the 

inversion algorithm with iterations. The changes in the initial permeability field for 

various iterations are also seen in this figure. We can see that the final updated 

permeability field resembles the reference field in many respects.  For example, the low 

permeability barrier in the reference model is now clearly visible. We can conclude that 

the algorithm is targeting the places where the heterogeneity needs to be adjusted to 

match the time-lapse saturation differences. Furthermore, majority of the large-scale 

features present in the reference model are being captured through the inversion process.  

 

 
Fig. 4.4Data misfit between the simulated and observed saturation differences. 
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Fig. 4.5Changes in the initial permeability field at various iteration and objective function 

performance. 

 

This feature is notable because the permeability heterogeneity has a strong influence on 

the plume evolution and the capacity of the aquifer to sequester CO2.  Fig. 4.6 shows the 

changes in the evolution of the plume before and after the data integration. Fig. 4.7 

displays the same evolution using CO2 saturation along the streamlines which form the 

underlying basis of our inversion approach. It can be clearly seen from both of these 

figures that the time lapse seismic data integration has been effective in capturing the 

CO2 plume movement in the reference case.  
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Fig. 4.6Comparison of gas saturations for initial, observed and final over the years. 

 

 
Fig. 4.7Comparison of gas saturations on streamlines for initial, observed and final cases over the 

years. 
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4.4. Mathematical Approach  

 

The advantages of the streamline techniques are related to our ability to efficiently 

calculate parameter sensitivities utilizing the relationship between the streamline time of 

flight and reservoir heterogeneity. In this section we will cover the details related to the 

calculation of sensitivities of CO2 saturation with respect to reservoir parameters such as 

porosity and permeability, the tracing of streamlines and computing time of flight in 

compositional simulation and minimization of the objective function for data integration.  

 

4.4.1. Sensitivities of the Time-lapse Saturation Differences 

 

As mentioned before, for modeling CO2 sequestration in the aquifer, we have used a 

commercial finite-difference simulator that incorporates all the major underlying 

physical mechanisms. These include the effects of gravity, capillarity, residual trapping 

and the precipitation and dissolution reactions arising from the acidification of brine. For 

computing sensitivities of CO2 saturation with respect to reservoir properties, we first 

define the streamline coordinates based on the fluid fluxes from the finite difference 

simulator. 

 

We make a few simplifying assumptions for sensitivity calculations. We want to 

emphasize that these assumptions are limited to sensitivity calculations only and do not 

apply to the CO2 transport calculations in the finite-difference simulation. These 

simplifying assumptions allow us to compute the sensitivities analytically leading to 

significant savings in computation time. The primary assumptions behind the sensitivity 

calculations are incompressible flow and negligible role of gravity and capillarity 

between successive updates of the sensitivities. As we will see later, one of the 

consequences of these assumptions are more frequent updates of streamlines and 

sensitivity computations when the viscous to gravity ratio is high and there are more 

rapid changes in the CO2 saturation distribution. 
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 Our sensitivity calculations are based upon a coordinate transformation from physical 

space to a coordinate system following the flow directions. This transformation is based 

upon the bi-streamfunctions and an additional time of flight coordinate.  We can define a 

streamline which is everywhere tangential to the velocity field by introducing the 

following bi-streamfunctions, 


 and 


 (Bear, 1988; Datta-Gupta and King, 2007). 

 

 u


...................................................................................................... (4.1) 
 

A streamline is defined by the intersection of a constant value for 


 with a constant 

value for


. For sensitivity computations we are primarily interested in defining the 

streamline trajectories. The saturations from the finite difference calculations will be 

mapped along these streamlines in order to relate the saturation changes to the changes 

in reservoir properties, defining the parameter sensitivities. 

 

An important underlying concept behind our approach is the concept of ‗time of flight‘, τ 

which is defined simply as the travel time of a neutral tracer along the streamline 

trajectory r, 

 




 drrszyx )(),,(

. ............................................................................................ (4.2) 
 

Where the variable  rs  is called the ―slowness‖ and is defined as the reciprocal of the 

Darcy velocity divided by porosity (Datta-Gupta and King, 2007), 
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The main purpose of introducing the time of flight coordinate is that the 3-D spatial 

gradients assume a very simple form in the streamline time of flight coordinates.  Let us 

now consider the 3-D convective transport equation of CO2 assuming incompressible 

flow, 

 

0



ct

c Fu
t

S 

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Where CF  is the fractional flow of CO2. With the introduction of the ),,(   coordinates, 

we have the following operator identity for transformation from the physical space to the 

streamline coordinates (Datta-Gupta and King, 2007), 

 






tu


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Convection-driven flow now reduces to one dimensional spatial gradient along 

streamlines. The governing transport Eq. (4.4) can then be written as, 

 








 cc F

t

S
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Although our saturation calculations will fully account for gravity effects through the 

finite difference simulation, for sensitivity computations we will mainly consider the 

convective part and ignore the effects of gravity during the time interval of sensitivity 

computations. Eq. (4.6) is invariant with respect to coordinate scaling which indicates 

the existence of a self-similar variable that can reduce the time-space dependence of the 

CO2 evolution to a simple ordinary differential equation.  Eq. (4.7) describes the 

functional dependence of the solution along the new variable (Bear, 1988). 
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We can now express a perturbation in the CO2 saturation as a perturbation in the time of 

flight,  
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Where 
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Assuming that small changes in the reservoir parameters will not shift the streamline 

paths (negligible changes in the pressure/velocity field), a perturbation in the time of 

flight can be written as follows,  
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And 
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The slowness derivatives are given by the following (Vasco et al., 1999),   

k
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k
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
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And 
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
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




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Both the slowness and the reservoir properties are available along streamlines and can be 

readily integrated. The only remaining term in Eq. (4.8) is 'cS  which is computed by 

numerical perturbation from the fractional flow relationship. 

 

The sensitivities derived above integrate the convective effects only and are applicable 

for a limited time interval over which gravity segregation can be considered negligible. 

However, for time lapse saturation integration we are interested in the saturation 

evolution over an extended period of time over which gravity and other physical 

mechanisms will influence the CO2 saturation distribution. To account for these effects, 

we subdivide the total time period into smaller time intervals for sensitivity calculations.  

We assume that at any particular time n , the saturation of the CO2 is not only a function 

of the time of flight and time as given in the self-similar solution, but also the previous 

states of saturation at time 1n ,  
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Therefore, a perturbation in the saturation distribution is going to be tied to the historical 

states of the evolution of the CO2 plume. 
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Based upon on the magnitude of the transverse effects from gravity, we may need to 

consider a smaller time interval and consequently an increased number of perturbations 

throughout the different states from the time n up to the time on which is the initial time 
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for the CO2 injection or the previous seismic survey time. This leads to the following 

repeated application. 
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In our implementation, we assume that the successive changes in saturations between 

two time intervals do not differ significantly i.e.   11  n

c

n

c SS . This avoids saving of 

saturation from previous time intervals and leads to considerable savings in computation 

time and storage. The sensitivity expression now takes the simplified form given by, 
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4.4.2. Compositional Streamline Tracing 

 

Streamline trajectories form the underlying basis for the sensitivity calculations 

described above. The CO2 saturation sensitivities are defined as 1-D integrals along 

streamlines. In this section, we briefly describe the tracing of streamlines in 

compositional modeling of CO2 sequestration. The streamline tracing is carried out 

using the extended Pollock (1988) approach proposed by Jimenez et al. (2007) for 

corner-point cells using iso-parametric transformation from the physical coordinate 

(x,y,z) to the unit cube coordinates ),,(  . This approach has two important elements: 

First the volumetric flux, rather than velocity, is interpolated within the grid-cell; second, 

the Jacobian of transformation ),,( J to the unit cube, instead cell volume, is used to 

relate volumetric flux and velocity.  
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Jimenez et al, (2007, 2010) used a pseudo time of flight, T for simplifying the streamline 

tracing method so that time of flight can be calculated by rigorously accounting for the 

spatially varying Jacobian within the corner point cell. The pseudo time of flight is 

defined as follows: 
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Where 
321 ,, QQQ are the volumetric fluxes in the zyx ,, directions respectively. 

 

The streamline trajectories are obtained by integrating the above equation in all three 

directions. For example, the integral in the   direction is given as follows:  
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Solving the above integral we get:  
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Identical constructions will arise for the   and   directions. The actual pseudo time of 

flight T is given by the minimum over allowable edges (Jimenez et al., 2007).  
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Once the pseudo time of flight T is known, the exit coordinate of the particle can be 

easily calculated. For example, by rearranging Eq. (4.20), we can get the   coordinate 

of the exit point, 
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Knowing the unit space coordinates ),,(  , we can use tri-linear interpolation to 

transform the unit coordinates into the physical space (Jimenez et al., 2007). The last 

step is to convert pseudo time of flight T to the actual time of flight . This is given by 

the following integral,   
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As mentioned before, we have used a compositional simulator for modeling CO2 

sequestration. Compositional simulators typically provide the flux of individual 

components in different phases. The flow rate of component 'c' embedded in the phase p 

into cell 'i' from the neighboring cell 'n' i.e. 
c

PniQ  is given as follows (Eclipse300TM)  
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Where niT  is the transmissibility between the cells, PnidP is the potential difference and 
c

pM  

is the generalized mobility of component c in the phase p given as  
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 Where the fluid mobility 
c

pM  is evaluated in the upstream cell for each phase separately.  

 

Eq. (4.24) and Eq. (4.25) are used for tracking component c in phase p. So, for tracking a 

particular component, the component flux in all the phases is summed up. For phase 

tracking, the fluxes of all the components are summed up for that particular phase. The 

streamlines are traced based on total fluxes (sum of all phase fluxes) leading to 

continuous trajectories. 

 

4.4.3. Seismic Data Integration  

 

We perform the data integration using a deterministic approach in which we minimize a 

penalized misfit function composed of the seismic data misfit and additional 

regularization terms. The regularization terms consist of a ‗norm‘ constraint and a 

‗roughness‘ constraint and are introduced to preserve the spatial continuity and the 

geological realism in the updated model. Thus, the model calibration is a trade-off 

whereby we want to reduce the data misfit (within some specific tolerance) while 

minimizing the changes to the prior model to maintain geologic consistency. The 

penalized misfit function )( RF  is defined as follows: 

 

RLRRGdRF  21)(   .................................................................  (4.26) 
 

In Eq. (4.26) d  is the vector of the misfit between the seismically-derived saturation 

differences and the simulated saturation differences. Also, G is the sensitivity matrix 

containing the partial derivatives of the changes in saturation of CO2 with respect to the 

reservoir parameters viz. grid-block permeabilities. The quantity R is the vector of 

changes in the reservoir property. In Eq. (4.23) the first penalty term is the ‗norm‘ 

constraint that minimizes deviation from the prior model. The second penalty term is the 
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‗roughness‘ constraint. The operator L is a second spatial difference and is analogous to 

imposing a prior variogram or covariance constraint. (He et al, 2002). The minimum is 

obtained by an iterative least-square solution of the augmented linear system of 

equations given by Eq. (4.27)  
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where the scalars 1 and 2 determine the relative strengths of the ‗norm‘ and 

‗roughness‘ constraints. The selection of these weights can be somewhat subjective 

although there are guidelines in the literature (Parker, 1994). In general, the inversion 

results will be sensitive to the choice of these weights 

 

4.5. Results and Discussions  

 

In this section we discuss the application of our proposed method to a 3D example. The 

3D example is designed to illustrate the effectiveness of the time lapse seismic inversion 

when there is significant vertical migration of CO2 arising from gravity segregation. The 

3D model consists of 10 layers with 100ft. each and uses the same rock and fluid 

properties as the 2D model (Table 2). On comparing Table-1 and Table-2, we see that 

the primary difference between the 2D and the 3D example is the vertical resolution.  

 

As in the 2D example, we impose constant flux boundaries by applying transmissibility 

and pore volume multipliers to the periphery of the aquifer model. As expected, for the 

3D example the injected CO2 at the center rises vertically because of buoyancy forces. 

This is clearly visible from the streamline patterns in Fig. 4.8. The CO2 plume rises like 

a fountain and this movement is very well captured using streamlines derived from the 

total fluid flux tracing as discussed in the previous section. The fluid fluxes are obtained 
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from a fully compositional finite difference simulator for CO2 sequestration that 

includes all the relevant physical and chemical mechanisms. In Fig. 4.9 we have shown a 

vertical cross-section displaying CO2 plume migration in the initial and the reference 

model. It is apparent that the injected CO2 rises vertically very rapidly because of 

buoyancy. This represents a challenge for seismic inversion as most of the gas saturation 

changes are predominantly in top layers. This also requires taking smaller time intervals 

for sensitivity calculations to capture the effects of gravity segregation. 

 

TABLE 2SIMULATION PARAMETERS FOR COMPOSITIONAL 

SIMULATION AND THE 3D MODEL OF AQUIFER 

 
 

 
Fig. 4.8Streamlines showing buoyancy effects of injected CO2. 
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Fig. 4.10 shows the difference in gas saturation between the initial and the reference 

cases over a period of 5 years for each of the 10 layers. As expected, majority of the 

saturation changes are in the top layers (layers 1 through 4). We will use these saturation 

differences as data misfit in the inversion algorithm in order to calibrate the flow 

properties, specifically grid block permeabilities in this case.  

 

 
Fig. 4.9Vertical cross-section showing CO2 plume migrating upwards over the years. 

 

Fig. 4.11 shows the reduction in the data misfit and convergence of the inversion 

algorithm with iterations. The reference permeability (same in all layers) and the 

difference between the reference and the initial permeability can also be seen in this 

figure. Note that the difference represents the changes needed in the initial permeability 

field for all the layers. Fig. 4.11 shows the changes to the initial permeability in the top 

five layers. Recall that the majority of the saturation changes were in the top layers and 

that is where we mostly expect the permeabilites to change.  Comparing Fig. 4.10 and 

Fig. 4.11, we can see that much of the changes in the initial permeability field are similar 

to the changes required. Thus, we can conclude that the algorithm is targeting the spatial 

locations where the heterogeneity needs to be adjusted. Furthermore, we can also see 
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that some of the large-scale permeability trends present in the reference model are being 

captured via inversion of the time-lapse saturation changes.  

 

 
Fig. 4.10Layerwise gas saturation difference between observed and simulated cases over the 

years. 

 

Fig. 4.12 shows the changes in the evolution of the CO2 plume before and after the data 

integration. It can be clearly seen that the time lapse seismic data integration helps in 

capturing the CO2 plume movement which now better resembles the reference case.  
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Fig. 4.11Layer-wise changes made during seismic inversion. 

 

 
Fig. 4.12Layer-wise comparison of gas saturations for initial, observed and final cases. 
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 4.5.1. Value Addition in Forecasting the CO2 Sequestration Capacity of the Aquifer  

 

The role of time-lapse seismic data in monitoring of CO2 sequestration has been well-

recognized. However, the use of time-lapse data in permeability characterization and 

improved estimates of CO2 storage capacity has been relatively unexplored. A critical 

outcome of aquifer model calibration for carbon sequestration and storage is in the 

improved forecast of how much CO2 can be sequestered in the future. The economics of 

CCS projects is dependent to a large extent on proper forecasting of CO2 storage 

capacity. 

 

 
Fig. 4.13CO2 sequestered with time for initial, observed and final cases over the time. 

 

Fig. 4.13 shows the importance of dynamic model calibration for CCS projects, 

specifically the utility of time lapse seismic inversion as discussed in this work. As 

explained before, the time lapse seismic inversion was carried out based on seismic data 

at the beginning of the project and after five years. We predicted the amount of CO2 

sequestered for 15 years with and without the seismic data integration. It can be seen that 
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amount of CO2 sequestered (dissolved + residually Trapped) is severely under-predicted 

by initial permeability model as compared to the reference model. This indicates very 

large discrepancy in the initial model in terms of its dynamic performance compared to 

the reference model and the importance of model calibration using dynamic data. The 

updated model after time-lapse seismic inversion shows very good match with the 

reference model in terms of the amount of CO2 sequestered. The results clearly show the 

value of time-lapse seismic data integration to improve predictive capabilities of CO2 

sequestration models. 

 

4.5.2. Impact of Viscous to Gravity Ratio (VGR) on the Time-lapse Seismic 

Integration 

 

One of our objectives in this work is to evaluate the effectiveness of time-lapse seismic 

data in the presence of gravity segregation of the injected CO2. The extent of gravity 

segregation of CO2 is largely a function of the viscous to gravity ratio defined as follows 

(Stone (1982); Jenkins (1984)): 

 

 wcv

t

Ak

Q
VGR

 
  ...................................................................................... (4.28)  

 

Where A is the cross-section area of injection, c  and w  are CO2 and water mobilities, 

respectively, and  is the density difference between CO2 and water. 

 

We have studied the impact of various CO2 injection rates corresponding to different 

viscous gravity ratios on the performance of the inversion algorithm. The results are 

shown in Fig. 4.14. For all the cases, we have kept a fixed time step interval of 1 year for 

computing the sensitivity of time-lapse seismic derived saturation differences changes in 

the permeability distribution. It can be seen that for a fixed time-step, the inversion 

algorithm converges faster for lower viscous to gravity ratios, i.e., lower injection rates. 
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For very high VGR, a slower convergence and even an increase in the objective function 

are seen, indicating that more frequent updating of the sensitivity is required. This is to 

be expected because of the rapidly changing CO2 saturation and streamline patterns in 

the cases with high VGR. In general, the higher the change in saturation between two 

streamline tracing intervals, the more difficult it is for streamlines to accurately describe 

the relation between the location of the CO2 plume and the changes in the reservoir 

parameters. Thus, the higher the VGR the, smaller should be the timesteps for our 

proposed time lapse data integration method so that the movement of CO2 can be 

captured by streamlines effectively. 

 

 
Fig. 4.14Objective function performance for various viscous gravity ratios using a fixed timestep 

interval (1 yr). 

 

4.6. Chapter Summary 

 

We have demonstrated the utility of time lapse seismic data integration for aquifer 

characterization during CCS projects and also for improved predictions of CO2 storage 

capacity. Specifically, we have shown that the streamline based seismic inversion is 
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successful in calibrating 3D aquifer models in the presence of gravity segregation of the 

injected CO2. The streamline-based approach is particularly appealing because of the 

analytic computation of the sensitivity of time-lapse saturation differences with respect 

to reservoir properties. This leads to significant savings in computation time and offers 

great potential in terms of large-scale field applications. Although our forward 

simulation accounted for all the dominant physical mechanisms, the sensitivity 

calculations are approximate because of the underlying assumptions. Nevertheless, these 

approximate sensitivities seem to be adequate for data integration purposes and did not 

result in any significant convergence issues. We have also shown that streamline based 

seismic inversion improves the prediction of the amount of CO2 sequestered which can 

help in the economic planning of carbon sequestration projects. Finally, we have studied 

the impact of viscous to gravity ratio (VGR) on the performance of the inversion 

procedure.  
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 

This study develops an integrated approach for model calibration using production and 

seismic data simultaneously. The technique is based on a deterministic procedure for the 

minimization of a data misfit cost function, using a gradient-based method where the 

sensitivity of a reservoir response (e.g., grid cell saturation change, acoustic impedance 

and fractional flow at a producer) to perturbations in the model parameters is calculated 

analytically using the streamline geometry and properties. A notable advantage of the 

technique is the ability to incorporate the dynamic effects of changing field conditions 

resulting, for example, from infill drilling, alternating drive mechanisms or reservoir 

management. Another advantage is the flexibility of the sensitivity formulation to 

different data types. For example, the seismic data can be applied as either changes in 

water saturation or accoustic impedance, and the data can also contain uncorrelated noise 

associated with the uncertainty in the geophysical data and inversion. The technique is 

not limited to black oil models but can also be applied to compositional simulation. 

Finally, the streamline-based approach is extended in the case of CO2 injection with 

non-convective effects such as dissolution and precipitation. The algorithm is able to 

calibrate models with different levels of viscous to gravity forces. In the specific case of 

CO2 sequestration, the importance of this work is highlighted by the finding that the 

calibrated heterogeneity significantly impacts the predicted storage capacity of open 

aquifers.  

 

5.1. Summary 

 

The major findings and concluding remarks of this research are summarized in the 

following sub-sections. 
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5.1.1 Production Data Integration 

 

In the established approach of streamline based history matching, the Generalized Travel 

Time Inversion (GTTI), we have highlighted the limitations of the cross correlation 

function to calculate the time shift that defines the data misfit term per well. The 

presence of discontinuities and non-monotonicity in the observed history introduces 

levels of complexity in the production data that cannot be resolved in the traditional 

GTTI approach. The presence of such behavior leads to an erroneous estimation of the 

misfit time and also to a slow convergence rate in the minimization of the cost function. 

In this study we proposed a re-sampling procedure that preserves the desirable features 

of the streamline techniques while improving the estimation of the data misfit and the 

match quality after model calibration. The proposed technique is robust and relatively 

insensitive to the threshold values used to resample the data. Moreover, the approach 

retains unique features of streamline models that make them particularly well-suited for 

production data integration into high resolution geologic models.  

 

The proposed approach is applied to a real field application with active reservoir 

management and a highly detailed production history, together with well recompletions 

that frequently change the boundary conditions. The results of the minimization using 

the proposed approach show a faster convergence rate and an improvement in the match 

quality on a well by well basis, compare to the traditional GTTI approach. Also, the 

streamline visualization techniques are proven to be a valuable tool for evaluating the 

changes introduced to the prior model during calibration to the dynamic data. Finally, 

the streamline-based dynamic data integration can be applied as a diagnostic tool to 

evaluate structural uncertainties in the high-resolution geologic model. 
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5.1.2. Seismic Data Integration 

 

We have developed a streamline based history matching technique that can utilize high 

resolution areal information from consecutive (i.e., 4D) seismic surveys. The seismic 

data can be expressed as either the difference in saturation or acoustic impedance 

derived after a geophysical seismic inversion, both at grid cell resolution. Our approach 

is able to reproduce the complex dynamic evolution of fluid transport in the reservoir by 

calibration of a prior high resolution geologic model using efficiently derived seismic 

sensitivities. We have specifically applied this approach to resolve the location of the 

water saturation fronts at the cell level, thereby improving the response of the fractional 

flow at the well level relative to field measurements. The quality of the calibrated model 

is related to the level of noise associated with the seismic data. 

 

The application of the proposed inversion approach to field cases has demonstrated that 

the incorporation of the seismic data only can be insufficient to calibrate the responses at 

the well level. In these cases, seismic data are, therefore, utilized simultaneously with the 

available production information. An added benefit of the inclusion of seismic data in 

the inversion is the apparent improvement in the geologic realism of the calibrated 

heterogeneity even in the cases where the seismic information contains large levels of 

noise or uncertainty.  

 

5.1.3. Compositional Seismic Data Integration 

 

Seismic data can be a valuable source of data for the calibration of aquifer or reservoir 

models that simulate CO2 injection. Time-lapse seismic surveys can be used in order to 

better estimate the underlying heterogeneity, improving the predictive capability of the 

model, especially in relation to the CO2 storage capacity of the reservoirs.  The 

streamline based sensitivity calculation was modified to incorporate non convective 

effects such as dissolution and precipitation. In order to incorporate transverse effects the 
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streamline field has to be regenerated more frequently and the multiphase saturations are 

mapped from the results of a finite difference compositional simulator.  

 

Our approach has demonstrated the relevance of the viscous-gravity ratio in the 

calibration of the underlying heterogeneity in aquifers under CO2 injection. This reflects 

the dominance of the gravity forces in the dynamics and evolution of the plume. Despite 

the complexity and nonlinearity of these processes, the streamline formulation shows 

promising results, targeting the changes in the calibrated parameter field and 

reproducing the main features in the reference model. 

 

5.2. Recommendations 

 

The use of seismic data for quantitative calibration of reservoir models is a task of 

considerable difficulty. Perhaps one of the most challenging steps is the integration of 

two different disciplines that need to interact for the successful use of the seismic data. 

Reservoir Engineers and Geophysicists need to work in a collaborative environment with 

mutual understanding of each other‘s disciplines. This is of special relevance because the 

majority of the modern approaches for calibrating the reservoir model with seismic data 

rely on observation data that are derived as the result of an independent seismic 

inversion that too suffers, from non-uniqueness and ill-posedness. 

 

Nevertheless, the advantages of incorporating high resolution areal information make the 

task of identifying new strategies for improvement of the effectiveness of the 

collaborative work between these two disciplines a worthwhile exercise. The reservoir 

engineer cannot blindly use the inverted parameters from a seismic volume as 

observation data without carefully considering the validity and the consequences of this 

information in terms of reservoir development and management. Thus, the Reservoir 

Engineer needs to understand the benefits and limitation of 4D seismic data in order to 

make an effective use of this type of information. Automatic history matching routines 
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like the ones proposed in this thesis are essential to bridge the gap between these 

disciplines. They empower the engineer with tools that assist the history matching 

procedure and are useful for critical evaluation of the reservoir heterogeneity and flow 

dynamics.  

 

Even with the benefits of our techniques in terms of speed and minimal targeted changes 

in the reservoir model, the user must be aware of the limitations and simplifications 

related to our proposed approaches. We need to develop a better understanding of the 

vertical resolution of seismic information and the effects of upscaling or downscaling, in 

both the vertical and horizontal orientations, required for compatibility of the seismic 

grid with the resolution of the reservoir simulator. While we have included the effects of 

the pressure changes in the time lapse seismic inverted attributes, our technique is 

limited to a convective phenomena characterized by a sharp interface in a slowly 

changing background saturation. Furthermore, even when the effects of gravity 

segregation and dissolution were successfully treated, they were limited to a 

predominantly two phase system. There is still critical research required for a more 

complete understanding of the dynamics, interactions and influence of multiple phases 

on acoustic impedance signatures, and other related seismic attributes. 
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