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ABSTRACT

Optimal Scheduling for Biocide and Heat Exchangers Maintenance Towards

Environmentally Friendly Seawater Cooling Systems. (August 2011)

Abdullah S. O. Binmahfouz, B.S., King Fahd University of Petroleum & Minerals;

M.B.A., Indiana University of Pennsylvania;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Mahmoud El-Halwagi

Using seawater in cooling systems is a common practice in many parts of the

world where there is a shortage of freshwater. However, biofouling is one of the major

operational problems associated with the usage of seawater in cooling systems.

Microfouling is caused by the activities of microorganisms, such as bacteria and algae,

producing a very thin layer that sticks to the inside surface of the tubes in heat

exchangers. This thin layer has a tremendously negative impact on heat transferred

across the heat exchanger tubes in the system. In some instances, even a 250 micrometer

thickness of fouling film can reduce the heat exchanger’s heat transfer coefficient by

50%. On the other hand, macrofouling is the blockage caused by relatively large marine

organisms, such as oysters, mussels, clams, and barnacles. A biocide is typically added

to eliminate, or at least reduce, biofouling. Typically, microfouling can be controlled by

intermittent dosages, and macrofouling can be controlled by continuous dosages of

biocide.
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The aim of this research work is to develop a systematic approach to the optimal

operating and design alternatives for integrated seawater cooling systems in industrial

facilities. A process integration framework is used to provide a holistic approach to

optimizing the design and operation of the seawater cooling system, along with the

dosage and discharge systems. Optimization formulations are employed to systematize

the decision-making and to reconcile the various economic, technical, and environmental

aspects of the problem. Building blocks of the approach include the biocide water

chemistry and kinetics, process cooling requirements, dosage scenarios and dynamic

profiles, biofilm growth, seawater discharge, and environmental regulations.

Seawater chemistry is studied with emphasis on the usage of biocide for seawater

cooling. A multi-period optimization formulation is developed and solved to determine.

 The optimal levels of dosing and dechlorination chemicals

 The timing of maintenance to clean the heat-exchange surfaces

 The dynamic dependence of the biofilm growth on the applied doses, the

seawater-biocide chemistry, the process conditions, and seawater

characteristics for each time period.

The technical, economic, and environmental considerations of the system are

accounted for and discussed through case studies.
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1. INTRODUCTION

The use of seawater in industrial cooling is a common practice in many parts of

the world that have limited freshwater resources. One of the primary operational

problems of using seawater in cooling is biofouling, though there are other problems

such as scaling and corrosion. The formation of biofilm is caused by the biological

activities of microorganisms in the seawater. Biofilms are very thin layer s that stick to

the inside surface of heat exchanger tubes that use seawater. As small as a 250

micrometer biofilm thickness is enough to reduce the heat transfer coefficient by 50%.

Therefore, biofouling is a serious problem (Goodman 1987).

In some cases, excessive biofouling can obstruct the heat exchangers. To prevent

this, biocides are used to control the biological activities of the microorganisms and

lessen the effect of fouling. Controlling microbial growth is usually achieved by using an

oxidizing agent, such as chlorine, in an easy-to-disperse form, such as a hypochlorous

acid or a hypochlorite ion, or in a gaseous form like chlorine gas or chlorine dioxide. An

intermittent chlorine dosage of 2–5 mg/L for 10 minutes per day can control

microfouling, and a continuous dosage of 0.5 mg/L during the second to fourth week of

breeding season can control the blockage caused by macrofouling. Under a continuous

biocide dosage, aquatic organisms like oysters and mussels tightly close their shells and

often die of asphyxiation. These chlorine forms are most widely used due to cost and

effectiveness factors.

____________
This dissertation follows the style of Chemical Engineering Science.
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Chlorine is a nonselective oxidant (it reacts with organics and inorganics), and it

deactivates microbes. Also, chlorine reacts with natural organic matter (NOM), leading

to the formation of numerous by-products (Ben Waren, 2006). Some of these by-

products are hazardous to aquatic life and human health. While there are other means of

preventing biofouling, such as periodic cleaning with sponge balls, tube heating and

drying, and antifouling paint, nonetheless, chlorine dosing is the most widely-used

method because of its cost-effectiveness and efficiency in controlling different

organisms that cause fouling.

Because of the strong interaction between the process cooling demand, operating

conditions, and biocide needs and performance, it is important to develop an integrated

approach to optimizing biocide usage and discharge by understanding the key process

factors and seawater chemistry aspects, then reconciling them in an effective manner.

The objective of this paper is to develop a systematic approach to the optimization of

biocide usage and discharge by integrating seawater chemistry and process performance

issues. This includes modeling the mechanism and kinetics of the biocide, relating the

biocide kinetics to process conditions, and reducing biocide usage by lowering the

cooling needs of the process via heat integration. The usage and discharge of seawater is

linked to the process requirements, including cooling duties. So, any reduction in cooling

duties will have a direct impact on the usage and discharge of both seawater and biocide.

1.1. FOULING

Fouling refers to the process of attaching any preventable, unnecessary deposit of

organics and/or inorganics onto a wetted tube surface. The unwanted consequences of
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fouling include directly reducing the amount of heat flowing across the surface and

enhancing both the rate of corrosion on the tube and the friction resistance of fluid.

There are different types of fouling:

 Crystalline fouling is the precipitation of CaCO3, CaSO4, silicates or

other solids.

 Corrosion fouling is the process of oxidizing the metal of the tube surface

 Particulate fouling is the result of the adhesion of particulate matters to

the surface.

 Chemical reaction fouling is the deposition caused by chemical reaction

that occurs in the fluid or at the fluid/wall interface influenced by

autoxidation of the fluid, thermal decomposition process and controlling

chemical reaction.

 Biological fouling is the process of attachment and growth of microbial

organisms on a surface.

There are three sources where biological fouling takes place:

 Microbial fouling occurs as a result of the development of

microorganisms and their products.

 Macrobial fouling is a result of the deposit and growth of

macroorganisms like barnacles and mussels.

 Biological fouling is a result of a collection of detritus.

Typically, the development of microbial fouling precedes any macroorganism

colonization. Therefore, controlling microbial fouling has a great advantage of avoiding
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microbial fouling development. Biofouling usually develops over a few steps including

biological, chemical, and physical processes. These processes may happen in a series

and/or parallel steps. Figure 1.1. shows all of the steps of biofilm accumulation

(Characklis, 1979).

Figure 1.1. Diagram Summarizing the Biofilm Formation and Detachment
Processes (Adapted from Characklis, 1979).

These steps can be described as follows:

 Transportation: the process of transporting the organic molecules and

microbial cells in the fluid from bulk to the tube surface; this happens

within the first minutes.

 Adsorption: mainly the process of organic molecule adsorption and

sedimentation on the surface of the tube.

 Adhesion: the microbial cell adhesion to the tube surface and started with

reversible followed by irreversible adhesion.

Surface

Organic

Microbial
Cell

Biofilm

Organic
Transport

Microbial
Cell
Transport

Detached
Biofilm

Biofilm
Detachment



5

 Production: the attached microbial cells start producing, which is the

major factor of biofilm development.

 Detachment: the sheer stress of the fluid plays a major role in detaching

some of the developed biofilm from the beginning, but now the rates of

attachment and growth of microbial cells are higher (up to a certain level

of biofilm thickness which is called viscous sublayer). Then, detachment

due to sheer stress will control the thickness of the biofilm.

1.2. ANTIFOULING

Antifouling agents are used in order to control the growth of biological

organisms that play a great role in biofouling. Biocides are applied as disinfectants to

eliminate, or at least reduce, the biological activities that contribute to biofouling and

blocking of the cooling systems. Chlorine and chlorine products are among the most

common biocides because of their relatively low cost and high effectiveness. Seawater

may be chlorinated by diffusing chlorine gas, electrolyzing the seawater to produce

chlorine, or adding a chlorinated solution such as sodium hypochlorite. Other forms of

chlorinated disinfectants include chloramines (e.g., NH2Cl, NHCl2, and NCl3) and

chlorine dioxide.

Other biocides include ozone and ultraviolet radiation, but both are relatively

high in cost compared to chlorine. Ozone has not been commercially utilized due to the

high risk of possible leakage. A low concentration of ozone, i.e. 0.3 ppm, is considered

to be harmful to workers and to the surrounding environment. Ultraviolet radiation is a n

effective disinfection method; however, its applicability is limited to cases when the
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water has little turbidity and suspended matter. Also, there is no residual disinfection

effect after the radiation.

Preventing biofouling can be alternatively achieved by hydromechanical and

chemical methods. The primary chemical method is using surfactants to reduce the

adhesion forces of the biofilm to the surface of heat exchangers. This method is used to

reduce the development of the biofilm on the inside surface of the heat exchangers’ tube.

Other methods use mechanical means (e.g., rotating brushes and sponge balls) for

regular scheduled cleaning, either on- or off-line (Langford, 1977). Other mechanical

means include pulsating hot solutions (e.g. hot seawater) on a regular basis. The hot

solution should be at a temperature hot enough to deactivate the microorganisms. But, by

far, biocide dosing (primarily chlorination) is the most widely-used approach in

industries. This is attributed to industrial reliability, large –scale applicability,

effectiveness in disinfecting various forms of microorganisms in seawater, and cost -

effectiveness.

1.3 ENVIRONMENTAL PROBLEMS OF CHLORINE

Using chlorine is not trouble-free. Discharging chlorine and its by-products back

into natural bodies of waters with no treatment would definitely create some

environmental problems. Chlorine is a nonselective oxidant. In seawater, chlorine and its

various forms may react with organic species that exist in natural water, producing

hazardous compounds. Examples of these compounds are trihalomethanes (THMs),

halogenated acetic acids (HAAs), and halophenols (HPs), which are carcinogenic for

human health and aquatic life. THMs are formed from a reaction of chlorine with natural
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organic matter. THMs are chemical compounds of methane, replacing the three

hydrogen atoms with halogens like tri-chlorinated/ brominated methane demonstrated as

(CHX3):(CHCl3), (CHBr3). THMs are environmental pollutants and they may cause

damage to the liver, kidneys, and central nervous system. HAAs are acetic acids with H -

atoms (fixed to a COOH-group) replaced by halogen atoms. HAAs are suspected to raise

the risk of cancer. HAAs could form THMs during biological decomposition. THM and

HAA concentrations are higher during the summer season than in winter. Also, THM

and HAA concentrations increase in that water comes from the surface, rather than from

groundwater.

1.4 DECHLORINATION

With no chlorine compound removal treatment, the effects of chlorine and its by-

products will carry on disinfecting microorganisms, and they are very toxic to aquatic

life when discharged back to the environment at a level higher than the safe level.

Chlorine compounds are always maintained at a certain level throughout the cooling

system to control biofouling. Proper treatment is required to keep a sustainable

surrounding environment and to prevent the aquatic life from any damages.

Dechlorination is a process designed to remove, or at lease reduce, the

concentrations of chlorine and its products at the discharged point. Chemical reduction

using sulfur compounds has been used as a dechlorination agent to remove free and

combined residual chlorine. Sulfur compounds like sulfur dioxide (SO2), sodium

sulphite (Na2SO4), bisulfite (NaHSO3), or bisulphate (NaHSO4) and sodium thiosulphate

(Na2S2O3), or sodium metabisulfite (Na2S2O5), have been used to dechlorinate seawater
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in industrial cooling systems before discharging to the sea. Different dechlorination

methods have been utilized in the industry, including activated carbon, activated carbon

combined with ozonation, and photochemical reduction with ultraviolet irradiation.

Pyle (1960) and Beeton (1976) found that sodium sulfite (Na2SO3) was the most

economically effective, the safest, and the most capable of eliminating the toxicity of

residual chlorine for the aquatic life. Sodium sulfite is added at a 2:1 ratio by weight

with residual chlorine in order to completely and instantaneously eliminate chloramines.

However, the disadvantage of using sodium sulfite is that it requires an accurate

injection system and a periodic follow-up with chlorine fluctuating in influent water.

In the industry, it was found that sulfur dioxide is the most cost-effective

dechlorinating agent. Sulfur dioxide is added at a weight ratio of 0.9 of sulfur dioxide for

every 1.0 of chlorine to be removed. But, practically a 10% excess amount of sulfur

dioxide is always added to make sure that the dechlorination process is completed.

Sulfur dioxide is the most widely used in the industry because of its high effectiveness in

removing both free and combined residual chlorine in a very cost-effective way. Also,

sulfur dioxide can be fed using similar equipment as is used for chlorination with a

simple control scheme.

Sulfur dioxide hydrolysis happens in water rapidly and completely to form

sulfuric acid, as shown in the following reaction:

SO2 +H2OH2SO3 Equation 1.1
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The oxidation number of the aqueous sulfur (SO3
-2) is four, which means it will

react with free and combined chlorine rapidly and completely, as shown in the following

equations:

SO3
-2 +HOCl SO4

-2 + Cl- + H+ Equation 1.2

SO3
-2 +NH2Cl + H2O SO4

-2 + Cl- + NH4
+ Equation 1.3
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2. BACKGROUND AND LITERATURE REVIEW

2.1. OVERVIEW

Using seawater in cooling systems is a common practice in many parts of the

world where there is a shortage of freshwater. However, biofouling is one of the major

operational problems associated with the usage of seawater in cooling systems, beside

other problems like corrosion and scaling. A biocide is typically added to eliminate or

reduce biofouling. This work provides a critical review of the usage, chemistry, and

discharge of biocides for seawater cooling systems. The following categories are

covered:

 Characteristics of seawater impacting biocide chemistry

 Reaction pathways

 Factors impacting biocide performance

 Measurement of biocides

 Treatment of biocide discharges

The work focuses on information and data that are particularly useful in the

modeling, design, and operation of seawater cooling systems.

2.2. INTRODUCTION

The scarcity of freshwater resources in particular industrial regions of the world

leads to extensive use of seawater for industrial cooling. One of the primary operational

problems of using seawater in cooling is biofouling, though there are other problems

such as scaling and corrosion (Freese et al., 2007). The formation of bioflim is caused by
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the biological activities of microorganisms in the seawater. Biofilms are very thin layers

of bacteria and algae that stick to the inside surface of heat exchanger tubes that use

seawater and can cause serious operational problems (Goodman, 1987). As small as a

250 micrometer biofilm thickness is enough to reduce the heat transfer coefficient by

50% (Goodman, 1987). There are two broad categories of biofouling: macroscopic and

microscopic. In macrofouling or macroinvertebrate fouling, clams, barnacles, and

mussels block the seawater from properly flowing through the heat exchangers. On the

other hand, microbiologic fouling or microfouling is caused by the growth of slime and

algae.

Biofouling results in major operating costs for cleaning, repairing, and additional

utilities (Nadine, 1984). There are several methods for preventing biofouling, such as

periodic cleaning with sponge balls, tube heating and drying, and antifouling paint.

Nonetheless, biocide (e.g., chlorine) dosing is the most widely-used method because of

its cost-effectiveness and efficiency in disinfecting different microbial forms. Owing to

the strong interaction between the process cooling demand, operating conditions, and

biocide needs and performance, it is important to develop an integrated approach to

optimizing biocide usage and discharge by understanding the key process factors and

seawater chemistry aspects, then reconciling them in an effective manner. While much

work has been done in the area of biocide usage and the associated chemistry, there is a

major literature gap in a single source providing a comprehensive and an integrated view

of this important topic. The objective of this work is to provide a critical and integrated

review of biocide usage and discharge for industrial seawater cooling systems and the
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associated water chemistry and biofilm characteristics (Kim et al., 2001). This work

focuses on critical data, information, and models that can be effectively used to guide the

design, operation, troubleshooting, and optimization of seawater cooling systems. The

review is categorized into the following sections:

 Characteristics of seawater impacting biocide chemistry

 Reaction pathways

 Factors impacting biocide performance

 Measurement of biocides

 Treatment of biocide discharges

2.3. CHARACTERISTICS OF SEAWATER IMPACTING BIOCIDE

CHEMISTRY

Several seawater characteristics impact the biocide chemistry. These include

concentration of ammonia, bromide, and organic carbon, pH, and salinity.  Ammonia

concentration in seawater typically ranges from 1.0 ppb to 1.0 ppm, and as the salinity

increases, the ammonia concentration decreases (Lietzke, 1977). As the ammonia

concentration decreases, it causes a shift from combined oxidants to free oxidants (e.g.,

HOBr) (Lietzke, 1977). Bromide concentration is very low in freshwater, but can go up

to 65 ppm in high salinity seawater (Lietzke, 1977; Minear et al., 2004). As organic

carbon content decreases, there is a corresponding reduction in demand for the biocide

dosage. There are un-reactive chemical constituents in marine or estuarine waters from

chlorination. These constituents, such as sulfur, manganese ion, and iodide, play a key

part in the chlorination of seawater. Components such as (Org-C, NO2-N, S, Mn, Fe) are
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oxidized to inert products like carbon dioxide and carboxylic acids, which help chlorine

residuals disappear. Components such as (NH3-N, Org-N, Br, I) react to produce

oxidative products or biocide. Chlorine-produced oxidants are mainly formed from

chlorinating bromide, inorganic amino-nitrogen and organic amino-nitrogen (Helz et al.,

2005).

A low oxidant level means low chlorinity at the transition from chlorine to

bromine dominance. At a low ratio of ammonia-nitrogen to total oxidant, the free

bromine species, HOBr and OBr-, are predominant. On the other hand, halogenation

happens to the aminated compounds in a high ammonia concentration.

At low ammonia-nitrogen concentration and pH 6-8, the important oxidant

species are HOBr, OBr-, and NBr3. But at high ammonia-nitrogen levels and same pH

range (6-8), the important oxidant species is first NHBr2 and then NH2Br and NH2Cl

(Helz et al., 2005). Chlorination of river water produces predominantly CHCl3, while,

chlorination of sea or estuarine water would produce mainly CHBr3. Chlorination of

seawater, with NaCl to 5 mg/liter as Cl2, at pH 8.1 and 0.01 mg/liter of natural ammonia-

nitrogen, would produce CHBr3 in one hour as the only trihalomethane. This shows that

chloramines do not react with organic matter during water treatments (Helz et al., 2005).

Chlorination of marine water with more than 3 g/Kg and at pH range 6-8 would produce

five important oxidants (HOBr, OBr-, NH2Br, NHBr2, NBr3). At conditions where NH4

is rich in seawater, trihalomethane yield would become less, and bromamines would

replace HOBr to reach equilibrium, and NH2Cl would become dominant (Helz et al.,

2005). Residual oxidants decay slowly in high salinity water (Richardson et al., 1981).
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2.4. SEAWATER SALINITY AND DENSITY

The salinity of any seawater can be calculated by the sum of salts. Conductivity

of seawater, one of the important characteristics, can be used to determine its salinity. Cl

has 64% and Na has 25% contribution in seawater conductivity, as shown in Table 2.1.

Table 2.1. Relative Conductivity Contribution of Seawater Salt Composition at
1 atm, 356 Salinity, and 230C (Drumeva, 1986).

Ion Cl Na 2Mg 2
4SO K 2Ca Br 

4HCO

Contribution

%
64 29 2.7 2.3 1.1 0.77 0.12 0.06

The conductivity-density-salinity-chlorinity relationships for estuarine waters

were also examined. The difference between the actual salinity and the salinity measured

from conductivity was 0.047. Also, the difference between measured and calculated

salinity was 35 x 10-6 g/cm3. The limitation of using the Practical Salinity Scale is to

determine the conductivity-density-salinity-chlorinity relationships for estuarine waters.

River water has 105.7 g of salt, and the chlorinity is 0.008 g for every 1 Kg. Therefore,

assuming seawater has the same composition, the total salt in grams as a function of

chlorinity is represented as:

gT (est) = 0.092 + 1.80271 Cl Equation 2.1
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where Cl is grams of chlorinity in 1 Kg of solution. Chlorinity in this mathematical

expression is the mass of chlorine representing the equivalent total mass of halogen

contained in one kilo of seawater.

Total salinity of estuarine water is St = gt / 1.00488:

ST = 0.092 + 1.80183 Cl Equation 2.2

From the conductivity ratios (R24) at 240C, conductivity salinity (SCOND) is

measured as shown in this equation (Millero, 1984):

SCOND = 0.044 + 1.803898 Cl Equation 2.3

Millero and Poisson (1981) developed an expression relating seawater density to

salinity as shown below:

SDENS = 0.092 + 1.80186 Cl Equation 2.4

For low chlorinity (below 2.0) the result shows that the conductivity is 0.94 times

lower. So the true salinity can be measured as (Millero, 1984):

ST = 0.131 + 1.78982 Cl Equation 2.5



16

Also, SCOND and SDENS can be measured by the Practical Salinity Scale and

International Equation of State (Millero, 1984):

SCOND = 0.084 + 1.8028 Cl Equation 2.6

SDENS = 0.092 + 1.7996 Cl Equation 2.7

with errors of +/- 0.004 in salinity and 50 x 10-6 g.cm-3 .

These errors can be accepted. Therefore, the estuarine density and conductivity

can be calculated without the detailed knowledge of ionic composition. Total salt

concentration varies from ocean to ocean, but the composition of its constituents and the

ratio of principal ions to chlorinity are constants. Salinity as a function of chlorinity is

defined with this expression (Millero, 1984):

Salinity = chlorinity x 1.805 + 0.03 Equation 2.8

2.5. PROBLEMS FROM USING SEAWATER FOR COOLING

Seawater is typically used in industry as once-through systems or by using

cooling towers. If the ambient temperature drops below 10o C, the fouling problem is

significantly reduced (Helz et al., 2005). The kind and number of the microorganisms

that colonize on the metal surface are determined by the type and electrical potential
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induced by the electrochemical polarization of the metal. There are two main factors

impacting microorganism adhesion to surfaces (Wagner et al., 2004):

 Surface characteristics of the cell (e.g., hydrophobicity)

 Substratumnature including composition and chemistry.

 Substratum can be defined as the material in which an organism grows

and attached.

It is not clear what metal characteristics have key influence on the adhesion force of

microorganisms to metal surface (Wagner et al., 2004).

Typically, the development of microbial fouling precedes any macroorganism

colonization. Therefore, controlling microbial fouling has a great advantage of avoiding

macrobial fouling development. Biofouling usually develops over a few steps including

biological, chemical, and physical processes. These processes may happen in a series

and/or parallel steps. Figure 2.1 from Characklis et al., (1979) shows all of the steps of

biofilm accumulation.

Figure 2.1. Diagram Summarizing the Biofilm Accumulation and Detachment
Processes (Characklis et al., 1979).
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The steps can be described as follows:

 Transportation: the process of transporting the organic molecules and

microbial cells in the fluid from bulk to the tube surface; this happens

within the first minutes.

 Adsorption: mainly the process of organic molecule adsorption and

sedimentation on the surface of the tube.

 Adhesion: the microbial cell adhesion to the tube surface, started with

reversible adhesion and followed by irreversible adhesion.

 Production: the attached microbial cells start producing, which is the

major factor of biofilm development.

 Detachment: the sheer stress of the fluid plays a major role in detaching

some of the developed biofilm from the beginning, but now the rates of

attachment and growth of microbial cells are higher (up to a certain level

of biofilm thickness which is called viscous sublayer). Then, detachment

due to sheer stress will control the thickness of the biofilm.

2.6. AVOIDING SEAWATER PROBLEMS

Controlling microbial growth is usually achieved by using an oxidizing agent,

such as chlorine, in an easy-to-disperse form, such as a hypochlorous acid or a

hypochlorite ion, or in a gaseous form, like chlorine gas or chlorine dioxide. An

intermittent chlorine dosage of 2–5 mg/L for 10 minutes per day can prevent

microfouling, and a continuous dosage of 0.5 mg/L during the second to fourth week of

breeding season can prevent the blockage caused by macrofouling (Characklis et al.,
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1979). Under a continuous biocide dosage, aquatic organisms like oysters and mussels

tightly close their shells for weeks at a time, but they often die of asphyxiation

(Macdonald et al., 2009). These chlorine forms are most widely used due to cost and

effectiveness factors. Chlorine is a nonselective oxidant (it reacts with organics and

nonorganics), and it deactivates microbes (Venkatesan et al.; Verween et al., 2009).

Also, chlorine reacts with natural organic matter (NOM), leading to the formation of

numerous by-products (Ben Waren et al. 2006). Some of these by-products are

hazardous to aquatic life and human health.

2.7. COMMONLY USED BIOCIDES

This section provides basic information on the following commonly used

biocides:

 Chlorine

 Bromine

 Ozone

2.7.1. CHLORINE

To avoid slime accumulation, corrosion, and reduction in heat transfer efficiency,

chlorine is typically used in doses of 0.5-10 mg/l for 30 minutes to several hours.

Chlorine and its organic and inorganic byproducts are used as antifouling control agents

(Helz et al., 2005; Shiga et al., 1995).

Another way of getting chlorine into water is by electrochlorination (Lattemann

et al., 2008). Producing chlorine and hypochlorite by electrolytic cells has been a

commonly used method in the industry. Anodic oxidation, electrochemical disinfection,
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or electrochemical treatments are typically used in water treatment processes for

disinfection. (Nagarajan et al., 2010) These processes produce hypochlorous acid or

hypochlorite as the main disinfecting agents from the chloride ion which naturally exists

in water at 10 – 250 mg dm-3 or more (Rennau et al., 1990).

The electrochemical disinfection process has advantages over chlorination by

using chlorine gas or a hypochlorite solution. Advantages include not requiring

chemicals to be added and staying away from the risk of transporting and storing

chemicals. Ultraviolet radiation and ozonation treatments are very effective but do not

have any disinfecting residual byproducts (Rennau et al., 1990).

In order to obtain an accurate measurement of hypochlorite production rate, it is

required to consider chlorine decay or chlorine consumption due to the rapid chlorine

reaction with oxidizable agents in water and the apparatus. Hypochlorite is produced in

electrolytic in the following two steps and then dissociation (Rennau et al., 1990):

 Oxidizing chloride to chlorine at the anode surface:

2 Cl- Cl2 + 2 e- Equation 2.9

 Solution phase reaction:

Cl2(aq) + H2O HClO + Cl- + H+ Equation 2.10
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 Dissociation of hypochlorous acid to form hypochlorite and H+ which

depends on water pH:

HOCl ClO- + H+ Equation 2.11

2.7.2. BROMINE

Bromine is used as a disinfectant for drinking water, wastewater, swimming

pools, and cooling water (Inman 1984). Bromide concentration and contact time are the

main factors for bromate formation in non-photolyzed ozonation of seawater

(Richardson et al., 1981). Oxidant decay and bromate production may vary according to

the natural existence of organic or nitrogenous compounds (Richardson et al., 1981).

2.7.3. OZONE

Ozonation of seawater leads to oxidation of Br- to OBr-, which competes with

hydroxide-catalyzed decay of ozone through production of free radicals:

O3 + Br- OBr- + B2 Equation 2.12

The half-life of O3 is 30 seconds at 00C and less than 30 seconds at higher

temperatures (Richardson et al., 1981). Bromide exists in nature and can be oxidized to

form bromate. The free bromine (HOBr/OBr-) reacts with ozone to eventually form

bromate. Ammonia reacts with free bromine to form bromamines. This ammonia

reaction decreases bromate concentration (Freese et al., 2009).
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2.7.4. LOOP EXPERIMENTS OF TREATING SEAWATER

This experiment was conducted with four loops. One loop, the control, had no

treatment; the other three were pulsed discharge, continuous NaClO injection, and

pulsed NaClO injection. The pulsed discharged loop used shockwaves, UV light, the

electric field, and radicals. Each loop consisted of three sections of different flow rates:

1.1, 1.8, 3.0 m/s. Each section was composed from three different pipe materials (Poly-

Ethylene, FRP, and Nylon) of 50 cm length. The pulsed injection was 3 ppm for the

duration of one hour, repeated three times a day. The continuous injection was made at

0.6 ppm and measured 0.2 ppm by the end of the cooling loop. The results were checked

after a period of two months (Obo et al., 2000). The conclusion of this experiment was

that the flow rate of water of 3.0 m/s or higher will prevent the growth of sludge and

barnacles in the pipes. However, at flow rates lower than 3.0 m/s, the water has to be

treated. Therefore, it is found from Obo’s experiments that adding NaClO by way of

continuous dosing will prevent the growth of both sludge and barnacles. The results of

these experiments are summarized in Table 2.2.
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Table 2.2. Experimental Results of Treating Seawater (Obo et al., 2000).

2.8. HALOGEN CHEMISTRY IN SEAWATER

The next two subsections provide a description of the chemical path ways

involved when chlorine and bromine are used as biocide.

2.8.1. CHLORINE REACTION

Let us first start with some of the overall reactions involved when chlorine is

added as a gas to seawater. Bin Mahfouz et al. (2009) have constructed the reaction

mechanism shown in Figure 2.2. On this diagram, starting species and intermediate and

final byproducts are represented in boxes. Arrows correspond to reaction steps. Boxes on

the arrows represent reactive species that contribute to that reaction. First, chlorine will

dissolve and hydrolyze rapidly and completely to HOCl (hypochlorous) acid:

Loops

Flow (m/s)

1.1 1.8 3.0

Control

Thick sludge film

& many barnacles

Same as in

1.1 m/s

No attachment
Pulsed Discharged

Thin sludge film

& no barnacles

Pulsed NaClO

No sludge film

& small # of barnacles

Continuous NaClO No sludge & no barnacles
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Cl2  H2O HOCl  HCl Equation 2.13

Hypochlorous acid is a strong biocide, but it is a weak acid that will dissociate to

hydrogen and hypochlorite ions:

HOCl H   OCl  Equation 2.14

where OCl- is the hypochlorite ion. In terms of disinfection effectiveness, hypochlorous

acid is much stronger (almost two orders of magnitude) than the hypochlorite ion. Since,

the hydrogen ion appears on the right side, this reaction is pH-dependent. Hypochlorous

acid will reach its maximum concentration at pH ranges between 4 and 6 (Hostgaard-

Jensen et al. 1977). However, the effectiveness of a chemical as a disinfectant may not

be the same as its effectiveness in removing biofilms. Controlling biofilm is achieved by

weakening the polysaccharide matrix of microbial cells. There is experimental evidence

that shows that chlorination is more effective in causing biofilm detachment at pH values

greater than pH 8, where OCl- concentration is more dominant than HOCl (Characklis et

al., 1979).

Usually, seawater contains organic and non-organic species. Of particular

importance are ammonia and bromide species. Ammonia, as well as other reactive

nitrogenous compounds, will be chlorinated to yield monochloramine (NH2Cl),

dichloramine (NHCl2), and trichloramine (NCl3). by replacing the hydrogen atom of the
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ammonia molecule with a chlorine atom while maintaining its positive charge according

to the following reactions:

HOCl + NH3 NH2Cl (monochloramine) + H2O Equation 2.15

NH2Cl + HOCl NHCl2 (dichloramine) + H2O Equation 2.16

NHCl2 + HOCl NCl3 (trichloramine) + H2O Equation 2.17

These reactions depend on pH, temperature, contact time, but mainly on chlorine

to ammonia ratio. All of the free chlorine (hypochlorous acid) will be converted to

monochloramine at pH 7-8 (fastest conversion is at pH 8.3) when there is 1:1 molar ratio

of chlorine to ammonia (5:1 by wt.) or less. Then, within the same range of pH,

dichloramine is produced at a molar ratio of 2:1 of chlorine to ammonia (10:1 by wt.).

This reaction is relatively slow, so it may take an hour. Also, within the same range of

pH, trichloramine will be produced at a molar ratio of 3:1 of chlorine to ammonia (15:1

by wt.) and at equal molar ratios but at pH 5 or less. The two reactions producing di -

and tri-chloramine are known as the breakpoint reactions where the chloramines are

reduced suddenly to the lowest level. The significance of breakpoint reaction is that

chlorine reaches its highest concentration and germicidal efficiency (at 1:1 molar ratio of

chlorine to ammonia) just before reaching this point. Also, at the breakpoint
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monochloramine and dichloramine react together (which reduces chlorine residuals) to

produce nitrogen gas, nitrate, and trichloramine.

Dichloramine decomposes to an intermediate reactive product (NOH) which

consumes mono-, di-chloramine, and hypochlorous acid producing nitrogen gas and

nitrate. Also, excessive chlorine will form trichloramine.

NHCl2 + H2O NOH + 2 H+ + 2 Cl- Equation 2.18

NOH + NH2Cl N2 + H2O + H+ + Cl Equation 2.19

NOH + NHCl2 N2 + HOCl + H+ + Cl- Equation 2.20

NOH + 2 HOCl NO3
- + 3 H+ + 2 Cl- Equation 2.21

NCl3 + H2O NHCl2 + HOCl Equation 2.22

The reaction of chlorine into these forms steer it away from the disinfection

function and render the biocide less effective. Consequently, it is important to

understand such side reactions.

Hypochlorous acid rapidly reacts with bromide producing hypobromous acid,

which also can be produced from the reaction of bromide with monochloramine as

follows:
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HOCl  Br   HOBr  Cl  Equation 2.23

NH2Cl + Br- + H2O HOBr + Cl- + NH3 Equation 2.24

where HOBr is hypobromous acid. Additionally, the hypochlorite ion may undergo a

slow reaction with the bromide ion as follows:

OCl   Br   OBr   Cl  Equation 2.25

where OBr- is the hypobromite ion. Bromide in seawater may also react directly with

added chlorine to give bromine and chloride:

  ClBrBrCl 22 22 Equation 2.26

It is worth noting that the presence of ammonia and other nitrogenous

compounds in the seawater will react with HOBr to yield monobromamine (NH2Br),

dibromamine (NHBr2), and tribromamine (NBr3):

HOBr + NH3 NH2Br (monobromamine) + H2O Equation 2.27

HOBr + NH2Br NHBr2 (dibromamine) + H2O Equation 2.28
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HOBr + NHBr2 NBr3 (tribromamine) + H2O Equation 2.29

The bromine breakpoint happens when the dibromamines are produced rapidly,

leading to the formation of nitrogen gas:

NHBr2 + H2O NOH + 2 H+ + 2 Br- Equation 2.30

NOH + NHBr2 N2 + HOBr + H+ + Br- Equation 2.31

It is also important to consider the effect of bromide which naturally exists in

seawater at (50 – 70 mg/l). This is in stoichiometric excess of chlorine dosage as well as

ammonia concentration don’t exceed 2 to 3 mg/L. The relative produced amount of

bromine species to ammonia species is proportional to bromide concentration over

ammonia concentration if we assume both reactions are rapid and simultaneous.



29

Figure 2.2. Reaction Mechanism for Seawater Reactions Upon Chlorination (Bin
Mahfouz et al., 2009).
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The following is a more detailed analysis of the key reaction steps which may be

broken down into:

1) Hydrolysis

Chlorine as gas (Cl2) is added to water to form hypochlorous acid (HOCl), or by

adding a solution containing caustic producing hypochlorite which reacts with water to

form hypochlorous acid (HOCl). This reaction is called hydrolysis of chlorine gas

(White, 1999):

Cl2 H 2O HOCl  H  Cl Equation 2.32

Hydrolysis of chlorine gas needs a few tenths of a second at 64F and a few

seconds at 32F.

Cl2 Equation 2.33

Free chlorine residual is the total chlorine residual. Available chlorines are

double the amount of existing chlorine by weight, reflecting the oxidation power of the

compound. Total chlorine is simply the sum of the combined and free levels (White,

1999).

2) Formation of chloramines

At ammonia nitrogen levels greater than 0.5 mg/l and with a chlorine dose less

than 2.5mg/l, dibromamine and monochloramine become the predominants. At a higher

OH  HOCl Cl 
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ammonia concentration with a longer time, monochloramine will be the main

component. However, at a lower ammonia nitrogen concentration (less than 0.4mg/l)

with a high chlorine dose, tribromamine and hypobromous acid are going to be the major

products (Johnson et al., 1982). The main factors determining the predominance of either

chloramines or bromamines are bromide concentration or salinity, ammonia nitrogen

concentration, and pH. If pH is decreased from 8.0 to 7.5, the concentration of ammonia

would decrease by a factor of 3, as would the formation of monochloramine (Johnson et

al., 1982). The critical ammonia nitrogen to bromide ratio is 0.008 at pH of 8.1. At

higher than the critical ratio, monochloramine would be predominant after 30 minutes to

one hour; at lower than the critical ratio, dibromamine would be the predominant and

there would be a small amount of monochloramine remaining after the bromamine

decomposes. One way to avoid forming monochloramine is to add excess chlorine

because of its toxicity and low oxidant level. .In cases where there is high salinity,

excess bromide exists of more than 100 fold, so only bromamine and bromine would be

produced (Johnson et al., 1982).

The inorganic reaction between chlorine and ammonia nitrogen forms

monochloramine, dichloramine, and trichloramine in three reactions as chlorine

concentration increases up to 50 mg/L. Each reaction involves a chlorine -substituting

hydrogen atom in the ammonia. The reactions are dependent of pH, temperature, time

contact, initial ratio of chlorine-to-ammonia, and initial concentrations of chlorine and

ammonia nitrogen (White, 1999).
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HOClNH3NH2Cl (monochloramine)H2O Equation 2.34

HOCl NH2ClNHCl2 (dichlora min e) H 2O Equation 2.35

HOClNHCl2 NCl3 (trichloramine) H2O Equation 2.36

The first reaction is to convert free chlorine to monochloramine at equimolar (5:1

by weight) of chlorine to ammonia or less. The highest conversion (99%) occurs at 8.3

pH at 25 C (White, 1999). The second reaction is to form dichloramine, which is slower

than the first reaction at a pH of 7 to 8 with a ratio of 2 moles of chlorine to 1 mole of

ammonia. This reaction takes five hours for 90% conversion at pH 8.5, and the reaction

speeds up as the pH increases (White 1999). The third reaction is to form nitrogen

trichloride at pH 7-8 with the chlorine to ammonia nitrogen mole ratio at 3:1 (15:1 by

wt.). Nitrogen trichloride can be formed at an equimolar of chlorine to ammonia

nitrogen, but only at 5 pH or less. Also, nitrogen trichloride can be formed at a high pH,

such as 9 pH, when the mole ratio of chlorine to ammonia nitrogen is 5:1 (25:1 by wt.)

(White, 1999).

Halamine formation reactions are rapid and completed in less than one minute,

and they increase as the basicity of amine increases. The hydrolysis of the bond in N -Cl

is slower compared to the bond in N-Br, which is very fast. It was assumed that the first

order for calculating ammonia level NH2Br formation has to be measured for only
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inorganic bromamines (Lietzke, 1977). The NHBr2 rate is 200 times slower than NHCl2

formation, and the latter is 1.8 x 104, which is slower than that of NH2Cl (Lietzke,

1977). The NBr3 rate is 500 times slower than the NCl3 formation, and the latter is 2.5 x

106 times slower than NH2Cl (Lietzke, 1977). Unmeasured halogenation rates are based

on these assumptions:

 The formation of bromamines from hydrolysis is faster than chloramines

(Lietzke, 1977).

 The halogenation of organic amines and halamine is faster than inorganic

ones.

 Chlorination of bromine is slower than bromination of chloramine and

slower than bromination of bromine.

3) Destruction of chloramines

When the ratio of chlorine to ammonia nitrogen exceeds 1:1, monochloramine

reacts to the excess free chlorine to form dichloramine, which is twice as germicidal as

monochloramine. Zone 3 starts from the dip, or the breakpoint at the curve, which

happens when free chlorine starts to appear. There is a lack of understanding of the

breakpoint reaction behavior due to many competing reactions of high active chlorine

(White, 1999). Breakpoint reactions are caused by the oxidation of ammonia by halogen

to produce nitrogen, which simultaneously reduces halogen to halides. Those reactions

are considered to be the most rapid reactions at a molar ratio of 1.5 halogen to ammonia

because forming trihalamines are more stable. On the other hand, at a lower molar ratio,

this reaction would be slower because the oxidant would be limited (Lietzke, 1977).
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3HOX + 2NH3  N2 + 3H2O + 3H+ + 3X- Equation 2.37

where X is bromine or chlorine.

These are the reactions representing chlorine breakpoint.

NHCl2  H 2 O HNO  2HCl Equation 2.38

NH 2 Cl  HNO N 2  H 2 O  HCl Equation 2.39

NHCl2  HNO N 2  HOCl  HCl Equation 2.40

HNO 2HOCl HNN3  2HCl Equation 2.41

An additional dosage of chlorine is needed to oxidize ammonia beyond nitrogen

to a nitrate. NHCl2 decomposes slowly at a ratio of Cl/N below 1.5. NHCl2 rarely exists

in the total oxidant residual in the case of any Br- presence. It is very difficult to

precisely predict the required dose of chlorine with other amines existent and an unstable

demand (Lietzke, 1977).
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Figure 2.3. Chlorine Breakpoint Model Calculations at T = 200C, pH = 7.0, [NH3]0
= 1.01 mg/l, and Molar Ratio of Cl2/NH3 = 2.63 After One Hour
(Based On Results By Lietzke, 1977).

The model shown in Figure 2.3 assumes that there is no chlorine demand and that

the only nitrogenous compound that exists is ammonia. When chlorine is added at equal

molar or less than ammonia, only NH2Cl and no (or merely a trace) of NHCl2 are

produced. NH2Cl is more stable with the higher ammonia molar than when chlorine is

added, and after one hour, all total residual chlorine is NH2Cl and equal to the initial

chlorine added. If the chlorine dose exceeds the required amount to produce NH2Cl,

NHCl2 will be produced and will decompose to react with NH2Cl and reduce the total

oxidants proportional to NHCl2 formed. The breakpoint is at an equal mixture of both

NH2Cl and NHCl2 and chlorine will be reduced by oxidizing ammonia to nitrogen. After

passing the breakpoint, it takes only a few hours to oxidize ammonia. A chlorine dose
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beyond the breakpoint will remain as a hypochlorite, and the chlorine residual increases

with increasing chlorine doses (Lietzke, 1977).

Monochloramine is toxic and persistent, while dibromamine is toxic and not

persistent. The natural compounds that exist in seawater play a role in reducing

haloamines. Monochloramine is stable in seawater for about 8 months at pH 8. On the

other hand, there is a dibromamine decomposition rate of 700 L/mol/min at pH 8, 200 C

with a half-life of four hours and a bromine concentration of 1 mg/L (Johnson et

al.,1977).

4) Formation of organic byproducts

Some chlorination byproducts are carcinogenic and are formed from organic

halogenated compounds like THMs, HAAs, HANs, haloketones, chlorophenols, chloral

hydrate and chloropicrin (Sayato et al., 1995). Chlorination of seawater produces

compounds that are toxic to aqueous life. These compounds’ concentrations and

lifetimes are functions of pH, temperature, salinity, dissolved organic matter and

nitrogen, inorganic nitrogen and the amount of chlorine and mixing efficiency (Freese et

al., 2006). The two major components that determine chlorination are bromine and

ammonia . Direct toxicity of hypohalites and/or halamines from chlorination is thought

to be affecting the aquatic ecosystem. Even low chlorine concentration (0.005 mg/l)

would affect fish (Lietzke, 1977). Chlorination of seawater at a Kuwait desalination-

power plant results in forming halomethanes, which at high concentration, measures up

to 90 ug/l, near the outfalls. 95% of the total halomethanes are made up of bromoform,

and the remains are mostly dibromochloromethane. Some of these volatile halogenated
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hydrocarbons, such as CCl4 , CHCl3 , andCHBr3 , are harmful to aquatic life (Riley et al.,

1986).

Chlorine has an effect on marine life when it is dumped into costal and estuarine

waters from sewage treatment plants, electric power plants, and industrial plants. Fish

have to migrate to avoid the water area that is polluted with halogenated organic

compounds and has ecological effects from chlorination (Helz et al., 2005).

An estimated 0.5-3.0 % of chlorine added to freshwater is transferred to

chlorinated organics and mostly is chloroform. With higher salinity, chlorine is

converted into more reactive bromine forming bromo-organics  and  brominated

trihalomethanes, such as (CHCl2Br, CHClBr2, and CHBr3). Chloroform and bromoform

are carcinogen products and have direct toxicity with rapid bioaccumulation in fish and

fish eggs. Peter and his colleagues found a model for trihalomethane concentration at the

end of the contact period in freshwater treated with chlorine (Lietzke, 1977):

Total haloforms (M) = 0.01307 (CDO) (1 + 14[Br-]0.25) Equation 2.42

where CDO is the molar concentration of Cl2 that is consumed by organic demand. [Br-]

is the initial molar concentration of bromide. The last term, 14[Br-]0.25 is for rapid

production of haloform at bromide presence.

The model shows that about 13 mmol of chloroform is produced for every mole

of chlorine consumed in freshwater. Generally, kinetics of haloform do not apply when
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there is with chlorine consumption. Total haloform production does not depend on pH

(Lietzke, 1977).

5) Consumption by non-organic compounds

The total chlorine demand is due to nitrogenous compounds and anything that

consumes chlorine. Chlorine demand is a non-nitrogenous demand.

The objective of a chlorine demand (CD) model is to relate it to chlorine dosage

(CL)  at  a  certain  temperature  and  for  given  seawater  conditions.  For example,  the

following expression is based on the work of Wong et al. at for doses from 0-30 mg/l,

shown in Figure 2.4. (Wong et al., 1984):

CD = 0.2468 + 0.989CL – 0.02522CL2 + 9.897 X 10-4 CL3 – 1.35 X 10-5 CL4

Equation 2.43

Figure 2.4. Chlorine Demand as a Function of Chlorine Dose at 200 C (Wong et al.,
1984).
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For freshwater there is no existence of HOBr. Figure 2.4 shows ultimate, non-

nitrogenous, chlorine demand as a function of dose and temperature in seawater

(Lietzke, 1977).

6) Bromide oxidation

Hypobromous acid is an active chemical constituent and is formed from

oxidizing a bromine ion with chlorine in a very fast reaction. Reactions of hypochlorous

acid with ammonia and a natural existence of bromide determines domination of

bromine compounds or monochloramine (Johnson et al., 1982). Formation of

hypobromous acid in open seawater occurs when chlorine oxidizes bromide and converts

to chloride in absence of ammonia. But in estuarine or coastal sea water, ammonia

concentration increases and bromide concentration decreases, so bromamine is first

produced and followed by monochloramine (Johnson et al., 1982). More on the bromide

reactions are given in the following subsection.

2.8.2. BROMINE REACTION

The bromine reactions typically proceed through the following steps:

 Formation of acid

 Formation of bromamines

 Destruction of bromamines

 Formation of organic products

 Consumption of non-organic byproducts

More information on these steps follows:
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1) Acid-base

Bromine is used as a disinfectant and may be used with chlorine and iodine (I2).

The hydrolysis of bromine in water will produce hypobromous acid and bromide ions.

Free available bromine is the concentration of both hypobromous acid and hypobromite

ions. Then, hypobromous acid will dissociate into hypobromite and hydrogen ions

according to the following equations (Johanneson, 1960):

Br2  H2 O HOBr  H  Br Equation 2.44

HOBrH  OBr Equation 2.45

2) Formation of bromamines

Hypobromous acid reacts with the ammonia that already exists in most treated

waters to produce bromamines (Johnson et al., 1982). Bromamine formation depends on

bromide  ions  as  well  as  ammonia  concentration,  pH,  natural  organic  content,  and

chlorine  dosage  (Minear  et  al.,.  2004).   Inman  and  John  found  out  that  mixing

hypobromous acid (HOBr) with ammonia at a pH range of  7.0 to 8.4 would produce

monobromamine (NH2Br). Bromamines including monobromamine, dibromamine, and

tribromamine are formed by adding bromine to ammonia as shown in the following

reactions (Hofmann et al., 2001):
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molKJBrNHGK
OHBrNHNHHOBr

feq /1.77,100.3 2
10

223






Equation 2.46

molKJNHBrGK
OHNHBrBrNHHOBr

feq /181,107.4 2
8

222






Equation 2.47

molKJNBrGK
OHNBrNHBrHOBr

feq /296,103.5 3
6

232






Equation 2.48

3) Destruction of bromamines

Inorganic bromamine will exchange bromine rapidly with pH dependence, while

chloramines, mainly monochloramine, do the exchange of chlorine very slow at pH a

range from 6 to 9. The breakpoint reaction, which is the oxidation of ammonia to

nitrogen gas, of halamines occurs when the molar ratio of halogen to ammonia is 3:2.

The breakpoint for chlorine is the reaction between NH2Cl and NHCl2, while for

bromine it is the reaction between NHBr2 and NBr3. Organic halamines are more stable

than inorganic ones. The bromine-ammonia breakpoint is the reaction between di- and

tribromamine, whereas in chlorine-ammonia it was between mono- and dichloramine.

The bromine-ammonia system is shown as follows (Lietzke, 1977):

H 2 O  2HNBr2  N 2  HOBr  3HBr Equation 2.49
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2H 2 O  HNBr2  NBr3  N2  2HOBr  3HBr Equation 2.50

3H 2 O  2NBr3  N2  3HOBr 3HBr Equation 2.51

The rate constant of reaction (32) is 1000 times larger than reaction (31), and

reaction (33) is kinetically insignificant at a pH above 6. It is very difficult to expect

which bromamine species exist initially because the breakpoint occurs very rapidly at

equal concentration of di- & tri-bromamine.

The differences between all chlorine and all bromine systems are (Lietzke, 1977):

 Bromamine decomposition residuals are so rapid.

 When NHBr2 and NBr3 exist at a significant amount below breakpoint, it

helps decomposition to occur at lower doses; and at a halogen/N ratio

of 1.0, the peak would become flat.

 Formation and decomposition of NBr3 above the breakpoint without

evolving N2, not like NCl3.

 Nitrate formation is insignificant.

Dibromamine decay rate is the second order with respect to NHBr2 and the half-

life is 10-15 hours. There is no specific mechanism of tribromamine formation. But,

tribromamine decomposition was studied by LaPoite et al. in 1975 and the result was as

follows (Hofmann et al., 2001):

2NBr3 + 3H2O N2 + 3HOBr + 3H+ + 3Br- Equation 2.52
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At high ammonia to bromine ratios, tribromamine concentration is very low.

Bromine decay occurs at the reaction between tribromamine and dibromamine, with an

N:Br ratio of 2:3 according to this reaction (Hofmann et al., 2001):

2NH3 + 3OBr- N2 + 3Br- + 3H2O Equation 2.53

To oxidize all chlorine, 3.2-3.6 mol of chlorine must be added to every 2 mol of

ammonia to reach the breakpoint, according to White’s study in 1992 (Hofmann et al.,

2001):

4HOCl + NH4
+  NH3

- H2O + H+ + 4Cl- Equation 2.54

Adding an excess amount of chlorine, more than the theoretical, is due to side

reactions in which bromamines do not decay to form nitrate (Hofmann et al., 2001).

Figure 2.5. shows NH 2 Breq/NHBr2 eq against excess ammonia (Johnson et al., 1982).
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Figure 2.5. Dependence of Bromine Ratio at Equilibrium on Excess Ammonia
(Johnson, 1982).

Dibromamine, NHBr2 , and tribromamine, NBr3 , are formed at a pH lower than

8.5 and a bromine molar concentration of at least five times the concentration of

ammonia (Guy W. Inman 1984). Dibromamine decomposition occurred less than a

minute after its formation. At a pH above 7, the rate of formation of monobromamine is

much higher than rate of formation of dibromamine. Dibromamine formation was first

order in hydrogen ion and second order in monobromamine or an initial bromine in a

case with an excess amount of ammonia (Inman et al., 1984).

dNH 2Br/ dt  k1 NH3HOBrwhere, k1 4 1 10 Msat pH 7-8 Equation 2.55
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With an excess amount of ammonia, monobromamine is still present even after

the dibromamine reaction reached completion. The phosphate is affecting the stability

and formation of dibromamine (Inman et al., 1984). Inman and Johnson found out that

the chloride ion does not affect bromamine decomposition; however, the bromide ion

has no effect at pH 8.48, but at pH 6.71, the bromide ion increases the rate of the

reaction of decomposition of NH2Br to NHBr2 and NH3. The bromamine decomposition

at pH 6.71 and the different initial bromide ion concentrations has been studied by

Minear (Minear et al., 2004). There are similarities between bromamine decomposition

and the chloramine system.

4) Formation of organic byproducts

The organic byproducts are produced by the reaction of hypobromous acid

(HOBr) with natural organic matters to produce compounds with bromine attached to a

carbon atom. There are many examples of bromo-organic byproducts such as

bromoform, bromopicrin, dibromoacetonitrile, bromoacetone,bromoacetic acid,

bromoalkanes, bromohydrins, etc. (Gunten, 2003). Then, these intermediate compounds

can go further in halogenations to bond three bromine to the carbon atom forming tri -

halogenated intermediates. Since the bromine atom is greater than chlorine, the bro mine

compound CBr-
3 is more stable than chlorine CCl-

3 (Greca et al., 2008). The higher the

concentration of bromite, the higher the formation of trihaloginated methane and

halogenated aitic acid while they can be reduced at higher concentration of ammonia

(Chang et al., 2008).
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CX3  R OHCX3
 ROHCHX3 OH Equation 2.56

5) Consumption by non-organic compounds

The N-Br bond is relatively unstable compared to the N-Cl bond. Therefore,

inorganic bromamine disproportionation is rapid compared to inorganic chloramine. The

latter is disregarded at a pH above 6. NH2Cl disproportiation does not depend on pH at

ranges of 6-9. NHCl2 formation is negligible in organic amines’ presence. NHBr2 is less

stable and reacts four times faster than NH2Br  and eight times faster than NH2Cl

(Lietzke et al., 1977).

2.8.3. CHLORINE/ BROMINE COMBINED

1) Competition for Chlorine

Most organic nitrogen does not react with chlorine, and its concentration is

higher than free ammonia and has less correlation to salinity. Also, the organic nitrogen

formation of halamines is much faster than NH2Cl, which competes with ammonia to

react with halogen. Methylamine is the simplest organic amine (Lietzke et al., 1977).

Chlorine hydrolyzes rapidly and completely to produce HOCl and HCl. Then, HOCl

reacts with three items: bromide, ammonia, and non-amine “demand”. Non-amine

consists of inorganic and organic reducing agents and autodecomposition reactions.

HOCl reacts with ammonia to form monochloramine and a small amount of

dichloramine. A reaction of HOCl with bromide produces HOBr. Then, HOBr would

react with any available amines to form bromamines. Halamines are unstable and

ultimately decay to nitrogen gas or ammonia. Halamine intermediates are part of the
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oxidant residual. HOCl and HOBr are the non-nitrogenous oxidants (free halogens)

(Lietzke, 1977). Chlorination of polluted seawater (which contains ammonia) could form

monochloramine, bromochloramine, and bromamines depending on the water’s pH,

temperature, salinity, ammonia concentration, and chlorine dosages (Johnson et al.,

1982). In case of low halogen in seawater containing ammonia, only NH 2 Br , NHBr2 ,

NH 2 Cl and NHCl2 are observed.

The monochloramine formation rate is higher in low salinity water which has

more  ammonia.  Ammonia  is  competing  with  bromide  to  react  with  chlorine.  The

reaction  of  ammonia   and  chlorine  is  forming  monochloramine  not bromine  or

bromamine at these conditions: pH 8.1 and weight ratio of NH3 : Br  0.008 . Morris

and Weil found out that the mechanism of monochloramine formation in low ionic

solution is as follows (Johnson et al., 1982):

HOCl  OCl   H  Equation 2.57

HOCl  NH3  NH2 Cl  H 2 O Equation 2.58

2) Mixed Bromochloramines

Monochloramine is formed when chlorine is added to saline water, regardless of

bromide presence. The two passable reactions of monochloramine with bromide are as

follows:
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2NH2Cl  2Br- NHBr2  2Cl-  NH3 Equation 2.59

2NH2Cl  Br-  NHBrCl Cl  NH3 Equation 2.60

Dibromamine will be produced at stoichiometry of 1:1 (monochloramine  and

bromide) and bromochloramine will be produced a stoichiometry of 2:1

(monochloramine and bromide). From the plot of lnBr /NH2 Cl vs. time, the 2:1

stoichiometry is a better fit (Johnson et al., 1982).

Figure 2.6. Second-Order Plots Comparing 1:1 Stoichiometry for NHBr2

Formation to 2:1 Stoichiometry for NHBrCl Formation (Johnson et
al., 1982).
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Experiments show that the reaction is first order with respect to monochloramine,

bromide ion, and hydrogen ion with stoichiometry of 2:1 between monochloramine and

bromide (Johnson et al., 1982). The half-lives in hours of monochloramine at salinity

between 5 to 35 % and pH between 7.00 and 8.50 would give results between 2.5 and 60

hours shown in Table 2.3 by using the following equation:

  
BrHK

t
3600

2ln
2

1
Equation 2.61

where K=2.8+0.3x10 6 M-2 sec-1 at 25oC.

Table 2.3. Halflives of Monochloramine for 1.0 mg/l-1 as Cl2 Dose With
Changing pH and Salinity.

Salinity, %

pH 35 17 10 5

8.50 25 50 90 188

8.00 8 15 29 60

7.50 2.5 5 9 20

7.00 0.75 1.5 2.8 6
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For resident time of less than one hour, the oxidation of Br- by NH2Cl is out of

consideration because it  is  not  for  generating  bromamine  from  chloramine  by

bromochloramine (Lietzke et al., 1977):

NH2 Cl-  Br  H2O NH3  HOBr  Cl Equation 2.62

The HOBr can react with NH2Cl to produce NHBrCl, and also HOBr reacts with amines,

halamine, and demand to produce other products. This would show the conversion from

NH2Cl into NHBrCl (Lietzke et al., 1977).

There is not enough information about the breakpoint in systems which consist of

both active chlorine and bromine. It is not clear whether chloramines react with

bromamine or with bromochloramines, and there is no prediction of how

bromochloramines species react as a function of pH, Br-, or as chlorine dose. This model

combines all chlorine and bromine breakpoint reactions, plus bromochloramines

formation reactions. Bromochloramine interacts with the bromine breakpoint system, but

not with the chlorine one, and it has a lower rate constant than bromine reactio ns

(Lietzke et al., 1977).

Two experimental breakpoint curves are above the theoretical 1.5 Cl/N molar

ratio because extra chlorine is required to satisfy the organic need (Jenner et al., 1997).

An extra chlorine dose will shift the breakpoint to a higher ratio (Allonier et al., 1999 &

2000). Khalanski 1977 proved that adding an ammonia solution to seawater would give
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a higher breakpoint than predicted due to oxidation of NH3 to N2 (Lietzke et al., 1977;

Rajagopal et al., 2005; Viveau et al., 1980; Shaw et al., 2006).

Demand has an effect on shifting the breakpoint. Dominant compounds below

the breakpoint for NH2Cl, are NHBrCl, and NHBr2; above the breakpoint, HOBr,

NBr2Cl, and NBr3 are dominants. At equal concentrations of dihalamines (NHBr2 and

NHBrCl) and trihalamines (NBr3 and NBr2Cl), the decomposition is rapid (Lietzke et al.,

1977).

2.9. FACTORS IMPACTING THE EFFECTIVENESS OF THE

BIOCIDE

This section discusses the key factors impacting the effectiveness of the biocide.

Four factors are considered: free versus combined form, pH, temperature, and other

factors such as ammonia concentration. The following discussion focuses on chlorine

and bromine compounds because of their widespread use.

2.9.1. FACTORS IMPACTING EFFECTIVENESS OF CHLORINE

COMPOUNDS

1) Free/Combined Forms

Optimization of chlorination is done to achieve disinfection efficiencies through

predicting species distribution. Hypochlorous acid (HOCl) is 80 times more effective

than hypochlorite OCl-.  HOCl is 80 times more effective than the hypochlorite ion

OCl  for reducing E Coli. A comparison between the use of bromine species and

other halogens has been studied in literature (Goodenough et al., 1969 and Kristoffersen,

1958). This shows that HOX and X 2 are much more effective than  X3
-, OX  , and
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chloramines. Johnson, by contrast, shows that monochloramine (NH2Cl) and

monobromamine (NH2Br) are very effective as disinfectants (Overby, 1971).

Free chlorine is more effective in bacteria inactivation wastewater treatment than

monochloramine. The study here was for inactivation of E Coli by free chlorine and

monochloramine  simultaneously and separately in a continuous flow system (CSTR).

The highest inactivation of  E Coli bacteria is when both free chlorine and

monochloramine coexist at conditions close to the  breakpoint. The result shows that

there is a synergistic interaction between free chlorine and monochloramine in killing E

Coli bacteria (Yukselen et al. 2003).

Maintaining 1-2 mg/L of chlorine residual was not enough to reduce the bacterial

growth. But a 3-5 mg/L level will reduce biofilm by 2 logs. It is required to keep

chlorine residual at 15-20 mg/L to control biofouling (White, 1999). Monochloramine

residual at a level of 2.0 mg/L is more effective to reduce biofilming than free chlorine.

Chloramine dosages are increased from 2.0 to 40 mg/L to maintain 2-3 mg/L of residual

to ensure that there is no a coliform bacterium or nitrification in the distribution system.

Biofilm growth can be controlled by maintaining 2-4 mg/L of chlorine residual (White,

1999).

2) Effect of pH

Free residual chlorine is twice as effective in chlorinated water at pH 7.2 as it is

at 7.8 (White 1999). Free chlorine vs. combined chlorine residual: It is preferred to

have combined chlorine predominantly monochloramine residual if entering a clean
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system. If the system is dirty, then free residual chlorine must be added to clean the

system to produce nitrogen trichloride NCl3 (White 1999).

3) Effect of temperature

It is crucial to determine the chlorine demand (chlorine consumed by inorganic

and organic impurities in water) in order to measure the chlorine production rate.

Chlorination Breakpoint occurs when chlorine demand is satisfied; then free chlorine can

be formed. Figure 2.7. shows chlorine decay dependence on temperature with an

exponential increase in decay with a temperature increase, but no dependence on pH

(Rennau et al., 1990).

Figure 2.7. Active Chlorine Decay Rate Dependence o n Temperature a t pH 7
(Initial Active Chlorine Concentration 29.5mg Dm-1, Initial Chloride
Concentration 134 Mg Dm-1, Electrolyte Volume 250 Cm2) (Rennau
et al., 1990).
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4) Calcareous deposits on the cathode surface

Electrochemical disinfection  for  water  faces  calcareous  deposits  on  cathode

surface due to  pH changes. Calcium and HCO3
—

ions are responsible for deposits. pH

changes come from OH- ion  according to this reaction at the cathode (Rennau et al.,

1990):

2 H2O + 2 e- H2 + 2 OH- Equation 2.63

Calcareous layers increase with temperature and reduce the current efficiency

and therefore hypochlorite production. Producing chlorate from hypochlorite and

hypochlorous acid with rate constant k is as follows (Rennau et al., 1990):

ClO- 2 HClO ClO3
- + 2 HCl Equation 2.64

Production of hypochlorite from much diluted chloride solution can be lower in

natural water due to chlorine decay. Iridium oxide electrode showed high performance

more than platinum electrode. Chlorate production is very negligible. The chlorine

demand can be targeted by increasing current density which has linear relation with

active chlorine production. Water disinfection can be achieved by electrolytic

hypochlorite production (Rennau et al., 1990). Wong and Davidson found that

decomposition of HOBr for long time is in the third decay phase (Lietzke, 1977).
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HOBr ½ O2 + HBr Equation 2.65

5) Other effects

Residual-oxidants concentration is calculated by a computer program as a

function of time. In the function, time can be converted to distance in case of a constant

water flow through the cooling system. Typical chlorine doses (for unpolluted water

only) change from below breakpoint for freshwater to near breakpoint for estuarine

water to above breakpoint for seawater. Ammonia concentration increases as pollution

increases in water and may prevent breakpoint chlorination (Lietzke, 1977).

2.9.2. FACTORS IMPACTING EFFECTIVENESS OF BROMINE

COMPOUNDS

1) Free/Combined Form

Monobromamine is less efficient, but bromamines are effective as HOBr and

HOCl. Hypobromous acid (HOBr) is a better disinfectant than hypochlorous acid

(HOCl) at the pH range of 6-9. Hypobromous acid (free available bromine) is used as a

disinfectant to control biofouling. Bromamines are formed immediately by the reaction

of hypobromous acid with ammonia. The disinfection capability of bromine compounds

is as strong as the chlorine compounds for the toxicity of biofouling organism s

(Pinkernell et al. 2000).

2) Effect of pH

From the log (NH3/Br2) ratio versus pH, it is known that forming tribromamine

from dibromamine and reverse can be achieved by altering pH. Those reactions are
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assumed to occur rapidly, and the equilibrium of bromamine species is established as a

result. Therefore, at equilibrium, the existence of different bromine species can be

determined from the ratio of N/Br and pH. Figure 2.8. shows the equilibrium of

bromamines as reported by Johnson and Overby (1979) (Hofmann et al., 2001).

Figure 2.8. The Equilibrium Point at the Existence of Different Bromine Species
Can Be Determined From the Ratio of N/Br and pH (Johnson et al.,
1979).
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At a high pH, such as 9, hypobromous acid is a more effective disinfectant than

hypochlorous acid. Bromine is a more effective disinfectant than iodine in a case of high

bromide concentration and low pH. Bromine and bromamines are more effective

disinfectants than chloramines. Bromine reacts faster than chlorine with ammonia at

high pH. The breakpoint is reached quickly with a 2:3 molar ratio of ammonia to

bromine (Overby et al., 1971). Bromate has a high formation rate at low salinity in

water, but there is no formation in darkness (Richardson et al., 1981).

Ammonia reacts with bromine to form monobromamine. This reaction happens

most rapidly at pH of 9, and it takes several seconds at 6-8 pH values. Monobromamine

decomposition and dibromamine formation occurs as shown in this reaction (Hofmann et

al., 2001):

2NH2Br + OBr- + 2OH-  N2 + 3Br- + 3H2O Equation 2.66

Monobromamine is oxidized by free bromine and becomes more unstable at high

pH  values  (such  as  12)  and  at  a  high  bromine:ammonia  ratio,  and  it  may

formdibromamine (Hofmann et al., 2001). Dibromamine, NHBr2 , is an intermediate

product of chlorination of seawater containing ammonia. Dibromamine is toxic,

unstable, and its formation is an optimizing disinfection and antibiofouling process.

The rate formation of dibromamine is a second order with respect to bromine and

becomes faster at low pH. At a pH  8.5 and if the molar ratio of bromine: ammonia is

equal or greater than 5, dibromamine, NHBr2 , and tribromamine, NBr3 , are the main
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products (J. D. Johnson 1982). There is an assumption that monobromamine stays in

equilibrium with dibromamine and never goes completely disproportionate.

Monobromamine, NH 2 Br , formation rate is 4  1  10 7 M 1 sec 1 where K1 is defined

based on this equation (Johnson et al., 1982):

    HOBrNHK
dt

BrNHd
31

2 
Equation 2.67

It is found that the formation rate of monobromamine is much larger than the

formation of dibromamine at pH 7-8.5. With a high ammonia concentration, and after

dibromamine reaction completion, monobromamine can still be observed. At pH of 7.0

and excess ammonia K eq  2.02 10 10M , at 25 0 C for the reaction:

NHBr2 NH4
  Keq  2NH 2 Br  H  Equation 2.68

3) Other effects

Bromine is preferable as a disinfectant because it is less affected by either pH or

ammonia concentration, and the decomposition of bromine oxidant species is very fast

(Lietzke, 1977). As shown in Figure 2.9., Bromamines were found to be stronger and

more stable disinfectants for drinking water than chloramines (1-3) (Minear et al., 2004).
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Figure 2.9. Relative Disinfection Efficiency of Some Chlorination Products.
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Figure 2.9. Relative Disinfection Efficiency of Some Chlorination Products.
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Figure 2.9. Relative Disinfection Efficiency of Some Chlorination Products.
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Bromamine formation is enhanced by high salinities and high bromide

concentrations. Bromide is oxidized by chlorine or hypochlorous acid, producing

hypobromous acid and a hypobromite ion. Also, ammonia reacts with chlorine to

produce monochloramine. Chlorination chemistry is significantly affected by a low

concentration of ammonia (Johnson, et al. 1982):

1) Bromamines are produced from hypobromous acid at a low concentration

of ammonia. At low ammonia concentration, tribromamine and

hypobromous acid are predominant. In case of a low concentration of

ammonia, the formation of dibromamine and hypobromous acid is high

(Johnson et al., 1982).

2) At an intermediate level of ammonia concentration, a mixture of

monochloramine and dibromamine are formed (Johnson et al., 1982).

3) At high concentrations of ammonia, forming monochloramine competes

with bromide oxidation, so only monochloramine is formed.

Monochloramine is undesirable because it does not assist fouling control

and has a high toxicity to marine life. However, at high ammonia

concentration, monobromamine and dibromamine are coexistent (Johnson

et al., 1982).

Each mM of phosphate speeds dibromamine formation so that it is four times

faster (Hofmann et al., 2001). Also, the presence of an acetate buffer would have the

same effect as a phosphate buffer. The equilibrium would be reached in one second in

the presence of either buffer; otherwise, it would take several minutes. Both phosphate
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and acetone do not naturally exist in sizeable amounts. On the other hand, bicarbonate

exists in nature and has the same effect as phosphate and acetone (Hofmann et al., 2001).

2.10. OTHER BIOCIDES

Biocides are chemical substances used to control biofouling in heat exchangers

by killing the living organisms. However, chlorine is the most widely used chemical for

disinfecting in water treatment, but there is a high risk of the potential production of

hazardous halogenated byproducts. There are other alternatives for treating water, like

ozone, chlorine dioxide, and chloramines. On the other hand, there are some

disinfectants that are less commonly used, like ultraviolet light, hydrogen peroxide,

permanganate and other halogens (Fiessinger et al., 1985).

Ozonation is used in the disinfection of water and is widely used in Canad a,

Europe, and the Soviet Union (Bruijs et al., 1988). Applying ozone will oxidize

inorganic and organic materials. Also, ozonation is used to reduce the turbidity or to

suspended solids by flocculation and microflocculation. The decomposition of ozone

will form higher-oxidizing power radical intermediates. There is a high risk of using

ozone when there is a leakage. Even a low concentration (3 ppm) of ozone is considered

to be harmful to the workers and to the surrounding environment. The efficiency of

ozone is limited because its decay rate is so high (half-life is less than one hour), and it

reacts with a natural organic substance that will allow the bacteria regrowth.

Hydrogen peroxide is a disinfectant for a wide range of bacteria. It is used to

disinfect the Pseudomonas aeruginosa bacteria, which can resist chlorine-based

chemicals. Hydrogen peroxide is used widely with other disinfectants, like UV
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irradiation and ozone. The bactericidal is not the hydrogen peroxide, but the formed

hydroxyl radical that can impinge the membrane surface by reacting with the cell

component.

Ultraviolet irradiation is water disinfection without the use of chemicals. It has

been developed so that it is cheaper and more reliable to be used in drinking water. The

wavelength of the Ultraviolet irradiation used for this purpose is in the range of 200nm

to 280 nm. The advantage of using Ultraviolet irradiation compared to other methods is

that it does not produce any unwanted substances or byproducts. The efficiency of

Ultraviolet irradiation method is guided by the quality of the water in terms of the

turbidity, and it dissolves organic as well as inorganic substances. The transmittance of

water is reduced due to the absorbance of UV irradiation by suspended matters (Freese

et al., 2007).

2.11. MEASUREMENT OF HALOGEN SPECIES

Several methods are used to measure halogen species. Here, we cover the

following methods:

 DPD testing

 Amperometric titration

 Iodine

1) Diethyl-P-Phenylene Diamine (DPD) Testing

Determining the amount of free available chlorine (FAC) and combined chlorine

by using the Diethyl-P-Phenylene Diamine (DPD) titrimetric and colorimetric methods

has been recognized as a standard method. This method quantitatively determines FAC
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and different forms of combined chlorine (monochloramine, dichloramine, and

trichloramine). The variation of the intensity of the red color produced from the reaction

of chlorine with DPD reagent determines each chlorine residual fraction. DPD reacts

with FAC, and the addition of potassium iodide would react with combined chlorine

(Strupler, 1985). Moore et al. found out that the interface of monochloramine on FAC by

using DPD at 250C in one minute was 5.6% and 6.0% of 3.5 and 7.0 mg/L Cl2,

respectively (Strupler, 1985). Figure 2.10. shows the determination of free chlorine by

DPD as a function of time in minutes.

Figure 2.10. Monochloramine Interference in the Determination of Free Chlorine
by DPD  Colorimetric (Spectrophotometric) Method as a Function of
Time (Temp 210C) (Strupler, 1985).
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Apparent FAC readings as percentage of monochloramine after 1 minute at two

temperatures 100C and 200C are shown in Table 2.4.

Table 2.4. Monochloramine Interference in the Determination of Free Chlorine by
DPD Visual Comparator.

Monochloramine
mg/l Cl2

Apparent FAC readings as percentage of
monochloramine after 1 minute

Temp. 100C Temp. 200C
2 1.0 2.5
5 1.2 2.2
10 1.2 3.1
25 1.4 2.0
50 0.8 2.9

Apparent FAC readings as a percentage of monochloramine after 1 minute at

different temperatures at reagents standard and non-standard are shown in Table 2.5:
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Table 2.5. Comparison of the Results Obtained With Standard and Non-
Standard Reagents for Monochloramine Interference in the
Determination of Chlorine by DPD Colorimetric
(Spectrophotometric) Method.

Apparent FAC readings as  a percentage of monochloramine after 1
minute

Reagents standard Non-standard
100C 190C 60C 80C 180C

2 1.0 2.9 3.8 6.5 9.0

5 1.5 2.6 3.4 4.6 5.1

10 1.9 2.8 3.1 6.9 4.6

20 1.4 2.4 3.0 4.0 4.2

In any dyehouse, the consistency of water quality is an important factor in

influencing the color application regardless of the quality variations of the water supply

(Bowman 1998).

2) Amperometric titration

The amperometric titration method for identifying free or combined chlorine is

one of the most precise methods, which needs a lot of skills and portable power in the

field. This method has the ability to identify different chlorine residuals, like free

chlorine, and chloramines, such as mono-, di-, and tri-chloramine. This method is lightly

influenced by common oxidizing agents, temperature changes, turbidity and color (W,

2000). Measurement from both DPD and amperometric methods showed comparable

results, including TRC & FRC readings, whereas ion-selective electrode results were

much lower, particularly in TRC values than the other two methods (W, 2000). No major
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changes were found in the TRC boundary measurement during heating water or passage.

The DPD method, which is EPA-approved, was found to be easy and fast for measuring

both TRC and FRC in the field or at the lab (W, 2000).

3) Iodine

Disinfecting seawater would help increase the efficiency of cooling systems.

Chlorine reacts with natural compounds that exist in seawater to produce residuals.

Iodine cannot measure the chlorine residual accurately in seawater because it measures

all oxidizing agents, such as iodine, bromine, and manganese. The toxic chlorine

residuals can be found in bromine, chloro-, and bromo-amines (Johnson, 1977).

2.12.  TREATMENT OF BIOCIDE DISCHARGES

2.12.1. TYPICAL REGULATIONS

An Oxidation Reduction Potential  (ORP)  system  is  used  to  evaluate  water

treatment disinfection. ORP would eliminate errors of chlorine measurements by organic

compounds. ORP is a method for controlling the chlorination process in a qualitative,

not quantitative, appearance of chlorine residuals. If there is any amount of combined

chlorine residual alone, the response is very rapid. Whereas, in the case of the presence

of combined chlorine residual with free chlorine, the response takes longer, about 30

minutes, to return back to the base potential when the reducing agent is added. White

found out that the breakpoint reaction depends on the OH ion. The oxidation power of

the hydroxyl radical OH , not the ion, is more important to the disinfection chemistry.

In order to have a complete chlorination, the solution should have free residual

that is 85% HOCl. Unsatisfactory results with the orthotolidine method for measuring



67

chlorine residuals guided research to the oxidation reduction potential method. ORP or

“redox systems” measures the electrode potential readings for different chlorine

residuals to estimate their germicidal efficiency. The main factor affecting the

disinfection power of free chlorine (HOCl) is the pH of the solution.

In 1933, Schmelkes found that the germicidal efficiency is affected by pH,

chlorine concentration, and the amount of chlorine relative to ammonia. The germicidal

efficiency of chloramines is less than that of free chlorine (White, 1999).

The Stranco system, also called the “High Resolution Redox Control System”, is

a very successful automatic chlorination control system in cooling water systems.

Calibrating water is important by measuring ORP before adding chlorine. Maintaining

close control of pH guarantees a constant value of free chlorine (HOCl), which is the

most effective disinfectant of the chlorine residual species. A higher pH would give

lower ORP readings for the same free chlorine residual content. This is about 60 mV of

the ORP and it shifts down for every one-point increase in pH. For a constant pH at 7.5

solution, ORP readings shift 37mV for every 0.5 mg/L in free chlorine residual (White,

1999). ORP is the only method that can precisely determine the changing in the

oxidation profile throughout the distribution system while keeping the required

restrictions of the ORP control system (White, 1999).Water treatment systems that use

ORP control systems are saving 25-50% of chemical costs. This redox system has the

ability to measure the oxidation reduction potentials for chlorine and sulfite groups

(White, 1999). Considerable microbial activity in the distribution system is at 15 C or

higher (White, 1999).
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Chlorination is widely used because it is economically feasible and efficiently

disinfects microorganisms in seawater. In the chlorination process, chlorines are used in

different forms such as chlorine gas, sodium hypochlorite, calcium hypochlorite, and

chlorine dioxide. The residual chlorine from chlorination has to be reduced before

discharging in order to protect aquatic life. This kind of process is known as

dechlorinating the treated water using an agent such as SO2 , HSO3
 , and SO2

 to

consume the residual chlorine.

Traditionally, chlorine and sulfite dosages are determined by manual titration at

certain scheduled intervals. But, due to dynamic characteristics of the water, the changes

are continuous in this process. An insufficient chlorine dosage would allow

microorganisms to survive, whereas excess chlorine would add to the operating cost for

chlorination and dechlorination. Also, an excess amount of sulfite would cause

consumption of dissolved oxygen in the treated water. There is a high cost for the

instrumentation of frequent and rapid determination of the total residual chlorine and

sulfite amounts before discharge (Kim et al., 2006).

The new approach is to determine the dosage by monitoring oxidation-reduction

potential (ORP) and/or pH. This is much cheaper compared to the old method. ORP was

proposed by Kim and Hensley in 1997. Water ORP varies with the dominant specie.

Water that is chlorine-free shows an ORP over 700mV, while water with

monochloramine as the dominant specious has an ORP of about 450mV. Also, ORP was

used by Bossard et al. in 1995 to determine the dechlorination dosages for agents such as

sulfite. The ORP of water with sulfites is much lower than with chlorine specious (Kim
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et al., 2006). In 2005, Kim et al came up with a new pH/ORP method to determine

chlorine and sulfite dosages. The bending point of ORP and pH profiles is the second

derivative of ORP,
2

during chlorination titration, and it is
22 2 3 during

dechlorination; the first derivative of pH is

during chlorination titration, and it is 2 3 during dechlorination (Kim et al.,

2006).

As chlorine is added, ORP is increased from 300mV to 400mV, then stabilizes

due to domination of the NH2Cl which comes from N4H+ oxidation. Accordingly, the pH

profile is increased due to the hydroxyl ion generated from NaOCl. At this point, more

chlorine is added, so the ORP is going to increase due to the fact that monochloramine is

oxidized to dichloramine and produces H+, which lowers the pH and shows the “hill” on

the pH profile. The second increase in ORP is from the oxidation of dichloramine and

the further oxidation to trichloramine. At the second increase of ORP, you can see a drop

in the pH profile (Yebra et al., 2006). The free chlorine appears after all dichloramine is

oxidized (Sugita et al., 1992). The third ORP increase is when free chlorine appears and

ORP is raised to an 800mV level; this is the ending point of titration. Adding more

NaOCl would result in increasing pH, due to the hydroxyl ion, showing a V-shape on the

pH profile. After the breakpoint there were no total coliforms, and free chlorine, which is

more efficient to kill microbes, was available. The breakpoint is the third increase in the

ORP profile, where
22Na = 0, and the V-shape of the pH profile is represented by

=0 (Kim et al., 2006).
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2.12.2. SOURCE OF HALOGEN

There are three sources for halogen, depending on the size of the usage and cost

effectiveness.  In smaller water treatment facilities, calcium hypochlorite is commonly

used in a powder form (Lee et al., 2004). This form is more expensive than using the gas

or liquid form, but it is more convenient to use as a powder. The least expensive form of

halogen is liquefied gas. This option is more cost effective for larger amounts of treated

water. However, the gas form of chlorine requires more sophisticated equipment for

dosing. It also has high risks of problems caused by uncontrolled leakages. The third

option is that chlorine can be generated on-site by using electricity on brine; this is more

convenient in remote areas (Freese et al., 2007).

2.12.3. DOSE CONTROL

Chlorine produces an oxidant species with small fractions of the total residual

oxidant. In order to determine each species, an oxidant reduction agent is measured with

an indicator dye or potassium iodide. Inorganic chloramines can be deducted by

watching pH and iodide concentration in the reduction stage (Helz et al., 2005). Chlorine

toxicity that affects aquatic organisms is controlled by optimizing dosing for a longer

exposure (Helz et al., 2005). There are two mathematical models, kinetics and

thermodynamic, to predict species distribution in water treatment. The kinetics model

requires the initial species and rate of equation, and the computer calculates the changes

through time. The thermodynamic model gives species distribution at a metastable

equilibrium with no dependence on initial concentration (Helz et al., 2005).
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Saunier’s model shows that the chlorine residual vs. an initial chlorine dose at

NH3  N is 0.5 mg/L, and contact time is 2.5 minutes and also 20 minutes (White, 1999).

Adding sufficient chlorine  to  water  distributing systems  to  maintain  enough residual

throughout the system is important to insure continuous treatment. In order to meet

system requirements, it is essential to develop a model for optimal chlorine dosages

(Haas, 1999). It is possible to estimate the inactivation for an open system by obtaining

information from batch systems used in laboratories. It is important to pay attention to

avoid duplicating errors when extrapolating from the batch system in the laboratory to

full scale treatment (Anmangandla et al., 1998).

The  Chick-Watson  relationship  describes  the  microorganisms’  inactivation

process by chlorine and chloramines. Chlorine demand is available and has effect on the

disinfection process by either consuming some of the chlorine residuals or reacting with

free chlorine to produce organic and inorganic forms. Selleck in 1978 and White in 1972

developed this model (Karra et al., 1984):

Ln(N/No)=-n ln(1+bct) Equation 2.69

where N and No are the microorganisms survived and are represented as follows:

 C = Chlorine residuals

 t = contact time

 b and n = experimental constants.
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By using the Chick-Watson relationship with the assumption that the free and

combined chlorine are additives and are functions of time, the inactivation equation can

be:

dN/dt = - N (k1Cn1
f + k2Cn2

c) Equation 2.70

where k1, k2, n1, n2 are the constants of Chick-Watson.

Assuming that the rate of chlorine demand is relatively slow and the weight ratio

of chlorine dose to available ammonia is below the required amount for the breakpoint,

then  monochloramine  is  going  to  be  the  dominant  form  (Karra  et  al.,  1984).  The

equation below describes the decay of free chlorine in the short time between adding

chlorine and the conversion of free to combined chlorine (Karra et al., 1984):

Cf = Co exp (- k”t) Equation 2.71

where Co is the chlorine dose.

The decomposition of combined chlorine happens in two phases -- slow and fast

(x is fraction in fast):

Cc = Co [x exp ( - k1
‘t ) + (1 – x) exp (- k2

‘t) – exp (- k” t)] Equation 2.72
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Solving Equation 2.71 and Equation 2.72 in Equation 2.70 would give a

differential equation to disrobe the inactivation of microorganisms with existence of

chlorine demand (Karra et al., 1984).

2.12.4. BIOCIDE REMOVAL

The highly chlorinated phenol derivatives, like 2,4,6-trichlorophenol (TCP) and

pentachlorophenol  (PCP),  are  highly  toxic  and  carcinogenic. Hydrogen  peroxide  is

commonly used as an oxidant for wastewater treatment.  The optimized conditions were

studied under the manipulation of pH, temperature, and concentrations of MoO4
2and

H2O2. At 15C the removal efficiency was 65%; at 25C and above, the efficiency was

found to be more than 95%. The highest removal efficiency was found to be in the 9 to

11 range of pH. The higher concentrations of MoO4
2and H2O2 have higher removal

efficiency (Jiang, 2005).

Hexachlorobenxene (HCB) was taken as a model compound of polychlorinated

aromatic hydrocarbons. HCB removed about 98% in about thirty minutes at 300C in the

existence of CaO and   Fe2O3(CaO /  Fe2O3 ) , which is more efficient than CaO or

  Fe2O3 (CaO /  Fe2O3 ) by itself. Removal of HCB, by CaO only, at about 300C,

was 52% efficient after one hour. On the other hand, removal of HCB by   Fe2O3 on

temperature ranges between 400 and 620C was less efficient, about 8.4%. This is

attributed to the fact that the CaO has more alkalinity than   Fe2O3 (Xiaodong et al,.

2005).
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The removal efficiency (DE) was calculated by:

Equation 2.73

where Ni is the molar number of chlorinated benzene containing i chlorine atoms in the

molecule. N0 is the initial molar number of HCB (Xiaodong et al., 2005). Discharging

seawater is regulated to be less than 0.02ppm of chlorine (Shiga et al., 1995).

Decomposition of residual chlorine can be achieved by three methods:

1) Adding raw seawater to water after passing a condenser.

2) Adding ozone to seawater, which has residual chlorine greater than 3 ~ 4

ppm, before discharging in order to degrade hypochlorite.

3) Exposing seawater to ultraviolet light (254 nm) to decompose residual

chlorine.

The addition  of  seawater  with  UV  irradiation  would  give  better  results  for

decomposing residual chlorine to meet regulations  (Shiga et al., 1995).

In wastewater disinfection by chlorine, residual chlorine was found to be 3 M

(0.2  ppm)  when  sulfite  (SO2(g) or HSO-
3(aq)) was  used  as  a  removal  agent. The

experiment used four other removal agents: ascorbic acid, iron, sulfite plus an iodide

mediator, and thiosulfate (Helz et al., 2005). A typical chlorine dosage is 14 – 56 M (1 –

4 ppm). The study was meant to identify the removal agent to reduce the chlorine

residual and remove the harm of chlorine disinfection to the aquatic life. At the lab,
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seawater is  treated  with hypochlorite; after one hour of reaction, 26 % of the dosed

chlorine is found. Then sulfite is added to reduce 67 % of chlorine residual chlorine in

the first two minutes, and the rest remains after 2 hours (Helz et al., 2005).

The removal agents were ranked as follows:  iron metal >> sulfite plus iodide =

thiosulfate > sulfite >> ascorbic acid. Thiosulfate as a reducing agent is very effective

after one hour. Sulfite plus iodide is more effective and would reduce residual chlorine

completely after one hour. Iron metal is highly effective for reducing residual chlorine

with larger moral excess than other reducing agents. Iron reacts quickly, has low cost,

and has less of an impact on the environment (Helz et al., 2005).

2.12.4.1.    High Resolution Redox (HRR)

Using high resolution redox (HRR), the automated removal system, is to remove

all chlorine or at least the oxidation/oxidation activities. A setpoint procedure in

millivolts is used to accurately determine the dosage. The automated removal process

decreases the defective products and increases efficiency (Bowman, 1998). Re-dyeing

may take half of the machine time. One of the main factors that affects the performance

of the dyeing process is the water chemistry. The water supply contains chlorine at

different ranges, from <1.0 to 3.0 ppm, and it reaches 6.0 ppm at times. In order to avoid

chlorine impairing the action of some dyes, chlorine must be removed by sodium

thiosulfate (Na2S2O3) or sodium bisulfite (Na2HSO4) (Bowman, 1998). The water is

manually tested for residual chlorine and passes through carbon filters. Then, the water

is tested once again, and a reducing agent is added as needed, like thiosulfate (Na 2S2O3)

(Bowman, 1998).
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Flow pacing is basically the process when the water passes through the flow

meter and gives signals to the chemical meter pump to distribute the required amount

accordingly. This method will fail if the residual chlorine is fluctuating (Bowman, 1998).

Automatically analyzing residual chlorine will take several minutes, which will not

accommodate the quick variation in water flow. Such analysis should be more frequent

and accurate (Bowman, 1998). Using the compound loop is to combine flow pacing and

chlorine analysis for more precise results (Bowman, 1998). Many dyehouses decide to

overfeed the dechlorine agent to avoid chlorine residual damage in the dyeing process

(Bowman, 1998).

Using a high resolution redox (HRR) removal system is to instantaneously and

accurately measure the oxidation reduction potential (ORP or redox) in millivolts.

downstream and send signals to the removal agent feed controller. The oxidation

reduction potential (ORP) is measuring the electromotive force in millivolts of the

oxidizing agent, which is transferring electrons. The electromotive force goes higher

with increases in concentration of the oxidizing agent and decreases with high

concentration of the reducing agent.

Chlorine activity is a function of residual chlorine, pH, load, flow, and

temperature. The high resolution redox (HRR) measures the chlorine activity, represents

all variables (Bowman, 1998). The system’s sensitivity is higher when the water has zero

activity because the system responses are logarithmic. This system can be programmed

to alert workers of pump problems or when they run out of chemicals.
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A major textile plant in south Texas is processing 1500 dyebatches per month.

This plant uses recycled wastewater with 0.1-0.3 ppm and may reach up to 2.0 ppm Cl2,

and sometimes uses potable water with as high as 6.0 ppm Cl2. Workers will test

residual chlorine manually on a regular basis, which causes overfeeding the amount of

dechlorination agent or chlorine to breakthrough. At any dye defect, a worker will either

use a flawed bath for a few seconds or re-bleach; both are expensive options (Bowman,

1998). After considering the HRR system with a setpoint at 450 mV, total removal

without overfeeding was achieved. The amount of thiosulfate reduced by 33% and made

$6,000 savings. This savings was accounted for in 16 months’ payout by the initial

investments in the HRR system. Also, reducing chlorine breakthrough made savings in

materials, bleach, and two hours of manpower per shift (Bowman, 1998).

Jaunty Textile in Pennsylvania adopted the HRR removing strategy to avoid any

variation in water flow. This system helped the company to save costs of reprocessing

and dyeing with consistency and high quality (Bowman, 1998). Over a million gallons of

water per day was filtered by carbon, and then sodium thiosulfate was added. The water

was softened before it was used for dyeing. Conventional manual residual chlorine

testing is not appropriate with water flow fluctuating from 0 to 600 gpm (Bowman,

1998). The first try was connecting a water flow meter to a dechlorination injection

pump to reduce residual chlorine from 2.2 to 0.05 ppm. But this try did not help to

balance with the sudden changes in water flow (Bowman, 1998). Carbon filter

effectiveness is reduced in water containing high chlorine. Also, the resin in softeners is

damaged by chemicals from overfeeding (Bowman, 1998).
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Chlorine residual contributes in reprocessing and delays in deliveries. Customer

dissatisfaction cost the company thousands of dollars in revenue loss (Bowman, 1998).

The previous arrangement was that the water was filtered by carbon and then sodium

thiosulfate was added based on manual residual chlorine testing (Bowman,1998).

Optimal operation was by installing an HRR system, including a dechlorination

injection pump, a flow meter, an HRR sensor, and a system controller to modulate the

dechlorination feed according to the redox and flow data. This setting is to insure

residual chlorine is in the range of 0.02-0.08 ppm (Bowman, 1998). The HRR system

reduces inefficiencies. Carbon filters remove traces of residual chlorine, whereas before,

there was a 2.2 ppm of Cl2. This system helps the carbon filter to last longer—from

three to ten years. Each filter replacement costs $18,500. Overfeeding the dechlorination

agent helped to maintain the softening media (Bowman, 1998). The cost of installing the

HRR system was recovered after a few months of operation. Other savings were in

materials and an increase in both labor efficiencies and customer satisfaction (Bowman,

1998).

Operators identify variables affecting process performance, like chemistry and

flow volume and others. The HRR automated removal system is used to reach optimal

operation conditions including savings in chemical treatment, carbon filter replacement,

and production cost (Bowman, 1998). There were three methods used to detect the

chlorine residuals in standard solutions and in the Savannah River. The methods are

DPD, amperometric, and ion-selective electrode. The DPD and amperometric methods

showed comparable results, whereas the ion-selective method electrode presented lower
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values. The recommendation is assigned for DPD method for its simplicity and

suitability in usage in the lab and field. Also, the DPD method has the capability to

measure both total residual chlorine (TRC) and free residual chlorine (FRC) (Wilde,

1991). This study was conducted to study chlorination and removal of chlorine using

Savannah River water at Aiken, South Caroline for their cooling nuclear reactor. This

study should design chlorination to fight biofouling in the cooling tower and removal to

meet the environmental regulation in limiting the load of discharging the residua l

chlorine in the receiving water (Wilde, 1991).

2.12.4.2.     U V Radiation

By using a UV sterilizer, the residual chlorine of 0.6 ug/L was reduced to 50%,

then 90%, then 99% at flow rates of 4, 0.9, and 0.2 L/min respectively as shown in

Figure 2.11. (Brooks et al., 1978).

Reduction of monochloramine follows first order kinetics at flow rate of 0.5-50

L/min as shown in Figure 2.11. according to the following equation:

t
CCK lnln 0 

Equation 2.74

where C
0 = initial chlorine concentration; C = chlorine concentration at time t; t = time

in UV chamber  (Brooks et al., 1978).
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Figure 2.11. The Reduction of Residual Chlorine in Tap Water at Different Flow
Rates Through an Ultraviolet Dechlorinator (Brooks et al., 1978).

Activated carbon was able to remove 100% of residual chlorine at a few hours of

operation and would allow 10-20 ug/L of residual chlorine to pass through after few

days. Atkins et al. 1973; Bauer and Snoeyink 1973; Snoeyink et al. 1974 showed that

activated carbon is capable to remove residual carbon 100%. These findings are different

from the previous result due to the fact that techniques for measuring residual chlorine

were not adequate to measure residual chlorine below 0.1 mg/L. Also, activated carbon

is ten times slower to remove monochloramine compared to free chlorine (Kim et al.,

1978). Residual chlorine in wastewater treatment contains 1-5 mg/L with a high portion

of monochloramine. Another factor is that previous work was done on short term and

extrapolated into long term (Brooks et al., 1978). Free chlorine is reduced by exposure to

UV radiation according to the following reaction (Brooks et al., 1978):
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22
1 OClHHOCl  

(Hancil et al., 1971). Equation 2.75

Chloramines and chlororganics have been reported to be reduced by UV

radiation. Armstrong and Scott showed that UV is capable of 100% removal of residual

chlorine as proven in this study. Most municipal treated water contains about 500 ug/L

of residual chlorine. Armstrong and Scott (1974) showed that 90% of residual free

chlorine was removed by two 1200-W sterilizers at a flow rate of 50 L/min, whereas in

this study 99% removal was at 0.2 L/min flow rate (Brooks et al., 1978).

Two 1200-W sterilizers (Xodar XO-260) cost $14,000 and $2,000 as two lamps

replacement in a year time. The electricity costs $850/year ($0.04 kW/h) (Brooks et al.,

1978). Armstrong and Scott (1974) described continuation of removing after irradiation.

The explanation for this phenomena is that UV lamps can produce hydrogen peroxide,

which is a removal agent that reacts slowly with hypochlorous acid according to the

following reaction (Brooks et al., 1978):

OHClOOHHOCl 2222  

Equation 2.76

2.12.4.3.    Chemical Removal

Activated carbon, ultraviolet radiation and sodium sulfite as removal agents are

evaluated.  There were always from 5 to 70 ug/L of chlorine not being able to be

removed due to service life  of the carbon and flow rate. Ultraviolet radiation is more
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effective  but  very  costly.  Sodium  sulfite  was  very  effective,  but  requires  a  safety

protection in case of failure (Brooks et al., 1978). Most  laboratories use chlorinated

wastewater  for  culturing  aquatic  organisms  which  provides  a  good   disinfection

environment. But removal might be needed to maintain very residual chlorine level to

assure non-toxicity to aquatic life. Environmental regulations sometimes require residual

chlorine to be less than 3 ug/L, but it is recommended to be less than 0.5 ug/L, which is

below the deduction limit in most labs (Brooks et al., 1978).

Three methods for residual chlorine removal were considered: activated carbon,

chemical reduction, and photochemical degradation. Snoeyink et al. (1974) and Atkins et

al. (1973) claimed that activated carbon is most effective. Armstrong and Scott (1974)

and  Beeton et al. (1976) claimed that ultraviolet and chemical reductions are sufficient.

The objective of this study to find out which  method  has the ability to completely

(100%) remove all residual chlorine and to design a removal system for large quantities

of culturing aquatic organisms (Brooks et al., 1978). Residual chlorine was determined

by amperometric  titration to  as  low values  as 1  ug/L.  Distinguishing between  free

chlorine and mono- and dio-chloramine was done by using the DPD method with low

concentration  as  20  ug/L  (Brooks  et  al.,  1978).  This  experiment  is  for  Milwaukee

municipal  water  which  contains  0.3-0.6  mg/L  residual  chlorine  and 90%  of  it  is

monochloramine. The ultraviolet radiation system was used on residual chlorine in 13.7

L and one single 91-cm lamp rated at 39 W at 2537 oA (Brooks et al., 1978).

Some sulfur compounds like Na2S2O3, Na2SO3, SO2 have been used as removal

agents (Pyle,  1960; Beeton et al., 1976). It was found in 1976 that sodium sulfite,
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Na2SO3, was the most economically effective, safest, and capable of eliminating t

oxicity of residual chlorine for the aquatic life. Sodium sulfite is added at a 2:1 ratio by

weight with residual chlorine in order to eliminate chloramines completely and

instantaneously (Brooks et al., 1978). The disadvantage of using sodium sulfite is that it

requires an accurate injection system and periodic follow up with chlorine fluctuating in

influent water (Brooks et al., 1978).

2.12.4.4. Activated Carbon

Chlorine is added to water to defeat odor and taste or to disinfect.  Excess

chlorine has to be removed to avoid chlorine-destroying ion exchange resins or to avoid

the harm of chlorine compounds to receiving water or crops in irrigation (Young et al.,

1974). Chlorine can be reduced by reacting with carbon which can also destroy NH2Cl

and NHCl2. Also, organic compounds receive attention as well as chlorine (Young et al.,

1974). The result of the experiment of Unit 1 with new carbon and Unit 2 with about 3

months in service at a flow rate of about 12 L/min. In Unit 1, completed removal is only

for one day at a flow rate of 7 L/min, but residual chlorine increased to 23 ug/L in 23

days (Brooks et al., 1978). At the same flow rate of 4.5 L/min unit 2 in 105 days service

remove all residual chlorine except 37 ug/L However, in Unit 1, after 23 days, service

removed all residual chlorine except 19 ug/L residual chlorine (Brooks et al., 1978).

Two units in series at 4.5 L/min flow rate will form only 9 ug/L of residual

chlorine while passing similar flow rate through unit 1 would result in only 10 ug/L of

residual chlorine.  A higher flow rate of about 17 L/min had little effect (Brooks et al.,

1978). From observation, the same set up of units in a series at range of 4-7 L/min flow
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rate  only  10-15  ug/L  of  residual  chlorine  would  pass  through  at  about  2  days  of

operation. Eight months later, at a flow rate of 2 L/min, about 20-30 ug/L of residual

chlorine could pass through (Brooks et al., 1978). After a large capacity observation, it

was shown that at 60 L/min of flow rate, 5, 10, 15 ug/L of residual chlorine would pass

through after 1, 2, 24 hours, respectively. Six months later, 40-50  ug/L of residual

chlorine would pass through at 38 L/min of flow rate. After three years, 70 ug/L of

residual chlorine would pass from an original 560 ug/L (Brooks et al., 1978).

2.12.4.5.   Chlorine-Active Carbon Reactions

Magee and others show that hypochlorous acid reacts with active carbon, a

reducing agent, producing H+, Cl-, and oxidized carbon surface. But with the case of

hypochlorite, OCl-, no hydrogen ion, H+, is produced (Young et al., 1974):

HOCl C(activecarbon) H  Cl CO(surfaceoxide) Equation 2.77

When gaseous chlorine is added to water, hydrolysis takes place and produces

H+, Cl-, and hydrochlorous acid (Young et al., 1974):

Cl2(g) + H2OHOCl + Cl- + H+ Equation 2.78

Magee found out that the rate of reaction occurs in two phases. First, there is a

diffusion controlled step where the rate is very fast due to higher concentration of HOCl

in a column more influent than effluent, and HOCl is starting to build up at the carbon
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site. The second phase happens near the saturation when the reaction rate is slower and

the limiting step is carbon surface reduction of HOCl. At this phase, the amount of Cl-

produced is equal to the HOCl removed (Young et al., 1974).

Magee discovered that rate of reaction is slower at the second phase, when OCl-

becomes dominant. This reaction is first order with respect to the concentration of

HOCl+ OCl- and the reaction rate constant at pH 5-6 is four times the value at pH 8.5-

10. The ionization constant of HOCl is 3.7 x 10-8 and reaction rate at high pH (8.5-

10) is four times the value at low pH (5-6) (Young et al., 1974). These findings are

summarized in Table 2.6.

Table 2.6. Free Chlorine Reaction with Activated Carbon (Young et al., 1974).

Free Chlorine (HOCl & OCl-) reaction with Active Carbon

pH Dominant Chlorine
Species

Reaction Rate
1st order [HOCl]+[ OCl-]

About 7.4 (8.5-10) OCl- K

Below 7.4 (5-6) HOCl 4 x K

NH2Cl  H2O  C activecarbon  NH3 Cl   H   COcarbonoxide

Equation 2.79

2 NH2 Cl  CO carbon oxide   N 2  HO  2 H   2Cl   C active carbon 

Equation 2.80
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Dichloramine is also destroyed at active carbon to produce oxidized ammonia

(Young 1974):

2NHCl2 H 2 O  C activecarbon  N 2 4H   4Cl   CO carbonoxide

Equation 2.81

Some of the oxides accumulate on the carbon surface, poisoning and blocking

carbon sites. Boehm and Puri showed that heating carbon to 1000oC would release all

fixed oxides, but at a lower temperature, like 500-700oC, the carbon removal capacity

can be restored 100%. The adsorption decrease of carbon is due to surface acidity and

BET-nitrogen decrease in surface area (Young et al., 1974). The experiment was

conducted by adding 100 ml deionized water with a certain amount of NaOCl solution to

0.2 g carbon. The pH is decreased from 9.5-10.5 to 5-7. Chlorine was determined by the

DPD Ferrous Titrimetric Method and Cl- by the Argentometric procedure (Young et al.,

1974). The experiment data shows the relationship between acidic surface oxides and the

extent of free chlorine treatment. At high concentration of free chlorine, more than 15

mmoles/g, a brown color is observed. This is an indication that the carbon has been

oxidized completely which is in agreement to Boehm (Young et al., 1974).

The capacity of carbon decreased by about 35%, at equilibrium concentration of

3 x 10-4 M, when free chlorine concentration increased from 0 to 15 mmoles/g. The

carbon capacity also was decreased for p-nitrophenol after each cycle. The adsorption
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capacity of carbon is decreased of about 75% at equilibrium concentration of 3 x 10 -4 M

(Young et al., 1974).

It is known that there is a carbon surface plateau at about 1.7 mmoles/g and this

is due to surface capacity limits for oxygen (Young et al., 1974). It was found that in

titration, there is about 1:1 of chlorine and Ba(OH)2 and 15:0.5-1 mmoles of chlorine

with NaOH. Hagar and Flentje estimated the life time of the bed is 2-3 years for free

concentration of 2-4 mg/L and rate of 1 gpm/ft3. This estimation is for 10-15 mmoles of

free chlorine and reacts with every gram of carbon for complete dechlorination (Young

et al., 1974).

There is a relationship between an acidic carbon surface and a carbon bed

dechlorination efficiency. Most of the oxides that build up on the carbon surface are

volatile, which gives the carbon a longer removal life. The brown color appearance

occurs when the carbon bed goes beyond its life’s usefulness (Young et al., 1974).

Carbon capacity for aromatics adsorption does not vary much by oxides, which can be

easily washed or volatilized by drying. But fixed oxides on the carbon surface have to be

taken into account when the dissolved organic removal process is considered as well as

removal of chlorine species (Young et al., 1974). The more polar compounds adsorption

to acidic carbon surface can be increased by studying the interaction between dipole-

dipole molecule and surface interactions. It is necessary to study the rate of oxide

buildup at low free chlorine concentration. Also, it is required to investigate the effect of

the removal rate and life of carbon bed by organic compounds on carbon surface. It is

important to study the characteristics of acidic reaction products which can be removed
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by heating. It is required to study the alteration in surface area and pore size to the effect

of acidic surface on organic compounds adsorption.

2.12.4.6.    Carbon-Sulfite System

Each system has its own drawbacks: carbon effectiveness, UV cost, Sulfite

injection system. A combination of carbon and sulfite is made to build effective

reliability, and it is relatively inexpensive. A flow rate of up to 60 L/min is passed

through activated carbon to remove 90-95% of chlorine and then sodium sulfite is added

at 6:1 weight ratio to the remaining residual chlorine. It is assumed that the remaining

residual chlorine is about 0.05 ug/L and sodium sulfite is added at 0.3 ug/L (about 6 g of

sodium sulfite at 60 L/min flow rate). An excess amount of sodium sulfite has no effect

on fish or on oxygen content (Brooks et al., 1978).

Any failure on the sodium sulfite injector would also have a removal result of

90%. This carbon-sulfite system is provided hassle-free, and the effectiveness in

removing chlorine by-products species is high (Brooks et al., 1978).

Installing an active carbon bed and sodium sulfite pump would cost around

$2065 and $2290 respectively. The annual operating cost is $150 and $21 for carbon and

sulfite respectively (Brooks et al., 1978).

2.12.4.7.   Combination of Removal Systems

This study was to evaluate chlorine species removal by activated carbon

filtration, U.V. irradiation and sodium sulphite. Activated carbon couldn’t totally remove

all residual chlorine but was not insensitive to the chlorine level and water flow rates.

Activated carbon reduces organic carbon to 65 % and halogenated methane derivatives
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to 97-100%. By using ultraviolet irradiation, residual chlorine was reduced to 99% in

municipal water with sensitivity to flow rates in the range of 10 – 271 min-1.

Temperature from 7.5 to 20.6 0C has no effect on the removal process by neither

activated carbon nor UV. All chlorine was totally removed by using sodium sulphite at

3:1 molar ratio to chlorine in municipal water or at 6:1 molar ratio after filtered by active

carbon (Danell et al., 1983).

Chlorine is often used to disinfect municipal water. Chlorine is very toxic to

aquatic life except at low levels of 2 and 10 ugl-1. Normally, municipal water is two to

three orders of magnitude higher than the safe level (2 and 10 ugl-1). Sulphur compounds

in +4 oxidation state [like sulphur dioxide (SO2), sodium sulphite (Na2SO4) or bisulphate

(NaHSO4) and sodium thiosulphate (Na2S2O3)] have been used to remove chlorine

species from municipal water and industrial wastewater (Danell et al., 1983). Different

removal methods have been studied, including activated carbon, activated carbon

combined with ozonation, and photochemical reduction with ultraviolet irradiation

(Danell et al., 1983).

The experiments used the tap water of the city of Winnipeg, which has a residual

chlorine of 81 ug/L at 190C in summer and 750 ug/L at 30C in winter (Danell et al.,

1983). The removal process was examined by combining carbon filtration and with UV

irradiation at two times: March –April period with 300-550 ug/L of residual chlorine and

August-September of 81-124 of residual chlorine (Danell et al., 1983).

Also, the removal process was tested for municipal water by using sodium

sulphite in sand-filtered and in sand followed by carbon-filtered water at 50C and 150C
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(Danell et al., 1983). The water treatment consisted of a series of sand filters, plastic

contact columns for ozone, and carbon filter (Danell et al., 1983). Total residual chlorine

was tested by using the o-tolidine method (APHA et al., 1971). Dissolved ozone was

tested by potassium iodide. Organic compounds were measured by the Stainton et al.

(1977) method (Danell et al., 1983).

When the carbon filter was first, the efficiency was changed by less than 10%.

When UV was first in the configuration, efficiency was decreased from 98% to 75%

when the flow rate was increased from 5 L/min to 20 L/min. The second carbon filter did

not do so much in chlorine removal so it was removed from any further experiments

Danell et al., 1983). For municipal water containing 80-110 ug/L of total chlorine at

flow rate ranges between 5 and 27 L/min, the increase of 0.8 ug/L of chlorine breaking

through the filter is for every L/min increase in flow rate (Danell et al., 1983). At a low

flow rate of about 1-2 L/min residual chlorine at post-carbon was 25-29 ug/L and at

higher flow rate residual chlorine was as high as 40 ug/L (Danell et al., 1983).

Initial concentration variation between 40 to 500 ug/L of residual chlorine has no

effect on removal process results by UV. Removal process relation with flow rate ranges

between 5 to 28 L/min is a first order kinetics with rate constant of K = 2.02 /min

according to K = (ln Co – ln C)/ t. For higher efficiency, more than one UV system is

used in parallel rather than in series (Danell et al., 1983). As shown in Table 2.7., a water

flow rate of 4L/min and chlorine residual of 306-676 ug/L that water temperature (6.2-

25.5oC) has negligible effect on % removal either by UV irradiation or activated carbon

filters (Danell et al., 1983).
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In city water the bacterial content was less than 1bacterium/ml. In chlorine

species removal by activated carbon filters, the bacterium was 8000, 5000, 2000 at flow

rates of 5, 10, 20 L/min respectively. Whereas, after the UV process, the bacteria was

observed as 5, 60, 200 per ml, respectively. It was shown from the data that the carbon

bed was a good environment for bacterial growth. On the other hand, UV kills 90-99%

of bacteria but has decreased as the flow rate increases due to less exposure to the UV

light (Danell et al., 1983).

Table 2.7. Bacterium Concentration at Different Flow Rates (Young et al., 1974).

City Water
(Bacterium/ ml)

Flow Rate
(L/min)

(Bacterium/ml)
After

activated
carbon
filters

After UV
irradiation

< 1/ml
5 8000 5

10 5000 60
20 2000 200

Dechlorination efficiency by sodium sulphite to untreated municipal water (200-

450 ug/L TR-chlorine) and filtered water (40-90 ug/L TR-chlorine) with activated

carbon  at  both  5  and  15oC are  shown on the below figures. The relation  between

dechlorination % and the molar  ratio of sulphite and chlorine is hyperbolic and very

similar for both temperatures (Danell et al., 1983).

The efficiency of removal for untreated water is higher than the filtered water. At

3:1 sulphite to chlorine molar ratio the removal is 100% for untreated water while only
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70% for filtered water. It is required 6:1 molar ratio for 100% removal the filtered water

(Danell et al., 1983).

After the diatomaceous earth filter (DE filter), 30% of the residual chlorine was

removed at all incoming different chlorine concentration of range 315-750 ug/L. Since

the chlorine concentration was not measured, the chlorine reduction was not determined

from reducing chlorine to chloride or from adsorption to filter. Another 35% removal

after passing through the ozonation system and water leaves with total residual chlorine

of 110-31- ug/L. After just 30 cm of carbon filter, the total oxidant residual was reduced

to 97%, and this is due to the fact that most of the oxidant residual is chlorine. No

significant further removal was made by other activated carbon filters (Danell et al.,

1983).

Total dissolved organic carbon (TDOC) was reduced by 5.3% by DE filters and

no reduction during ozonation. 58% of TDOC was removed in the first 30 cm of carbon

filter and 13 % reduction in 60 cm carbon filters (Danell et al., 1983). Halogenated

methane derivatives (chloroform CHCl3, dichloromonobromomethane CHCl2Br,

dibromomonochloromethane CHClBr2) were not removed in diatomaceous earth filters

and ozonation. However, in the 30 cm carbon filter, 97% of CHCl3 was reduced and

CHCl2Br and CHClBr2 was reduced to less than 0.2ug/L. Chloroform was reduced in 30

cm carbon filter from high 67.8 and low 33.0 to .7 ug/L. Carbon filter of 60 cm did not

reduce chloroform any further.
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In sand filtration, 2.0-10.08 um particulate is 45-50% reduced and low efficiency

for 10.08-40.3 um particulate. At DE filters, particulates of less than 10.08 um are 87 -

95% reduced and low efficiency for larger particulate (Danell et al., 1983).

This study shows that activated carbon filters are capable of reducing total

residual chlorine (TRC) from 80-530 ug/L  40-70 ug/L at a flow rate of 5-27 L/min

and also reduce TRC to 15-25 ug/L at a low flow rate of 100-200 L/min. Ozonation prior

to carbon filtration would increase the efficiency of removal by AC filters, as suggested

by Lacy & Rice in 1978. A second carbon filtration in the series would not have any

further reduction in chlorine, as proved by Seegert & Brooks in 1978 (Danell et al.,

1983).

Suidan et al. (1977) showed that the removal process was reduced by 50% when

the temperature was decreased from 23 to 20C by using active carbon filters at 5 mg/L

chlorine concentration and 758 L min-1m-3 of carbon. In the current study, the chlorine

concentration and flow rate used are 10 and 30 % respectively of Suidan et al. which

explains that the carbon sites were beyond thermodynamic limits over 6 – 250C

temperature range. The size of the carbon bed does not constrain the removal rate

reflected in the small increase in chlorine concentration after the carbon filter with an

increase of flow rate from 5 to 27 L/min (Danell et al., 1983).

The decrease in removal rate over time by carbon filters is not directly related to

the amount of chlorine contacting the carbon. There were some propositions made in

1975 by Snoeyink and Suidan, but the results are still unambiguous. A carbon filter’s

functional life can be increased by several times when water is ozonated before filtering



94

by carbon (Danell et al., 1983). A carbon filter can remove 65% of total dissolved

organiccarbon and 97-100% of chloroform, dichlorobromomethane and

dibromochloromethane. In 1978, Seegert and Brooks recommended that adding sodium

sulphite at 6:1 weight ratio for carbon-filtered water would lead to complete removal of

chlorine (Danell et al., 1983).

Sulfite was added to the Winnipeg city water supply after carbon filters were at a

6:1 weight ratio and resulted in only 85% of chlorine removed and 100% at 10.7 weight

ratio. Also, Sulfite was added to unfiltered water at a 5:1 weight ratio to remove all

chlorine because an organochlorine complex was generated at the carbon bed which

cannot be reduced by sulfite. An excess of sulphite is not desirable for aquatic organisms

(Danell et al., 1983). Another alternative that is similar for chlorine species removal after

carbon filtration is ultraviolet irradiation, which has the same result when chlorine

concentration is at a range of 40-525 ug/L and temperature is at a range of 6-25oC

(Danell et al., 1983).

A higher removal rate can be achieved by functioning two UV units in a series

rather than in parallel. Chlorine concentration of 60 ug/L at 20 L/min flow rate can be

reduced to 4.9 and 6.2 ug/L by series and parallel, respectively of UV units. Carbon

filters are environmentally friendly to grow bacteria while the UV irradiation knocks

down them (Danell et al., 1983). A system was built for treating municipal water

containing 100-900 ug/L free chlorine and has a flow rate of 120 L/min. This system,

which has incorporated a series sand filter, has an activated carbon filter and uses

ultraviolet irradiation, was constructed at the Freshwater Institute Department of
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Fisheries and Oceans in Winnipeg, Manitoba to reduce free chlorine to 4-8 ug/L. The

capital and annual operating costs are shown in Table 2.8. (Danell et al., 1983).

Table 2.8. Reducing Free Chlorine in Municipal Water (Danell et al., 1983).

Municipal water containing 100-900 ug/L free chlorine and flow rate of 120 L/min

Aiming to reduce free chlorine to 4-8 ug/L

Dechlorination System Equipment (Canadian $, 1980)

Type Size Capital Cost Annual Operating Cost

Sand Filter 300 L $ 840 -- --

Activated Carbon

Filter
340 L $ 2,640

Activated Carbon

Replacement
$ 400

Ultraviolet 1200-W $ 19,700 Ultraviolet Lamps $ 1,730

Sterilizers 12-tube

Associated Pluming $1,850
Electricity 2,233 KWh

($ 0.30 KWh)
$ 670

Total Capital Cost $ 25,030 Total Operating Cost $ 2,800

2.12.4.8.   Mixing

The unchlorinated tempering water is mixed with a condenser discharge to meet

regulations temperature discharge. The decay rate in daylight is faster than in nighttime.

It is desirable to take samples at different point though the cooling system. The time

(transit) for the water from intake to discharge is about 3 minutes (Helz et al., 1984).

2.13. CONCLUSIONS

This section covered the overview of the chemistry of seawater with biocide

focusing on the reaction of chlorine. The reaction of chlorine is very difficult to be
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tracked. This is due to many organic and non-organic species that are naturally exist in

seawater. Most of these reactions occur simultaneously and instantaneously.

Nevertheless, the author summarized the major reaction representing the main

chlorination by-products in Figure 2.2. The main by-products of chlorination of seawater

are hypochlorous acid and hypobromous acid. However the production of hypobromous

acid is after the consumption of most of the ammonia by the reaction with the

hypochlorous acid producing the chloramine. Then, any excess production of the

hypochlorous acid will react with bromide ion replacing the chlorine with bromine in the

hypochlorous acid compound. The existence of bromide ion in seawater is always at

much higher concentration than ammonia makes the ratio of the hypochlorous acid and

its compounds to hypobromous acids compounds depending to the concentration of

ammonia. Other factors that influencing the kinetic of chlorination reaction in seawater

are the pH and temperature. Therefore, the chlorination kinetics of produced by-products

depends on the location.
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3. PROBLEM STATEMENT

Consider an industrial facility which uses seawater for cooling. The

characteristics of seawater vary throughout the year leading to dynamic variations in the

growth of biofilms on the surfaces of the heat exchangers. Biofilm growth is controlled

through the use of biocide and regular maintenance. It is desired to identify an optimal

scheduling policy for the use of biocide and heat-exchange maintenance to minimize the

cost while accounting for the technical performance of the plant and the environmental

discharge of the biocide and its byproducts.

The aforementioned problem statement entails several challenges to be addressed

including:

 How should the biocide dosages be varied during the year?

 How does the biocide react and decay in the dosing basin and throughout

the process?

 How is the biofilm growth in several exchangers related to biocide usage,

reactions, and the characteristics of the process and the seawater?

 How to account for the heat-exchanger performance throughout the

process as a function of the time?

 When is maintenance necessary?

 How to meet the environmental regulations on the discharge of the

biocide and its byproducts throughout the year?

The following systems will be addressed in the ensuing sections:
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 Industrial plants with seasonal variation in seawater temperature

 Integrated power plants and thermal desalination facilities

 Processing facilities with solar-driven biocide manufacturing
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4. DEVELOPMENT OF A SHORTCUT PROCESS-INTEGRATION APPROACH

TO THE OPTIMIZATION OF SEAWATER COOLING SYSTEMS WITH

ECONOMIC AND ENVIRONMENTAL CONSIDERATIONS

4.1.    OVERVIEW

The aim of this section is to develop a systematic approach to the optimal

operating and design alternatives for integrated seawater cooling systems in industrial

facilities. A shortcut process-integration framework is used to provide a holistic

approach to optimizing the design and operation of the seawater cooling system, along

with the dosage and discharge systems. Optimization formulations are employed to

systematize the decision-making and to reconcile the various economic, technical, and

environmental aspects of the problem. Building blocks of the approach include the

biocide water chemistry and kinetics, process cooling requirements, dosage scenarios

and dynamic profiles, biofilmgrowth, seawater discharge and environmental regulations.

4.2. PROBLEM STATEMENT

The problem is that a given process which uses seawater in a once through

cooling system can experience fouling due to biofilm development in heat exchanger

tubes. In order to prevent biofouling in coolers, an antifouling agent (i.e., chlorine) is

added to the incoming seawater. A certain load of chemicals is added to the process

intake of seawater flow, FS.W.
Intake . Currently, the process discharges a flow rate,

FS.W.
Discharge of used seawater and a chemical concentration of CChemical

Discharge, leading to

a discharge laod of chemicals, L Chemical
Discharge. Due to environmental regulations, it is
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desired to minimize the load of the discharged chemicals. Conventionally, the residual

biocide problem in the seawater used in the cooling system before the discharge is

solved by end-of-pipe treatment. This will solve the problem of excess residual chlorine,

but the question can be raised whether there is a more cost-effective solution.

Implementing the proposed holistic approach is one such solution. Figure 4.1

summarizes the problem statement and shows the conventional approach for biocide

treatment.

Figure 4.1. Diagram Summarizing the Problem Statement.

The objectives of this section are to:

 Develop a systematic procedure for understanding the chemical and Use

shortcut input-output  relations  to  represent the  kinetics  of  biocide

usage  and  their reactions with different species in seawater.
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 Relate the formation of by-products to the characteristics of the seawater,

the biocide, and the process.

 Identify the most effective by-product to control biofouling development.

 Develop optimal policies for process modification and biocide dosing to

optimize biocide usage and discharge.

The ultimate goal is to develop a cost-effective procedure that integrates the process

resources,  revises  the  process  design and/or  operation,  and  determines  the optimal

scheduling  of  chemical  dosage  load  and  timing,  along  with  implementing chemical

removal at the minimum number of heat exchanger cleaning cycles per year. This

approach might incorporate new technologies to meet the new regulations.

4.3.    CHALLENGES AND SPECIFICATIONS OF THE PROPOSED

DESIGN

Applying the proposed approach has some challenges. The complexity of a

biocide reaction with different species that exist naturally in seawater is that it produces

different by-products. It is necessary to identify the most effective by-product in

controlling biofilm development. In the meantime, any hazardous compounds produced

throughout the cooling system until the discharge point must be monitored. Sometimes

there are regulations on the propagation of the compounds at a certain radius from the

discharge point. On the other hand, the usage of seawater is linked to the process

requirements, including cooling utilities. Therefore, any reduction in cooling

requirements will have a direct impact on the amount of seawater used and discharged,

along with the usage and discharge of biocide. In order to successfully achieve that
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reduction in seawater and biocide, several design and operational changes must be made.

The last step is to consider new biocide removal units (e.g., dechlorination) as required

to meet the environmental regulations. These units have to be screened according to

techno-economic criteria. All of these challenges help to identify and allocate for the

development of an applicable integrated approach deal with interactive tasks while

aiming for the cost-effective solutions. The development of this approach and its

application will be explained in the following sections.

The proposed approach starts with understanding the chemistry of the biocide in

seawater and integrating it with the performance of the process. Also, we must try to

integrate process units and streams in order to reduce seawater usage and discharge

along with the usage and discharge of biocide and its by-products. Finally, if necessary,

the end-of-pipe treatment must be integrated with the in-process modification.

Specifically, this approach can be achieved by starting with the development of the

biocide kinetic models, then using the heat integration techniques as a tool to make the

most feasible possible reduction in cooling duty, and consequently on heating duties.

Any optimal changes on design and operating conditions must be made to reach that

approach. Then, based on the biocide kinetics and the optimal conditions for the biocide

to be effectively controlling biofouling, a model for biocide dosing must be constructed.

The biocide dosing amount and scheduling on different seasons must be identified. The

last step is always to use the appropriate load of end-of-pipe treatment as required to

meet the environmental regulations.
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The foundation of the proposed approach is built on main concepts. Reducing the

cooling duties of the process will influence in lowering the usage and discharge of

seawater, and, consequently, the discharged biocide will be reduced. There are two

advantages of reducing cooling duties: cost-savings and pollution prevention. Further

reduction in the usage of seawater is achieved by a more effective heat transfer, which

would lead to a reduction in the amount of biocide discharged. Optimizing the biocide

dosage while complying with the process requirements for maintaining a control on

biofouling will lead to minimizing the negative effect on the environment. Adding new

biocide removal units (e.g., dechlorination) has to be considered and reconciled with all

the approach steps, like reduction in cooling utilities and seawater flow rate, and

optimizing biocide dosage. The philosophy behind this proposed design is that any

reduction in cooling duties will result in lowering the usage and discharge of seawater,

along with the usage and discharge of biocide. A further reduction in usage of seawater

can be made by maximizing the span temperature of discharged seawater. The excess

amount of biocide and its by-product before the discharge point can be treated by the

conventional approach: a biocide removal unit.

4.4. SUMMARIZED PROCEDURE STEPS

The first step is to understand how the biocide would react in seawater and what

different forms of by-products are going to be produced. Also, we must comprehend the

kinetic reactions impacting the optimal biocide dosing in order to meet the process

requirements for controlling the biofouling development. Then, we must identify the
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most effective biocide by-product for controlling the biofilm and utilize that piece of

information in making any design and/or operational changes to satisfy the criteria.

The next step is to reduce the cooling duty of the process by using heat

integration instruments. Heat integration is carried out by using a graphical thermal

pinch analysis, algebraic techniques, or optimization formulations (e.g., (Smith 2005; El-

Halwagi 2006; Kemp 2007)). The objective of this step is to minimize cooling and

heating utilities of the process. The biocide dosage is proportional to the cooling duty.

As such, reducing the cooling utility of the process leads to reducing the usage and

discharge of the biocide. The rationale behind starting with heat integration is that it will

generate a cost savings from the reduction of cooling utilities. Heat integration is the

synthesis between process streams to feasibly exchange heat between hot process

streams and cold process streams. Thus, the outsources for heat and cooling are reduced.

This approach is superior to the end-of-pipe treatment because it does not start with

investment in biocide removal units without considering other options for running the

process at optimal design and operating conditions. Therefore, heat integration creates an

economic advantage by the savings made from fewer dependents on the outside source

of heating and cooling. At the same time, this is a more environmentally-friendly

process. The heat integration thermal pinch analysis will define the minimum amount

heating and cooling duties that can be achieved. Those amounts will be the targets that

are required for feasibly implementing the heat exchangers’ retrofitting using the

synthesis of the heat exchanger network and the process’ hot and cold streams. Using the

synthesis of the heat exchanger network to perform the retrofitting for the process hot
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and cold streams. Normally, an inspection technique is preformed to find the best match

between the process streams to meet the minimum heating and cooling duties. Then, all

of the annualized cost data are calculated for the new required units to implement the

heat exchanger synthesis that will meet the minimum heating and cooling utilities. How

much was saved from introducing the new unit as a reduction of heating and cooling

utilities out of that match can also be calculated. Then, the return on investment (ROI) of

the proposed new unit can be calculated and compared with the ROI of the company.

Then, the decision of installing the new unit will be made based on the ROI policy of the

company. Accordingly, the reduced seawater flow rate can be calculated.

The next step is to make a further reduction in seawater flow rate by enhancing

the efficiency of seawater utilization. The least complicated technique to reach that

reduction is to maximize the discharged seawater temperature while complying with the

environmental thermal pollution regulations. Then, the new seawater flow rate from the

heat balance equation can be calculated after the reduction has been made from

increasing the discharged temperature. After the reduction has been achieved in the

seawater flow rate, the revised calculation can be performed by recalculating the reduced

amount of biocide required for the seawater flow rate. The following step is to optimize

the dosage of biocide, while meeting the requirements of the process of the minimum

residual biocide remains in the cooling system to insure the control over any biofouling

development. At the same time, reducing the amount of biocide and its by-products that

are discharged back to the seawater saves the aquatic live. The optimal biocide dosage is

chosen based on mathematical model incorporating the knowledge of biocide chemistry
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in seawater and utilizing the lab data of the biocide kinetics inside the used seawater

because seawater characterization is based on the location. On top of that, the effect of

biocide on bioflim development changes seasonally. This is one of the factors that need

to be considered in modeling the biocide dosages to reach the optimal biocide -dosing

scheme. In order to keep the heat exchangers effectively operating at their optimal

conditions, the maintenance schedule for cleaning needs to be considered in the

evaluation of biocide dosing amount and scheduling.

The previous steps generate cost savings while reducing the biocide usage and

discharge. If the environmental target has not been achieved through all of the previous

steps, end-of-pipe treatment can be used to reach that target. For instance, biocide

removal units (e.g., dechlorination devices) are added to treat the seawater leaving the

plant and to reduce the biocide load prior to environmental discharge. When there are

multiple end-of-pipe alternatives, they should be screened in order to select the cheapest

alternative. The economic driver for scheduling the biocide dosages should also consider

the cost of removing any excess amount of biocide before discharging. Therefore, the

solution should have the most effective cost, including the cost of removing the excess

biocide and cleaning the heat exchangers. The proposed flowchart is shown by Figure

4.2.
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Figure 4.2.  A Flowchart Summarizing the Proposed Procedure Steps.

4.5. BIOCIDE CHEMISTRY

It is necessary to develop a mechanistic model for the reaction pathways

involving the biocide and the various species in the seawater. First of all, start with the

reaction of chlorine when it is added to seawater as a gas or solution of a chlorine

compound (e.g., sodium hypochlorite). Chlorine will dissolve and hydrolyze rapidly

(almost instantaneous) and completely to HOCl (hypochlorous) acid with a reaction rate

constant of 5X1014. When chlorine is added to seawater, it produces hypochlorous acid
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and hydrochloric acid, HCl. The latter is a relatively strong acid, and it will dissociate

completely to a hydrogen ion and a chloride ion, while hydrochlorous acid, HOCl, is a

relatively weaker acid, and it will dissociate slightly to a hydrogen ion and a

hypochlorite OCl-. Since the hydrogen ion appears in this reaction, this equilibrium is pH

dependent. The distribution of the various species (HOCl, OCl-) at equilibrium is a

function of pH. Hypochlorous acid is the most germicidal species, but it is a weak acid

that will dissociate to hydrogen and hypochlorite ions with pKa of 7.5 at 30oC, as shown

in Figure 4.3:

Figure 4.3. Variation of Chlorine Distribution in Seawater with pH (Based on
Oldfield and Todd, 1981).

Cl2+H2OHOCl + HCl Equation 4.1
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HOClH++ OCl- Equation 4.2

In terms of disinfection effectiveness, hypochlorous acid is much stronger

(almost two orders of magnitude) than the hypochlorite ion. Hypochlorous acid will

reach its maximum concentration at pH ranges between 4 and 6 (Hostgaard-Jensen,

Klitgaard et al. 1977). However, the effectiveness of a chemical species as a disinfectant

does not necessary correlate with its effectiveness in removing biofilms. Weakening the

polysaccharide matrix of microbial cells is one way to control the development of

biofilms on the tube surface of heat exchangers. There is experimental evidence that

shows that chlorination is more effective in causing biofilm detachment at pH values

greater than pH 8, where OCl- concentration is more dominant than HOCl (Characklis

W. G. 1979). Naturally, seawater contains organic and nonorganic species.

Of particular importance are ammonia and bromide species. Their concentrations

are varied depending on the nature of the water. For instance, seawater contains bromide

with concentrations as high as 65 mg/l, but it will go as low as a negligible amount in

fresh waters. Ammonia concentrations depend on pollutants of the water. In highly

polluted water, ammonia concentration is as high as 15 ppm, while in unpolluted water

the concentration is lower than 0.05 mg/l. At full strength salinity, seawater ammonia

concentration ranges between 0.001 and 1.0 ppm. Ammonia, as well as other reactive

nitrogenous compounds, will be chlorinated to yield monochloramine (NH 2Cl), and will

react further to produce dichloramine (NHCl2). In freshwater, and a very traceable

amount in seawater, dichloramine will react further with hypochlorous acid, producing
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trichloramine (NCl3). All of the reactions of ammonia and combined chlorine with

hypochlorous acid are made by replacing the hydrogen atom of the ammonia molec ule

with a chlorine atom from a combined chlorine molecule while maintaining its positive

charge according to the following reactions:

HOCl+ NH3  NH2Cl (monochloramine) + H2O Equation 4.3

NH2Cl + HOCl NHCl2 (dichloramine) + H2O Equation 4.4

NHCl2 + HOClNCl3 (trichloramine) + H2O Equation 4.5

These aspects are summarized by Figure 4.4.
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These reactions depend on pH, temperature and contact time, but mainly on the

chlorine to ammonia ratio. All of the free chlorine (hypochlorous acid) will be converted

to monochloramine at pH 7-8 (the fastest conversion is at pH 8.3) when there is 1:1

molar ratio of chlorine to ammonia (5:1 by weight) or less. Then, within the same range

of pH, dichloramine is produced at a molar ratio of 2:1 of chlorine to ammonia (10:1 by

wt.). This reaction is relatively slow, so it may take up to an hour. Also, within t he same

range of pH, trichloramine will be produced at a molar ratio of 3:1 of chlorine to

ammonia (15:1 by wt.) and at equal molar ratios, but at pH 5 or less. The two reactions

producing di- and tri-chloramine are known as the breakpoint reactions where the

chloramines are reduced suddenly to the lowest level. The significance of the breakpoint

reaction is that chlorine reaches its highest concentration and germicidal efficiency (at

1:1 molar ratio of chlorine to ammonia) just before reaching this point. Also, at the

breakpoint, monochloramine and dichloramine react together (which reduces chlorine

residuals) to produce nitrogen gas, nitrate, and trichloramine. Dichloramine decomposes

to an intermediate reactive product (NOH) which consumes mono-, di-chloramine, and

hypochlorous acid, producing nitrogen gas and nitrate. Also, excessive chlorine will

form trichloramine. These processes are shown in the following equations:

NHCl 2 + H 2 O NOH + 2 H + 2 Cl- Equation 4.6

NOH+ NH2Cl N2 + H2O + H+ + Cl- Equation 4.7
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NOH + NHCl2 N2 + HOCl + H + Cl - Equation 4.8

NOH+ 2 HOClNO3
- +3H+ + 2 Cl- Equation 4.9

NCl3 + H2O NHCl2 + HOCl Equation 4.10

The reaction of chlorine into these forms steers it away from the disinfection

function and renders the biocide less effective. Consequently, it is important to

understand such side reactions. Hypochlorous acid rapidly reacts with bromide,

producing hypobromous acid, which can also be produced from the reaction of bromide

with monochloramine, as follows:

HOCl  Br - HOBr  Cl - Equation 4.11

NH2 Cl + Br- + H2O HOBr+ Cl- + NH3 Equation 4.12

where HOBr is hypobromous acid. Additionally, the hypochlorite ion may undergo a

slow reaction with the bromide ion, as follows:

OCl - Br - OBr - Cl - Equation 4.13
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where OBr- is the hypobromite ion. Bromide in seawater may also react directly with

added chlorine to give bromine and chloride:

Cl2  2Br- Br2  2Cl- Equation 4.14

It is worth noting that the presence of ammonia and other nitrogenous

compounds in the seawater will react with HOBr to yield monobromamine (NH2Br),

dibromamine (NHBr2), and tribromamine (NBr3):

HOBr + NH3  NH2 Br (monobromamine) + H2O Equation 4.15

HOBr + NH2 Br NHBr2 (dibromamine) + H2O Equation 4.16

HOBr+ NHBr2  NBr3 (tribromamine) + H2O Equation 4.17



115

The bromine breakpoint happens when the dibromamines are produced rapidly,

leading to the formation of nitrogen gas:

NHBr2 + H2O NOH + 2H+ 2 Br- Equation 4.18

NOH + NHBr2 N2 + HOBr + H+ + Br- Equation 4.19

It is also important to consider the effect of the bromide that naturally exists in

seawater at (50–70 mg/l). Bromide is typically in stoichiometric excess over the chlorine

dosage,  whereas  ammonia  concentration  doesn’t  exceed  2  to  3  mg/L.  The  relative

amount of bromine species to ammonia  species produced is proportional to bromide

concentration over ammonia concentration if we assume  both reactions are rapid and

simultaneous.  In  order  to  understand  the  various  species  interactions  and  reaction

pathways, we have constructed the reaction mechanism shown in Figure 4.5. On these

diagrams, the starting species and intermediate and final by-products are represented in

boxes. The arrows correspond to reaction steps, and the boxes on the arrows represent

the reactive species that contribute to that reaction.
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Figure 4.5. Summarizes the Reaction Mechanism of Chlorine in Seawater.
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4.6. OBJECTIVE FUNCTION FOR OPTIMUM DOSAGE

Based on the proposed holistic approach, all scenarios from the chemical dosing

of treatment and post-treatment, and all of the costs incurred from heating loss due to

fouling and heat exchanger cleaning, have to be incorporated in the decision for any

design or operation changes. The objective function is built on the economic criterion. It

will permit the most feasible solution that would also cost the least to operate the plant.

This approach might allow for biofilm growth and removal by periodic heat exchanger

cleaning at the minimum overall operating cost. On top of that, there are a variety of

options for chemical dosing. For each dosing course, the response of biofouling

development will vary accordingly. Thus, there will be an impact on the other operating

costs. Also, the nitration and the ambient temperature variations through different

seasons of the year will govern the microorganisms’ behavior inside the cooling system.

All of the different aspects have to be integrated to make one plan that considers the

impact on all of the related design and operation changes. The dynamics of the process

itself will add difficulty to selecting the optimal scenario among the options.

The objective function is to minimize the annual total cost that is incurred

directly and indirectly from fouling. It will include the annual operating cost of

chemicals (chlorine) used to treat the cooling water against biofouling, the annual fixed

and operating costs of removing chemical residuals from the effluent water, the cost of

cleaning heat exchanger units, the cost of the loss incurred by biofouling, and the annual

gross profit loss from shutting down the operation for cleaning the heat exchangers:
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Annual Total Cost = Operating Cost of Chemicals to Treat the Water +

Annualized Fixed and Operating Costs of Chemicals for Removing Residuals +

Annual Heat Exchanger Cleaning Cost +

Cost of Heat Loss Due to Fouling +

Gross Profit Loss Due to Shutting Down the Process for Heat Exchanger

Cleaning

AnnualTotalCost  ChemCost Chem RemovCost  HxgCleaningCost  HeatLossCost 

Gross ProfitLoss Equation 4.20










day
LV

: is the volumetric flow rate of water









yr
cyltCyl

: is the number of cleaning cycles per year
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daytOpr

: is the number of days that the process operates per cleaning cycle
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dayt cylOpr

: is the number operating days per year, excluding the shutting

down for cleaning heat exchangers
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ChemCost: is the annual operating cost of chemicals for treating the water
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: is the annualized fixed cost for removing the residuals
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stHeatLossCo : is the cost of the lost heating due to fouling in heat exchangers
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Equation 4.24

   KWQKWQ FldC &ln : is the heat transfer rate for clean and fouled heat exchangers,

respectively.

gCostHxgCleanin
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The heat transfer rate would be decreasing from  KWQC ln to  KWQFld as the

biofilm is accumulating.









KJ
HtCst $

: is the cost of heating

Gross profit is the revenue or sales after deducting all directed costs like

manufacturing expenses, feed, labor, and selling/marketing expenses. The gross profit

loss is how much of the gross profit would have been generated if the production had not

been stopped for heat changer cleaning. The daily gross profit (DGPft) can be calculated

by taking the revenue of a company over a period of time, with no shutdown in

production, and dividing it by the number of days of that period:
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$Pr
Equation 4.25

The relationship between the chemical added to the influence on how it controls

the fouling can be shown in the following model. The biofilm thickness is a function of

chemical concentration and scheduled dosage:

 Dsgd

d

tt
t eeXX    Pr

Pr 0 Equation 4.26

where dtX
Pr : is the biofilm thickness at the end of the period
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0X : is the initial biofilm thickness

 : is the biofilm growth rate constant

 : is the biofilm destruction rate constant

Dsgt
: is chemical dosage schedule in hours per day

The biofilm growth rate constant,  , can be calculated on the plant itself by

letting the biofilm grow for some time with no chemical added to control it. Then, a

graph is generated for the biofilm thickness versus time in days. By using regression

analysis, the growth rate  can be calculated from the exponential kinetic growth. This

kind of experiment can be repeated at different months/seasons to generate  at each

month/season.

The biofilm destruction rate constant,  , is based on the relationship between the

kinetic of biofilm destruction by chemicals and disinfection kinetics of suspended

bacterial systems. Then, a graph is constructed to show different disinfection rate

constants, K , for bacteria that dies off versus different chemical concentration CCh

dosages. The mathematical relation, which can be linear, that represents the relationship

between the rate constants with chemical concentration is:

bCa Ch  Equation 4.27
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The disinfection rate constant, K, has to be c alibrated by  , which can be

determined by dosing the plant that is going to use this model with a certain chemical

concentration for one hour per day and developing a graph from the data collected to

represent the biofilm thickness versus time in days. By using a regression analysis for

the curve, the destruction rate constant can be determined. From the disinfection rate

constant K and destruction rate constant at the same dosage,  can be calculated as

follows:

  Equation 4.28

The chemical residual concentration, C ChRs , at the effluent before discharge or

treatment can be determined by developing a kinetic model of the process. The

consumption of chemicals is due to the reaction with organic and nonorganic

compounds, biofilm, and corrosion. The chemical decay in kinetics in a batch cooling

system (Xin et al. 2003) may be described as follows:

CK
r
W

r
CK

dt
dC

b
hh

WW

Op

Ch 



Equation 4.29

Based on examining numerous experimental results for the kinetics of seawater

treated with a chemical (i.e. chlorine), decay kinetics have been correlated to several

factors, including temperature, pH, and contact time, but mainly on the ratio of chlorine
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dosage to ammonia (Haag 1981). The reduction or decay of chlorine in seawater is due

to reactions with organic and nonorganic compounds in seawater. The chlorine decay

occurs in three stages, starting with a very fast rate during the first the two minutes, due

to a reaction with inorganic reducing agents. The second phase is slower and usually

does not last more than two hours. It mainly involves reactions with the organic

compounds that started in the first phase. Then, chlorine decays continuously via a very

slow rate.

Of particular importance is the dependence on residence time and temperature.

Given the specific path of seawater inside the process, the following model is developed

to account for chlorine decay throughout the process. The seawater goes through a

number of pipes and units. The process is discretized into a number of segments. Each

segment, i, represents a portion of the seawater pipeline or a heat exchanger (e.g., cooler,

coil in a hot unit, cooling jacket of a unit, etc.). Consider the N key species and refer to

their concentrations in segment i as: Nijiii CCCC ,,2,1, ,...,,...,, . For the jth species, in the ith

segment, the following kinetic expression may be written as:

 iiNijiiijji pHTCCCCC ,,,...,,...,, ,,2,1,,1  Equation 4.30

Figure 4.6. shows the typical once-through cooling using seawater and treating

the influent and effluent with chemicals.
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Figure 4.6. Typical Once-Through Cooling Using Seawater and Treatment.

4.7. CASE STUDY

Consider a Urea process described by Bin Mahfouz (2006). The current usage of

a seawater cooling utility is 89.2 MM Btu/hr and it employs a continuous dosage of 0.75

mg/L. For maintaining the appropriate biocide effect, the residual chlorine should be

kept at levels higher than 0.05 mg/L  throughout the system. By carrying out  heat

integration, the cooling utility is reduced to 77.1 MM Btu/hr, which corresponds to about

14% reduction in the biocide usage. Next, shortcut kinetic modeling is used to track the

biocide and its key reaction by-products. The experimental data of Ben Waren (2006) of

residual chlorine at different chlorine dosages at 25oC are used to develop the following

simplified dynamic decay functions for the three continuous dosages (1.0, 5.0, and 10

mg/L, respectively) as:
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)*0015.(
1 *42.0 toeC  Equation 4.31

)*00004.(
2 *80.3 toeC  Equation 4.32

)*00003.(
3 *55.8 toeC  Equation 4.33

where C is chlorine concentration in mg/L and t is the residence time in minutes. A

regression analysis was carried out with the experimental data for a residence time of 20

minutes for the case study. A linear expression was derived to relate the residual chlorine

(Cout) to the chlorine dosage (Cin) through:

52.0*9.0  ChChRs CC Equation 4.34

In order to maintain 0.05 mg/l concentration of residual chlorine at the discharge,

we need a dosage concentration of no more than 0.63 mg/L, which provides 19%

reduction in biocide usage from the current practice, which is 0.78 mg/L (in addition to

the 14% reduction in biocide load already achieved via heat integration.
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5. OPTIMAL SCHEDULING OF BIOCIDE DOSING FOR SEAWATER-

COOLED POWER AND DESALINATION PLANTS

5.1. OVERVIEW

Thermal desalination systems are typically integrated with power plants to

exploit the excess heat resulting from the power generation units. Using seawater in

cooling the power plant and the desalination system is a common practice in many parts

of the world where there is a shortage of freshwater. Biofouling is one of the major

problems associated with the usage of seawater in cooling systems. Because of the

dynamic variation in the power and water demands as well as the changes in the

characteristics of seawater and the process, there is a need to develop an optimal policy

for scheduling biocide usage and cleaning maintenance of the heat exchangers.

The objective of this paper is to introduce a systematic procedure for the

optimization of scheduling the dosing of biocide and dechlorination chemicals as well as

cleaning maintenance for a power production/thermal desalination plant. A multi -period

optimization formulation is developed and solved to determine:

 The optimal levels of dosing and dechlorination chemicals

 The timing of maintenance to clean the heat-exchange surfaces

 The dynamic dependence of the biofilm growth on the applied doses, the

seawater-biocide chemistry, the process conditions, and seawater

characteristics for each time period.
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The technical, economic, and environmental considerations of the system are accounted

for. A case study is solved to elucidate the applicability of the developed optimization

approach.

5.2. INTRODUCTION

In many regions that lack freshwater, it is common to integrate power production

and desalination whereby the exhaust steam from the power-generation turbines is used

to drive thermal-desalination systems (Lijesen, 2007). These cooling duties of the

power-desalination processes are usually provided by seawater cooling. The cooling

duties vary seasonally depending on the need for power and desalinated water. Such

variations determine the various flow rates of seawater required for the cooling system at

throughout the year. As a result of using seawater for cooling, biofilms grow on the heat-

transfer areas of the process heat exchangers (de Beer et al., 2006). Such growth is

impacted by the varying temperature of the seawater and the process and the

characteristics of the seawater The biofilm negatively affects the performance of the heat

exchangers as it lowers the overall heat transfer coefficient. Therefore, the incoming

seawater is typically treated with a biocide to control the growth of the biofilm. The

extent of biocide dosage should be tied to the seawater characteristics, the cooling tasks,

and the need to maintain the level of biocide and biocide byproducts within an

environmentally acceptable level prior to discharge back into the sea.

This paper is aimed at identifying optimal scheduling policies for the timing and

dosing levels of biocides used for seawater cooling of power and desalination plants.

The time-based variations in the characteristics of the seawater, the process, and the
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demands for power and desalinated water are addressed in the optimization scheme.

Seasonal maintenance is also considered in the optimization framework. The technical,

economic, and environmental considerations are accounted for and traded off.

Seawater stimulates the growth of aquatic species that are attached to solid

surfaces by using planktonic larvae for spreading and growing films that causing fouling

of heat-exchanger surfaces. Electric power plants require the usage of large amounts of

water to run electric turbines by steam. Accumulating slime on condenser tubes consists

of planktonic of young barnacles and mussels (Jenner et al., 1998). The large area of

pipelines inside heat exchangers makes it a good environment for bacteria to attach and

grow. Biofilm consists of single or multiple species of microorganisms, organic, and

inorganic solids distributed heterogeneously on the attached surface (Characklis et al.,

1983; Characklis et al., 1982). The development of biofilm depends on nutrients and the

oxygen content of the water, as well as the cell metabolism. Fouling of heat exchangers

at power plants can be referred to as trash, biological microfouling, biological

macrofouling, siltation, and scaling. Other factors that influence biofilm developm ent

are the physical conditions of the seawater flowing in the cooling system such as water

flow and temperature, and the nature of the surface of the tube (Sriyutha Murthy et al.,

2004). Some of the problems that are caused by biofouling in the cooling systems are:

1) Increased rate of corrosion of the tubes by creating a potential charge

difference across the surface.

2) Increased heat transfer resistance due to fouling.
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3) Increased friction resistance of the seawater flow by changing the tube

surface’s roughness when the biofilm thickness is higher than the

monolayer and consequently the flow rate of seawater is reduced (Cloete

et al., 1998).

Controlling the growth of biofilm in industrial cooling systems can be achieved by using

chemical treatment that is primarily intended to:

1) Reduce the number of microbes by using biocides

2) Remove microbes by using:

• Oxidizing biocides (e.g. chlorine) by weakening biofilms.

• Synthetic dispersants

• Enzymes

Biocides, also called antimicrobial agents, aim to reduce the growth of microbes. There

are two types of biocides:

1) Antibiotics which are formed from the prokaryotic organisms

2) Antiseptics, disinfectants, sanitizers or biocides which do not naturally

exist

Biocides are commonly used in controlling biofilm development. It is important to

consider these essential aspects in treating seawater with a biocide:

1) Identify the type of organisms in the seawater

2) Use the right biocide or combination of biocides

3) Determine the required concentration of biocide and dosing scenarios

4) Observe the growth of the microorganisms and their attachment
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5) Determine the contact time required for killing the bacteria

Biocides act by putting the components in the bacterial cells under stress to hinder their

functionality.

Chlorine and chlorinated compounds are typically used as biocides. Chlorine is

very toxic and human exposure for more than an hour to chlorine fumes with

concentration as 4 ppm or higher can cause respiratory problems. Chlorine can be

generated by:

 Electrolysis of saline water, typically sodium chloride, to produce

chlorine gas

 Salt process which causes the reaction between sodium chloride and nitric

acid

)()(3)(3)( gSss HClNaNOHNONaCl  Equation 5.1

 Oxidation of hydrochloric acid

 Electrolysis of hydrochloric acid solutions.

Chlorine in pure water will hydrolyze immediately and completely to form

hypochlorous acid (HOCl) and hydrochloric acid (HCl) (Bin Mahfouz, 2010).

HClHOClOHCl  22 Equation 5.2
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 OClHHCl Equation 5.3

The hydrochloric acid is a strong acid that will dissociate into chlorine and

hydrogen ions. Whereas, hypochlorous acid is a relatively weaker acid that will

dissociate slightly into hydrogen and hypochlorous ions. The concentration distribution

of hypochlorite ions and hypochlorous acid at equilibrium is pH dependent. Chlorine

demand is the difference between the amount of chlorine added and the available

chlorine, either as free or combined chlorine. The consumed chlorine is due to the

oxidation or substitution reactions with organic and inorganic species like: H2S, Fe2+,

Mn2+, NH3, phenols, amino acids, proteins, and carbohydrates. After the amount of

chlorine has been consumed according to the demand, the rest will be available for

oxidation to treat the water. The available chlorine is computed from a half-cell reaction

of reducing chlorine gas (Cl2) to a chloride ion by consuming two electrons. Only a half

mole of chlorine gas will dissociate, forming one mole of chloride ion.

  eHHOClOHCl 2222 22 Equation 5.4

In saline waters, bromide which exists naturally at a much higher concentration

(about 65 ppm) and ammonia will compete to react with hypochlorous acid.

Chloramines are formed from the reaction of hypochlorous acid with ammonia, forming

monochloramine (NH2Cl), dichloramine (NHCl2), and trichloramine, which is also
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called nitrogen trichloride (NCl3). The formation of chloramines depends on water

temperature, pH, and the relative amount of chlorine added to the amount of ammonia

available prior to treatment. Typically, at higher pH (around 7 and above) there is a

higher formation of monochloramine (NH2Cl). Whereas, at lower pH (around 4 and

lower) the formation of trichloramine is higher (Bin Mahfouz et al., 2006).

OHClNHNHHOCl 223  Equation 5.5

OHClNHNHHOCl 223  Equation 5.6

OHNClNHNHCl 2332  Equation 5.7

The breakpoint reaction of chlorine is the reaction that satisfies the demand and

eliminates all the ammonia, including nitrogen-containing organic compounds, and

produces free available chlorine. The weight ratio of chlorine to be added to the

available ammonia nitrogen should be 8:1 or higher to ensure formation of free available

residual chlorine. These types of reactions have a higher rate at high pH (7-8) and at high

temperatures. The first immediate consumption of chlorine is made by the immediate

demand associated with non-nitrogenous compounds. Then, if there is enough chlorine,

the reaction with ammonia will form chloramines. After consumption of all of the

ammonia nitrogen, an extra amount of chlorine is added to form free available residual
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chlorine. Hypochlorous acid reacts with bromide, producing hypobromous acid, by

replacing the chlorine atom with bromine. Hypobromous acid will react with ammonia

in the same way as hypochlorous acid, producing monobromamine (NH2Br),

dibromamine (NHBr2), and tribromamine, or nitrogen tribromide (NBr3).

  ClHOBrBrHOCl Equation 5.8

OHBrNHNHHOBr 223  Equation 5.9

OHCBrNHNHHOBr 223  Equation 5.10

OHNBrNHNHBr 2332  Equation 5.11

Figure 5.1. is a schematic representation of the key reaction steps in the

chlorination of seawater. These reactions may happen concurrently, depending on

seawater characteristics (Bin Mahfouz et al., 2009). Monochloramine (NH2Cl) formation

will dominate over HOBr formation when bromide concentration is 65 ppm and

ammonia is above about 0.4 ppm. At higher concentrations of ammonia, NH2Cl will

dominate. On the other hand, in relatively uncontaminated seawater, the ammonia

concentration is very low and the bromide concentration is usually higher than the

chlorine dose, which results in a residual that consists mainly of HOBr. The most
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important products of chlorine reaction with seawater are NH2Cl, HOBr, and the

bromamines (Lietzke et al., 1979).

Figure  5.1.  The  Primary  Inorganic  Reaction  Pathways of  Chlorine in Saline
Waters.
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Chlorine is typically added at a concentration of 1.0 ppm to control biological

growth in receiving water at the basin before entering the cooling system (Eppley et al.,

1976). Chlorination is the process of adding chlorine to the treated water to kill germs. It

is highly effective at pH ranges of 6.5–9.5. Using chlorine is widespread in the industry

because of its high reliability, low cost, and easy application. Addition of chlorine will

produce hypochlorous acid (HOCl), which has the disinfection effect on both bacteria

and viruses. Hypochlorous acid will react with all types of biological molecules because

it is non-selective. The existence of ammonia will reduce the effectiveness of the

chlorination process because ammonia will react with hypochlorous acid, producing

inorganic and organic chloramines. Hypochlorous acid aimed to control the growth of

biofilm but it also will attack the cell membrane of Escherichia coli, causing chemical

and physical changes of the porosity and leakage of macromolecules. Also, the residual

chlorine can be simply measured to assess the required concentration of the dosing to

avoid excessive dosing and regrowth of the bacteria. A concentration of residual chlorine

is as low as 1.5 mg/l can allow bacterial regrowth. The negative aspects of chlorine are

that its major byproducts (such as HOBr, chloramines and bromamines) can react with

organic substances, such as humic acid and fulvine acid, that naturally exists in seawater,

producing organohalogenated, hazardous, compounds such as chloroform, and

trihalomethanes. Increase in seawater temperature will inhibit carbon uptake, which will

consequently stimulate the development of biofilms. But if the temperature gets too high,

it will decrease microbial activity and eventually kill the microbes. On the other hand,

microbes can be destroyed by chlorination. The physiological activities of the algae
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population are increased during the summer (Morgan et al., 1969). The most accurate

and sensitive method to measure the chlorine residual is the amperometric method. The

potentiometric method is rapid and sensitive to be used in automated and in-line

observations (Eppley et al., 1976). Intermittent chlorine dosing was used in plate heat

exchangers at the Ocean Thermal Energy Conversion power plant on the east coast of

India. This intermittent chlorine dosing at a residual concentration of 1.2 ppm showed a

significant reduction in biofilm thickness, bacterial density, and diversity (Macdonald et

al., 2008). When the primary problem of fouling is slime formation or microfouling, the

intermittent dosing of chlorine has been the most commonly used technique to fix it.

But if macrofouling is the main problem, then continuous dosing of chlorine

proves to be more effective (Jenner et al., 1998). Another technique of chlorine addition

includes a pulsed dosing, which has proven to give better results in controlling

biofouling with a 36% reduction in the mass of chlorine applied. An example of this

kind of result was shown in a 10 month operation at Qatargas, the first major liquefied

natural gas (LNG) company located in Doha, Qatar. The pulsing of chlorine dosing

resulted in reducing the power consumption, as well as operational and maintenance

costs. It also improved the discharged seawater quality by reducing chlorination by-

products. In 2005, the Qatari Ministry of the Environment lowered the allowable

discharge concentration of free residual halogen from 0.1 to 0.05 mg/l. The

environmental agencies’ regulations for the biocide residual concentration discharge will

add complexity to the industrial development in reducing the environmental footprint of

cooling seawater systems. End- of-pipe treatment can be used to protect the environment
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after optimizing the design of the cooling system and the waste heat recovery of the

plant. Concentrations of residual biocide as low as 0.05 mg/l cannot assure its

effectiveness in controlling biofilm development (Macdonald et al., 2008).

Chlorine used as a biocide has a negative impact on the environment not only

because of its toxicity, but because of its by-products (Fayad et al., 1987). A great

portion of chlorine is consumed in oxidation reactions with organic and inorganic

compounds that naturally exist in seawater, but a small fraction can produce hazardous

compounds like trihalomethanes, chloroform, bromodichloromethane,

dibromochloromethane and bromoform. Fayad et al. (1987) conducted a study on the

chlorination of Gulf seawater of the Halfmoon Bay beach off the west coast of Saudi

Arabia and the results are shown in Table 5.1. The major by-product compounds were

bromoform (CHBr3) and chlorodibromomethane (CHC1Br2).

Table 5.1. Substance of Seawater Samples Collected at Halfmoon Bay Beach in
Saudi Arabia (Fayad et al., 1987).

Halfmoon Bay Beach Seawater Content
Substance (ppm)

Organic content 10

bromide ion At the beach 120
Open ocean 65

Total oxidant demand (chlorine) 0.12

5.3. PROBLEM STATEMENT

Consider a power plant which is integrated with a thermal desalination system

and uses seawater for cooling. The demands for power and desalinated water vary over
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the year. Therefore, the process operation and the used rates of seawater change

accordingly. The characteristics of seawater vary throughout the year leading to dynamic

variations in the growth of biofilms on the surfaces of the heat exchangers. Biofilm

growth is controlled through the use of biocide and regular maintenance. It is desired to

identify an optimal scheduling policy for the use of biocide and heat-exchange

maintenance to minimize the cost while accounting for the technical performance of the

plant and the environmental discharge of the biocide and its byproducts.

The aforementioned problem statement entails several challenges to be addressed

including:

 How should the biocide dosages be varied during the year?

 How does the biocide react and decay in the dosing basin and throughout

the process?

 How  is  the  biofilm  growth  in  several  exchangers  related  to  biocide

usage, reactions, and the characteristics of the process and the seawater?

 How to account for the heat-exchanger performance throughout the

process as a function of the time?

 When is maintenance necessary?

 How to meet the environmental regulations on the discharge of the

biocide and its byproducts throughout the year?

The next section introduces a systematic approach to addressing these challenges.
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5.4. APPROACH

The cooling system in the plant is divided into Ni segments. Each segment (e.g.,

a pipeline or a heat exchanger unit) is denoted by the index i. The annual operation is

discretized into Nt time intervals and t is used to designate an operational period. The

coolant (seawater) average daily temperature varies depending on the time of the year.

The variations in the power and water demand, the plant, and the seawater characteristics

affect the required amount of biocide for treating the seawater before it enters the

cooling system. Therefore, the seawater flow rate (
SW

tF ) and biocide dosage (
B

tF ) are to

be optimized over the Nt operational periods. The biofilms growth is tracked over time

for all the process segments (Ni) and is related to the biocide usage and decay

throughout the process. Figure 5.2 is a schematic representation of the discretized

process segments with the time-based variations in seawater flow rate and biocide usage

and discharge.
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Figure 5.2. Representation of a Once-Through Cooling System.

Figure 5.2. sketches the cycle of the reaction of the biocide inside a once-through

cooling system. It starts by adding the biocide solution to seawater in a basin before it

enters the cooling system. Seawater is pumped from the body of the sea and is screened

from large objects to be ready for cooling use. The biocide reacts and decays depending

on many factors including residence time, temperature, initial concentration of biocide,

and characterization of the seawater, including pH, salinity, and nutrients.

The annual operation is discretized into Nt time intervals (where t = 1,2, …, Nt).

Within each interval (period), t, the operation is taken to be the overage over that period.

The number of intervals is selected in a way that balances accuracy (e.g., the intervals

must capture seasonal variations, action points such as changes in biocide dosage,



142

operational variations such as increases in flow rate of product and/or seawater) versus

computational effort (size of the optimization problem and computing time).

Let us use the index j to denote the key components to be tracked in the system.

These include the biocide (given an index j = 1) as well as the biocide residuals (which

impact biofouling development) and other byproducts (which also contribute to the

consumption of biocide, but do not affect the biofilm). These residuals and byproducts

are described by the index j (where j = 2, 3, …, Nc). The following terms are defined:

Time Intervals:

N t : the annual operation time is discretized into Nt time intervals.

t : is the time interval

Key Components:

j : is an index denoted to a key component, j=1 for the biocide.

NC : is the number of key components tracked in the cooling system.

Process Segments:

i: is an index denoted to a process segment, i=1 for the basin.

SN : is the number of the process segments (a portion of pipeline or a heat exchanger) in

the cooling system.
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Seawater Influent:

SW
tjC , : Composition of the, j, key component of the biocide in fresh seawater as a

function of, t, time interval.

SW
tF : Flow rate of fresh seawater into the basin as a function of, t, time interval.

SW
tpH : the pH of the seawater at the influent at time interval t.

SW
tT : the temperature of the seawater at the influent at time interval t.

Biocide Storage:

B
tjC ,1 : Composition of biocide in the added biocide solution from the biocide storage

into the basin as a function of, t, time interval.

B
tF : Flow rate of the biocide solution into the basin as a function of, t, time interval.

Basin:

sin
,

Ba
tjC : Composition of the, j, key component of the biocide in the basin as a function

of, t, time interval.

sinBa
tpH : the pH of the treated seawater at the basin at time interval t.

sinBa
tT : the temperature of the treated seawater at the basin at time interval t.

sinBa
t : is the residence time at the basin at time interval t.

sinBa
tV : Volume of the water inside the basin as a function of, t, time interval.
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Inlet of Cooling System:

i = 1.

Process Segment (i):

tjiC ,, : Composition of the, j, key component of biocide in the process segment, i, of the

cooling system as a function of, t, time interval.

tiF , : Flow rate of the treated seawater through the process segment, i, of the cooling

system as a function of, t, time interval.

tipH , : the pH of the treated seawater inside the process segment, i, of the cooling system

at time interval t.

tiT , : the temperature of the treated seawater inside the process segment, i, of the cooling

system at time interval t.

ti , : is the residence time inside the process segment, i, of the cooling system at time

interval t.

ti

ti
ti F

V

,

,
, 

tiV , : Volume of the seawater inside the process segment, i, of the cooling system as a

function of, t, time interval.
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Outlet of Cooling System:

i = Ns-2

End Of Pipe Treatment (EOP):

Chem
tN s

C ,1 : Composition of the key component of chemicals at the end of pipe treatment

unit as a function of, t, time interval.

i = Ns-1

Chemical Storage:

Chem
tC : Composition of the chemicals out of the storage and going to the end of pipe

treatment unit as a function of, t, time interval.

Chem
tF : Flow rate of the chemicals to the end of pipe treatment unit as a function of, t,

time interval.

Seawater Effluent:

Chem
tNs

C , : Composition of the key component of chemicals out to the environment as a

function of, t, time interval.

i = Ns
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Typically, the flow rate of the treated seawater is significantly larger than the

flow rate of the biocide solution, i.e.,

tFF B
t

SW
t  Equation 5.12

The flow rates of the incoming seawater and of the treated seawater leaving the

basin are taken to be equal to avoid any accumulation of water at the basin. Therefore,

biocide flow rate can be neglected in the calculations of the residence time and of the

treated seawater flow rate leaving the basin. The component material balances for any, j,

key component tracked species at any process segment, i, of the cooling system at any, t,

time interval are given by:

t
FpHTCCV

pHTCFCF
BC

ti
Ba
t

Ba
t

Ba
tj

Ba
tj

Ba
t

Ba
t

SW
t

SW
t

SW
tj

SW
t

B
tj

B
t

tj
Ba

tj 
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Equation 5.13

where  j ,t is the function characterizing the reactive model of key component species j

within the basin at, t, time interval. For instance, if the basin is modeled as a completely

mixed system, the component material balance for the biocide is given by:

tVrCFCFCF Ba
t

Ba
ttti

SW
tj

SW
t

B
tj

B
t  

sinsin
,1,1,1,1.1,1 Equation 5.14

where
sin
,1

Ba
tjr  is the rate of depletion of the biocide in the basin per unit volume.
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Within the process, given the specific path of seawater inside the process, a

“path” model is developed to account for the biocide reaction kinetics throughout the

process. The seawater goes through a number of pipes and units. The process is

discretized into a number of segments. Each segment, i, represents a portion of the

seawater pipeline or a heat exchanger (e.g., cooler, coil in a hot unit, cooling jacket of a

unit, etc.). Consider the Nc key species and refer to the concentration of key component j

in segment i during period t as Cj,i,t . For the jth species, in the ith segment, and at tth

period, the following kinetic expression may be written as:

  tipHTVCCCFC tititititNpitjpitpititjitji
C


 ,,,,,,...,,...,, ,,,,,,,,,1,,,,,, 

Equation 5.15

where the subscript, i-p, is referring to the previous process segment of the cooling

system before process segment i. The thickness of the biofilm in the i th segment at the

end of the tth period is given by the following equation:

Equation 5.16

where is a binary integer variable defined as:

= 1 if maintenance/cleaning is carried out at the end of period t-1

= 0 if no maintenance/cleaning is carried out at the end of period t-1
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The effect of the binary in the previous equation is to set the thickness of the

biofilm to zero (i.e., a clean surface) after the cleaning is carried out. The biofilm growth

function is described in terms of the compositions of the biocide and residual

byproducts, as well as the average temperature and pH of the seawater in segment i.

In addition to the economic aspects of determining when cleaning is scheduled,

there is also mandatory cleaning if the biofilm thickness reaches a maximum allowable

level:

tidd titi  ,max
,, Equation 5.17

tid , : the biofilm thickness at process segment i and at time interval t.

max
,tid : the maximum allowable biofilm thickness at process segment i and time interval t.


tid , : the highest level of biofilm thickness at process segment i at time interval t.

The biofilm thickness grows seasonally up to a certain level defined as , This

thickness depends on the biological and process conditions. The loss in performance of

the ith heat exchanger resulting from the cumulative formation of the biofilm at the end

of period t is given by:

Equation 5.18
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is the function characterizing the heat transfer reduction model in the process

segment i at, t, time interval.

The objective function is to minimize the total annualized cost incurred from

biofouling development. That cost includes all direct and indirect costs.

Annual Total Cost = Annual Cost of Biocide to Treat the Seawater

+ Annual Costs of Chemicals at EOP Treatment Unit for Removing the effect

of Biocide Residuals

+ Annual Costs of Heat Exchanger Cleaning, Heat Loss Due to Fouling, and

Gross Profit Loss Due to Shutting Down the Process for Heat Exchanger Cleaning.

Mathematically, the objective function is described by:

Equation 5.19

The cost of biocide during period t is expressed as:

),(_ B
t

B
t

B
t CFBiocideCostCost  Equation 5.20

The cost of end-of-pipe treatment during period t is given by:
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),...,,...,,,,(_ ,,2,,2,1,2,2 tNNtjNtNtNi
Chem
t

Chem
t

EOP
t cssss

CCCFCFEOPCostCost 

Equation 5.21

Loss of production can be defined as loss due to reduction in heat transfer in the

heat exchanger units, as well as the loss of production due to shutting down the process

for maintenance. The cost of loss of production is given by:

),(_ ,, titi
LP
t IQLPCostCost  Equation 5.22

Environmental and quality constraints:

In addition to the aforementioned technical constraints, the minimization of the

cost objective function is also subject to environmental and quality constraints from the

process and from the environment. There is a minimum requirement from the process

technical specification of the plant on the concentration of biocide residual to insure

minimum biofouling development. Also, another constraint on the thickness of biofilm is

to not exceed a certain thickness,
max
,tid .

Tech
tjC ytjN s ,,,2 

Equation 5.23
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max
,, titi dd  Equation 5.24

The concentration of key component j of biocide residual must comply with the

environmental regulations. Also, the concentration of chemicals added to reduce the

effect of the biocide residuals is regulated by the environmental requirements. Hence,

Env
tjC ytjN s ,,, 

Equation 5.25

Env
ChemC yChem

tjNs ,,

Equation 5.26

5.5. CASE STUDY

Consider an integrated power production/desalination plant. The power plant has

a maximum capacity to produce 427 MW of electricity using natural gas and turbines

with steam extraction. Figures 5.3. and 5.4. provide the schematic flow diagrams of the

power/desalination   plant  and  the  cooling   system.  The  multi-stage   flash  (MSF)

desalination plant has a maximum production capacity of  11,400 m 3/hr of desalinated

water from three units, each producing 3,800 m3/hr. The seawater ambient temperature

varies from 24oC to 35oC. The maximum allowable temperature difference of seawater

from the inlet to the outlet of the plant is 8oC. The total seawater intake is designed to

take a capacity of up to 67,500 m3/hr in four pipes of 2.2 m diameter and about 1.2 km
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long. For maximum capacity, the flow rates of seawater used for the MSF units cooling

system,  the steam turbines, and the steam generators (boilers) are  36,822, 12,600, and

1,800 m3/hr, respectively (Abdul-Wahab et al., 2009).

Figure 5.3. An Overall Representation of the Power/Desalination Plant.

The seawater cooling system of the power desalination plant is simplified and

shown in Figure 5.4.  (Abdul-Wahab et al., 2009). The production of power and the

usage of seawater cooling vary monthly as shown by Table 5.2 and Table 5.3.
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Figure 5.4. The Cooling System for the Case Study.

To meet the environmental regulations for the content of the biocide and its

byproducts in the discharged seawater, there are several options for dechlorination.

These include carbon adsorption and reactions with sodium dioxide, sodium

metabisulfite, sodium bisulfate, or hydrogen peroxide. Sodium metabisulfite and sodium

bisulfate are mostly used at smaller facilities due to the difficulty in controlling them.

Hydrogen peroxide is not commonly used in the industry due to safety handling issues.
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Table 5.2. The Cooling System for the Case Study.

Base-Case Amount of Seawater Used in the Cooling System of the
Power/ Desalination Plant

Plant
Section Unit Number

of Units

Seawater
used/Unit

Total Seawater
usage Heat Load

m3/Hr m3/Hr MM Btu/hr

Desalination MSF
3

12274 463

12274 463
12274 463

36822

Power
Boilers

2
900 34

900 34
1800

Steam
Turbine 1 12600 12600 476

Total 51222
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Table 5.3 Summary of the Solution Results of the Case Study.

Monthly Power Supply Cooling Seawater Usage (m3/hr)

Month (%) of
Cap. (MW)

MSF
Unit Boiler Steam

Turbine Total

Jan 75 322 27750 1356 9496 38602
Feb 70 297 25615 1252 8765 35632
Mar 81 347 29884 1461 10226 41571
Apr 84 359 30952 1513 10591 43056
May 93 396 34154 1669 11687 47510
Jun 93 396 34154 1669 11687 47510
Jul 99 421 36288 1774 12417 50479

Aug 100 427 36822 1800 12600 51222
Sep 94 402 34687 1695 11869 48252
Oct 93 396 34154 1669 11687 47510
Nov 90 384 33086 1617 11322 46025
Dec 81 347 29884 1461 10226 41571

Monthly
Average 88 374 32286 1578 11048 44912

Based on the proposed holistic approach, all scenarios from the biocide dosing

for seawater treatment and post-treatment, and all of the costs incurred from heating loss

due  to  fouling  and  heat  exchanger  cleaning  are  incorporated  in  the  optimization

formulation. The objective function is the total annualized cost incurred directly and

indirectly from fouling. This objective function includes the annual operating cost of the
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biocide (chlorine) used to treat the cooling seawater against biofouling, the annual cost

of removing chemicals used for removing residuals from the effluent seawater before

discharge, the cost of cleaning the heat exchanger units, the cost of the loss of production

incurred by biofouling, and the annual gross profit loss from shutting down the plant

operation for cleaning the heat exchangers. The objective of the optimization model here

is to directly minimize the cost for treating seawater for cooling purposes and any loss

occurred due to biofouling development from an untransferred heat load below the

required cooling duty due to the growth of the biofilm which may affect the yield of the

plant. Also, the objective function considers the cost of maintaining the cooling units on

a regular basis throughout the year to clean the heat-transfer surface of the coolers.

The annual operating time is discretized into Nt = 365 time intervals (i.e., the

optimization formulation is developed on a daily basis). The key components are tracked

in the cooling system for an accumulation of biocide residuals. The cooling system is

discretized into numbers of segments i = 1, 2,…, Ns. Those segments are portions of the

pipelines or heat exchanger units.
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The total annual cost of biocide is the summation of the volumetric flow rate of

biocide
B

tF over all time intervals Nt, multiplied by the duration of each time interval  .

This total is multiplied by the cost of biocide ($/m3).

Total annual cost of end-of-pipe treatment is calculated as follows:

ChemicalsFCost
tN

t

Chem
t

EOP
t 








  

Equation 5.29

Total annual cost of end of pipe treatment is equal to the summation of the

volumetric flow rate of chemicals (m3/hr) multiplied by the duration of each time

interval over all time intervals, Nt. The total summation is multiplied by the cost of

chemicals ($/m3).

Total annual cost for production loss due to heat reduction in heat exchangers

caused by fouling and shutting down the process for heat exchangers cleaning is given

by:

tenanceMaCost i
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L
t

S








int
1 Equation 5.30

where Maintenancei is the cost for maintaining process segment I with a loss of

production due to the reduction in heat transfer and being out of the process for cleaning.

The total annual cost for heat exchangers’ maintenance is the summation of the
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multiplication of binary number Ii,t by the cost of the maintenance of a single process

segment over all process segments Ni and over all time intervals Nt.

Determining the amount of residual chlorine [CCl2 ] after time t in minutes

requires the result of the kinetic study depending on water quality and the time of the

year. Also, for different temperatures, the changes in decay rate constants are considered.

The models of Wang et al. (2008) and Xin et al. (2003) were used in developing

the kinetic model for chlorine. The general form of chlorine decay in seawater is as

follows:

C = A e-kt Equation 5.31

It was considered that the first chlorine decay was very rapid in the first few minutes

(Characklis et al., 1980). After the first five minutes, the data are fitted to the exponential

form shown above (Xin et al., 2003).

The decay of biocide inside the cooling system for this case study follows this

function:

titk
tjpitji eCC ,*

,,,,


 Equation 5.32

where:
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tijC ,, :is the concentration of biocide key component j at process segment, i, at time

interval t in (mg/l).

tpijC ,,  :is the concentration of biocide key component j at process segment, i-p, which

precedes process segment i at time interval t.

The decay constant (1/min) has a proportional relationship with temperature

(Nebot et al., 2007). As temperature increases, the decay of chlorine increases following

this equation:

titi Tk ,, * Equation 5.33

where T is measured in Celsius

tj , :is the disinfection kinetics rate constant for key component j at time interval t.

: is the coefficient of the decay constant of biocide by-products

)min./1(108.6 4 Co .

tiT , the temperature in (oC) at process segment i and time interval t.

Data for the residual chlorine is in seawater at temperature range from 20 to 24C

were extracted from Hostgaard-Jensen et al. (1977).

tpiSW
p

SW
ti
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ti T
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 Equation 5.34
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tpiT , :is the temperature of seawater at process segment i-p, preceding segment i at time

interval t

tiQ , : the heat transfer at process segment (in the heat exchanger) i and at time interval t.

q
tiQ Re

, :is the heat transfer required for process segment i at time interval t (Btu/hr).

The heat transfer rate would decrease from ti
q

ti QtoQ ,
Re
, as the biofilm

accumulates. The required output of the plant required an operational schedule to

maintain certain operational conditions. Thus, the heat load required to be transferred at

each process segment (in the heat exchanger) is assigned accordingly. This amount of

heat load for each process segment i at time interval t is called
q

tiQ Re
, . At the same time,

the heat load transferred, tiQ , , has to be within the designed margin after any reduction

due to fouling according to the equation below (Nebot et al., 2007). From the percentage

reduction in heat transfer in the heat exchanger, the heat transferred can be calculated

from the designed value.











100
..%

1* ,Re
,,

tiq
titi

RTH
QQ

Equation 5.35

therefore, tiQ , is the actual heat load transferred at unit i and time interval t, which has to

be less than or equal to the unit i is designed for.
Des
iti QQ , where %HTRi,t is the

percentage of heat transfer reduced at heat exchanger i at time interval t. The reduction
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in the designed heat transfer of a heat exchanger can be related to the biofilm thickness.

However, biofilm thickness is not directly related to the reduced heat transfer because

biofilm density changes with time. But, for simplicity in this model, it is considered that

t at heat transfer reduction is calculated from biofilm thickness.

titi dHTRductionerHeatTransf ,, *%Re%  Equation 5.36

tiRTH ,..% :is the percentage of heat transfer reduced for process segment i and at time

interval t.

 m /12156.0 Equation 5.37

 : is the coefficient in the heat transfer percentage equation.

The biofilm thickness increases over time by accumulating on the tubular surface

of the heat exchangers (Turakhia et al., 1984). The biofilm thickness depends on the net

between the rates of attachment, growth, and detachment, as well as the destruction rate

of biofilm due to the biocide effect (Sriyutha Murthy et al., 2004; Morgan et al., 1969).

This can be described by the following equation (Bryers et al., 1982):

   )(*
,

,,, /1    tititi eedd i
iti Equation 5.38
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titi T ,,  Equation 5.39

di,t= net development from growth and destruction

ti , : is the biofilm growth rate constant for process segment i at time interval t (1/min)

(phi) ).min/1(10*909.2 7 Co

: is the coefficient of biofilm growth rate constant [1/ (min.oC)].

 : is the duration of a single time interval (day).
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, Equation 5.40

ti , : is the biofilm growth rate constant considering the growth from the previous time

interval for process segment i and at time interval t (min).









min
0225.0 m

Equation 5.41

where  is the coefficient of biofilm growth from the previous time segment.

When the biofilm thickness reaches the maximum allowable thickness, a decision

for maintaining that unit has to be made. Here, this has been accounted for by

multiplying the maximum allowable thickness by a binary number Ii,t. When biofilm
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thickness di,t-1 of unit i at time interval t-1 exceeds the allowable level di
Max , then Ii,t for

unit i and time interval t-1 is equal to zero. Otherwise, Ii,t is always equal to one. The

maximum allowable level of the biofilm thickness has to be less than

id :

 Max
iti
Max
iti

ddwhen
ddwhentiI 





 1,

1,

0
11.

Equation 5.42

   ti
Max
i

Max
ititi

Max
i IdddId ,,, 1*10000*0 

 Equation 5.43

 i
Max
i dd Equation 5.44

mdi 250 Equation 5.45

ti , : is a binary number for making decisions in order to maintain process segment i at

time interval t.

The destruction rate of the biofilm due to the biocide depends on the biofilm

thickness of the same unit i at the pervious time interval t-1 and the concentration of

biocide residual coming from the previous process segment pi at the pervious time

interval t-1 (Platon et al., 1985).
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1,, *  tpti i
C ,  min/1: Equation 4.56

 






 

lmg /.min
110*829.2 4

Equation 4.57

ti , : is the biofilm destruction rate constant for process segment i and time interval t

(1/min).

 : is the coefficient of biofilm destruction rate constant (Gamma) of biocide residual

Additional constraints used in the case study: 

 The maximum allowable biofilm thickness is 70um.

 Cleaning (maintenance) of heat exchangers is only considered at the end

of each month and no more than three maintenances are allowed per year.

5.6. RESULTS

The optimization formulation for the 365 daily periods was solved

simultaneously using the software LINGO. The key optimization results are summarized

by Figures 5.5. and 5.6. as well as Table 5.4., which show the amount of biocide and

chemical dosing each month as well as the total annual cost for treating seawater before

it enters the cooling system and before it is discharged back to the sea. The importance

of the results emerging from this work is holistic approach with respect to the whole

plant and the simultaneous consideration of the whole annual operation. The discharges

conform to the environmental regulations after enforcing the new limit which reduces

the allowable residual chlorine limit from 0.10 to 0.05 ppm. The biocide dosing was on a
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continuous dosing on monthly basis instead of semiannual basis. The focus was on an

optimal biocide dosing to meet the minimum technical process requirements. The end-

of-pipe treatment was used to treat the biocide residual beyond the environmental

regulations. In most of the time, the average biocide residual is below 0.002 ppm at the

discharge. Heat-exchanger cleaning was carried out at the end of July. All these results

were achieved while the total cost of the biocide and the chemicals used for the end-of-

pipe treatment were reduced from $ 4.9 MM/yr to $3.5 MM/yr.

Figure 5.5.  Monthly Average Biocide and EOP Chemical Dosing.
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Figure 5.6. Monthly Cost of the Optimal Dosing of the Biocide and EOP Treatment
Chemical.

Table 5.4. Table Showing the Summary of the Solution Results of the Case Study.

Biocide Used Maintenance
Chemicals
Used for

Dechlorination

Cooling
Seawater Used

Total
Cost

M3/yr MM
$/yr #/yr MM

$/yr m3/yr MM
$/yr m3/yr MM

$/yr
MM
$/yr

600 1.620 1 0.3 523 1.621 394 0.039 3.541

There are many operating practices that impact the efficiency, performance, and

cost of the plant. Adding more than the required amount of biocide would result in a

higher performance of the heat exchanger units, but it would require additional treatment

for seawater before it is discharged. Using less than the optimal doses of the biocide lead

to reduction in heat transfer and process performance. Furthermore, there is a critical
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need to determine the timing of the cleaning maintenance of the heat exchangers. A

systematic procedure has been developed for the optimization of scheduling the dosing

of biocide and dechlorination chemicals as well as cleaning maintenance for a power

production/thermal desalination plant. The annual operation is discretized into

operational periods and the process is discretized into operating segment. A multi -

period optimization formulation was developed to determine the optimal levels of

dosing, the relationship between the applied doses, the process conditions, and seawater

characteristics for each time period. The technical and environmental considerations

were also accounted for and a case study has been solved to demonstrate the

applicability of the devised procedure.
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6. A SYSTEMS INTEGRATION APPROACH TO THE OPTIMUM OPERATION

AND SCHEDULING OF BIOCIDE USAGE AND DISCHARGE FOR

SEAWATER COOLING SYSTEMS

6.1. OVERVIEW

Using seawater in cooling systems is a common practice in many parts of the

world where there is a shortage of freshwater. Biofouling is one of the major problems

associated with the usage of seawater in cooling systems. Therefore, a biocide is

typically added to seawater to control the growth of biofilms. There are numerous

challenges in the design and operation of seawater cooling systems. Specifically, it is

important to determine optimal strategies for the use of biocide to address the technical

objectives of the process while complying with the environmental regulations for the

discharge of the biocide and its byproducts. The objective of this work is to develop a

systematic approach to the optimal design and integration of seawater cooling systems in

industrial facilities along with the usage and discharge of biocides. The key building

blocks of the approach include the chemistry and kinetics of the biocide, process cooling

requirements and prospects for heat integration, dosage scenarios and dynamic profiles,

biofilm growth, seawater discharge, and environmental regulations. Specifically, the

paper will address the following tasks:

1) Identification of the reaction pathways for the biocide from the mixing

basin to the discharge points.

2) Kinetic modeling of the biocide and byproducts throughout the process.
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3) A  process  integration  framework  to  provide  a  holistic  approach  to

optimizing the  design and operation of the seawater cooling systems, along

with the dosage and discharge systems.

Scheduling chemical dosing to minimize the total annual cost of the system

includes considering the cost of the biocide, the value of lost heat transfer resulting from

the biofilm, the cost of cleaning and maintenance, and the cost of treating the biocide

and byproducts in the discharged seawater. A hierarchical procedure is developed to first

identify design modifications for heat integration and energy efficiency. Then, a multi -

period, multi-segment optimization formulation is developed and solved to identify the

optimal operation and scheduling of biocide usage and discharge. The formulation

includes the biocide chemistry and kinetics, the time-based variations in seawater and

process characteristics, the relationship between the biocide usage, the process

conditions, and the rate of biofilm growth, and the environmental regulations for the

discharge of seawater. A case study is solved to illustrate the applicability of the devised

approach.

6.2. INTRODUCTION

The use of seawater in industrial cooling is a common practice in many parts of

the world that have limited freshwater resources. One of the primary operational

problems of using seawater in cooling is biofouling. Other problems include scali ng and

corrosion. The formation of bioflim is caused by the biological activities of

microorganisms in the seawater. Biofilms are very thin layers that stick to the inside

surface of heat exchanger tubes that use seawater. As small as a 250 micrometer biofilm
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thickness is enough to reduce the heat transfer coefficient by 50%. Therefore, biofouling

is a serious problem (Goodman 1987). In some cases, excessive biofouling can obstruct

the heat exchangers.

There are three major types of biofouling:

 Microbial fouling, which occurs as a result of the development of

microorganisms and their products

 Macrobial fouling, which is a result of the deposit and growth of

macroorganisms like barnacles and mussels

 Biological fouling, which is a result of a collection of detritus.

Typically, the development of microbial fouling precedes any macroorganism

colonization. Therefore, controlling microbial fouling has a great advantage of avoiding

macrobial fouling development. Biofouling usually develops over a few steps, including

biological, chemical, and physical processes. These processes may happen in a series

and/or parallel steps (Characklis, 1979). These steps include:

 Transportation of organic molecules and microbial cells from the bulk of

the seawater coolant to the surface of the tubes of the heat exchangers.

 Adsorption of the organic molecule and sedimentation on the surface of

the tubes of the heat exchangers.

 Adhesion of the microbial cells surface of the heat-exchange tubes.

 Growth whereby the attached microbial cells start producing more cells

leading to the formation of the biofilm.
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 Detachment of some cells of the formed biofilm due to sheer stress of the

flowing seawater.

To prevent the harmful effects of biofouling, biocides are used to control the

biological activities of the microorganisms and lessen the effect of fouling. Controlling

microbial growth is usually achieved by using an oxidizing agent, such as chlorine, in an

easy-to-disperse form, such as a hypochlorous acid or a hypochlorite ion, or in a gaseous

form like chlorine gas or chlorine dioxide. An intermittent chlorine dosage of 2 –5 mg/L

for 10 minutes per day can prevent microfouling, and a continuous dosage of 0.5 mg/L

during the second to fourth week of breeding season can prevent the blockage caused by

macrofouling. Under a continuous biocide dosage, aquatic organisms like oysters and

mussels tightly close their shells for weeks at a time, but they often die of asphyxiation.

These chlorine forms are most widely used due to cost and effectiveness factors.

Chlorine is a nonselective oxidant (it reacts with organics and nonorganics) and it

deactivates microbes. Also, chlorine reacts with natural organic matter (NOM), leading

to the formation of numerous by-products (Ben Waren 2006). Some of these by-products

are hazardous to aquatic life and human health. While there are other means of

preventing biofouling, such as periodic cleaning with sponge balls, tube heating and

drying, and antifouling paint, nonetheless, chlorine dosing is the most widely-used

method because of its cost-effectiveness and efficiency in slowing down or eliminating

different forms of microbial growth.

Other forms of chlorinated biocides include chloramines (e.g., NH2Cl, NHCl2,

and NCl3) and chlorine dioxide. Other biocides include ozone and ultraviolet radiation,
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but both are relatively high in cost compared to chlorine. Ozone has not been

commercially utilized due to the high risk of possible leakage. A low concentration of

ozone, i.e. 0.3 ppm, is considered to be harmful to workers and to the surrounding

environment. Ultraviolet radiation is an effective disinfection method; however, its

applicability is limited to cases when the water has little turbidity and suspended matter.

Also, there is no residual disinfection effect after the radiation.

Using chlorine as a biocide is not trouble-free. Discharging chlorine and its by-

products back into natural bodies of waters with no treatment would definitely create

some environmental problems. Chlorine is a nonselective oxidant. In seawater, chlorine

and its various forms may react with organic species that exist in natural water,

producing hazardous compounds. Examples of these compounds are trihalomethanes

(THMs), halogenated acetic acids (HAAs), and halophenols (HPs), which are

carcinogenic for human health and aquatic life. THMs are formed from a reaction of

chlorine with natural organic matter. THMs are chemical compounds of methane,

replacing the three hydrogen atoms with halogens like tri-chlorinated/ brominated

methane demonstrated as (CHX3):(CHCl3), (CHBr3). THMs are environmental

pollutants and they may cause damage to the liver, kidneys, and central nervous system.

HAAs are acetic acids with H-atoms (fixed to a COOH-group) replaced by halogen

atoms. HAAs are suspected to raise the risk of cancer. HAAs could form THMs during

biological decomposition. THM and HAA concentrations are higher during the summer

season than in winter. Also, THM and HAA concentrations increase in that water comes

from surface, rather than groundwater.
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Since the seawater discharge of biocides and their reaction byproducts poses

environmental and public health problems, there is a need to add end -of-pipe biocide

treatment (e.g., dechlorination) units to reduce the concentrations of the biocid e and its

byproducts at the discharged point. Chemical reduction using sulfur compounds has

been used as a dechlorination agent to remove free and combined residual chlorine.

Sulfur compounds like sulfur dioxide (SO2), sodium sulphite (Na2SO4), bisulfite

(NaHSO3), or bisulphate (NaHSO4) and sodium thiosulphate (Na2S2O3), or sodium

metabisulfite (Na2S2O5), have been used to dechlorinate seawater in industrial cooling

systems before discharging to the sea. Different dechlorination methods have been

utilized in the industry, including activated carbon, activated carbon combined with

ozonation, and photochemical reduction with ultraviolet irradiation.

Sodium sulfite (Na2SO3) was recommended for use as a dechlorinating agent by

(Pyle 1960; Beeton 1976) based on economic and safety uses. It was the most

economically effective, the safest, and the most capable of eliminating the toxicity of

residual chlorine for the aquatic life. Sodium sulfite is added at a 2:1 ratio by weight

with residual chlorine in order to completely and instantaneously eliminates

chloramines. However, the disadvantage of using sodium sulfite is that it requires an

accurate injection system and a periodic follow-up with chlorine fluctuating in influent

water. Sulfur dioxide is another cost-effective dechlorinating agent. Sulfur dioxide is

added at a weight ratio of 0.9 of sulfur dioxide for every 1.0 of chlorine to be removed.

But, practically a 10% excess amount of sulfur dioxide is always added to make sure that

the dechlorination process is completed. Sulfur dioxide is effective in removing both free
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and combined residual chlorine. Also, sulfur dioxide can be fed using similar equipment

as is used for chlorination with a simple control scheme. Sulfur dioxide hydrolysis

happens in water rapidly and completely to form sulfuric acid, as shown in the following

reaction:

SO2 +H2OH2SO3 Equation 6.1

The oxidation number of the aqueous sulfur (SO3-2) is four, which means it

will react with free and combined chlorine rapidly and completely, as shown in the

following equations:

SO3-2 +HOCl SO4-2 + Cl- + H+ Equation 6.2

SO3-2 +NH2Cl + H2O SO4-2 + Cl- + NH4+ Equation 6.3

Because of the strong interaction between the process cooling demand, operating

conditions, and biocide needs and performance, it is important to develop an integrated

approach to optimizing biocide usage and discharge by understanding the key process

factors and seawater chemistry aspects, then reconciling them in an effective manner.

The objective of this paper is to develop a systematic approach to the optimization of

biocide usage and discharge by integrating seawater chemistry and process performance
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issues. This includes modeling the mechanism and kinetics of the biocide, relating the

biocide kinetics to process conditions, and reducing biocide usage by lowering the

cooling needs of the process via heat integration. The usage and discharge of seawater is

linked to the process requirements, including cooling duties.

6.3. PROBLEM STATEMENT

The problem addressed in this paper can be stated as follows: given is a process

which uses seawater in a once-through cooling system via a number of segments that

include heat exchangers (coolers) and connecting pipelines. The heat duties of

the process coolers and the temperature of the incoming seawater vary throughout the

year. A typical dynamic profile for such variations is known. In order to prevent

biofouling in the coolers, a biocide is added to the incoming seawater The added

biocide undergoes various water chemistry reactions leading to the discharge of

chemical pollutants (e.g., residual biocide, reaction byproducts). The composition and

load of the pollutants as well as the temperature of the discharged seawater must meet a

given set of environmental regulations. An end-of-pipe (EOP) treatment system may

be added to assist in meeting the environmental regulations. Figure 6.1. is a schematic

representation of the problem statement.
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Figure 6.1. Representation of the Problem Statement.

The process resources, revises the process design and operation, and determines

the optimal scheduling of chemical dosage load and timing, along with the heat -

exchanger cleaning cycles per year.

6.4. APPROACH AND CHALLENGES

A systematic approach is to be developed to include the following specific tasks:

 Develop an appropriate level of modeling the chemical and kinetic

aspects of biocide usage and their reactions with different species in

seawater.

 Relate the usage of biocide, the generation of byproducts, the

characteristics of the seawater, and the characteristics of the process to

the formation of the biofilm on the heat-exchange surfaces.
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 Account for the time-based variation in seawater temperature and process

requirements.

 Incorporate the effect of regular maintenance activities to clean the heat-

exchanger surfaces and end-of-pipe treatment to meet the environmental

regulations.

 Develop optimal policies for process modification and dynamic dosing to

optimize biocide usage and discharge.

 Develop an optimum scheduling strategy which determine the optimal

frequency and timing of the maintenance service for cleaning the heat

exchangers.

Developing the systematic approach involves several challenges. There is

complexity in describing the reaction mechanism and kinetics for the biocide with the

different species that exist naturally in seawater. It is necessary to identify the effective

byproducts in controlling the biofilm development and to track these species. The

developed models must also account for the time-based variations in the seawater

characteristics (e.g., temperature) because of the impact on the reaction kinetics and the

rate of biofilm growth. Additionally, any hazardous compounds produced throughout the

cooling system until the discharge point must also be tracked. Appropriate levels of

details should be obtained to be representative enough of the chemical behavior while

avoiding too many details that will increase the size of the developed optimization

formulation or complicate it mathematical nature.
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Since the usage of seawater is linked to the process cooling requirements, any

reduction in cooling requirements will have a direct impact on the amount of seawater

used and discharged, along with the usage and discharge of the biocide. In order to

successfully achieve this reduction in seawater and biocide, several design and

operational changes must be made. It is also important to consider the impact of biocide-

removal units (e.g., dechlorination) as required to meet the environmental regulations.

The first step in the proposed approach is to discretize the annual operation into

Nt periods (e.g., days or months). For each period, the seawater characteristics are taken

as the average during that period. To track the biocide chemistry and biofilm growth

throughout the plant, the process is broken down into Ni segments (e.g., portion of a

pipeline, heat exchanger, process unit). The next step is to reduce the cooling duty of the

process by using heat integration tools such as thermal pinch analysis (e. g., (Smith

2005; El-Halwagi 2006; Kemp 2007)).

The objective of this step is to minimize cooling and heating utilities of the

process. The biocide dosage is proportional to the cooling duty. As such, reducing the

cooling utility of the process leads to reducing the usage and discharge of the biocide.

The rationale behind starting with heat integration is that it will generate a cost savings

from the reduction of cooling utilities.
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The next step is to make a further reduction in seawater flow rate by enhancing

the efficiency of seawater utilization. A practical technique to reach that reduction is to

maximize the temperature of the discharged seawater while complying with the thermal

pollution regulations. Then, the new seawater flow rate from the heat balance equation

can be calculated after the reduction has been made from increasing the discharged

temperature. After the reduction has been achieved in the seawater flow rate, the revised

calculation can be performed by recalculating the reduced amount of biocide required

for the seawater flow rate. Next, the chemical pathways and kinetics of the biocide

reactions are modeled at the appropriate level of details. The following step is to

optimize the dosage of biocide, while meeting the requirements of the process of the

minimum residual biocide remains in the cooling system to insure the control over any

biofouling development. The optimal biocide dosage is chosen based on an optimization

formulation that includes the relationship between the biocide usage and the bio film

growth, the impact of seawater characteristics, the effect of process conditions, the

performance of the end-of-pipe biocide-removal unit, regular maintenance to clean the

surfaces of the heat exchangers, and the impact of biofilm growth on the performance of

the individual heat exchangers. Figure 6.2. is a schematic representation of the proposed

procedure. The following sections provide more details on the key steps.
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Figure 6.2. Overview of the Proposed Procedure.
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6.5. BIOCIDE CHEMISTRY

It is necessary to develop a mechanistic model for the reaction pathways

involving the biocide and the various species in the seawater. First of all, start with the

reaction of chlorine when it is added to seawater as a gas or solution of a chlorine

compound (e.g., sodium hypochlorite). Chlorine will dissolve and hydrolyze rapidly

(almost instantaneous) and completely to HOCl (hypochlorous) acid with a reaction rate

constant of 5X1014. When chlorine is added to seawater, it produces hypochlorous acid

and hydrochloric acid, HCl. The latter is a relatively strong acid, and it will dissociate

completely to a hydrogen ion and a chloride ion, while hydrochlorous acid, HOCl, is a

relatively weaker acid, and it will dissociate slightly to a hydrogen ion and a

hypochlorite OCl-. Since the hydrogen ion appears in this reaction, this equilibrium is pH

dependent. The distribution of the various species (HOCl, OCl-) at equilibrium is a

function of pH. Hypochlorous acid is the most germicidal species, but it is a weak acid

that will dissociate to hydrogen and hypochlorite ions with pKa of 7.5 at 30 oC. Figure

6.3 shows the distribution of the species over the pH range.
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Figure 6.3. Distribution of Chlorine Species in Seawater (Based on the Data by
Oldfield and Todd, 1981).

Cl2+H2OHOCl + HCl Equation 6.4

HOClH++ OCl- Equation 6.5

In terms of disinfection effectiveness, hypochlorous acid is much stronger

(almost two orders of magnitude) than the hypochlorite ion. Hypochlorous acid will

reach its maximum concentration at pH ranges between 4 and 6 (Hostgaard-Jensen,

Klitgaard et al. 1977). However, the effectiveness of a chemical species as a disinfectant

does not necessary correlate with its effectiveness in removing biofilms. Weakening the

polysaccharide matrix of microbial cells is one way to control the development of

biofilms on the tube surface of heat exchangers. Experimental evidence shows that
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chlorination is more effective in causing biofilm detachment at pH values greater than

pH 8, where OCl- concentration is more dominant than HOCl (Characklis,1979).

Seawater naturally contains organic and nonorganic species, particularly

ammonia and bromide species. Their concentrations vary depending on the nature of the

water. For instance, seawater contains bromide with concentrations as high as 65 mg/l,

but there may be a negligible amount in fresh waters. Ammonia concentrations depend

on pollutants of the water. In highly polluted water, ammonia concentration is as high as

15 ppm, while in unpolluted water the concentration is lower than 0.05 mg/l. At full

strength salinity, seawater ammonia concentration ranges between 0.001 and 1.0 ppm.

Ammonia, as well as other reactive nitrogenous compounds, will be chlorinated to yield

monochloramine (NH2Cl), and will react further to produce dichloramine (NHCl2). In

freshwater, and a very traceable amount in seawater, dichloramine will react further

with hypochlorous acid, producing trichloramine (NCl3). All of the reactions of

ammonia and combined chlorine with hypochlorous acid are made by replacing the

hydrogen atom of the ammonia molecule with a chlorine atom from a combined chlorine

molecule while maintaining its positive charge according to the following reactions:

OH+amine)(monochlorClNHNH+HOCl 223  Equation 6.6

OH+ine)(dichloramNHClHOCl+ClNH 222  Equation 6.7
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OH+mine)(trichloraNClHOCl+NHCl 232  Equation 6.8

Figure 6.4. Concentration of Bromide and Ammonia in Natural Water.
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These reactions depend on pH, temperature and contact time, but mainly on the

chlorine to ammonia ratio. All of the free chlorine (hypochlorous acid) will be converted

to monochloramine at pH 7-8 (the fastest conversion is at pH 8.3) when there is 1:1

molar ratio of chlorine to ammonia (5:1 by weight) or less. Then, within the same range

of pH, dichloramine is produced at a molar ratio of 2:1 of chlorine to ammonia (10:1 by

wt.). This reaction is relatively slow, so it may take up to an hour. Also, within the same

range of pH, trichloramine will be produced at a molar ratio of 3:1 of chlorine to

ammonia (15:1 by wt.) and at equal molar ratios, but at pH 5 or less. The two reactions

producing di- and tri-chloramine are known as the breakpoint reactions where the

chloramines are reduced suddenly to the lowest level. The significance of the breakpoint

reaction is that chlorine reaches its highest concentration and germicidal efficiency (at

1:1 molar ratio of chlorine to ammonia) just before reaching this point. Also, at the

breakpoint, monochloramine and dichloramine react together (which reduces chlorine

residuals) to produce nitrogen gas, nitrate, and trichloramine. Dichloramine decomposes

to an intermediate reactive product (NOH) which consumes mono-, di-chloramine, and

hypochlorous acid, producing nitrogen gas and nitrate. Also, excessive chlorine will

form trichloramine. These processes are shown in the following equations:

_

Cl2++H2+NOHOH+NHCl 22
 Equation 6.9

-
222 Cl+H+OH+NClNH+NOH  Equation 6.10
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-Cl+H+HOCl+N2NHCl2+NOH  Equation 6.11

-+-
3 Cl2+H3+NOHOCl2+NOH  Equation 6.12

HOCl+NHClOH+NCl 223  Equation 6.13

The reaction of chlorine into these forms steers it away from the disinfection

function and renders the biocide less effective. Consequently, it is important to

understand such side reactions. Hypochlorous acid rapidly reacts with bromide,

producing hypobromous acid, which can also be produced from the reaction of bromide

with monochloramine, as follows:

-- ClHOBrBrHOCl  Equation 6.14

3
-

2
-

2 NH+Cl+HOBrOH+Br+ClNH  Equation 6.15

where HOBr is hypobromous acid. Additionally, the hypochlorite ion may undergo a

slow reaction with the bromide ion, as follows:

---- ClOBrBrOCl  Equation 6.16
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where OBr- is the hypobromite ion. Bromide in seawater may also react directly with

added chlorine to give bromine and chloride:

-
2

-
2 Cl2BrBr2Cl  Equation 6.17

It is worth noting that the presence of ammonia and other nitrogenous

compounds in the seawater will react with HOBr to yield monobromamine (NH2Br),

dibromamine (NHBr2), and tribromamine (NBr3).

OH+mine)(monobromaBrNHNH+HOBr 223  Equation 6.18

OH+ne)(dibromamiNHBrBrNH+HOBr 222  Equation 6.19

OH+ine)(tribromamNBrNHBr+HOBr 232  Equation 6.20
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The bromine breakpoint happens when the dibromamines are produced rapidly,

leading to the formation of nitrogen gas:

-
22 Br2+2H+NOHOH+NHBr  Equation 6.21

-+
22 Br+H+HOBr+NNHBr+NOH  Equation 6.22

It is also important to consider the effect of the bromide that naturally exists in

seawater at (50–70 mg/l). Bromide is typically in stoichiometric excess over the chlorine

dosage, whereas ammonia concentration doesn’t exceed 2 to 3 mg/L. The relative

amount of bromine species to ammonia species produced is proportional to bromide

concentration over ammonia concentration if we assume both reactions are rapid and

simultaneous. In order to understand the various species interactions and reaction

pathways, we have constructed the reaction mechanism shown in Figure 6.5. On these

diagrams, the starting species and intermediate and final by-products are represented in

boxes. The arrows correspond to reaction steps, and the boxes on the arrows represent

the reactive species that contribute to that reaction.



189

Figure 6.5. Summary of the Reaction Mechanism of Chlorine in Seawater.
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6.6. MODELING OF HEAT-TRANSFER REDUCTION DUE TO

BIOFILM GROWTH

The cooling system in the plant is divided into Ni segments. Each segment

represents a pipe or a heat exchanger unit and is denoted by a subscript i. Figure 6.6. is a

schematic representation of the segments included in the analysis. Also, for simplicity

the annual operation is discretized into Nt time intervals. The values are taking as

average during each time interval t. The ambient temperature of seawater (the coolant)

varies depending on the time of the year. On the other hand, the scheduling changes for

the operational conditions depend on the seasonal demand on the plant output. The

climate changes affect the required amount of biocide because of its impact on the

reaction kinetics and the rate of biofilm growth. The seasonal demand on the plant

output add another variation that is making the model for optimizing the cooling system

has to be more responsive to all those variations. The rate of biofilm growth depends on

the temperature, nutrients, time of the year, flow rate, etc. Furthermore, the biofilm

develops through a number of physical, chemical, and biological steps which happen in

series and/or parallel. The biofilm begins with the attachment, then growth. Detachment

is due to the sheer stress of the fluid flow and starts from early stages of the

development. However, growth continues only up to a certain level where the

detachment rate becomes higher than the attachment and growth rate. This limits the

biofilm thickness from exceeding certain level.
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Seawater Influent
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Seawater Discharge

Seawater Effluent

Typical Once-Through seawater Cooling System

EOP Treatment

Seawater Body

Figure 6.6. Segment Representation of the Process.

The segmented diagram starts by adding the biocide solution to seawater in a

basin before entering the cooling system. Seawater is pumped from the body of the sea

and screened from large objects to be ready for cooling use. At the basin seawater is well

mixed with the biocide. The assumption is that the reaction of biocide and seawater is

immediate and complete instantaneously. The flow of seawater is much larger the flow

rate of biocide. The flow rate of seawater is constant and therefore the volume of

seawater inside the basin is constant. The products of the reaction of biocide with

seawater are some byproducts (Seawater demand) and biocide residuals. Since, biocide

is added to natural water like this case seawater, biocide will be reacting with organic

materials and metals that are naturally exist before treatment. The assumption of biocide
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residuals is that has the capability of controlling the biofouling development. Therefore,

the concern of the concentration of biocide residuals is taking under consi deration to

determine its influence on biofouling control. The biocide residuals are going to decay

depending on many factors including residence time, temperature, initial concentration

of biocide, and characterization of seawater including pH, salinity, nutrients, etc.

The annual operating time is discretized into Nt time intervals. Within each

interval (period), t, the operation is assumed to be steady state. The number of intervals

is selected in a way that balances accuracy (e.g., the intervals must capture seasonal

variations, action points such as changes in biocide dosage, operational variations such

as increases in flow rate of product and/or seawater) versus computational effort (size of

the optimization problem and computing time).

Let us use the index j to denote the key components to be tracked in the system.

These include the biocide (given an index j = 1) as well as the biocide residuals (which

impact biofouling development) and other byproducts (which are also contribute to the

consumption of biocide but do not affect the biofilm. These residuals and byproducts are

described by the index j (where j = 2, 3, …, Nc).

Time Intervals:

tN : Number of time periods to which the annual operation is discretized

t: is the time interval
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Key Components:

j : is an index denoted to a key component, j=1 for the biocide.

CN : is the number of key components tracked in the cooling system.

Process Segments:

i: is an index denoted to a process segment, i=1 for the basin.

SN : is the number of the process segments (a portion of pipeline or a heat exchanger) in

the cooling system.

The following terms are used for each time interval t:

Seawater Influent:

SW
tjC , : Composition of the, j, key component of the biocide in fresh seawater as a

function of, t, time interval.

SW
tF : Flow rate of fresh seawater into the basin as a function of, t, time interval.

SW
tpH : the pH of the seawater at the influent at time interval t.

SW
tT : the temperature of the seawater at the influent at time interval t.
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Biocide Storage:

B
tjC ,1 : Composition of biocide in the added biocide solution from the biocide storage

into the basin as a function of, t, time interval.

B
tF : Flow rate of the biocide solution into the basin as a function of, t, time interval.

Basin:

sin
,

Ba
tjC : Composition of the, j, key component of the biocide in the basin as a function of,

t, time interval.

sinBa
tpH : the pH of the treated seawater at the basin at time interval t.

sinBa
tT : the temperature of the treated seawater at the basin at time interval t.

sinBa
t : is the residence time at the basin at time interval t.

sinBa
tV : Volume of the water inside the basin as a function of, t, time interval.

Inlet of Cooling System:

i = 1.

Process Segment (i):

tjiC ,, : Composition of the, j, key component of biocide in the process segment, i, of the

cooling system as a function of, t, time interval.
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tiF , : Flow rate of the treated seawater through the process segment, i, of the cooling

system as a function of, t, time interval.

tipH , : the pH of the treated seawater inside the process segment, i, of the cooling system

at time interval t.

tiT , : the temperature of the treated seawater inside the process segment, i, of the cooling

system at time interval t.

ti , : is the residence time inside the process segment, i, of the cooling system at time

interval t.

ti

ti
ti F

V

,

,
, 

tiV , : Volume of the seawater inside the process segment, i, of the cooling system as a

function of, t, time interval.

Outlet of Cooling System:

i = Ns-2

End Of Pipe Treatment (EOP):

Chem
tN s

C ,1 : Composition of the key component of chemicals at the end of pipe treatment

unit as a function of, t, time interval.

i = Ns-1
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Chemical Storage:

Chem
tC : Composition of the chemicals out of the storage and going to the end of pipe

treatment unit as a function of, t, time interval.

Chem
tF : Flow rate of the chemicals to the end of pipe treatment unit as a function of, t,

time interval.

Seawater Effluent:

Chem
tNs

C , : Composition of the key component of chemicals out to the environment as a

function of, t, time interval.

i = Ns

Typically, the flow rate of the treated seawater is significantly larger than the

flow rate of the biocide solution, i.e.,

tFF B
t

SW
t  Equation 6.23

The flow rates of the incoming seawater and of the treated seawater leaving the basin are

taken to be equal to avoid any accumulation of water at the basin. Therefore, biocide

flow rate can be neglected in the calculations of the residence time and of the treated
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seawater flow rate leaving the basin. The component material balances for any key

component tracked species, j, at any process segment, i, of the cooling system at any, t,

time interval are given by:

Equation 6.24

where tj , is the function characterizing the reactive model of key component species, j,

within the basin at, t, time interval. For instance, if the basin is modeled as a completely

mixed system, the component material balance for the biocide is given by:

tVrCFCFCF Ba
t

Ba
ttti

SW
tj

SW
t

B
tj

B
t  

sinsin
,1,1,1,1.1,1 Equation 6.25

where
sin
,1

Ba
tjr  is the rate of depletion of the biocide in the basin per unit volume.

Within the process, given the specific path of seawater inside the process, a

“path” model is developed to account for the biocide reaction kinetics throughout the

process. The seawater goes through a number of pipes and units. The process is

discretized into a number of segments. Each segment, i, represents a portion of the

seawater pipeline or a heat exchanger (e.g., cooler, coil in a hot unit, cooling jacket of a

unit, etc.). Consider the Nc key species and refer to the concentration of key component j

t
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in segment i during period t as Cj,i,t . For the jth species, in the ith segment, and at tth

period, the following kinetic expression may be written as:

Equation 6.26

where the subscript, i-p, is referring to the previous process segment of the cooling

system before process segment i. The thickness of the biofilm in the i th segment at the

end of the tth period is given by the following equation:

Equation 6.27

where is a binary integer variable defined as:

= 1  if maintenance/cleaning is carried out at the end of period t-1

= 0  if no maintenance/cleaning is carried out at the end of period t-1

The effect of the binary in the previous equation is to set the thickness of the

biofilm to zero (i.e., a clean surface) after the cleaning is carried out. The biofilm growth

function is described in terms of the compositions of the biocide and residual

byproducts, as well as the average temperature and pH of the seawater in segment i.

  tipHTVCCCFC tititititNpitjpitpititjitji
C


 ,,,,,,...,,...,, ,,,,,,,,,1,,,,,, 
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In addition to the economic aspects of determining when cleaning is scheduled,

there is also mandatory cleaning if the biofilm thickness reaches a maximum allowable

level:

tidd titi  ,max
,, Equation 6.28

tid , : the biofilm thickness at process segment i and at time interval t.

max
,tid : the maximum allowable biofilm thickness at process segment i and time interval t.


tid , : the highest level of biofilm thickness at process segment i at time interval t.

The biofilm thickness grows seasonally up to a certain level defined as , This

thickness depends on the biological and process conditions. The loss in performance of

the ith heat exchanger resulting from the cumulative formation of the biofilm at the end

of period t is given by:

Equation 6.29

is the function characterizing the heat transfer reduction model in the process

segment i at, t, time interval.
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6.7. BIOCIDE KINETICS

6.7.1. REACTION KINETICS

Biocide + Seawater Biocide Residuals + Byproducts (Seawater demand)

Equation 6.30

B + SW BR + BP Equation 6.31

BRr : Rate of appearance (reaction) of biocide residuals (mass/ [time. Volume]n)

  )( n
BIBR Ckr 

BPr : Rate of appearance (reaction) of biocide byproducts (mass/ [time. volume]n)

  )( n
BIIBP Ckr 

where n is the order of the reaction.

6.7.2. DECAY KINETICS

Biocide residuals + Seawater Byproducts Equation 6.32

BR + SW BP Equation 6.33
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BRr : Rate of disappearance/ decay of biocide residuals (mass/ [time. Volume]m)

  )( m
BRDBR Ckr 

Dk : Reaction rate constant (time-1 [mass/ Volume]-m)

mn & : Reaction orders

There are some assumptions considered:

1) B
BSW VFF  therefore, the volume of the basin can be considered as a

constant

2) Therefore, the reaction inside the basin considered to be as a plug flow

reactor

3) The reaction of seawater with biocide in the basin is a single irreversible

complete and instantaneous reaction:

Biocide + Seawater Biocide Residuals + Byproducts Equation 6.34

B + SW BR + BP Equation 6.35

4) There is no change in the number of moles

5) There is no change in temperature inside the basin

6) The products of the reaction are biocide residuals (BR), which have major

effects on biofouling development
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7) Other products are called byproducts (BP) which are considered as

consumption of biocide or seawater demand

8)
sinBa

jC is biocide residuals and byproducts’ concentrations are uniform

inside the basin

9) Water is well-mixed with biocide inside the basin, so there is no

accumulation

10) i
SW FF & the volumetric flow rate of seawater and treated seawater in and

out of the basin are constants, therefore the volume of the water inside the

basin is constant

The mass balance on biocide residuals around the basin is represented by:

[Flow into the basin] + [Rate of generation] = [Rate of consumption/ decay] + [Rate of

accumulation] + [Flow out of the basin] Equation 6.36

After considering the assumptions:

[Rate of generation] = [Rate of consumption/ decay] + [Flow out of the basin]

Equation 6.37

      ti
m

BRDBRB
n

BIIBP
SW

t FCkrVCkrF ,1**  Equation 6.38
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    ti
m

BRDB
n

BII
SW

t FCkVCkF ,1**  Equation 6.39

Mass balance on biocide residuals around Heat exchangers network (HEN):

[Flow in to HEN] + [Rate of generation] = [Rate of consumption/ decay] + [Rate of

accumulation] + [Flow out of HEN] Equation 6.40

After considering the assumptions:

 There will be a slight change in temperature of seawater trough HEN

 The residence time τ of seawater inside HEN

 VHEN is the volume of seawater inside the HEN

 tNiti S
FF ,2,1 &  are volumetric flow rate of treated water out of the basin

and out of HEN respectively.

[Flow in to HEN] = [Rate of consumption/ decay] + [Flow out of HEN]

Equation 6.41

      tjiti
m

tiDBRtitjiti CFCkrFCF ,,1,1,1,1,,1,1 ***   Equation 6.42

     tjiti
m

tiDtitjiti CFCkFCF ,,1,1,1,1,,1,1 ***   Equation 6.43
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After considering the assumptions:

1) There will be no change in temperature of seawater through EOP

2) The residence time τ of seawater inside EOP equals flow rate/EOP volume

3) tjNi S
F ,,1 is the volume of seawater inside the EOP

4) tjNitjNi SS
FF ,,,,2 &  are volumetric flow rates of effluent water out of HEN

and out of EOP respectively.

5) Decay kinetics:

Biocide residuals + EOP Agent Byproducts Equation 6.44

BR + RA BP Equation 6.45

BRr : Rate of removing of biocide residuals (mass/ [time. volume]o)

  )( ,,2
o

tjNiRBR S
Ckr 

Rk : Removing rate constant (time-1 [mass/ Volume]-o)

o : Reaction orders

6) [Flow in to EOP] = [Rate of consumption/ decay] + [Flow out of EOP]

Equation 6.46
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Equation 6.47

     tjNitjNi
o

tjNiRtjNitjNitjNi SSSSSS
CFCkFCF ,,,,,,2,,1,,1,,2 ***  

Equation 6.48

The relation between the chemical added to seawater at the basin and its

influence on how it controls the fouling can be shown in the following model. The

thickness of biofilm inside the heat exchangers tubes is a function of chemical

concentration and scheduled dosage:

 Dsgd

d

tt
t eeXX    Pr

Pr 0 Equation 6.49

where dtX
Pr : is the biofilm thickness at the end of the period

0X : is the initial biofilm thickness

 : is the biofilm growth rate constant

 : is the biofilm destruction rate constant from the influence of biocide

Dsgt : is chemical dosage schedule in hours per day

The biofilm growth rate constant,  , can be calculated by letting the biofilm

grow for some time with no chemical added to control it. Then, a graph is generated for

      tjNitjNi
o

tjNiRBRtjNitjNitjNi SSSSSS
CFCkrFCF ,,,,,,2,,1,,1,,2 ***  
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the biofilm thickness versus time in days. By using regression analysis, the growth rate

 can be calculated from the exponential kinetic growth. This kind of experiment can be

repeated at different months/ seasons to generate  at each month/season.

The biofilm destruction rate constant,  , is based on the relationship between the

kinetic of biofilm destruction by chemicals and disinfection kinetics of suspended

bacterial systems. Then, a graph is constructed to show different disinfection rate

constants, K , for bacteria that dies off versus different biocide concentration  BC

dosages. The mathematical relation, which can be linear, that represents the relationship

between the rate constants with chemical concentration is:

  bCa B  Equation 6.50

The disinfection rate constant, K, has to be calibrated by  , which can be

determined by dosing the plant that is going to use this model with a certain chemical

concentration for one hour per day and developing a graph from the data collected to

represent the biofilm thickness versus time in days. By using a regression analysis for

the curve, the destruction rate constant can be determined. From the disinfection rate

constant K and destruction rate constant at the same dosage,  can be calculated as

follows:

  Equation 6.51
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The biocide residual concentration,
 tjNi S
C ,,2 , at the effluent before discharge

or biocide removal treatment can be determined by developing a kinetic model of the

process. The consumption of chemicals is due to the reaction with organic and

nonorganic compounds, biofilm, and corrosion. The chemical decay in kinetics in a

batch cooling system (Xin et al. 2003) may be described as follows:

CK
r
W

r
CK

dt
dC

b
hh

WW 



Equation 6.52

Based on examining numerous experimental results for the kinetics of seawater

treated with a chemical (e.g., chlorine), decay kinetics have been correlated to several

factors, including temperature, pH, and contact time, but mainly on the ratio of chlorine

dosage to ammonia (e.g., Haag 1981). The reduction or decay of chlorine in seawater is

due to reactions with organic and nonorganic compounds in seawater. The chlorine

decay occurs in three stages, starting with a very fast rate during the first the two

minutes, due to a reaction with inorganic reducing agents. The second phase is slower

and usually does not last more than two hours. It mainly involves reactions with the

organic compounds that started in the first phase. Then, chlorine decays continuously via

a very slow rate.

Of particular importance is the dependence on residence time and temperature.

Given the specific path of seawater inside the process, the following model is developed

to account for chlorine decay throughout the process. The seawater goes through a
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number of pipes and units. The process is discretized into a number of segments. Each

segment, i, represents a portion of the seawater pipeline or a heat exchanger (e.g., cooler,

coil in a hot unit, cooling jacket of a unit, etc.). Consider the NS key species and refer to

their concentrations in segment i as: SNijiii CCCC ,,2,1, ,...,,...,, .

6.8. OBJECTIVE FUNCTION FOR OPTIMUM DOSAGE

Based on the proposed holistic approach, all scenarios from the chemical dosing

of treatment and post-treatment, and all of the costs incurred from heating loss due to

fouling and heat exchanger cleaning, have to be incorporated in the decision for any

design or operation changes. The objective function is built on the economic criterion. It

will permit the most feasible solution that would also cost the least to operate the plant.

This approach might allow for biofilm growth and removal by periodic heat

exchanger cleaning at the minimum overall operating cost. On top of that, there are a

variety of options for chemical dosing. For each dosing course, the response of

biofouling development will vary accordingly. Thus, there will be an impact on the other

operating costs. Also, the nitration and the ambient temperature variations through

different seasons of the year will govern the microorganisms’ behavior inside the cooling

system. All of the different aspects have to be integrated to make one plan that considers

the impact on all of the related design and operation changes. The dynamics of the

process itself will add difficulty to selecting the optimal scenario among the options.

The objective function is to minimize the annual total cost that is incurred

directly and indirectly from fouling. It will include the annual operating cost of

chemicals (chlorine) used to treat the cooling water against biofouling, the annual fixed
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and operating costs of removing chemical residuals from the effluent water, the cost of

cleaning heat exchanger units, the cost of the loss incurred by biofouling, and the annual

gross profit loss from shutting down the operation for cleaning the heat exchangers.

The annual operating time in discretized into Nt time intervals t = 1, 2,….., Nt

under the assumption of steady state at each t (time interval). The key components are

tracked in the cooling system as j = 1,2,…, Nc with j=1 for biocide added. The cooling

system is discretized into number of segments i = 1, 2,…, Ns. Those segments are

portions of pipeline or heat exchanger unit. The objective function is to minimize the

total annualized cost which includes all direct and indirect costs. Hence:

Annual Total Cost = Annual Cost of Biocide to Treat the Seawater +

Annual Costs of Chemicals at EOP Treatment Unit for Removing the effect of

Biocide Residuals +

Annual Costs of Heat Exchanger Cleaning, Heat Loss Due to Fouling, and Gross

Profit Loss Due to Shutting Down the Process for Heat Exchanger Cleaning.

Mathematically, the objective function is described by:
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Equation 6.53

The cost of biocide during period t is expressed as:
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),(_ B
t

B
t

B
t CFBiocideCostCost  Equation 6.54

The cost of end-of-pipe treatment during period t is given by:

),...,,...,,,,(_ ,,2,,2,1,2,2 tNNtjNtNtNi
Chem
t

Chem
t

EOP
t cssss

CCCFCFEOPCostCost 

Equation 6.55

Loss of production can be defined as loss due to reduction in heat transfer in the

heat exchanger units, as well as the loss of production due to shutting down the process

for maintenance. The cost of loss of production is given by:

),(_ ,, titi
LP
t IQLPCostCost  Equation 6.56

6.9 ENVIRONMENTAL AND QUALITY CONSTRAINTS

In addition to the aforementioned technical constraints, the minimization of the

cost objective function is also subject to environmental and quality constraints from the

process and from the environment. There is a minimum requirement from the process

technical specification of the plant on the concentration of biocide residual to insure

minimum biofouling development. Also, another constraint on the thickness of biofilm is

to not exceed a certain thickness,
max
,tid .
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Tech
tjC ytjN s ,,,2 

Equation 6.57

max
,, titi dd  Equation 6.58

The concentration of key component, j, of biocide residual must comply with the

environmental regulations. Also, the concentration of chemicals added to reduce the

effect of the biocide residuals is regulated by the environmental requirements. Hence,

Env
tjC ytjN s ,,, 

Equation 6.59

Env
ChemC yChem

tjNs ,,

Equation 6.60

Gross profit is the revenue or sales after deducting all directed costs like

manufacturing expenses, feed, labor, and selling/marketing expenses. The gross profit

loss is how much of the gross profit would have been generated if the production had not

been stopped for heat changer cleaning. The daily gross profit (DGPft) can be calculated

by taking the revenue of a company over a period of time, with no shutdown in

production, and dividing it by the number of days of that period.
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6.10.CASE STUDY 

  The case study is for a plant producing Acrylonitrile from propane with annual

capacity of 200 million pounds. The discharged amount of biocide residuals is higher

than newly enacted environmental regulations of 0.002 ppm of total residual chlorine.

This problem is normally solved by a conventional end-of-pipe treatment approach. The

purpose of the case study is to develop optimal design modifications and operating and

scheduling strategies for biocide usage and cleaning maintenance. The current usage of

seawater and the heating and cooling utilities of the process are given in Table 6.1. First,

thermal pinch analysis is carried out to minimize the heating and cooling utilities. The

results of heat integration lead to a targeted reduction of 92% and % 60% in heating and

cooling utilities, respectively. The amount of seawater and utilities for the target

reduction by heat integration tools is compared to the current usage and shown in Table

6.1. A simplified diagram depicting the cooling system is shown by Figure 6.7.

Table 6.1. Heating and Cooling Utilities Required for the Acrylonitrile Plant.

Heating & Cooling Utilities

Utility

Current Heat Integration
Target

% of
Red.Seawater Heat

Load Seawater Heat
Load

m3/hr MM
Btu/hr m3/hr MM

Btu/hr

Cooling
Seawater 9328 228 4337 91 60
Refrigeration --- 39 --- 39 0

Heating --- 173 --- 36 79
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Figure 6.7. Seawater Cooling System for the Acrylonitrile Plant.

The next step is to develop the biocide kinetic model and the biofilm growth

model for the heat exchangers in the plant. The objective is to develop chlorine residual

model to predict the chlorine concentration over a period of time throughout the process.

Chlorine is used as the biocide and the original plan is to introduce chlorine dosing at 5

mg/L three times for about 30 minutes and to switch to continuous chlorination to

prevent mussels during 2-4 week of breeding season at residual chlorine not less than 0.5

mg/L. Decay of chlorine is due to volatilization to the atmosphere and reaction with

ammonia-nitrogen in natural water. This reaction takes place when the ratio of the

concentration of free available chlorine to chloramines ([HOCl]/[ NH2Cl + NHCl2]) is 8

to 10. This reaction is known as a breakpoint reaction as shown in the following

reaction.
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NH2Cl + NHCl2 + HOCl N2O + 4H+ + 4Cl- Equation 6.61

Other factors participating in reducing chlorine residual to chloride is reacting

chlorine with in-organic species like S--, Fe++, and NO2-. Also, chlorine can be reduced

to chloride by reaction with organic species to produce higher level compounds or

decomposed to CO2 and H2O. Moreover, hypochlorous acid is decomposed at very low

rate to produce oxygen.

HOCl1/2 O2 + H+ + Cl- Equation 6.62

Chlorine residual is detected by diethyl-p-phenylenediamine DPD method at

range of 0.05 to 5.00 mg/L chlorine. This method is the titration of Fe++ ions at the

presence of iodide and diethyl-p-phenylenediamine. The samples from the seawater are

examined at different points of time with known initial chlorine dosing. The results then

plotted in graphs of residual chlorine concentrations versus time. These data are used in

building a kinetic model of chlorine residual over time.

Due to the complexity of the reaction of chlorine with seawater, the consideration

is just for one reactant which is chlorine residual. The kinetics of chlorine residual

disappearance happens in two phases. It starts with a very fast decay rate, then it moves

to a slow rate. The following reactions are considered: The first equation is dominant

until organic species are consumed, then the second reaction becomes dominant.
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Cl2 + Organics products Equation 6.63

r1 = - k1 CCl2 COrg Equation 6.64

Cl2 products Equation 6.65

r2 = k2 CCl2 Equation 6.66

There is a limitation of this model. It cannot be used for long periods (over 18

hours)  nor  can  it  be  used  for  very  small  periods  of  time  and  low  initial  chlorine

concentrations.  Alternatively,  a  second  order  kinetic model  is  used  for  the  second

reaction:

Cl2 products Equation 6.67

r = dCCl2 /dt  = - k C2Cl2 Equation 6.68

1/[CCl2 ] = k t + 1/[CCl2 ]o Equation 6.69

The collected data were graphed as reciprocal residual chlorine 1/ C2Cl2 versus

time. A linear relationship indicating that this reaction is indeed a second order reaction.

The assumption is that the instantaneous disappeared amount of chlorine is [CCl2]d.
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For low initial chlorine concentrations [CCl2]o, the disappearing concentration is equal

to the remaining concentration [CCl2]o = [CCl2]r.

Amount of disappeared chlorine = Initial chlorine – remaining chlorine      Equation 6.70

[CCl2 ]d = [CCl2 ]o – [CCl2 ]r Equation 6.71

Therefore, the concentration of remaining chlorine [CCl2 ]r after the initial

instantaneous disappearance [CCl2 ]d will be considered as the initial chlorine

concentration for the second order kinetic reaction:

1/[CCl2 ] = k t + 1/[CCl2 ]r Equation 6.72

There is a linear relationship between disappeared chlorine with initial chlorine

concentration. As the initial chlorine increases, the pH of seawater increases slightly.

Thus, the value of k changes as appears from the obtained data from the experiment of

Wang 2008. The data for [CCl2 ]r and k are obtained from the graph with the

corresponding initial chlorine concentration [CCl2 ]o:

k = 0.6925 e-0.8124[Ccl2]o Equation 6.73

The temperature effect on the k value was accounted for using the work of Wang, 2008.
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It is important to track the biocide residuals concentration inside the cooling

system through each process segment. The biofilm growth is controlled by biocide

residual concentration. Determining the amount of residual chlorine [CCl2 ] after time t

in minutes requires the result of the kinetic study depending on water quality and the

time of the year. Also, for different temperatures, the changes in decay rate constants are

considered. The works of Wang et al. (2008) and Xin et al. (2003) were used in

developing the kinetic model for chlorine. The  general  form  of  chlorine  decay  in

seawater was taken as follows:

C = A e-kt Equation 6.74

It was considered that the first chlorine decay was very rapid in the first few minutes

(Characklis et al., 1980). After the first five minutes, the data are fitted to the

exponential form shown above (Xin et al., 2003).

The decay of biocide inside the cooling system for this case study follows this

function:

titk
tjpitji eCC ,*

,,,,



Equation 6.75

where:

tijC ,, :is the concentration of biocide key component j at process segment, i, at

time interval t in (mg/l).
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tpijC ,,  :is the concentration of biocide key component j at process segment, i-p,

which precedes process segment i at time interval t.

The decay constant (1/min) has a proportional relationship with temperature

(Nebot et al., 2007). As temperature increases, the decay of chlorine increases following

this equation:

titi Tk ,, * Equation 6.76

where T is measured in Celsius.

tj , : is the disinfection kinetics rate constant for key component j at time interval t.

 : is the coefficient of the decay constant of biocide by-

products )min./1(108.6 4 Co .

tiT , the temperature in (oC) at process segment i and time interval t.

Data for the residual chlorine is in seawater at temperature range from 20 to 24C were

extracted from Hostgaard-Jensen et al. (1977).

The biofilm development model is integrated in the optimization model to track

the thickness of biofilm on the inside surface of the tubes of the heat exchanger. The

biofilm development is influenced by many factors including the variation in

temperature through the cooling systems after passing through heat exchanger units. The

other factor is the seasonal temperature variations of fresh seawater. This factor

influences the biological activities of microorganisms that contribute to the development
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of the biofilms. Therefore, the optimization model includes constraints that track the

biofilm thickness which reduces the heat transferred across the tube surface. The influent

seawater temperature varies and after passing through heat exchanger units. It becomes:

tpiSW
p

SW
ti

ti
ti T

CF
Q

T ,
,

,
, 

 Equation 6.77

tpiT , : is the temperature of seawater at process segment i-p, preceding segment i at time

interval t

tiQ , : the heat transfer at process segment (in the heat exchanger) i and at time interval t.

q
tiQ Re

, : is the heat transfer required for process segment i at time interval t (Btu/hr).

The heat transfer rate would decrease from ti
q

ti QtoQ ,
Re
, as the biofilm accumulates.

The required output of the plant requires an operational schedule to maintain

certain process conditions. Thus, the heat load required to be transferred at each process

segment (in the heat exchanger) is assigned accordingly. This amount of heat load for

each process segment i at time interval t is called
q

tiQRe
, . The transferred heat load, tiQ , ,

must be kept e within the designed margin after any reduction due to fouling according

to the equation below (Nebot et al., 2007). From the percentage reduction in heat transfer

in the heat exchanger, the heat transferred can be calculated from the designed value.
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100
..%

1* ,Re
,,

tiq
titi

RTH
QQ

Equation 6.78

Therefore, tiQ , is the actual heat load transferred at unit i and time interval t, which has

to be less than or equal to the unit i is designed for.
Des
iti QQ , where %HTRi,t is the

percentage of heat transfer reduced at heat exchanger i at time interval t. The reduction

in the designed heat transfer of a heat exchanger can be related to the biofilm thickness.

However, biofilm thickness is not directly related to the reduced heat transfer because

biofilm density changes with time. But, for simplicity in this model, it is considered that

heat transfer reduction is calculated from biofilm thickness.

titi dHTRductionerHeatTransf ,, *%Re%  Equation 6.79

tiRTH ,..% :is the percentage of heat transfer reduced for process segment i and at time

interval t.

 m /12156.0 Equation 6.80

 : is the coefficient in the heat transfer percentage equation.

The biofilm thickness increases over time by accumulating on the tubular surface

of the heat exchangers (Turakhia et al.1984). The biofilm thickness depends on the net
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between the rates of attachment, growth, and detachment, as well as the destruction rate

of biofilm due to the biocide effect (Sriyutha Murthy et al., 2004; Morgan et al., 1969).

This complex relation is expressed through a function that takes care of the biofilm

growth over the variation of seawater condition with the destruction effect of biocide

residuals. This can be described by the following equation (Bryers et al., 1982):

di,t= net development from growth and destruction

   )(*
,

,,, /1    tititi eedd i
iti Equation 6.81

titi T ,,  Equation 6.82

ti , : is the biofilm growth rate constant for process segment i at time interval t (1/min);

(phi) ).min/1(10*909.2 7 Co Equation 6.83

 : is the coefficient of biofilm growth rate constant [1/ (min.oC)].

 : is the duration of a single time interval (day).
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, Equation 6.84
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ti , : is the biofilm growth rate constant considering the growth from the previous time

interval for process segment i and at time interval t (min).









min
0225.0 m

Equation 6.85

where  : is the coefficient of biofilm growth from the previous time segment.

When the biofilm thickness reaches the maximum allowable thickness, a decision

for maintaining that unit has to be made. Here, this has been accounted for by

multiplying the maximum allowable thickness by a 0/1 binary integer variable, Ii,t.

When biofilm thickness di,t-1 of unit i at time interval t-1 exceeds the allowable level

diMax , then Ii,t for unit i and time interval t-1 is equal to zero. Otherwise, Ii,t is always

equal to one. The maximum allowable level of the biofilm thickness has to be less

than

id .

 Max
iti
Max
iti

ddwhen
ddwhentiI 





 1,

1,

0
11. Equation 6.86

   ti
Max
i

Max
ititi

Max
i IdddId ,,, 1*10000*0 

 Equation 6.87
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 i
Max
i dd Equation 6.88

mdi 250 Equation 6.89

ti , : is a binary integer variable for making decisions in order to maintain process

segment i at time interval t.

The destruction rate of the biofilm due to the biocide depends on the biofilm

thickness of the same unit i at the pervious time interval t-1 and the concentration of

biocide residual coming from the previous process segment pi at the pervious time

interval t-1 (Platon et al., 1985):

1,, *  tpti i
C ,  min/1: Equation 6.90

 






 

lmg /.min
110*829.2 4

Equation 6.91

ti , : is the biofilm destruction rate constant for process segment i and time interval t

(1/min).

 : is the coefficient of biofilm destruction rate constant (Gamma) of biocide residual

Additional constraints used in the case study:

 The maximum allowable biofilm thickness is 70um.
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 Cleaning (maintenance) of heat exchangers is only considered at the end

of each month and no more than three maintenances are allowed per year.

 The objective function is considering all costs directly or indirectly

incurred by biofilm developments. Those costs include biocide and EOP

chemical dosing. The optimal solution would  include also the heat

exchanger maintenance schedules. The maximum allowable biofilm

thickness is 70 micrometer.

 The annual operating time is discretized into Nt = 365 time intervals (i.e.,

the optimization formulation is developed on a daily basis). The key

components are tracked  in  the  cooling  system  for  an  accumulation  of

biocide residuals. The cooling system is discretized into numbers of

segments i = 1, 2,…, Ns. Those segments are portions of the pipelines or

heat exchanger units.

 
 











t SN

t

N

i
ti

L
t

EOP
t

B
t ICostCostCostCostAnnualizedTotalMinimize

1 1
, )*(

Equation 6.92

Total Annual Cost of Biocide:
BiocideFCost

tN

t

B
t

B
t 








  

Equation 6.93

The total annual cost of biocide is the summation of the volumetric flow rate of

biocide
B

tF over all time intervals Nt, multiplied by the duration of each time
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interval  . This total is multiplied by the cost of biocide ($/m3). Total annual cost of

end-of-pipe treatment is calculated as follows:

ChemicalsFCost
tN

t

Chem
t

EOP
t 








  

Equation 6.94

Total annual cost of end of pipe treatment is equal to the summation of the volumetric

flow rate of chemicals (m3/hr) multiplied by the duration of each time interval over all

time intervals, Nt. The total summation is multiplied by the cost of chemicals ($/m3).

Total annual cost for production loss due to heat reduction in heat exchangers

caused by fouling and shutting down the process for heat exchangers cleaning is given

by:

tenanceMaCost i

N

i

L
t

S








int
1 Equation 6.95

where maintenance is the cost for maintaining process segment I with a loss of

production due to the reduction in heat transfer and being out of the process for cleaning.

The total annual cost for heat exchangers’ maintenance is the summation of the

multiplication of binary number Ii,t by the cost of the maintenance of a single process

segment over all process segments Ni and over all time intervals Nt.
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6.11. RESULTS

The optimal schedule is for continuous monthly chlorine dosing that depends on

seasonal variations. In response, the chemical dosing at the EOP treatment unit is

eliminating or reducing the effect of biocide on aquatic life in the seawater. The

achieved reduction in heating and cooling utilities was 79 % and 51 %, respectively,

which is shown in Table 6.2. This is the most economically feasible reduction of the

utilities.

Table 6.2. Comparison of Current and Achieved Heating and Cooling Utilities
Required for the Acrylonitrile Plant.

Heating & Cooling Utilities

Utilities

Heating Cooling

MM Btu/hr MM Btu/hr

Current 173.4 266.90

H.I. Target 14.05 107.55

% of Current 91.8973 59.70

Achieved 36.4 129.90

% of Current 79.0 51.3
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The comparison between the current and the proposed reduction in the usages of

heating and seawater cooling utilities as well as the amount of seawater is shown in

Figure 6.8. A significant reduction (percentagewise) was made for the heating utilities.

Figure 6.8. Comparison Between Current and Achieved Heating and Cooling
Utilities Including Seawater Usage.

The majority of annual savings is attained through the reduction of heating

utilities of $3.5 MM. Then, the next annual savings is achieved from the reduction in

biocide dosing of $ 2.7 MM. Furthermore, savings is about $ 1 MM in usage of

seawater. There is a small annual savings in EOP chemical dosing because the aim was

to lower the biocide residual concentration beyond well below the current discharge to

reach 0.002 ppm. There is no saving in the maintenance of heat exchangers because the

current maintenance although the timing has changed. A summary of these savings is

shown in Figure 6.9.
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Figure 6.9. Annual Savings from Current to Proposed Schedule in Millions of
Dollars.

The optimal schedule for continuous monthly biocide dosing is proposed with

heat exchanger maintenance at the end of May, August, and November. Figure 6.10

shows the optimal usage of the biocide and the chemicals used in end-of-pipe treatment.

The biofilm thickness was tracked by using the model that represents biofilm growth. As

shown in Figure 6.11, the biofilm thickness goes to zero at the proposed timing for the

cleaning maintenance of the heat exchangers at the end of months 5, 8 and 11.
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Figure 6.10 Proposed Monthly Biocide and EOP Chemicals Dosing for the
Acrylonitrile.

Figure 6.11. Biofilm Thickness with the Corresponding Biocide Dosing for the
Proposed Schedule.
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6.12.   CONCLUSIONS

A systematic procedure has been developed for the optimization of biocide usage

and discharge for seawater cooling systems. The devised procedure includes design

modifications using heat integration and optimization of temperature profile. A kinetic

model is developed for the reaction mechanism of biocide and its byproducts and is

linked to the biofilm growth. A multi-period, multi-segment optimization model has also

been developed to account for the various cost item, the technical performance, and the

desired specifications and constraints. The case study of the plant for acrylonitrile from

propane showed how the procedure can be effectively applied to determine optimal

design changes and operating and scheduling strategies.
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7. CONCLUSIONS AND RECOMMENDATIONS

This work has introduced systematic tools for the optimization of seawater

cooling systems. Emphasis has been given to the use and discharge of biocide and the

associated technical, economic, and environmental aspects. A comprehensive survey has

been presented for the biocide-seawater chemistry to understand the key relations

governing the effectiveness of the biocide dosing and the residual components exiting

the plant.

There are many operating practices that impact the efficiency, performance, and

cost of the plant. Adding more than the required amount of biocide would result in a

higher performance of the heat exchanger units, but it would require additional treatment

for seawater before it is discharged. Using less than the optimal doses of the biocide lead

to reduction in heat transfer and process performance. Furthermore, there is a critical

need to determine the timing of the cleaning maintenance of the heat exchangers.

Systematic procedures have been developed for the optimization of scheduling

the dosing of biocide and dechlorination chemicals as well as cleaning maintenance for a

power production/thermal desalination plant. A shortcut methods has been proposed to

include simplified biocide kinetics in a process-integration scheme. Next, more detailed

analysis of biocide chemistry and process characteristics were included. The annual

operation has been discretized into operational periods and the process is discretized into

two operating segments. A multi-period optimization formulation has been developed to

determine the optimal levels of dosing, the relationship between the applied doses, the
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process conditions, and seawater characteristics for each time period. Applications were

shown for general facilities and for combined power plants and thermal desalination

systems. The technical and environmental considerations were also accounted for

through case studies that have been solved to demonstrate the applicability of the

devised procedures.
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8. RECOMMENDATIONS FOR FUTURE WORK

The following topics are recommended for future work:

 Inclusion of process-modification changes: This work has focused on the

seawater cooling system while accepting the process design and operation

in their current form. It will be useful to allow changes in process design

and operation to establish tradeoffs with the seawater cooling system.

 Molecular design of biocide: This work has assumed the selection of a

specific biocide. Future research should include the problem of the

molecular design and selection of biocides that provide the necessary

controlling effect to the biofilms while exhibiting desirable technical,

economic, and environmental performance.

 Integration with seawater dispersion models: This work has accepted a

certain set of environmental regulations for biocide discharge. Future

work should include dispersion models for the discharged biocide and

relate such dispersion to the impact on aquatic lives.

 Inclusion of safety metrics: This work has focused on techno-economic

and environmental criteria. It is important to include safety metrics in the

assessment and screening of the design and operational strategies.
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