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ABSTRACT 

Spectral Decomposition Using S-transform for  

Hydrocarbon Detection and Filtering. 

 (August 2011) 

Zhao Zhang, B.S., Tianjin University 

Chair of Advisory Committee: Dr. Yuefeng Sun 

 

Spectral decomposition is a modern tool that utilizes seismic data to generate 

additional useful information in seismic exploration for hydrocarbon detection, lithology 

identification, stratigraphic interpretation, filtering and others. Different spectral 

decomposition methods with applications to seismic data were reported and investigated 

in past years. Many methods usually do not consider the non-stationary features of 

seismic data and, therefore, are not likely to give satisfactory results. S-transform 

developed in recent years is able to provide time-dependent frequency analysis while 

maintaining a direct relationship with the Fourier spectrum, a unique property that other 

methods of spectral decomposition may not have. In this thesis, I investigated the 

feasibility and efficiency of using S-transform for hydrocarbon detection and time-

varying surface wave filtering.  

S-transform was first applied to two seismic data sets from a clastic reservoir in 

the North Sea and a deep carbonate reservoir in the Sichuan Basin, China. Results from 
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both cases demonstrated that S-transform decomposition technique can detect 

hydrocarbon zones effectively and helps to build the relationships between lithology 

changes and high frequency variation and between hydrocarbon occurrence and low-

frequency anomaly. However, its time resolution needs to be improved. 

In the second part of my thesis, I used S-transform to develop a novel Time-

frequency-wave-number-domain (T-F-K) filtering method to separate surface wave from 

reflected waves in seismic records. The S-T-F-K filtering proposed here can be used to 

analyze surface waves on separate f-k panels at different times. The method was tested 

using hydrophone records of four-component seismic data acquired in the shallow-water 

Persian Gulf where the average water depth is about 10m and Scholte waves and other 

surfaces  wave  persistently  strong.  Results  showed  that  this  new  S-T-F-K method is 

able to separate and attenuate surface waves and to improve greatly the quality of 

seismic reflection signals that are otherwise completely concealed by the aliased surface 

waves.  
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1. INTRODUCTION 

Seismic data is difficult to interpret for reservoir properties and fluid detection. 

However, in some cases, the spectral analysis can open the door for a better seismic 

interpretation. The frequency-domain representation of a time series often illustrates 

stratigraphic and structural details that are difficult to visualize in the time domain. 

Lithology and pore fluid shows a significant difference in the frequency domain. Thus, 

spectral analysis research has gained considerable momentum in recent years. 

In addition, spectral analysis offers new opportunities for improved processing 

algorithms and spectral interpretation methods. Strong surface-wave occurrence and its 

dispersion create severe problems for seismic data analysis in the shallow water 

environment of the Persian Gulf where the average water depth is about 10 to 15m. 

Common technique for surface-wave analysis is f-k filtering based on exploiting low 

frequency and high-amplitude characteristics. However, spatial aliasing of surface waves 

due to under-sampling presents unique challenges to these methods. With the help of 

wave-number spectral analysis, different seismic events could be separated and extracted. 

In this study, I first propose a conceptual description of S-transform based on the 

spectral analysis method. I then illustrate the improvement in spectral resolution through 

synthetic signals and real data sets. Further, an S-transform based t-f-k transform is 

established. It allows the dynamic analysis of the surface-wave spectrum over time. 

Results of my studies are expected to be useful for reservoir quality prediction and for 
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established. It allows the dynamic analysis of the surface-wave spectrum over time. 

Results of my studies are expected to be useful for reservoir quality prediction and for 

optimization of reservoir development strategies. 

1.1 Objectives 

The first objective of this research is to investigate a new method to implement 

time-frequency decomposition that would help establish possible relationship between 

different seismic events and frequency distribution related to hydrocarbon occurrence 

and lithology changes. The second objective is to demonstrate the application of the S- 

transform and T-F-K transform for surface waves analysis. 

1.2 Literature Review 

Dilay and Eastwood (1995) firstly applied spectral analysis to seismic monitoring 

of thermal recovery. Peyton et al. (1998) then implemented spectral decomposition and 

coherency on 3D data to interpret complex incised valleys system. Partyka et al. (1999) 

further used windowed spectral analysis to produce discrete-frequency energy cubes for 

reservoir characterization. He illustrated that spectral decomposition can be a powerful 

aid to the imaging and mapping of bed thickness and geologic discontinuities. Castagna 

et al. (2003) and Castagna and Sun (2006) showed that spectral decomposition could 

help in detection of hydrocarbons under certain circumstances. He used Instantaneous 

spectral analysis (ISA) method which had a much better combination of temporal and 

frequency resolution than conventional spectral decomposition methods. He also 



3 
 

 

17 

indicated that low-frequency shadows were much more apparent on spectrally 

decomposed data than on seismic sections. 

For the methods of spectral decomposition, the widely used short-time Fourier 

transform (STFT) method was introduced by Cohen (1995). In STFT, time-frequency 

resolution is fixed over the entire time-frequency space by preselecting a window length. 

Instead of producing a time-frequency spectrum, the continuous-wavelet transform 

(CWT) produces a time-scale map called a scalogram (Daubechies, 1992). Hlawatsch 

and Boudreaux-Bartels (1992) took scale to be inversely proportional to the center 

frequency of the wavelet and represented the scalogram as a time-frequency map. 

Recently, Stockwell et al. (1996) introduced the S-transform as a tool for optimal 

time-frequency analysis of geophysical signals. It is an invertible time-frequency 

spectral localization technique that combines elements of wavelet transforms and short-

time Fourier transforms. 

Several authors implemented S-transform in spectral analysis. Deng et al. (2007) 

implemented spectral decomposition techniques to stack seismic section from deepwater 

reservoir. His results showed that gas associated spectral anomalies occurs at both low-

frequency or high-frequency iso-frequency sections. Zhu et al. (2003) and Goodyear et 

al. (2004) provided the method for processing magnetic resonance signal data.  

Embree et al. (1963) firstly used the term velocity filter in data processing. 

Wiggins (1976) called these two-dimensional operators w-k filters. When applied to 

two-dimensional arrays of seismometers such operators are usually called beam forming 

filters. Foster et al. (1964) and Schneider et al. (1965) continued filter design using the 
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Wiener-Hopf optimum filter theory. These methods are generally more elaborated and 

are used to de-ghost seismic records and to reduce multiple reflections. Velocity filters 

may operate in the digital domain as above, or, equally effectively, in the analog domain 

with the use of laser sources and optical processing.  

Studies on surface waves attenuation have been taken for many years. Nawab and 

Quatieri (1988) firstly used time windowing and short-time Fourier transform. There 

exists a compromise between window sizes and frequency precision, thus the 

performance of the filter is frequency dependent. Beresford-Smith and Rango (1989) 

proposed a method that combined windowing in the time-offset domain and f-k filtering 

together. However, it was computationally expensive. S-transform is also implemented 

in filtering design. Recently, Pinnegar and Eaton (2003) designed pre-stack noise 

attenuation filtering system based on S-transform. Askari and Siahkoohi (2007) 

discussed S-transform to attenuate the influence of ground roll waves. 

1.3 Thesis Structure 

This study presents a new methodology for computing a time-frequency map of 

non-stationary signals using the S-transform with application to hydrocarbon detections 

and surface wave analysis. 

In the first section, I introduced some geological and geophysical fundamentals 

about the research and the challenges that we have encountered.  

In Section II, I will discuss the spectral decomposition methods in this study. S-

transform is compared with other two traditional methods. Then two field data sets are 
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used to test the method. For the first data set from North Sea, I will focus on detecting 

the bright spot in the time-frequency domain. For the second data set from Sichuan 

Basin, I will use the spectral decomposition to predict the lithology changing. 

In Section III, a new surface-wave filtering method based on S-transform is 

investigated and testified. I will first discuss the challenges in the shallow water 

environment. Comparing with traditional methods, I decompose the signal into the time-

frequency-wavenumber domain which is easier for us to define the reject zones.  

In Section IV, the summarization of my study and my further research plan will 

be given.  
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2. SPECTRAL DECOMPOSITION USING S-TRANSFORM 

Over the past two decades, continuous wavelet-transform (CWT) and short-time 

Fourier transform (STFT) have been applied to spectral decomposition. Due to the fixed 

width of the STFT window, low frequencies are hard to detect and high frequencies 

bring poor time resolution. Improved performance is observed when applying the CWT, 

but it also produces time-scale plots that are unsuitable for intuitive visual analysis.  

In this section, S-transform is compared with STFT and CWT. Then the spectral 

analysis method based on S-transform is tested on two real datasets. 

2.1 Decomposition Methods 

Seismic data which has spectral content varying significantly with time is 

considered non-stationary and requires nonstandard methods of decomposition. Various 

techniques have been utilized in time-frequency analysis. Traditionally, the short-time 

Fourier transform (STFT) and continuous-wavelet transform (CWT) have been applied. 

This section will review these two methods and introduce another novel approach for 

time-frequency analysis. 

2.1.1 Basic Concepts 

Since the beginning of the history of digital recording, geophysical data 

processors have decomposed the measured seismic signal into Fourier components. Any 

time series can be represented uniquely as a linear combination of other harmonic time 
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series in Fourier analysis. 

Fourier analysis simply decomposes the seismic data into a term of sines and 

cosines at predetermined frequencies. Amplitude and phase can be expressed in terms of 

sines and cosines. We also could express the cross-correlation coefficients of amplitude 

and phase of these harmonics with the data used as a complex number,  

)()()(   ieaA . 

The Fourier transform F(ω) of a signal f(t) is the inner product of the signal with the 

basis function ,  

 . 

Research focuses more on the amplitude component of the spectrum. Different 

amplitudes on specific frequency can show the stratigraphic configuration, although 

phase is equally or more important. 

Both the STFT and CWT is base on Fourier analysis. They differ from each other 

in the applications of their respective tapers. For the STFT, the tapers are independent of 

frequencies and are the same for all sines and cosines. For CWT, the tapering windows 

are proportional to the frequencies of the sines and cosines and are shorter for higher 

frequencies. 

2.1.2 Short-time Fourier Transform 

The Fourier transform gives the overall frequency behaviors for the entire signal. 

It is inadequate for analyzing non-stationary signals, such as seismic signals. We can 

include the time dependence by windowing the signal (i.e. taking short segments of the 
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signal) and then performing the Fourier transform on the windowed data to obtain local 

frequency information. Such approach of time frequency analysis is called short-time 

Fourier transform (STFT) and the time frequency map is called a spectrogram (Cohen, 

1995). The STFT is given by the inner production of the signal f (t) with a time shifted 

window function . Mathematically, it can be expressed as: 

 , 

where the window function  is centered at time t =  and  can be complex (Cohen, 

1995). 

2.1.3 Continuous-wavelet Transform 

The continuous wavelet transform (CWT) is an alternative method to analyze a 

signal. It is defined as the sum over all time of the signal f (t) multiplied by a scaled and 

shifted version of the analyzing wavelet function. Mathematically, it is defined as the 

inner product of a family of wavelets  with signal f (t): 

, 

 is the time-scale map (i.e. the scalogram).  

The wavelet  is localized in both time and frequency: 

 

where  (real number) and .  is called the dilation parameter or scale 

and  is called the translation parameter. The main purpose of using the mother wavelet 

is to provide a source function to generate the daughter wavelets (Miao and Cheadle, 

1998) which are simply the translated and scaled versions of the mother wavelet (Miao 
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and Moon, 1994). 

 Unlike Fourier transform, the continuous wavelet transform possesses the ability 

to construct a time-frequency representation of a signal that offers time and frequency 

localization.  

2.1.4 S-Transform 

The S-transform can conceptually be viewed as a hybrid of short-time Fourier 

analysis and wavelet analysis. It is defined as:  





  dfjftwuftSx )2exp())(,()(),(

 

with a constraint (Stockwell et al., 1996): 





 1))(,(  dftw

. 

The ),( fw   is the Gaussian window: 

)
)(2

exp(
2)(

1
))(,(

2

2

f

t

f
ftw


   

where t is the time, f is the frequency variables, and  is a parameter that controls the 

position of the Gaussian window along the t axis. )( f is defined as  

f
f

1
)(  . 

The S spectrum is invertible and the inverse transform algorithm is defined 

(Stockwell, 1996) as: 

dfftjdfStu )2exp(),()(  






 





. 

The similarity between S-transform and STFT is that they are both derived from 

http://en.wikipedia.org/wiki/Fourier_transform
http://en.wikipedia.org/wiki/Time-frequency_representation
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the Fourier transform of the time series multiplied by a time-shift window (Stockwell, 

1996). However, unlike STFT, the standard deviation (f) in S-transform is actually a 

function of frequency. Consequently, the window function is also a function of time and 

frequency. As the width of the window is dictated by the frequency, it is apparent that the 

window is wider in the time domain at lower frequencies which means the window 

provides good localization in the frequency domain for low frequencies (Stockwell, 

2006). Due to the low frequency spectrum of surface wave, this aspect makes S-

transform more appropriate for further analysis. 

In both S-transform and CWT, the window size changes with both time and 

frequency. However, the wavelet used in S-transform does not satisfy the condition of 

zero mean for an admissible wavelet. The oscillatory parts of the S-transform wavelet 

are provided by the complex Fourier sinusoid, which does not translate with the 

Gaussian window when τis changed (Pinnegar and Mansinha, 2003). As a result, the 

shapes of the real and imaginary parts of the S-transform wavelet change when Gaussian 

window translates in time. Comparing to S-transform, the shape of wavelet of CWT is 

consistent. 

 S-transform combines progressive resolution with absolutely referenced phase 

information (Stockwell, 2006). Therefore it could estimate the local amplitude spectrum 

and the local phase spectrum. Also, it is sampled at the discrete Fourier transform 

frequencies (Stockwell, 2006). The test examples also show S-transform brings a better 

imagine than traditional transforms. 
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2.2 Spectral Decomposition  

Spectral decomposition techniques typically generate a continuous volume of 

instantaneous spectral attributes from seismic data, to provide useful information for 

reservoir characterization and direct hydrocarbon detection. 

The low frequency shadows are used as hydrocarbon indicators. The shadow is 

probably coming from high-frequency attenuation in the reservoir itself (Dilay and 

Eastwood 1995, Mitchell et al., 1997), so that the local domain frequency moves toward 

the low-frequency range. However, it is often difficult to explain observed shadows 

under thin reservoir where there are insufficient travel paths through absorbing gas 

reservoir to justify the observed shift of spectral energy from high to low frequencies 

(Castagna et al., 2002). One possible explanation is that these are locally converted shear 

waves that have traveled mostly as P-waves and thus arrive slightly after the true 

primary event (Castagna et al., 2002). Ebrom (2004) listed about ten possible 

mechanisms reasons explaining this problem. It is believed that these shadows are 

caused by at least one of these mechanisms. 

The optimal time-frequency resolution property of the S-transform makes it 

useful in seismic data analysis. High-frequency resolution at low frequencies helps to 

detect these low frequency shadows. 

For a 2-D seismic section, the spectral analysis based on S-transform involves the 

following steps: 

1) Decompose each trace into frequency components using the S-transform 

method to produce the frequency variation basing on specific time.  
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2) Sort the frequency information of all traces in the time-frequency domain to 

produce frequency cubes. 

3) Pick up the two-dimensional frequency data based on specific frequency. The 

horizontal axis represents location and the vertical represents time. 

We can see, after the processing, the 2D seismic section becomes a time, 

frequency and distance (trace position) cube. To interpret this data, the interpreter should 

analyze the iso-frequency panels along the frequency axis to search for geological 

features that gives rises to anomalous spectral amplitudes. For 3D data, spectral 

decomposition is applied in a time window that bounds a zone of interest. Interpretation 

is then done in the generated frequency slice. 

2.3 Synthetic Test 

In order to evaluate the suitability of the proposed approach, we first carry out the 

test with a synthetic signal. The signal is the summation of three cosine functions of 

frequencies of 0.5, 1, and 3 Hz (Figure 1). The lowest frequency starts at 14 sec and lasts 

for 5 sec. The cosine functions of 1 and 3 Hz start at 13 sec and last to 18 and 16 sec, 

respectively. The equation of the testing single is shown as following: 

 F(t) = 






















otherwise

tt

ttt

tttt

ttt

0

1918)2*5.0cos(

1816)2*1cos()2*5.0cos(

1614)2*3cos()2*1cos()2*5.0cos(

1413)2*3cos()2*1cos(









 

The S-transform of the synthetic signal is shown in Figure 2 and highlighted area 
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shows the multi-frequency content of the signal and the occurrence in time of the 

different cosine functions. The expected better frequency resolution of the low-frequency 

component and the better time resolution of the high-frequency signals are also shown. 

 

 
Figure 1 Synthetic trace composed of three wavelets with different frequencies and 

temporal locations 
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Figure 2 Time-frequency distribution of the synthetic trace 

 

2.4 Application to Seismic Data 

We apply the S-transform to real data to demonstrate how to detect hydrocarbon 

in time-frequency domain. My test data is from two different locations. 

2.4.1 Example 1: North Viking Graben 

The first reservoir studied is from the North Viking Graben area in the northern 

North Sea Basin (Figure 3, Figure 4). It was formed as a result of late Permian to 

Triassic rifting and trends north-northeast.  

It has been demonstrated that the major oil and gas accumulations in the northern 

North Sea have been trapped in the Tertiary sandstones, which were formed within 

certain fine-grained, organic-carbon-rich marine strata of late Jurassic and earliest 

Cretaceous age. And the depositional environment types include fluvial, deltaic and 

shallow marine. The reservoir intervals are formed by coarse clastic sedimentary rock 
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and separated by deep water shale. (USGS, 2010) 

 

 

Figure 3 Location of studied area in the North Sea (USGS, 2010) 
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In this section, two wells will be used to verify this method. Well A is Jurassic 

age clastic sediments which range in depositional environments from fluvial to deltaic 

and shallow marine. Well B is the Paleocene deep water clastics. The Paleocene interval 

is undisturbed by the rift tectonism and dips gently into the basin.  

Figure 5 shows the seismic line which consists of 1001 shot records and orients 

in a structural dip direction. Each shot record consists of 120 channels for six seconds. 

The seismic data are sampled every four milliseconds. Well A intersects the seismic line 

at shot-point 440 (CDP NO.808) and Well B is located at shot-point 822 (CDP NO. 

1572). 

Based on the references published by Exxon Mobile (Keys and Foster, 1998), a 

significant unconformity occurs at the base of the Cretaceous, which is located at the 

approximately 1.97 second two-way travel-time in Well A and 2.46 second two-way 

travel-time in Well B (Figure 5). Jurassic syn-rift sediments are overlain by Cretaceous 

and Tertiary basin fills. 
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Figure 4 Overview of hydrograph of studied area in the North Sea (USGS, 2010) 
 

 



18 
 

 

17 



19 
 

 

17 

2.4.1.1 Synthetic Data 

In this section, the synthetic example will be presented to tie time with depth. In 

this study, only primary seismic waves are generated in synthetic seismic trace without 

multiples. Moreover, the log data provides data with a sampling interval that is smaller 

than the vertical resolution of the seismic data. So the S-transform decomposition will be 

first applied to the synthetic trace to verify its validity. The relationship between well log 

data and the true seismic data will be clearly revealed by the seismic trace at the well 

location.  

 

 

Figure 6 Synthetic data trace construction based on depth, from left to right: (a) 
Gamma Ray (yellow- oil zone, pink – gas zone) (b) Density (c) Velocity (d) 

Reflection coefficient  
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Figure 7 Well Tie Process, from left to right: (a) Density (b) Velocity (c) Reflection 
Coefficient (d) Seismic trace (e) Synthetic seismic trace based on depth  
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Figure 8 Initial wavelet used in well seismic tie process 

 
 

A synthetic seismic trace was generated using velocity and density data from 

Well A (Figure 6), during the procedure of which the reflection coefficient will be 

calculated using a Ricker wavelet. The synthetic data is generated through Petrel Well 

Tie Process (Figure 7 and Figure 8). Given the initial synthetic trace, we compare with 

the real seismic data and change the shape of the synthetic trace (Figure 7). Comparing 

oil and gas distributions, we could find out that there are two high energy signatures 
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showing at 2.0s and 2.6s from the distribution (Figure 9).  

 

 

Figure 9 Oil and gas saturation distribution vs. reservoir depth 

 

2.4.1.2 Spectral Analysis on Real Seismic Data Trace 

As the oil and gas saturation distribution has been determined in the time domain, 

the spectral decomposition techniques will be applied to the real seismic trace in the 

following tests. The analysis of the seismic trace for fluid detection depends upon the 

amplitude spectrogram, i.e., the energy map of the signal in the time-frequency domain. 

Because the strong amplitude signal occurs at the beginning due to spherical spreading, 

it is necessary to take the dynamic equalization of the original data to remove the effect 

of amplitude variation due to spherical spreading on the seismic trace. This can readily 
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be done by applying the following relation: 





a

k

ktftaftf
0

)(/)()(  

Here, f (t) is seismic value at time t and „a‟ is the size of the window. 

 Figure 10 presents an example of spectrogram of Well A. In the spectrogram, we 

can observe the decrease of the bandwidth with time due to the absorption. In Figure 10, 

the low frequency high-energy anomalies occur around 15 Hz. These high energy zones 

locate from around 1.9 to 2.2s and from 2.6 to 2.8s which match the oil and gas 

distribution illustrated in Figure 9. The trend with a dominant frequency of around 40 Hz 

and could be used to detect the unconformity layer. 

In addition, the seismic data provided by Exxon Mobile is a raw seismic data set 

which contains multiples and noises. Therefore, there exist unwanted frequency contents 

in the spectrogram (Figure 10).  
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Figure 10 Time-frequency distribution at Well A 

 

In order to confirm the information obtained from spectral analysis of Well A, 

following the same steps, we analyzed the seismic data at the Well B. Well B contains an 

interval of oil sands between 2880 and 2950 m. These oil sands are below the Cretaceous 

unconformity. Gas sands are found below 3200 m in Well B (Figure 11).  

Figure 11 shows the oil and gas distribution in Well B. A synthetic seismogram is 

generated using the density and velocity logs in Well B and Figure 12 shows the time-

frequency spectrogram of the synthetic seismogram at Well B location. In the periods of 

2.6 to 2.7s, 2.8 to 2.9 and 3.05 to 3.15s, which are related to the locations of the oil and 

gas reservoirs according to synthetic data, the amplitude of low frequencies turn to high. 

The low frequency of the high energy zone is around 18Hz and this number is higher 
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than the one from Well A. One possible reason is that the main hydrocarbon of Well B is 

oil and Well A produces gas and gas would show lower frequency than oil. Another 

observation is that the dominant frequency is around 40 Hz and is similar to Well A data. 

The information obtained from these two spectrograms matches both predictions 

and petro-physical log data. Therefore, further steps could be taken with this 

unprocessed North Sea data for the spectral analysis project. 

 

 
 

Figure 11 Oil and gas distribution at Well B 
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Figure 12 Time-frequency distribution at Well B 
 

2.4.1.3 Analysis on Isofrequency Panel 

To apply the spectral decomposition method in the entire 2D seismic section, we 

decomposed 1001 traces in this cross section individually and then sorted the data into 

common frequency gathers. Isofrequency spectrogram analysis was done from 10 to 60 

Hz using 5 Hz step. In the following sections, we describe the more interesting spectral 

anomalies. 

 The 10 Hz spectrogram panel derived from 1.4s to 3.2s is shown in Figure 13. 

The high-amplitude-low-frequency zone begins to shows up in Well A and Well B 

around 2.6 to 3.0 s. The observation matches the spectrogram results of Well A and Well 

B. As the frequency increases, the high energy zones disappear and two obvious trends 
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show up in the 35 Hz spectrogram panel (Figure 14) which agrees the two lithology 

unconformities in Figure 5. Not much useful information is shown in the 55 Hz 

spectrogram panel (Figure 15). 

 

 

 

 

 

Figure 13 Spectrogram of cross section at 16 Hz 
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Figure 14 Spectrogram of cross section at 35 Hz 
 

 

Figure 15 Spectrogram of cross section at 55 Hz 
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2.4.2 Example 2: Yuanba Data Set 

Deeply buried gas reservoirs in Sichuan Basin (Figure 16) provide an important 

future energy resource for China. However, at a depth of about 7km, reservoir rocks are 

highly pressured and could have porosities as low as 3-5%. The seismic reflection signal 

is weak and the signal to noise ratio is also low. One of the greatest difficulties 

encountered is to accurately identify commercial viable targets before drilling. Standard 

3D seismic methods for direct hydrocarbon indication have been often proven 

problematic, if not impossible (Energy News, 2010). Grand challenges and great 

opportunities in detecting deep gas targets at such great depths are promoted. We attempt 

to implement spectral decomposition method via S-transform to identify the responses of 

gas-saturated zones in the time-frequency domain.  

This data set is from Feixianguan-Changxing reservoir in Sichuan Basin. The 

depth of Changxing is around 7154m. It is divided into four intervals based on lithology. 

They are dolomicrite, micrite, mudstone and intrabiopelmictire. Comparingto Changxing, 

Feixianguan is deeper. It reaches Jialinjiang and Changxing. 

 The cross section studied in this section consists of 690 channels for six seconds. 

The seismic data are sampled every one milliseconds. Three wells, A, B and C, are 

presented in the cross-section view. The relative position for each wells are labeled 

respectively (Figure 17). They are Well A (CDP N.O. 5), Well B (CDP N.O. 417) and 

Well C (CDP N.O. 629). A 3D diagram of decomposed cross section (Figure 18) shows 

amplitude variance in related low frequency zone. And in the high frequency zone, there 

is no obvious bright spot shown.   
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Figure 16 Location of the studied area in the Sichuan Basin (Energy News, 2010) 
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Figure 18 The 3D diagram of decomposed cross section 
 

 

Figure 19 Time-frequency distribution at Well A 
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Figure 20 Normalized time-frequency distribution at Well A 
 

 

 

Figure 21 Time-frequency distribution at Well B 
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The spectrograms of three wells are shown in Figure 19, 21 and 23, respectively. 

In Figure 19, two strong frequency anomalies show up at x300s and x800s in the 

frequency zone ranging from 20 Hz to 40 Hz. And, same spectral features exist in Figure 

21. The spectrogram of Well C shows frequency anomalies at x200s and x700s (Figure 

23) which is lower than those from Well A and Well B. These two frequency anomalies 

are coming from the reservoir seals which locate at around x200s and x800s in seismic 

section and show the trends that it is deeper at the location of Well A and lower at Well C 

(Figure 25).  

The bright spots are not obvious in these figures. To amplify the high energy 

zone, we implement normalization in the frequency domain. The equation is defined as 

following: 

)],([

),(
),(

ik

i

tfgMax

tfg
tfg   

where )],([ ik tfgMax  is the maximum value in the specific time range. 
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Figure 22 Normalized time-frequency distribution at Well B 
 

 

 

Figure 23 Time-frequency distribution at Well C 
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Figure 24 Normalized time-frequency distribution at Well C 
 
 

In the normalized time-frequency domain, sharp transitions usually occur 

between the high-frequency anomaly (seal) and the low-frequency anomaly (gas-

saturated zone) (Figure 20, 22 and 24). In the Figure 24, there exist frequency anomalies 

at both x600s and x800s. Compared with seismic section, the tuning of structural 

beddings shows up at x800s and it is because of the formation changing that high 

frequency anomaly turns up in the spectrogram (Figure 25). On the other side, there is no 

structure inconsistent at x600s (Figure 25) where matches the location of the reservoir 

zone in the seismic data. Same phenomena will be observed in Figure 20 and Figure 22.  

 

lithology-tuning 

layers 
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Figure 25 Enlarged parts of the seismic record at Wells A, B and C 

 

After verifying the information from the spectrograms for these three wells, we 

can apply the continue process of the S-transform to the entire 2D seismic data. A cross 

section spectrogram is constructed. Figure 26 shows the corresponding spectrogram at 

10 Hz. The reservoir is anomalously bright at this frequency. However, the most 

intriguing finding is that the zone of abnormally strong low-frequency (around x800ms 

in Figure 26) energy is beneath the reservoir. At 20 Hz the reservoir is clearly defined  
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Figure 26 Spectrogram of cross section at 10 Hz 
 
 

 

(Figure 27), though less anomalous in amplitude, and the energy under the reservoir 

apparent at 10 Hz is gone. The shadow has completely disappeared at 30 Hz (Figure 28).  

Back to the North Sea data, the frequency anomalies also occur around 20 Hz. 

We conclude that gas and oil will absorb the high frequency energy and show strong 

low-frequency energy. Moreover, the low-frequency shadows are much more apparent 

on spectral decomposed data than on seismic sections. 
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Figure 27 Spectrogram of cross section at 18 Hz 
 

 

Figure 28 Spectrogram of cross section at 30 Hz 
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2.5 Conclusions 

In this part of the work, we implement the spectral decomposition on two real 

reservoir data sets. During the first process on the reservoir in North Sea area, the 

signatures of spectrograms fit the background information of real seismic traces. 

Because of the influence from multiples and noises, there exist unexplained frequency 

responses. However, high energy zone can still shows at low frequency and the 

unconformity layer can be observed in corresponding frequency zones. So the spectral 

analysis is proved as a useful tool to assist geological interpretation and hydrocarbon 

detection in the clastic type reservoir. 

The second application of spectral decomposition analysis is on the super deep 

gas reservoir in Sichuan Basin. In normalized time-frequency domain, sharp transitions 

usually occur between the high-frequency anomaly (seal) and low-frequency anomaly 

(gas-saturated zone). Further separation of gas-saturated zones from lithology tuning 

needs integrated interpretation of both time-frequency analysis and seismic waveform 

data in time domain. The apparent frequency of lithology-tuning layers is usually low on 

seismic section whereas that of a gas or oil zone is not. These findings enable us to 

improve rock-physics-based quantitative seismic interpretation for deep gas exploration 

through spectral decomposition analysis.  

Therefore, all the evidence confirms that S-transform decomposition analysis 

technique can be used to assist geological interpretation and hydrocarbon detection in 

both clastic type reservoir and super deep gas reservoirs. 
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3. SHEAR WAVE ANALYSIS 

Surface conditions have great impact on the quality of seismic data collected in 

the field. Strong surface-wave occurrence and its dispersion create severe problems for 

seismic data analysis in the shallow water environment of the Persian Gulf where the 

average water depth is about 10 to 15m. In this area, the velocity of Scholte-waves 

ranges from 450 m/s to about 2100 m/s depending upon the spatial variation of seabed 

shear wave velocity. The P-related surface waves usually have a velocity ranging from 

1300 m/s to 3500 m/s, which are more severely aliased than other waves in the seismic 

record (Sun and Berteussen, 2009). 

In this section, I demonstrate the application of the S-transform and T-F-K 

transform to analyze surface waves. It allows the dynamic analysis of surface wave 

spectrum over time. We could locate and apply a filter to specific time-frequency-

wavenumber zones affected by surface waves, leaving the remainder of the trace 

unaltered. 

3.1 Introduction 

Some important oil and gas fields are in the Persian Gulf where the average water 

depth could be as shallow as 10 to 15m (Sun and Berteussen, 2009). 4C ocean bottom 

cable (OBC) seismic data collected in those areas record strong surface waves due to the 

shallow water depth and hard sea bottom. Sun and Berteussen (2009) showed that the 

recorded surface waves are spatially aliased and dispersive. Also they represented a 
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considerable noise problem not only for the actual shot but also for the subsequent shots 

due to inadequate time delays between shots. The noise causes severe contamination of 

reflection signals. On the other hand, when the surface waves are measured with 

sufficient amplitude, its dispersive characteristics can be used to infer the shear-wave 

properties of the seabed. They could be useful to probe sediment properties of the sea 

bottom where log data are usually not available. Thus a reliable surface wave analysis 

tool could be beneficial to hydrocarbon exploration and reservoir characterization of 

super-giant carbonate reservoirs in the area. 

Classical frequency filtering (or windowed frequency filtering) and F-K filtering 

are two main processing techniques for attenuating surface waves from seismic records. 

These methods are insufficient in Persian Gulf for two reasons. First, these two 

techniques are designed in the frequency domain based on Fourier Transform and have 

the same effect on the whole time series. This brings errors into seismic data processing 

because seismic data, being non-stationary in nature, has varying frequency content in 

time. Second, surface waves are highly dispersed and scattered in the Persian Gulf area 

causing problems of defining a single, appropriate reject zone on the f-k panel. In 

addition, a combination of spatial aliasing and inadequate delays between shots 

challenges data processing (Sun and Berteussen, 2009). Thus, an advanced data analysis 

tool is designed for shallow water environments. 

3.2 Frequency Filtering 

This is the oldest and most common type of filtering. In many cases, frequency 
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filtering is implemented before the signal is amplified. For the dynamic range of the 

recording system is limited, simple frequency filtering is not enough for surface waves 

analysis. Surface waves generated by the shot have large amplitudes which are much 

larger than those from the desired reflections. Moreover, these amplitudes exceed the 

dynamic range of the system, causing distortion and loss of the desired linearity of the 

system. Lowering the sensitivity of the system is undesirable, because this method could 

also decrease the amplitude of the desired signals.  

3.3 F-K Filter  

F-K filter transform separates the original overlapping seismic events on the basis 

of their dips. These operations are in the frequency and wavenmber domain. Suppose 

that the detectors are equally spaced to form a linear array and the signal arrives at 

different time on adjacent detectors, the filter is designed to pass the signal without 

distortion while rejecting the noise. 

First, consider f(x, t) as a function of x alone and t as one parameter and apply the 

Fourier transform, then we have: 






 dxetxftkF jkx2* ),(),(

.
 

Next, consider F*(k, t) as a function of t alone with k as the parameter, then:  






 dtetkFfkF jft2* ),(),(  

Then we have: 
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 dkdfefkFtxf kxftj )(2),(),(   

And 

 








 dxdtetxffkF kxftj )(2),(),(   

It is assumed that plane waves of the signal have different velocities from those 

of the coherent noises. From seismic records, signal and noise spectra are obtained and 

displayed on a graph of frequency versus wave number. Non-dispersive events travelling 

with a constant velocity are described by straight lines through the origin.  

 For these assumptions mentioned above, F-K filtering leads to signal distortion 

and spatial correlation of background noise. It also produces seismic sections of a 

“wormy” appearance, when applied to real data. Moreover, for the shallow water 

environment, this problem is more serious. The surface waves are very strong and highly 

dispersive. The signal band of surface wave affects that of reflection waves. Windowing 

in the time-offset domain followed by F-K filtering has been used as a method to avoid 

signal deterioration. However, this method is still computationally expensive and is of 

limited use for surveys of low-fold coverage. 

3.4 The T-F-K Transform 

A fundamental element of all previous techniques is that they are implemented 

using the Fourier transform, a method that uses orthogonal basis functions that have 

perfect localization in frequency but infinite extent in time; therefore, this method 

assumes that the signal is stationary. This may not be the most appropriate basis dealing 
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with seismic signals, for which the frequency content is very much time dependent. 

Based on S-transform idea, we will design a time varying F-K filter through T-F-

K transform. Basically, the data are first transformed from the t-x domain to the t-k 

domain through 1D Fourier transform over spatial variable, and then are S-transformed 

over time. 

Similar to F-K filter, for a given input signal ),( xtu , we first consider u(x, t) as 

a function of x alone with t as parameter, then: 

dxetxutkF jkx






 2),(),(  

Next consider F (k, t) as a function of t alone with k as a parameter, then define:  






   deftwkFfktF jf2* ))(,(),(),,(  

The TFK transform is defined as: 

  dxdeftwxukftTFK kxfj )(2))(,(),(),,( 






   , 

where ))(,( ftw  is defined as in the previous section. The integration of T-F-K results 

over time can be regarded as the F-K transform of ),( xtu . T-F-K transform appears to 

have advantages over normal F-K transform when the F-K panel of seismic data varies 

over time, especially for the data obtained from shallow water environment. 

3.5 Method 

In the F-K domain, various types of seismic events may be separated from one 

another, compared with the t-x domain representation. The basic idea of separating the 

surface waves is to filter the unwanted energy on the basis of their dips. 
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Filtering in time-frequency representation, such as T-F-K domain, can be 

considered as a procedure of multiplying the spectrum T-F-K(t,f,k) with a filter function 

H(t,f,k), that is assigned high values to useful signals and low ones to unwanted. 

Consequently the filtered output time series is:  

dkkxjdfftjdkfFkfTFKxtu filter )2exp()2exp(),,(),,(),(   











  

We perform our method in the following steps: 

1. Apply the T-F-K transform to the original data, and get the 3D result T-F-K (t, 

f, k) in time-frequency-wavenumber domain. 

2. Identify the time-frequency relationship f (t) of surface wave based on 

specific wavenumber k and the frequency-wavenumber relationship f (k) of 

surface wave based on specific time t. 

3. Design a suitable filter H (t, f, and k) in the T-F-K domain on the basis of T-F 

(k) and F-K (t) to separate the surface wave. 

4. The filtering is imposed on the resulting spectrum within which the 

undesired energy is zeroed out. 

5. Inverse the filtered record through an inverse ST and an inverse FT. 

3.6 Geology Background 

The data analyzed is from Persian Gulf, in southwest Asia (Figure 29). It is an 

extension of the Indian Ocean located between Iran and the Arabian Peninsula. This 

inland sea of some 251000 km2 is connected to the Gulf of Oman in the east by the Strait 

of Hormuz; and its western end is marked by the major river delta of the Shatt al-Arab, 
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which carries the waters of the Euphrates and the Tigris. Its length is 989 kilometers, 

with Iran covering most of the northern coast and Saudi Arabia most of the southern 

coast. The Persian Gulf is about 56 kilometers wide at its narrowest, in the Strait of 

Hormuz. The waters are overall very shallow, with a maximum depth of 90 meters and 

an average depth of 10 meters. 

 

 

Figure 29 Location of the studied area in the Persian Gulf (Radio, 2010) 
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The Persian Gulf and its coastal areas are the world's largest sources of crude oil 

and related industries are dominating in this region. Al-Safaniya, the world's largest 

offshore oilfield, is located in the Persian Gulf. Large gas finds have also been made 

with Qatar and Iran sharing a giant field across the territorial median line (North Field in 

the Qatari sector; South Pars Field in the Iranian sector).  

However, 4C ocean bottom cable (OBC) seismic data collected in those areas 

recorded strong surface waves due to the shallow water depth and hard sea bottom. The 

recorded surface waves are spatially aliased and dispersive. 

3.7 Data and Modeling Analysis 

A 2D 4C OBC data set used for this analysis was acquired in the Persian Gulf 

where the locale has a very shallow water depth of about 10 m and a hard bottom with P-

wave velocity varying from 3 to 4.8 km/s (Sun and Berteussen, 2009). 

Figure 30 shows part of a hydrophone record from this data set. The maximum 

offset of the field data is 10km. The receiver interval is 25m and the recording length is 6 

seconds. Surface waves existing in this marine data are trapped waves in the water 

column and interface waves generated in hard sea-bottom. It displays very strong 

Scholte waves (Label A, D in Figure 30), P-related interface waves (Label B in Figure 

30) and reflected waves (Label C in Figure 30) which all influence the interpretation of 

reflection events. Because of the very shallow water depth, the Scholte wave keeps 

rolling for a very long time which represents a serious problem to the data processing. 

Both the Scholte wave from the present shot (Label D in the Figure 30) and the previous 

http://en.wikipedia.org/wiki/Oilfield
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shot (Label A in the Figure 30) present in the shot record. We also note that the velocity 

of the Scholte wave. After zooming in the middle part of the shot record (the red square 

in the Figure 30), we notice the Scholte waves still present a very low velocity (as shown 

in Figure 31). The reason for this phenomenon is difficult to speculate.  

  

Figure 30 Portion of a typical hydrophone shot gather in the Persian Gulf 
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Figure 31 Enlarged portion of the record given in Figure 30 showing surface wave 
contamination of reflected signals 

 

 

Figure 32 Enlarged portion of the record given in Figure 30 showing surface wave  
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Figure 33 indicates the T-F-K transform of the record in Figure 30 at time 600ms. 

Different seismic events are obviously separated. The dominant frequency of Scholte 

waves is relatively low (less than12 Hz). However, the dipping events are curved instead 

of straight lines in the F-K domain (the curved line in Figure 33), meaning that the 

velocity of the Scholte waves is dispersive in the shallow environment. The velocity of 

Scholte waves is in the range from 450m/s to 2100m/s. The dominant frequency of P-

related interface waves is in the range from 20 Hz to 50Hz. However, the spatial aliasing 

of strong surface waves affects the signal band of reflected waves (as shown with the red 

square in Figure 30). For the geometric spreading, the energy will decrease with time 

and the frequency distribution changes with time. In such case, surface wave extraction 

can no longer be done by a well-localized filter. Moreover, the frequency-domain and 

frequency-time domain should be considered separately under such circumstance. 

Following the steps discussed in the previous section, we could design the 

weighting function or the filter F (t, f, k) to extract or remove the surface wave, P-related 

interface waves and reflected waves separately. The corresponding results are shown in 

Figure 34, Figure 35 and Figure 36, respectively. Almost no seismic reflection has been 

removed (Figure 36) and surface wave are extracted (Figure 34 and 35). The reflections 

are clearly visible inside the Scholte wave zone because of a good separation between 

surface wave and reflection energy in the frequency domain. Two parts of the Scholte 

waves are exstracted (Figure 34) and the very low velocity part also is presented. 
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Figure 33 A F-K spectrum at t =600ms 
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Surface wave dispersion arises because of the velocity stratification of the Earth‟s 

interior, longer wavelengths penetrating to greater depths and hence sampling higher 

velocities. A good extraction of surface wave brings the chance to infer the shear-wave 

properties of the sea bed. Very low velocity Scholte wave strongly occurs in shallow 

environment. This observation could help us to further study the geological properties of 

the seafloor sediment via surface waves in shallow water environment. 

 

 

Figure 34 Separated Scholte waves from the record in Figure 30 
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Figure 35 P-related interface waves from the record in Figure 30 

 

 

Figure 36 Reflected waves after removal of the surface waves 
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3.8 Conclusions 

In this part, we present a time-dependent F-K filter in hard bottom shallow water 

environments. It filters time varying seismic waves and distinguishes between signals of 

the same frequency at different times. We implement this method to extract Scholte 

waves, interface waves and multiple waves from OBS data without removing other 

seismic signals. In future work, the shear velocity and attenuation properties of the sea 

beds can be determined through measured propagation characteristics of the surface 

waves. This method could be helpful for seismic data interpretation and reservoir 

characterization.  
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4. CONCLUSIONS 

Different subsurface structures respond differently to each frequency component 

of the incident waves. Amplitude and phase spectra of a seismic pulse change during 

propagation due to attenuation, dispersion and scattering. Spectral decomposition allows 

us to view subsurface seismic interference at discrete frequencies. This spectral view 

provides substantially more detail and fidelity than full bandwidth conventional 

attributes. It reveals stratigraphic and/or structural edges as well as relative thickening 

and thinning.  

Although Fourier transform and short Fourier transform can be used for spectral 

decomposition analysis, S-transform shows better result theoretically because of its 

ability of handling the non-stationary seismic wave. Combing the advantages of short-

time Fourier analysis and wavelet analysis, S-transform can preserve the phase 

information in the decomposition and present time-dependent isofrequency profiles. 

Spectral decomposition using S-transform thus allows a continuous time-varying 

analysis of the effects of lithology and fluid changes on frequency content.  

In my study, I first implement the spectral decomposition method on North Sea 

data to detect the bright spot. Our results show that for the studied datasets, low-

frequency anomalies around 15-19 Hz are usually associated with gas-saturated or oil-

saturated zones whereas high-frequency variations are more possible due to oil-saturated 

zone, anomalies around 30-40 Hz are usually associated with lithology tuning. Then the 

implementation on a data set from a super deep gas reservoir shows that, in the 
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normalized frequency time domain, high-frequency anomaly (seal) is due to the tuning 

of structural beddings and low-frequency anomaly (gas-saturated zone) is rather from 

intrinsic attenuation and resonance caused by the presence of gas. The result from both 

data sets demonstrates that the iso-frequency panel on specific frequency could show the 

oil or gas distribution in the reservoir. Data analysis leads us to believe that this 

technique might hold a potential to detect hydrocarbon zones by identifying low 

frequency energy anomalies in the normal trend of frequency decay with depth or two-

way travel time.  

Then I extend the application of S-transform to filter design. The time-dependent 

F-K filter could locate the seismic events basing on different time and frequency. It 

could separate the reflect waves from the Scholte waves and other surface wave in the 

shallow water environment. This method is used to extract Scholte waves, interface 

waves and multiple waves from OBS data without removing other useful seismic 

reflection signals. In future work, the shear velocity and attenuation properties of the 

seabeds could be determined through measured propagation characteristics of the surface 

waves. This method could be helpful for seismic data interpretation and reservoir 

characterization.  
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