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ABSTRACT 

 

Insulin Sensitivity in Tropically Adapted Cattle with Divergent Residual Feed Intake. 

(August 2011) 

Gentrie Lynn Shafer, B.S., University of Missouri, Columbia 

Chair of Advisory Committee: Dr. Ronald D. Randel 

 

Residual feed intake (RFI) is one method to identify feed efficient animals; 

however, this method is costly and time consuming therefore, identifying an indirect 

measure of RFI is important.  Evaluating the glucoregulatory mechanisms in cattle 

selected for divergent RFI may provide insight into metabolic processes involved in feed 

efficiency. 

This study evaluated the effect of a glucose (GLUC) challenge on efficient 

(LRFI) and inefficient (HRFI) tropically adapted bulls and heifers.  Insulin (INS) 

secretion was determined by radioimmunoassay (RIA) and GLUC was determined by 

colorimetry.  Insulinogenic index (IIND) was calculated as the ratio of INS to GLUC 

(I/G).   

Bonsmara heifers were evaluated in two experiments.  Similar results were 

observed in both experiments.  RFI affected (P < 0.05) INS response; with LRFI heifers 

having a greater INS response than HRFI heifers.  Similarly, RFI affected (P < 0.05) 

IIND; with LRFI heifers having a greater IIND than HRFI heifers. 



 iv

In Santa Gertrudis bulls, RFI did not affect (P > 0.05) GLUC conc. or Ins. 

response; however, numerically HRFI bulls had a greater INS response than LRFI bulls.  

RFI affected (P < 0.05) IIND; with LRFI bulls having a lower IIND than HRFI bulls.   

  In Brahman heifers (Exp 1), RFI did not affect (P > 0.05) GLUC concentration 

or INS. response; however, numerically HRFI heifers had a greater INS response than 

LRFI heifers.  RFI affected (P < 0.05) IIND; with LRFI heifers having a lower IIND 

than HRFI heifers.  In Brahman bulls (Exp 2), RFI affected (P > 0.05) INS response; 

with HRFI bulls having a greater INS response than LRFI bulls.  RFI affected (P < 

0.05) IIND; with LRFI bulls having a lower IIND than HRFI bulls.   

Bonsmara cattle evaluated for RFI had a response to an influx of exongenous 

glucose that was opposite to that observed in the Brahman and Santa Gertrudis cattle 

evaluated for RFI.  Insulinogenic index was significantly different between RFI groups 

in each experiment.  The lower amount of INS required for clearance of the GLUC from 

the circulation of the Brahman and Santa Gertrudis cattle fits with our hypothesis that 

more efficient cattle would require less INS than the less efficient cattle.  Further 

research and studies need to establish glucoregulatory differences between breeds and 

sexes of cattle evaluated for RFI.   
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CHAPTER I 
 

INTRODUCTION 
 
 
 In a given production system, a greater profit margin can be achieved by 

minimizing inputs and maximizing outputs.  A greater profit margin equates to an 

improvement in profitability.  Production of beef cattle is no exception.  Traditionally the 

selection of cattle for a breeding herd has been based on maximizing output traits such as 

reproductive performance, growth rates, and carcass characteristics (Archer et al., 1998).  

The beef industry has many genetic indicators that focus on these production (output) 

traits, but recently due to the increasing prices of feed, fuel, and fertilizer utilized for 

cattle production , more attention has been granted to production costs (inputs) as a major 

factor of profitability (Crews et al., 2005).  Feed is the most expensive and widely utilized 

input associated with producing beef cattle.  USDA (2011) reported in 2009 and 2010 

feed costs comprised 71 and 68%, respectively, of the annual operating costs of 

maintaining a bred beef cow in the United States.  Profitability of beef cattle operations is 

predominately reliant on the producer’s ability to reduce feed expenses.   

Identifying animals that are more efficient in feed conversion, thus requiring less 

feed to achieve the same level of performance as their cohorts, may be one method to help 

reduce feed expenses and improve profitability.  Simply put, feed efficiency can be 

described as the amount of feed consumed by an animal per amount of weight gained.  

However, accurately measuring feed efficiency has proven to be a much greater 

____________ 
This thesis follows the style of Journal of Animal Science. 
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challenge.  While many methods attempting to measure feed efficiency have been 

developed, the industry has historically utilized feed to gain ratio (F:G) as the most 

common method (Nkrumah et al., 2004).  This method was favored in the industry 

because of the simplicity and low costs associated with the equation.  However, this 

method tends to lead to the selection of cattle that are larger at maturity and therefore have 

greater maintenance requirements; due to increasing prices of grain and fuel larger framed 

cattle at maturity are undesirable in today’s economic climate.  As an alternative method 

to calculating feed efficiency, residual feed intake (RFI) was introduced by Koch et al., 

(1963).  Although this method has proved to identify more appropriately sized feed 

efficient beef cattle, it is still costly and time consuming.  For these reasons, selection of 

efficient animals using RFI has not been widely adopted by commercial beef cattle 

producers.   

There is great interest within the animal production community to find an indirect 

measure of RFI.  One component of the equation used to calculate RFI is metabolic body 

weight (BW); consequently, a variation in RFI among a cohort of animals signifies 

differences in how those animals utilize energy for maintenance and growth (Kennedy et 

al., 1993).  Evaluating the glucoregulatory mechanisms in efficient animals compared to 

inefficient animals may give us insight into metabolic differences between the two 

groups.  If differences in glucoregulatory mechanisms can be linked to the different RFI 

groups, then a more affordable method of determining feed efficiency may be established.  

In turn, this would lead to a positive impact on beef cattle profitability.  The response of 

insulin to an influx of glucose was evaluated in an effort to investigate the glucoregulatory 
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mechanisms and insulin sensitivity of tropically adapted cattle evaluated for RFI.  

Differences in insulin sensitivity between efficient and inefficient animals would suggest 

a glucose tolerance test may be utilized to accurately identify efficient animals in a herd.    
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CHAPTER II 
 

LITERATURE REVIEW 
 

 
 Traditionally, maximizing output traits such as reproductive performance, growth 

rates, and carcass characteristics have been the basis for selecting cattle (Archer et al., 

1998).  The beef industry has many genetic indicators that focus on these production 

(output) traits; such as carcass traits, weaning or yearling weights, and scrotal 

circumference.  However, more attention is being given to production costs (inputs) as a 

major influence on profitability due to increasing prices of feed, fuel, and fertilizer 

utilized for cattle production (Crews et al., 2005).  Feed is the most expensive and 

unavoidable input associated with producing beef cattle, estimated to account for 68-71% 

of total costs of production (USDA, 2011).  Because of the progressing upward trend in 

price of feedstuffs, it is important for producers to identify more efficient cattle.  In 

addition to reducing Dry Matter Intake (DMI), efficient animals also have been shown to 

have reduced manure production and reduced emission of methane; therefore, reducing 

the environmental footprint print of beef cattle production (Nkrumah et al., 2006; Hegarty 

et al., 2007).  Feed to gain ratio (F:G) was traditionally the method of choice to determine 

efficiency, but this measure tends to lead to the selection of larger framed cattle that are 

less desirable in today’s beef industry.  Currently, residual feed intake (RFI) is deemed to 

be a more accurate method, but it is costly and labor intensive.  Evaluating 

glucoregulatory mechanisms may offer a less expensive, more convenient indirect 

measure of RFI, allowing producers to identify more efficient animals within a cohort.    
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Tropical Adaptation 

  Breed diversity in the beef industry allows producers to raise beef cattle in various 

regions of not only the United States, but also the world.  Various breeds naturally adapt 

to and flourish in certain environments.  Areas that are unsuitable for crop production, due 

to climate or soil composition, are great opportunities for beef cattle producers to 

maximize on forage availability.  Producers must be selective when choosing the breed of 

cattle to use for production in such areas because cattle that are acclimated to temperate 

climates experience a loss in production when moved to a tropical or subtropical climate 

(Bonsma, 1949).  Temperate acclimated cattle experience this loss in production 

performance when transferred to a tropical environment due to the animal’s inability to 

efficiently transfer or exchange heat.  Finch (1986) reveals that the tropically adapted Bos 

indicus breeds are more efficient at transferring or exchanging heat with the environment 

in comparison to temperate Bos taurus breeds.  Bos indicus breeds are equipped with 

mechanisms that allow them to transfer heat such as slicker hair coat, sweat glands and 

rate of respiration.  These mechanisms are vastly different in tropically adapted breeds of 

cattle in comparison to temperate breeds of cattle (Cartwright, 1955; Shrode et al., 1960; 

Yeates et al., 1975; Finch, 1986).  As a result, tropically adapted breeds are able to 

withstand the hot and humid conditions of tropical and subtropical regions and are usually 

the breeds of choice in such climates due to their ability to perform well under these 

environmental conditions.         

 Tropically adapted breeds have a flat coat of hair with shallow follicles, allowing 

them to maintain optimal body temperature by exchanging heat with the environment and 
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providing resistance to environmental heat-flow.  The smooth coat of hair protects from 

environmental heat gain by also acting as a reflector of radiation (Finch, 1986).  This is 

not the case for temperate breeds as their hair coat is thick and deep, working to deflect 

heat loss by serving as a barrier to outward movement of heat.  Finch (1986) reports that 

the thick hair coats of temperate breeds act as a limiting factor to evaporative cooling 

which is essential under hot, humid conditions.  The adaptive thermoregulation ability of 

Bos indicus cattle also involves mechanisms of the tissue directly beneath the hair coat.  

There is a difference in the shape of the sweat glands of tropically adapted cattle in 

comparison to temperate cattle (Yeates et al., 1975).  Bos indicus cattle have a baggy-0-

shaped gland which promotes a higher level of activity in comparison to traditional coiled 

glands found in Bos taurus breeds.  Increased activity of sweat glands results in a greater 

amount of sweat being produced, thus promoting evaporative cooling.  The third 

mechanism for adaptation is rate of respiration (Shrode et al., 1960) in tropical breeds.  It 

has been shown that heat tolerant breeds have a lower rate of respiration which aids in 

thermoregulation (Shrode et al., 1960; Carvalho et al., 1995).  Bos indicus cattle are 

imperative to the beef industry in the southern United States and countries with tropical or 

subtropical climates, therefore it is economically important to investigate feed conversion 

mechanisms in these animals in order to capitalize on gains in productivity.   

   

Feed:Gain Ratio 

 The initial and most common method used for identifying feed efficient animals 

was introduced in 1945 by Samuel Brody as the feed:gain ratio (F:G).  Brody (1945) 
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defines this ratio as the amount of feed required to produce one unit of weight gain in an 

animal.  An animal with low F:G requires less feed to achieve a unit of gain than an 

animal with a high F:G.  The simplicity and low overhead costs associated with this 

equation make it appealing to the beef industry and, consequently, it is used extensively as 

a selection tool to improve feed utilization.  However, after further scrutiny of this 

method, it was found that using F:G as a measure of feed efficiency comes with negative 

consequences to the beef herd.  Feed:gain ratio has been negatively correlated with 

composition of gain, growth rate and body size  in young, growing cattle (Mrode et al., 

1990; Koots et al., 1994; Herd and Bishop, 2000; and Arthur et al., 2001b)  The 

implication of these correlations is that selection for feed efficiency using F:G produces 

similar results to selecting for increased growth rate (Mrode et al., 1990), which is 

associated with an increased mature size (Herd and Bishop, 2000).  Cattle that are larger 

at maturity have greater nutrient demands and energy maintenance requirements (Barlow, 

1984), thus contradicting the initial goal of reducing feed costs by making it more 

expensive to maintain those cattle at maturity.    

 

Residual Feed Intake 

As an alternative method to calculate feed efficiency, residual feed intake (RFI) 

was introduced by (Koch et al., 1963).  Residual feed intake is the difference in individual 

animal feed intake either above or below the predicted amount based upon both metabolic 

weight and growth rate of the animal (Archer et al., 1999).  More simply stated, RFI can 

be thought of as the difference between an animal’s actual feed intake and its expected 
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feed intake (Arthur et al., 1996).  A negative RFI value represents an animal that 

consumes less feed than expected, equating to a more efficient animal; while a positive 

RFI value represents an animal that consumes more feed than expected, equating to an 

inefficient animal.  Feed efficiency is not a trait that can be directly measured; therefore, 

the equation for establishing feed efficiency must be comprised of multiple components.  

Koch et al. (1963) suggested that feed efficiency should be a function of feed intake, body 

weight gain, and average weight throughout the course of a feeding trial.  Differing from 

F:G, RFI is phenotypically independent of the animal’s body weight (BW) and growth 

rate (Kennedy et al., 1993; Herd and Bishop, 2000; Arthur and Herd, 2005) suggesting 

selection for RFI will not result in larger cattle at maturity.  Residual feed intake uses 

linear regression to estimate feed intake from BW and average daily gain (ADG) (Koch et 

al., 1963).  The predicted daily feed intake value is acquired by regressing daily dry 

matter intake (DMI) on ADG and mid-test-metabolic body weight (MBW; [body weight 

at test midpoint]0.75) or mid-test BW.  Residual feed intake is then calculated as the 

difference between the actual and expected feed intake for each animal (Arthur et al., 

1996).  Calculating RFI in this manner provides a measure of feed efficiency that is 

independent of its component traits, BW and ADG and should not result in an increase in 

mature size or feed requirements (Arthur et al., 2001a; Arthur et al., 2004; Nkrumah et al., 

2004; Kelly et al., 2010).  Cattle with more negative RFI values consume less feed than 

expected, being more efficient, and are more desirable than cattle with more positive RFI 

values.  Bingham et al. 2009 reported that high RFI Brangus heifers consumed an average 

of 1.92 kg/d (22.5%) more feed than low RFI heifers when animals were separated based 
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on a ± 1 SD from the mean.  Additionally, Lancaster et al. (2005) reported that low RFI 

calves consumed 15% less feed than high-RFI calves when calves were separated based 

on ± 0.5 SD from the mean.         

In order to make great strides in the feed efficiency of an entire cow herd, it is 

imperative that the selection tool used to identify efficient animals is a heritable trait so 

that continuous positive selection can be applied over generations.  Previous studies have 

reported heritability estimates for RFI to range from 0.16 (Herd and Bishop, 2000) to 0.47 

(Lancaster et al., 2009).  Because most studies have reported heritability estimates to fall 

within this range, RFI is said to be moderately heritable (Arthur et al, 2001a; Robinson 

and Oddy, 2004; Schenkel et al., 2004).  Consequently, selection of a cow herd for RFI 

should reduce feed costs and allow for production of more efficient progeny without 

compromising mature size of the cow herd.   

 

Evaluating Cattle for RFI 

Sex, Age, and Breedtype 

 To date, there is not a standard model established for calculating RFI within a 

single livestock industry; therefore, it is essential to compare animals within a standard 

level of nutrition when determining which model best suits a group of cohorts to be tested 

(Knott et al., 2008).  Herd et al., (2004) suggested that feed efficiency is relative to the 

type and amount of feed consumed, the sex and breed of that animal, and environmental 

conditions in which that animal is managed.  Each of these components must be taken into 

consideration when designing a protocol to determine feed efficiency of a cohort utilizing 
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RFI.  Residual feed intake is calculated as an index, making it important to select an 

appropriate group of cattle to evaluate.  It is well-established that cattle of different sexes 

perform unequally (Brinks et al., 1961; Bogart et al., 1963; Wilson et al., 1969).  Due to 

these established differences, the industry typically manages cattle by sex class or makes 

adjustments to performance records.  These differences must be taken into consideration 

by grouping cattle of the same sex together as a cohort.   

The RFI index has the advantage of attempting to account for variation in 

maintenance requirements among cattle of different ages and breedtypes by including 

metabolic BW in the model (Arthur et al., 2001b).  This would indicate that cattle 

differing in breed composition or age could be compared for RFI in the same cohort.  

However, further scrutiny and research have since shown that this theory may not be 

accurate.  Schenkel et al. (2004) and Riley et al. (2007) have reported breedtype 

differences in RFI and shown that comparisons across breedtypes are not valid.  Limited 

studies have addressed age as a factor.  Crews et al. (2003) reported a moderate 

correlation (r = 0.55) for RFI of calves evaluated in the same cohort at 2 different ages.  A 

similar correlation (r = 0.59) was reported by Johnston (2007) between post-weaning RFI 

and feedlot RFI of calves evaluated in the same cohort.   Bradbury et al., (2011) examined 

the relationship between postweaning RFI and mature RFI in Bos inidicus females.  Sire, 

cow age, heifer pen, lactation status, and pen were all included as random effects in this 

study.  Results from this study indicate that heifer RFI may not be an accurate predictor of 

RFI as a mature cow.  This leads to a more scientific indication that feed efficiency and 

RFI results may be dependent on stage of maturity as well as breed of the animal (Arthur 



 11

and Herd, 2005).  To most accurately determine RFI, evaluation should be conducted on 

cattle of similar breedtypes and age (Herd and Aurthur, 2009). 

 

Feed 

Variation in type and amount of feed provided to animals during the RFI 

evaluation period may alter or affect the results of an RFI evaluation.  There are 

contrasting results supporting both aspects of this statement.  Fan et al. (1995) evaluated 

Angus and Hereford bulls for RFI using 2 different diets, and found significant 

differences in RFI values calculated.  Those fed a high concentrate diet had more positive 

RFI than those bulls fed a high roughage diet (0.36 ± 0.12 vs. -1.67 ± 0.12 kg/d intake, 

respectively).  However, Goonewardene et al. (2004) reported contrasting results when 

evaluating crossbred steers for RFI.  Residual feed intake became more positive as the 

proportion of roughage increased; whereas RFI became more negative as the proportion 

of grain was increased.  Type of diet provided may affect performance of animals being 

evaluated.   

Amount of feed provided to the animal during period of evaluation may also 

impact RFI evaluation.  When animals are offered feed ad libitum during the RFI 

evaluation period appetite should be considered as a variable; alternatively, that variable 

is removed when animals are offered a limit-fed ration.  Ad libitum access to the ration 

more appropriately reflects a feedlot setting and is the more common ration allocation 

when evaluating cattle for RFI.  However, providing feed ad libitum is not always the best 

option when evaluating growing heifers, later to be incorporated into the breeding herd, as 
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the increased weight gain during this time period may hinder reproductive performance as 

maturity is achieved.  The initial idea and basis behind RFI determinations leads to the 

thought that RFI calculations determined in a feedlot setting would also be applicable to 

the breeding herd (Arthur et al., 2001a; Arthur and Herd, 2005).  Herd et al., (1998) 

evaluated Angus heifers for post-weaning RFI, providing ad libitum access to a high 

concentrate ration.  The most efficient and least efficient heifers from that cohort were 

later re-evaluated for RFI as 3-yr-old cows on pasture; utilizing intra-ruminal alkane 

capsules and fecal samples to estimate DMI.  Results from this study showed no 

differences in pasture DMI between the two groups.  It should be noted that cows were in 

their third month of lactation at the time of DMI determination, and both groups had 

similar subcutaneous fat stores and reared calves of similar weight.  It can be concluded 

that the amount of diet or type of diet could influence the outcome of an RFI evaluation 

test.   

 

Estimating Feed Intake 

Correctly estimating expected feed intake becomes an essential role in determining 

feed efficiency and evaluating cattle for RFI.  Two methods have been proposed.  Koch et 

al., (1963) proposed using linear regression of actual feed intake on growth rate and mid-

test BW to determine the expected feed intake of each animal.  Later, a modification of 

this model was proposed where metabolic BW would be used instead of actual BW 

(Arthur et al., 1996; Knott et al., 2008).  More recent studies have adopted this 

modification.  By utilizing this modification RFI can account for the reported wide 
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variation in maintenance requirements observed between animals at similar production 

levels (Montano-Bermudez et al., 1990).   

Fan et al. (1995) suggested a model to determine expected feed intake for RFI 

evaluation that used an equation rather than actual data.  The equation considered BW and 

growth rate using NRC estimates to establish the net energy required for maintenance and 

growth.  From there, nutrient content of the feed is considered when calculating expected 

feed intake.  Accurately estimating feed intake becomes problematic for studies that have 

utilized this method.  Knott et al., (2008), performed a study using this method to 

calculate expected feed intake and the model over estimated feed consumption in 6-mo-

old sheep while it under-estimated intake in 13-mo-old sheep.  Additionally, when 

utilizing this system to estimate feed intake, correlations between BW and RFI and 

growth rate have been observed.  Similarly, Fan et al. (1995) reported correlations 

between RFI and average daily gain (ADG) of -0.50 in Hereford bulls and -0.58 in Angus 

bulls.  In addition, correlations between RFI and yearling weight of the Hereford (r= -

0.44) and Angus (r = -0.53) bulls were also observed (Fan et al., 1995).  In conclusion, 

estimating feed intake for RFI calculation using the linear regression model seems to 

produce more accurate and appropriate results.   

 

Test Duration 

 Altering the test duration of the feeding trial is a factor that could affect the results 

of an RFI evaluation.  Feeding trials are expensive and labor intensive, thus the duration 

of feeding period used to evaluate RFI in cattle has been the focus of many subsequent 
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studies.  Due to the large expense associated with feeding trials, a shorter testing period is 

economically beneficial to producers and researchers alike.  Initially, 168 d for the 

feeding trial was suggested as the required duration necessary to get accurate results 

(Koch et al., 1963).  Eventually this feeding period was reduced to 140 d and then 112 d; 

neither reduction had a negative effect on accuracy (McPeake et al., 1986).  To establish a 

more precise time frame Archer et al. (1997) conducted an extensive study to accurately 

assess the ideal number of days required for the RFI feeding period using Angus, 

Hereford, and Shorthorn heifers and bulls.  By progressively increasing number of days in 

each feeding trial from 7 to 119 d, it was determined that little decrease in the variation of 

RFI is observed after d 70.  Therefore, it was proposed that reducing the feeding period to 

70 d provided an adequate level of accuracy in measuring feed efficiency and RFI in 

British breeds of cattle.   

This was a novel breakthrough that reduced the necessary feeding period by over 

half of the initially proposed required days, but unfortunately this trial only took British 

breeds into consideration.  Robinson (1997) verified that there were distinct differences in 

feeding behaviors between Bos taurus and Bos indicus cattle when managed in the same 

feedlot environment.  That led Archer and Bergh (2000) to conduct a similar study to 

investigate appropriate RFI feeding trial duration for cattle of diverse biological 

breedtypes.  Using Angus, Hereford, Simmental, Afrikaner, and Bonsmara young bulls, 

they concluded that a 70 d feeding trial was sufficient for these breeds as well.  The 

findings of these studies suggest that the feeding period can be reduced to as little as 70 d 

without affecting accuracy in determining RFI. 
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Sources of Variation in RFI 

Composition of Gain 

Differences in body composition and RFI have been reported in young, growing 

cattle.   Richardson et al. (2001) reported a correlation (r = 0.43) between whole-body 

chemical composition and genetic variation in RFI; additionally, increased fatness was 

associated with steer progeny born to high RFI parents.  Furthermore, differences in fat 

composition have been reported as well.  There is a trend for low RFI steers to have 

decreased amounts of intramuscular fat (P= 0.06) and dissectible carcass fat (P = 0.08) in 

comparison to medium and high RFI steers (Basarab et al., 2003).  While these data 

suggest that body composition has an effect on energetic efficiency but, differences in RFI 

and body composition have been estimated to only account for 5 (Richardson and Herd, 

2004) to 9 (Lancaster et al., 2009) percent of total variation in RFI.   

 

Feeding Behavior  

Physical activity results in expending energy and production of heat.  Cohorts 

should be exposed to the same basic feeding conditions to reduce variance caused by 

energy requirements for locomotion or competing for bunk space.  Golden et al., (2008) 

reported that lower RFI animals expressed a lower duration of daily feeding activities 

compared to high RFI animals within a cohort.  Additionally, feeding time per day, 

number of eating sessions per day, and eating rate has been positively correlated with RFI 

(Robinson and Herd, 2004).  Cattle fed an ad libitum diet are allowed to express 
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differences in appetite and feeding behaviors; this activity could potentially cause loss in 

energy and influence digestibility in comparison to animals consuming a restricted diet.    

 

Feed Digestibility 

Some studies provide evidence that more efficient cattle may possess a greater 

ability to digest consumed DM.  Grovum and Hecker (1973) reported that as feed intake 

increases, ruminal passage rate accelerates thus; decreasing the time period feed remains 

in the rumen for digestion.  Therefore, the increased daily feed consumption and passage 

rate of high RFI cattle may result in a reduction in digestibility.  Nkrumah et al. (2006) 

reported a negative correlation (r = -0.44; P < 0.05) between RFI and metabolizable 

energy in a study where high RFI steers recovered 10% less metabolizable energy than 

low RFI steers.  Low RFI heifers have been reported to have a higher (P < 0.05) dry 

matter (731 vs. 705 ± 12 g/kg dry matter) and crude protein (691 vs. 657 ± 13 g/kg dry 

matter) digestibility than high RFI heifers (Krueger et al., 2008).  Richardson et al. (1996) 

reported a trend (P < 0.10) for low RFI cattle to have increased nutrient digestibility of 

1% difference compared to high RFI cattle; however, the authors speculated this 1% 

difference may account for as much as 14% of the observed difference in feed efficiency.      

 

Indirect Measures of RFI 

Regardless of the proposed reduction of RFI trials to as little as 70 d, feeding trials 

still come with an expensive overhead and large economic burden.  Basarab et al. (2002) 

estimated that testing a single animal for RFI could cost as much as $188.  In addition to 



 17

costs associated with the intense feeding period, proper equipment, facilities, and labor 

are required to evaluate cattle for feed efficiency using RFI.  While evaluating sires for 

RFI is becoming more popular within the industry, these limitations provide an 

economical challenge that prevents wide scale use of this selection tool.  Finding an 

indirect measure of RFI that is less laborious and relatively inexpensive for producers to 

incorporate into their production system could speed the rate of genetic change in feed 

efficiency (Davis and Simmen, 1997). 

 

 Insulin-like Growth Factor-I 

Insulin-like growth factor-I (IGF-I), a hormone related to growth and 

development, received some attention by researchers who hypothesized a possible 

correlation between IGF-I and feed efficiency.  Circulating IGF-I primarily originates in 

the liver; however, the lungs, kidneys, heart, stomach and gonads, as well as muscle and 

bone, also produce a substantial quantity of this hormone (Daftary and Gore, 2005).  The 

growth hormone releasing hormone (GHRH)-growth hormone (GH)-IGF-I axis regulates 

many life processes.  The feedback mechanisms involved with this axis (commonly 

referred to as the GH/IGF-I, growth or somatotrophic axis) are outlined in Figure 2.1 

(Caldwell, 2009).  Johnston (2001) reported IGF-I to be correlated with RFI in Bos taurus 

cattle.  From this, IGF-I was suggested as a selection tool for cattle to be evaluated for 

RFI; however, Johnston (2001) insisted that more extensive research needed to be 

conducted to accurately determine the correlation between IGF-I and RFI.  In growing 

bulls and heifers, plasma IGF-I concentrations have been reported to be genetically 
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correlated (0.56) (Moore et al., 2005) and phenotypically correlated in a positive manner 

with RFI; conversely, Kelly (2010) showed no correlation between overall plasma IGF-I 

and RFI in yearling beef heifers.  Kelly (2010) hypothesized that the explanation for this 

inconsistency may be the result of differences in age and diets between studies; 

suggesting that younger animals on trial consuming a roughage based diet may be 

expected to have a greater rate of lean tissue gain and reduced carcass fatness thus altering 

the IGF-I concentrations found.  In efforts to more clearly establish the relationship 

between RFI and IGF-I, Lancaster (2007) evaluated a group of Brangus cattle and found 

no correlation between IGF-I and RFI.  However, this discrepancy could be due to 

differences in breed types evaluated.  Caldwell (2009), also reported no relationship 

between circulating concentrations of IGF-I and RFI among varying purebred and 

crossbred breeds of beef cattle.  This study evaluated Romosinuano, Brahman, and Angus 

purebreds and various crosses between these breeds of cattle.  Obviously, a clear 

correlation between IGF-I and RFI has not been established within the beef industry to 

this date.   
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Figure 2.1 Schematic diagram of the growth axis.  
 

Genetic Markers 

 Genetic correlations exist between RFI and growth, intake, and energy partitioning 

traits which are controlled by a variety of genes (Sherman et al., 2008).  Single nucleotide 

polymorphisms (SNP) have been evaluated to identify genes that are responsible for RFI 

variations.  A whole-genome study of feedlot cattle of diverse breedtypes and varying RFI 

values, revealed 161 SNP that were significantly associated with RFI (Barandse et al., 

2007).  The 20 most significant SNPs accounted for 76% of the genetic variation in RFI, 

suggesting that genetic markers may be more accurate biomarkers than circulating 

analytes (Moore et al., 2009).  Genetic tests, such as IGENITY® (Merial Limited, Duluth, 
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GA) and GeneSTAR® (Pfizer Animal Health, New York, NY), are currently available to 

identify feed efficiency differences in individual animals.  Both products report genetic 

correlations between markers and RFI; however, these tests only account for less than 

15% of the variation in feed intake.  As the beef industry is constantly striving to produce 

genetically superior animals, modifications of genes are constantly occurring.  This would 

suggest that variances in genes over time may lead to a changing genetic profile, making 

it difficult to concentrate on a specific gene for selection.  When utilizing these tests to 

quantify relative feed efficiencies in beef cattle, caution should be taken.   

 

Estimated Breeding Values 

 Estimated breeding values (EBV) are indexes given to quantify the genetic worth 

of an animal for a given trait and are utilized by producers when selecting animals for 

their breeding herds.  Estimated breeding values exist for RFI; designed with the 

capability to compare animals within and across herds individually evaluated for RFI 

(Sherman et al., 2008).  Positive correlations (r = 0.35; P < 0.05) have been reported in 

Angus steers to their respective sire’s RFI EBV by Richardson et al. (2004), suggesting 

that EBV may be a fairly reliable method to predict RFI.  However, selecting prospective 

cattle for a breeding herd should never been done by using single trait selection; this holds 

true when utilizing RFI EBV’s as well.  Instead, Crews et al. (2005) urges producers to 

utilize RFI EBV’s merely as a component of a multiple trait selection.        
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Glucoregulatory Mechanisms 

Relationship Between Glucose and Insulin 

 Glucose is a carbohydrate that is used as a short-term energy source by an 

organism.  It functions as a metabolite that is utilized for energy in every cell of the body.  

Maintenance of plasma glucose concentrations is critical to survival as glucose is the most 

utilized metabolic fuel by the central nervous system.  Ruminants differ in glucose 

production in comparison to monogastrics.  The rumen of ruminants contains 

microorganisms that are capable of digesting fibrous material; the microorganisms enable 

ruminants to eat and partly digest plant cellulose and hemicelluloses (Hocquette and Abe, 

2000).  The major products of the fermentation of dietary carbohydrates are volatile fatty 

acids, primarily acetate, propionate and butyrate.  The low dietary absorption of glucose 

in the ruminant leads to lower blood glucose concentrations and adaptation of glucose 

metabolism regulation (Brockman, 1993).   

Hormones that control glucose concentrations include insulin, glucagon, 

epinephrine, cortisol and growth hormone.  Insulin serves as the primary glucose lowering 

hormone.  Insulin is a metabolic hormone, synthesized and secreted from beta (β) cells in 

the pancreatic islets.  It is then released into the hepatic portal circulation and serves to 

affect the liver and peripheral tissues.  Insulin functions as a key component in 

intermediary metabolism and is primarily released in response to elevated blood 

concentrations of glucose; from this response insulin inhibits glycogenolysis and 

gluconeogenesis and promotes glucose uptake by the liver as well as other tissues such as 

muscle and fat (Hocquette and Abe, 2000).         
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The glucose transporter Glut 2, facilitates diffusion of glucose into the beta cells 

when there are elevated concentrations of glucose in the extracellular fluid (ECF). When 

high concentrations of glucose enter the beta cell, subsequent depolarization of the 

membrane occurs stimulating an influx of extracellular calcium (Hocquette and Abe, 

2000).  The increased intracellular calcium is thought to be one of the primary triggers for 

exocytosis of insulin, enabling the insulin to act on target cells.  The effects of insulin on 

glucose metabolism vary depending on the target tissue; however, the overall goal of 

insulin is to clear glucose from the blood circulation through one of two methods; 1) by 

facilitating the entry of glucose into muscle, adipose, and several other tissues or 2) by 

stimulating the liver to store glucose in the form of glycogen (Schenk et al., 2008).  In 

general terms, ruminant tissues are considered less sensitive to insulin than non-ruminant 

tissues.  Brockman (1983) reported it took 50-60 uIU/mL to cause a 50% reduction in 

glucose production; in contrast in humans this value is 30 uIU/mL (Rizza et al., 1981).  

Because of the robust relationship between glucose and insulin and their role in energy 

metabolism, this biological mechanism may contribute to RFI and feed efficiency. 

 

RFI and Glucoregulatory Mechanisms 

In testing this hypothesis many studies have measured circulating insulin and 

glucose concentrations in the blood at various stages of growth and evaluated their 

relationship with feed efficiency traits and RFI.  Greater insulin concentrations were 

reported in inefficient (high RFI) Angus influenced steers at the end of a feedlot trial 

(Brown, 2005; Richardson et al., 2004).  The higher insulin concentrations found in high 
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RFI steers could be associated with a greater carcass fat composition because of the role 

insulin plays in stimulating lipogenesis in adipose tissue  (Hocquette et al., 1998).  In 

contrast Kelly (2010) found no relationship between plasma insulin concentrations and 

RFI in developing heifers throughout the feeding period used to evaluate animals for feed 

efficiency.  Glucose concentrations at the time of weaning showed no correlation to RFI 

in growing heifers or steers (Richardson et al., 2004; Kelly, 2010, respectively).  Kolath et 

al. (2006) observed a higher plasma glucose concentration in high RFI steers compared to 

low RFI steers.  However, this difference was accredited to greater feed intake seen in 

high RFI steers and was not deemed significant as no differences were observed in the 

ratios of glucose to insulin between the two groups.  The ratio between glucose and 

insulin at a specific time (glucose: insulin) has been used in the scientific community as 

an indicator of glucose metabolism.  The ratio glucose to insulin has not been found to be 

correlated with RFI (Kelly, 2010; Kolath et al., 2006).  

 Despite the fact that previous research efforts have not yet established a secure 

relationship between RFI and glucose concentrations or insulin concentrations or even 

glucose:insulin at any given time, previous literature demonstrates that a relationship may 

still exist.  Insulin sensitivity can be an indicator of metabolic efficiency in many species.  

For example, low RFI animals tend to be leaner; an association has been shown between 

leanness in farm animals and insulin sensitivity in muscle tissue and increased glycolytic 

muscle energy metabolism (Hocquette et al., 1998; Oddy et al., 1995).  This may suggest 

that high RFI steers may have developed decreased insulin sensitivity in muscle tissue; 

therefore, lessening the response of insulin to glucose.  Previous studies have evaluated 
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the relationship between glucose, insulin, and RFI at a set time such as post-weaning or at 

the end of a feeding trial but failed to look at the response of insulin to glucose; therefore, 

failing to explain the effect of insulin sensitivity.  

 

Glucose Tolerance Test 

A glucose tolerance test (GTT) involves the administration of glucose to increase 

blood glucose concentrations, then monitoring the response of insulin to the sudden influx 

of glucose.  The hyperglycemic effect of the infused glucose should cause an adaptive 

increase in insulin secretions (Abdelmannan et al., 2010).  After the infusion of glucose, 

blood samples are collected in increments over an established period of time to evaluate 

the concentrations of glucose and insulin that are produced and the rate at which insulin 

clears glucose from the circulation.  From the analysis of these samples at various time 

points, it is possible to calculate peak insulin concentration, time insulin achieved peak 

concentration, as well as concentration of glucose half life and time glucose half life was 

achieved, giving insight into the metabolic differences that may exist in regards to insulin 

sensitivity.  This test also provides an enhanced method for evaluating the relationship 

between glucose and insulin as opposed to the ratio of glucose:insulin.  Insulinogenic 

index (IIND) is calculated by dividing the change in insulin from baseline insulin 

concentration by the change in glucose from baseline glucose concentration (I/G) for each 

collection time during the GTT (Guerrero-Romero et al., 2001; Abdelmannan et al., 

2010).  Baseline insulin and glucose concentrations are determined by collecting blood 

samples prior to glucose infusion after a period of fasting for twelve hours.  This equation 
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provides us with an index that evaluates the change in glucose and insulin concentrations 

that occurs during glucoregulation.     

The most common use of a GTT today is on humans as a “stress test” in efforts to 

identify those individuals which have an increased risk of developing Type II diabetes.  

However, glucose tolerance tests have been administered to dairy cattle for many decades 

in an effort to evaluate the glucoregulatory mechanisms in ruminants.  Glucose Tolerance 

Test results have allowed dairy scientists to gain a better understanding of the effects that 

nutrition, exercise, medication, and disease have on glucose concentrations.  For example, 

GTT has given insight into effects of early lactation (Herbein et al., 1985), nutritional 

status (Knut, 1978), and diabetes in cows (Kuneko and Rhodes, 1964).  Glucose tolerance 

tests have also been utilized in buffalo, as a treatment option to support energy balance in 

sick buffalo (Liu et al., 2004).  Currently, there are no previous studies in the literature 

reporting administering a GTT to beef cattle to determine a relationship between glucose 

metabolism and feed efficiency.  More efficient animals that have increased insulin 

sensitivity should clear the influx of infused glucose at a faster rate than less efficient 

animals that have developed decreased insulin sensitivity; however, the exact mechanism 

has yet to be elucidated.   

 

Insulinogenic Index 

Abdelmannan et al., (2010) utilized an insulinogenic index (IIND) to try to gain a 

better understanding and elicit a specific response from a single dose of dexamethasone 

on healthy adults.  This study calculated IIND by dividing the change in insulin from 
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baseline by the change in glucose from baseline (∆I/∆G) for each collection time during 

the GTT (Abdelmannan et al., 2010).  Baseline insulin and glucose concentrations are 

determined by collecting blood samples prior to GTT after a period of fasting.  This 

equation evaluates the change in glucose and insulin concentrations during metabolic 

activity and presents an index for comparison.  Guerrero-Romero et al. (2001) utilized a 

fasting insulin-to-glucose ratio (FIG) to determine glucose intolerence in humans.  In this 

model, baseline is not adjusted for and it is simply the ratio of insulin to glucose after 

fasting.  A glucose tolerence test is administered after a period of fasting to establish 

insulin sensitivty to an influx of glucose.  From this test, we can determine insulin 

sensitivy and create an index for comparison by creating at the insulinogenic index.       

 

Effect of Cortisol on Glucoregulatory Mechanisms 

Cortisol  

Common to all endocrine systems, there are many factors and pathways utilized to 

maintain homeostasis.  Stress is one disruptor of glucoregulatory homeostasis, and 

disruption of glucose balance initiates a plethora of reactions in an effort to re-establish 

homeostasis.  Stress can be due to a number of factors including nutrition, the 

environment, and fear associated with human or predator interactions.  In response to a 

stressor, activation of the hypothalamic-pituitary-adrenal (HPA) axis facilitates a cascade 

of endocrine responses that allows for coping with the stressor (McDowell, 1983).  

Corticotrophin-releasing hormone (CRH) and vasopressin (VP) are released from the 

hypothalamus to stimulate the corticotroph cells of the anterior pituitary (Minton, 1994).  
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The activation of the anterior pituitary gland stimulates the subsequent release of 

adrenocorticotropic hormone (ACTH) into the circulation, where it then acts on the 

adrenal cortex.  This stimulation then induces the adrenal cortical tissue to release 

glucocorticoids (GC) (Burdick, 2007).  Although many GCs have been recognized, 

cortisol is the primary GC associated with the stress response in domestic livestock 

species.  Therefore, measuring concentrations of cortisol can be a physiologic indicator of 

the stress level of a particular animal.     

Glucocorticoids (cortisol) and glucose have an intricate relationship.  Cortisol can 

disrupt glucose homeostasis as additional amounts of energy may be needed to cope with 

a stress response.  Cortisol is one of the hormones associated with elevating the 

concentrations of glucose.  Decreased concentrations of circulating glucose results in an 

influx of cortisol in an effort to increase energy in the body.  Since glucose and insulin are 

so intimately related, a shift in glucose concentrations during a stress response may elicit 

an exaggerated insulin reaction, (Munck et al., 1984).  Insulin mediated glucose uptake in 

certain tissue types is inhibited by catecholamines and glucagon which function as the 

first responders of the stress response.  Under normal conditions insulin facilitates cellular 

uptake of glucose through receptor mediated actions; however, during the stress response 

insulin receptors are down regulated resulting in GCs counteracting the actions of insulin 

(McDowell, 1983).  Turnbow et al. (1994) observed this as dexamethasone decreases 

insulin receptor substrate-1 in adipose tissue.  Long term stress and cortisol production 

can cause a continuous increase in insulin production and alter glucose uptake.   
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Breedtype and gender have been found to have an effect on basal cortisol 

concentrations and secretions in beef cattle.  Welsh et al. (2009) evaluated Angus (Bos 

taurus) and Brahman (Bos indicus) bulls, steers and heifers for basal cortisol secretion; 

results from this study support the concept that adrenocortical function is influenced by 

breedtype and that sexual dimorphism in basal and induced cortisol secretion can occur 

across genetic strains or breeds.  Breedtype differed (P < 0.01) between bulls, steers and 

heifers in serum cortisol.  Additionally, Brahman bulls differed (P < 0.01) from Brahman 

steers and heifers and Angus differed (P < 0.01) between all three categories (bulls, steers 

and heifers) in serum cortisol with concentrations (ng/mL) of 21.8, 37.1, and 40.6, 

respectively.  Similar results were found during a study that evaluated the response of 

cortisol to an ACTH challenge as a useful predictor of RFI in Brahman cattle.  While this 

was not found to be a useful predictor of RFI in Brahman cattle, a sexual dimorphism in 

the cortisol response to an ACTH challenge was observed (Welsh et al., 2009).        

Temperament in cattle can be defined as the response of an animal to being 

handled by a human (Fordyce et al, 1982).  There are multiple ways to access 

temperament of cattle including evaluating the animal’s cortisol concentration or utilizing 

objective and subjective measures to obtain a temperament score.  Exit velocity (EV) is an 

objective measure that can be obtained on each individual animal.  This measurement can 

then be used in an equation, along with pen score (a subjective measure) to classify an 

animal as calm, intermediate, or temperamental compared to a set group of cohorts.  

Animals of different temperaments have diverse functional characteristics of their HPA 

axis and therefore react to stress differently (Curley et al., 2008).  Cattle that are more 
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excitable (termed temperamental) have higher concentrations of stress hormones such as 

cortisol and epinephrine than calm cattle, which are correlated to temperament (Schuehle 

et al., 2005; King et al., 2006; Curley et al., 2006, 2008).  High concentrations of cortisol 

are linked to stressed (temperamental) animals; whereas cortisol concentrations rise as an 

animal experiences higher amounts of stress (Minton, 1994).  Thus it would be expected 

that more excitable cattle experience a higher peak in insulin concentrations as cortisol 

rises.     

 

Exit Velocity   

 Curley et al. (2006) found that exit velocity can be an effective tool to predict 

temperament and was found to be positively correlated with temperament.  Exit Velocity 

is the rate (m/s) at which the animal travels 1.83 meters after being released from a 

working chute (Curley et al. 2006).  It is best to collect exit velocity data at an early time 

point of a calf’s life.  Typically, cattle producers move their cattle through chutes for 

vaccination and sorting at time of weaning.  This provides a convenient time point to 

collect exit velocity data on the animal.  Exit velocity is then used with pen score to 

access the animal’s temperament score.  Increased exit velocity has been correlated with 

higher concentrations of serum cortisol in cattle (Fell et. al. 1999, Curley et. al, 2006); 

which could disrupt the glucoregulatory mechanisms.  This suggests that EV should be a 

variable to consider when evaluating animals for glucoregulatory mechanisms.   

 As cortisol is a glucocorticoid, it blocks the transport of glucose into tissues such 

as adipose and muscle.  If this is true, then cortisol concentrations and stress may disrupt 
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the results of a glucose tolerance test.  Bradbury et al. (2011) conducted a study to 

evaluate glucose utilization in temperamental cattle.  Cattle were evaluated for 

temperament and then a glucose tolerance test was performed on calm and temperamental 

cattle; glucose, insulin, and cortisol were analyzed.  It was observed that higher 

concentrations of cortisol decrease glucose utilization and increase the blood glucose 

concentration.  Cattle that were more temperamental had a numerically higher 

insulin/glucose ratio; therefore, more temperamental animals exhibit greater insulin 

sensitivity to an influx of glucose (Bradbury et al., 2011).   
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CHAPTER III 

INSULIN SENSITIVITY IN BONSMARA HEIFERS WITH DIVERGENT 

RESIDUAL FEED INTAKE 

 

Introduction 

 The Bonsmara breed, comprised of 5/8 Afrikaner, 3/16 Hereford, and 3/16 

Shorthorn was developed after reviewing data from extensive climate studies performed 

on various breeds of beef cattle in order to create a functional breed to maximize growth 

in tropical climates (Bonsma, 1949).  Scientist Jan Bonsma developed this breed while 

employed at the University of South Africa in an effort to produce high quality beef in 

tropical regions.  Bonsmara cattle have became an important part of beef cattle production 

in South Africa and other regions with tropical climates due to their ability to dissipate 

heat while retaining a reasonable rate of growth.  South Africa terrain and climate is 

similar to that found in the Southern United States.  In 1997, Texas entrepreneur, G. R. 

Chapman imported recipient cows carrying Bonsmara embryos into North America.  

These embryos developed into the first herd of Bonsmara cattle in North America.  

Matching breed type to climate is an essential part of maximizing profitability in the beef 

industry.  However, once that is achieved it is important to consider other areas of 

production where producers can minimize production costs.  Due to the rising cost of 

feedstuffs, it is important to evaluate and identify feed efficient animals within a 

contemporary group; simply put, identification of animals which gain more weight on a 

lower amount of feed consumed.  The Bonsmara’s unique ability to produce high quality 
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beef and impressive weight gain in tropical regions and high forage diets makes this breed 

a candidate for studying feed efficiency in the Southern United States.  As shown in 

Chapter II, insulin sensitivity can be an indicator of metabolic efficiency in many species.  

If this is true, low RFI (more efficient) animals would be expected to have reduced insulin 

sensitivity in response to an increase in glucose concentration, thus being more efficient in 

the uptake of glucose in comparison to less efficient animals.  The objective of this study 

was to investigate the glucoregulatory mechanisms of Bonsmara cattle previously selected 

for divergent RFI to investigate a potential indirect method of determining feed 

efficiency, thus optimizing profitability for producers located in tropical regions.  Two 

cohorts of Bonsmara heifers were evaluated to determine the glucoregulatory 

mechanisms.  The two cohorts were treated as two separate experiments; however in both 

experiments animals were first evaluated for RFI and then a glucose tolerance test was 

performed on the most efficient and most inefficient animals of each cohort.  All animal 

procedures were approved by the Texas A&M University System Institutional Animal 

Care and Use Committee (IACUC).       

 

Materials and Methods 

Animals and Experimental Design: Experiment 1 

Bonsmara heifers (n=53) were transported from the Texas AgriLife Research 

Center in Uvalde to the ASTREC facility at Texas A&M in College Station, TX.  Upon 

arrival, individual BW were collected and animals were assigned to pens according to BW 

(n=5 head per pen) equipped with Calan Gate feeders.  Heifers were fed a high roughage 
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diet (2.07 Mcal/kg DE, 13.1 g CP/kg DM; Table 3.1).  The animals were adapted to the 

experimental diet and the test facilities during an initial 28-d period.  Thereafter, heifers 

were individually fed ad libitum for 70d.  Individual BW was collected weekly and orts, if 

any, were collected and weighed weekly.   

Following the feeding trial, RFI was calculated and a glucose tolerance test was 

conducted on the most efficient (n=12) and least efficient (n=12) heifers in the cohort.  A 

glucose tolerance test was performed over two days (February 27-28th, 2010) with 6 high 

and 6 low RFI-classified animals being tested each day.  Negative RFI and positive RFI 

heifers had average weights of 380 kg and 378 kg, respectively and were between 12-15 

mo of age.  Twelve heifers were fitted with a jugular cannula and placed in stanchions in 

the Ruminant Nutrition and Metabolism facility the evening prior to the glucose tolerance 

test.  Water, but not feed, was available overnight to ensure a fasting period of at least 10 

h prior to the challenge.  The procedure for fitting the animal with a jugular cannula was 

as follows.  An area over the jugular vein was clipped and scrubbed.  After donning sterile 

gloves, a 14-gauge needle was inserted into the jugular vein.  Approximately 15-20 cm of 

a 1.0 m length of tygon tubing (0.10 cm i.d., 0.18 cm o.d.) was threaded through the 

needle and into the jugular vein.  The remaining tubing was then secured to the heifer’s 

neck using adhesive tape.  The end of the tubing was plugged using an 18-gauge needle 

and a 10 mL syringe.  All cannula materials were sterilized by gas sterilization.  The 

tubing was flushed with heparin solution prior to capping.  

The morning of the glucose tolerance test, cannula lines were checked for patency 

and any problems were repaired.  After all lines were confirmed to be functional, animals 
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were allowed a rest period of 2 hrs.  Following the rest period, a 50% dextrose solution 

was infused at 0.5 mL/kg BW via the indwelling jugular catheter.  A blood sample (10 

mL) was collected at each of the following time points relative to dextrose infusion:  -5, 0, 

+5, 10, 15, 20, 40, 60, 80, 100, 120, 140, 160 and 180 min.  A total of 140 mL blood was 

drawn from each animal.  Following collection of blood at each sampling time, 10 mL of 

sterile saline followed with 4 mL of heparinized saline was delivered via the catheter.  

After collection of the last blood sample, the catheters were removed and the animals 

were returned to their original pens.  The remaining 12 heifers were catheterized in the 

same manner the next morning and blood samples were collected after a 2 h resting period 

beginning after the final heifer was catheterized.  Serum was collected in 10 mL 

Vacutainer® tubes (366430, BD Biosciences; Franklin Lakes, NJ) at each sampling time.  

Sample tubes were refrigerated on ice and subsequently centrifuged at 4ºC at 2000 x g for 

30 min, and then stored at -20ºC until assays could be performed.   

 
Table 3.1 Experiment 1 Diet     
Dietary Composition, (as fed)  % 
Chopped Alfalfa     35.00 
Cottonseed Hulls 21.50 
Dry Rolled Corn 20.95 
Pelleted Alfalfa 15.00 
Molasses 7.00 
Salt 0.40 
Vitamin E 0.14 
COOP Beef TM     0.02 
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Animals and Experimental Design: Experiment 2 

Bonsmara heifers (n=65) were transported from the Texas AgriLife Research 

Center in Uvalde to the ASTREC facility at Texas A&M in College Station, TX.  Upon 

arrival, individual BW were collected and heifers were assigned to pens (n=5 head per 

pen) equipped with Calan Gate feeders.  Heifers were fed a high roughage diet (2.07 

Mcal/kg DE, 13.1 g CP/kg DM; Table 3.1).  The animals were adapted to the 

experimental diet and the test facilities during an initial 28-d period.  Thereafter, heifers 

were individually fed ad libitum for 70 d.  Individual BW was collected weekly and orts, 

if any, were collected and weighed weekly as well.   

Following the feeding trial, heifers were evaluated for RFI.  Following 

determination of feed efficiency, a glucose tolerance test was performed on the most 

efficient (n=6) and least efficient (n=6) heifers in the cohort.  A glucose tolerance test was 

performed over a period of three days (March 2-4th, 2011) with 2 high and 2 low RFI-

classified animals being tested each day.  Negative RFI and positive RFI heifers had 

average weights of 356 kg and 346 kg, respectively and were between 12-14 mo of age.    

Four heifers were placed in chutes in a covered area outside of the ASTREC facility after 

being allowed access to water but not feed for a period of 10 h prior to the challenge.  

Animals were equipped with a jugular cannula the morning of the glucose challenge using 

the same method described in Experiment 1 of this chapter.  Two blood samples (10 mL 

each) were collected at -5, 0, 10, 15, 20, 30, 40, 60, 80, 100, 120, 140, 160 and 180 min 

relative to dextrose (50%) infusion.  Blood for plasma was collected into 10 mL EDTA-

coated Vacutainer® tubes (366643, BD Biosciences; Franklin Lakes, NJ) and blood for 
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serum was collected into 10 mL Vacutainer® tubes (366430, BD Biosciences; Franklin 

Lakes, NJ).  A total of 280 mL blood was collected per animal.  Following collection of 

blood at each sampling time, 10 mL of sterile saline followed with 4 mL of heparinized 

saline was delivered via the catheter.  After collection of the last blood sample, the 

catheters were removed and the animals were returned to their original pens.   The 

remaining two groups (comprised of 2 high and 2 low RFI animals each) were 

catheterized in the same manner over the next two days and blood samples were collected 

after a 2 h resting period beginning after the final heifer was catheterized.  Plasma and 

serum samples were refrigerated on ice and subsequently centrifuged at 4ºC at 2000 x g 

for 30 min then stored at -20ºC until assays could be performed.   

 

RFI Determination 

The two groups of Bonsmara heifers were fed during two separate feeding trials 

and were treated as two separate cohorts as they were from different calf crops; 

accordingly their data were analyzed separately and the two groups were considered as 

separate cohorts for RFI calculation.  Initial BW and ADG were computed from linear 

regression of BW on day of test using the PROC REG function of SAS (2002).  Mid-test 

BW was estimated using initial BW and ADG and adjusting for a 3% shrink.  Considering 

all females in each cohort, RFI was calculated as the residual from the linear regression of 

average daily dry matter intake (DMI) on mid-test BW0.75 and ADG using the GLM 

procedure of SAS (2002). 
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Glucose Colorimetric Assay 

Concentrations of plasma glucose were determined using the manual protocol of 

the commercially available enzymatic Autokit Glucose (#439-90901; Wako Chemical 

USA, Inc., Richmond, VA).  Resulting inter-assay and intra-assay coefficients of variation 

for Experiment 1 were 0.49 and 2.45%, respectively.  Experiment 2 inter-assay and intra-

assay coefficients of variation were 2.69 and 1.58%, respectively.   

 

Insulin RIA 

 Serum insulin concentrations were determined in a single assay using a 

commercially available radioimmunoassay Coat-A-Count kit (Siemens Healthcare 

Diagnostic, Los Angeles, California).  The concentration of insulin was calculated using 

Assay Zap software (Biosoft, Cambridge, UK) using counts per minute (CPM) obtained 

from a Cobra II auto-gamma-counter (Perkin Elmer, Waltham, MA).  The intra-assay 

coefficient of variation was 6.85%.    

 

Cortisol RIA 

 Serum cortisol concentrations were determined using a commercially available 

radioimmunoassay Coat-A-Count kit (Siemens Healthcare Diagnostic, Los Angeles, 

California).  The concentration of cortisol was calculated using Assay Zap software 

(Biosoft, Cambridge, UK) using CPM obtained from a Cobra II auto-gamma-counter 

(Perkin Elmer, Waltham, MA).  The inter-assay and intra-assay coefficients of variation 

were 13.44% and 9.38%, respectively. 
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 Exit Velocity 

 Exit velocity (EV) was calculated on individual animals.  Exit velocity is a rate 

reported as meters per second (m/s) and is calculated from the time it takes an animal to 

travel 1.83 m. after being released from a working chute.  In Experiment 1, animals were 

evaluated for initial exit velocity (IEV) after the 28d adaptation period prior to start of the 

RFI feeding period.  Animals in Experiment 2 were evaluated for arrival exit velocity 

(AEV) the day the animals arrived at the ASTREC facility at Texas A&M University in 

College Station, TX prior to being sorted and penned for the RFI feeding period.    

 

Statistical Analysis 

A repeated measure ANOVA was conducted using the MIXED model procedure 

of SAS (2002) for analysis of RFI group, time, and the RFI group x time interactions on 

insulin concentration and glucose concentration for each experiment individually.  

Insulinogenic index was calculated by dividing the concentration of insulin by the 

concentration of glucose (I/G) for each collection time for each experiment individually.  

A repeated measures ANOVA was conducted using the MIXED model procedures of 

SAS (2002) for analysis of insulinogenic index for each experiment individually.  Time to 

peak concentration of insulin and half-life concentration of glucose were determined 

using the GLM procedure of SAS (2002) for each experiment.  Area under the curve 

(AUC) was calculated using the trapezoidal rule for glucose, insulin, and cortisol 

concentrations and IIND.  Exit velocity of each RFI group was determined using the 

GLM procedure of SAS (2002) for each experiment.    
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Results 

Experiment 1 

Residual feed intake groups did not differ (P > 0.05) in EV.  Negative RFI and 

positive RFI heifers had mean EV (m/s) of 1.88 ± 0.15 and 2.10 ± 0.15, respectively 

(Table 3.2).  Residual feed intake groups did not differ (P > 0.05) in cortisol 

concentrations (Figure 3.1)  There was no RFI group x time interaction affecting (P > 

0.05) cortisol concentrations.  Time relative to glucose infusion, had a significant affect (P 

< 0.0001) on cortisol concentrations;  this would be expected as cortisol is known to 

decline during a period of restraint as the animal becomes more adjusted to the 

surroundings and is assumed to be experiencing less stress throughout the 3 h period.  

Any extraneous outside variables during the GTT were similar and experienced by both 

RFI groups.  Data reported from cortisol concentrations, coupled with EV data suggest 

temperament did not likely play a substantial role in glucoregulatory mechanisms between 

low and high RFI groups for either experiment; consequently, EV was not included as a 

covariate for any model for statistical analysis.        

Time, relative to glucose infusion, had a significant effect (P < 0.0001) on glucose 

(Figure 3.2) and insulin (Figure 3.3) concentrations.  The interaction of RFI group x time 

affected (P = 0.01) insulin concentrations, but there was no RFI group x time interaction 

affecting (P > 0.05) glucose concentrations.  Residual feed intake group affected (P = 

0.05) the insulin response, whereby negative RFI heifers had a greater insulin response 

than positive RFI heifers.  Residual feed intake group did not affect (P > 0.05) glucose 

concentrations.  There was a trend (P < 0.10) for RFI group to influence peak insulin 
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concentrations, but RFI group did not affect (P > 0.05) time to insulin peak.  Negative 

RFI and positive RFI heifers had insulin peak concentrations (mIU/mL) of 108.1 ± 12.1 

and 75.5 ± 12.1, respectively and insulin peak concentration times (minutes) were 16.7 ± 

1.8 and 18.6 ± 1.8, respectively.  Residual feed intake groups did not differ (P > 0.05) in 

glucose half life concentrations or time that half life was achieved.  Negative RFI and 

positive RFI heifers had glucose half life concentrations (mg/dL) of 80.0 ± 3.1 and 77.0 ± 

3.3, respectively and glucose half life times (min) were 33.3 ± 2.5 and 37.0 ± 2.6, 

respectively.  Mean peak insulin concentration and glucose half life concentrations, and 

their respective times, are presented in Table 3.3.  Insulinogenic Index (Figure 3.4) was 

affected by RFI group (P < 0.05), but was not affected (P > 0.05) by time or an RFI group 

x time interaction. Negative RFI and positive RFI heifer IIND (I/G) were 0.44 ± 0.03 and 

0.29 ± 0.03, respectively.  Insulinogenic index was analyzed from 10 to 60 min for both 

RFI groups.  Area under the curve was calculated using the trapezoidal rule for glucose, 

insulin, and cortisol concentrations and IIND; no variables were significantly different (P 

> 0.05) in AUC between RFI groups.  Table 3.4 outlines the AUC least square means, 

standard errors and correlated P values for each variable. 
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Figure 3.1 Bonsmara Experiment 1. Mean Cortisol Concentration Over Time by RFI 
Group. 
 
 
 
 

 
Figure 3.2  Bonsmara Experiment 1. Mean Glucose Concentration Over Time by RFI 
Group.   
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Figure 3.3 Bonsmara Experiment 1. Mean Insulin Concentration Over Time by RFI 
Group. 
 
 
 
 
 

 
Figure 3.4 Bonsmara Experiment 1. Insulinogenic Index Over Time by RFI Group. 
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Table 3.3  Bonsmara Experiment 1 Insulin Peak and Glucose Half 
Life Data 

 

  
Variable            RFI  GROUP   P Value 
    Negative Positive   
Insulin Peak Concentration 108.1 ± 12.1 75.5 ± 12.1 0.0761 
Insulin Peak Time 16.7 ± 1.8 18.6  ± 1.8 0.4589 
Glucose Half Life Concentration 80.1 ± 3.1 77.0 ± 3.1 0.5107 
Glucose Half Life Time 33.3 ± 2.5 37.0 ± 2.6 0.3191 

 
 
 
 
Table 3.4  Bonsmara Experiment 1 Area Under Curve: Glucose, Insulin, Cortisol 
and Insulinogenic Index 
Variable                                        RFI GROUP    P Value 
    Negative Positive   
Glucose 84.5 ± 9.2 90.1 ± 9.6 0.6818 
Insulin 67.6 ± 8.9 45.7 ± 9.4 0.1064 
Cortisol 29.4 ± 4.1 29.1 ± 4.2 0.9612 
IIND   0.38 ± 0.06 0.27 ± 0.06 0.1900 

 

 

Experiment 2  

Residual feed intake group did not differ significantly (P > 0.05) in EV.  Negative 

RFI and positive RFI heifers had mean EV (m/s) of 2.88 ± 0.26 and 2.77 ± 0.26, 

respectively (Table 3.5).  RFI group did not affect (P > 0.05) cortisol concentrations 

Table 3.2   Bonsmara Experiment 1 Exit Velocity     
Variable                     RFI GROUP      P Value 
      Negative Positive   
Exit Velocity (Initial)   1.89 ± 0.15 2.10 ± 0.15 0.3358 
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(Figure 3.5); however, there were significant differences between RFI groups at time -5 

and time 0 relative to glucose challenge.  This suggests that differences in baseline 

cortisol concentrations may exist between this cohort’s RFI groups.  There was no RFI 

group x time interaction affecting (P > 0.05) cortisol concentrations.  There was a trend (P 

< 0.10) for time relative to glucose infusion to affect cortisol concentrations; this would 

be expected as cortisol is known to decline during a period of restraint as the animal 

becomes more adjusted to the surroundings and is assumed to be experiencing less stress 

throughout the 3 h period.  Any extraneous outside variables during the GTT were similar 

and experienced by both RFI groups.  Data reported from cortisol concentrations, coupled 

with EV data suggest temperament did not likely play a substantial role in glucoregulatory 

mechanisms between low and high RFI groups for either experiment; consequently, EV 

was not included as a covariate for any model for statistical analysis.        

Time, relative to glucose infusion, had a significant effect (P < 0.0001) on glucose 

(Figure 3.6) and insulin (Figure 3.7) concentrations.  There was no RFI group x time 

interaction affecting (P > 0.05) insulin or glucose concentrations.  RFI group affected (P 

< 0.01) insulin response, whereby negative RFI heifers had a higher insulin response than 

positive RFI heifers.  RFI group did not affect (P > 0.05) glucose concentrations.  RFI 

group did affect (P < 0.05) insulin peak concentration, but not time of insulin peak 

concentration.  Negative RFI and positive RFI heifers had insulin peak concentrations 

(mIU/mL) of 93. 6 ± 13.4 and 50.25 ± 13.4, respectively and insulin peak concentration 

times (minutes) were 23.3 ± 3.7 and 15.83 ± 3.7, respectively.  RFI group did not affect 

(P > 0.05) glucose half life concentrations or time half life was achieved.  Negative RFI 



 45

and positive RFI heifers had glucose half life concentrations (mg/dL) of 76.5 ± 2.5 and 

77.8 ± 2.5, respectively and glucose half life times (min) were 32.0 ± 2.8 and 26.5 ± 2.8, 

respectively.  Mean peak insulin concentration and glucose half life concentrations, and 

their respective times, are summarized in Table 3.6.  Insulinogenic Index (Figure 3.8) was 

affected by RFI group (P < 0.01), and a trend (P < 0.07) for an interaction was found 

between IIND and time.  Negative RFI and positive RFI heifers IIND (I/G) were 0.35 ± 

0.02 and 0.17 ± 0.02, respectively.  Insulinogenic index was analyzed from 10 to 60 

minutes for both RFI groups.  Area under the curve was calculated using the trapezoidal 

rule for glucose, insulin, and cortisol concentrations and IIND; RFI groups differed 

significantly (P < 0.05) in AUC for insulin response and IIND.  Table 3.7 outlines the 

AUC least square means, standard errors and correlated P values for each variable. 

 

 

 
Figure 3.5 Bonsmara Experiment 2. Mean Cortisol Concentration Over Time by RFI 
Group.   
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Figure 3.6  Bonsmara Experiment 2. Mean Glucose Concentration Over Time by RFI 
Group. 
 
 
 
 
 
 

 
Figure 3.7 Bonsmara Experiment 2. Mean Insulin Concentration Over Time by RFI 
Group. 
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Figure 3.8  Bonsmara Experiment 2. Insulinogenic Index Over Time by RFI Group.  
 
 
 
 
 
 

 
 
 
 
 
Table 3.6  Bonsmara Experiment  2 Insulin Peak and Glucose Half Life Data   
Variable   RFI GROUP   P Value 
    Negative Positive   
Insulin Peak Concentration 93.6 ± 13.4 50.25 ± 13.4 0.0455 
Insulin Peak Time 23.3 ± 3.7 15.8  ± 3.7 0.1781 
Glucose Half Life Concentration 76.5 ± 2.5 77.8 ± 2.5 0.7334 
Glucose Half Life Time 32.0 ± 2.8 26.5 ± 2.8 0.1934 

 
 
 

Table 3.5   Bonsmara Experiment 2 Exit Velocity     
Variable                     RFI GROUP   P Value 
      Negative Positive   
Exit Velocity (Initial)   2.88 ± 0.26 2.77 ± 0.26  0.7. 7750 
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Table 3.7  Bonsmara Experiment 2 Area Under Curve: Glucose, 
Insulin, Cortisol, IIND   

Variable   
                        
RFI GROUP   P Value 

    Negative Positive   
Glucose 56.2 ± 12.7 45.9 ± 12.7 0.5791 
Insulin 52.5 ± 5.4 18.5 ± 5.4 0.0012 
Cortisol 13.1 ± 3.3  13.6 ± 3.3  0.9235 
IIND   0.61 ± 0.05 0.18 ± 0.05 0.0001 

 
 

Discussion 

Residual feed intake groups did not differ (P > .05) in EV or cortisol 

concentration throughout the GTT.  This suggests temperament did not likely play a 

substantial role in glucoregulatory mechanisms between low and high RFI groups for 

either experiment; consequently, EV was not included as a covariate for any model for 

statistical analysis.  Cortisol concentrations were affected (P > .05) by time in both 

experiments; however, this would be expected as the animals are getting acclimated to 

their surroundings and the situation as the GTT progresses.  This response is typical for a 

period of restraint.  Animals representing both RFI groups were subjected to a GTT at the 

same time; therefore, any extraneous variables during the challenge were similar to both 

RFI groups.        

For Experiment 1, insulin and glucose concentration data were only analyzed 

through 120 min.  After this time point, both circulating concentrations returned to 

baseline.  Baseline was calculated as the mean between time -5 and time 0 relative to 

glucose infusion.  In Experiment 1 and 2, negative RFI and positive RFI heifers had 
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similar glucose responses over time, demonstrating that the ability to clear glucose from 

circulation did not differ between RFI groups.  However, in Experiment 1 and Experiment 

2, negative RFI (more efficient) heifers exhibited a greater insulin response over time than 

positive RFI (more inefficient) heifers.  This implies that more efficient animals produce a 

higher concentration of insulin in response to an influx in glucose.  In Experiment 1, 

significant differences (P < 0.05) were observed between insulin concentrations between 

RFI groups at 10 and 15 min and tended to differ (P < 0.10) at 20 min relative to glucose 

infusion.  This implies that the greatest differences in insulin concentrations occurred 

within the first 20 min post-glucose infusion.  After 20 min relative to glucose infusion 

significant differences in insulin concentration were not observed between high and low 

RFI heifers.  However, in Experiment 2,  significant differences (P < 0.05) were observed 

in insulin concentrations between RFI groups at every time point excluding 10 and 15 

minutes relative to glucose infusion.  This shows that the greatest effect occurred after the 

first 20 minutes post glucose infusion.   In Experiment 1 there was a significant difference 

(P < .05) in peak insulin concentrations and there was a trend (P < .10) for RFI groups to 

differ in peak insulin concentrations in Experiment 2; although, there were no significant 

differences in the time it took to achieve half life of glucose in either experiment.  In both 

experiments, RFI group did affect IIND, whereas the negative RFI-classified animals 

(efficient) had a higher insulinogenic index than positive RFI-classified animals 

(inefficient).  The differences in IIND between RFI groups would be expected as a result 

of a greater concentration of insulin in response to glucose observed in the negative RFI 

heifers.       
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 Conclusion 

The two cohorts of Bonsmara heifers had similar insulin responses to the infusion 

of glucose.  In both cohorts, the negative RFI animals had a greater response of insulin to 

glucose.   This suggests that efficient Bonsmara heifers are more sensitive to an influx of 

glucose and must produce higher concentrations of insulin to clear glucose from the 

circulation.  Diversely, Experiment 1 showed the first 20 min post glucose challenge to 

produce the greatest affect on insulin concentration, but Experiment 2 suggested the 

greatest difference occurred after 20 min relative to glucose challenge.  The ratio of 

insulin to glucose may provide more information and be a better indicator of feed 

efficiency in comparison to actual concentrations of insulin response to a GTT.  Due to 

the differences (P < 0.05) observed between RFI groups in IIND, it may be implied that 

IIND after a glucose tolerance test may be a useful indicator of RFI in Bonsmara heifers.  

More specifically, these data suggest that the IIND may be a useful predictor 15-30 

minutes after a glucose tolerance test and an IIND value of 0.30 (I/G) or greater would 

equate to a negative RFI (more efficient) Bonsmara heifer.   

Heifers in both Experiment 1 and Experiment 2 had insulin responses differing 

from our hypothesis that more efficient cattle would require less insulin than the less 

efficient cattle.  These data suggest efficient Bonsmara heifers actually have greater 

insulin sensitivity compared to inefficient Bonsmara heifers.  The Bonsmara breed of 

cattle are designed to put on efficient gains, have substantial resistance to ticks and tick-

borne diseases and produce high quality beef in tropical and subtropical regions.  These 

regions provide an environment that is typically associated with loss in productivity for 
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Bos taurus type cattle.  The Bonsmaras’ unique breed composition and ability to gain 

efficiently despite harsh climatic conditions (and typically decreased forage availability 

and quality), may result in differences in energy metabolism in comparison to other Bos 

indicus and Bos taurus types of cattle.     
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CHAPTER IV 

INSULIN SENSITIVITY IN SANTA GERTRUDIS BULLS WITH 

DIVERGENT RESIDUAL FEED INTAKE 

 

Introduction 

 The Santa Gertrudis breed of cattle was developed by the King Ranch, located 

near Kingsville, Texas in the southern region of the state.  This breed was designed to 

withstand and adapt to various harsh climates found in southern regions of the United 

States while exhibiting rapid growth and efficient weight gains.  Santa Gertrudis cattle are 

characterized by their vigor, hardiness, and longevity.  The breed is comprised of 3/8 

Brahman and 5/8 Shorthorn which gives them the ability to adapt to humid or arid 

climates while possessing traits for increased production.  The unique genetic makeup of 

the Santa Gertrudis breed provides a thick, loose hide that serves multiple purposes; it 

protects the cattle from insects, insulates from cold, and provides sweat glands to 

efficiently dissipate heat.  Producers utilize this breed to enhance profitability through 

either purebred operations or incorporating Santa Gertrudis cattle into crossbreeding 

systems.  Because of Santa Gertrudis’ role in beef cattle production located in tropical and 

subtropical climates, it is economically beneficial to distinguish cattle that utilize feed 

more efficiently from those who are less efficient.  Early detection of efficient animals 

would benefit producers by minimizing feed costs.  As shown in Chapter II, insulin 

sensitivity can be an indicator of metabolic efficiency in many species.  If this is true, low 

RFI animals would be expected to have reduced insulin sensitivity in response to an 
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increase in glucose concentration, thus being more efficient in the uptake of glucose in 

comparison to less efficient animals.  The objective of this study was to investigate the 

glucoregulatory mechanisms of Santa Gertrudis cattle previously selected for divergent 

RFI to investigate a potential indirect method of determining feed efficiency, thus 

optimizing profitability for producers located in tropical or subtropical regions.  This 

experiment was conducted to evaluate the glucoregulatory mechanisms of Santa Gertrudis 

bulls.  Animals were first evaluated for RFI.  A glucose tolerance test was then performed 

on the most efficient and most inefficient animals of the cohort.  All animal procedures 

were approved by the Texas A&M University System Institutional Animal Care and Use 

Committee (IACUC).   

 

Materials and Methods 

Animals and Experimental Design 

Santa Gertrudis bull calves (n=50) were transported approximately 300 miles from 

the King Ranch, Kingsville TX to the Texas A&M University Beef Research Unit in 

College Station, TX.  Upon arrival at the Beef Research Unit, individual BW was 

collected and animals were fitted with passive radio frequency transponders.  Bulls were 

assigned to pens (n=25 head per pen) based on BW; pens were equipped with GrowSafe 

bunk units (GrowSafe Systems Ltd., Airdrie Alberta, Canada).  Bulls were allowed a 

minimum of 24 d to adapt to experimental diets.  The animals were fed ad libitum twice 

daily (diet shown in Table 4.1) and individual bunk attendance and feed disappearance 

was recorded for 77 d using the GrowSafe Data Acquisition software.  Procedures for 
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omitting incorrect daily feed intakes from the GrowSafe feeding system (power outage, 

equipment malfunction or leak rate) are as reported by Lancaster et al., (2009).  Individual 

BW was collected weekly on bulls.  

Following the feeding trial, RFI was calculated and a glucose tolerance test was 

conducted on the most efficient (n=8) and least efficient (n=8) bulls in the cohort.  Two 

glucose tolerance tests daily were performed over two days (April 13-14th, 2010).  Bulls 

were assigned to 4 groups (n=4) to determine day and time of glucose tolerance test so 

that 2 high and 2 low RFI-classified animals were in each group.  Negative RFI and 

positive RFI bulls had average weights of 383 kg and 373 kg, respectively and were 

between 14-17 mo of age.  Four bulls were placed in chutes in a covered area outside of 

the ASTREC facility after being allowed access to water but not feed for a period of 10 h 

prior to the challenge.  An area over the jugular vein was clipped and scrubbed. After 

donning sterile gloves, a 14-gauge needle was inserted in the jugular vein. Approximately 

15-20 cm of a 1.0 m length of tygon tubing (0.10 cm i.d., 0.18 cm o.d.) was threaded 

through the needle and into the jugular vein.  The remaining tubing was then secured to 

the bull’s neck using adhesive tape.  The end of the tubing was plugged using an 18-gauge 

needle and a 10 mL syringe.  All cannula materials were sterilized by gas sterilization.  

The tubing was flushed with heparin solution prior to capping.  Following the 

catheterization of the last bull, a rest period of 2 h was allowed and then a 50% dextrose 

solution was infused at 0.5 mL/kg BW via the indwelling jugular catheter.  Two blood 

samples (10 mL each) were collected at -5, 0, 10, 15, 20, 30, 40, 60, 80, 100, 120, 140, 

160 and 180 min relative to dextrose infusion.  Blood for plasma was collected into 10 
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mL EDTA coated Vacutainer® tubes (366643, BD Biosciences; Franklin Lakes, NJ) and 

blood for serum was collected into 10 mL Vacutainer® tubes (366430, BD Biosciences; 

Franklin Lakes, NJ).  A total of 280 mL blood was drawn per animal.  Following 

collection of blood at each sampling time 10 mL of sterile saline followed with 4 mL of 

heparinized saline was delivered via the catheter.  After collection of the last blood 

sample, the catheters were removed and the animals returned to their original pens.   The 

next group of 4 (comprised of 2 high and 2 low RFI animals) were catheterized in the 

same manner that afternoon and blood samples were collected after a 2 h resting period 

beginning after the final bull was catheterized.  The remaining two groups (comprised of 

2 high and 2 low RFI animals each) were handled in exactly the same method as bulls 

tested the previous day and blood samples were collected after a two hour resting period 

beginning after the final bull was catheterized.  Plasma and serum sample tubes were 

refrigerated on ice and subsequently centrifuged at 4ºC at 2000 x g for 30 min and stored 

at -20ºC until assays could be performed.   

 

Table 4.1 Santa Gertrudis Bulls Diet     
Dietary Composition, (as fed)  % 
Chopped Alfalfa     35.00 
Cottonseed Hulls 21.50 
Dry Rolled Corn 20.95 
Pelleted Alfalfa 15.00 
Molasses 7.00 
Salt 0.40 
Vitamin E 0.14 
COOP Beef TM     0.02 
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RFI Determination 

RFI was calculated as described in Chapter III.  Initial BW and ADG were 

computed from linear regression of BW on day of test using the PROC REG function of 

SAS (2002).  Mid-test BW was estimated using initial BW and ADG and adjusting for a 

3% shrink.  Considering all males as cohorts, RFI was calculated as the residual from the 

linear regression of average daily dry matter intake (DMI) on mid-test BW0.75 and ADG 

using the GLM procedure of SAS (2002). 

 

Glucose Colorimetric Assay 

Plasma glucose concentrations were determined by the manual protocol of the 

commercially available enzymatic Autokit Glucose ((#439-90901; Wako Chemical USA, 

Inc., Richmond, VA).  Resulting inter-assay and intra-assay coefficients of variation were 

1.62 and 2.29% respectively. 

 

Insulin RIA 

 Serum insulin concentrations were determined in a single assay using a 

commercially available radioimmunoassay Coat-A-Count kit (Siemens Healthcare 

Diagnostic, Los Angeles, California).  The concentration of insulin was calculated using 

Assay Zap software (Biosoft, Cambridge, UK) using counts per minute (CPM) obtained 

from a Cobra II auto-gamma-counter (Perkin Elmer, Waltham, MA).  The intra-assay 

coefficient of variation was 8.76%.   
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Cortisol RIA 

 Serum cortisol concentrations were determined using a commercially available 

radioimmunoassay Coat-A-Count kit (Siemens Healthcare Diagnostic, Los Angeles, 

California).  The concentration of cortisol was calculated using Assay Zap software 

(Biosoft, Cambridge, UK) using CPM obtained from a Cobra II auto-gamma-counter 

(Perkin Elmer, Waltham, MA).  The inter-assay and intra-assay coefficients of variation 

were 13.44% and 9.38%, respectively.  

 

Exit Velocity 

 Exit velocity (EV) was calculated on individual animals.  Exit velocity is a rate 

reported as meters per second (m/s) and is calculated from the time it takes an animal to 

travel 1.83 m. after being released from a working chute.  Animals were evaluated for 

initial exit velocity (IEV) after the 28d adaptation period prior to start of RFI feeding 

period prior to the start of the RFI feeding period. 

 

Statistical Analysis 

A repeated measures ANOVA was conducted using the MIXED model procedure 

of SAS (2002) for analysis of RFI group, time, and the RFI group x time interaction on 

insulin concentration and glucose concentration.  Insulinogenic index was calculated by 

dividing the concentration of insulin by the concentration of glucose (I/G) for each 

collection time for each experiment individually.  A repeated measure ANOVA was 

conducted using the MIXED model procedures of SAS (2002) for analysis of 



 58

insulinogenic index for each experiment individually.  Time to peak concentration of 

insulin and half-life concentration of glucose were determined using the GLM procedure 

of SAS (2002) for each experiment.  Area under the curve (AUC) was calculated using 

the trapezoidal rule for glucose, insulin, and cortisol concentrations and IIND.  Exit 

velocity of each RFI group was determined using the GLM procedure of SAS (2002).    

 

Results 

Residual feed intake groups did not differ (P > 0.05) in EV.  Negative RFI and 

positive RFI bulls had mean EV (m/s) of 2.99 ± 0.17 and 2.95 ± 0.17, respectively (Table 

4.2).  Residual feed intake groups did not differ (P > 0.05) in cortisol concentrations 

(Figure 4.1).  There was no RFI group x time interaction affecting (P > 0.05) cortisol 

concentrations.  Time relative to glucose infusion, had a significant affect (P < 0.0001) on 

cortisol concentrations;  this would be expected as cortisol is known to decline during a 

period of restraint as the animal becomes more adjusted to the surroundings and is 

assumed to be experiencing less stress throughout the 3 h period.  Any extraneous outside 

variables during the GTT were similar and experienced by both RFI groups.  Data 

reported from cortisol concentrations, coupled with EV data suggest temperament did not 

likely play a substantial role in glucoregulatory mechanisms between low and high RFI 

groups for this experiment; consequently, EV was not included as a covariate for any 

model for statistical analysis. 

Time, relative to glucose infusion, had a significant effect on glucose (P < 0.0001) 

and insulin concentrations (P < 0.05).  There were no RFI x time interaction affecting (P 
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> 0.05) insulin or glucose concentrations.  Residual feed intake group did not affect (P > 

0.05) glucose (Figure 4.2) or insulin (Figure 4.3) concentrations.  RFI group did not affect 

(P > 0.05) the insulin peak concentration or time to insulin peak.  Negative RFI and 

positive RFI bulls had insulin peak concentrations (mIU/mL) of 50.6 ±13.3 and 67.7 

±13.3, respectively and insulin peak concentration times (min) were 46.2 ±23.1 and 81.2 

±23.1, respectively.  RFI group did not affect (P > 0.05) glucose half life concentrations.  

Negative RFI and positive RFI bulls had glucose half life concentrations (mg/dL) of 60.8 

± 3.2 and 59.9 ± 3.2, respectively and glucose half life times (minutes) were 43.0 ± 3.0 

and 42.3 ± 3.0, respectively.  Mean peak insulin concentration and glucose half life 

concentration, and their respective times, are summarized in Table 4.3.  Insulinogenic 

index (Figure 4.4) was affected by RFI Group (P < 0.05), but was not affected (P > 0.05) 

by time or an RFI group x time interaction. Negative RFI and positive RFI bulls IIND 

(I/G) were 0.17 ± 0.02 and 0.26 ± 0.02, respectively.  Insulinogenic index was analyzed 

from 10 to 60 min for both RFI groups.  Area under the curve was calculated using the 

trapezoidal rule for glucose, insulin, and cortisol concentrations and IIND; no variables 

were significantly different (P > 0.05) in AUC between RFI groups.  Table 4.4 outlines 

the AUC least square means, standard errors and correlated P values for each variable. 
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Figure 4.1 Santa Gertrudis Bulls. Mean Cortisol Concentration Over Time by RFI Group. 

 

 

 

 
Figure 4.2  Santa Gertrudis Bulls. Mean Glucose Concentration Over Time by RFI Group. 
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Figure 4.3  Santa Gertrudis Bulls. Mean Insulin Concentration Over Time by RFI Group. 
 
 
 
 
 

 
Figure 4.4  Santa Gertrudis Bulls. Insulinogenic Index Over Time by RFI Group. 
 
 
 
 
 
 



 62

Table 4.2 Santa Gertrudis Bulls Exit Velocity       
Variable                RFI GROUP   P Value 
      Negative   Positive   
Exit Velocity (Initial)   2.99 ± 0.17 2.95 ± 0.17 0.8632 

 
 
 
 
Table 4.3  Santa Gertrudis Bulls Insulin Peak and Glucose Half Life 
Data   
Variable                            RFI GROUP      P Value 
    Negative Positive   
Insulin Peak Concentration 50.6± 13.3 67.7 ± 13.3 0.3776 
Insulin Peak Time 46.2 ± 23.1 81.2  ± 23.1 0.3039 
Glucose Half Life Concentration 60.8 ± 3.2 59.9 ± 3.2 0.8290 
Glucose Half Life Time 43.0 ± 3.0 42.3 ± 3.0 0.8674 

 
 
 
 
 

 
 

Discussion 

 Residual feed intake groups did not differ (P > .05) in EV or cortisol 

concentration throughout the GTT.  This suggests temperament did not likely play a 

substantial role in glucoregulatory mechanisms between low and high RFI groups for this 

experiment; consequently, EV was not included as a covariate for any model for statistical 

Table 4.4 Santa Gertrudis Bulls Area Under Curve: Glucose, Insulin, Cortisol, IIND 
 Variable                        RFI GROUP        P Value 
    Negative Positive   
Glucose 97.6 ± 10.5 89.9 ± 10.5 0.6124 
Insulin 52.9 ± 9.1 50.9 ± 9.1 0.8810 
Cortisol 46.8 ± 8.0 62.4 ± 8.0 0.1900 
IIND   0.16 ± 0.06 0.23 ± 0.06 0.4188 
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analysis.  Cortisol concentrations were affected (P > .05) by time; however, this would be 

expected as the animals are getting acclimated to their surroundings and the situation as 

the GTT progresses.  This response is typical for a period of restraint.  Animals 

representing both RFI groups were subjected to a GTT at the same time; therefore, any 

extraneous variables during the challenge were similar for both RFI groups. 

Negative RFI and positive RFI bulls had similar glucose response over time; 

demonstrating that the ability to clear glucose from circulation did not differ between RFI 

groups.  However, there were some numerical differences in insulin response between 

RFI groups.  Positive RFI bulls (inefficient) appear to have a numerically elevated insulin 

response in comparison to negative RFI bulls (more efficient). Although this difference in 

insulin response between RFI groups is not significantly different, it did have an effect on 

IIND values.  RFI group did affect IIND, whereas positive RFI-classified bulls showed a 

higher insulinogenic index compared to negative RFI-classified bulls.  This suggests that 

inefficient bulls are releasing an increased concentration of insulin to clear the same 

concentration per body weight of glucose from their blood circulation in comparison to 

more efficient animals.   

    

Conclusion 

 In this study, negative RFI animals had a lesser response of insulin to glucose; 

suggesting that inefficient Santa Gertrudis bulls have a greater insulin sensitivity to an 

influx of glucose and must produce higher concentrations of insulin to clear glucose from 

the circulation.  The lower amount of insulin required for clearance of the glucose from 
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the circulation of the low RFI Santa Gertrudis cattle fits with our hypothesis that more 

efficient cattle would require less insulin than the less efficient cattle.  Although RFI 

group did not significantly affect (P > 0.05) insulin response, the ratio of insulin to 

glucose may provide more information and be a better indicator of feed efficiency in 

comparison to actual concentrations of insulin response to a GTT.  Due to the differences 

(P < 0.05) observed between RFI groups in IIND, it may be implied that IIND after a 

glucose tolerance test may be a useful indicator of RFI in Santa Gertrudis bulls.  More 

specifically, these data suggest that IIND may be a useful predictor 10-30 minutes after a 

glucose tolerance test and an IIND value of 0.20 (I/G) or greater would equate to a 

positive RFI (less efficient) Santa Gertrudis bull.     
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CHAPTER V 
 

INSULIN SENSITIVITY IN BRAHMAN CATTLE WITH DIVERGENT 

RESIDUAL FEED INTAKE 

 

Introduction 

 The Brahman breed was the first beef breed developed in the United States and 

has become a staple for beef cattle production in the tropics around the world.  Since their 

development Brahman cattle have gained respect for their unique environmental 

adaptation, longevity, mothering ability and efficient beef production throughout the 

world.  Brahman cattle have the ability to regulate their body temperature in areas of 

tropical and subtropical climates, allowing them to spend less energy dissipating heat and 

instead utilizing that energy to put on efficient gains.  Incorporating this breed into a 

crossbreeding program has allowed producers of diverse climates and terrains to enhance 

profitability by matching their cattle to the environment.  As feed costs continue to rise, 

producers are realizing that more steps must be taken to minimize production costs; 

identifying feed efficient animals is one such method.   Early detection of efficient 

animals would benefit producers by potentially minimizing feed costs.   As stated in 

Chapter II, insulin sensitivity can be an indicator of metabolic efficiency in many species.  

If this is true, low RFI animals would be expected to have reduced insulin sensitivity in 

response to an increase in glucose concentration, thus being more efficient in the uptake 

of glucose.  The objective of this study was to investigate the glucoregulatory mechanisms 

of Brahman cattle previously selected for divergent RFI to investigate a potential indirect 
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method of determining feed efficiency, thus optimizing profitability for producers located 

in tropical or subtropical regions.  Two experiments were conducted to evaluate the 

glucoregulatory mechanisms of Brahman bulls and heifers.  Animals were first evaluated 

for RFI.  A glucose tolerance test was then performed on the most efficient and most 

inefficient animals of each cohort.  All animal procedures were approved by the Texas 

A&M University System Institutional Animal Care and Use Committee (IACUC).        

 

Materials and Methods 

Animals and Experimental Design: Experiment 1 

Brahman heifers (n=37) from the Texas AgriLife Research-Overton herd were fed 

a commercially available growing ration (Table 5.1) in a feedlot environment at Overton 

using Calan gates in order to determine their relative feed efficiency ranking.  Individual 

BW were collected and animals were assigned to pens according to BW (n=5, one pen of 

n=2) containing  Calan Gate Feeders.  Heifers were fed 2.65% of BW daily over a 70 d 

period with half of the daily ration being fed at 0800 and the other half being fed at 1600.  

Individual BW was collected weekly and the amount of ration fed was recalculated each 

week accordingly.  Orts, if any, were collected and weighed weekly.  

Following the feeding trial, RFI was calculated and a glucose tolerance test was 

conducted on the most efficient (n=6) and least efficient (n=6) heifers in the cohort.  A 

glucose tolerance test was performed over two days (May 12-13th, 2010) with 3 high and 

3 low RFI-classified animals being tested each day.  Negative RFI and positive RFI 

heifers had average weights of 322 kg and 323 kg, respectively.  On dates of GTT, 
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negative RFI and positive RFI heifers had a mean age of test of 420 d and 422 d, 

respectively.  Six heifers were placed in chutes in the surgery building at the Texas 

AgriLife Research-Overton North Farm after being allowed access to water but not feed 

for a period of 10 h prior to the challenge.  An area over the jugular vein was clipped and 

scrubbed.   After donning sterile gloves, a 14-gauge needle was inserted in the jugular 

vein.  Approximately 15-20 cm of a 1.0 m length of tygon tubing (0.10 cm i.d., 0.18 cm 

o.d.) was threaded through the needle and into the jugular vein.  The remaining tubing 

was then secured to the heifer’s neck using adhesive tape.  The end of the tubing was 

plugged using an 18-gauge needle and a 10 mL syringe.  All cannula materials were 

sterilized by gas sterilization.  The tubing was flushed with heparin solution prior to 

capping.  After the last heifer was catheterized, the animals were allowed a rest period of 

2 h; then a 50% dextrose solution was infused at 0.5 mL/kg BW via the indwelling jugular 

catheter.  Two blood samples (10 mL each) were collected at -5, 0, 10, 15, 25, 30, 40, 60, 

80, 100, 120, 140, 160 and 180 min relative to dextrose infusion.  Blood for plasma was 

collected into 10 mL EDTA coated Vacutainer® tubes (366643, BD Biosciences; 

Franklin Lakes, NJ) and blood for serum was collected into 10 mL Vacutainer® tubes 

(366430, BD Biosciences; Franklin Lakes, NJ).  A total of 280 mL blood was drawn per 

animal.  Following collection of blood at each sampling time, 10 mL of sterile saline 

followed with 4 mL of heparinized saline was delivered via the catheter. Following 

collection of the last blood sample, the catheters were removed and the animals were 

returned to their original pens.   The remaining group (comprised of 3 high and 3 low RFI 

animals each) was catheterized in the same manner the following day and blood samples 
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were collected after a 2 h resting period beginning after the final heifer was catheterized.  

Plasma and Serum sample tubes were refrigerated on ice and subsequently centrifuged at 

4ºC at 2000 x g for 30 min and stored at -20ºC until assays could be performed.   

 

 

Table 5.1 Brahman Experiment 1 Diet     
Dietary Composition, (as fed)    % 
Cottonseed Hulls (pelleted) 33.08 
Cottonseed Hulls (loose) 25.00 
Distillers Dried Grains 15.80 
Soybean Meal 48% 9.74 
Rice Hulls 5.00 
Car-Mil-Glo 5.00 
Rice Bran-High Fat 2.04 
Corn (Crimped)  2.00 
Calcium Carbonate 1.29 
Supplement     1.05 

 

 

Animals and Experimental Design: Experiment 2  

Brahman bulls (n=37) from the Texas AgriLife Research-Overton herd were fed a 

commercially available growing ration in a feedlot environment at Overton using Calan 

gates in order to determine their relative feed efficiency ranking.  Individual BW were 

collected and animals were assigned to pens according to BW (n=5, one pen of n=2) 

containing  Calan Gate Feeders.  Bulls were fed 2.65% of BW (Table 5.2) daily over a 70-

day period with half of the daily ration being fed at 0800 and the other half being fed at 
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1600.  Individual BW was collected weekly and the amount of ration fed was recalculated 

each week based on body weights.  Orts, if any, were collected and weighed weekly.  

Following the feeding trial, RFI was calculated and a glucose tolerance test was 

conducted on the most efficient (n=6) and least efficient (n=6) bulls in the cohort.  

Glucose tolerance tests were performed over two days (August 5-6th, 2010) with 3 high 

and 3 low RFI-classified animals being tested each day.  Negative RFI and positive RFI 

bulls had average weights of 407 kg and 468 kg, respectively.  On dates of GTT, negative 

RFI and positive RFI bulls had a mean age of test of 482.5 d and 520.5 d, respectively.  

Six bulls were placed in chutes in the surgery building at the Texas AgriLife Research-

Overton North Farm after being allowed access to water but not feed the prior evening.  

An area over the jugular vein was clipped and scrubbed.  Animals were fitted with a 

jugular cannula using the same method described in Experiment 1 of this chapter.  After 

the last bull was catheterized, the animals were allowed a rest period of 2 h then a 50% 

dextrose solution was infused at 0.5 mL/kg BW via the indwelling jugular catheter.  Two 

blood samples (10 mL each) were collected at -5, 0, 10, 15, 20, 30, 40, 60, 80, 100, 120, 

140, 160 and 180 min relative to dextrose infusion.  Blood for plasma was collected into 

10 mL EDTA coated Vacutainer® tubes (366643, BD Biosciences; Franklin Lakes, NJ) 

and blood for serum was collected into a 10 mL Vacutainer® tubes(366430, BD 

Biosciences; Franklin Lakes, NJ).  A total of 280 mL blood was collected per animal.  

Following collection of blood at each sampling time, 10 mL of sterile saline followed 

with 4 mL of heparinized saline was delivered via the catheter. Following collection of 

the last blood sample, the catheters were removed and the animals were returned to their 
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original pens.   The remaining group (comprised of 3 high and 3 low RFI-classified 

animals each) was catheterized in the same manner the following day and blood samples 

were collected after a 2 h resting period beginning after the final bull was catheterized.  

Plasma and serum sample tubes were refrigerated on ice and subsequently centrifuged at 

4ºC at 2000 x g for 30 min and stored at -20ºC until assays could be performed.   

 

Table 5.2 Brahman Experiment 2 Diet     
Dietary Composition, (as fed)    % 
Cottonseed hulls (pelleted) 45.00 
Corn 40.00 
Premix (Protein, Vitamin, Mineral) 15.00 

 

 

RFI Determination 

The two groups of Brahman cattle were fed during two separate feeding trials and 

were treated as two separate cohorts as they were of different genders.  RFI was 

calculated as described in Chapter III.  Initial BW and ADG were computed from linear 

regression of BW on day of test using the PROC REG function of SAS (2002).  Mid-test 

BW was estimated using initial BW and ADG and adjusting for a 3% shrink.  Considering 

all animals as cohorts given their respective sexes, RFI was calculated as the residual 

from the linear regression of average daily dry matter intake (DMI) on mid-test BW0.75 

and ADG using the GLM procedure of SAS (2002). 
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Glucose Colorimetric Assay 

 Plasma glucose concentrations were determined by the manual protocol of the 

commercially available enzymatic Autokit Glucose (#439-90901; Wako Chemical USA, 

Inc., Richmond, VA).  For Experiment 1, the intra-assay coefficient of variation was 

1.17%.  For Experiment 2, the intra-assay coefficient of variation was 1.64%. 

 

Insulin RIA 

 Serum insulin concentrations were determined in a single assay (per experiment) 

using a commercially available radioimmunoassay Coat-A-Count kit (Siemens Healthcare 

Diagnostic, Los Angeles, California).  The concentration of insulin was calculated using 

Assay Zap software (Biosoft, Cambridge, UK) using counts per minute (CPM) obtained 

from a Cobra II auto-gamma-counter (Perkin Elmer, Waltham, MA).  The intra-assay 

coefficients of variation for Experiment 1 and Experiment 2 were 12.46% and 32.89%, 

respectively.  

 

Cortisol RIA 

 Serum cortisol concentrations were determined using a commercially available 

radioimmunoassay Coat-A-Count kit (Siemens Healthcare Diagnostic, Los Angeles, 

California).  The concentration of cortisol was calculated using Assay Zap software 

(Biosoft, Cambridge, UK) using CPM obtained from a Cobra II auto-gamma-counter 

(Perkin Elmer, Waltham, MA).   The inter-assay and intra-assay coefficients of variation 

were 13.44% and 9.38%, respectively.   
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Exit Velocity 

 Exit velocity (EV) was calculated on each individual animal.  Exit velocity is a 

rate reported as meters per second (m/s) and is calculated from the time it takes an animal 

to travel 1.83 m. after being released from a working chute.  Exit velocity (EV) was 

collected on Day 0 relative to weaning.   

 

Statistical Analysis 

A repeated measure ANOVA was conducted using the MIXED model procedure 

of SAS (2002) for analysis of RFI group, time, and the RFI gropu x time interaction on 

insulin concentration and glucose concentration for each experiment individually.  

Insulinogenic index was calculated by dividing the concentration of insulin by the 

concentration of glucose (I/G) for each collection time for each experiment individually.  

A repeated measures ANOVA was conducted using the MIXED model procedures of 

SAS (2002) for analysis of insulinogenic index for each experiment individually.  Time to 

peak concentration of insulin and half-life concentration of glucose were determined 

using the GLM procedure of SAS (2002) for each experiment.  Area under the curve 

(AUC) was calculated using the trapezoidal rule for glucose, insulin, and cortisol 

concentrations and IIND.  Exit velocity of each RFI group was determined using the 

GLM procedure of SAS (2002) for each experiment.  Because EV was significantly 

different between RFI groups in experiment one, all data analyses were accomplished 

with EV as a covariate in the model. 

 



 73

Results 

Experiment 1 

Residual feed intake groups did not differ (P > 0.05) in EV.  Negative RFI and 

positive RFI heifers had mean EV (m/s) of 3.21 ± 0.62 and 3.23 ± 0.34, respectively 

(Table 5.3).  Residual feed intake groups did not differ (P > 0.05) in cortisol 

concentrations (Figure 5.1).  There was no RFI group x time interaction affecting (P > 

0.05) cortisol concentrations.  Time relative to glucose infusion, had a significant affect (P 

< 0.05) on cortisol concentrations;  this would be expected as cortisol is known to decline 

during a period of restraint as the animal becomes more adjusted to the surroundings and 

is assumed to be experiencing less stress throughout the 3 h period.  Any extraneous 

outside variables during the GTT were similar and experienced by both RFI groups.  Data 

reported from cortisol concentrations, coupled with EV data suggest temperament did not 

likely play a substantial role in glucoregulatory mechanisms between low and high RFI 

groups for this experiment; consequently, EV was not included as a covariate for any 

model for statistical analysis. 

Time relative to glucose infusion, had a significant effect (P < 0.0001) on glucose 

(Figure 5.2) and insulin concentrations (Figure 5.3).  There was no RFI group x time 

interaction (P > 0.05) on insulin or glucose concentrations.  Residual feed intake group 

alone had no affect (P < 0.05) affecting insulin or glucose concentrations.  Residual feed 

intake group did not affect (P > 0.05) peak insulin concentrations or time of insulin peak.  

Negative RFI and positive RFI heifers had insulin peak concentrations (mIU/mL) of 62.3 

±13.4 and 89.2 ± 13.4, respectively and insulin peak concentration times (min) were 22.5 
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± 2.6 and 23.3 ±2.6, respectively.  Residual feed intake group did not affect (P > 0.05) 

glucose half life concentrations or time that half life was achieved.  Negative RFI and 

positive RFI heifers had glucose half life concentrations (mg/dL) of 66.1 ± 3.5 and 66.1 ± 

3.5, respectively and glucose half life times (min) were 39.2 ± 4.4 and 34.0 ± 4.4, 

respectively.  Mean peak insulin concentration and glucose half life concentrations, and 

their respective times, are summarized in Table 5.4.  Insulinogenic index was affected by 

RFI Group (P < 0.05), but was not affected (P > 0.05) by time or the RFI group x time 

interaction (Figure 5.4).  Negative RFI and positive RFI heifers IIND (I/G) were 0.27 ± 

0.03 and 0.36 ± 0.03, respectively.  Insulinogenic index was analyzed from 10 to 60 

minutes for both RFI groups.  Area under the curve was calculated using the trapezoidal 

rule for glucose, insulin, and cortisol concentrations and IIND; no variables were 

significantly different (P > 0.05) in AUC between RFI groups.  Table 5.5 outlines the 

AUC least square means, standard errors and correlated P values for each variable. 
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Figure 5.1 Brahman Experiment 1. Mean Cortisol Concentration Over Time by RFI 
Group. 

 

 

 

 

Figure 5.2  Brahman Experiment 1. Mean Glucose Concentration Over Time by RFI 
Group. 
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Figure 5.3 Brahman Experiment 1. Mean Insulin Concentration Over Time by RFI Group. 
 
 
 
 
 
 

 
Figure 5.4 Brahman Experiment 1. Insulinogenic Index Over Time by RFI Group. 
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Table 5.3  Brahman Experiment 1 Exit Velocity         
Variable       RFI GROUP   P Value 
       Negative    Positive   
Exit Velocity (Day 0)   3.22 ± 0.62 3.23 ± 0.62 0.9881 

 
 
 
 
 
Table 5.4 Brahman Experiment 1 Insulin Peak and Glucose Half Life Data   
Variable                           RFI GROUP   P Value 
    Negative Positive   
Insulin Peak Concentration 62.3± 13.4 89.2 ± 13.4 0.1863 
Insulin Peak Time 22.5 ± 2.6 23.3  ± 2.6 0.8284 
Glucose Half Life Concentration 66.1 ± 3.5 39.2 ± 4.4 0.9903 
Glucose Half Life Time 39.2 ± 4.4 34.0 ± 4.4 0.4235 

 
 
 
 
 
Table 5.5 Brahman Experiment 1 Area Under Curve: Glucose, Insulin, Cortisol, IIND   
Variable                            RFI GROUP   P Value 
    Negative Positive   
Glucose 94.6 ± 8.9 79.9 ± 8.9 0.2728 
Insulin 55.8 ± 11.4 43.8 ± 11.4 0.4726 
Cortisol 54.3 ± 16.1 42.7 ± 16.1  0.6205 
IIND   5.1 ± 1.2 4.9 ± 1.2 0.8881 

 
 
 

Experiment 2 

Residual feed intake group did differ significantly (P > 0.05) in EV; suggesting, 

there may be a temperament factor involved in this experiment.  .  Negative RFI and 

positive RFI bulls had EV (m/s) of 3.44 ± 0.31 and 2.33 ± 0.31, respectively Table 5.6.  

Residual feed intake groups did not differ (P > 0.05) in cortisol concentrations (Figure 
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5.5); suggesting cortisol did not likely play a role in glucoregulatory mechanisms of this 

experiment.  There was no RFI group x time interaction affecting (P > 0.05) cortisol 

concentrations.  Time relative to glucose infusion, had a significant affect (P < 0.0001) on 

cortisol concentrations;  this would be expected as cortisol is known to decline during a 

period of restraint as the animal becomes more adjusted to the surroundings and is 

assumed to be experiencing less stress throughout the 3 h period.  Any extraneous outside 

variables during the GTT were similar and experienced by both RFI groups.  In efforts to 

account for any differences in temperament that may exist between RFI groups, EV was 

included as a covariate in all models for statistical analysis in this experiment.   

Time relative to glucose infusion had a significant effect (P < 0.0001) on glucose 

(Figure 5.6) and on insulin (Figure 5.7) concentrations.  The interaction of RFI group x 

time affected (P < 0.01) insulin concentrations; however there was no RFI group x time 

interaction (P > 0.05) affecting glucose concentrations.  Residual feed intake group 

affected (P < 0.05) the insulin response; whereby negative RFI bulls had a greater insulin 

response than positive RFI bulls.  Residual feed intake group did not affect (P > 0.05) 

glucose concentrations.  Exit velocity did not affect (P > 0.05) glucose or insulin 

concentrations. (Residual feed intake group did not affect (P > 0.05) peak insulin 

concentration or time of insulin peak.  Negative RFI and positive RFI bulls had peak 

insulin concentrations (mIU/mL) of 44.3 ± 16.9 and 74.4 ± 16.9, respectively and insulin 

peak concentration times (min) were 49.3 ± 14.5 and 21.6 ± 14.5, respectively.  RFI group 

did not affect (P > .05) glucose half life concentrations or the time half life was achieved.  

Negative RFI and positive RFI bulls had glucose half life concentrations (mg/dL) of 62.0 
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± 2.6 and 58.9 ± 2.6, respectively and glucose half life times (min) were 43.5 ± 4.0 and 

41.6 ± 4.0, respectively.  Mean peak insulin concentration and glucose half life 

concentrations, and their respective times, are summarized in Table 5.7.  Insulinogenic 

index (Figure 5.8) was affected by RFI group (P < 0.01), but was not affected (P > 0.05) 

by time or EV. Negative RFI and positive RFI bulls IIND (I/G) were 0.16 ± 0.02 and 0.31 

± 0.02, respectively.  Insulinogenic index was analyzed from 10 to 60 min for both RFI 

groups.  Area under the curve was calculated using the trapezoidal rule for glucose, 

insulin, and cortisol concentrations and IIND; no variables were significantly different (P 

> 0.05) in AUC between RFI groups.  Table 5.8 outlines the AUC least square means, 

standard errors and correlated P values for each variable. 

 

 

 

 
Figure 5.5 Brahman Experiment 2. Mean Cortisol Concentration Over Time by RFI 
Group. 
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Figure 5.6 Brahman Experiment 2. Mean Glucose Concentration Over Time by RFI 
Group. 
 
 
 
 
 
 

 
Figure 5.7 Brahman Experiment 2. Mean Insulin Concentration Over Time by RFI Group. 
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Figure 5.8 Brahman Experiment 2. Mean Insulinogenic Index Over Time by RFI Group. 
 
 
 
 
 
 
 
Table 5.6 Brahman Experiment 2 Exit Velocity         
Variable            RFI GROUP   P Value 
       Negative    Positive   
Exit Velocity (Day 0)   3.44 ± 0.31 2.33 ± 0.31 0.0287 

 
 
 
 
 
Table 5.7 Brahman Experiment 2 Insulin Peak and Glucose Half Life Data with EV 
as Covariate    
Variable                           RFI GROUP   P Value 
    Negative Positive   
Insulin Peak Concentration 44.3 ± 16.9 74.4 ± 16.9 0.2876 
Insulin Peak Time 49.3 ± 14.5 21.6  ± 14.5 0.2558 
Glucose Half Life Concentration 62.0 ± 2.6 58.9 ± 2.6 0.4581 
Glucose Half Life Time 43.5 ± 4.0 41.6 ± 4.0 0.7808 
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Table 5.8 Brahman Experiment 2 Area Under Curve: Glucose, Insulin, Cortisol, IIND   
Variable                           RFI GROUP   P Value 
    Negative Positive   
Glucose 99.2 ± 12.3 97.9 ± 12.3 0.9167 
Insulin 40.5 ± 19.2 57.8 ± 19.2 0.3899 
Cortisol 20.4 ± 2.8 17.3 ± 2.8 0.4457 
IIND   1.7 ± 0.7 1.5 ± 0.7 0.8442 

 
 

 

Discussion 

In Experiment 1 RFI group did not differ (P > .05) in EV or cortisol concentration 

throughout the GTT.  This suggests temperament did not likely play a substantial role in 

glucoregulatory mechanisms between low and high RFI groups for this experiment; 

consequently, EV was not included as a covariate for any model for statistical analysis.  . 

However, in Experiment 2, EV differed significantly (P < 0.05) between RFI groups, 

suggesting there may be a temperament factor involved in this experiment.  Similar to 

Experiment 1, cortisol concentrations did not differ between RFI groups.  This suggests 

that cortisol did not likely play a role in glucoregulatory mechanisms of this experiment.  

Yet, in efforts to account for any differences in temperament that may exist between RFI 

groups, EV was included as a covariate in all models for statistical analysis in Experiment 

2.  In both experiments, animals representing both RFI groups were subjected to a GTT at 

the same time; therefore, any extraneous variables during the challenge were similar to 

both RFI groups.   

  In Experiment 1 and 2, negative RFI-classified and positive RFI-classified 

animals had similar glucose responses over time, demonstrating that the ability to clear 
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glucose from circulation did not differ between RFI groups.  Experiment 1 and 2 RFI 

groups showed similar insulin responses; however, Experiment 2 was significantly 

different (P > 0.05) while Experiment 1 was not.  In Experiment 1 there were some 

numerical differences in insulin response between RFI groups.  Positive RFI heifers 

(inefficient) appear to have a numerically elevated insulin response in comparison to 

negative RFI heifers (more efficient).  In Experiment 2, RFI group and the interaction of 

RFI x Time both significantly affected insulin response; whereas positive RFI bulls 

(inefficient) had an elevated insulin response in comparison to negative RFI bulls 

(efficient).   As expected from the pattern observed with insulin’s response, in both 

Experiment 1 and 2, RFI group did affect IIND; whereas positive RFI-classified animals 

showed a higher insulinogenic index compared to negative RFI-classified animals.  This 

suggests that inefficient Brahman cattle are releasing an increased concentration of insulin 

in response to glucose and could be categorized as more sensitive to an influx of glucose.  

These animals are releasing an increased concentration of insulin to clear the same 

concentration per body weight of glucose from their blood circulation in comparison to 

more efficient animals.  Although differences were observed in insulin response, RFI 

group had no affect on insulin peak concentration or concentration of glucose at half life 

in either Experiment 1 or 2.  These data suggest that efficient cattle clear glucose from 

circulation with less insulin in comparison to inefficient cattle.   
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Conclusion 

In Experiment 1 and Experiment 2 alike, negative RFI animals had a lesser 

response of insulin to glucose; suggesting that inefficient Brahman cattle have a greater 

insulin sensitivity to an influx of glucose and must produce higher concentrations of 

insulin to clear glucose from the circulation.  The lower amount of insulin required for 

clearance of the glucose from the circulation of the low RFI Brahman cattle fits with our 

hypothesis that more efficient cattle would require less insulin than the less efficient 

cattle.  Although RFI group did not significantly affect (P > 0.05) insulin response in 

Experiment 1, the ratio of insulin to glucose may provide more information and be a 

better indicator of feed efficiency in comparison to actual concentrations of insulin 

response to a GTT.  Due to the differences (P < 0.05) observed between RFI groups in 

IIND, it may be implied that IIND after a glucose tolerance test may be a useful indicator 

of RFI in Brahman cattle.  More specifically, these data suggests that IIND may be a 

useful predictor 15-30 minutes after a glucose tolerance test and an IIND value of 0.25 

(I/G) or greater would equate to a positive RFI (less efficient) in Brahman cattle.     
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CHAPTER VI 
 

CONCLUSION 

 

Providing feed for the cow herd is a major cost input associated with cattle 

production as it has been found to account for 68-71% (USDA, 2011) of the total cost of 

cow calf production in the United States.  Efficient feed utilization has become an 

essential component of beef production systems as we are in an era of dwindling 

resources and escalating costs of production.  Residual feed intake is a method utilized in 

the beef cattle industry to identify feed efficient animals in a cohort.  Evaluating potential 

herd sires for residual feed intake is becoming a popular selection tool in the beef industry 

as RFI has been found to be moderately heritable; therefore, identifying efficient herd 

sires has the potential for making genetic gains in feed efficiency.  Despite the proposed 

accuracy associated with RFI, it is costly and labor intensive; thus, preventing it from 

being widely utilized by beef cattle producers.   

Beef cattle feed efficiency is affected by many different physiological processes; 

these processes create variance in feed efficiency across a given herd.  Richardson and 

Herd (2004) suggested that feed intake, digestion of feed, metabolism, activity of the 

animal and thermoregulation may all be factors affecting variance in feed efficiency.  Yet, 

70% of the variation in feed efficiency remains unexplained (Richardson and Herd, 2004).  

There has been strong interest in the research community to evaluate indirect measures of 

feed efficiency; however, none have proven to be effective.  In efforts to improve feed 

efficiency in the beef industry, Johnston et al. (2002) proposed that “we need correlated 
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traits that can be easily measured on large numbers of cattle prior to the time when the 

major selection decisions are made.”  Insulin sensitivity can be an indicator of metabolic 

efficiency in many species; therefore, evaluating glucoregulatory mechanisms in cattle 

selected for RFI may provide an indirect measure of feed efficiency.  Evaluating 

glucoregulatory mechanisms in other species has led to a better understanding of 

nutrition, lactation, immunology, and energy expenditure.  Previous research has 

attempted to evaluate glucoregulatory mechanisms with regard to RFI; however these 

studies failed to evaluate differences in insulin sensitivity in RFI identified cattle.  By 

utilizing a GTT, we are able to evaluate differences among insulin sensitivities in 

response to an influx of exogenous glucose; IIND allows us to put a numerical value to 

the relationship between glucose and insulin after a GTT.  Results from studies within this 

thesis imply that IIND after a glucose tolerance test may be a useful predictor of RFI in 

tropically adapted cattle.  Although breed differences between insulin responses among 

RFI groups were observed, notable trends existed between cohorts of animals evaluated.  

As a point of reference, Table 6.1 lists basal concentrations of insulin and glucose across 

multiple breeds; this table was compiled from previous studies and includes the 

experiments in this thesis as well.          
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Table 6.1 Baseline Concentrations of Insulin and Glucose in Divergent Breeds Compiled from 
Previous Studies     

Breed Gender RFI  n= Age (mo) 
Weight 

(kg) 

Insulin BL 
(uIU/mL)  

unless 
noted 

Glucose 
BL 

(mg/dL) Reference 
Angus Male (Steer) Low 9 ------ 566 9.19 ng/mL 86.44 Kolath et al., 2006 
Angus Male (Steer) High 8 ------ 563 11.1 ng/mL 101.12 Kolath et al., 2006 
Angus Male (Steer) Low 16 14 423 2.48 ng/mL 81.36 Richardson et al., 2004 
Angus Male (Steer) High 17 14 428 3.38 ng/mL 85.68 Richardson et al., 2004 
Angus Cross Female ------ 12 9-10  266 14.16 119.16 Bradbury et al., 2011 
Bonsmara  Female Low 18 12-14  368 11.09 93.55 Shafer, 2011 
Bonsmara  Female High 18 12-14  362 10.82 88.77 Shafer, 2011 
Brahman  Female Low 6 14 322 11.87 106.81 Shafer, 2011 
Brahman Female High 6 14 323 15.06 93.33 Shafer, 2011 
Brahman  Male Low 6 16 407 7.90 89.95 Shafer, 2011 
Brahman Male High 6 17 468 11.56 84.04 Shafer, 2011 
Brahman Female ------ 12 6-10  192 6.23 140.26 Bradbury et al., 2011 
Gir x Holstein Female ------ 10 Mature 587 17.86 69.65 Vieira et al., 2010 
Limousin x 
Holstein Friesian Female Low 21 8 312 15.28 92.34 Kelly et al., 2010 
Limousin x 
Holstein Friesian Female High 23 8 314 14.67 91.80 Kelly et al., 2010 
Santa Gertrudis  Male Low 8 14-17  383 11.50 124.75 Shafer, 2011 
Santa Gertrudis  Male High 8 14-17  373 15.08 133.08 Shafer, 2011 
Santa Gertrudis  Male (Steer) Low 85 ------- 395 4.72 ng/mL 83.28 Brown et al., 2005 
Santa Gertrudis  Male (Steer) High 87 ------- 395 5.33 ng/mL 82.45 Brown et al., 2005 
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Both experiments of Bonsmara heifers used in this study had a different insulin 

response to the exogenous glucose than the Brahman and Santa Gertrudis cattle.  With 

Bonsmara heifers the negative RFI group, more efficient animals, had a greater insulin 

response than positive RFI animals.  Conversely, Santa Gertrudis bulls and Brahman 

cattle (both bulls and heifers) exhibited a greater insulin response in positive RFI groups,  

more ineffcient animals, than the negative RFI groups.   Due to the differences in insulin 

response observed in IIND. between negative and positive RFI-classified animals, there 

were also differences observed in IIND.  With Bonsmara heifers the negative RFI group, 

more efficient animals, had a greater IIND than positive RFI animals.  Conversely, Santa 

Gertrudis bulls and Brahman cattle (both bulls and heifers) exhibited a greater IIND in 

positive RFI groups, more ineffcient animals, than the negative RFI group.  In all cohorts 

evaluated, insulinogenic index was affected (P < 0.05) by RFI group; suggesting that 

glucoregulatory differences do exist between efficient and inefficient animals.   

In Bonsmara cattle, RFI group affected (P < .05) peak insulin concentration in 

Experiment 1 and a trend (P < .10) for RFI group to affect peak insulin concentration was 

observed in Experiment 2.  Peak insulin concentration was not effected by RFI group in  

the Santa Gertrudis or Brahman cattle evaluated.  A summary of peak insulin 

concentrations and IIND by RFI groups for each experiment can be found in Table 6.2.  

Glucose half life concentration or time half life was achieved was not significanly 

different between RFI groups in any of the groups evaluated.  There were notable trends 

and differences in concentrations and times between the breeds observed.  Bonsmara 

heifers had a higher insulin peak concentration and shorter glucose half life than the 
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Brahman and Santa Gertrudis cattle evaluated, whereas the latter two breeds were 

producing lower overall concentrations of insulin at a slower rate in comparison to the 

Bonsmara heifers.  Experiment 1 Bonsmara heifers had a mean insulin peak that was 2x 

higher in concentration and a glucose half life that was one half   shorter in time (min) 

than  the Santa Gertrudis bulls.  Although differences in insulin response were observed, 

we are not able to explain how efficient and ineffecient cattle differ in clearing glucose 

from the circulation.  This implies that the actual concentration of insulin or glucose may 

not be as important as the ratio between the two concentrations measured.   

The reason for the differences observed in insulin response for Bonsmara heifers 

compared to the other breeds evaluated in this study is unknown.  Bonsmara cattle are a 

unique breed, developed to be very efficient in producing quality cuts of meat in tropical 

and subtropical environments with low feed and forage availability.  Bonsmara heifers fed 

a roughage based diet of 2.07 mcal/kg DE (Table 3.1) have been observed to have better 

ADG than Brangus heifers of similar age fed the same diet.  Bonsmara heifers had an 

ADG of 1.21 ± 0.082 (low RFI) and 1.22 ± 0.065 (high RFI; Wiley et al., 2011) compared 

to Brangus heifers which had an ADG of 1.07 ± 0.05 (low RFI) and 1.08 ± 0.04 (high 

RFI; Bingham et al., 2009).  There may be differences in the Bonsmara’s glucoregulatory 

mechanisms, compared to Brahman influenced breeds of cattle due to the Bonsmara 

breed’s development and function.   
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Table 6.2 Mean Insulin Peak Concentrations (uIU/mL) and Insulinogenic Index Values Across Experiments 

 

Mean Insulin Peak 
Concentrations (uIU/mL)   

 
IIND (I/G) 

  RFI Group     RFI Group   
Experiment Low RFI High RFI P Value   Low RFI High RFI P Value 
Bonsmara Heifers-Experiment 1 108.1 ± 12.1 75.5 ± 12.1 0.0761 

 
0.44 ± .03 0.29 ± .03 0.0026 

Bonsmara Heifers-Experiment 2 93.6 ± 13.4 50.3 ± 13.4 0.0455 
 

0.35 ± .02 0.17 ± .02 0.0010 
Santa Gertrudis Bulls 50.6 ± 13.3 67.7 ± 13.3 0.3776 

 
0.18 ± .03 0.27 ± .03  0.0443 

Brahman Heifers 62.3 ± 13.4 89.2 ± 13.4 0.1863 
 

0.27 ± .03 0.36 ± .03 0.0453 
Brahman Bulls 44.3 ± 16.9 74.4 ± 16.9 0.2876   0.16 ± .02 0.31 ± .02 0.0008 
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It is important to keep the cohorts used in this thesis as separate studies and not 

make cross study comparisons as there is no control among experiments.  Animals that 

were evaluated are of different genders, breed-types and ages and diverse environmental 

conditions and settings occurred during each GTT.  Herd et al., (2004) suggested that 

feed efficiency is relative to the type and amount of feed consumed, the sex and breed of 

that animal, and environmental conditions in which that animal is managed.  

Additionally, differences in HPA and endocrine function among gender and breedtype of 

cattle evaluated were reported by Welsh et al. (2009).  Also impeding our ability to 

evaluate all cohorts as one experiment are the differences observed in RFI among 

varying feeding experiments; such as providing feed ad libitum or in restricted amounts.  

Bonsmara and Santa Gertrudis breeds were evaluated for RFI in systems providing feed 

ad libitum using either the GrowSafe system or Calan gates during the feeding trials, 

where the Brahman cattle evaluated were provided limited feed using a Calan gate 

system during the feeding trials.  Providing feed ad libitum results in a wider range of 

RFI values for the cohort evaluated meaning a wider numerical range in  differences 

between efficient and inefficient animals.  Providing feed ad libitum simulates a feed lot 

setting; however, a feed lot setting is sometimes undesirable when selecting heifers for 

RFI that are to be retained in the breeding herd, as was the case with the Brahman 

heifers evaluated.   

Previous literature reports temperament to be a factor when evaluating 

glucoregulatory mechansisms (Bradbury, 2011).  By evaluating animals for EV prior to 

the RFI feeding period and measuring cortisol concentrations during the glucose 
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tolerance test, we attempted to account for any diversity in temperament between RFI 

groups of each cohort.   If any experiment showed differences between EV among RFI 

groups, EV was added as a covariate to the statistical model Out of the 5 experiments 

within this study, the Brahman Experiment 2 (bulls) were the only cohort that varied in 

EV for RFI groups; however EV did not have a significant affect on insulin or glucose 

concentrations or IIND.  Furthermore, cortisol concentrations did not vary (P > 0.05) 

between RFI groups during the glucose tolerance test.  Previous research reports cortisol 

to be a major distruptor of glucoregulatory mechanisms; however, with the lack of 

differences seen in this study temperament did not likely play a substantial role in 

differences in glucoregulatory mechanisms between RFI groups. 

Insulinogenic index after a glucose tolerance test was affected (P < 0.05) by RFI 

in all experiments within this thesis.  This implies that differences in glucoregulatory 

mechanisms do exist between efficient and inefficient cattle.  The different insulin 

responses observed among breeds and RFI groups suggests definite differences exist in 

glucoregulatory mechanisms exist between breeds of cattle evaluated.  Due to the 

differences (P < 0.05) observed between RFI groups in IIND, it may be implied that 

IIND after a glucose tolerance test may be a useful indicator of RFI in tropically adapted 

cattle.  In Bonsmara heifers, the IIND may be a useful predictor of RFI 15-30 minutes 

after a GTT; whereas an IIND value of 0.30 (I/G) or greater would equate to a negative 

RFI (more efficient) Bonsmara heifer.  In Brahman or Santa Gertrudis cattle, the IIND 

may be a useful predictor of RFI 15-30 minutes after a GTT; whereas an IIND value of 

0.30 (I/G) or less would equate to a negative RFI (more efficient) animal.
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APPENDIX A 
 

INSULIN RADIOIMMUNOASSAY FOR BOVINE SERUM 
 
 
 

Intended for use with Coat-A-Count Cortisol Radioimmunoassay (Siemens, PITKIN-8) 
 

Materials Supplied: 
 
1. Insulin Ab-Coated Tubes 
 Protect from moisture by resealing storage bags after use, store at 4ºC. 
2.  125I Insulin 
 Stable at 4ºC for 30 days after opening. 
3.  Insulin Calibrators (Standards) 
 Processed in nonhuman serum.  Seven vials, labeled A through G, of lyophilized 

processed in nonhuman serum.  At least 30 minutes before use, reconstitute the 
zero calibrator A with 6.0 mL of distilled or deionized water, and each of the 
remaining calibrators B through G with 3.0 mL of distilled or deionized water.  
Stable at -20ºC for 30 days after opening.  Can extend stability by freezing.  
Aliquot to avoid freeze/thaw.   

4.  Pooled serum for control sample.  
 
Materials Required But Not Provided 
1. Gamma counter: Compatible with standard 12x75 mm tubes 
2. Vortex mixer 
3. 12x75mm assay tubes 
4. Micropipettes and compatible disposable tips: p200 and p1000 
5. Waterbath that can hold constant 37ºC 
6. Foam decanting racks and reservoir and radioactive work space 
7. Distilled or deionized water 
8. Graduated cylinder: 100 mL 
9. Volumetric pipettes: 3.0 mL and 6.0 mL 
 
Sample Collection 
1.  Collect plasma via venipuncture into EDTA coated vacutainer tubes.   
2.  Separate serum via centrifugation:  4ºC at 2000 x g for 30 minutes. 
3.  If frozen, thaw at RT and mix by gentle vortex or inversion.  
4.  Volume Required: 200 µL of serum per tube. 
5.  Storage: 2-8ºC for 7 days, or for up to 3 months frozen at -20ºC. 
 
Radioimmunoassay Procedure 
1.  Allow all components to warm to room temperature.  
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2.  Label four uncoated 12x75 tubes:  NSB (nonspecific binding) and T (total counts) in 
 duplicate.   
3.  Label fourteen Insulin Ab-Coated Tubes A (maximum binding) and B through G in 

duplicate for standards.   
 

Calibrator   
Approximate µIU/mL 

1st IRP [66/304] 
A (MB) 0 

B* 5 
C 15 
D 50 
E 100 
F 200 
G   350 

* Omit calibrator b if the alternate, 3-hour  
alternate, 3-hour incubation at room 
temperature (15-28ºC) will be used at step 4 

 
4.  Prepare extra standards: 
 0.125ug/dL:  Add 50ul of 0ug/dL standard to 50ul of 0.25ug/dL standard. 
 0.25ug/dL:  Add 50ul of 0ug/dL standard to 50ul of 0.5ug/dL standard. 

0.5ug/dL:  Add 50ul of 0ug/dL standard to 50ul of 1ug/dL standard.  
 2. 5ug/dL:  Add 50ul of 0ug/dL standard to 50ul of 5ug/dL standard. 
5.  Label pooled control and unknown sample Ab-coated tubes in duplicate. 

Pipette 200 µL of the 0ug/dL into the NSB and A tubes.  Pipette 200 µL of each 
remaining standard, pooled control or unknown sample into the labeled tubes.  
PIPETTE DIRECTLY TO BOTTOM OF TUBE.   

6. Add 1.0 mL of  125I Insulin to every tube and vortex.  (Minimum of 10min from start 
to finish).   

7. Following sample addition to tracer addition should be completed with minimal 
delay, with no more than 40 minutes elapsing between the addition of the first 
sample and the completion of tracer addition. 

8. Incubate for 18-24 hours at room temperature 
9. Decant thoroughly. Remove all visible moisture by patting inverted tubes.   
10. Count for 1min on gamma counter.    
11. Use Assay Zap (Biosoft, Cambridge, UK) to calculate unknown concentrations 

against standard curve.   
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APPENDIX B 
 

CORTISOL RADIOIMMUNOASSAY FOR BOVINE SERUM 
 
 
 

Intended for use with Coat-A-Count Cortisol Radioimmunoassay (Siemens, TKCO5) 
 

Materials Supplied 
1. Cortisol Ab-Coated Tubes 
 Protect from moisture by resealing storage bags after use, store at 4ºC. 
2.  125I Cortisol 
 Stable at 4ºC for 30 days after opening. 
3.  Cortisol Calibrators (Standards) 
 Processed in human serum.  Stable for 30 days after opening.  Can extend 

stability by freezing.  Aliquot to avoid freeze/thaw.   
4.  Pooled serum for control sample.  
 
Materials Required But Not Supplied 
1.  Gamma counter compatible with 12x75mm tubes 
2.  Vortex 
3.  12x75mm assay tubes 
4.  Micropipettes and compatible disposable tips: p200 and p1000 
5.  Waterbath that can hold constant 37ºC 
6.  Foam decanting racks and reservoir and radioactive work space 
 
Sample Collection 
1.  Collect serum via venipuncture into additive free vacutainer tubes.   
2.  Separate serum via centrifugation:  4ºC at 2000 x g for 30 minutes. 
3.  If frozen, thaw at RT and mix by gentle vortex or inversion.  
 
Radioimmunoassay Procedure 
1.  Allow all components to warm to room temperature.  
2.  Label four uncoated 12x75 tubes:  NSB (nonspecific binding) and T (total counts) in 
 duplicate.   
3.  Label 12 Ab-coated tubes A-H (2 extra standards) in duplicate for standards. 
5.  Prepare extra standards: 
 0.125ug/dL:  Add 50ul of 0ug/dL standard to 50ul of 0.25ug/dL standard. 
 0.25ug/dL:  Add 50ul of 0ug/dL standard to 50ul of 0.5ug/dL standard. 

0.5ug/dL:  Add 50ul of 0ug/dL standard to 50ul of 1ug/dL standard.  
 2. 5ug/dL:  Add 50ul of 0ug/dL standard to 50ul of 5ug/dL standard. 
6.  Label pooled control and unknown sample Ab-coated tubes in duplicate. 
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7.  Pipette 25ul of the 0ug/dL standard into the NSB and A tubes.  Pipette 25ul of each 
remaining standard, pooled control or unknown sample into the labeled tubes.  
PIPETTE DIRECTLY TO BOTTOM OF TUBE.   

8.  Add 1mL of  125I Cortisol to every tube and vortex.  (Minimum of 10min from start to 
finish) 
9.  Cover tubes with foil and incubate for 45min at 37ºC.   
10.  Decant thoroughly. Remove all visible moisture by patting inverted tubes.   
11.  Count for 1min on gamma counter.    
12.  Use Assay Zap (Biosoft, Cambridge, UK) to calculate unknown concentrations 

against standard curve.   
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APPENDIX C 
 

GLUCOSE FOR PROTOCOL BOVINE SERUM 
 
 
 

Intended for use with WAKO Autokit Glucose Series Enzymatic Method 439090901F.  
The following modifications were made to the protocol: The cuvettes used were 1.0 mL, 

therefore 6.7 uL of sample and 1.0 mL of color reagent was used.  
 

Materials Supplied 
1. Buffer Solution        2 x 150 mL 

60 mmol/L Phosphate buffer (pH 7.1) containing 5.3 mmol/L Phenol. 
Store at 2-10ºC 

2.  Color Reagent (When reconstituted)            2 x for 150 mL 
Contain 0.13 U/mL Mutarotase, 9.0 U/mL Glucose oxidase, 0.65 U/mL Peroxidase, 
0.50 mmol/L 4-Aminoantipyrine, 2.7 Ascorbate oxidase. 
Store at 2-10ºC 

3.  Standard Solution I             1 x 10 mL 
Containing 200 mg/dL Glucose. 
Store at 2-10ºC 

4. Standard Solution II             1 x 10 mL 
Containing 500 mg/dL Glucose. 
Store at 2-10ºC 

 
Reagent Preparation 
 
Working Solution: 
Dissolve the whole contents of one bottle (for 150 mL) of Color Reagent in one bottle 
150 mL of Buffer Solution.  This solution is stable for one month at 2-10ºC. 
 
Materials Required But Not Supplied 
1.  Pipettes 
5.  Waterbath that can hold constant 37ºC 
6.  Spectrophotometer 
 
Sample Collection 
1.  Collect serum via venipuncture into additive free vacutainer tubes.   
2.  Separate serum via centrifugation:  4ºC at 2000 x g for 30 minutes. 
3.  If frozen, thaw at RT and mix by gentle vortex or inversion.  
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Test Procedure 
 
Wavelength: 505*1  Light path: 1 cm 
Temperature: 37ºC 

  

      Sample (S) Standard (Std) Blank (BL)   
Pipette into a cuvette         
Sample (uL) 6.7B -- *2 
Standard 1 or 2 (mL) -- 0.02 -- 
Working Solution (mL) 3 3 3   
Mix well, incubate for 5 minutes and measure the absorbance of S (As) and 
Std (Astd) against Bl (Abl) at 505 nm       

1. Accurately pipette 0.02 mL of sample or standard into the cuvettesA (test tubes) 
2. Add 3.0 mL of Working solution. 
3. Mix, incubate for 5 minutes and measure the absorbance of Sample (As) and Standard 

(Astd) against Blank (Abl) at 505 nm. 
*1 When measure with two wavelengths λ1/ λ2 = 505/600 nm 
*2 The omission of 0.2 mL of water does not significantly affect the absorbance measured.   

 
Concentration in the test 
 
60 mmol/L Phospate buffer, 5.3 mmol/L Phenol, 0.13 U/mL Mutarotase, 9.0 U/mL 
GOD, 0.65 U/mL POD, 0.50 mmol/L 4-Aminoantipyrine and 2.7 U/mL AOD. 
 
Results 
Calculation 
 
Glucose (mg/dL) = AS/AStd x CStd 
AS = Absorbance of sample 
AStd = Absorbance of Standard I or II 
CStd = Concentration of Standard I or II in mg/dL 
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