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ABSTRACT 

 

On the Microphysical Properties of Ice Clouds as Inferred from the Polarization of 

Electromagnetic Waves.  

(August 2011) 

Benjamin H. Cole, B.S., University of Dallas 

Co-Chairs of Advisory Committee: Dr. Ping Yang 
                                                              Dr. Sarah Brooks 

 

 

 Uncertainties associated with the microphysical and radiative properties of ice 

clouds remain an active research area because of the importance these clouds have in 

atmospheric radiative transfer problems and the energy balance of the Earth. In this 

study, an adding/doubling model is used to simulate the top of atmosphere (TOA) 

radiance and full Stokes vector from an ice cloud at the wavelength λ = 865 nm with 

many different combinations of assumed ice habits (shapes) and different degrees of ice 

surface roughness, and the polarized radiance at a wide range of scattering angles is 

derived. Simulated results are compared with polarized radiance data from the POLDER 

(POLarization and Directionality of the Earth’s Reflectances) instrument on board the 

PARASOL  (Polarization and Anisotropy of Reflectances for Atmospheric Sciences 

coupled with Observations from a Lidar) satellite.  

 Bulk ice scattering properties are obtained by using five different size 

distributions collected during field campaigns ranging in effective diameter from 10 μm 
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to 90 μm. Bulk scattering properties for the MODIS Collection 5 ice cloud product are 

used in this study, along with properties for two mid-latitude ice cloud models, a 

polar/mid-latitude ice model, and a model built for ice clouds over deep convection. 

Solid columns and hollow columns are used as well.  

The polarized radiance simulation results for the moderate surface roughness 

level best fit the satellite measurements for all ice models, though severely roughened 

ice crystals do fare well in a few cases. Hollow columns are the best fit to the satellite 

polarization measurements, but of the ensemble ice models, the polar/mid-latitude model 

at an effective diameter of 90 μm best fits the polarized radiance measurements for the 

one day of PARASOL data considered. This model should be the best to simulate ice 

cloud properties on a global scale.  
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CHAPTER I 

INTRODUCTION AND BACKGROUND 

 

 Cirrus clouds are very important in the energy balance of the earth, both for 

trapping infrared radiation and for reflecting shortwave radiation [1]. They are very high 

clouds, generally above 6-7 km, and cover about 30% of the earth’s surface at any time, 

but can cover up to 60-70% in the tropics where deep convection introduces high-

altitude ice crystals [2]. The magnitude of their surface warming or cooling effect 

depends strongly on the cloud height, optical depth, and type and size of ice crystals 

present within the cloud [3,4]. Many studies have been done on the microphysical 

properties and climatology of cirrus clouds [5-7],  but large uncertainties still remain in 

the distribution of habits (shapes) and sizes of crystals within cirrus clouds, leading to 

potentially inaccurate global climate model (GCM) simulations which include cirrus 

clouds [8]. Passive remote sensing observations (remote sensing using solar radiation 

instead of a satellite-generated source, such as a laser) of polarized reflectance, coupled 

with theoretical modeling of ice cloud properties, have the potential to reduce these 

uncertainties since it has been shown that the polarized reflection from an ice cloud is 

sensitive to the shape of ice crystals within the cloud [9]. Polarized reflection is also 

sensitive to the degree of surface roughness or distortion of the ice crystals [10].  

The goals of the current study are outlined in the following five points: 

 

                                                 
This thesis follows the style of Applied Optics.  
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 Simulate the upward radiance and Stokes vector from an ice cloud of optical 

thickness 1 at λ = 0.86 μm using an adding-doubling radiative transfer model 

[11] with the assumed ice microphysical properties outlined below, then derive 

the polarized reflectance to see how sensitive it is to assumed ice microphysical 

properties. 

 Scattering properties for five different combinations of ice habits (shapes) will be 

generated for use in the model, one for midlatitude/polar regions, two for general 

ice clouds, one for tropical/deep convection, and one that is used in the MODIS 

(MODerate resolution Imaging Spectroradiometer) collection 5 ice cloud 

product. In addition, single habits will also be used. 

 Three different levels of surface roughness will be used when deriving scattering 

properties, smooth, medium roughness, and severe roughness. 

 Using measured particle size distributions (PSDs) from field campaigns, ice 

properties will be developed at five effective diameters from 10 to 90 μm to test 

the dependence of polarized reflectance on effective diameter. 

 All model simulations will be compared to polarized reflectance observed by the 

POLDER instrument on the PARASOL satellite on August 1st, 2007, to select the 

ice model which best matches the observations.  

Scattering Properties 

 In order to simulate the reflection of light from a cirrus cloud (cirrus cloud and 

ice cloud are used interchangeably in this study), the single scattering properties of the 

ice crystals that make up the assumed cirrus cloud must be calculated. Various field 
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campaigns have clearly demonstrated that ice crystals found in cirrus are non-spherical 

and have complicated geometry including aggregates and branched structures, so some 

way of modeling these complex shapes is needed [12]. There is currently no exact 

solution for computing the single scattering properties of non-spherical ice crystals for 

all shapes and sizes [13]. If the geometry can be modeled correctly, several exact 

methods can be used to obtain the scattering properties for small particles, including the 

discrete dipole approximation (DDA) and finite difference time domain method (FDTD). 

For large particles, an approximate method called the improved geometric optics method 

(IGOM) can be used [14]. 

Mie scattering theory provides an exact solution for the scattering from a sphere 

and so is a natural choice for simulations, but spheres are a poor approximation for ice 

crystals and cannot reproduce many optical phenomena seen in ice clouds, including the 

22◦ halo seen in scattering from hexagonal crystals [15]. Geometric ray-tracing 

calculations can be used for ice crystals which are much larger than the incident 

wavelength [13], a condition that is usually satisfied with incident solar radiation. Cai 

and Liou developed the geometric ray-tracing method for non-spherical particles that 

includes polarization and applied it to the study of randomly oriented hexagonal ice 

crystals [16]. This technique was improved by Takano and Liou to include more effects 

such as δ-transmission [15], and Yang and Liou further improved the geometric optics 

model to give a better treatment of the extinction efficiency [17]. The IGOM model for 

calculating scattering properties includes all of the previous work and the diffraction 

effect, which contributes to the forward peak in the phase function. Yang and Liou 
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compared an FDTD method and the IGOM method and found good agreement for size 

parameters over 20 μm [17]. Bi et al. [14] detail further improvements to the IGOM 

model, including a more rigorous mapping of the near-field to the far-field that improves 

the treatment of forward scattering and removes the  δ-transmission term (scattering 

through two facets of the crystal in the forward direction) completely. Surface roughness 

has also been included in the updated IGOM model. A perturbation method is used 

where the normal to the surface is changed for each reflection or refraction event, with 

three levels of roughness used, smooth (no roughness), moderate roughness, and severe 

roughness [18]. Surface roughness is explained in more detail in a later section. For this 

study, the single scattering properties of randomly oriented ice crystals are calculated 

with the IGOM method.  

Based on the observations of the different types of ice crystal habits (shapes) 

present in the clouds sampled during field campaigns [19], nine different habits were 

chosen for inclusion in the ice models, including droxtals, plates, solid and hollow bullet 

rosettes, solid and hollow columns, an aggregate of solid columns, and a small and large 

aggregate of plates. The scattering properties for these nine habits are computed and 

used in this study.  

Once the single scattering properties are obtained, the bulk scattering properties 

for a cirrus cloud can be obtained by considering size distributions and habit percentages 

for each range of sizes in the size distribution. These are based on data from field 

campaigns, including FIRE-II, ARM, TRMM, MidCiX, Pre-AVE, and others [19]. 

These data provide over 12,000 particle size distributions (PSDs) for use in constructing 
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the bulk scattering model, but for this study five size distributions with an effective 

diameter (ratio of volume to projected area) between 10 and 90 μm were chosen.  

Different percentages of habits for each ice model were used in this study, 

including a mixture of percentages developed for polar/mid-latitude ice clouds, one for 

deep convective ice clouds, and two general mixtures to fit all ice clouds. These habit 

distributions are all potential models for the MODIS collection 6 ice cloud product, and 

the current habit percentages from the MODIS collection 5 (C5) ice cloud product model 

are used as well. The MODIS C5 ice model is the fifth generation model used in the 

retrieval of ice properties on a global scale from the MODIS satellite. This model 

assumes six different particle shapes which all have smooth surfaces except the 

aggregate of columns, which is severely roughened. The ensemble ice models (models 

using many different particle shapes) in this study are models under development for 

possible use in the updated collection 6 retrieval algorithms for MODIS. The fractions of 

each shape of ice crystal present in each model considered may be found in Appendix A. 

Several single-habit bulk scattering models are also used in this study, and different 

roughness levels for all the models are considered to determine an appropriate level of 

roughness to match PARASOL observations of polarized reflectance. 

The spectral response function (SRF) of the satellite sensor to which simulated 

data will be compared must also be taken into account along with the solar spectral flux 

for the range of wavelengths over which the sensor collects information. Once the bulk 

scattering properties are integrated over the SRF and solar spectral flux, they are ready to 

be used in the adding-doubling radiative transfer model to produce simulated results for 
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the top of atmosphere (TOA) Stokes vector from which the polarized reflectance and 

Mueller matrix may be obtained.  

Polarization 

 Light is a transverse wave composed of electric and magnetic fields, either of 

which can be used to give a description of the light [20], but the electric field is typically 

used. If the electric field oscillates in a single plane or if the electric vector describes an 

ellipse as it propagates through space, the wave is said to be linearly or elliptically 

polarized. Unpolarized light, on the other hand, is a random mixture of polarization 

states; no preferential polarization exists. The conventional description of light by 

Stokes, followed by Chandrasekhar [21], Van de Hulst [22], and others, uses what are 

now called the Stokes parameters [23]. These are four parameters which completely 

describe the intensity and state of polarization of a beam of light. The Stokes parameters 

of different beams can be added if the beams are incoherent, meaning there is no phase 

relationship existing between any of the beams considered. This is convenient for 

treating multiple scattering where it is necessary to add the contribution of many 

different beams into a certain direction.  

 Chandrasekhar was the first to formally present the radiative transfer equation 

using the Stokes parameters [24]. The Vector Radiative Transfer Equation, or VRTE, 

can be used to describe the transfer of polarized radiation through a medium, which will 

be a cirrus cloud composed of ice crystals in this study. The inclusion of polarization in 

the radiative transfer problem is necessary for this study since the polarized reflectance 

from an ice cloud will be modeled and compared with satellite observations.  
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 There have been many methods used to solve the radiative transfer equation. 

Plass and Kattawar [25] used a Monte Carlo model to study the scattering of light from a 

water cloud. Using an adding-doubling model which included polarization, reflected and 

transmitted radiation were calculated by Takano and Liou [15]. In this study, an adding-

doubling model [11] will be used to simulate the reflection of light from a cirrus cloud 

layer, and the full Stokes vector will be obtained, from which the polarized reflectance 

will be calculated and compared with satellite observations. This model is a plane-

parallel model, which assumes that the properties of each layer change only in the 

vertical. The properties of clouds can change in the horizontal, but for the purposes of 

this study a plane-parallel model will be sufficient since for non-cumuliform clouds the 

error arising from the plane-parallel assumption is small [26]. 

The POLDER Sensor on the PARASOL Satellite 

 Simulated data from the adding-doubling radiative transfer model will be 

compared with observations from the POLDER instrument on board the PARASOL 

satellite. This satellite was launched in December 2004 and became part of the A-Train 

of satellites, including Aqua, Calipso, Cloudsat, and others [27]. It is a polar-orbiting 

satellite in a nearly circular sun-synchronous orbit at an altitude of about 705 km and 

inclination of about 98 degrees [27]. The POLDER instrument is sensitive to linear 

polarization through the use of a rotating wheel carrying polarizers, and thus, can be 

used to find the I,Q, and U components of the Stokes vector describing light [28]. It can 

observe the same pixel at up to 16 viewing directions, and each pixel measures 

approximately 6x6 km at nadir (looking straight down) [27]. The data used in this study 
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are from the Level-2 cloud product, which is the Level-1 radiances that have been 

processed at a larger spatial resolution (about 20x20 km) to derive clouds, 

thermodynamic phase, different surface types, and other parameters [29]. In this study 

only pixels that are 100% cloudy, marked as ice, and over ocean are considered in order 

to minimize polarization effects from land surfaces and water clouds with which the 

present study is not concerned.  

Radiative Transfer 

 Astrophysicists were the first to make great strides in radiative transfer theory 

before atmospheric science began to study the problem in detail. Lord Rayleigh in 1871 

was the first to study the problem of specifying the radiation field in an atmosphere, and 

Arthur Schuster and Karl Schwarzschild made important contributions to the 

understanding of stellar emission lines and radiative equilibrium [21]. Chandrasekhar 

applied radiative transfer theory to plane-parallel atmospheres and solved the equations 

describing the phenomenon of the polarization of the sunlit sky that Lord Rayleigh had 

derived [21]. Reflection and transmission functions can also be used in the radiative 

transfer problem as an alternative to solving the radiative transfer equation directly [30]. 

De Haan et al. in their 1986 paper [11] describe a method for calculating the reflection 

and transmission matrices using the adding-doubling method to study plane-parallel 

atmospheres. In their model they retrieve the reflection and transmission matrices 

needed to calculate the scattered radiation for each layer, and then by adding layers 

together the final solution is built. The adding-doubling model of de Haan et al. will be 

used to simulate the reflected radiation from an ice cloud in this study.  
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CHAPTER II 
 

RADIATIVE TRANSFER 

 

 The transfer of electromagnetic radiation through a medium can be described 

using the radiative transfer methodology. After interaction with a medium, radiation 

contains information about the medium. Reflected solar radiation is chosen as a method 

to study ice clouds because remote sensing instruments on satellites collect the solar 

radiation which has interacted with an ice cloud.  

 Electromagnetic radiation can both travel through a vacuum and through various 

media, and can be either scattered or absorbed as it interacts with the medium. Scattering 

redirects the radiation to other directions (sometimes at a different frequency), while 

absorption transforms the incident radiation into other forms of energy. Scattering and 

absorption both have the effect of reducing the intensity of the incident beam.  

The Radiative Transfer Equation 

 To get a more detailed picture of the transfer of radiation through a medium, 

consider a cylinder with length dL and cross sectional area dA, as in Fig. 1. The incident 

intensity Iλ is attenuated as it goes through the cylinder, becoming Iλ  plus dIλ , the 

change in intensity due to scattering and absorption. The subscript refers to 

monochromatic radiation, since the attenuation depends on the wavelength.  

The change in intensity of the beam after traversing the medium represented by the 

cylinder depends on the density of the material ρ, the total distance the beam travels dL, 

and the mass extinction cross section κλ.  



 10 

 
 
Fig 1. Attenuation in a volume element. Incident radiation, denoted as Iλ, is attenuated 
by the processes of scattering and absorption upon traversing the medium. 
 
 

           The relationship is given by the following equation: 

                 . (1) 

The mass extinction cross section is in units of area/mass and gives the amount of energy 

removed for both scattering and absorption since it is the sum of the mass extinction and 

mass scattering cross sections [13].  

The perspective given in Fig. 1 is simplified. In radiative transfer a pencil of 

radiation is considered, where the pencil is confined to a solid angle dω. Fig. 2, adapted 

from Tynes [31], shows a pencil of radiation at wavelength λ incident upon a volume 

element of mass dm, cross sectional area dA, and length dL. It scatters into a solid angle 

dΩ at an angle Θ, called the scattering angle, which is simply the angle between the 

incoming and outgoing directions. The amount of energy removed from the incident 

beam due to interaction with the medium in a time t can be expressed as [22]: 

                                 . (2) 

This includes both scattering and absorption, but they can be analyzed separately. 

dA 

Iλ Iλ + dIλ 
 

dL 
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Fig. 2 Radiation incident on a volume element. The mass is given by dm = ρdLdA. It is 

scattered into the solid angle dΩ through the scattering angle Θ (adapted from Tynes
 

[31]). 
 

 

Θ 

dΩ 

dω 

θ 

dA 

dL 
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Consider first the removal of energy due to scattering. The incident beam may be 

scattered into any direction, so the phase function P(cosΘ) is introduced to describe the 

angular distribution of scattered energy. Then the amount of energy scattered into an 

outgoing solid angle dΩ (and so removed from the incident beam) is given by:  

 dEλ =    

  
    (         )                  ,  (3) 

where    and    give the incident direction and θ and φ give the outgoing direction, from 

which the scattering angle Θ is determined, and dm is defined as ρdLdA. Where only 

scattering is considered, the phase function is normalized to 1 as follows:  

 
 

  
 ∫ (    )     , (4) 

but if absorption is considered as well, this becomes an inequality: 

 
 

  
 ∫ (    )     ̃    ,  (5) 

where the quantity  ̃ is called the single scattering albedo. It is the fraction of the total 

energy removed by scattering, and 1-  ̃  is the fraction removed by absorption and 

conversion to other forms of energy.  

 There are processes in the medium which can contribute to the outgoing energy 

in a solid angle, including emission by the medium and scattering by the medium from 

all other directions at the same wavelength into the solid angle considered. The amount 

of energy gained in that interval dω is: 

                      ,  (6) 

where jλ is the emission coefficient describing the rate at which the medium emits 

energy.  
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 If the single scattering albedo is greater than zero, scattered radiation from all 

other directions has to be taken into account for the intensity in the outgoing solid angle 

of interest. Using equation 3 for the contribution of this scattered radiation, we can set it 

equal to equation 6 and then solve for jλ: 

       
   

  
 ∫ ∫  (         )  ( 

    )            
 

 

  

 
 . (7) 

The mass extinction cross section now takes on an extra s subscript, indicating this is the 

contribution into the final solid angle from scattering only.  

 The contribution to the outgoing energy from material emission comes from 

thermal emission of the medium, which is assumed to be in local thermodynamic 

equilibrium (LTE). The material acts like a blackbody and behaves according to the 

Planck distribution, but the emission from this source can be neglected since it is so 

small in comparison to the radiation received by the sun [13]. This study uses reflected 

solar radiation, meaning thermal emission will not be considered here. 

 Now we have all the parts in place to calculate the total change in energy of an 

incident beam that interacts with a medium from extinction of the incoming beam and 

scattering into the outgoing beam from all other directions. Consider again a setup as in 

Fig. 1, where a beam of radiation is normally incident (cosθ = 1) on a cylinder and goes 

through its length dL. The amount of energy removed is given by Eq. (2), and the 

amount of energy added is given by Eq. (6), and adding them we arrive at the total: 

                                                     .  (8) 
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Then, because the energy difference can be written in the following way,  

      
   

  
               ,  (9) 

the radiative transfer equation can finally be written as the following: 

 
   

     
          . (10) 

The source function Jλ is given by: 

     
  

  
 . (11) 

The radiative transfer equation here is the one defined by Chandrasekhar [21]. On the 

right hand side of Eq. (10), the first term is the contribution to the outgoing radiation in 

the direction (θ,  ) from extinction of the incident beam (so actually a subtraction) and 

the second term is a source term describing the addition of energy from scattering into 

the outgoing direction (θ,  ) from all other directions.  

 Both direct and diffuse intensity contribute to the outgoing radiation in the 

problem of radiative transfer, but remote sensing using reflected solar radiation 

(neglecting thermal emission) deals only with diffuse intensity, included in the source 

function J. In addition, the subscript λ can be left out as long as the reader is aware that 

the equations are defined for a wavelength interval λ to (λ + dλ). Thus far, the radiative 

transfer equation has been developed in scalar form only. The vector radiative transfer 

equation, including polarization, will be introduced in a later chapter.  

Equation of Radiative Transfer for Plane-parallel Atmospheres 

 Following Liou [13], we will now define the radiative transfer equation for a 

plane-parallel atmosphere, which means that any parameters in the model change only in 
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the vertical. This simplified model of the atmosphere is used in the adding-doubling 

code of de Haan [11] to solve for the upward intensity and will be utilized in the present 

study.  

 Distance is measured normal to the plane in which parameters are invariant 

horizontally, and is generally taken to be the +z direction. Fig. 3, adapted from Liou 

[13], gives an overview of the geometry associated with the plane-parallel model. 

Distances in the horizontal are infinite, while distances in the vertical are finite.  

 Referring to Fig. 3, the distance traveled in the vertical direction z along a 

position vector s is simply: 

              . (12) 

The azimuth angle φ is measured from a plane containing the z-axis and the x-axis. In  

the adding-doubling model used in this study, the relative azimuth angle is considered, 

which is simply the difference between the azimuth angle of the incoming direction and 

the outgoing direction, φ - φ'. The zenith angle θ is measured from the +z direction. 

Now we can write the radiative transfer equation in terms of plane-parallel geometry as: 

 cosθ
  (     )

    
    (     )   (     ) .  (13) 

A direction cosine μ = cosθ can be defined, along with the optical thickness τ: 

   ∫      
 

 
 . (14) 
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Fig 3. Geometry for a plane-parallel atmosphere. φ is the azimuth angle measured with 

respect to a plane containing the Z-axis, θ is the zenith angle with respect to the +Z 

direction, and s is the propagation direction. The component of s along z is given by 
s*cosθ.  
 
 

           The optical thickness is measured downward from the outer boundary. Using these 

 two definitions the radiative transfer equation can be written as the following: 

 μ
  (     )

  
   (     )   (     ) . (15)  

This is the same equation given in Liou [13] and is the basic equation that must be 

solved to treat the problem of multiple scattering in plane-parallel atmospheres.  

  

Plane containing Z-axis 

dz 

ds 

s 

φ 

θ 

Y 

X 

Z 
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CHAPTER III 

POLARIZATION AND THE 

VECTOR RADIATIVE TRANSFER EQUATION 

 

The Electric Field as a Vector  

 Thus far, the radiative transfer equation has been considered in a scalar form 

only. We need the vector form of the equation if we want to consider phenomena such as 

polarization in solar passive remote sensing, because light is a vector quantity and the 

direction of its electric field determines the polarization. Adams and Kattawar [32] also 

showed that there was an error introduced in the radiance measurements if polarization is 

not considered since the intensity is not completely independent of the state of 

polarization.  

 Electromagnetic radiation is a transverse wave, which means that the oscillations 

of its electric and magnetic fields occur perpendicular to the direction of propagation, as 

Maxwell showed in the 1800s [20]. Either the electric or magnetic field may be used to 

specify the polarization state of the electromagnetic wave, but historical convention will 

be followed and the electric field will be used to define the polarization direction.  

 As a vector, an electromagnetic wave can be described as the sum of two 

components. If we define a meridian plane as a plane containing the direction of 

propagation and the zenith direction (+z direction in this case), then the electric field can 

be written as the sum of a component parallel with this meridian plane and a component 

perpendicular to the meridian plane. Both components are perpendicular to the  
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propagation direction. See Fig. 4, similar to Fig. 3, for the geometry involved. The 

equation for this plane wave is: 

  ⃗⃗   ⃗⃗    ⃗⃗   = [   ̂     ̂]       (  ̂       )  . (16) 

The direction of propagation is  ̂, which is in the meridian plane, defined earlier and 

seen in Fig. 4. The vector    connects the origin to the observation point,   is the angular 

frequency, k is the wavenumber, and the unit vectors  ̂ and  ̂ are perpendicular to the 

propagation direction, so that  ̂   ̂ =  ̂. 

 

 

 
Fig. 4. Coordinate system for the electric field. The meridian plane is in the  ̂ direction. 
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   and    are actually complex amplitudes with an amplitude and phase, so the previous 

equation can be written: 

  ⃗⃗  [     (    )  ̂       (    )  ̂]       (  ̂       )  . (17) 

Chandrasekhar [21] pointed out that for unpolarized electromagnetic radiation, the 

complex amplitudes are not static in time and space, and indeed must not be a function 

of each other. If relationships exist among these components, the beam can be said to be 

polarized in some way.  

Polarization 

 The most general form of polarization is elliptical, where the tip of the electric 

field vector traces out an ellipse when an observer views along a beam traveling toward 

him, as in Fig. 5. Linear and circular polarization are special cases of elliptical 

polarization for certain conditions on the amplitude and phase difference  

        of the components. See Table 1 for a compilation of the possible 

polarization states. The total electric field for each case can be obtained simply by 

inserting the values from Table 1 into Eq. (17).  

 

Table 1. Polarization states. The associated amplitude and phase difference components 
are also shown (adapted from Lawless [33]). 
 

State of polarization Amplitude relationship Phase difference 
        

Elliptical       ≠ 0 
≠              m = 1,∞ 

Linear       
or                 

= 0 
=              m = 1,∞ 

Circular       =  (    )
 

 
    m = 0,∞ 
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Fig. 5. Elliptically polarized beam. The propagation direction is out of the page and the 
electric field vector traces out an ellipse in the clockwise direction through time. 

 

 

According to Hecht [34], natural light (solar radiation) is unpolarized, composed 

of rapid fluctuations in polarization state that make it impossible to discern any preferred 

polarization. In effect, the polarization ellipse of the beam of radiation rapidly changes 

shape and orientation in time. A better name, then, would be randomly polarized 

radiation instead of unpolarized radiation. This study will be concerned with randomly 

�⃗�  
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polarized radiation from the sun. In order to begin to incorporate the concept of 

polarization into the radiative transfer equation, a method for mathematically 

representing the polarization state of a beam of radiation in the equation must be 

introduced. Chandrasekhar [21] adopted the Stokes parameters, derived in 1852 by Sir 

George Stokes [23], for this purpose in his treatment of polarization in the radiative 

transfer equation. 

The Stokes Parameters 

 Chandrasekhar realized that to completely describe a radiation field, the 

intensity, plane and degree of polarization, and ellipticity need to be specified. It would 

be very difficult, as he says, to include “an intensity, a ratio, an angle, and a pure number 

in any symmetrical way in formulating the equations of transfer” [21]. The Stokes 

parameters can represent all four of these quantities, and can be included in the radiative 

transfer equation in the place of the scalar intensity I.  

 The Stokes vector is a four-element column vector composed of I, Q, U, and V, 

the four Stokes parameters. These are measurable quantities, where I is the intensity, Q 

represents the linear polarization either parallel or perpendicular to some axis, U 

represents the linear polarization at +45◦ or -45◦ to that axis, and V represents the circular 

polarization. There are many equivalent ways to define them mathematically, and three 

ways will be presented here.  
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Following van de Hulst [22], the Stokes parameters can be written in the 

following form (c.f. Eq. (16)): 

      
      

  

       
      

  

       
      

  

    (    
      

 ) , (18) 

where the asterisk denotes a complex conjugate. A constant term (k/2ωμ0) [35] has been 

omitted from each of the Stokes parameters because in most cases the relative Stokes 

parameters are examined, not the absolute Stokes vector. The constant is important to 

remember because it gives the Stokes vector components the units of energy per area per 

time, or irradiance. 

 Alternatively, considering the plane wave equation for the electric field with 

amplitude a and phase δ for each component (c.f. Eq. (17)), the Stokes parameters can be 

written as follows:  

    
    

  

    
    

  

            

              .  (19) 

Again, the δ here is the phase difference       of the components.  

 However, there is a third way to represent the Stokes parameters, perhaps more 

intuitive than the first two ways.  
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If we construct a polarization ellipse as in Fig. 6, then the electric field vector may be 

written as follows: 

  ⃗⃗    ̂        (     ̂      )    ̂         (     ̂      ) .  (20) 

The unit vectors  ̂ and  ̂ are unit vectors along the long and short axes, respectively, and 

α is an arbitrary phase angle. The Stokes parameters may then be recast in the following 

form: 

     

               

               

 V =          . (21) 

The quantity      gives the ellipticity, and is 0 for linear polarization, -1 for left-circular 

polarization, and +1 for right-circular polarization.  
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Fig. 6. Polarization ellipse. State of polarization as described by parameters of a simple 
elliptically polarized beam, rotating in the counter-clockwise direction. This is right-
handed polarization and direction of propagation in this case is into the paper ( ̂   ̂). 
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It is important to note here that the convention for right and left-circular 

polarization varies widely in the literature; see van de Hulst [22], Chandrasekhar [21], 

Hovenier [36], and others for one convention where the direction of rotation of the 

electric field vector is observed looking down the beam as it propagates away from the 

observer. I will follow the convention of Bohren and Huffman [35], who define the 

direction of rotation viewed as a beam of radiation propagates toward an observer. This 

means that right-circular polarized light will appear to rotate in the clockwise direction 

as it propagates toward the observer. The conventions in Bohren and Huffman will also 

be followed for linearly polarized radiation. Fig. 7 summarizes the different states of 

polarization and their associated Stokes vectors.  

 One thing must be mentioned about the derivation of the Stokes parameters. It is 

understood that all the quantities are time averages, because measurable quantities are 

always going to be composed of superpositions of many waves on extremely short 

timescales. In other words, the amplitudes and phases of the electric field components 

which were assumed to be invariant in time are actually varying rapidly. This means that 

in general light is partially polarized and we have the following relation: 

             .  (22) 

If the amplitudes and phases are correlated in time, then the light is said to be fully 

polarized and the previous inequality becomes an equality.  

 A degree of polarization can be defined as: 

     
√ 

 
      

 
   (23) 
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and the degree of linear polarization as: 

     
 √ 

 
  

 

 
 . (24) 

The degree of linear polarization will be used in the definition of polarized reflectance 

for remote sensing, introduced in a later section. For a discussion of the sign of the linear 

polarization, see Appendix B.  

 
 

 
Fig 7. Stokes parameters of polarized light. Handedness is determined looking toward a 
beam of light propagating in the direction of the observer. 
 
 
 

The principle of optical equivalence as stated by van de Hulst [22] is that if two 

beams have the same Stokes parameters, there is no experimental way to distinguish  

them, even if they were formed by interaction with different media. What this means is 

that the Stokes parameters are the complete set of quantities needed to define 

experimentally the intensity and state of polarization of a beam of radiation. There can 
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be further theoretical differences, but these do not correspond to anything physically 

measurable.  

 The Stokes parameters of multiple incoherent beams may be added together if 

there is no phase relationship between them, which is very important where multiple 

scattering is considered because there may be contributions of many beams to the 

outgoing beam in a certain solid angle. When an incident Stokes vector interacts with the 

constituents of a medium, the medium changes the Stokes vector and produces a new, or 

scattered, Stokes vector. The change in the Stokes vector from interaction with the 

medium can be described by a 16-element 4x4 matrix, called a transformation matrix F 

by van de Hulst [22], and when normalized, called the scattering phase matrix or Mueller 

matrix M [37]. The basic equation is of the form: 

 [

  
  

  

  

]   (         ) [

  
  

  

  

]  , (25) 

where the subscript s is for the scattered Stokes vector. The Mueller matrix contains all 

information about the medium at the specified wavelength and viewing geometry. All 16 

elements of the Mueller matrix may be retrieved in an experiment with 49 intensity 

measurements [38], but often many of the elements are not independent of each other or 

may be zero if there is symmetry in the system.  

 In the adding-doubling radiative transfer model used in this study, the Mueller 

matrix of the ice cloud may be determined by considering four different incident states 

of radiation: a Stokes vector of [1,0,0,0] (written horizontally here for convenience), 

corresponding to unpolarized light, a Stokes vector of [1,1,0,0], corresponding to light 
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polarized at 0◦, a Stokes vector of [1,0,1,0], corresponding to light polarized at +45◦, and 

a Stokes vector of [1,0,0,1], corresponding to right-circularly polarized light. The first 

column in the Mueller matrix (elements M11 – M41) is simply the scattered Stokes vector 

corresponding to the incident [1,0,0,0] state, the second column is the scattered Stokes 

vector corresponding to the [1,1,0,0] state minus the scattered Stokes vector from the 

[1,0,0,0] state, and so on. The full Mueller matrix may be built from the scattered Stokes 

vectors that correspond to each of the incident Stokes vectors given [39].  

The Vector Radiative Transfer Equation 

 Now almost all the necessary steps have been taken to include a treatment of 

polarization in the radiative transfer equation. The phase function from the scalar 

radiative transfer equation (c.f. Eq. 10) is now replaced by a 4x4 scattering matrix. This 

is just the product of the single scattering Mueller matrix and two rotation matrices, 

which serve to first rotate the incident Stokes vector into the scattering plane (a plane 

containing the incident and scattered directions) where the Mueller matrix acts on it, 

then to rotate the scattered Stokes vector into the meridian plane (defined in an earlier 

section) of the scattered beam. In equation form, the scattering of an incident Stokes 

vector (denoted here by  ) is:  

     (    ) ( ) (   )   . (26) 

The terms on the right side are applied from right to left, meaning the angle    is the 

rotation angle from the meridian plane into the scattering plane, and the angle    is the 

rotation angle from the scattering plane into the meridian plane of the scattered Stokes 

vector.  
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The first three terms on the right hand side are the phase matrix Z:  

  (         )   (    ) ( ) (   )  . (27) 

 ( ) is just the 16-element single scattering Mueller matrix defined earlier: 

  ( )   [

      

      

      

      

      

      

      

      

]  , (28) 

and the rotation matrix R is the following, defined by van de Hulst [22]: 

  ( )   [

  
      

  
      

       
  

      
  

]  . (29) 

In the process of transfer through a medium, a Stokes vector may go through 

repeated interactions of the sort in Eq. (26). The final Stokes vector can be represented 

as the matrix multiplication of the repeated n number of interactions in the following 

way: 

    (         )   . (30) 

The product of the n number of phase matrices Z is called the effective Mueller matrix 

[40]. Each element of the effective Mueller matrix is usually divided by the M11 element 

so that effects involving polarization can be seen apart from the intensity and is known 

as the reduced effective Mueller matrix.  

 Rewriting the radiative transfer equation now, we get: 

  
  (     )

  
   (     )   (     ) . (31) 
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The source function is given by: 

  (     )   
 ̃ 

  
 ∫ ∫  (     

  

  

 
     ) (       )      . (32) 

Z is the reduced effective Mueller matrix for the multiple scattering events described in 

the equation, and  ̃  is the single scattering albedo introduced earlier, which accounts 

for the presence of absorption. Eq. (32) gives the full description of electromagnetic 

radiation including polarization effects in a medium.  
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CHAPTER IV 

AVERAGE SINGLE SCATTERING  

AND BULK SCATTERING PROPERTIES 

 

 In order to solve the vector radiative transfer equation (VRTE) the single 

scattering properties of the medium (the scattering phase matrix) must be determined, 

because the VRTE describes a succession of single scattering events that add up to a 

total interaction. In this study, the single scattering properties of ice crystals that make 

up a cirrus cloud will be determined and used as input to an adding-doubling radiative 

transfer model to determine the multiple-scattering output. When calculating the single 

scattering properties of the ice crystals, a size distribution is applied, which means that 

the scattering properties are weighted for the fraction of ice crystals in each size bin of 

the distribution. Different habits (shapes) of crystals and their weights for each size 

range are also included in the calculation. Finally, the spectral response function (SRF) 

of the satellite sensor must be taken into account, meaning that the average single 

scattering properties must be determined over the wavelength range for which the 

satellite sensor is sensitive. The PARASOL 0.865 μm (central wavelength) channel will 

be used in this study.   

Calculating Scattering Properties Using IGOM 

 Because there is currently no exact method that can be used to calculate 

scattering from a large, complicated ice crystal, various approximate methods have to be 

used. If the wavelength of the incident light is much smaller than the size of the crystal, 
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one approach that can be used is the geometric optics method. For this study, the 

incident wavelength is 0.865 μm, and even the smallest ice crystals considered are at 

least an order of magnitude larger than the wavelength of the radiation, so the geometric 

optics method can be used.  

 Geometric optics considers only plane waves, with the wave front broken up into 

many small rays that propagate perpendicular to the wave front (so in the same direction 

as the overall wave). The width between each ray must be smaller than the size of the 

particle considered, but larger than the wavelength of the incident light, otherwise 

diffraction due to phase interference breaks down the assumption of a ray as a plane 

wave [41]. To describe the interaction of a ray with a particle, there are four laws that 

geometric optics uses: straight-line propagation, reflection, refraction, and the principle 

of reversibility. This last law says that if a ray is reversed, it will travel in the same path 

that it took to reach its current point, but in the opposite direction. At each surface of the 

crystal, a ray can be either reflected or refracted, and the new direction and polarization 

state depend on the properties of the particle considered and the incident direction. 

Interactions between the rays can also change the phase of a ray even when the rays are 

spaced relatively far apart, according to Yang and Liou [42], so this effect is taken into 

account.  

 The diffraction of light causes a large increase of scattered energy in the forward 

direction from an ice crystal which must be taken into account but is not considered in 

geometric optics. Diffraction occurs when light rays are “bent” around a particle and 

focused into the forward direction, an effect especially important for larger particles.  
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Fig. 8. Phase function of a solid hexagonal column crystal. A size distribution of Deff = 
90 μm was used.  
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             A typical phase function, or scattered energy at each scattering angle, is shown  

 in Fig. 8. Notice how much larger the forward peak of the phase function is than the other 

directions. For many non-spherical ice crystals, the forward peak can be 5-10 orders of 

magnitude larger than the energy in the other directions. The improved geometric optics 

method described below does include a treatment of diffraction, unlike conventional 

geometric optics.  

 Yang and Liou [43] used a ray-by-ray integration algorithm to solve for the 

scattered electric field in the far-field zone by integrating the near-field electric field 

solution inside the particle from the geometric optics method. This method solves for the 

full scattered field and the extinction and absorption cross sections, from which the 

single scattering albedo can be obtained. The combined algorithm is called the Improved 

Geometric Optics Method. Yang and Liou demonstrated that the results compare well 

with a reference finite-difference time domain (FDTD) result for size parameters down 

to 20 [43]. 

 As detailed in Bi et al. [14], improvements have been made to the IGOM model, 

especially for the treatment of rays that pass through two opposing facets of a crystal in 

the forward direction. The mapping of the near-field to the far-field described in the ray-

by-ray integration method was improved with a new way to treat polarized ray spreading 

and made the δ-transmission term for forward scattering through these faces 

unnecessary. The phase function at backscattering angles was also improved, along with 

the efficiency factors [14].  
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 Surface roughness was also added to the model. In Yang et al. [18] two 

approaches were compared, one a rigorous ray-tracing scheme where each external ray 

reflected from a roughness facet or emerging internal ray from a roughness facet was 

tracked to see if it impinged on another roughness facet. All these interactions take 

significant computational time, so another approach was used where the normal to the 

surface for each reflection or refraction event was changed randomly. Multiple external 

reflections and refractions from roughness facets are not taken into consideration in the 

second approach. Even with this approximation, the two methods compared well, so the 

second method was employed in calculations [18]. Three different levels of surface 

roughness were used: none, moderately rough, and severely rough. The spatial 

orientations of the rough surfaces can be described by a Gaussian distribution with a 

parameter σ that describes the level of roughness. Smooth particles have σ = 0, 

moderately roughened particles have σ = 0.03, and severely roughened particles have σ 

= 0.5. The roughness features are small compared to the size of the particle, but still 

large enough to have an effect on the incident beam [18]. The effect of surface 

roughness is to smooth out the phase function and make it almost featureless, removing 

all of the halo peaks for σ = 0.5 and all halo peaks except 22
◦ for σ = 0.03. Sharp halo 

peaks are not seen in remote sensing measurements and surface roughness could be the 

reason why [10].  

Calculation of Single Scattering Properties  

 Now a detailed description of the calculation of the single scattering phase matrix 

can be given. Consider an arbitrary ice crystal for which the scattering properties are 
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sought using IGOM. An incident ray will have some amplitude and phase with respect to 

an initial reference plane, while a scattered ray will have another amplitude and phase 

with respect to the scattering plane.  

The necessary tools to describe this transition are given by van de Hulst [22], in the form 

of four complex functions: 

   [
    

    
] . (32) 

These functions describe the transition of the electric field from one state to another. As 

noted in Liou [13], most of the time the far-field solution is the one desired, where kr >> 

1. The scattered electric field then becomes (c.f. Eq. (16)) [22]: 

 [
  

 

  
 ]  [
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    (        )
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]. (33) 

The functions S depend on the incident and outgoing directions   and the orientation of 

the ice crystal with respect to the incoming beam. The 16-element transformation matrix 

for the Stokes parameters mentioned earlier is a function of these amplitude functions S. 

This transformation matrix [22] when normalized is called the scattering phase matrix 

[13]. The scattering phase matrix is proportional to the single scattering Mueller matrix, 

as discussed earlier.  

 The scattered Stokes parameters can then be written: 

 [

  
  

  

  

]   
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] , (34) 
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where P is the scattering phase matrix, and    is the scattering cross section which 

denotes the fraction of energy scattered out of the beam.  

The scattering cross section can be obtained with the following formula, which simply 

integrates the intensity over all scattering angles: 

     
 

  
 ∫ ∫ (  

   
     

   
  )     

 

 
    

  

 
 . (35) 

The scattering phase matrix is of the following form: 

  (     )   [

      

      

      

      

      

      

      

      

] .  (36) 

P is therefore a function of the incident and outgoing directions and the orientation of the 

ice crystal with respect to the incident direction, given by the angles α and β.  

To simplify the scattering phase matrix, we follow the discussion given by van de Hulst 

[22]. In a sample of randomly oriented ice crystals of the same size, symmetry 

relationships exist that will cancel many terms. First, to find a form of the scattering 

phase matrix that does not depend on the orientation of the crystal, the integration is 

performed over all ice crystal orientations: 

  ( )   
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 . (37) 

The scattering cross section becomes: 
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 .  (38) 

The next simplification is symmetry. For a given particle position, there are three other 

positions where the scattering phase matrix can be expressed in the same terms as the 
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initial position. The first is the reciprocal position of the original, which is a rotation 

about the line that bisects the supplement to the scattering angle (called the “bisectrix” 

by van de Hulst). The second is the mirror image with respect to the bisectrix plane, and 

the third is the mirror image with respect to the scattering plane. Assuming that the 

volume has an equal number of all orientations, the scattering phase matrix reduces to 

the following form:  

  ( )   [

      

      

  
  

  
  

       

      

] .  (39) 

The P11 element is normalized as in Eq. (4), and the other elements of the scattering 

phase matrix are normalized by the P11 element. This is the form of the scattering phase 

matrix which IGOM will produce for each size and shape of ice crystal.  

Average and Bulk Scattering Properties 

 The next step in deriving scattering properties to use in the adding-doubling 

radiative transfer model is to consider size and habit distributions along with the 

response function of the sensor used and the solar flux at those wavelengths. The bulk 

properties describe a volume in a general circulation model [44], and so the scattering 

properties of all the different crystals that make it up must be averaged together to get 

something that describes the whole collection. The average scattering properties are 

what we need as input to the adding-doubling radiative transfer model used in this study, 

so the single scattering properties of different sizes and shapes of ice crystals will be 

averaged together to produce the average scattering phase matrix and other parameters 

needed as input.  
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The average scattering cross section and extinction cross section as given in 

Baum et al. [45] are (c.f. Eq. (34)): 

       
∫ ∫ [∑       
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 , (40) 

where the subscripts s and e on the cross section σ indicate scattering and extinction, 

respectively. The sum over h is for different habits in the mixture of ice crystals, and the 

habit fraction   ( ) is defined so that:  

 ∑   ( )    
    ,  (41) 

where M is the number of habits, D is the particle diameter, n(D) is the density,   ( ) is 

the spectral response function (SRF), and S(λ) is the solar flux.  

 The SRF describes how sensitive the satellite sensor is at each wavelength in its 

domain. Fig. 9 shows the PARASOL spectral response function for the 0.865 μm band.  

The 0.865 μm band on the PARASOL satellite ranges from 0.804 to 0.924 μm, but the 

band edges are much less sensitive than the center wavelength. The scattering properties 

must be weighted for the wavelengths in the SRF and also for the intensity of the 

sunlight seen by the sensor at each wavelength, S(λ).  

 The single scattering albedo  ̃ is given by the ratio of the scattering to extinction 

cross sections: 

  ̃      

  
 . (42) 

If there is no absorption, σe = σs and  ̃   .  
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Fig. 9. Spectral Response Function for the 0.865 μm PARASOL band. All values have 
been normalized to the maximum observed value.  
 
 
 

The asymmetry factor g, the first moment of the phase function P11, is just the 

weighted average of the cosine of the scattering angle for radiation scattered from a 

certain particle or collection of particles. It is 1 for complete forward scattering 

(scattering angle of 0◦, cos(0) = 1) and 0 for complete backscattering.  
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            The average asymmetry factor over the particle size distribution and habit   

distribution is found in the same manner as the scattering cross section above: 
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The average size of the ice crystals in a certain size distribution with certain habits is 

given by the effective size Deff, defined as the ratio of the total volume to the total 

projected area [46]: 
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This definition for the average size for each PSD will be employed when discussing 

results in later sections. Finally, the average single scattering phase matrix is given by: 
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The phase matrices for each particle size and shape from Eq. (37) are inserted into the 

integral above for the computation of the average properties.  

PSDs and Habit Fractions Used in Current Study 

 All the necessary inputs to the adding-doubling radiative transfer program have 

now been defined. For the current study, five PSDs from the more than 12,000 tabulated 

from field campaigns [19] were selected for use, which correspond to effective diameters 

of 10.15 μm, 30.28 μm, 50.42 μm, 70.60 μm, and 90.31 μm. These sizes were selected 

because Baran and Havemann [47] showed that for cirrus retrieval over ocean Deff varies 
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between about 30 and 70 μm, and most of the PSDs available for use in this study also 

fall within that size range. Five models that have different combinations of ice crystal 

habits will be studied, and the single habits of solid columns and hollow columns will 

also be studied. Each case considered also has different percentages of crystals for  

different size ranges; for example, plates might only be considered at large sizes in one 

case but might be allowed to occur at all size ranges in another case. Each case 

considered will be studied with crystal surface roughness at either medium or severely 

rough levels, with the exception being the MODIS C5 model which has all smooth 

crystals save for the aggregate of columns, which is severely roughened. Smooth crystals 

are not considered for models except C5 because previous studies have shown that 

smooth crystals provide a poor fit to polarization measurements [48]. All the details of 

habits and percentages for each model are shown in the tables in Appendix A. The single 

habits of hollow columns and solid columns actually have 100% droxtals in the 

distribution for the smallest sizes of less than 0.001 cm, but exclusively solid or hollow 

columns for all sizes larger than that.  

 

  



 43 

CHAPTER V 
 

THE PARASOL SATELLITE 

 

 PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric 

Sciences coupled with Observations from a Lidar) is a satellite launched in 2004 to 

provide information on the radiative and microphysical properties of clouds and 

aerosols. It carries aboard it a wide-field imaging radiometer/polarimeter called 

POLDER (POLarization and Directionality of the Earth’s Reflectances) which can 

retrieve the I, Q, and U Stokes parameters at up to 16 viewing angles for each pixel [29]. 

In the Level-2 processed data, other parameters of interest are available, including 

surface type, percentage cloud cover, optical depth, and thermodynamic phase. This 

extra information will be used to select pixels for the current study.  

The Polarimeter Concept 

 The wide-field imager is equipped with a CCD matrix detector and a rotating 

wheel that has spectral filters and polarizers, allowing it to image at 9 different 

wavelengths and collect polarization information at three of those wavelengths, 

including the 0.865 μm channel which will be used in the current study. The I, Q, and U 

Stokes parameters are derived by collecting three measurements with the polarizer axis 

turned in steps of 60◦ each time. The spacecraft moves during this time so, to collocate 

the three measurements, a small angle wedge prism is employed for each polarizer [27].  
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Fig. 10. Viewing geometry of the PARASOL satellite.  
 
 
 
Viewing Geometry 

 As seen in Fig. 10, PARASOL can view the same pixel from many different 

vantage points as it flies overhead, meaning that it can collect information on the same  

pixel at a wide range of scattering angles. The viewing zenith angle is defined with 

respect to the local zenith and varies between 0◦ and 75◦ in observations. The solar zenith 

angle is also measured from the local zenith and varies between 0◦ and 80◦ in 

observations, and the relative azimuth angle is measured from the local north direction 

and varies between 0◦ and 360◦ in observations. With this definition, 180◦ is forward 

scattering, and 0◦ or 360◦ is backscattering. See Fig. 11 for details.  
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Fig. 11. Coordinate system for PARASOL observations. 
 
 
 
The Level-2 Cloud Product 

 The PARASOL Level-2 cloud product is used in this study. The Level-2 product 

contains parameters which are useful in the study of clouds and is obtained by 

processing of the Level-1 radiances by CNES (Centre National dꞌEtudes Spatiales). The 

parameters used are percentage cloud cover, surface type, thermodynamic phase, and 

normalized, modified, polarized radiance at 0.865 μm. The normalized, modified, 

polarized radiance is defined as follows [49]: 
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where subscript s is for the solar zenith and azimuth angles, and subscript v is for the 

viewing angles. Es is the incident solar flux at the top of the atmosphere.  

Lp is the polarized radiance, defined as: 

     √      . (47) 

The Stokes parameters obtained from the adding-doubling radiative transfer model will 

be used to calculate the normalized, polarized radiance in the same manner as above for 

comparison to the PARASOL measurements.  

 Additional restrictions are placed on the data used in the current study, including 

that the range of scattering angles for each pixel must be at least 50◦, the number of 

viewing directions with data (out of the 16 possible directions) must be at least seven, 

and the pixels must be over the ocean [49]. A pixel is only accepted if it is 100% cloudy 

and if its phase is marked as ice. Measurements near the solar principal plane (the plane 

containing the incident solar zenith direction) that fall within the solid angle possibly 

contaminated with glint from the ocean surface are removed because the polarization is 

large and could contaminate the results from polarization due to ice clouds. Data from 

August 1, 2007 are used that come from 15 orbits of the satellite. After applying the 

necessary filters, about 70,000 data points are left for use in comparison studies with 

modeled data.  
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CHAPTER VI  

THE ADDING-DOUBLING RADIATIVE TRANSFER MODEL 

 

 In the plane-parallel assumption, the adding method and the doubling method are 

convenient methods employed to find the vector intensity of scattered radiation from the 

top of the layer. Van de Hulst [30] has a good discussion of the adding-doubling method 

and presents the basic equations. The adding-doubling model used in this study was 

developed at the Free University of Amsterdam astronomy group by de Haan et al. [11] 

and gives the vector intensity and polarization of radiation at the top (or bottom) of a 

plane-parallel system.  

The Adding Method 

 Often the atmosphere will be simulated as several plane-parallel layers. Consider 

a case as in Fig. 12 where there are two layers in the atmosphere. If layer 1 has an optical 

depth τ1 and layer 2 has optical depth τ2, then by finding the reflection and transmission 

matrices (R,T) of the separate layers, the reflection and transmission matrices of a 

combined layer with optical depth τ1+ τ2 can be determined with the adding equations 

discussed in a following section.  

 Normally the reflection and transmission matrices for the separate layers are not 

previously known, and the properties of the layers might vary with optical depth (i.e., the 

layers are vertically inhomogeneous). In this case, each layer is divided into many 

optically thin layers so that each thin layer can be considered homogeneous and can be 

approximated with one or two orders of scattering.  
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Fig. 12. The adding method. Light coming in from above layer 1 will reflect at layer 1 or 
transmit through and then reflect at layer 2 or transmit through. There can be reflections 
between the two layers of an infinite number but they are very weak after a few 
reflections. The reflection and transmission matrices of the full layer are found from the 
matrices for the 2 separate layers.  
 

 

 

 

Layer 1 (R1,T1) 

Layer 2 (R2,T2) 

Full Layer (R,T) 
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           The reflection and transmission matrices are calculated for the thin layers, and the 

adding equations are used to find the matrices for the combined layer until the combined 

layers equal the original optical depth of the layer considered. The reflection and 

transmission matrices of a combination of layers include the infinite reflections that can 

occur at the interface between the layers, meaning that multiple scattering is included in 

the model.  

The Doubling Method 

 When the properties of the layer considered do not vary with optical depth, then 

the doubling method is a faster way to calculate reflection and transmission. Since the 

thin layers sliced from the large layer have the same properties, the initial reflection and 

transmission matrices do not have to be re-calculated each time. The layers may simply 

be added two at a time until the optical depth of the original layer, before division into 

thin layers, is reached. This is clearly a special case of the adding method and does not 

employ any different equations in its calculations. The original layer must be divided 

into thin layers of equal optical depth for this method to work, otherwise, the reflection 

and transmission matrices would not be the same for each thin layer.  

 In the present study, we used a four-level atmosphere with a different optical 

depth for each layer and a Lambertian ocean surface with albedo 0.06. The vertical 

distribution of gases is given by the Air Force Geophysics Laboratory atmospheric 

profile [50], and the Rayleigh scattering depolarization factor used in the adding-

doubling model is 0.0279, as reported in Young [51]. The Rayleigh optical depth for 

each layer is calculated from the tables in Tomasi et al. [52]. Each individual layer is 
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vertically homogeneous, however, so the doubling method may be employed to calculate 

the reflection and transmission matrices, and the adding equations can be used to obtain 

the matrices for the full optical depth.  

The Equations for Adding and Doubling 

 This discussion follows de Haan et al. [11], and a more detail can be found there. 

To track radiation propagating upward and downward in the atmosphere, de Haan 

introduced the matrices  (           ) and  (           ) which are defined 

through the following equations:  

  (      )  
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where  (     ) is the incident intensity at the top of the atmosphere. These equations 

give the upward and downward intensity, respectively, as a function of optical depth. 

The exponential term in Eq. (49) represents the unscattered light that reaches an optical 

depth τ. For light incident on the lower boundary of the atmosphere, analogous equations 

can be defined but are not shown here.  

 The problem to be solved is to determine the U and D matrices from the albedo 

 ̃  and phase matrix Z(τ,μ,μꞌ,    ). Z is the phase matrix as defined in the meridian 

plane through a rotation, as shown in Chapter III. These matrices will be determined with 

the adding equations using  ̃  and Z.  
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 The light at the top or bottom of the atmosphere is generally desired, and so U 

and D are determined by their boundary values. The boundary values are known as the 

reflection and transmission matrices and are given by the following equations:  

 (         )   (            ) 

 (         )   (           ) 

  (         )    (           ) 

    (         )    (            ) . (50) 

The asterisk indicates radiation incident from below the layer, and τꞌ is the entire optical 

depth, with τ = 0 being the top of the layer. With the assumption of no reflecting surface 

and homogeneous layers where multiple scattering can be neglected (thin layers), the 

reflection and transmission matrices are found in the following way: 
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The repeated reflections are determined from the following three equations:  
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where a single prime indicates the top layer, and a double prime indicates the bottom 

layer. The first equation for    just integrates over all solid angles the reflection matrix 



 52 

from the bottom layer due to radiation coming from above multiplied by the reflection 

matrix from the top layer due to radiation from below. This integration calculates the 

contribution of scattering in the direction (μ, ). The sum over    adds all the reflections 

between the two layers and keeps track of the number of times n that the beam crosses 

the combined layer in the upward direction.  

 The matrices D and U for radiation propagating downward and upward in the 

combined layer can then be expressed as: 

        [   (
 

  )]       

       [   (
 

  )]     . (54) 

Identical (same thickness and scattering properties) and homogeneous layers have been 

considered here, and the notation has been simplified so that the last terms in both 

equations are actually an integration just like in Eq. (53).  

 The reflection and transmission matrices for the combined layer can then be 

calculated using the following formulas: 
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As noted in de Haan [11], a separate adding scheme to obtain R* and T* is not 

necessary since they can be obtained by the symmetry relations  

  (         )   (         )  

   (         )   (         ) . (57) 

The adding equations, used above for identical homogeneous layers (so actually the 

doubling method), are repeatedly applied to add together layers until the optical depth of 

the full atmosphere system is reached.  

Phase Function Truncation 

 Since ice crystals are large, diffraction contributes to a peak in scattered energy 

in the P11 element of the phase matrix, also called the phase function, at the scattering 

angle Θ = 0
◦ (the forward direction). The peak can be many orders of magnitude greater  

than in other directions (c.f. Fig. (8)) and is hard to parameterize in the adding-doubling 

model.  

 The adding-doubling code uses Legendre polynomials to represent the phase 

function in calculations, because the expansion coefficients are easily determined using 

orthogonality relations and can be added together [13]. Because of the forward peak, 

many thousands of coefficients are needed in the Legendre polynomial expansion in 

order to accurately represent the phase function. This significantly increases the 

computational burden [53]. What is needed is a way to represent the phase function with 

only a few hundred or even a few dozen terms.  

 One way to do this is to truncate the forward peak, or remove the scattered 

energy in the forward direction. This has the effect of reducing the number of Legendre 
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coefficients necessary to represent the phase function. The δ-fit truncation method [54], 

similar to the Delta-M method [53], uses weighted singular-value decomposition least-

squares fitting, which better approximates the phase function at large scattering angles. 

The method finds the coefficients which minimize the squared differences between the 

true and approximate phase functions.  

 When the phase function is truncated, the other elements of the phase matrix 

must be changed in some way to reflect the changes to the P11 element. All of the other 

matrix elements are scaled similar to the following [55]:  

    
 ( )  

   

   
   

 ( ) , (58) 

where the asterisk indicates the truncated element. The optical depth, single scattering 

albedo, asymmetry factor, and other scattering properties must also be scaled in 

accordance with the similarity principle [13]. The new asymmetry factor becomes: 

     
   

   
  , (59) 

where f is the fraction of energy in the truncated peak. The single scattering albedo and 

optical depth are scaled in the following manner: 

  ̃ 
  

(   ) ̃ 

(    ̃ )
  , (60) 

    (    ̃ )  . (61) 

The truncated values of the phase matrix, optical depth, single scattering albedo, 

asymmetry factor, and other single scattering properties will now be referred to and used 

in the later parts of this study.  
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Expansion in Fourier Series 

 The number of integrations required in the adding method can be reduced by 

expanding each function dependent on the azimuth angle in a Fourier series, which will 

greatly shorten the computational time required. The usual expansion is of the following 

form:  

 (         )   ∑ (      )  
  (    )     (    ) 

     

      (    )     (    )  , (62) 

where Z can actually be any of the matrices discussed in the context of the adding 

equations and      is the kronecker delta. In order to use this method, the Fourier 

coefficients must be found.     and     can be related to    through the following 

equation: 

   (     )  (  ) ∑   
  

   (  )    
 ( ) , (63) 

where    are the expansion coefficients of the phase matrix in generalized spherical 

functions, and   
  is a matrix of generalized spherical functions. These functions are the 

more general version of the Legendre polynomials previously discussed, and follow the 

same orthogonality and addition relationships. Jackson [20] has a good discussion of 

these functions.  
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CHAPTER VII 

RESULTS 

 

 The adding-doubling model gives the output Stokes vector at the top of the 

atmosphere for each viewing geometry, allowing for a full view of radiation scattered 

upward from an ice cloud. In the results that follow, the Mueller matrix is displayed on 

polar plots, an example of which can be seen in Fig. 13. Fig. 13 is actually a plot of the 

scattering angle that corresponds to each point in the Mueller matrix, but the geometry is 

the same. The viewing zenith angle θ increases along a radius from 0◦ at the very center 

of the figure (looking straight down on an ice cloud) to 90◦ at the edge, while the relative 

azimuth angle (    ) increases from 0◦ to 360◦, where 0◦/360◦ corresponds to forward 

scattering (both the solar radiation vector and the scattered vector point in the same 

direction) and 180◦ corresponds to backscattering. In terms of the relative azimuth angle, 

viewing zenith angle, and solar zenith angle, the cosine of the scattering angle can be 

expressed in the following way [13]: 

                            (    ) ,  (64) 

where θ indicates the viewing zenith angle and    the solar zenith angle.  

 Four cases are examined in this study: first, the effective Mueller matrices for the 

MODIS Collection 5 ice cloud product and a deep convective ice model are investigated. 

The second case examines the polarized reflectance for the MODIS C5 model, the four 

other ice models, and two single habits at both levels of surface roughness in order to 

determine if the new models or single habits have a better polarization fit than the  
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Fig.13. Scattering angle Θ for each viewing geometry of a Mueller matrix. The incident 

solar zenith angle is 30◦. Note the maximum scattering angle in the principal plane at the 
viewing angle of 30◦, corresponding to radiation scattered directly back toward the 
source.  
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current MODIS model and what level of roughness is appropriate. Dependence of 

polarized reflectance on effective diameter is examined in the third case, where each ice 

model is shown at  effective diameters from 10-90μm. Finally, the fourth case considers 

the choice of the best overall ice model, size, and surface roughness level to fit the 

polarization data from the PARASOL measurements considered. Using information 

from the first three cases, the best ice model candidates are compared to find the closest 

fit. The habits and percentages for each ice model may be found in the tables in 

Appendix A.  

Case 1 

 For this case, the upward radiance from an ice cloud is simulated and the reduced 

effective Mueller matrix is retrieved to study the sensitivity of the Mueller matrix to the 

assumed ice microphysical model. Table 2 shows the input parameters to the adding-

doubling program that were used. Lawless [33] found that it was hard to distinguish size 

using an effective Mueller matrix, so for this comparison an effective size of 50 μm is 

used since it is the median size of the available modeled data. Fig. 14 shows the M11 

through M42 components of the effective Mueller matrix for MODIS C5 and for the deep 

convective model.  

 
 
Table 2. Adding-doubling model input for case 1. 
 

Incident Wavelength λ = 0.865 μm 

Incident Solar Zenith Angle θ = 30
◦  

Ice Cloud Optical Depth τ = 1.0 
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            The elements of the effective Mueller matrix are compared side-by-side for easy 

reference. Fig. 15 shows the M13 through M44 components for the same models. 

 The effective Mueller matrices show some differences between the C5 ice model 

and the deep convective ice model. There is more forward scattering evident in the M11 

element, reflecting a lower 180◦ backscattering peak vs. the C5 model in the scattering 

phase matrix in Fig. 16. All of the scattering phase matrix elements for the deep 

convective model are smoother than the C5 model due to surface roughness, which tends 

to wash out features such as the halo peaks at 22◦ and 46◦ in the phase function.  

As expected, the M44 element is lowest at the scattering angle of 180◦ on the plot. 

Interestingly, the M14 element is noticeably different between the models. Hovenier [56] 

shows that the scattering phase matrix after rotation from the scattering plane to the 

meridian plane has zeroes for the top right and lower left elements, but since the Mueller 

matrix contains the effects of multiple scattering, these elements are non-zero. The 

difference in the M14 element between the two models could show a difference in the 

amount of multiple scattering occurring. The habit mixture for the deep convective 

model given in Appendix A shows that a large aggregate of plates makes up 85% of the 

mix at large sizes, supporting the idea that multiple scattering from the spatially large 

and complex crystals is reflected in M14.  

Multiple scattering will also reduce linear polarization. Taking a look at the M12 

element of the effective Mueller matrix the deep convective element has slightly lower 

values than the C5 element, most clearly in the backscattering direction. It is hard to 

interpret the Mueller matrix from the scattering phase matrix because of rotation of the  
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Fig. 16. Scattering phase matrix for MODIS C5 and deep convective models. 
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reference plane, however. Most of the effective Mueller matrix elements are quite 

similar between the two models in any case.  

 The effective Mueller matrices for the other ice models are similar to the C5 

model and each other and are not shown here. For ice models containing many different  

habits, the effective Mueller matrix seems to vary little with changes in the habit 

percentages, with the exception of the deep convective model which has a high 

concentration of large branched crystals the other models do not have. The small 

differences in the Mueller elements between the ice models tested means that it would be 

difficult to use this tool to distinguish between different habit distributions. The next few 

cases will test the ice models using polarized reflectance.  

Case 2 

 In this case, the top of atmosphere Stokes vector is simulated from the adding-

doubling code using ~1000 geometries at angles which occur in PARASOL satellite 

observations and the polarized reflectance is derived as described in an earlier section. 

The optical depth is again 1, and the incident wavelength is 0.865 μm. Comparison is 

made between polarized reflectance using the MODIS collection 5 ice model, several 

other ice models, and two single habits, all at Deff = 50 μm for simplicity. Size 

dependence will be investigated in another case.  

 Fig. 17 shows the polarized reflectance for C5 and for general model 1 at two 

levels of surface roughness, moderate and severely rough. C5 has a clear peak near 150◦ 

which Model 1 does not have, likely due to the surface roughness of Model 1.  
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Fig. 17. Polarized reflectance for C5 and general model 1. 
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            A rainbow signal, which is a peak at the scattering angle of 138◦ from spherical  

water droplets, exists in the PARASOL data and is explained by Baran et al. [48] as a  

thin layer of cirrus overlaying water clouds, which will show up as ice clouds in the 

PARASOL phase discrimination algorithm, but because of the optically thin cirrus the 

rainbow peak will still be detected. The C5 model polarized reflectance is generally too 

high at large scattering angles and too low at smaller scattering angles, and does not 

reproduce the negative trend with increasing scattering angle well. General model 1 

follows the peak PARASOL polarized reflectance density well at large scattering angles, 

but is too low at scattering angles from about 60◦ to 100◦. Moderate surface roughness 

fits the polarization better overall, and for all but the largest scattering angles severe 

roughness is consistently lower. Going back to Case 1 where the Mueller matrix showed 

evidence of increased multiple scattering in the deep convective model and decreased 

linear polarization, the severely roughened surface here seems to be lessening the 

polarization through more multiple scattering.  

The roughened surface is similar to the distortion parameter that Baran et al. [48] 

used in their study, where they showed that past a certain value, the distortion parameter 

does not produce a good polarization fit. Some surface roughness is desirable, however, 

to smooth out sharp features in the P11 and –P12/P11 elements of the phase matrix which 

do not strongly show up in remote sensing measurements, such as the 22◦ and 46◦ halos, 

along with the 180◦ backscatter peak.  
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Fig. 18. All models plotted together at moderate surface roughness. 
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Fig. 19. All models plotted together at severe surface roughness. 
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All of the other models and one of the two single habits plotted alongside C5 

produce results similar to Fig. 17. Fig. 18 shows all the models and single habits at Deff = 

50 μm for moderate surface roughness, and Fig. 19 shows severe surface roughness. C5 

is the same in both plots because that model does not consider surface roughness, except 

for the aggregate of columns which is severely roughened. Comparing the two plots, 

severe roughness has polarization values that are too low for all models, especially for 

scattering angles between 60◦ and 120◦, and the hollow column seems to fit very well, at 

least at this effective size. Fig. 20 shows the scattering phase matrix for hollow columns 

at moderate and severe surface roughness levels. Notice that for severely roughened 

crystals the –P12/P11 element is reduced in magnitude by almost half, leading to the 

polarization values that are too low to match the PARASOL data. 

 The result for hollow columns agrees with Labonnote et al. [49] and Baran et al. 

[48] who found that the Inhomogeneous Hexagonal Monocrystal model fit the POLDER 

(similar to newer PARASOL) polarized reflectance measurements the best out of the 

shapes they tried. IHM crystals are hexagonal columns which have random air bubble 

inclusions inside which serve to smooth out the phase matrix. More results for the 

hollow column will be examined in a later section.  

It is not clear at this point which model is the best, since size dependence has not 

been examined. A conclusion can be made that moderate surface roughness is better than 

severe surface roughness overall for matching the PARASOL data from August 1, 2007. 

Next, the ice models will be examined at different effective diameters. 
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Fig. 20. Scattering phase matrix for hollow columns. Roughness is at moderate and 
severe levels. 
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Case 3 

 As in Case 2, the adding-doubling method is used to simulate the top of 

atmosphere Stokes vector and the polarized reflectance is obtained. The optical depth is 

again 1, and the wavelength is 0.865 μm. Fig. 21 shows the General model 1 ice model 

for all effective sizes at moderate roughness, and Fig. 22 shows the same model at all 

sizes for severe roughness. As seen before, the severely rough model is lower than 

measurements for all sizes except in this case for 10 μm, but at that size even severe 

roughness is too high, and the slope of the data in the scattering angle range from 60◦ to 

90◦ is wrong. However, at large scattering angles from 130◦ or 140◦ to 180◦ severe 

roughness can actually provide a better fit in some cases. Overall, moderate roughness 

will provide a better fit, so all following plots will only consider moderately roughened 

ice crystals.  

 It is easiest to decipher the size dependence by looking at the lower end of the 

range of scattering angles, where Fig. 21 shows that there is a general decreasing trend in 

the polarized reflectance with increasing size, except for the largest size at Deff = 90 μm, 

which increases slightly to provide a reasonable fit to the measurements. Figs. 23 

through 28 show the size dependence of the rest of the ice models, along with solid and 

hollow columns.  
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Fig. 21. General ice model 1 at all Deff values for moderate roughness. 
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Fig. 22. General ice model 1 at all Deff values for severe roughness. 
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Fig. 23. General ice model 2 at all sizes, moderate roughness. 
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Fig. 24. Polar/Mid-latitude model at all sizes, moderate roughness. 
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Fig. 25. Deep convective ice model at all sizes, moderate roughness. 
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Fig. 26. Hollow columns all sizes, moderate roughness. 
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Fig. 27. Solid columns at all sizes, moderate roughness. 
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Fig. 28. MODIS C5 model at all sizes, moderate roughness. 
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 Looking over all the plots from Figs. 23 to 28, the same general trend of 

decreasing polarized reflectance with increasing size can be seen, with the largest size 

increasing slightly. Solid columns depart from the trend, failing to fit the measurements 

for any size. Hollow columns fit well at all sizes except for the smallest, while MODIS 

C5 does not have the correct negative slope of polarization with increasing scattering 

angle. Labonnote [49] also tested and rejected a model that also had the wrong slope of 

polarization (increasing near 140◦) and a model that had values much too high at small 

scattering angles from 60◦ to 90◦. Next, the best models will be chosen and compared. 

Case 4 

 Based on the results from the previous cases, four models are examined in detail 

to find which one might provide the best match to the PARASOL data considered here. 

Figs. 29 to 32 show each of the four models plotted by itself against the polarized 

reflectance satellite data. Each one falls within the region where the greatest 

concentration of PARASOL data is located, hollow columns appear to be the best fit. As 

noted earlier, the hollow column is very similar to the IHM model proposed by 

Labonnote et al. [49] and Baran and Labonnote [48], which they found to provide a good 

fit to polarization measurements, so it is not surprising that the hollow column provides a 

good fit. The problem with the hollow column as a model is that while it may satisfy the 

polarization measurements, it has been shown that an ensemble of crystals more 

accurately represents ice water content (IWC) and median mass diameter [46].  
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Fig. 29. Hollow columns at Deff  = 50 μm, moderate roughness. 
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Fig. 30. General model 2, moderate roughness, Deff = 90 μm. 
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Fig. 31. Polar/Midlat model, moderate roughness, Deff = 90 μm. 
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Fig. 32. Deep convective model, moderate roughness, Deff = 90 μm. 
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             Baran and Labonnote [57] use an ensemble approach in a subsequent paper to the 

IHM, one, clearly pointing out that the IHM model does not realistically represent IWC  

and median mass diameter and so should not be used to retrieve ice cloud properties on a 

global scale. Therefore, one of the models in the current study with an ensemble 

distribution of ice crystal shapes is likely better than hollow columns for remote sensing. 

 The reason that different ice models could closely match polarization data is that 

the PARASOL data contains many different types of ice cloudy pixels, including deep 

convective cirrus, mid-latitude synoptic cirrus, and polar cirrus, so each model will 

match some pixels very well and some not so well. A better way to approach the 

problem might be to detect pixels where cirrus from deep convection is located, and test 

the deep convective model on that data, and likewise for the other models. Previous ice 

cloud microphysical models have focused on global application of one model to all 

cirrus clouds no matter their source, but this approach may need to be modified.  

 One of the criteria for selecting PARASOL pixels was that it had a difference 

between minimum and maximum scattering angles in the pixel considered of at least 50◦, 

which means many of the pixels considered in this study are in the midlatitudes because 

of the geometry involved. The mid-latitudes have more synoptically generated cirrus 

compared to deep convective cirrus, so the best overall model considered in this study is 

likely the polar/midlatitude ice model at a Deff of 90 μm and moderate surface roughness.  

 To understand what scattering phase matrix features lead to modeled polarized 

reflectance which falls within the range of highest density of PARASOL measurements, 

the scattering phase matrix may be examined.  
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Fig. 33. Scattering phase matrix of the best models.  
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Fig. 34. Scattering phase matrix of the bad models.  
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            The scattering phase matrix of the best models (modeled data falling within this  

highest density range) is shown in Fig. 33,  and  the scattering  phase matrix for the worst  

models (furthest from the highest density range) is shown in Fig. 34. As expected, the –P12/P11 

element for the good models is all nearly the same, reaching a maximum value of about 

0.15 in a broad peak. The other scattering phase matrix elements from P11 to P44 are also 

close together and have the same trend in their slope, suggesting that the good models 

that assume different habit and size distributions all end up with similar scattering 

properties.  

Considering the bad models now, –P12/P11 is not the same shape for all the 

models. Some have values that are higher or lower than the good models, the same trend 

which was seen in the polarized reflectance plots. All good models in this study have the 

halo angle of 22◦ (caused by radiation traveling through two side facets of a hexagonal 

column crystal) present in the phase function P11, but some bad models have it and some 

do not. Combined with the fact that hollow columns matched the PARASOL polarized 

reflectance the best, hollow columns seem to be one of the components of an ice 

microphysical model needed in order to match the observed polarization.  
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CHAPTER VIII 

DISCUSSION AND SUMMARY 

 

 An adding-doubling method was used to calculate the TOA Stokes vector for the 

case of a thin cirrus cloud at the solar wavelength of 0.865 μm, and the effective Mueller 

matrix and polarized reflectance were calculated from it. The effective Mueller matrix 

was studied as a way to distinguish between habit distributions, and polarized reflectance 

data from the PARASOL satellite was used to compare with modeled data to determine 

the habit distribution and surface roughness which best fit the measurements.  

 For the effective Mueller matrices in case 1, it was not possible to distinguish 

between the different habit distributions, except in the case of the deep convective model 

where the M14/M11 element showed a large difference from the C5 model. This 

difference is most likely due to multiple scattering in the many branches of the large 

crystals that make up the majority of the habit distribution for the deep convective 

model. The linear polarization is also lower for the deep convective model, again likely 

due to multiple scattering.  

 For case 2, the MODIS Collection 5 ice microphysical model was tested against 

several different ice models at different levels of surface roughness. The C5 model has a 

peak near 150◦ that is not seen in the satellite data, and also has the wrong slope of 

polarization. The C5 model does not consider surface roughness except for the aggregate 

of columns, and as such its phase matrix still contains many sharp features that lead to 

poor agreement with remote sensing measurements [57]. The level of surface roughness 
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that best fits the PARASOL data seems to be moderate roughness, although for some 

sizes severe roughness gives a good fit at large scattering angles from 120◦ to 180◦. 

Severe roughness does not fit at small scattering angles for any size. Moderate roughness 

eliminates many phase function features such as the 46◦ halo and reduces the sharpness 

of others without reducing the -P12/P11 element too much, while severe roughness 

eliminates the 22◦ and 46◦ halos and the 180◦ backscatter peak and also reduces -P12/P11 

too far.  

 Case 3 compared the ice models at different effective diameters to investigate the 

size dependence of polarized reflectance. In all cases, the smallest effective diameter had 

the largest polarization values, much higher than the measurements. There was a general 

decreasing trend with size until the largest size, which increased slightly in polarization. 

Solid columns did not fit the measurements at any size, whereas hollow columns fit the 

measurements at every size except the smallest, 10 μm. The MODIS C5 model did not 

fit the polarization values or decreasing trend with scattering angle at any effective size 

and generally had values that were too high.  

 Case 4 compared four models that were selected from the earlier comparisons as 

the best fits to decide which one was the best match to the one day of PARASOL data 

considered. While the hollow column was the closest match for polarization, it is not the 

best for an ice model to use in remote sensing because many authors have found that the 

IWC, median mass diameter, and other parameters are not accurate with a single-habit 

model [46,57]. Ensemble models can provide reasonable values for the IWC and also 

match well with polarization. The polar/mid-latitude model in this study largely 
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followed the PARASOL polarization values, and it is likely that with an algorithm to 

select pixels of a certain type of cirrus, whether synoptic mid-latitude, deep convective, 

or other, that the match of an ensemble model with measurement will become very good. 

The data presented here do not discriminate between different types of ice cloudy pixels 

and so the model must match all different types of microphysics with one habit mixture.  

 The scattering phase matrix of the four best models was very similar, especially 

in the -P12/P11 element. The maximum value was about 0.15 occurring in a broad peak 

around the scattering angle of 100◦. Each model also had a discernible 22◦ halo in the 

phase function, meaning that hexagonal crystals of some type are present in ice clouds. 

Hollow columns fit the polarization the best in this study, so it is likely that this habit 

occurs in relative abundance in ice clouds. All ensemble ice models should include a 

fraction of this type of crystal in order to match polarization measurements and 

accurately model ice clouds.  

 Polarization is a powerful tool to select the best ice model for use in simulating 

the optical and microphysical properties of ice clouds. Ensemble ice models for use in 

global studies should be compared with polarized reflectance from PARASOL or 

another polarization instrument to make sure the model accurately reflects reality. The 

present study indicates that the current MODIS C5 model does not match observed 

polarized reflectance from PARASOL, and therefore is not a good model. Three 

ensemble ice models in this study, each with moderately roughened crystals and an 

effective diameter Deff of 90 μm, match the polarized reflectance values reasonably well 
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and are good candidates for use in remote sensing of cirrus clouds and simulation of 

cirrus clouds in global climate models.   
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APPENDIX A 

ICE MODEL HABIT PERCENTAGES 

 

Table 3. MODIS C5 ice model habit percentages. Size is measured as the maximum 
dimension of each crystal.  
 

Crystal Habit < 0.006 cm 0.006 – 0.1 cm 0.1 – 0.25 cm > 0.25 cm 
Droxtal 100% 0 0 0 
Solid bullet  
rosette 

0 15% 0 97% 

Plate 0 35% 0 0 
Solid column 0 50% 45% 0 
Hollow 
column 

0 0 45% 0 

Aggregate of 
columns 

0 0 10% 3% 
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Table 4. Habit percentages for the mid-latitude ice cloud models. This table is for 
general model 1. General model 2 is exactly the same, except for in the second size 
range plates are only 20% and hollow columns are 45%.  
 

Crystal 
Habit 

< 
0.001 
cm 

.001 – 

.015 cm 
.015 – 
.05 cm 

.05 – 

.075 cm 
.075 - .1 
cm 

.1-.125 
cm 

>.125 
cm 

Droxtal 100% Decrease 
to 0 

0 0 0 0 0 

Solid 
bullet  
rosette 

0 0 Increase 
to 20% 

Increase 
to 
26.25% 

Increase 
to 32.5% 

32.5% 32.5% 

Plate 0 Increase 
to 30% 

Decrease 
to 0 

0 0 0 0 

Solid 
column 

0 Increase 
to 35% 

Decrease 
to 0 

0 0 0 0 

Hollow 
column 

0 Increase 
to 35% 

Decrease 
to 0 

0  0 0 

Aggregate 
of 
columns 

0 0 Increase 
to 30% 

Decrease 
to 17.5% 

Decrease 
to 5% 

5% 5% 

Small 
aggregate 
of plates 

0 0 Increase 
to 30% 

Decrease 
to 
26.25% 

Decrease 
to 
11.25% 

Decrease 
to 0 

0 

Large 
aggregate 
of plates 

0 0 0 0 Increase 
to 
11.25% 

Increase 
to 22.5% 

22.5% 

Hollow 
bullet 
rosettes 

0 0 Increase 
to 20% 

Increase 
to 30% 

Increase 
to 40% 

40% 40% 
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Table 5. Habit percentages for the polar/mid-latitude ice cloud model. 

 
Crystal 
Habit 

< .001 cm .001 – .015 
cm 

.015 – .05 
cm 

.05 - .1 cm >.1 cm 

Droxtal 100% 0 0 0 0 
Solid 
bullet  
rosette 

0 Increase to 
10% 

Increase to 
20% 

Increase to 
30% 

30% 

Hollow 
bullet 
rosette 

0 Increase to 
20% 

Increase to 
40% 

Increase to 
60% 

60% 

Solid 
column 

0 Increase to 
20% 

Decrease to 
10% 

Decrease to 
0 

0 

Hollow 
column 

0 Increase to 
30% 

Decrease to 
10% 

Decrease to 
0 

0 

Aggregate 
of 
columns 

0 Increase to 
10% 

Increase to 
20% 

Decreases 
to 10% 

10% 

Small 
aggregate 
of plates 

0 0 0 0 0 

Large 
aggregate 
of plates 

0 0 0 0 0 

Plate 0 Increase to 
10% 

Decrease to 0 0 0 
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Table 6. Habit percentages for the deep convective ice cloud model.  

 
Crystal 
Habit 

< .001 cm .001 – .02cm .02 – .075 
cm 

.075 - .125 
cm 

>.125 
cm 

Droxtal 0 0 0 0 0 
Solid bullet  
rosette 

0 0 Increase to 
2% 

Increase to 
4% 

4% 

Hollow 
bullet 
rosette 

0 0 Increase to 
3% 

Increase to 
6% 

6% 

Solid 
column 

100% Decrease to 
20% 

Decrease to 0 Decrease to 
0 

0 

Hollow 
column 

0 Increase to 
20% 

Decrease to 0 Decrease to 
0 

0 

Aggregate 
of 
columns 

0 0 Increase to 
15% 

Decrease to 
5% 

5% 

Small 
aggregate 
of plates 

0 0 Increase to 
70% 

Decrease to 
0% 

0 

Large 
aggregate 
of plates 

0 0 0 Increase to 
85% 

85% 

Plate 0 Increase to 
60% 

Decrease to 
10% 

Decrease to 
0 

0 
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APPENDIX B 

THE SIGN OF POLARIZED RADIANCE 

 

 
Fig. B.1. POLDER instrument viewing geometry. Adapted from Labonnote et al [49]. 
 
 
 
 This discussion of the sign of polarized radiance follows that of Labonnote [49]. 

The POLDER instrument on PARASOL measures the polarization in the CCD axes 

coordinate system ( ̂   ̂ ) where  ̂  is in the meridian plane as shown in Fig. B1. The 

direction of polarization χ is just ½ arctan(U/Q), a result given in Hovenier [36] and 

many other texts. From Fig. B1 the polarization is then: 

  ̂       ̂        ̂  .  (65) 

The  ̂ direction perpendicular to the scattering plane is given by: 

  ̂       ̂        ̂  . (66) 
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Now in the reference frame (i  j   ̂) the vectors  ̂ ,  ̂ , and  ̂ are obtained through the 

following relations:  

 ̂  (
     

     

 
)     ̂  (

          

           

     

) 

   ̂  (

               

                          

                

) . (67) 

The angle ψ can be found with the following equations:  

                 

                                 . (68) 

Now all the equations are written down for the angles needed to obtain the sign. The sign 

of the polarized radiance is found from the angle ξ, given by: 

       ̂   ̂   
                 

√                  
 , (69) 

where the denominator of this equation is a normalization factor. If ξ is found to be 

within the range [45,135] degrees, then the sign of the polarized radiance is negative, 

whereas outside of this range the sign is positive.  
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