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ABSTRACT 

 

Interfacial Interactions between Biomolecules and Materials. (August 2011) 

Aracely Rocha-Zapata, B.S., The University of Texas-PanAmerican; 

M.S., Texas A&M University 

Chair of Advisory Committee: Dr. Hong Liang 

 

This research investigates the interfacial interactions between biological entities 

and synthetic materials at two length scales: bulk and nanometer size. At the bulk scale, 

biomolecule adhesion is key for synthetic material incorporation in the body. 

Quantifying the adhesion strength becomes necessary. For the nanometer scale, the 

nanoparticles are generally delivered through the blood stream and their effect on the 

blood flow must be studied.  

An experimental approach was taken to study interaction at both material length 

scales. The cell/protein adhesion strength to bulk-sized materials was studied. The goal 

was to identify the most influential factor affecting adhesion: chemistry or surface 

roughness. The effects of nanoparticles on the viscosity of protein and amino acid 

solutions were measured. A statistical thermodynamic analysis was focused on the 

entropy change induced by the addition of gold nanoparticles to protein/amino acid 

solutions. 

Rheological studies were applied. A rheometer with a parallel plate was used to 

quantify the adhesion strength of cells and proteins to synthetic surfaces at the bulk 
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scale. The adhesion strength depends on the applied shear stress and the radius of cells 

or proteins that remained attached to the surface after testing. At the nanometer scale, the 

viscosity of the nanoparticle enhanced protein or amino acid solutions were measured 

with a cone and plate.  

The adhesion studies were conducted with the following biological entities: 

fibroblasts, egg-white protein, and neurons. The fibroblast adhesion to poly(carbonate) 

and poly(methyl methacrylate) demonstrate fibroblasts are strongly attached to highly 

polar materials. Protein adhesion to titanium and chromium nitride coatings showed that 

chemical composition is the most influential factor. The neuron adhesion to poly-D-

lysine coated glass demonstrated that neuron strengthening was due to an increase in 

adhesion molecules at the neuron/material interface. For nanoparticulates, it was found 

that the charged nanoparticles affect the protein and amino acid conformation and the 

potential energy of the solutions. 

Quantifying biomolecule adhesion to surfaces and predicting the behavior of 

nanoparticles inside a biological system are crucial for material selection and 

application. The major impact of this research lies in observing the interaction 

mechanisms at the interfaces of material-biological entities.   
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NOMENCLATURE 

 

NP  nanoparticle 

NG  negative gold nanoparticle 

PG  positive gold nanoparticle  

L  lysine 

A  arginine 

GA  glutamic acid 

AA  aspartic acid 

CNS   central nervous system 

DI  de-ionized water 

PC  poly(carbonate) 

PMMA  poly(methyl methacrylate) 

PAH  poly(allylamine hydrochloride)  

CTAB  cetyltrimethylammonium bromide  
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CHAPTER I 

 

INTRODUCTION∗ 

 

This chapter provides some basic information on the response of biological 

entities to foreign materials. Topics include adhesion of biomolecules, or cells to synthetic 

materials of various sizes, methods of evaluation, and effects of nanoparticles on central 

nervous systems.   

1.1. Materials and the human body 

Materials are extensively used in the human body for temporary and long-term 

applications. Such materials are identified as biomaterials. Although the term biomaterials 

was introduced approximately 50 years ago (1), the use of synthetic materials for medical 

applications dates back many centuries. Evidence shows the use of materials in medicine 

dates back over 2000 years by the Aztecs, Egyptians, and Greeks (1, 2).  

Metals (3-6), polymers (7-9), ceramics (10-12), composite materials (13-15), and 

more recently nanomaterials (6, 16-21) are used in the body for a broad range of 

applications. Some applications are intended to: regain function (heart valves, ocular 

________________
 

This dissertation follows the style of the Proceedings of the National Academy of Sciences of the United 
States of America. 

   
*  Part of the information reported in this chapter is reprinted with permission from “In vivo observation of 

gold nanoparticles in the central nervous system of Blaberus discoidalis” A Rocha, Y Zhou, S Kundu, JM 
Gonzalez, SB Vinson, H Liang. Journal of Nanobiotechnology, 9 (1):5-13. Copyright 2011 by BioMed 
Central. 
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implants, and prosthetic devices), relieve pain (artificial joints and drug delivery), or for 

aesthetic reasons (dental implants and contact lenses) to name a few.  

Modern biomaterials have been far improved from what they were 2000 years ago. 

Nowadays, biomaterials are engineered for specific applications or to induce specific 

reactions in the body. Some materials are designed to enhance cell growth (22-24), to 

withstand the corrosive body environment (25-27), or to provide structural support (28-

30). These are just a few in a vast number of examples. 

Independent of the application is the fact that the synthetic materials interact with 

the biological materials found in the body, namely tissues, cells, proteins and amino acids 

depending on the application of interest. Needless to say, the biomaterial interaction with 

the body is a surface/interface phenomenon. 

The degree of interaction at the material/biomolecule interface depends greatly on 

the application. For example, material/biomolecule interaction is undesirable for contact 

lenses. We neither want, nor expect the eye to react or adhere to the contact lens. On the 

other hand, a permanent implant, such as an artificial joint, must interact with the cells 

and tissues surrounding it to guarantee its success. So the most important aspect to study 

material/biomolecule interaction is to understand its need and expected outcome.  

The first question that must be addressed is how does the body respond when a 

foreign material is introduced? The answer to this question is far from simple. Chemists, 

chemical engineers, material scientists, mechanical engineers, surface scientists, 

bioengineers, biologists, and physicians have been studying it for many years (2, 6). In 
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this work, we will focus on the material/biomolecule study from an engineering and 

materials science point of view.  

The material/biomolecule interaction has been widely studied. It is well known 

that within seconds of material implantation, proteins are adsorbed onto the materials’ 

surface. Protein adsorption aids in material incorporation into the body. Therefore, the 

adsorption of proteins onto the surface of biomaterials has been studied for decades. Once 

the layer of proteins forms around the material, the tissue cells begin to agglomerate 

around the protein layer and attach to the surface. Moreover, the cellular adhesion 

significantly affects their behavior and normal function. This tells us two things. First, that 

cell adhesion is an important aspect of foreign material incorporation and second, that 

protein adsorption and interaction with the material significantly affects the cell 

interaction and behavior.(2, 6) Figure 1 shows the initial body’s response to foreign 

materials its observed time-scales.(2)  

The next question that must be addressed is how can we study the interaction 

mechanisms? What should we be looking for at the material/biomolecule interface? The 

interaction greatly depends on the material scale. Bulk materials are expected to interact 

with cells and whole tissues while nano materials will interact mainly with proteins and 

amino acids. 
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Figure 1 Body response to biomaterials (2) 

1.2. Bulk material/cell interaction studies 

The interaction of biomolecules with bulk materials is greatly dependent on their 

adhesion because it is what mediates cell function (31-37). Therefore, measuring cell 

adhesion to bulk materials is essential to study their interaction mechanisms. Quantifying 

cell-material adhesion has been one of the most importuned steps in improving 

biomaterial performance (38). Given the nature of the material/biomolecule interaction for 

the bulk-sized material, it is of utmost importance to study the materials’ interaction 

mechanisms with a cell network instead of individual cells (39, 40). 

Material’s surface chemistry and surface roughness have been identified as the 

main factors affecting biomolecule adhesion (41). Therefore, quantifying the effect of 

materials’ chemistry and surface roughness on cell adhesion is essential. Quantifying 
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cellular adhesion and protein interaction with nanomaterials is a key factor into predicting 

and potentially controlling their behavior in vivo. 

Using fluid flow to study the detachment of cells from the surface is widely used 

(33, 42-51). Although previous work provides great insights into rotational flow design 

and cell response, quantifying the material/biomolecule adhesion strength has not been the 

main focus. Additionally, few systems can be used to compare the strength of adhesion 

between many different materials and/or biomolecules.  

1.3. Bulk material/protein interaction studies 

The human body is an amazing and complex machine. For centuries, men have 

been in the search to understand how it works. It is extraordinary to know that all body 

functions are due to well balanced protein interactions. Proteins are present in the body by 

the billions and their function controls even the simplest of tasks in the body. Proteins are 

organic macromolecules whose building blocks are called amino acids (6). Proteins 

control all cell functions including cell-cell and cell-foreign material interactions (52).  

For decades, there has been an interest in understanding how proteins adsorb onto 

materials in bulk. This process is generally represented with an adsorption isotherm (53-

55). The adsorption isotherm is a parameter that indicates the interaction between proteins 

and a biomaterial. It is traditionally used for protein / bulk polymer pairs.  

The adsorption isotherms are equations that represent how likely proteins are to 

interact with a surface. This value strongly depends on the concentration of proteins; i.e. if 

there are more proteins available, there would be a thicker layer of proteins that 

accumulate around a material. However, there is a limit to how many proteins can be 
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adsorbed on the surface of a material so the curve plateaus. This type of equation or 

relationship is independent of temperature and it is simply called an isotherm due to its 

characteristic curve (see Figure 2).  

 
Figure 2 Protein adsorption onto a surface depends on protein concentration. The plateau 

indicates the concentration of the protein monolayer 

There are two main models used to represent the protein/biomaterial adsorption, 

the Langmuir and the Freundlich models. The Langmuir model was developed for gasses 

but it has been adapted to protein/polymer pairs with great success (53). The Langmuir 

equation is: 

                                           Cs 
୥

ୡ୫మ ൌ
ெ
஺ேಲ

ቀ ௄஼್
ଵା௄஼್

ቁ  [1] 

where Cs is the protein adsorption on the surface in g/cm2, M is the protein’s molecular 

weight, K is an equilibrium adsorption constant, Cb is the grams of protein per mL of 

solution, A is the area and NA is Avogadro’s number (53). The value of K depends on the 

material/protein pair. 
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The second common equation to represent the protein adsorption isotherm is the 

Freundlich adsorption isotherm (53). This however, is an empirical relation of the form: 

 C 
୥

ୡ୫మ = K(Cb)1/n                                          [2] 

In this equation, C is the surface protein concentration in g/cm2, Cb is the 

concentration of protein in the solution, K depends on how likely a surface is to adsorb 

protein and n in the intensity of adsorption (53). Specific values for K and n for any given 

protein/material pair must be found experimentally.  

Another method for identifying the protein/material interaction is to quantify its 

potential energy (54). The total potential energy is the result of the primary and induced 

electrostatic energies, the dispersive attraction and repulsion (54). The accuracy of the 

calculated potential energy depends greatly on the amount of proteins present in the 

system and the distance between proteins. Protein quantification and equilibrium distance 

measurements are challenging.  

Moreover, these models do not predict the strength of the material/protein 

interaction. The models simply analyze how likely the protein is to be attracted to the 

materials’ surface. 

1.4. Nanomaterial/protein and amino acid interaction studies 

Nanomedicine is an exciting emerging field that utilizes nanomaterials to help 

reach places that traditional medicine does not allow. Nanomaterials are widely studied 

for medical applications and have successfully been used for imaging and targeted drug 
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delivery (20, 21, 56-58). It has been established that nanomaterials are those with at least 

one dimension <100nm.  

Until now it is known that when materials are introduced into the human body, 

proteins will surround the material in an attempt to incorporate it. This protein adsorption 

is also true for nanomaterials (59-62). 

In a recent study, Cheng and colleagues successfully demonstrated that a PEG/ 

gold nanoparticle was faster and more effective as a drug carrier to treat cancer bearing 

mice than the pure drug (63). The results indicate an effective drug delivery within two 

hours and the tumors receded within one week (63). The results show success but not 

much detail is provided as to how this PEG/gold nanoparticle moves through the blood 

stream to the tumor site.  

Others, like Chithrani and Chang have a step further into understanding the 

nanoparticle uptake by cells; i.e. how nanoparticles get into and out of cells (64). Most 

importantly, how particle size and surface treatment (by protein coating) affects the time it 

takes for nanoparticles to enter and exit the cell (64). These results provide a better 

understanding about the nanoparticle size effect and its interaction with proteins. More 

importantly, how these will affect the behavior and normal function of the cells. 

To date, research has been focused on identifying the applicability and efficacy of 

nanoparticles for drug delivery and also how surface treatments make the nanoparticle 

more or less likely to interact with cells. But do nanoparticles have a preference to which 

proteins they interact with? What dictates this preference? Most importantly, can we 

predict this interaction? 
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In addition, the surface of the nanomaterials must be functionalized to guarantee 

interaction with specific biomolecules once they are injected (65). Functionalization is a 

process where molecules are attached to the nanoparticles’ surface to ensure its interaction 

with specific tissues. In addition, nanoparticles can be functionalized with the drug that 

needs to be delivered.   

Nanoparticles for drug delivery and imaging are generally introduced to the body 

via the blood stream (63). Studying the effect that functionalized nanomaterials will have 

on blood flow is a question that deserves attention. Nanofluid research has demonstrated 

how the viscosity significantly increases with the addition of nanoparticles (66-69) as 

demonstrated by Prasher et al. and shown in Figure 3. Based on the effect that 

nanoparticles have on viscosity of fluids, increased pumping power is required (70). This 

presents a potential risk to the body. 

 
Figure 3 Effect of nanoparticle volume fraction on nanofluid viscosity (67)  
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The flow properties of the nanomaterial/biomolecule solution must be studied to 

assess the risk. The system under study gets very complicated given that nanomaterial-

nanomaterial, nanomaterial-protein, and protein-protein interactions are expected. This is 

without considering the effects of the functional group attached to the nanomaterials’ 

surface.  

Furthermore, research has shown that some solvents affect the conformation of 

proteins and amino acids in solution (71, 72). This can cause a significant change in the 

viscosity and structural integrity of the solution.  

1.5. In vivo nanomaterials and the CNS 

Nanomaterials have been successfully used for medical applications. The nervous 

system could greatly benefit from nanomedicine. Nanomaterials can reach places that 

traditional medicine does not allow. The work of Provenzale and colleagues has 

demonstrated the use of nanomaterials for imaging of the nervous system (73). Bagley 

discusses in great detail the possible methods of drug delivery to the nervous system with 

nanoparticles as the drug carriers (74).  

Common biological systems, mainly mice, currently used to study, analyze, and 

test in vivo treatments for neuron damage and repair are expensive and many times 

difficult to maintain. It is necessary to find a suitable biological system that is 

inexpensive, easy to maintain, and handle. As early as in 1990, Huber et al. reported 

cockroaches as good candidates for neurobiology studies (75). This idea was later applied 

by Scharrer for endocrine studies (76). There are reports proving the similarities between 

vertebrate and invertebrate brains (77). In particular, non-vertebrate systems such as 
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cockroaches were ideal models for neurotoxicology studies (78). The comparison between 

invertebrate (like cockroaches) and vertebrate (like mice) has been made in terms of their 

behavior, anatomy, biology, and physiology. Invertebrate subjects are not only cost 

effective and readily available, but also they do not feel pain (79). This opens new 

avenues for experimental protocols and controls currently implemented in vertebrate 

animals and humans.  

Cockroaches have been used as model systems for neurological research. Early 

neurobiology cockroach research has been focused on octopamine and serotonin response 

in the nervous system (NS). Previous studies were to observe how chemicals were 

distributed in the brain and how they affected the nervous system (80, 81). In more recent 

work by Brown et al., roaches were used to study how age affects memory and brain 

integrity (82). 

Perhaps nanomaterials can be used to repair a damaged nerve, a very difficult task 

with current technology, but at what cost? The effect of the functionalized nanomaterial 

on the communication channels of the nervous system is a subject that deserves attention. 

Using the cockroach as a system of study will help find the answer.  
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CHAPTER II 

 

MOTIVATION AND OBJECTIVES 

 

The most important objective of this research is to comprehend how materials and 

biomolecules interface at the bulk and nanometer length scales. Polymers, metals, and 

ceramics have been used in the body for many applications. Independent of its application 

is the fact that these materials have to interact with the cells and proteins in the body. The 

main questions this research wants to address are why their interaction is important and 

how they interact. 

For the long-term applications of bulk materials, like artificial joints, it is 

necessary that the tissues surrounding it recognize the implant’s surface as part of the 

body. If there is poor interaction (i.e. poor adhesion) at the material/tissue interface, the 

tissue’s behavior will be significantly affected causing tissue death. For nanomaterials, 

which are mainly used for imaging and drug delivery systems, it is necessary to 

understand how these functionalized nanoparticles will interact with the body. 

Nanoparticles are usually delivered through the blood stream and the effect they have on 

the flow properties must be addressed.  

In order to understand the interaction mechanisms at the biomolecule/material 

interface this work will address the following objectives: 
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1. Develop a methodology to quantitavely evaluate the interactions of cells and 

proteins on a material’s surface and identify the main factor affecting 

adhesion: materials chemistry or surface roughness. 

2. Obtain fundamental understanding in effects of fluid shear on cell adhesion. 

Mainly, to quantify the strengthening mechanisms of the cells when externally 

stimulated by the applied flow. 

3. Quantify changes in viscosity of protein and amino acid solutions when mixed 

with nanoparticles and estimate the potential energy change due to their 

interaction. 

Experimental and analytical approaches will be used for this research. Figure 4 is 

the summary of the proposed work flow representing different length scales. The 

biomolecules / material interaction study will be separated into materials at two scales. 

The first approach will be to study how cells and proteins adhere to materials in bulk. The 

second is for materials in the nanometer scale. For this work, the effect of adsorbed 

proteins on gold nanoparticles will be analyzed. The effects that nanoparticle size, 

concentration and surface charge have on the flow properties of protein solutions will be 

studied. To obtain better understanding of the preference and interaction of specific 

proteins to nanoparticles, the biomolecules will be further simplified by analyzing the 

effects of nanoparticles on amino acid solutions.   
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Figure 4 Proposed work flow  

We will conclude this research by analyzing the in vivo interactions of charged 

gold nanoparticles on the central nervous system of the cockroach. Such understanding 

would help us predict nanoparticle behavior in vivo and would help identify the insect as a 

viable system for nanomedicine studies.  
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CHAPTER III 

 

METHODOLOGIES∗   

 

In this chapter, all materials and methods used are described. The first part 

introduces the biomolecules: 3T3 Swiss mouse fibroblasts, 12-day-old chick embryo 

neurons, egg-white protein, bovine serum, L-arginine, L-lysine, L-aspartic acid, and L-

glutamic acid. The materials at two scales: bulk (poly-carbonate, poly(methyl 

methacrylate) and poly-D-lysine coated glass) and nano (negatively and positively 

charged gold nanoparticles). The second part discusses a methodology developed in this 

research using a rheological approach. Finally, characterization techniques used are 

described. The techniques used to obtain material properties include: surface roughness, 

contact angle, EDS, and XRD and for physical properties: digital microscope, confocal 

microscope, SEM, TEM, AFM, XPS, and hyperspectral imaging.  

_______ 
  
∗  Part of the information reported in this chapter is reprinted with permission from “Critical fluid shear stress 

analysis for cell–polymer adhesion” A. Rocha, M. Hahn, H. Liang, 2010. Journal of Materials Science, 45 
(3): 811-817, Copyright 2010 by Springer/Kluwer Academic Publishers and from “Neuron adhesion and 
strengthening” A. Rocha, K. Jian, G. Ko, H. Liang, 2010. Journal of Applied Physics, 108 (2): 024702-
024706, Copyright 2010 by American Institute of Physics and from “In vivo observation of gold 
nanoparticles in the central nervous system of Blaberus discoidalis” A. Rocha, Y. Zhou, S. Kundu, J.M. 
Gonzalez, S.B. Vinson, H. Liang, 2011. Journal of Nanobiotechnology, 9 (1): 5-13 Copyright 2011 by 
BioMed Central. 
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3.1. Materials  

3.1.1. Bulk materials 

The materials used for bulk-scale interaction include: polymers, glass, and metallic 

coatings. The interaction of these materials with cells and proteins is studied. 

3.1.1.1. Polymers 

Poly(methyl methacrylate) (PMMA) and polycarbonate (PC) were the two 

polymeric materials selected. PMMA is used as dental cement (83) and PC is used for 

renal dialysis as for surgical instruments (84). The substrate materials were cut into 3 x 3 

cm2. The samples were cleaned by rinsing in ethanol followed by air-drying in a laminar 

flow hood. They were then sterilized by shortwave UV irradiation for 24 hours in a 

laminar flow hood. The samples were placed in a sterile 6-well culture dish (Falcon). The 

surface roughness and contact angle of the PC and PMMA substrates were measured 

before and after sample preparation. The repeat unit of the PC and PMMA are shown in 

Figures 5 and 6 respectively. A summary of their properties is given in Table 1.  

 
Figure 5 PC repeat unit 
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Figure 6 PMMA repeat unit 

Table 1 Properties of PC and PMMA 

 

3.1.1.2. Protein coated glass 

Glass is a standard material used in cell culture studies. The glass must be coated 

with protein to ensure interaction. The 25mm diameter glass coverslips (Carolina 

Biological Supply Co.) were coated with poly-D-lysine (Sigma, St. Louise). The 

molecular structure of the poly-D-lysine is shown in Figure 7. The properties of the 

sample are summarized in Table 2.  

 
Figure 7 Repeat unit of D-lysine 
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Table 2 Properties of poly-D-lysine coated glass 

 

3.1.1.3. Metals 

Titanium (Ti) alloy and cobalt-chrome (CoCr) alloys are widely used in high wear 

biological applications. Unfortunately, wear is still an issue. Four coating materials were 

selected as potential candidates to decrease surface wear in biological applications: TiN, 

TiAlN, CrN, and CrAlN. Two substrates were used: Si and Ti. The (111) Si wafer was 

used as received with no further surface treatment. The Ti alloy samples were 

mechanically polished with 600 grit-sandpaper and with polishing cloth and 5, 3.5, and 

1nm diamond particle polishing paste to reach an average surface roughness (Ra) of 

150nm and 30nm respectively.  The materials and targeted surface roughness are 

indicated in Table 3.  

Table 3 Summary of selected materials, target surface roughness and 
polishing method 
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The coatings were prepared by asymmetric bipolar pulsed reactive magnetron 

sputtering under a high purity nitrogen environment. The samples were ultrasonically 

cleaned in acetone twice for 10 minutes, once in ethanol for 10 minutes and forced air 

dried prior to coating. The pressure was set at 8×10-4 Pa. The leak rate was below 5×10-2 

Pa/s. Argon gas was used to ignite the arcs, its flow rate was constant. The substrates were 

mounted on rotating fixtures at 200mm from the targets (85, 86).  

The coating material and surface roughness were selected to identify the most 

important factor in protein adhesion: chemistry of the coating material or surface 

roughness. Furthermore, two substrates were selected to identify if the substrate material 

had any effect on protein interaction. 

3.1.2. Nanomaterials 

Nanomaterials are widely investigated for medical applications. Gold is one of the 

main materials used in nanomedicine (87-89). Gold nanoparticles must be functionalized 

to enhance its interaction with specific cells or proteins.  

The gold nanoparticles used in this work are assembled with a bottom up approach 

using gold seeds. These particles absorb a 510nm light wave and emit at 560 nm (90-92). 

This allows for fluorescent and spectral imaging to identify the presence of nanoparticles 

embedded in biomolecules without adding fluorescent tags.  

The synthesis of gold nanoparticle seeds is as follows: 250μl of 0.01 M HAuCl4 

solution was added to 10ml of 0.1 M CTAB (Cetyltrimethylammonium bromide) solution 

while stirring. Then 0.60 ml of 0.01 M sodium borohydride was added. This forms a 
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brown-yellow solution. The solution was vigorously stirred at 25 °C for 2min. This 

process yields spherical gold seeds with approximately 4nm diameter. 

3.1.2.1. Negatively charged gold nanoparticles 

The Turkevich wet chemical method was used to synthesize the gold nanoparticles 

(93). The Au particles are suspended in DI water by the negatively charged tri-sodium-

citrate molecule (i.e. citrate) (93). The chemical composition of citrate is shown in Figure 

8. The target nanoparticle sizes for this study were 10, 20, and 50 nm. 

 
Figure 8 Citrate repeat unit 

Briefly, the ingredients were prepared before nanoparticle synthesis. Hydrogen 

tetrachloroaurate tri-hydrate, tri-sodium citrate dihydrate (both from Sigma-Aldrich), and 

de-ionized (DI) water were used to make the nanoparticles.  The gold precursor is 

hydrogen tetrachloroaurate tri-hydrate. Tri-sodium citrate dihydrate solution controls the 

particle growth. Tri-sodium citrate is the reducing and stabilizing agent for the gold 

particle formation (93).  

The 1.25 mL of aqueous gold chloride with a concentration of 10-2 (M) was mixed 

with 48.35 ml of de-ionized water. The resulting mixture was heated to 80 °C while being 

magnetically stirred. The 1 wt% of tri-sodium citrate solution was slowly added while 
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continuously stirring and heating. The amount added depends on the targeted nanoparticle 

size. The solution color depends on the nanoparticle size. Once the solution turned wine-

red, the solution was stirred for another 10-15 minutes. The nanoparticle concentration 

can be controlled by addeing more DI water. Typically, DI water was added to complete 

50mL. The particle’s size depends on the volume of citrate solution in the reaction 

mixture (93).  

Figures 9 to 11 show the actual particle size distribution for the negatively charged 

gold nanoparticles used in this study. The average nanoparticle diameters are 13.8 ±1.1 

nm, 20.0 ±3.1 nm, and 43.9 ±5.2 nm for the solutions labeled 10, 20, and 50nm 

respectively.  

 
Figure 9 Particle size distribution for the negatively charged gold nanoparticles labeled as 

10nm. The average size is 13.8 ±1.1 nm 
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Figure 10 Particle size distribution for the negatively charged gold nanoparticles labeled 

as 20nm. The average size is 20.0 ±3.1 nm 

 
Figure 11 Particle size distribution for the negatively charged gold nanoparticles labeled 

as 50nm. The average size is 43.9 ±5.2 nm.  

3.1.2.2. Positively charged gold nanoparticles 

Two surfactant materials are used to achieve different nanoparticle sizes. 

poly(allylamine hydrochloride) (PAH) is used to fabricate 20nm size nanoparticles while 

Cetyltrimethylammonium bromide (CTAB) is used to fabricate other sizes. The 
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nanoparticle size will depend on the concentration of PAH or CTAB and gold in the 

solution. The molecular structure of PAH and CTAB are given in Figure 12. 

 
Figure 12 Molecular structure of CTAB and PAH 

To make the 10 and 50 nm diameter nanoparticles, three growth solutions are 

needed for seed-mediated growth steps. Solutions A and B had 0.25 mL of chloroauric 

acid at a concentration of 0.01 M, 0.05 mL of 0.1M sodium hydroxide, 0.05 mL of 

ascorbic acid with a concentration of 0.1M, and 9 mL of CTAB solution with a 

concentration of 0.01 M. Solution C had 2.5 mL of chloroauric acid at a concentration of 

0.01 M, 0.50 mL of sodium hydroxide at a concentration of 0.1 M, 0.50 mL of ascorbic 

acid with a concentration of 0.1M, and 9 mL of CTAB solution at a concentration of 

0.075 M. Nanosphere formation started by mixing solution A to 1 mL of gold seed. The 

mixture was allowed to set for five minutes, then 1 mL of the new mixture was added to 

solution B. The new mixture was allowed to set for another five minutes and was then 

mixed with solution C. After 30 minutes, the final solution changed from clear to deep 

magenta-purple. Excess CTAB solution was removed by centrifuging the solution and 

resuspended in DI water to control the nanoparticle concentration. 

The 20 nm nanoparticle was made with PAH surfactant. Details of this process 

have been published elsewhere (94, 95). Briefly, the PAH solution was prepared by 
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dissolving 0.1 wt% PAH in ultra pure distilled water. The solution was stirred for 10 

hours while protected against light. Then 5 mL of 0.1wt% PAH solution was added to 200 

μL of chloroauric acid at a concentration of 0.01 M. The resulting solution was stirred for 

2–3 min. The solution was heated for 30–60 s in a microwave in 10 s intervals (94, 95). 

The resulting solution is stable for over six months when stored at standard temperature 

and pressure.  

Figures 13 to 15 show the actual particle size distribution for the positively 

charged gold nanoparticles used in this study. The average nanoparticle diameters are 8.18 

±2.1 nm, 26.8 ±4.4 nm, and 49.2 ±3.3 nm for the solutions labeled 10, 20, and 50nm 

respectively. 

 
Figure 13 Particle size distribution for positively charged gold nanoparticles labeled as 

10nm. The average size is 8.18 ±2.1 nm 
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Figure 14 Particle size distribution for positively charged gold nanoparticles labeled as 

20nm. The average size is 26.8 ±4.4 nm 

 
Figure 15 Particle size distribution for positively charged gold nanoparticles labeled as 

50nm. The average size is 49.2 ±3.3 

3.1.3. Biomolecules 

In this work, biomolecules refers to any cell, protein, and amino acid. Cells and 

proteins are studied for their interaction with bulk materials while proteins and amino 

acids are studied for their interaction with nanomaterials. 
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3.1.3.1. Cells 

Two cell types were used in this study, 3T3 Swiss mouse fibroblasts and 12-day-

old chick embryos. The cells used in this study were cultured 24 hours prior to adhesion 

testing for consistency and to ensure cell stability and adhesion. A minimum of 60% 

surface coverage by cells was required for testing.   

3.1.3.1.1. 3T3 Swiss mouse fibroblasts 

The sample preparation has been discussed in detail (39). Briefly, NIH/3T3 

fibroblasts (ATCC) were expanded in cell culture media (Dubelcco’s Modified Eagles 

Medium with 10% bovine calf serum and penicillin/streptomycin) and maintained at 37oC 

in 5% CO2. All cell culture reagents were obtained from Cell Applications unless 

otherwise stated. Cells at passage 9-12 were harvested from T75 cell culture flasks and 

pelleted by centrifugation. The cells were resuspended in fresh cell culture media and 

counted using a hemacytometer. Cells were then seeded on each substrate at 5,000 

cells/cm2. Cell density on the sample was verified by cell count after 2 and 24 hours of 

seeding. 

Immediately prior to testing, the cell culture media was exchanged with 

physiological phosphate buffered saline (PBS). All tests were performed with a controlled 

maximum shear stress at 37oC.  Two cell cultured samples of each material were tested 

and measurement was repeated for at least six times. The sample-to-spindle gap was set to 

480μm. Samples were tested at the applied shear for 10 minutes. The applied shear 

stabilizes after 2 minutes.  
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Cells were fixed immediately after testing. The samples were immersed in 

formalin for 24 hours to fix the cells. The fixed samples were dehydrated in graded 

ethanol baths for scanning electron microscopy (SEM). Formalin was used as a fixative to 

prevent the cells from moving. Subsequently, samples were sputter-coated with gold and 

imaged with a JEOL JSM-6400 Scanning Electron Microscope. 

3.1.3.1.2. 12-day old chick embryo neurons 

Retina neurons (bipolar neurons) were extracted from 12-day-old chick embryos. 

Chick retinas from fertilized eggs (Gallus gallus, Poultry Science Department at Texas 

A&M University) were dissociated at embryonic day 12 (E12). Cells were incubated at 

39oC and 5% CO2 for 24±1 hours prior to testing to ensure adhesion and allow the culture 

to stabilize. A 60% cell confluence, substrate surface coverage by cells, was required for 

testing.  

The distance between plates was set at 500μm. Each test was conducted under a 

constant shear stress and the duration was set for 10 minutes. All tests were conducted at 

39oC, which is the incubation temperature for chick embryos. The main goal was to 

observe and quantify the cell strengthening mechanisms. Therefore, the cultured neurons 

were tested at increasing values of maximum shear stress (τmax). The τmax ranged from 10 

to 70 dynes/cm2 with 15 dynes/cm2 increments. Each test was confirmed 3 times. The 

samples were fixed with Zamboni’s fixative (Newcomer Supply) immediately after 

testing for 10 minutes, rinsed 3 times with DPBS for 5 minutes, and allowed to air dry 

before imaging. 
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3.1.3.2. Proteins 

Albumin is the most abundant protein found in the body. Egg-white protein and 

bovine serum are rich in albumin (96-98). Egg-white protein was used for adhesion 

studies to bulk materials while bovine serum was used to study the interaction 

mechanisms with nanomaterials.  

3.1.3.2.1. Egg-white protein 

An amount of 0.3 g of egg-white protein (Sigma Aldrich) was dissolved in 10mL 

of DI water. The coated samples were ultrasonically cleaned in acetone and DI water for 

10 minutes each prior to protein coating. A protein solution of 0.200 mm thickness was 

applied to the sample’s surface (volume depended on the sample’s surface area) and 

allowed to dry for 12 hours in a desiccator at room temperature. All DI water evaporated 

leaving a thin, well-adhered, egg-white protein layer on the surface.  

3.1.3.2.2. Bovine serum 

Bovine serum (Hyclone – Fischer Scientific) was separated into ~300mL glass 

vials for easy storage at -4oC. The small vials also help to defrost small quantities as 

needed. The serum was vigorously stirred for 5 minutes prior to each use to avoid 

sedimentation. The composition of bovine serum is shown in Table 4.  
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Table 4 Composition of bovine serum (99) 

 

3.1.3.3. Amino acids 

Amino acids are the building blocks of proteins. There are positive, negative, and 

neutral amino acids which are made of C, H, N, and O mainly. Amino acids have a 

general backbone structure of CH2, have one carboxyl group (COOH), one amine group 

(NH2), and one functional group, which what makes it positive, negative, or neutral (6, 

100, 101). 

L-lysine, L-arginine, L-glutamic acid, and L-aspartic acid are the four amino acids 

selected for this study. These are four main components in albumin protein (102). Two 

amino acid concentrations were prepared: one at 0.01M (mol/L) and one at 0.0001 M. The 

0.0001 M solution was prepared by diluting 1mL of the 0.01M in 100mL of DI water. 

3.1.3.3.1. L-lysine 

Lysine is a positively charged amino acid. Figure 6 shows its chemical structure. 

The solution with 0.01M was prepared by mixing 0.0365 g of L-lysine in 20mL of DI
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water. The solution was magnetically stirred for 15 minutes. The pH of the 0.01M is 7 and 

the pH of the 0.0001M is 8 y. Assuming a linear conformation, the L-lysine repeat unit is 

1.036nm, based on the bond lengths of N-C, C-C, and C-O. 

 
Figure 16 Chemical structure of L-lysine  

3.1.3.3.2. L-arginine 

Arginine is a positively charged amino acid. Figure 17 shows its chemical 

structure. An amount of 0.0266g of L-arginine was mixed in 20mL of DI water to achieve 

the 0.01 M concentration. The solution was stirred for 15 minutes. The pH for both 

solutions is 7.5. Based on the bond lengths of N-C and C-C L-arginine has an estimated 

length of 1.302nm. 

 
Figure 17 Chemical structure of L-arginine 

3.1.3.3.3. L-glutamic acid 

This amino acid is negatively charged. Figure 18 shows its chemical structure. 

Twenty nine mg of glutamic acid were mixed in 20mL of DI water to make the 0.01 M 



31 

 

solution. The solution was stirred for 30 minutes. The 0.01 M solution has a pH of 4 and 

is more difficult to dissolve. The pH of the 0.0001 M is 7.0. Based on the bond lengths of 

C-C and C-O L-glutamic acid has an estimated length of 0.831nm. 

 
Figure 18 Chemical structure of L-glutamic acid 

3.1.3.3.4. L-aspartic acid 

Aspartic acid is a negatively charged amino acid. Figure 19 shows its chemical 

structure. An amount of 0.0421g of aspartic acid was mixed in 20mL of DI water to make 

the 0.01 M concentration. The solution was stirred for 30 minutes. The 0.01 M solution 

has a pH of 4.5 and is more difficult to dissolve. The pH of the 0.0001 M is 7.5. Based on 

the bond lengths of C-C and C-O L-glutamic acid has an estimated length of 0.677nm. 

 
Figure 19 Chemical structure of L-aspartic acid 
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3.2. Methodology 

3.2.1. Cell and protein adhesion to bulk materials 

Over the last decades, many techniques have been developed to assess the cell’s 

behavior when it comes in contact with a biomaterial. The method presented here offers 

the advantage of quantifying and comparing the strength of interaction between different 

cell types and different substrate materials. This technique has been proven effective for 

the following biomolecules: fibroblasts, neurons and with egg-white proteins. 

Furthermore, the technique allows to quantify and compare the strength of cell adhesion 

to polymeric (39) and protein coated surfaces (40) and the adhesion strength of egg-white 

protein with metallic, and polymeric surfaces (103).  

A rheological method is developed to evaluate cell adhesion to various materials. 

Cell adhesion strength can be investigated using a parallel plate rheometer to apply a 

defined rotational shear to adhered cells, shown in Figure 20. It contains a lower fixed 

plate and a rotating spindle. A Peltier plate is the lower fixed plate and it is used to control 

the temperature from 0oC to 100oC. The fibroblasts tests were performed at 37oC, the 

neuron tests were conducted at 39oC and the protein adhesion tests were performed at 

25oC. 

The rotating spindle is controlled by a torque motor equipped with an air bearing 

to minimize friction and allow for accurate viscosity measurements of very light liquids. 

The parallel plates can be readily sterilized, and the rheometer can fit within standard 

laminar flow hoods. In addition, the maximum applied stress (τmax) is easily controlled in 

the rotational rheometer. The success of the test relies on a laminar flow generated by the 
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rotating plate. A laminar flow is one where the molecules in the flow move in smooth 

paths in well-defined concentric radii. A laminar flow could be obtained by controlling 

the density of the testing liquid, the distance between plates, and the rotational velocity of 

the disk. For the parallel plate rheometer, the laminar to turbulent transition occurs at a 

Reynold’s number approximately equal to 10 (104-113).  

 
Figure 20 Diagram of parallel plate rheometer 

During spindle rotation, the shear stress varies with the radial position being the 

highest at the maximum radius and zero at the center. The critical radius (RC), shown in 

Figure 21, is defined as the radius at which the cell adhesion force equals to the applied 

shear force. At this point, the cells are removed from the surface leaving a well-defined 

radius, which can be used to calculate the cell adhesion in terms of the shear stress to 

which the authors will refer as the critical shear stress (τC). This approach has the 

advantage of short test duration and low shear stress as compared to existing techniques 

(39). Unlike most other shear flow systems, cell shape, size, and confluency are not 

affected by this test method (2). 
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Figure 21 Diagram of cell culture sample, rotational shear flow, and interpretation of 

results (39) 

The equations needed to calculate the τC are now discussed. For a Newtonian fluid 

undergoing non-slip rotational shear, the shear stress (τ) is: 

         ߬ Pa ൌ 
ఎఠ௥
௭

 [3] w

where η in Pa is the fluid’s dynamic viscosity, the angular velocity is ω, r is 

radius and the distance between plates is z. Since ω reaches equilibrium within two 

minutes of testing and remains there for the duration of the test, we can assume ω is 

constant and independent of radial position. This gives that ω at the critical radius, Rc, 

must equal to ω at the spindle radius, Rmax, (߱ோ೎ ൌ ߱௠௔௫): 

 
௓
ఎோ೎

 ߬ோ೎ ൌ 
௓

ఎோ೘ೌೣ
 ߬௠௔௫ [4] 

The distance between plates (Z) and the viscosity (η) are constant for the duration 

of the test and can be cancelled, giving the simplified form of the equation:  

        ߬௖ Pa ൌ 
ோ೎

ோ೘ೌೣ
 ߬௠௔௫ [5] 
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Equation 5 relates the observed critical radius to the critical shear stress and the 

equation can be used to calculate the shear tress of cell or protein adhesion to a bulk 

material. This equation is used to calculate the τC of Swiss mouse fibroblasts to polymeric 

materials, the τC of 12-day-old chick embryo neurons to poly-D-lysine coated glass, and 

the τC of egg-white protein to metallic coatings.  

The main goal of this work is to identify the interaction mechanisms at the 

biomolecule and material interface and to identify the main factors affecting this 

interaction.  

3.2.2. Protein and amino acid interaction with nanomaterials 

Nanoparticles are widely researched for drug delivery and imaging applications 

with promising results (20, 21, 56, 65, 73, 114-117). The nanoparticles must be 

functionalized to guarantee interaction with specific proteins for imaging or 

functionalized with the drug they will deliver. These nanomedicines are usually delivered 

through the blood stream. However, nanofluid research has shown us that the flow 

properties are significantly affected when nanoparticles are suspended in the base liquid 

(67, 68, 70, 118). Nanofluid research is focused on understanding its thermal properties 

and little attention has been placed to the flow properties of the system. Furthermore, we 

must understand how the flow properties will be affected by the interaction between 

nanoparticles and proteins. 

A dynamic viscosity analysis is used to understand how nanoparticle size, 

nanoparticle surface charge, nanoparticle concentration, protein or amino acid type and 
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charge are going to affect the flow properties. The analysis will be conducted with a cone 

and plate rheometer, shown in Figure 22.  

 
Figure 22 Diagram of cone-and-plate rheometer. The lower plate is fixed while the top 

cone rotates  

Rotational rheometers, like the one used in this research, control the shear rate and 

measure the shear stress required to keep this shear rate. The viscosity is calculated with 

the following equation: 

 ߬ ܲܽ ൌ  
ఎఠ௥

௥ ୲ୟ୬ ሺఈሻ
 [6] w

where μ is the dynamic viscosity, ω is the angular velocity, r is the cone radius, 

and α is the cone angle. For systems where α<<1 (in radians), the equation can be 

simplified to: 

 ߬ ܲܽ ൌ 
ఎఠ
ఈ

 [7] 

This simplified equation is valid in our system since α=0.0175 radians. The 

angular velocity depends on the shear rate, therefore the cone-and-plate rheometers 

calculates the viscosity with the following equation, where ω is a function of the shear 

rate (ߛሶ) 
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.ܽܲ ߟ  ݏ ൌ 
ఛఈ
ఠ

 [8] 

Based on Equation 8 above, it is assumed and widely accepted that the shear stress 

experienced by the tested sample is independent of radial direction. This assumption is 

valid only for cones with α<<1 and a cone radius>>1mm (47, 119). The cone used in this 

study meets both criteria with α=0.0175 radians and cone radius = 20mm. The success of 

the cone-and-plate system is based on a laminar flow during test. For this geometry, the 

laminar to turbulent transition occurs at a Reynolds number of approximately 4 (119).  

A stepped flow test procedure will be applied. Increased levels of shear rate will 

be applied to the sample while the shear stress is measured. The controlled and recorded 

values are used to calculate the dynamic viscosity. The applied shear rate will range from 

20 to 500 s-1 with increments of 20 s-1. Every shear rate increment is maintained for 10 

seconds to allow stabilization and the reported viscosity is the one calculated for the last 5 

seconds.  

This methodology will be applied to measure the flow properties (dynamic 

viscosity in particular) of the interaction of positively and negatively charged gold 

nanoparticles with bovine serum and with lysine, arginine, glutamic acid, and aspartic 

acid at various concentrations. 

Table 5 summarizes the material combinations (nanoparticle size, charge, and 

concentration) used for bovine serum solutions. Figure 23 indicates the naming scheme 

used for these samples. Table 6 summarizes the material combinations for the amino acid 

solutions tested. Figure 24 indicates the sample name used. 
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Table 5 Summary of material combinations for bovine serum solutions 

 

 
Figure 23 Sample name scheme used for bovine serum solutions 

Table 6 Summary of material combinations for amino acid solutions 

 

NP size 
(nm)

NP charge Medium
%NP solution 

volume

10, 20, 50 negative
bovine 
serum

25%, 50%, 75%

10, 20, 50 positive
bovine 
serum 

25%, 50%, 75%

00%XX/xxxxx_00XX

NP charge (P- positive, N-negative
NP size (nm)

Solution 2 (bovine or DI water)
Solution 1 (NP- nanoparticle, bovine, or DI water)

% volume of solution 1

NP size 
(nm)

NP charge Amino acid
M amino acid 

(mol/L)

%NP solution 
volume

10, 20, 50 negative L‐lysine, L‐arginine,  0.01, 0.0001 33% & 67%

10, 20, 50 positive
L‐glutamic acid, L‐

aspartic acid
0.01, 0.0001 33% & 67%
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Figure 24 Sample name scheme used for amino acid solutions 

3.2.2.1. The NP/ amino acid solutions 

The physical appearance of the nanoparticle solutions is a good indication of a 

homogenous nanoparticle suspension. The gold nanoparticle solutions have a deep red to 

pink color, shown in Figure 25. The characteristic color depends to the NP size present in 

the solution. Solution color depends on the nanoparticle size present (73, 120, 121). 

Therefore, a change in color, from red-pink to purple, indicates nanoparticle 

agglomeration.  

 
Figure 25 Characteristic red-to-pink color of pure NP solutions  

The pure amino acid solutions are clear. The mixed NP/ amino acid solution 

should show the characteristic red-pink color. However, some samples changed colors 

when mixed. Figure 26 shows the glutamic acid solutions mixed with positive gold. 

00%_00XX_XX00

Amino acid molality
Amino acid

NP material (G – gold)
NP charge (P-positive, N – negative)

NP size (nm)
% NP concentration
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Figure 26 NP solution changes color after mixing with amino acids 

3.2.3. In vivo nanoparticle interaction with the CNS  

Nanoparticles have shown promising results in the medical field. Extensive work 

has been done to understand the uptake of nanoparticles by cultured cells. The main 

advantage of using nanoparticles in medicine is that their size allows to reach places that 

traditional medicine does not. The central nervous system (CNS) would greatly benefit 

from the use of nanomaterials for imaging and drug delivery. The limited access to the 

spinal cord can be overcome by the use of nanomaterials.  

Based on the results obtained from the protein and amino acid interaction with 

nanoparticles, we understand that negatively charged nanoparticles will interact with 

positive amino acids and proteins. We introduce a novel method to study the interaction 

of negatively charged, spherical gold nanoparticles of 46.7 ±5.47nm diameter with the 

CNS of the discoid or false dead-head roach, Blaberous discoidalis. The communication 

signals of the brain rely on positively charged ions (Ca2+, K+) (122, 123). We take 
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advantage of this ionization present in the CNS to promote the interaction with negatively 

charged nanoparticles.  

This research will address the interaction mechanisms of charged nanoparticles 

with the CNS and present a new, simple biological system for study. The typical 

biological system used for CNS research is mice but these systems are expensive and 

strict protocols are in place. We will discuss the viability of using the cockroach for CNS 

research.  

Two groups were selected for this study. Each group had 9 roaches. The selected 

groups were separated for 24 hours prior to injecting the nanoparticles. Group 1 was used 

as the control since no nanoparticles were injected into this group. Negatively charged 

spherical gold nanoparticles were injected into the roaches in Group 2. This methodology 

will consist of injecting the nanoparticles suspended in DI water into the CNS of the 

cockroach through the sub-esophageal ganglion. The nanoparticles have a concentration 

of 1x1011 NPs/mL, a total of 7μL were injected into the CNS of each insect. 

Male Blaberus discoidalis (weight = 2.1 ±0.3 g) grown in-house were used in this 

study. These roaches were maintained in hard plastic containers (9x18”) under controlled 

environment. The room’s temperature was maintained at 28 ±2 °C and had a 12/12h 

day/night cycle. They were fed with dry dog chow. Food and water were supplied ad 

libitum.  

The cockroaches were kept in isolation to minimize stressors like noise, wind, and 

vibration that could alter their behavior. A two-minute video was taken daily at 8:00am, 

only 10 minutes into the light cycle, to record their activity. Although the insect is most 
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active during the dark cycle, light was needed to record their activity. The first hour was 

selected for recording since slightly over one third or 38.1% of the cockroaches show 

activity during the first hour of the light cycle (124, 125). 

Figure 27 shows the basic CNS structure of the cockroach and the site of 

nanoparticle insertion. The NPs are injected at the sub-esophageal ganglion (SEG) in the 

direction indicated by the red arrow. The roaches were placed in the plastic container 

immediately after treatment and were closely monitored for the first 4 hours to ensure 

activity had been resumed. The insects were monitored daily to verify activity. The 

roaches that did not show signs of activity were considered dead and were removed and 

placed in a -80oC freezer to prevent tissue damage and allow further analysis.  

 
Figure 27 Diagram of the cockroach’s central nervous system. The arrow shows the site 

and orientation of nanoparticle injection  

3.2.3.1. Monitoring insect behavior 

The effect of the NPs on the CNS will be evaluated by monitoring changes in the 

insect’s activity. The cockroach locomotion is controlled by the CNS (77) and if the 

communication channels are altered by the charged nanoparticles, the insect’s activity will 

be affected. The activity of a control (untreated) and the treated groups were monitored 

daily for 2 months at which time the insects’ brains were be extracted and dissected to 
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observe if the NPs remain in the CNS, if have traveled through the CNS of the cockroach 

and to observe the nanoparticle interaction mechanisms.   

3.3. Characterization 

The material and physical properties of all used samples were characterized. The 

tools used for characterization depended on the material scale and properties.   

3.3.1. Material properties 

3.3.1.1. Surface roughness 

The surface roughness of the bulk materials (PC, PMMA, and glass) and the 

thickness of the Ti and Cr nitride coatings were measured with contact & non-contact 

profilometers. For the PC, PMMA, and glass a TR200 Profilometer from Qualitest was 

used, Figure 28. The stylus scanned across the surface in a 5mm single straight line in 

order to trace the surface profile and to measure the average surface roughness (Ra). As a 

standard procedure, five readings were taken at various locations and the average values 

of Ra were recorded. A Dektak 150 Profilometer with 3mg load was used to measure Ti 

and Cr nitride coating thickness, Figure 29. 

 
Figure 28 TR200 Qualitest contact profilometer 
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Figure 29 Dektak 150 contact profilometer (126)  

A Zygo NewView 600s 3D optical surface profilometer is shown in Figure 30. 

The Ti and Cr nitride coating thickness were measured with this instrument. A 10X 

magnifying lens was used for analysis. Figure 31 shows a diagram of how the optical 

profilometer works. The light source is split and the reflected light beams from the tested 

surface and an ultra smooth reference mirror are detected by the camera. Any deviation 

between the reflected light from the sample and the reference mirror is due to height 

differences.  
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Figure 30 Zygo NewView 600s non-contact profilometer (127) 

 
Figure 31 Diagram of optical profilometer. The height map is obtained by comparing the 

intensity of the reflected light beams from the surface and the reference mirror 
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3.3.1.2. Contact angle 

The Sessile drop method was used to measure the contact angle. The images were 

recorded with a Panasonic Lumix SMC-ZS1 digital camera and analyzed with the LB-

ADSA drop analysis feature from ImageJ.  

3.3.1.3. Energy Dispersive X-Ray Spectroscopy (EDS) 

A SUPRA 55 Scanning Electron Microscope (SEM), shown in Figure 32, was 

used on the Ti and Cr nitride coatings to analyze the coating composition with the Energy 

Dispersive X-Ray Spectroscopy (EDS). The EDS was used with an acceleration voltage 

of 15.0 kV and a take-off angle of 33.1o.  

 
Figure 32 Supra 55 scanning electron microscope (SEM) equipped with energy dispersive 

X-ray spectroscopy (EDS) (128) 

3.3.1.4. X-ray diffraction (XRD) 

XRD helps identify the crystallographic composition and orientation of the 

material’s surface. The XRD was used to characterize the Ti and Cr nitride coatings. A 



47 

 

scanning rate of 0.020 s-1 in the 2θ range 5-90° was used for XRD. The system uses a 

Rigeku Dmax γA X-ray diffractometer with Cu Kα radiation (λ = 0.154178).  

3.3.2. Physical properties  

3.3.2.1. Digital microscope 

The cultured chick retina cells were imaged before and after testing with a VHX-

600 3D digital image microscope from Keyence, shown in Figure 33, to observe changes 

in cell size and shape before and after testing. The microscope was used with 

magnifications from 100X to 1000X, depending on the desired feature sizes.  

 
Figure 33 VHX 600 digital microscope from Keyence 

3.3.2.2. Confocal microscope 

An Olympus FV1000 Confocal Microscope, shown in Figure 34, equipped with a 

510 nm argon laser was used to detect where the negatively charged gold nanoparticles 

were located within the cockroach brain. The insect brains were extracted, fixed with 

FrozFix (Newcomer Supply), mounted in OCT at -17oC and cryocut to 12 μm thickness 

and mounted with DPBS (Dulbecco’s Phosphate Buffered Saline) on glass slides. The 
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gold nanoparticles used in this study fluoresced at 560 nm with an excitation wavelength 

of 510 nm.   

 
Figure 34 FV1000 confocal microscope (courtesy of Olympus) 

3.3.2.3. Scanning electron microscope (SEM) 

The adhered cells on the surface of PMMA and PC were imaged with a JEOL 

JSM-6400 Scanning Electron Microscope. The SEM images for PMMA were taken at 

1,000X magnification, with 15 kV accelerating voltage, and a working distance of 11 mm. 

The SEM images for PC were at 1,000X magnification, 15 kV accelerating voltage, and 8 

mm working distance. The pre-focus was done outside the test area to reduce the electron 

beam damage. Minor focus adjustments were done on the test area. Figure 35 shows the 

SEM used in this study.  
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Figure 35 JEOL JSM-6400 Scanning Electron Microscope 

3.3.2.4. Transmission electron microscope (TEM) 

A JEOL-JEM 2010 TEM (Figure 36) was used to characterize the morphology of 

NPs in the CNS of the cockroach. The insect brains were extracted, fixed with FrozFix 

(Newcomer Supply), mounted in OCT at -17oC and cryocut to 12 μm thickness and 

placed on copper grids for TEM imaging. The images were taken within 24 hours of 

samples preparation. 

 
Figure 36 JEOL-JEM 2010 TEM used to characterize the morphology of the NP/ CNS of 

the cockroach 
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The NP/amino acid solutions were characterized with the JEOL 1200EX TEM 

(Figure 37). One drop of the tested NP/amino acid solution was set on the copper grid. 

The excess DI water was evaporated by heating the copper grid. The samples were tested 

within 24 hours of preparation.  

 
Figure 37 JEOL 1200EX TEM used for NP/amino acid morphology characterization 

3.3.2.5. Atomic force microscope (AFM)  

A Pacific Nanotechnology AFM with a Si tip was used in tapping mode (1Hz 

frequency) to identify the surface properties of the Ti and Cr nitride coatings deposited on 

(111) Si wafer and Ti alloys. Figure 38 shows the AFM used in this study.  
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Figure 38 Atomic force microscope (courtesy of Pacific Nanotechnology) 

3.3.2.6. X-ray photoelectron spectroscopy (XPS) 

Two XPS systems were used: one for the characterization of the amino 

acid/nanoparticle bonding and one for the characterization of the nanoparticle interaction 

with the CNS of the cockroach.  

The line 8 of the Stanford Synchrotron Radiation Lightsoure was used to 

characterize the amino acid/gold nanoparticle interactions. The samples were scanned 

with a monochromatic energy of 780eV (incident energy). The CMA was charged with a 

pass energy of 50eV to filter out stray electrons from entering the analyzer. The scans 

were performed between 0.5 and 1 s/step, with a step size between 0.1-1 eV depending on 

the feature of interest. The sample was at a maximum pressure of 5x108 torr during scans.  

The results provide insights into amino acid and/or surfactant polymerization. 

Several layers of the solution were deposited on the surface of a Si wafer. The sample was 

allowed to air dry. Based on the amount of amino acid and nanoparticles present in the 

solution, it is estimated that the coating thickness was in the order of tens of nanometers. 
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A Kratos Axis Ultra Imaging X-ray photoelectron spectrometer (XPS) with a 

spherical mirror analyzer was used to identify gold in the CNS of the cockroach. The XPS 

was operated with a Mg-Kα (1253.6 eV) X-ray radiation at a power of 350 W and a base 

pressure of 10−10 Torr. The treated insect brain was extracted, fixed with FrozFix 

(Newcomer Supply). The extracted brains were mounted in OCT at -17oC and cryocut to 

12 μm thickness and mounted on quartz slides. 

3.3.2.7. Hyperspectral imaging 

The presence of gold nanoparticles in the CNS of the cockroach was first 

identified with the hyperspectral imaging system from CitoViva. This imaging system 

identified the presence of gold in the tissues by comparison. A sample of NGs/DI water 

solution was scanned to identify the emitted fluorescence of the nanoparticles. The 

hyperspectral imaging, as shown in Figure 39a, provided a range of emitted signal due to 

the variations in size during nanoparticle fabrication and possible agglomeration once in 

contact with the CNS. A signal library was generated from this scan, Figure 39. The NGs 

treated tissue was then scanned and the spectral imaging was compared to that of the 

library. The NG treated brain was extracted, fixed in Zamboni’s fixative for 30 min and 

rinsed in DI water 3 times for 10 minutes each. The samples were placed on a glass slide.  
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Figure 39 (Right) spectral library created by scanning the gold nanoparticle solution (left) 
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CHAPTER IV 

 

BIOMOLECULAR INTERACTIONS WITH SYNTHETIC BULK MATERIALS* 

 

This chapter discusses the material characterization and cell or protein adhesion 

studies. Great emphasis is placed on the effect of material chemistry on the cell adhesion 

and the strengthening mechanisms of the cells. Swiss mouse fibroblasts (3T3), chick 

embryo neurons, and egg-white protein are used in these experiments to study adhesion 

mechanisms of biomolecules with bulk materials. The adhesion of 3T3 fibroblasts to 

polymeric surfaces, the strengthening of chick embryo neurons on poly-D-lysine coated 

glass, and the adhesion of egg-white protein to titanium and chromium nitride coatings on 

Si and Ti alloy substrates are studied.  

4.1. The importance of cell/protein adhesion   

Cellular interaction with a foreign surface (i.e., a biomaterial) is of utmost 

importance for the long-term performance of the biomaterial. The strength of cell/surface 

interaction greatly depends on its application. There are cases where a strong interaction 

(good cell adhesion to the surface) is necessary. Such is the case of cochlear implants, 

artificial joints, and heart valves, to name a few. For these applications, it is imperative 

_______ 
*  Part of the information reported in this chapter is reprinted with permission from “Critical fluid shear stress 

analysis for cell–polymer adhesion” A. Rocha, M. Hahn, H. Liang, 2010. Journal of Materials Science, 45 
(3), 811-817, Copyright 2010 by Springer/Kluwer Academic Publishers and from “Neuron adhesion and 
strengthening” A. Rocha, K. Jian, G. Ko, H. Liang, 2010. Journal of Applied Physics, 108 (2), 024702-
024706, Copyright 2010 by American Institute of Physics. 
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that the tissues surrounding these devices identify the biomaterial as part of the body. If 

cell function is altered, the risk of tissue death and ultimately rejection are inevitable.  

The adhesive strength of NIH/3T3 fibroblasts, a commonly used cell type in 

adhesion studies on poly (methy methacrylate) (PMMA) and polycarbonate (PC) 

substrates is measured. These materials were selected because they are widely used in 

biomedical applications. The adhesion and strengthening mechanisms of 12-day old chick 

embryo neuron adhesion to poly-D-lysine coated glass is investigated. This work also 

studies the adhesion of egg-white protein on titanium and chromium nitride coatings. 

4.2. NIH/3T3 Swiss mouse fibroblast adhesion to polymeric materials 

4.2.1. Material characterization 

The surface roughness and contact angle of the PMMA and PC was measured as 

received and after exposure to shortwave UV radiation, used to clean the surface. Their 

surface roughness was measured with a TR200 surface profilometer from Qualitest. The 

contact angle was measured with the Sessile drop method. Table 7 summarizes the results. 

The surface roughness (Ra) of PMMA had a 6.7% increase from 0.0672 to 0.0716 µm 

while PC had a 70% decrease from 0.0602 to 0.0182 µm. The surface of PC became 

smoother after exposure to UV radiation for sterilization. The contact angle increased by 

1.1o for PC and decreased by 3.2o for PMMA.  

 

 

 



56 

 

Table 7 Surface roughness and contact angle of the substrate materials 
before and after exposure to shortwave UV radiation for sterilization 

 

4.2.2. Cell adhesion 

Figure 40 shows a representative set of images demonstrating the removal of cells 

beyond the radius of the critical shear stress for cells adhered to the PMMA exposed to a 

maximum rotational shear stress of 2.5 Pa.  The circular region outlined in Figure 40g 

corresponds to the critical radius, with associated optical micrographs positioned along its 

perimeter. Note that, beyond the critical radius, cells have been stripped from the surface 

while cells remain adherent within this radius. The PC was tested to a maximum of 1.0 Pa 

and it showed similar behavior. The observed critical radius must be translated into a 

corresponding critical shear stress using Equation 5, presented in Chapter III. 

  
The measured RC for PMMA and PC were 1.05±0.015 cm and 0.636±0.008 cm 

respectively. The calculated RC was 2.1Pa for PMMA and 0.509Pa for PC. The cell 

adhesion results are indicated in Table 8.  
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Table 8 Critical radius and calculated critical shear strength of fibroblast 
on PMMA and PC 

 

  
Figure 40 a-g SEM images of cell cultured PMMA after adhesion testing. The line scale is 

30 μm 

The cells have a stronger adhesion to PMMA than to PC. There are two possible 

reasons for this behavior. One is the molecular interactions at the cell-substrate interface 

and the other is the surface roughness of the substrate. The molecular interactions are 

mainly due to the chemical composition of proteins and the substrate material. Cell 

attachment is mediated by the extracellular matrix (ECM), which is made of 

polysaccharides (sugars), and collagen (proteins) that provide structural support and 

protection to cells (129). The proteins in the ECM are also responsible for carrying all 
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necessary electrochemical processes and control tissue elasticity, humidity, and adhesion 

(100, 101). Those are key elements in the cell/biomaterial interface (6). The proteins that 

participate in cell-cell adhesion and cell-substrate adhesion vary with cell type. In the case 

of fibroblasts, cytokines are the main proteins that mediate cell-cell adhesion while 

fibronectin is the main protein that controls cell-substrate adhesion in the (83, 129, 130). 

The cell attaches to the fibronectin through the selectins. The end of the fibronectin that 

reacts with the selection on the fibroblast has a carboxylic end (-COOH). The other end 

has an amide group (-NH3+) which attaches to the substrate (131-135). This amide group 

is electropositive thus results in high adhesion strength if the surface is electronegative as 

in the case of PMMA. In terms of the surface roughness, our results showed that both 

samples had ultra smooth surface in comparison with the size of a cell (~30 μm). The PC 

became even smoother after the sample preparation. The wetting angle results showed 

that there was minimum change in the value (~3o) indicating the negligible effects of the 

surface roughness. The smooth surface enabled us to effectively evaluate the method to 

test cell/fluid shear. Further studies on roughness (at high value range) effects will be 

carried out in near future.  

We developed a methodology, using a simple rheometry technique, to 

quantitatively measure the adhesive strength of cells attached to synthetic polymer 

surfaces. To demonstrate the technique, two polymer based materials currently used in 

various biomedical applications were examined, namely PMMA and PC. The cell-seeded 

polymers were exposed to the rotational shear stress under a constant operating maximum 

shear stress constraint. Since a shear stress varies with its radial position, a threshold shear 



59 

 

stress beyond which cells were detached from the material surface could be identified. 

Subsequent analysis of experimental results indicated that the cell adhesive strength on 

the tested materials varied based on material chemistry. One possibility for the PMMA to 

have a stronger adhesion than PC was due to its highly polarized C-H-O group.  

4.3. Neuron adhesion to poly-D-lysine coated glass and strengthening  

Cells, as live organisms, will respond and react when an external force is applied. 

This study is focused on measuring neuron adhesion and to understand the neuron 

strengthening mechanism. 

4.3.1. Quantifying cell adhesion 

The same testing method was used for neuron adhesion studies (rotational flow via 

parallel plate). To identify the strengthening mechanisms of the cells, the samples were 

tested with increasing shear stress from 1 to 7 Pa with a 1.5 Pa increments.  

After testing, a series of images were taken along the critical radius (Rc). The 

images were aligned, as in Figure 41, to form a “panoramic view” along the Rc. Figure 41 

clearly shows there was a clear continuous circle that indicates the location of neurons 

after testing. In the area outside the circle, the neurons were completely detached. 

 
Figure 41 Critical radius representing the critical point of cell detachment in 12-day-old 

chick embryo neurons 
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4.3.2.  Neuron strengthening  

The recorded values for angular velocity ω (rad/s) and dynamic viscosity η (Pa.s) 

for all tests are summarized in Figure 42. The values reported here are for the last minute 

of test, well beyond the point of equilibrium flow. As expected, the angular velocity 

values increase with increasing shear stress. The dynamic viscosity values only show a 

slight variation.  

 
Figure 42 Average angular velocity (ω) and dynamic viscosity (μ) with respect to applied 

shear stress (τmax) 

The results of neuron adhesion, tested from 1 to 7 Pa is summarized in Figure 43. 

These experiments were conducted in order to understand how the fluid shear affects the 

neuron/poly-D-lysine interface. The neurons respond to the fluid shear actively. In other 

words, the neuron adhesion to poly-D-lysine is stronger with higher applied shear. The 

critical radius RC was measured against the applied fluid shear stress and results are 
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summarized in Figure 43. The measured RC decreases almost linearly with the increasing 

fluid shear. It means that more cells were detached with increasing fluid shear value.  

 
Figure 43 Critical radius decreases with increasing applied shear stress for chick embryo 

neurons 

Estimating the adhesive strength is achieved by calculating the critical shear stress 

(τC) which has been discussed in detail in Chaper III. The calculated τC results are plotted 

in Figure 44. It is seen that the τC varied from 1.0 to 3.0 Pa. Even though the RC decreased 

with increasing τa (Figure 3), the τC reached a constant value of approximately 3 Pa for 

the τapplied of 4 Pa and higher. The repeatability and consistency of the results obtained 

here in comparison with other methods for neuron adhesion studies (104, 136) have 

demonstrated that the system used here is of high accuracy.  
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Figure 44 Chick embryo neuron strengthening. The adhesion strength (τc) reaches a 

maximum of 3Pa 

Interestingly, the results in Figure 44 indicated that the τC, i.e., the adhesive stress 

at the neuron/substrate interface increased with the applied shear stress. The adhesive 

shear stress plateaus after a specific applied stress value. This means that the neuron cell 

adhesion was strengthened at the beginning and then stabilized. The strengthening, or 

strain hardening, effects have been observed in other cells (83, 137-139) but it has not 

been quantified prior to this work, particularly for neurons. The increase in τC indicates 

the strain hardening and the neuron’s adhesive strength then reached a constant value at 

approximately 3 Pa. It is believed that strain hardening of a cell is accompanied by a 

permanent deformation. We conducted high resolution characterization of the neurons 

before (Figure 45a) and after testing (Figures 45b and c). It is seen that neurons 

maintained their shape and confluency. Figures 45b and c demonstrate that no neuron 

deformation occurs after testing. This proves that the generated flow does not damage the 

cells inside the RC.  
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Figure 45 Microscopic images of 12-day old chick embryo retina neurons on poly-D-

lysine coated glass (a) before testing and at various locations after testing: (b) center, and 
(c) along the critical radius 

What is the likely reason for the strain hardening?  It has been reported that 

different external stimulus, such as mechanical stretching, could increase the cell 

adhesion. There are two possible reasons. One is an increase in the number of adhesion 

molecules (i.e. focal adhesions) (139, 140) and the other the polymerization of the actin 

filaments in the direction of the deformation (138, 139, 141-143). The latter is generally 

accompanied by permanent cell deformation which leads to an increase in cell spread 

projecting a larger surface area on the image obtained. The apparent surface (2D 

projection on the substrate) was measured with the area feature from the Image Tool. 
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Image tool is free software developed to acquire, edit, and analyze images. Some of its 

features include distance, angle, perimeter, and area measurements. This software was 

selected to measure the surface area (2D projection of the neuron onto the substrate) of 

the neurons before and after testing.  

The neuron 2D projection before and after testing was measured. The neuron 

projection was 61.4 ±21.1 ߤm2 before testing. Two test regions were selected for after 

testing, at the center (minimum shear stress) with 58.8 ±11.9 ߤm2 and along the critical 

radius (highest shear stress and close to adhesion stress) with 66.17 ± 13.9 ߤm2 at. The 

results are summarized in Figure 46.  

 
Figure 46 Neuron 2D projection on the substrate measured before and after fluid shear 
testing at the center (no shear) and along the critical radius (edge – maximum shear) 

Based on our measurements of the area projection onto the surface, the neurons 

show no sign of deformation. This can be physically observed in Figures 45a-c. The shape 

and state of the neurons along the critical radius (45c) are close to the untested (45a) and 

the cells at the center of the tested samples (45b). The negligible difference in neuron size 
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before and after testing  indicates that actin polymerization is not likely the reason of 

strengthening. 

4.3.2.1. Neural adhesive force  

The methodology used here enables to measure the shear stress of neuron 

detachment with high repeatability and accuracy. This critical shear stress can then be 

used to calculate the adhesion force. It is widely known that the shear stress (τ), force (F), 

and area (A) are related as follows:  

 ߬ ൌ 
ி
஺

          [9] 

The adhesion force, or critical adhesion force FC, can be calculated using the 

critical shear stress (τC) and the measured 2D projection of the neuron on the substrate. 

The critical force ranges from 56.8 ±0.3 pN for an applied shear stress (τ applied) of 1Pa and 

181.5 ±4.8 pN for an applied shear stress of 7 Pa. The calculated value of FC is 

summarized in Figure 47. There is no data available on adhesion force of chick embryo 

neurons. The only close data was found in the AFM measurement of various cells.(144, 

145)  It is clear that data obtained in this research are in the same magnitude of previous 

reports. This indicates that the fluid method is consistent with other methods such as 

AFM.  The method used in this study is simpler and faster than the ones currently used. 

Using a shear flow method to study the neuron cell adhesion is an approach that is simple 

and fast. It has been proven to be effective and accurate in adhesion evaluation without 

destruction of neuron cells. Being so, the strengthening phenomenon was observed.  
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Figure 47 Critical adhesion force (detachment force) 

4.4. Egg-white protein adhesion to titanium and chromium nitride coatings 

Artificial joints have undergone significant improvements in their design. Their 

success, however, also heavily relies on the materials selected. Polymer-on-metal (POM), 

ceramic-on-metal (COM), and metal-on-metal (MOM) have been among the top choices 

where POM has been more widely used.  Recent work by Fisher and colleagues show that 

MOM offer improved wear resistance (146).  Their work, as well as the work of Liang et 

al. clearly demonstrates a decrease in wear when the Ti and Cr surfaces are nitrided (146-

148).  

Although improved wear properties have been identified, the biocompatibility of 

the material is still an issue. The work of Serro and colleagues and Williams et al. indicate 

an improved biocompatibility of the TiN and CrN coatings respectively (149, 150). 

Furthermore, Serro et al. identify how likely albumin protein is to interact with the surface 

by following the Langmuir model (149). Their work, however, only indicates how likely 
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the protein is to be attracted to the surface and makes no attempt at quantifying the 

strength of this protein/surface interaction.  

Protein adhesion is important for biocompatibility since it is the first step in 

bioincorporation (31-37, 39, 83, 151). The most important objective of this investigation 

is to quantify the protein adhesion strength to TiN, TiAlN, CrN, and CrAlN coatings and 

identify the main factor affecting protein adhesion: coating material, surface roughness, or 

substrate.  We address the effect of surface roughness by tailoring it to ~3nm, ~30nm, and 

~150nm. Si wafer was used as the substrate for the samples with 3nm surface roughness. 

Ti alloy was mechanically polished to ~30nm and ~150nm surface roughness. The Si and 

Ti substrates were also selected to identify if the substrate plays any role in the surface’s 

interaction with the protein.  

4.4.1. Characterization methods 

The coating composition was verified with a SUPRA 55 EDS and its 

microstructure was analyzed with AFM. Composition by EDS confirms the presence of 

the coating materials (Ti, Cr, Al, and N). The results also show traces of Si because the 

EDS was performed on the coatings of the Si substrates.  

A Dektak 150 contact profilometer was used to measure the coating thickness. The 

surface roughness was measured with a Zygo 3D Optical Surface Profilometer. The 

contact angle was measured with the Sessile drop method. The drop was analyzed with 

the LB-ADSA drop analysis feature from ImageJ. Egg-white protein solution was used 

for this experiment.  
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4.4.2. Protein adhesion measurements 

The protein adhesion is measured with a rotational shear flow as described in 

Chapter III. DI water was used to create the shear flow. The tests were conducted at 25oC 

to prevent test media evaporation. The RC can be clearly seen after testing. A photograph 

of the tested sample was taken with a Panasonic Lumix SMC-ZS1 digital camera. The RC 

is measured with UTHSCSA ImageTool. An example of a clean radius is evidenced in 

Figure 48. The outer circle is the spindle size (25mm) and the dashed line is the proteins 

that remained on the surface (RC).  

 
Figure 48 Result from protein adhesion. — is the size of the testing spindle (25mm) and   

--- is the critical radius (RC) 

4.4.3. Material characterization 

The EDS results are summarized in Table 9. The samples scanned were those 

coated on Si substrate. The results indicate the coating materials are present. Traces of Si 

on some samples are caused by the penetration depth of the instrument, i.e., the X-ray 

penetrated beneath the coating. However, EDS has the limitation of not identifying the 

presence of oxygen or hydrogen on the surface.  
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Table 9 EDS results indicates coating composition is contamination 
free. The presence of Si is from the substrate  

 

XRD was performed on the metallic coatings to identify if the coating materials 

formed crystal structures. The results are summarized in Figure 49. TiN, TiAlN, CrN and 

CrAlN coatings prepared by magnetron sputtering typically form the rock salt crystal 

structure (152-156). The peaks that have not been labeled correspond to the substrate 

material.  
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Figure 49 XRD results of the Ti and Cr nitride coatings 

 
The surface morphology was studied with AFM. The height-scan is shown in 

Figure 50. Grains with 50-100 nm in diameter can be clearly seen. This indicates the 

coating materials formed crystal structures. The coating thickness was measured with a 

Dektak 150 contact profilometer with a 3-mg load, shown in Figure 51. The coating 

thickness ranged from 600 to 800nm. The values presented are an average of five 

readings. The variation in thickness depends on deposition rate, temperature, and atomic 

size of the coating materials.  
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Figure 50 The AFM images (height) indicate a grain size from 50 to 100nm in size. The 

scale bar is 500nm 

 
Figure 51 Coating thickness measured with Dektak 150 contact profilometer with a 3mg 

load 
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The results of the surface roughness measured with a Zygo 3D Optical Surface 

Profilometer are summarized in Figure 52. These measurements were performed after the 

substrates were coated by magnetron sputtering (TiN, TiAlN, CrN and CrAlN). The 

measurements are averaged over five readings.  

 
Figure 52 Surface roughness (Ra) measured with a Zygo 3D Optical Profilometer 

The substrate’s surface roughness was controlled by to order of magnitude 

difference (i.e. ~3nm, ~30nm, and ~180nm). These values were targeted to observe the 

effect of surface roughness on its interaction with protein. The coatings on Si wafers have 

the lowest surface roughness (Ra), 2nm average, and also had negligible variation. Two 

Ra values were aimed for the Ti alloy substrates, one set at approximately 30nm and 

another at approximately 150nm. Coatings on the Ti alloy substrates have a wider 

variation in surface roughness because they were achieved by mechanical polishing. Ti 

alloy is soft therefore surface roughness by mechanical polishing is difficult to control. 

Furthermore, the optical profilometer demonstrated that the diamond particles of the 
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polishing paste used for the 30nm surface roughness caused deep holes on the surface as 

shown in Figure 53. These pits are the reason for the wide variation on the surface 

roughness compared to the rough Ti alloy substrates and the Si wafer substrates.  

 
Figure 53 The diamond particles of the polishing paste created pits on the 30nm Ti alloy 

substrate prior to sputtering. Scan window size is 70mm wide by 53 mm tall 

The results of the contact angle measured with the Sessile drop method with egg-

white protein-DI water solution are summarized in Figure 54. The drops were analyzed 

with the LB-ADSA drop analysis feature from ImageJ. On average, the TiAlN coatings 

have the highest contact angle, followed by CrN, CrAlN, and TiN. It can also be noted 

that the highest contact angle values are for Ti rough, followed by Si and Ti smooth.  
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Figure 54 Contact angle measured with the Sessile drop method with egg-white protein in 

DI water. The contact angle in increasing order is: TiAlN, CrN, CrAlN, and TiN 

The results of protein adhesion are summarized in Figures 55a and 55b. The egg-

white protein adhesion to the silicon wafer is one order of magnitude higher than that to 

the Ti alloy as shown in Figure 55a. Figure 55b shows only the protein adhesion to the Ti 

smooth and Ti rough samples for better comparison. In general, the adhesion of egg-white 

protein is higher to the smooth than to the rough Ti substrate.  
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Figure 55 The adhesion strength of egg-white protein to TiN, TiAlN, CrN, and CrAlN 

coatings on Si, Ti alloy substrates. Figure 55b shows only the results for the Ti substrate 
to allow better comparison 

The TiN, TiAlN, CrN, and CrAlN coatings have been characterized. The EDS 

shows that only the coating materials are present on the surfaces. Traces of Si are found 

because the Si substrates were tested. The main concern for the authors is that the system 

does not identify oxygen, which is expected to be present on the Si and Ti alloy substrates 

since oxides easily form on these materials when exposed to the environment (157-160). 

More so in these samples since no attempts were made to remove these oxide layers from 

the substrate’s surface prior to sputtering.   
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Previous research indicates there is a direct correlation between surface roughness 

and contact angle (161, 162). This relationship is analyzed in Figure 56. In general, the 

results show an increasing contact angle with increasing surface roughness, a trend that is 

expected.  

 
Figure 56 Effect of surface roughness on contact angle 

In order to identify the main factor affecting protein interaction, the τC is plotted 

against contact angle as series of the coating materials in Figure 57a. The results show no 

dependence of protein adhesion on the coating material. Figure 57b is shown to enhance 

the adhesion of Ti substrates. Figure 57a clearly demonstrates that substrate material is the 

most dominant factor. The protein adhesion to the Ti substrates is significantly lower 

(~2.7 Pa) than the protein adhesion to the Si wafer (~25 Pa).  
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Figure 57 Protein adhesion is clearly dependent on substrate material. The adhesion of 

egg-white protein, rich in albumen, is one order of magnitude higher (~25 Pa) than the Ti 
substrates (~2.7 Pa) 

What is the reason for this difference? It would be expected that the protein 

interacts only with the coating material (TiN, TiAlN, CrN, and CrAlN). However, no 

clear trends can be identified. There is a possibility that the grains formed by the coating 

material and shown in the AFM images in Figure 50 are not completely sealed; that there 

are micron-sized gaps between the grains that allow the protein used for adhesion testing 

to interact with the substrate.  
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If this assumption is correct, another question arises. Why is the adhesion to Si one 

order of magnitude higher than the adhesion to Ti alloy? The authors have found in 

previous experiments that the main factor affecting protein or cellular adhesion is the 

surface chemistry, the electronegativity of the surface in particular, which based on the 

results is the substrate’s electronegativity.  

The electronegativity of the surface is important because egg white protein is rich 

in albumen, which is attracted to electronegative surfaces. The electronegativities of the Si 

and Ti are 1.9 (163, 164) and 1.5 (163, 165) respectively. The higher electronegativity of 

Si would explain way it has higher protein adhesion than Ti.   
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CHAPTER V 

 

INTERACTIONS OF BIOMOLECULES AND NANOPARTICLES 

 

 This chapter discusses the mechanisms of interfacial interactions between 

biomolecules and nanoparticles. The interaction between functionalized (positively and 

negatively charged) nanoparticles and proteins will be studied. Albumin is the most 

common protein in the body, making it the protein of choice. Emphasis will be placed on 

the effect of NP on protein flow properties – viscosity in particular. The positively and 

negatively charged gold nanoparticles are also mixed with amino acid solutions to further 

simplify the system under study and to observe the interaction mechanisms that occur. 

Two positively charged amino acids, L-arginine and L-lysine, are mixed with negatively 

charged gold nanoparticles. Two negatively charged amino acids, L-glutamic acid and L-

aspartic acid, are mixed with positively charged gold nanoparticles. These four amino 

acids were selected because they are the main building blocks of albumin protein.  

The viscosity is studied with a cone-and-plate rheometer as described in Chapter 

III. We address the effects of nanoparticle surface charge (positive and negative), 

nanoparticle size (10, 20 and 50nm), and nanoparticle solution concentration (33 and 67% 

by volume of NP solution) on the flow properties. All tests were conducted at 25oC.  
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5.1. Gold nanoparticle/bovine serum flow properties  

5.1.1. The NP/bovine serum viscosity 

The flow properties of the base materials used (DI water, bovine serum, and 

nanoparticle solutions) must be identified first. Figure 58 shows the dynamic viscosity of 

the DI water and bovine serum. The viscosity of bovine serum is approximately twice of 

that of DI water. This significant increase in viscosity, 2.04 times higher (17.5 x10-4 Pa.s 

for bovine and 8.54 x 10-4 Pa.s for DI), is expected since the molecules (proteins, and 

salts) in bovine serum increase its viscosity as nanofluid theories predict (67, 70, 166, 

167). 

 
Figure 58 Viscosity of bovine serum and DI water  

The viscosity of the positive gold (PG) and negative gold (NG) nanoparticle 

solutions are presented in Figures 59 and 60 respectively. The viscosity of DI water is 

added for comparison. In these figures, the viscosity depends on the shear rate. The high 
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viscosity at shear rates below 200 s-1 is caused by the high spindle inertia to begin 

rotation. After 200s-1, the rheometer has established a steady rotation resulting in a steady 

viscosity measurement. 

 
Figure 59 Dynamic viscosity of negative gold nanoparticle solutions (NP suspended in DI 

water) 

 
Figure 60 Dynamic viscosity of positive gold nanoparticle solutions (NP suspended in DI 

water) 
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The 10NG, 20NG and 10PG solutions changed in color from light pink to light 

purple, similar to the 10PG and 10NG shown in Figure 61. These NP solutions could 

cause agglomeration issues for NP/amino acid solutions as well.  

  
Figure 61 The 10nm positive gold solution changed color from light pink to light purple  

According to nanofluid theories, the viscosity of the nanoparticle solutions 

increases with increasing nanoparticle size (67, 70, 166, 167). In the present study, the 

measured viscosities for positive and negative solutions indicate otherwise. The reason for 

this is the small %volume of solid nanoparticles in the solution. Based on the average 

nanoparticle size and concentration, the estimated % of solid volume occupied by the gold 

nanoparticles in the solution is <<1% (maximum estimated at 0.001% for the 10nm 

positive solution). The existing nanofluid viscosity theories have been proven effective 

only for nanoparticle solid volumes of 0.1% or higher (118). For such a diluted solid NP 

volume, the viscosity of the nanoparticle solutions were supposed to be equal to that of DI 

water, which is only true for the 20nm positive gold solution in Figure 58 above. This 

shows the high sensitivity of our test system. Most importantly, the differences in 

viscosity values seem to be independent of the nanoparticle size. 
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Now we examine the viscosity of the NP/bovine serum. The results for the 10, 20, 

and 50nm NG in bovine serum are summarized in Figures 62a-c. The results for the 10, 

20 and 50nm PG in bovine serum are summarized in Figures 63a-c. 

 

 
Figure 62 Viscosity of (a)10, (b)20, and (c)50 nm negative gold nanoparticles in bovine 

serum 

 

(a)

(b)
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Figure 62 Continued 

 
Figure 63 Viscosity of (a)10, (b)20, and (c)50nm positive gold nanoparticles in bovine 

serum 

 

(c)

(a)
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Figure 63 Continued 

5.1.2. NP-bovine viscosity model 

The results show that, in general, the viscosity of the mixed solutions falls within 

that of the nanoparticle solution (100%_XXNG) and the bovine serum (0%NP/bovine). 

The viscosity values are analyzed with respect to the % NP solution volume. The NP 

solution refers to the NPs suspended in DI water. The viscosity values reported are the 

(b)

(c)
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average of the values recorded for 200-500 s-1 applied shear rate. The results are 

summarized in Figures 64a-c and 65a-c for NG and PG respectively.  

The models used to predict the viscosity of liquid mixtures are generally 

exponential or logarithmic (168). On the contrary, our results showed a linear behavior for 

most mixtures, with the exception of the 20PG. The viscosity values of the mixtures (25, 

50, and 75%) clearly show a linear viscosity behavior falling between those of the 

constituents (100%NP/bovine and 0%NP/bovine).  

The linear viscosity behavior can be modeled with the simple equation used to 

calculate other properties, like density, of mixed liquid solutions. The viscosity of the 

mixture depends on the volume fractions and viscosity of the components.  

  
Figure 64 Viscosity changes linearly with respect to the % of nanoparticle solution. The 

dashed line is the model based on equation  
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Figure 64 Continued 
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Figure 65 Viscosity changes linearly with respect to the % of nanoparticle solution, except 

for the 20PG solution. The dashed line is the model based on equation  
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The model is represented in Equation 10. This model is the one used for Figures 

64 and 65. 

௦௢௟௨௧௜௢௡ߟ   ൌ   ே௉ݒே௉ߟ ൅ ௔௔  [10] whݒ௔௔ߟ

where ηNP is the viscosity of the nanoparticle solution, ηaa is the viscosity of the 

amino acid solution, vNP is the % nanoparticle solution volume, and vaa is the % amino 

acid solution volume. It means that the viscosity of the solution (ηsolution) depends on the 

constituents.  

Furthermore, the viscosity of the NP/bovine solutions is similar to that of the DI 

water/bovine solutions, also shown in Figures 64 and 65. This indicates that for the 

complex system used (bovine serum), the nanoparticle has little effect on the viscosity. 

The flow behavior depends largely on the dilution of the bovine serum by the DI water 

from the NP solutions. The reason for this behavior is due to the complex composition of 

the bovine serum discussed in Chapter III, section 3.1.3.2.2.  

The only mixtures that do not follow the linear behavior according to Equation 10 

are those of the 20PG/bovine solutions. The viscosity of the mixture follows the behavior 

identified by Kuleznev and colleagues for mixtures of polymers with low molecular 

weight distribution, i.e. a polydispersity index (PDI) approximately equal to 1 (168). It is 

well known that proteins have a PDI≡1.0 (169) According to Kuleznev’s work, the 

viscosity of the mixture can be calculated as follows: 

௠௜௫௧௨௥௘ߟ                  ൌ ቀߟଵ
భ
ଵݓഀ ൅ ଶߟ

భ
ଶቁݓഀ

ఈ
  [11] 
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In this equation, η1 and η2 represent the viscosities of the solutions (NPs and 

bovine), w1 and w2 indicate the constituent weight fractions (NPs and bovine), and α is the 

dependence of the melt viscosity on the molecular weight according to: ߟ ൌ  .ఈ (168)ܯܭ

For this study, the value of α was calculated using Equation 11 on the measured viscosity 

of the 20PG/bovine mixtures. Based on Equation 11, our calculated α≈0.12 but the α 

value is typically 1 or 3.4 for polymeric materials.(169)  

The physical meaning of α depends on the conformation of the polymer chain, 

where α=1 indicates linear polymerization of the polymer and for α=3.4 is due to polymer 

chain entanglements (169). The lower α value is likely attributed to protein conformation 

changes caused by their interaction with the nanoparticle.  

 
Figure 66 Viscosity model for polymer mixtures with low PDI provide a better fit to the 

20PG/bovine mixture 

The results indicate that the NP/protein interactions might be present and these 

affect the protein conformation, as shown in Figure 66. However, given the small solid 
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volume of nanoparticles present (<0.001%), the NP/protein interactions are generally 

overpowered by the complex composition of the bovine serum and the observed flow 

behavior, as shown in Figures 64a-c and 65a and c, only depends on the dilution of the 

bovine serum. This is further evidenced by the significant size difference between the 

bovine serum components and the nanoparticles. Figure 67 is a TEM image of the 

NP/bovine serum solution. The arrows indicate the location of some nanoparticles.  

 
Figure 67 TEM image of NP/bovine serum solutions. The arrows indicate the location of 

NPs in the solution (courtesy of Subrata Kundu and Juhi Baxi) 

It is clear that the nanoparticle size is significantly smaller than the proteins and 

salts present in the bovine serum solution. In order to study the NP/protein interactions, 

the system of study must be simplified. We will address this by using amino acids (those 

discussed in section 3.1.3.3. in Chapter III).  

5.2. Nanoparticle-amino acid flow properties 

The flow properties of single amino acid /NP solutions are studied. The amino 

acids selected are L-lysine, L-arginine, L-glutamic acid, and L-aspartic acid which are the 

main building blocks of albumin. The details of the amino acids selected are given in 

Chapter III, section 3.1.3.3.  
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The limitation of the NP/bovine serum studies was the discrepancy in size of its 

components. The spherical NPs used are 10, 20, and 50nm in diameter while the proteins 

in the bovine serum are in the micron size according to Figure 67. We calculated that a 

single amino acid molecule is approximately 1nm in length for the ones selected for this 

study. The proximity in NP/amino acid size is expected to encourage a stronger 

interaction. Furthermore, two amino acids selected are positively charged (L-lysine and L-

arginine) and two are negatively charged (L-glutamic acid and L-aspartic acid), which are 

expected to interact with the negatively and positively charged nanoparticles respectively. 

The material combinations that will be tested are detailed in Table 6 of Chapter III.  

5.2.1. Viscosity of amino acid 

The viscosity was tested using the same method as for NP/bovine solutions. The 

viscosities of the NP solutions have been presented in Figure 59 for all NG and in Figure 

60 for all PG nanoparticles. The viscosity of the amino acid solutions are summarized in 

Figures 68a-d for the selected amino acid concentrations, 1x10-2 and 1x10-4 mol/L labeled 

as 02 and 04 respectively. The amino acids are identified as follows: L for L-lysine, A for 

L-arginine, GA for L-glutamic acid, and AA for L-aspartic acid. Sample labeling is 

explained in detail in section 3.2.2 in Chapter III. 
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Figure 68 Viscosity for (a) L-lysine, (b) L-arginine, (c) L-glutamic acid, and (d) L-aspartic 

acid at the two concentrations: 1x10-2 and 1x10-4 mol/L. The values are compared to DI 
water  
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The viscosity of all the amino acid solutions is different than the viscosity of the 

DI water. Temperature and pH have been identified as the two main factors that affect 

viscosity (67, 71, 170-172). The effect of temperature is eliminated by testing all samples 

at 25oC. The amino acid viscosity is analyzed with respect to its pH. The results are 

presented in Figure 69. The viscosity values are an average of the viscosity measured for 

the shear rates from 200 to 500 s-1; the same used for bovine serum analysis.  

 
Figure 69 The amino acid viscosity is independent of its pH 

Although Figure 69 clearly demonstrates the amino acid viscosity is independent 

of its pH, we must keep in mind that the amino acid solutions with low pH will generally 

be more unstable (i.e. the materials in these solutions will be more likely to agglomerate). 

The solutions with low pH values are the GA02 and AA02.  

5.2.2. Viscosity of negative gold/L-lysine  

The measured viscosity for the NG/L solutions are summarized in Figures 70a-c 

for the 10, 20, and 50nm negatively charged gold nanoparticles. The results indicate an 
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increase in viscosity with increasing NP size where the solutions mixed with 50NG are 

the most stable. The viscosity of the 10NG/L samples is similar to that of DI water 

(Figure 70a). The viscosity of the 20NG/L samples, Figure 70b, show a slightly higher but 

clear increase in viscosity while the 50NG/L samples in Figure 70c show a significant 

increase in viscosity.  

 

 
Figure 70 L-lysine solutions with (a) 10nm, (b) 20nm, and (c) 50nm NG solution 
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We must point out that most solutions aggregated before or during the viscosity 

test (i.e., the solutions changed from pink to light purple). These solutions are listed in 

Table 10. In general, the solutions with the highest amino acid concentration (L02= 0. 01 

mol/L) are the ones with higher tendency to agglomerate. 

Table 10 Solutions that agglomerated before or during testing 

 

5.2.3. Viscosity of negative gold/L-arginine 

The measured viscosity for the NG/A solutions are summarized in Figures 71a-c 

for the 10, 20, and 50nm negatively charged gold nanoparticles. With the exception of the 

33%_10NG_A04, all others have a consistently higher viscosity than DI water. Figure 72 

indicates that agglomeration of the 33%_10NG_A04 happened during testing given the 

change in solution color.  
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Figure 71 Viscosity of L-arginine solutions with (a) 10nm, (b) 20nm, and (c) 50nm NG 

solutions 
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Figure 72 NP agglomeration in evidenced by the change in solution color after testing 

Other solutions agglomerated when mixed. Table 11 summarizes all NG/A that 

agglomerated when mixed (i.e. prior to viscosity testing).  

Table 11 List of solutions that agglomerated when mixed 

  

5.2.4. Viscosity of positive gold/L-glutamic acid 

The measured viscosity for the PG/GA solutions are summarized in Figures 73a-c 

for the 10, 20, and 50nm positively charged gold nanoparticles. The results show no clear 

trend with respect NP size, NP concentration, or GA concentration. It can be pointed out, 

however that there are samples with higher and lower viscosities than DI water. In 
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general, the 50nm PG solutions are the ones that show a lower viscosity values with 

respect to DI water.  

  

 

 
Figure 73 Viscosity of L-glutamic acid solutions with (a) 10nm, (b) 20nm, and (c) 50nm 

PG solutions 
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The only samples that agglomerated are the 33%_10PG_GA02 and the 

67%_10PG_GA02, which according to Figure 73a, are the ones with the highest variation 

in measured viscosity because, as shown in Figure 68, GA02 is the least stable of all the 

amino acid solutions.  

5.2.5. Viscosity of PG/L-aspartic acid 

The measured viscosity for the PG/AA solutions are summarized in Figures 74a-c 

for the 10, 20, and 50nm positively charged gold nanoparticles. The 10 and 20nm PG 

solutions have the highest variation in viscosity with some samples above and some 

below the viscosity of DI water. The 10PG and 20PG solutions agglomerated during test 

which explains the inconsistent viscosity behavior. The samples that agglomerated are the 

33%_10PG_AA02, 33%_10PG_AA04, and 67%_10PG_AA02.  

Previous research shows gold nanoparticles are bonded with the CTAB surfactant 

through covalent Au-N bonding (173). The CTAB surfactant is used to make the negative 

gold nanoparticles. Tri-sodium citrate is the surfactant used to make the positively 

charged gold nanoparticles. Previous study has reported that there is a weak bonding for 

NP/citrate interaction, mainly  van der Waals or electrostatic forces (174). 
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Figure 74 Viscosity of L-aspartic acid solutions with (a) 10nm, (b) 20nm, and (c) 50nm 

PG solutions 
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We conducted structural analysis of the molecules. XPS was performed after 

viscosity measurement. The samples were tested at the SSNL beam line 8.0. The results 

were analyzed with XPS Peak. Shirley background correction was used. The organic 

peaks were fitted according to the values reported by Ratner and Castner (175).  

Figure 75a is the XPS results for the 67%_20NG_L02. This sample showed a 

viscosity of 8.8x10-4 Pa.s, 3.0% higher than DI water. The peaks found correlate well with 

the composition of the amino acid (lysine) and the surfactant (citrate) used to provide the 

nanoparticle’s negative surface charge. The structure of the amino acid and surfactant are 

given in Figures 75 b and c respectively. The peak analysis is summarized in Table 12. 

The % area for each peak correlates to the number of bonds present in the solution where 

a higher percentage indicates this molecule (i.e. bonding) is the most abundant. The 

results for the Peak 2 with 34% peak area at 286.5eV for –C–O–C– bonding show that it 

is the most abundant. This, however, is not a molecule present in lysine or citrate, we can 

infer this is due to citrate polymerization. 
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Figure 75 (a) XPS results for negative gold/ lysine solution, (b) lysine molecule, (c) NP 

surfactant molecule (citrate) 

Table 12 Peak analysis for negative gold/lysine solution 

 

Figure 76a shows the XPS peaks for 67%_20NG_A02. This sample showed a 

viscosity of 9.3x10-4 Pa.s, 9.2% higher than DI water. The structure of the amino acid and 

surfactant are given in Figures 76 b and c respectively. The peak analysis is summarized 

(a) 
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in Table 13. The results for the Peak 3 with 14% peak area at 286.5eV for –C–O–C– 

indicates a decrease in the citrate polymerization compared to the lysine solution. 

 

  
Figure 76 (a) XPS results for negative gold/ arginine solution, (b) arginine molecule, (c) 

NP surfactant molecule (citrate) 

Table 13 Peak analysis for negative gold/arginine solution 
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Figure 77a shows the XPS peaks for 67%_50PG_GA02. This sample showed a 

viscosity of 8.4x10-4 Pa.s, a 0.7% decrease in viscosity compared to DI water. The 

structure of the surfactant and amino acid are given in Figures 77 b and c respectively. 

The peak analysis is summarized in Table 14. The results for the Peak 3 with 22% peak 

area at 286.5eV for C–O–H indicates can be attributed to the COH at both ends of the 

glutamic acid molecule. Additionally, the 34% of Peak 1 at 285eV for the C-C bond is 

due to the long CTAB backbone structure. The results indicate a poor interaction between 

the NP surfactant and amino acid potentially contributing to the drop in viscosity.  

 

     
Figure 77 (a) XPS results for positive gold/ glutamic acid solution, (b) NP surfactant 

molecule (CTAB), (c) glutamic acid molecule  
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Table 14 Peak analysis for positive gold/glutamic acid solution 

 

Figure 78a shows the XPS peaks for 67%_50PG_AA02. This sample showed a 

viscosity of 8.8x10-4 Pa.s, 3.0% rise in viscosity compared to DI water. The structure of 

the surfactant and amino acid are given in Figures 78 b and c respectively. The peak 

analysis is summarized in Table 15. The results show no sign of amino acid/surfactant 

bonding. 

 

        
Figure 78 (a) XPS results for positive gold/ aspartic acid solution, (b) NP surfactant 

molecule (CTAB), (c) aspartic acid molecule  
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Table 15 Peak analysis for positive gold/aspartic acid solution 

 

The physical models and XPS results help determine the NP/amino acid 

interactions but the question of why the NPs and amino acids interact this way still 

remains unanswered.  

5.3. Thermodynamic analysis of the NP/amino acid solutions 

It is well known that materials maintain the lowest energy possible to exist. The 

NP and amino acid molecules will interact in solution until equilibrium is achieved. When 

materials are mixed this equilibrium is disrupted. The interaction of the mixed materials 

will depend on their energies. The thermodynamics of the NP/amino acid solutions are 

now analyzed to understand the energy changes that mixing brings to the system. We 

assume that the NPs-amino acid solutions are a closed system. The main focus will be the 

entropy change of the solutions (ΔSsolution) and the number of possible NP/amino acid 

arrangements (Ω). 

Form the statistical thermaldynamics point of view, entropy (S) is the randomness 

in a system. For a material with a crystalline structure (highly organized molecules), the 

entropy will be low while the entropy of a gas (unorganized molecular arrangement) the 
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entropy will be high (169, 176). The entropy of a system is always positive. However, the 

change in entropy of a system can be negative if it goes from highly unorganized to highly 

organized (176-178).  

The entropy of the amino acid solution will be altered as a result of the NP 

interaction. The change in entropy of the NP/amino acid system can be calculated based 

on the measured viscosity (71). First, the B-viscosity factor is determined with Equation 

12. In this equation, ηrel is the relative viscosity, ηsolution is the NP/amino acid solution 

viscosity, and ηNP is the viscosity of the NP solution, B is the viscosity coefficient, and c 

is the amino acid concentration (mol/L). The B-coefficient is a measure of how much the 

viscosity of a solvent (i.e. the amino acid) is affected by a solute (i.e. the NP). 

௥௘௟ߟ  ൌ  
ఎೄ೚೗ೠ೟೔೚೙

ఎಿು
ൌ 1 ൅  [12] ܿܤ

Another important aspect is the Gibbs free energy (ΔGsystem), which can be 

considered the potential energy a system. For the system under study, there are two 

contributors to the ΔG. The first is the NP. When the NP is dissolved in the amino acid 

solution, the NP brings some potential energy for its interaction with the amino acid. The 

second is the energy that the solution needs to flow. The viscosity is due to fluid molecule 

motion from one location to the next (i.e. flow), the energy required for this process can 

be interpreted as a form of ΔG. Next, the Gibbs activation energy (ΔGNP) of one mole of 

pure solvent is calculated with Equation 13. In this equation, R (gas constant) = 8.314 

J/mol.K, T is the temperature in Kelvin, V1 is the partial molar volume of the solvent, h 

(Plank’s constant) = 6.626 x 10-34 J.s, and NA (Avogadro’s number) = 6.022 x 1023 
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molecules/mol. The ΔGNP is the energy that the solvent (NP) must bring to initiate a 

reaction with the solute. 

 ே௉ܩ∆      
J

୫୭୪
  ൌ ܴ݈ܶ݊ ቀఎಿು௏భ

௛ேಲ
ቁ [13] 

The Gibbs activation energy per mole of solute (ΔGsolution) is calculated with 

Equation 14. The effects of the solvent are also considered in this equation. V2 indicates 

the partial molar volume of the solute. The ΔGsolution is the energy barrier that the fluid 

particle must overcome to flow. 

 ௌ௢௟௨௧௜௢௡ܩ∆  
J

୫୭୪
  ൌ ே௉ܩ∆ ൅ 

ோ்
௏భ

 ሾܤ െ ሺ ଵܸ െ ଶܸሻሿ [14] 

The change in entropy of the solution (ΔSsolution) is determined with Equation 15. 

The change in entropy refers to the organization of the NP and the amino acid from before 

to after mixing.  

 ∆ ௌܵ௢௟௨௧௜௢௡ 
J

୫୭୪.K
 =  -ሺ ܴ݈݊ ቀఎಿು௏భ

௛ேಲ
ቁ + ோ

௏భ
 ሾܤ െ ሺ ଵܸ െ ଶܸሻሿ ሻ [15] 

Finally, the number of possible NP/amino acid arrangements (Ω) can be calculated 

using a variation of Boltzmann’s approximation (169). In order to understand the meaning 

of Ω, assume we have 10 amino acid molecules and 10 nanoparticles. Also assume we 

have a total of 100 spaces where they can be placed. The Ω represents all the possible 

arrangements these NPs and amino acid molecules can take in the 100 spaces available. 

The higher Ω is, the less ordered the system will tend to be, making interactions more 

favorable. Equation 16 is used to calculate Ω, where k is Boltzmann’s constant (1.380 x 

10-23 J/K). This approximation can be used to calculate Ω for the entire solution.   
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 ΔS 
J
K

 ൌ െklnΩ  [16] 

Our analysis, however, is based on one mole of solution. The correction to the 

equation comes from the relation between Boltzmann’s constant (k) and the gas constant 

(R), R=kNA. Using R instead of k allows us to calculate the Ω for one mole of solution. 

Therefore, Boltzmann’s approximation is changed as follows:  

 ∆ ௌܵ௢௟௨௧௜௢௡ ൌ െܴ݈݊Ω  [17] 

Proteins form organized structures that are highly dependent on their chemical 

composition. The ionic amino acids aid in the formation of the structure. This 

organization can be disrupted when an ionic solvent is added to the protein solution 

because the ionic amino acids will interact with the ionic solvent. This opening of the 

protein structure is a process called denaturation (71, 179-181).  

The denaturation of proteins and amino acids by nanoparticles is a recent topic of 

study (19, 182, 183). Few reports have been found explaining how the amino acid 

denaturation affects its flow properties. This is an area that deserves attention because 

functionalized nanoparticles are usually delivered via the blood stream and the NPs can 

interact with the proteins found in blood. 

The ΔSsolution of the NG/ lysine solutions are presented in Figure 79. The figure 79a 

shows the ΔSsolution is independent of viscosity for the solutions with low amino acid 

concentration (33%_L04 and 67%_L04). These solutions show ΔSsolution values as low as  

-1200 J/mol.K. The solutions with higher lysine concentration (33%_L02 and 67%_L02) 
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show a clear decreasing ΔSsolution trend with increasing viscosity. These solutions have 

ΔSsolution values ranging from -100 to -200 J/mol.K. 

 

  
Figure 79 (a) Change in enthalpy of the negative gold/lysine solution (b) is a close up to 

enhance the trend at the lower ΔS values. 

Figure 80 summarizes the calculated ΔSsolution for the NG/arginine solutions. The 

results show a slightly increasing trend in ΔSsolution with increasing viscosity. This system 

is the most stable and all calculated ΔSsolution values range from -100 to -140 J/mol.K. 
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Figure 80 Change in entropy for the negative gold/L-arginine solution 

Figure 81a shows the calculated ΔSsolution for the PG/glutamic acid solutions. Most 

calculated ΔSsolution values range from -100 to -200 J/mol.K. There are a few exceptions 

for the low amino acid concentration solutions (33%_GA04 and 67%_GA04), a behavior 

similar to that of NG/lysine. Figure 81b shows the ΔSsolution is independent of viscosity. 

The calculated ΔSsolution for PG/aspartic acid solutions are summarized in Figure 

82a. Most calculated ΔSsolution values range from -100 to -200 J/mol.K, Figure 82b is a 

close up to observe the lower ΔSsolution values. There is a clear decreasing trend with 

increase in viscosity. There are a few exceptions for the low amino acid concentration 

solutions (33%_AA04 and 67%_AA04), a behavior similar to that of NG/lysine and 

PG/GA. 
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Figure 81 (a) Change in entropy for the positive gold / L-glutamic acid solutions (b) is a 

close up to enhance the trend at the lower ΔS values. 
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Figure 82 Change in entropy for the positive gold / L-aspartic acid solutions 

The change in entropy is negative for all solutions, meaning that the systems 

become more organized due to the addition of NPs to amino acids. Most solutions have 

ΔSsolution ranging between -100 and -200 J/mol.K. The L-lysine, L-glutamic acid, and L-

aspartic acid have a few samples with a ΔSsolution over -1000 J/mol.K. The minus sing 

means a reduction in entropy. 

The Ω of the NP/ amino acid solutions are presented in Figures 83 to 85 for lysine, 

arginine, glutamic acid, and aspartic acid respectively. The Ω represents the many 
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different options in which nanoparticles and amino acid molecules can be distributed 

within the solution.  

 
Figure 83 Number of possible NP/amino acid arrangements for negative gold/lysine 

solutions 

 
Figure 84 Number of possible NP/amino acid arrangements for negative gold/arginine 

solutions 
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Figure 85 Number of possible NP/amino acid arrangements for positive gold/glutamic 

acid solutions 

 
Figure 86 Number of possible NP/amino acid arrangements for positive gold/aspartic acid 

solutions 

For most solutions, the number of potential nanoparticle/amino acid arrangements 

(Ω) range between 1x104 to 1x1010. There are a few exceptions for lysine, glutamic acid, 

and aspartic acid where Ω values up to 1x10138 are calculated.  

The solutions with high ΔSsolution and Ω have been analyzed with respect to NP 

size and concentration, amino acid concentration, and solution pH to identify the potential 
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reasons for this behavior. Two factors identify these solutions. The first is the 10nm sized 

nanoparticles (the smallest used in this study). Small nanoparticles are generally 

associated with higher surface to volume ratios which translate to higher total potential of 

the system. The second factor is the large # of NPs with respect to amino acid molecules. 

The samples that exhibit this behavior are identified in Table 16. 

This behavior can be attributed to the strong nanoparticle effect on the amino acid 

structure and the higher surface energy of the 10nm sized particles leading to the higher 

total potential of the solutions. Furthermore, a low amino acid molecule/for each 

nanoparticle ratio, the more likely the solution is to interact, giving higher change in 

entropy (ΔSsolution) and a higher number of possible nanoparticle/amino acid molecule 

arrangements (Ω).  

Table 16 Samples that exhibit large changes in entropy and number of 
possible arrangements 
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5.4.  NP/amino acid interaction mechanisms 

The viscosity results presented in section 5.2 show independence from NP size, 

NP concentration, and amino acid concentration. Some solutions show viscosities higher 

than DI water and other show viscosities lower than DI water. Furthermore, the change in 

entropy of the solutions show different trends with respect to viscosity. What could be 

causing this behavior?  

To address this question, we need to remember that viscosity is the drag force, i.e., 

the resistance, of the molecular layers in the liquid to move past each other and flow. The 

higher the resistance, the higher the measured viscosity will be. We propose physical 

models for this behavior.  

There are three possible scenarios for the interaction between the NP and the 

amino acid. In the first model, the spherical model, we assume the polar amino acids 

selected interact with the charged NP by encapsulating it. This would form a self-

assembled core of agglomerated NPs, surrounded by an amino acid layer, as illustrated in 

Figure 87a. A phenomenon identified as a protein corona (87).  

In the second model, the agglomeration model, there are only NP-NP interactions 

(i.e. NP agglomeration) and amino acid-amino acid interactions (amino acid 

polymerization). The amino acid does not interact with the NPs. Instead, the amino acid 

polymerizes forming long, entangled chains instead of surrounding the nanoparticles, as 

illustrated in Figure 87b.  

For the third model, the entangled model, the behavior is a mixture of models 1 

and 2. The amino acid polymerizes forming long, entangled chains with few nanoparticles 
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dispersed in the amino acid chains. There are few NP-amino acid interactions. The 

organized molecule spreads further than that shown in Model 1 due to the excessive 

amino acid polymerization. The model is presented in Figure 87c. 

 
Figure 87 NP/amino acid interaction models (a) Model 1–sphere and (b) Model 2– 

agglomeration, (c) Model 3 entanglements 

The viscosity of Model 1, spherical, is due to the NP/amino acid spheres trying to 

go past each other allowing the solution to flow. This interaction increases the viscosity 

because these larger spheres are more difficult to move past each other. This is a behavior 

that has been observed in nanofluids and cause up to 60 to 80% increase in viscosity even 

at 0.1% NP solid volumes (66-70, 118, 171). TEM was conducted to verify the NP/amino 

acid interaction mechanism. The images in Figure 88 are of sample 33%_10NG_L02 

whose viscosity is 8.91 x10-4 Pa.s (4.4% higher than DI water). The spherical structure is 

clearly seen with a sphere diameter ranging from 5 to 12µm. Furthermore, the ΔSsolution 

was -112.5 J/mol.K and the Ω is 7.5x105. This solution has among the smallest changes in 

entropy. With such a small change in entropy (compared to other solutions) the solution is 

in no hurry to minimize its energy and opts for the most efficient interaction and shape – a 

sphere.  
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Figure 88 TEM of sample with higher viscosity (model 1) 33%_10NG_L02 

For model 2 (agglomerations), the viscosity is expected to decrease significantly. 

The agglomeration of NPs and excessive amino acid polymerization is expected to leave 

free ions in the solution. The free ions are due to the surfactant and the amino acid ends. 

These ions act as structure-breakers, i.e., the water molecules are bound together through 

hydrogen bonds. The hydrogen bonds are disrupted decreasing the viscosity (184, 185). In 

Figure 89, the TEM images of sample 33%_10PG_AA04 with viscosity of 7.79 x10-4 Pa.s 

(7.1% lower than DI water) show the extensive amino acid polymerization and minimum 

to null NP/amino acid interactions. The ΔSsolution for was -2587.1 J/mol.K and the Ω is 

1.38x10135. The significant change in entropy means the solution has high potential when 

mixed and it minimizes its energy in the quickest way possible – agglomeration.  
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Figure 89 TEM of 33%_10PG_AA04 with 7.1% drop in viscosity. No NP/ acetic acid 

interactions were found. (c) is the (b) image with contrast adjusted to enhance the amino 
acid cloud  

For Model 3, entanglements, the viscosity is expected to decrease. The 

polymerized and highly entangled amino acid chains would constrain and “fix” the 

distribution of the fluid layers with respect to each other. The highly entangled chains 

would be simply dragged along instead of opposing the fluid layer motion resulting in a 

drop in viscosity. This is a behavior that has been observed in polymer rheology where the 

viscosity of the polymer suspension decreases due to chain entanglements (186, 187).  

Figure 90 shows the TEM image of sample 67%_50PG_GA04 with viscosity of 8.43 x10-

4 Pa.s (0.7% lower than DI water) shows the amino acid polymerization and 

entanglements and its interaction with the NPs. The ΔSsolution for was -152.1 J/mol.K and 

the Ω is 8.82 x107. 
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Figure 90 TEM of 67%_50PG_AA02 with a 0.7% drop in viscosity. Amino acid 

polymerization is evident  

5.5. The nanoparticle-amino acid interactions 

The nanoparticle-amino acid interaction is a poorly understood subject. This 

research has addressed some of the main factors that have been considered to affect the 

flow properties of nanofluids: nanoparticle size, nanoparticle concentration, and fluid pH. 

However, the system gets further complicated when the proteins are included in the 

solution.  

The flow properties of the NP/amino acid solutions do not follow the theories 

developed for nanofluids. Our results indicate that the flow properties greatly depend on 

the energy of the system. High decrease in entropy was found for the addition of the 

smallest nanoparticles (10nm) because these are the ones with highest surface energy 

(based on the surface–to-volume ratio of the nanoparticle), leading to high total potential 
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of the system. In addition, if the system has excessive energy the nanoparticles will 

agglomerate. This is the easiest solution to minimize the energy and reach equilibrium.  

We introduced three physical models on the NP/amino acid interaction: spherical, 

agglomerated and entangled which have been confirmed by TEM. In addition, we have 

applied a thermodynamic approach to study the energy of the system and identify the 

potential interaction of the solutions.  

The most important finding of this research is that we are able to predict that in 

our bodies, the nanoparticles will interact with the proteins resulting in the change of 

protein shapes and properties. The method of particle evaluation presented here is simple 

yet provides great insights into the NP/amino acid interaction and flow behavior.  
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CHAPTER VI 

 

IN VIVO INTERACTION OF NANOPARTICLES AND THE CENTRAL 

NERVOUS SYSTEM* 

 

This chapter discusses the interactions between nanoparticles and biological 

systems. Nanomedicine can reach places that traditional medicine cannot such as the 

central nervous system (CNS). In this study, the CNS of the Blaberus discoidalis, a 

neotropical cockroach is used as the model system. The main focus is to study the 

interactions of negatively charged gold nanoparticles (NGs) with the cockroaches CNS in 

vivo. The authors refer to the nervous system as the brain and the nerve cord as described 

in the American Cockroach by Bell (125). Negatively charged spherical nanoparticles 

with 50nm diameter were used. The negative charge was selected to enhance nanoparticle 

interaction with the nervous system during signal transfer i.e. during a nerve impulse. The 

interaction is first monitored with the insect’s activity (quantifying locomotion) and the 

extracted insect’s CNS is then used to analyze the physical interactions with the biological 

system (188).  

_______ 
*  Part of the information reported in this chapter is reprinted with permission from “In vivo observation of 

gold nanoparticles in the central nervous system of Blaberus discoidalis” A. Rocha, Y. Zhou, S. Kundu, 
J.M. Gonzalez, S.B. Vinson, H. Liang, 2011. Journal of Nanobiotechnology, 9 (1):5-13, Copyright 2011 by 
BioMed Central. 
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6.1. The cockroach as a CNS study model 

The use of nanoparticles in biological systems is a subject that has been under 

scrutiny for some time. The use of nanoparticles for imaging and drug delivery has been 

extensively studied in mice. Hainfeld and colleagues have used gold nanoparticles to 

enhance radiotherapy in mice and as a contrast agent for X-ray imaging (20, 21). Metallic 

nanoparticles, gold in particular, for drug delivery and imaging is a promising field. Gold 

is one of the main materials selected for this type of application due to their great stability, 

biocompatibility (189), ease of manufacture (94), and their outstanding imaging capability 

due to their fluorescence (62, 190). Functionalized gold nanoparticles have also been used 

to investigate targeted drug delivery (56, 191, 192). However, these in vivo methods have 

not been applied for simpler and inexpensive biological systems like insects.  

6.2. Cockroach activity after treatment 

The cockroach activity was recorded by measuring the total distance walked by 

each group daily. Two-minute video recordings were performed at the beginning of the 

light cycle (at 8:00am) for two months. Only six weeks of insect activity are reported 

because no change in activity was observed after day 17. The motion of each cockroach 

was traced with Image Tool and the distance walked was calculated by comparing with a 

fixed reference of known size in the container. The results of cockroach activity are 

summarized in Figure 91. The days not shown in the summary are due to video recording 

device failure or due to corrupt video files. After two months, 7 cockroaches from the 

control and 6 cockroaches from the treated group were alive, giving 78% and 67% 

survival rates respectively. The activity recording was stopped at two months and two 
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cockroaches from the NGs treated group and two from the control group were sacrificed 

and dissected. The remaining cockroaches from each group were sacrificed by freezing at 

-80oC. 

 
Figure 91 Normalized (NGs treated/untreated) activity 

There are several possible factors affecting insects’ activity. Reproductive cycle, 

age, temperature, humidity, wind, noise, vibration, and changes in weather are just a few 

examples (125). The variation due to the reproductive cycle and age was eliminated by 

using only young males in this study. The effects of temperature, humidity, and wind 

were diminished by maintaining them in a controlled environment. However, the 

fluctuations in noise, vibration and changes in weather affect the activity of both groups. 

The effects of these variables are diminished by presenting the activity ratio of the treated 

to the untreated group. Although the treated/untreated ratio still shows variations (days 4, 

11, and 13 in particular), Figure 91 indicates an increased activity for the NGs treated 



127 

 

group for 17 days following treatment. After 17 days, their activity falls below that of the 

control group. The activity monitoring was terminated at 2 months since no significant 

differences in the cockroaches’ behavior after day 17 were observed. 

6.3. Characterizing nanoparticle/CNS interactions 

To understand the effects of NGs on the insects’ behavior, a series of 

characterization experiments were conducted to identify. Spectroscopic and morphologic 

analyses were conducted using hyperspectral imaging, XPS, Confocal microscopy, and 

TEM, as described in Chapter III. Using these tools, the location and interactions of the 

NGs with the cockroach’s CNS were identified.  

6.3.1. Spectroscopic analysis 

The hyperspectral imaging system from CitoViva was utilized to trace the NG 

nanoparticle distribution in the treated roach. The NGs treated tissue was then scanned 

and the spectral imaging was compared to that of the library. From the scanned tissues, 

only the spectra recorded from the brain and nerve cord matched to that of the library 

generated from the NGs/DI water solution as introduced in Chapter III. The results are 

shown in the Figure 92. The image on the left is the hyperspectral results. The image on 

the right is the optical image of the scanned cockroach brain.  
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Figure 92 The hyperspectral scan from extracted cockroach brains. The bright red spots 

(left) are nanoparticles 

The XPS system was used to verify the presence of gold nanoparticles inside the 

brain. Figure 93a shows the results for the control sample (untreated) and Figure 93b for 

the NGs treated brain which shows the binding energy for gold at 85 eV. The high signal-

to-noise ratio of the XPS scans was caused by too few particles on the scanned surface. 

The XPS could only scan to a few nanometers (<10nm) deep from the surface. This 

limited the number of NGs present in the scanned region since only a few nanoparticles 

were exposed within 10nm from the surface. However, the difference between the control 

and the NGs treated samples were seen around 85 eV. The curve fitting obtained for 

Figure 93b was obtained by averaging of 21 consecutive intensity readings (10 above and 

10 below) for each binding energy value recorded. This allows for a moving average and 

smoothing of the fitted curve. The XPS results indicated that the gold nanoparticles were 

dispersed inside the insect’s brain. 
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Figure 93 Gold has a bonding energy of 85eV. (uppper) XPS results for control cockroach 

brain. (lower) XPS results for NGs treated cockroach brain 

6.3.2. Morphological analysis  

Confocal microscopy was employed. In the transmission images, Figure 94a and 

94b, exhibited visible differences in the tissues of the NGs treated and untreated brains 

respectively. The darker regions were an indication of nanoparticle dispersion within the 

tissue. The electron transmission microscopic image showed a clear difference between 
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the treated and untreated cockroach brains. The NGs treated brain had an abnormal tissue 

(dark) due to the embedded nanoparticles. This further proved the existence NGs inside 

the cockroach’s brain. Figure 94c and 94d show the fluorescence of the treated and 

untreated brains respectively. The main challenge of the fluorescent images was the self 

fluorescence of the cockroach brain tissues. The self fluorescence was absorbed and 

emitted at a wavelength close to the gold nanoparticles. However, the results clearly 

showed the NGs treated brain had stronger fluorescence intensity than the control. The 

horizontal yellow line on the top images of Figures 94c and 94d showed the location of 

the intensity profile below. These locations were selected because they exhibit the highest 

intensity. The fluorescence of the treated brain was significantly higher than the untreated. 

The intensity difference was further enhanced because the laser power was set at 30% for 

the treated brain and 50% for the untreated brain, i.e. the fluorescent signal recorded for 

the untreated brain was partially due to the higher laser power and the self fluorescence of 

the tissue.  
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Figure 94 Transmission light image of (a) NGs treated dissected cockroach brain and (b) 
control. Darker tissue is a sign of nanoparticles. A clear difference can be observed in the 

treated tissue (a) while the untreated (b) shows no difference in the tissue. Fluorescent 
image of (c) NGs trated and (d) untreated samples. The lower window shows the 

fluorescent intensity at the location of the yellow line on the upper windows 

6.3.3. Nanoscopic analysis 

Upon closer inspection of the treated brain tissue, there was evidence of 

nanoparticle encapsulation. Figure 95a showed well-defined 2-5μm (2000 to 5000 nm) 

diameter spheres. Upon inspection of the fluorescent image of this view, Figure 95b, 

hundreds of small nanoparticles were found dispersed or agglomerated (indicated with 

green arrows) inside these spheres. Figure 95c, an overlay of the transmission (95a) and 
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fluorescent (95b) images further proved the agglomeration of nanoparticles inside the 

spherical structures.  

 
Figure 95 (a) Transmission, (b) fluorescent, and (c) overly image of NGs treated brain. 

Particle encapsulation is evident. The arrows in (b) indicate particle agglomerations 

The NP morphology in the cockroaches’ brain was characterized with a JEOL-

JEM 2010 TEM. Figure 96 showed NGs (in dark) surrounded by light colored spheres, 

i.e., the nanoparticles were encapsulated. The spheres in Figure 96 ranged from 200 to 

500 nm in diameter. 

 
Figure 96 TEM image of NGs treated brain confirms nanoparticle encapsulation by the 

brain tissue. The arrows indicate the nanoparticle inside the protein capsule 
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This value disagreed with by one order of magnitude to that observed in Figure 95. 

In Figure 96, we observed a single nanoparticle embedded in a sphere of 200-500 nm in 

diameter while Figure 95 shows an agglomeration of these smaller spheres into larger 

ones of approximately 2-5 μm in diameter. This indicates a multi-level self-arrangement 

of embedded nanoparticles. Based on our findings presented in Chapter V and on studies 

by Cedervall et al. (193) and Lundqvist and colleagues (194), it is known that the 

nanoparticles will interact with the proteins present in the biological system, i.e. the 

material surrounding the nanoparticles are proteins present in the nervous system of the 

cockroach.  

6.4. Nanoparticle interaction with CNS 

The results of characterization have repeatedly proven that the NGs were 

encapsulated. How did this process occur? There are two possible reasons, (1) a defense 

mechanism of the immune system of the cockroach against a foreign object, or (2) as a 

protein corona that surrounds the nanoparticles due to its negative surface charge. In terms 

of defense mechanisms, when a foreign object enters the biological system, the response 

of the immune system is to block further damage by encapsulating the object. This 

response has been readily found and studied in insects (74, 87), the immune system 

surrounds the foreign object by phagocytes to then be digested and/or destroyed. Some 

parasites avoid encapsulation due to an ionic surface. When these parasites were rinsed to 

remove the ions from the surface, encapsulation occurred (195). Once encapsulated, the 

foreign objects were expected to either reduce in size or change morphologically. In the 

present research, the nanoparticles are small enough (50nm) to be encapsulated by 
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phagocytosis. Through this process the immune system will excrete the nanoparticle from 

the cell. It is evidenced in Figure 93b that the NGs nanoparticles remain inside the brain 

after 2 months of injection. In the present research, we only observed nanoparticle 

encapsulation with no visible changes in particle size or morphology, as shown in Figure 

96. It is seen that particles are well defined spheres of approximately 50nm diameter.  

It has been reported that a protein corona is the encapsulation of charged particles 

by the polar amino acids in proteins (87, 193, 196). When the charged nanoparticles come 

in contact with live tissue, the proteins or amino acids of opposite charge will be attracted 

to the surface of the particle. This immediate attraction might affect the normal behavior 

of other proteins whose function or processes depended on the protein now in contact with 

the nanoparticle. This chain reaction may continue until equilibrium is reached. 

According to our results of roaches’ behavior, the NGs treated roaches had a sudden 

increase in their activity during 17 days after treatment, followed by a decrease in their 

activity for the remaining of the observation period. This could be attributed to the 

affected signal transfer in the nervous system. Similar change in behavior based on ion 

transfer was reported Hoyle (197) and Luo et al. (198). This correlation of activity caused 

by the NGs on the CNS of the insect are attributed to how the brain of the cockroach 

controls its muscle response and locomotion (77). Although proteins do not break into 

ions, introducing charged particles into the nervous system causes an imbalance in the 

signal transmission that links to the insect’s locomotion.  
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CHAPTER VII 

 

CONCLUSIONS AND FUTURE RECOMMENDATIONS 

 

This research investigated mechanisms of interfacial interactions between 

biological and synthetic materials at the bulk and nano scales. A novel method using 

rotational flow to quantify the material-biomolecule interactions was utilized. The 

adhesion of biomolecules to the bulk materials was measured with a rotational shear flow. 

Experimental and thermodynamic analyses were carried on four nanoparticle/amino acid 

solutions. A physical model based on entropy change was proposed to predict the 

behavior of nanoparticles inside a biological system. Below are the highlights of major 

results and discoveries in each study.  

7.1. Interactions at the bulk scale 

A parallel plate rotational flow was used to quantify the cell and protein adhesion 

to bulk materials. The results showed clear evidence that the synthetic materials’ 

chemistry is the most influential factor in biomolecule adhesion. The fibroblast adhesion 

to PMMA was four times higher than to PC due to the highly polarized PMMA structure. 

The egg-white protein adhesion was 10 times higher to Si than Ti due to the higher 

electronegativity of Si. The adhesion of 12-day old chick embryo neurons on poly-D-

lysine coated glass reached a maximum of 3.0 Pa. This plateau indicates a limit to cell 

strengthening.  
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Quantifying protein/cell adhesion to a substrate is one of the first steps in 

identifying the most suitable materials for every biological application. For a permanent, 

long term-implant, a strong protein/cell adhesion is essential in implant incorporation. It 

will also allow researchers to understand how variations in processing, coatings, or other 

substrate properties affect adhesion.  

The main conclusions from this work are that protein or cell adhesion to a surface 

can be quantified and compared for many different biomolecules (fibroblasts, neurons, or 

proteins) to various substrates (polymers, glass, and metallic coatings). Also, material 

chemistry is the most influential factor affecting adhesion. The results obtained 

demonstrate the methodology developed provide repeatable and accurate results.  

7.2. Interactions at the nano scale 

A cone and plate geometry was used to measure the viscosity of NP/protein and 

NP/amino acid solutions. The selected NPs were positively and negatively charged 

spherical gold with 10, 20, and 50nm diameter. The protein solution used in this study 

was bovine serum, which is rich in albumin. The amino acids were selected based on the 

albumin chemistry, whose structure is rich in L-lysine, L-arginine, L-glutamic acid, and 

L-aspartic acid. The viscosity of the NP/protein solutions showed a linear dependence to 

%vol of NP solution due mainly to protein dilution. 

The viscosity of the NP/amino acid solutions was measured and used to calculate 

its potential (change in entropy i.e. ΔSsolution) and the possible number of NP/biomolecule 

arrangements (Ω). Based on the results, three NP/amino acid interaction models were 

presented: spherical, agglomerated, and entangled.  
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The spherical model has the lowest calculated ΔSsolution and the lowest Ω. In this 

model, agglomerated nanoparticles at the core are surrounded by amino acid molecules. 

The viscosity of the solutions increases. The agglomerated model is presented for 

solutions with high ΔSsolution and high Ω. The nanoparticles in these solutions agglomerate 

while the amino acid molecules polymerize with minimum to null NP/amino acid 

interactions. The viscosity of these solutions decreases. The entangled model is expected 

for solutions with moderate ΔSsolution and moderate Ω. The amino acid entanglements are 

expected to cause a slight drop in viscosity. Some nanoparticle/amino acid interactions are 

expected.  

Overall, the NP/protein and NP/amino acid analysis presented here will help 

predict and identify how the nanoparticles, when used for medical applications, will 

interact and affect the body. This analysis is based on how the nanoparticles affect the 

energy balance of the protein or amino acid solution.  

The first conclusion from this work is that there are nanoparticle/nanoparticle, 

amino acid/amino acid, and amino acid/nanoparticle interactions. The second conclusion 

is that the viscosity of the amino acid/nanoparicle solutions depends on the amino acid 

conformation and how this is affected by the potential energy the nanoparticles bring into 

the solution when mixed.  

7.3. NP effect on CNS, an in vivo study 

Once the NP/amino acid behavior was understood, the negatively charged, 50nm, 

gold NPs were used to observe their interaction with the central nervous system (CNS) of 

the cockroach in vivo. This study showed that the NPs form a multi-level encapsulation by 
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the proteins present in the CNS. Based on the changes in insect activity, we estimate that 

the encapsulation process took approximately 17 days. The insect’s behavior was altered 

because the negatively charged NPs affected the positively charged communication 

channels (Ca+ and K+) of the CNS.  

The first conclusion is that the cockroach is an appropriate subject to observe how  

surface charged nanoparticles affect the CNS. The second is that charged nanoparticles 

interact with the proteins present in the CNS and these interactions affect the signal 

transfer in the insect and this change can be monitored by the insects’ locomotion.  

Ultimately, all methods presented here will help design and identify materials that 

better fit our needs: enhance adhesion with cells and ensure a long-lasting implant, 

functionalize nanoparticles to avoid or better control its effects on the body, and to use a 

simple system to study the effects of NPs on the nervous system.  

7.4. Future recommendations  

• Investigate the effect of surface and materials treatment (UV exposure or other 

sterilizing techniques) on the cell adhesion to bulk materials. 

• Study the effects of NP materials, NP shape, and change in temperature on the 

viscosity and thermodynamic equilibrium of NP/amino solutions.  
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