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ABSTRACT

Essays on Nonparametric Series Estimation with Application to Financial

Econometrics. (August 2011)

Meng-Shiuh Chang, B.S., National ChiaoTung University;

M.B.A., Tamkang University;

M.S.C., University of York

Chair of Advisory Committee: Dr. Ximing Wu

This dissertation includes two essays. In the first essay, I proposed an alter-

native estimator for multivariate densities. This estimator can be characterized as

a transformation based estimator. The first stage estimates each marginal density

separately. In the second stage, the joint density of estimated marginal cumulative

distribution functions (CDF) are approximated by the exponential series estimator.

The final estimate is then obtained as the product of the marginal densities and the

joint density estimated in the second stage. Extensive Monte Carlo studies show the

proposed estimator outperforms kernel estimators in joint density and tail distribu-

tion estimation. An illustrative example on estimating the conditional copula density

between S&P 500 and FTSE 100 given Hangseng and Nikkei 225 is also discussed.

In the second essay, I extended the semiparametric model by Chen and Fan [X.

Chen, Y. Fan, Estimation of copula-based semiparametric time series models, Journal

of Econometrics 130 (2006) 307–335], and studied a class of univariate copula-based

nonparametric stationary Markov models in which the copulas and the marginal dis-

tributions are estimated nonparametrically. In particular, I focused on the stationary

Markov process of order 1 with continuous state space because it has the β-mixing

property for the analysis of weakly dependent processes. The copula density functions

for time series models are approximated by the series estimate on sieve spaces. In this
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study, a finite dimensional linear space spanned by a sequence of power functions is

treated as the sieve space where the estimation space of the copula density function

is based. This sieve series estimator can be characterized as the exponential series

estimator under mild smoothness conditions. By using the β-mixing properties, I

showed that the copula density function approximated by the exponential series es-

timator for stationary first-order Markov processes has the same convergence rate

as the i.i.d. data. The Monte Carlo simulations show that the proposed estimator

outperforms the kernel estimator in the conditional density estimation, except for the

Frank copula-based Markov model. In addition, the proposed estimator considerably

dominates the the kernel estimator when used in the one-step-ahead forecast.
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CHAPTER I

INTRODUCTION

There is an increasing interest in modeling the dependence structures of finan-

cial factors by methods of copula such as market relationships and value-at-risk. For

example, estimating the value-at-risk of portfolios of assets has become a usual prac-

tice in risk management. A copula is a statistical tool for modeling the multivariate

dependence structure among variables in a distribution free way. In fact, it needs to

solve two tasks for the use of copulas. The first starts with the model of each marginal

distribution. The second step involves estimating the copula density function. How-

ever, the development of estimating the copula functions is still in its infancy. There

are two approaches commonly developed for estimating copulas in econometrics. The

parametric approach makes assumptions of underlying copula function and uses the

maximum likelihood estimator to estimate the unknown parameters of the assumed

parametric copula function. However, the parametric estimator is inconsistent if the

assumed copula function is misspecified. Alternatively, one can estimate the copula

functions nonparametrically. For example, the estimation based on the Kernel den-

sity estimator, a well-developed estimator for densities, has become a routine while

estimating a multivariate copula function. Another popular nonparametric estimator

for copula functions is the series estimator which approximates the underlying cop-

ula function in terms of a sequence of basis functions. Because of the unconstrained

functional form of true copula functions, the nonparametric copula estimators are

consistent under mild conditions such as smoothness. However, these two nonpara-

This dissertation follows the style of Journal of Economic Theory.
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metric estimators for copulas take the risk of negative copula density estimate and

slower convergence rate.

In this dissertation, I apply exponential series methods to estimate the copula

functions. Especially, I focus on the theoretical development of multivariate density

estimator which includes the copula function that captures contemporaneous depen-

dence among each variable. Besides, I study the estimation of a class of copula-based

nonparametric stationary Markov models.

In the first essay I propose an alternative estimator for multivariate densities.

This estimator can be characterized as a transformation based estimator. The first

stage estimates each marginal density separately. In the second stage, the joint density

of estimated marginal cumulative distribution functions (CDF) is approximated by

the exponential series estimator (ESE). The final estimate is then obtained as the

product of the marginal densities and the joint density estimated in the second stage.

We derive the convergence rate in terms of the Kullback-Leibler Information Criterion

(KLIC). A second contribution of this study is to incorporate a variable selection

algorithm into a sequential updating process of moment selection to overcome the

curse of dimensionality. As discussed in large literature, the curse of dimensionality

occurs in many nonparametric methods when a high-dimensional sample space is

involved. A typical way to tackle this problem is through a principal component

analysis (PCA). However, dimensionality reduction via PCA still involves all of the

moments which lead to a worse estimation performance in this essay. Instead of

using PCA, the method used in this essay searches for subsets of moments that best

approximate the full set of moments to reduce the dimensionality, e.q. McCabe [27].

This algorithm, called Principal Variables, can identify a subset of a set of original

moments. This algorithm selects moments which are optimal for a given criterion

that measures how well each subset approximates the whole set. In this study, I
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maximize the RM criterion over all possible subsets of moments for the purpose

of reducing the dimensionality. The Monte Carlo studies show that the proposed

estimator outperforms the kernel density estimator and the relative performance of

our method with respect to the kernel method increases with the dimensionality of

sample space. Besides, I also examine the performance of estimating tail distributions.

My method dominates the empirical and the kernel density estimators except for the

fat-tailed case. An empirical estimation of conditional copula density of stock returns

is also provided.

In economic and financial applications, one is often interested in estimating cer-

tain features of the temporal dependence of the time series. For example, Robinson

[33] applies multivariate Kernel probability density and regression estimators to a

univariate strictly stationary time series. This aim could be accomplished using the

copula-based time series models since the temporal dependence can be character-

ized by the copula dependence parameter. Given the estimators of the marginal

distribution and the copula dependence parameter, one can estimate the temporal

dependence structure of time series models. Darsow, Nguyen, and Olsen [11] study

the Markov process using the copulas. Joe [22] studies a class of stationary Markov

models in terms of parametric marginal distributions and copulas. Fermanian and

Scaillet [14] consider a nonparametric kernel method to estimate the copulas for time

series. Moreover, Chen and Fan [6] propose a copula-based semiparametric model for

the estimation of a class of stationary Markov processes.

In the second essay, the nonparametric estimation of copula-based stationary

Markov Models is proposed. I extend the semiparametric model by Chen and Fan [6]

and study a class of time series models in the context of the two-stage ESE in which

the copulas density function and the marginal distributions are estimated nonpara-

metrically. In particular, I focus on the stationary Markov process of order 1 with
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continuous state space because it has the β-mixing property for the analysis of weakly

dependent processes. Since many time series models such as nonlinear ARX, non-

linear ARCH, and diffusion models may generate stationary β-mixing observations,

the theory developed here is widely applicable. The copula density functions for sta-

tionary time series models are approximated by the series estimate on sieve spaces.

In this study, a finite dimensional linear space spanned by a sequence of power func-

tions is treated as the sieve space where the estimation space of the copula density

function is based. This sieve series estimator can be characterized as the exponen-

tial series estimator under mild smoothness conditions. To estimate the unknown

copula density function, I propose a two-stage estimator in which the first stage es-

timates each marginal density separately and in the second stage, the joint density

of estimated marginal cumulative distribution functions (CDF) are approximated by

the exponential series estimator. By using the β-mixing properties, I show that the

copula density function approximated by the ESE for stationary first-order Markov

models has the same convergence rate as the estimator of Wu [43] which concentrates

on i.i.d. data. I also establish the L2 convergence rate of the estimator of a class

of stationary Markov models. I also examine the finite sample performance of the

proposed estimator in two examples. In the first example, we discuss the in-sample

estimation performance of the proposed estimator and then we discuss the one-step-

ahead forecasting performance of the proposed estimator in the second example. The

results show that our estimator outperform the kernel estimator in the conditional

density estimation except for the Frank copula-based Markov model. In addition, the

proposed estimator considerably dominates the kernel estimator when used in the

one-step-ahead forecast.
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CHAPTER II

ESTIMATION OF HIGH-DIMENSIONAL DENSITIES VIA NONPARAMETRIC

COPULA

2.1. Introduction

Estimating a probability distribution plays an important role not only in the

social science but in the engineering field. Many methodologies have been developed

to provide an adequate estimation for a wide class of distribution. For example, the

nonparametric distribution estimation, making no assumption of the distributional

form, is able to capture the stylized pattern of underlying distributions. On the

other hand, the parametric distribution estimation, under the correct specification of

distributional form, can give an efficient estimation for the underlying distribution.

The kernel density estimation, the most popular nonparametric estimator, is an

equal mixture of n kernels, centered at the n data points. It is known that the conver-

gence rate of the kernel density estimator is restricted by the ‘order’ of kernel. Kernels

with order higher than 2 can achieve faster rate of convergence. However, higher or-

der kernel density estimator can produce negative density estimates. Another popular

density estimator is the series estimator, which is known for its automatic adaptive-

ness in the sense that it can ‘adapt’ to the unknown smoothness of the underlying

density to achieve the optimal convergence rate. However, the series estimator cannot

guarantee the positiveness of density estimates either. Wu [43] proposes an alterna-

tive Exponential Series Estimator (ESE) for multivariate densities. The ESE takes

the form of an exponential series and thus is strictly positive. Wu [43] demonstrates

the efficacy of this density estimator. However, the ESE is defined on a bounded

support and further modification is required such to fit fat-tailed distributions.
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In this study, we propose an alternative estimator for multivariate densities. This

estimator can be characterized as a transformation based estimator. The first stage

estimates each marginal density separately. In the second stage, the joint density

of estimated marginal cumulative distribution functions (CDF) are approximated by

the ESE. The final estimate is then obtained as the product of the marginal densities

and the joint density estimated in the second stage. Since the joint density of the

marginal CDFs coincides with the copula density among the margins, the procedure

can be viewed as a copula based estimator as well.

Wu [43] shows that the ESE is particularly suitable for copula density estimation

because it is defined explicitly on a bounded support and free from boundary bias.

However, for a high-dimensional variable, the number of moments increases exponen-

tially, manifesting the ‘curse of dimensionality’. Let d be the dimension of a random

variable X. With a relatively small d, Wu [43] shows that a truncation strategy that

includes all moments of the form
∏d
i=1X

ri
i , ri ≥ 0,

∑d
i=1 ri < m, where m is chosen

according to some information criterion, produces satisfactory results. However, this

approach becomes increasingly cumbersome as d increases. For example, with d = 3

and m = 4, the full set of moments has 35 elements. For d = 4, the count increases to

70. Clearly, this strategy of model selection becomes quickly infeasible as d increases.

A second contribution of this study is to incorporate a variable selection algo-

rithm into a sequential updating process of moment selection to overcome the dimen-

sionality problem. We use the RM proximity indicator, e.q. Cadima, Cerdeira, and

Minhoto [2], to select the subsets of moments for each order before the estimation

therefore the preselected moments used for estimation in each order is a subset of

a full set of moments in each order. For a given d, we impose the restriction that

the moments corresponding to the marginals of the first and the second order of

moments can not be replaced in the updating process, fit the data using an ESE
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with the second order cross moment, m = 2, and retain only those moments with

statistically significant coefficients. We then update the first stage estimate by in-

corporating all RM-selected moments with
∑d
i=1 ri = 3. Among those RM-selected

third-order moments, we retain only those with significant coefficients. This updating

process continues until we reach a pre-specified maximum order of moment, say M .

In each stage, we retain all moments inherited from the previous stages and newly-

incorporated moments with significant coefficients. In the end, we have M candidate

estimates, and each with moments whose order is no higher than m,m = 1, . . . ,M .

The final estimate is then chosen according to some information criterion such as the

Akakie Information Criterion (AIC) or Bayesian Information Criterion (BIC).

To examine finite sample performance of the proposed estimator, we undertake

two sets of experiments. The first experiment examines the performance using six

sets of mixtures of multivariate normal densities. The second one examines the per-

formance of estimating tail distributions. The proposed estimator outperforms the

kernel density estimator for various examples. In addition, the relative performance

of our method increases with the number of variables. An illustrative example on

estimating the conditional copula density between S&P 500 and FTSE 100 given

Hangseng and Nikkei 225 is also discussed.

This study proceeds as follows. Section II briefly describes the principles of

nonparametric density estimator for multivariate cases and of copula method. Section

III presents the two-stage transformation-based ESE and its convergence rate in terms

of the Kullback-Leibler Information Criterion. An sequential updating method of

moment selection is also included in Section III. Section IV discusses the results of

Monte Carlo simulations of our method. Section V gives some empirical applications.

The last concludes.
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2.2. Multivariate Density Estimation

Let {Xt}nt=1 be a d dimensional i.i.d. random sample from an unknown distribu-

tion F with density f defined on the real line, d ≥ 2. We are interested in estimating

f . The parametric approach entails functional form assumptions up to a finite set of

unknown parameters. Multivariate normality or more generally, the elliptical family,

is commonly used due to its simplicity. Nonparametric approach provides a flexible

alternative that seeks a functional approximation to the unknown density. Instead of

imposing functional form assumptions, this approach allows the number of (nuisance)

parameters to increase with sample size to achieve consistency. One can also combine

these two approaches to balance between parsimony and goodness-of-fit. Below we

briefly review various methods for multivariate density estimation, with a focus on

nonparametric estimators.

2.2.1. Direct Estimation

One of the most commonly used density estimators is kernel density estimator

(KDE), which takes the form

fh(x) =
1

n

n∑
t=1

Kh(Xt − x),

where Kh(x) is a d-dimensional kernel function that peaks at x = 0 and h, the so-

called bandwidth, controls how fast Kh(x) decays as x moves away from zero. A

popular choice of K is the Gaussian kernel which is the standard normal density

function. For multivariate densities, product kernel is commonly used. It is well-

known that the performance of KDE crucially depends on the choice of bandwidth

but not on kernel function. Data-driven methods, such as cross validation, are often

used for bandwidth selection e.g., Li and Racine [24].
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Another popular method for density estimation is series estimation. Let gi, i =

1, 2, . . ., be a series of linearly independent real-valued basis functions defined on R.

A series estimator is given by

fm(x) =
m∑
i=1

λigi(x),

where m plays a role similar to bandwidth in kernel estimation and is usually deter-

mined by some data-driven methods, such as generalized cross validation. Examples

of series estimators include power series, splines, and wavelets.

For a d-dimensional random variable with a r-times continuously differentiable

density, both kernel and series estimators can achieve the optimal convergence rate

Op(n
−r/(2r+d)) in the L2 norm under some regularity conditions. However, for kernel

estimators to achieve a convergence rate faster than n−2/(4+d), one needs to use a

higher order kernel, which can lead to negative density estimates. The optimal series

estimator has an appealing property of automatically adapting to the smoothness of

the underlying distribution, but it also shares the problem of likely negative density

estimates. One of the advantages of these estimators is the linearity, which makes it

easy to use cross-validation to determine their smoothing parameters and relatively

straightforward to derive their asymptotic properties. But the linearity is also their

weakness in the sense that their likelihood function, being a product of a sum, is

complicated, and they have no sufficient statistics.

Alternatively, there are also likelihood based nonparametric density estimators.

One family of estimators takes the form

fm(x) = exp(
m∑
i=1

λigi(x) + λ0), (2.1)

where gi, i = 1, . . . ,m, are a series of linearly independent functions and λ0 ≡∫
exp(

∑m
i=1 λigi(x))dx < ∞ ensures that fm integrates to unity. The estimation of a
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probability density function by sequences of exponential families, which is equivalent

to approximating the logarithm of a density by a series estimator, has long been stud-

ied. Earlier studies on the approximation of log densities using polynomials include

Neyman [29] and Good [15]. Transforming the polynomial estimate of log-density

back to its original scale results in a density estimator in the exponential family. The

maximum likelihood method provides efficient estimates of this canonical exponential

family. Crain [10] establishes the existence and consistency of the maximum likeli-

hood estimator. Zellner and Highfield [45] and Wu [42] discuss the estimation of (2.1),

which typically requires nonlinear optimizations.

One obtains a nonparametric estimator in (2.1) by letting its number of terms

m increase with sample size. Kooperberg and Stone [23] and Stone [38] provide in

depth analyses of the log-spline density estimator, which is a special case of (2.1) with

spline basis functions in its exponent. Barron and Sheu [1] establish the asymptotic

properties of (2.1) for general basis functions that include power series, splines and

trigonometric series in a unified framework. Wu [43] further generalizes their results

to multivariate density estimation. They show that the under suitable regularity

conditions, this estimator achieve the optimal rate specified in Stone [37] in terms of

the Kullback-Leibler information criterion.

Following the spirit of Barron and Sheu [1], we call this family of density esti-

mator Exponential Series Estimator (ESE) to reflect its nonparametric nature. Like

a series estimator, optimal ESE adapts to the smoothness of the underlying distribu-

tion automatically. On the other hand, it is strictly positive and has a set sufficient

statistics, E[gi(x)], i = 1, . . . ,m, thanks to its general exponential form. In addition,

ESE has an appealing information theoretic interpretation. It can be derived as the

maximum entropy density by maximizing Shannon’s information entropy subject to

known moment constraints E[gi(x)] = µi, i = 1, . . . ,m, e.q. Jaynes [21].
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2.2.2. Transformation-based Estimation

Transformation of variables of interest to facilitate modeling and estimation is

a common practice in statistical and econometric analyses. For example, logarith-

mic transformation of a positive dependent variable in regression analysis sometimes

mitigates heteroskedasticity. More generally, Box-Cox transformation, which nests

logarithmic transformation as a limiting case, is often used to remedy deviations

from normality in residuals. Although less common, transformations are also used in

density estimations.

In the context of nonparametric density estimation, transformations can be used

to reduce bias. Wand, Marron, and Ruppert [39] propose a transformation based

kernel density estimator. They note that the usual kernel estimators with one global

bandwidth work well for densities that are not far from Gaussian in shape, but can

perform quite poorly when the densities deviate further from Gaussian. In a spirit

close to Box-Cox transformations, they propose transformations of the data so that

the density of the new data can be adequately estimated by kernel estimators with

a global bandwidth. In particular, they focus on right-skewed data and the shifted

power transformation family. They demonstrate that if a transformation is carefully

selected, it is much more appropriate to use the typical kernel estimator with a global

bandwidth on the transformed data. Consequently, the estimated density of the raw

data obtained by back-transformation can have a smaller bias. Yang and Marron [44]

further show that multiple families of transformations can be employed at the same

time, and there can be benefits to iterating this process.

Wand, Marron, and Ruppert [39] and Yang and Marron [44] consider only para-

metric transformations, which reduce biases but do not improve in convergence rate.

Ruppert and Cline [34] propose a smoothed empirical transformation that both re-
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duces bias and improves convergence rate. Suppose for now Xt is a scalar. First the

data are transformed to F̂ (Xt), which is a smooth estimate of the CDF of X. The

estimated density of the raw data then takes the form

f̃(x) =
1

n

n∑
t=1

Kh(F̂ (Xt)− F̂ (x))f̂(x),

where f̂(x) ≡ dF̂ (x)/dx. Because F̂ converges to a uniform distribution whose density

has all derivatives equal to zero, bias of the second stage estimate is asymptotically

negligible. They further show that if the bandwidths of the first and second step are

chosen to be of order n−1/9, then the squared error of f̃ is of order Op(n
−8/9) as n→∞

rather than Op(n
−4/5), the rate of an ordinary kernel estimator. This procedure can

also be iterated to obtain further rate improvement, although in practice the benefits

may be rather small.

Intuitively, both parametric and nonparametric transformations achieve bias re-

duction by choosing a transformation such that the density of the transformed data is

easier to estimate in terms of, say smaller squared errors or integrated squared error.

In this study, we apply the nonparametric transformation approach to multivariate

density estimations. Let F̂j and f̂j, j = 1, . . . , d, be estimated marginal CDF and PDF

for the jth margin of a d-dimensional data X = [X1, . . . , Xd]. The transformation

based density estimator of X then takes the form

f̃(x) = f̂1(x1) · · · f̂d(xd)ĉ(F̂1(x1), . . . , F̂d(xd)), (2.2)

where ĉ is the estimate of the density of the transformed data
{
F̂1(x1), . . . , F̂d(xd)

}
.

Interestingly, (2.2) can also be derived using Sklar’s theorem. Let f be the

density of a d-dimensional random variable, with Fj and fj its jth marginal CDF and
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PDF for j = 1, . . . , d. Sklar [36] shows that the joint density can be decomposed as

f(X) = f1(X1) · · · fd(Xd)c(F1(X1), . . . , Fd(Xd)). (2.3)

When all marginal distributions are differentiable, the decomposition is unique. The

last factor in (2.3) is termed the copula density, which completely summarizes the

dependence structure among X1 to Xd, e.g. Nelsen [28] for a general treatment of

copula).

The copula decomposition allows the separation of marginal distributions and

their dependence and thus facilitates construction of flexible multivariate distribu-

tions. It has also been used in multivariate analyses, especially on financial data, e.g.

Patton [31]. This method has been used for density estimation as well. Hall and

Neumeyer [17] shows that copula method can benefit estimation of joint densities

when there are additional data for the margins. Chui and Wu [9] provide simulation

evidence that two-step estimation via an empirical copula density often outperforms

direct estimation of joint densities. However, both papers consider only bivariate

densities. To account for application in the complex multivariate model, we propose

a transformation-based estimator for the general d-dimensional case.

2.3. Transformation-based Multivariate Density Estimation

In this section we present a nonparametric transformation-based multivariate

density estimation and establish its asymptotic properties. We then propose a method

of model specification for the second stage estimation of the density of the transformed

data, which can be viewed as an estimation of empirical copula density function.
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2.3.1. The Estimator

The transformation-based estimation for an i.i.d. random vector {Xt}nt=1 is con-

structed in two simple steps. We first obtain consistent estimates of marginal densities

and distributions, denoted by F̂j and f̂j respectively for j = 1, . . . , d. Note that it is

not required that f̂j(x) = F̂ ′j(x). In fact, we can even combine smoothed estimates of

marginal densities with empirical CDF’s of corresponding margins.

The second step estimates the density of the transformed data

F̂t = (F̂1(X1t), . . . , F̂d(Xdt)), t = 1, . . . , n. To ease notation, we define ut = (u1t,

. . . , ujt) where ujt = F̂jt for j = 1, . . . , d and t = 1, . . . , n. As discussed above, the

density of {ut}nt=1 coincides with copula density. Like an ordinary density function,

one can estimate a copula density using a parametric or nonparametric method. Para-

metric copula density functions are usually parameterized by one or two parameters.

This parsimony in functional forms imposes restrictions on the dependence structure

among margins. For example, the popular Gaussian is known to exhibit zero tail

dependence. Consequently, it may be inappropriate to use simple Gaussian copulae

to investigate the co-movements of extreme stock returns.

Nonparametric estimation of copula densities, on the other hand, ensures consis-

tency. However, compared with its parametric counterpart, nonparametric estimators

are known to have slower convergence rates. In addition, since copula densities are

defined on a bounded support, treatment of boundary bias warrants special care.

Although the boundary bias problem exists for general nonparametric estimation, its

consequence is particularly severe for copula density estimation. This is because un-

like a lot of densities or curves that vanish at the boundaries, copula densities often

spike near the boundaries and corners. For example, the dependence structure of two

stock returns is often dominated by co-movements of their extreme tails, giving rise
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to a copula density that peaks at either end of the diagonal. In this case, a non-

parametric estimate, say the kernel estimate, of the copula density without proper

boundary bias correction may fail to capture the underlying dependence structure

between variables.

In this study, we adopt the ESE to estimate copula density estimation. This

estimator has some appealing properties that make it suitable for copula density

estimation. First, the ESE copula estimator is always well defined since the copula is

defined on a bounded support. Moreover, the ESE is free of the boundary bias when

an optimal power series basis is used.

More notations are required for multivariate density estimations. Define a multi-

index i = (i1, i2, . . . , id), and |i| =
∑d
j=1 ij. Given two multi-indices i and m, i ≥ m

indicates ij ≥ mj elementwise; when m is a scalar, i ≥ m means ij ≥ m for all j.

As discussed above, the multivariate ESE of copula density could be derived from

the maximization of the Shannon’s entropy of the copula density. The multivariate

ESE of copula density is obtained by maximizing entropy of the copula density. In

particular,

H =
∫

[0,1]d
−c(u) log c(u)du,

subject to the integration to unity

∫
[0,1]d

c(u)du = 1

and side conditions in terms of moments

∫
[0,1]d

gi(u) c(u) du = µ̂i, i ∈M,

where µ̂i = n−1 ∑n
t=1 gi(ut), du = du1du2 · · · dud and gi(u) are a sequence of linearly

independent polynomials defined on [0, 1]d. The estimated multivariate copula density
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takes the form

c(u; λ̂) = exp (−
∑
i∈M

λ̂igi(u)− λ̂0)

where

λ̂0 = log (
∫

[0,1]d
exp (−

∑
i∈M

λ̂igi(u))du)

and M ≡ {i : |i| > 0 and i ≤ m}. Given the marginal density functions, the

estimated multivariate density is then estimated by f̂(X) = (
d∏
j=1

f̂j(Xj))c(F̂ (X); λ̂)

where F̂ (X) = (F̂1(X1), . . . , F̂d(Xd)).

2.3.2. Asymptotic Properties of Two-stage Multivariate ESE

In this section, we derive the convergence rate of the proposed estimator in

terms of In the first stage, we estimate the marginal distribution functions which are

used as the frames of copula density function. Therefore the support of true copula

density c0 is the hypercube [0, 1]d. The basis functions gi are a sequence of linear

independent polynomials. We assume, without loss of generality, gi are normalized

Legendre polynomials.

Assumption 1 The observed data X1 = [X11, X21, . . . , Xd1], X2 = [X12, X22, . . . , Xd2],

. . . , Xn = [X1n, X2n, . . . , Xdn] are i.i.d. continuously random samples with the joint

density p0(x), the marginal densities fj and the marginal distributions Fj.

Assumption 2 Let f0(x) = log c0(x) such that |f0(x)| <∞ and f0(x) is a member of

a Sobolev space Sm in which f
(r−1)
0 (x) is absolutely continuous and

∫
d (f

(r)
0 (x))2dx <

∞ for r > d. r =
∑d
j=1 rj for nonnegative integers rj. For the univariate case,

log f j
(sj−1)(Xj) is absolutely continuous and

∫
(log f

(sj)
j (Xj))

2dXj <∞ where sj is a

nonnegative integer.
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Assumption 3
d∏
j=1

mj → ∞, and (
d∏
j=1

mj
3)/n → 0 for nonnegative mj as n → ∞.

For the univariate case, m̃j →∞ and m̃3
j/n→ 0 for j = 1, 2, . . . , d as n→∞.

The proposed two-stage ESE of copula function is given by cˆ̂
λ

= exp(−
∑
i∈M

ˆ̂
λi gi(F̂1, . . .

, F̂d)− ˆ̂
λ0). It follows fˆ̂

λ
= −

∑
i∈M

ˆ̂
λi gi(F̂1, . . . , F̂j)− ˆ̂

λ0.

Proposition 4 If Fj, j = 1, . . . , d, are known, the ESE of copula density, cλ̂ =

exp(−∑
i∈M λ̂i gi(F1, . . . , Fj) − λ̂0), converges to c0 in the sense of KLIC with the

convergence rate

D(c0||cλ̂) = Op(
d∏
j=1

m
−2rj
j +

d∏
j=1

mj/n)

Proposition 5 Assume we estimate the marginal densities fj, j = 1. . . . , d by the

ESE. The multivariate ESE pλ̂ converges to p0 with KLIC rate

D(p0||pλ̂) = Op(max
j

(m̃
−2sj
j + m̃j/n) +

d∏
j=1

m
−2rj
j +

d∏
j=1

mj/n)

In the following theorem, we prove the convergence rate of the two-stage ESE,

pˆ̂
λ

= (
d∏
j=1

f̂j) cˆ̂
λ
, in terms of KLIC.

Theorem 6 The two-stage ESE pˆ̂
λ

converges to p0 in the sense of KLIC with the

following rate

D(p0||pˆ̂
λ
) = Op(max

j
(m̃
−2sj
j + m̃j/n) +

d∏
j=1

m
−2rj
j +

d∏
j=1

mj/n)

From Theorem 6, we know that the convergence rate of the two-stage ESE is

determined by the convergent rate of marginal density estimators D(
d∏
j=1

fj||
d∏
j=1

f̂j) and

the convergent rate of the ESE of copula density D(c0||cλ̂). Therefore, the convergent

rate of the two-stage ESE is dominated by that of the ESE of copula density if
d∏
j=1

m
−2rj
j +

d∏
j=1

mj/n ≥ max
j

(m̃
−2sj
j +

m̃j

n
).
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2.3.3. Model Specification

In the ESE, moment criteria provide the information about the underlying den-

sity. Therefore, the number of moments used in the ESE should be large enough for

an accurate estimation, particularly when the dimensionality goes high. However, too

many moment criterions included in the ESE result in the dimensionality problem.

To deal with this dilemma of dimensionality, a typical way is through a principal

component analysis (PCA). However, dimensionality reduction via PCA still involves

all of the moments which lead to a worse estimation performance in our case since the

trivial moments produce extra noise. Another approach to reduce the dimensionality

is to identify subsets of variables that best approximate the full set of variables, e.q.

McCabe [27], Cadima and Jolliffe [3] and Cadima, Cerdeira, and Minhoto [2]. This

algorithm to identify a subset of a set of original moments is to select moments which

are optimal for a given criterion that measures how well each subset approximates

the whole set. In this study, we maximize the RM criterion over all possible subsets

of moments for a specific order to select a subset of moments ahead of the estima-

tion for the purpose of reducing the dimensionality. The RM criterion measures the

correlation between the n by p matrix Z and the n by p matrix whose columns come

from projecting each of the p observed variables on Q:

RM = corr(Z, PQZ) =

√√√√trace(ZtPQZ)

trace(ZtZ)
=

√√√√∑p
i=1 λi(rm)2

i∑p
j=1 λj

where PQ is the matrix of orthogonal projections on Q and λi is the variance of ith

PC. (rm)i measures the multiple correlations between the data set’s ith PC and the

q variables spanning Q. Therefore, (RM)2 can be interpreted as the percentage of

total variance accounted for by the q variables. It implies the maximization of RM

selects the q-variable subset that maximize the same criterion as PCA.
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While using the RM condition to select the subsets which well approximate the

full set of variables, one needs to choose the dimension of Q, i.e. q. In this study, we

evaluate q using the following process. Suppose we already have the density function,

say f̂t, estimated by the moments up to the order t and we want to calculate the q

for the order t + 1, say qt+1. First we evaluate the correlation between the matrix

of empirical moments for the order t + 1 and the matrix of predicted moments on

the basis of f̂t for the order t + 1. Denote this correlation coefficient by δt+1. Then

we calculate the number qt+1 by integer(
√

(1− δt+1)pt+1) where pt+1 is the size of

moments for the order t+ 1. (1− δt+1) captures the discrepancy between the matrix

of empirical moments for the order t + 1 and the matrix of predicted moments for

the order t+ 1. The smaller is the discrepancy, the less is the additional information

contained in the moment conditions of order t+ 1 and therefore the fewer number of

additional moment conditions, calculated by integer(
√

(1− δt+1)pt+1), is warranted

in the current stage of updating.

Instead of including all feasible moment constraints at the same time, this study

proposes a t-based updating process for the selection of individual moments and

employs a data-driven method for the selection of the order of moments. As mentioned

in Kooperberg and Stone [23], the t statistics could be used as the criterion of selection

of ”knots” in the logspline model. In this study, we impose the restriction that the

moments corresponding to the marginals of the first and the second order of moments

can not be replaced in the updating process. We outline the updating process as

follows.

1. We use the polynomials corresponding the first and the second moments, say

K1 = {gi(u) : |i| = 1} and K2 = {gi(u) : |i| = 2} in the estimation. We then

drop the polynomials, matching second order cross moments, with insignificant
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t statistics out of the estimation. Denote the set of remaining polynomials in

the estimation by k1. We also evaluate the density function f̂1, the AIC criterion

AIC1 and the BIC criterion BIC1 based on k1.

2. In this stage, we use the RM criterion to select the subset of polynomials corre-

sponding to the third order of moments. Denote this subset of polynomials by

K̃3. We use K̃3 as well as k1 in the estimation.

(a) We use the density function estimated in the previous stage f̂1 to calculate

matrix correlation δ2 so that we can get q2 by integer(
√

(1− δ2)p2) where

p2 is the size of second-order moments. When q2 is known, the selected set

of polynomials, K̃3, is the subset of K3 = {gi(u) : |i| = 3} which maximizes

the RM criterion.

(b) We use K̃3 as well as k1 in the estimation, drop the polynomials in K̃3 with

insignificant t statistics. The subset of polynomials in K̃3 with significant

t statistics is given by k2. The density function f̂2, the AIC criterion AIC2

and the BIC criterion BIC2 based on k2 are also evaluated.

3. We repeat the procedures in the second step in the estimation including the

following order of moments until the maximum order of moment m is reached.

kj, AICj and BICj for j = 1, . . . ,m− 1 are obtained.

Finally, one needs to specify the optimal order of moments for the exponential

series copula density estimator. Wu [43] suggested that the order of polynomials

can be chosen using data-driven methods such as AIC and BIC. For example, we

can use the likelihood-based AIC as the criterion to select the optimal degree of

moments. Therefore the polynomials corresponding to the optimal order of moment

is k̂ = {ki, i = 1, 2, . . . ,m− 1 : AICk̂ = mini=1,2,...,m−1AICi}.



21

The RM-based order updating procedure has several appealing features. First,

the effective number of estimated parameters in our model is usually smaller than

that in Chui and Wu [9] so that the curse of dimensionality is mitigated considerably.

Second, the updating process in terms of t statistics effectively removes the moments

that play insignificant role in the estimation. Another important advantage of our

method is that it is computation-friendly . For example, in the three dimensional

case with m = 4, the number of moments used in the computation at the same time

is 35 in Chui and Wu’s method; whereas, the moments used in the computation of

each step is usually less than 10.

2.4. Monte Carlo Simulation

In this section, we conduct Monte Carlo simulations to investigate the finite

sample performance of the proposed estimator. We also compare the performance

of the ESE with the empirical and kernel estimators on the estimation of tail of dis-

tributions. Six types of bivariate densities including uncorrelated normal, correlated

normal, skewed, kurtotic, bimodal I and bimodal II, investigated in Wand and Jones

[40], are used as benchmarks. Moreover, we consider mixtures of trivariate normals

with similar features. The parameters for these normal mixtures are given in the ap-

pendix. The maximum order of moment is set to be four (m = 4). In both examples,

the marginal density and distribution functions used in the ESE are estimated by the

kernel density estimator (KDE). While using the KDE in the simulation, the Gaus-

sian kernel is used and the bandwidth is chosen by the least square cross-validation

(LSCV).

Our first example concerns the estimation of true density via nonparametric

copula. The sample sizes are 100, 200 and 500, and each experiment is repeated for
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300 times. We use both the AIC and the BIC to select the k̂, the optimal order

of moments to be incorporated in our estimator. For comparison, we also estimate

the densities using the KDE. The performance is gauged by the integrated squared

errors (ISE) evaluated on [−3, 3]d, d = 2 and 3, with the increment of 0.15 in each

dimension. Because the performance of our method under the AIC and the BIC

selection of moments are similar, we only report the results using the AIC. The

results are reported in Table I.

Three panels of Table I reports the ISE and the corresponding standard error

for d = 2 and 3 respectively. For the bivariate case shown in the top panel, the

performance of both estimators improves with the sample size. In our experiments,

the ESE outperforms the KDE in all cases. The average ratios of the ISE between

the ESE and the KDE across all six distributions are 22%, 25% and 46% when the

sample sizes are 100, 200 and 500. The results for the trivariate case are reported

in the bottom panel. The general pattern of performance remains the same. The

corresponding average ISE ratio between the ESE and the KDE improves to 31%,

41% and 48%.

The average ISE ratio between the ESE and the KDE improves with the sample

size across six distributions for d = 2 and 3. Also this average ratio generally improves

with the dimensionality of space. This desirable result indicates that our method gets

better in the relative performance with respect to the KDE as the dimensionality of

a density increases.

In the financial risk management, modelling of extreme financial returns has

become critical issues, e.q. Chan and Li [4]. Extreme value theory, characterizing

the extremal characteristics of stationary distributions, allows us to make inference

about extremal behaviors of returns. To this end, the estimation of tail index is

fundamental, for which theory offers various of different approaches. In this study,
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Table I. ISE of Joint Density Estimation

N=100 N=200 N=500

KDE ESE KDE ESE KDE ESE

d=2

uncorrelated normal 0.0103 0.0086 0.0064 0.0052 0.0035 0.0023

(0.0047) (0.0075) (0.0026) (0.0050) (0.0012) (0.0019)

correlated normal 0.0094 0.0081 0.0058 0.0048 0.0034 0.0028

(0.0035) (0.0074) (0.0017) (0.0033) (0.0008) (0.0011)

skewed 0.0223 0.0141 0.0190 0.0104 0.0146 0.0072

(0.0061) (0.0082) (0.0043) (0.0046) (0.0029) (0.0025)

kurtotic 0.0202 0.0153 0.0152 0.0129 0.0099 0.0010

(0.0052) (0.0037) (0.0042) (0.0023) (0.0026) (0.0010)

bimodal I 0.0075 0.0065 0.0049 0.0038 0.0028 0.0018

(0.0029) (0.0045) (0.0017) (0.0024) (0.0009) (0.0010)

bimodal II 0.0142 0.0107 0.0095 0.0065 0.0054 0.0029

(0.0050) (0.0080) (0.0027) (0.0044) (0.0014) (0.0015)

d=3

uncorrelated normal 0.0078 0.0058 0.0053 0.0028 0.0033 0.0013

(0.0024) (0.0041) (0.0015) (0.0019) (0.0008) (0.0007)

correlated normal 0.0058 0.0041 0.0040 0.0024 0.0026 0.0015

(0.0014) (0.0031) (0.0008) (0.0011) (0.0005) (0.0005)

skewed 0.0132 0.0090 0.0098 0.0053 0.0067 0.0027

(0.0032) (0.0064) (0.0022) (0.0021) (0.0013) (0.0008)

kurtotic 0.0218 0.0160 0.0192 0.0148 0.0146 0.0136

(0.0027) (0.0025) (0.0022) (0.0015) (0.0017) (0.0010)

bimodal I 0.0059 0.0042 0.0040 0.0023 0.0026 0.0011

(0.0015) (0.0031) (0.0008) (0.0014) (0.0005) (0.0005)

bimodal II 0.0072 0.0042 0.0051 0.0026 0.0033 0.0012

(0.0018) (0.0025) (0.0011) (0.0014) (0.0006) (0.0005)

NOTE:

1. KDE = Kernel estimator

2. ESE = Exponential series estimator
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the second example compares the ESE with the empirical estimator and the KDE

on the estimation of a tail index of a distribution. The tail index of a distribution is

given by

T =
∫

[−∞,qi]d
f(x)dx

where qi ≡ F−1
i (α), i = 1, · · · , d. The benchmark densities are the same as before.

The sample size is 100 and each experiment is repeated for 500 times. 5% and

10% of the marginal low-tail distribution (i.e. α = 5% and 10%) are considered.

The empirical estimator for tail distributions is given by
∑n
j=1 I{Xj ≤ q1} for the

univariate case. Like the previous example, we use the AIC for the specification of

the ESE. In this example, the finite sample performance is measured by the mean

squared errors (MSE), which is the average of the difference between the estimated

tail index and the true tail index. The MSE and the corresponding standard error

are shown in Table II. For d=2, the ESE outperforms the empirical estimator and

KDE in terms of MSE at 5% and 10% marginal distributions. However, the ESE

is slightly dominated by the KDE in the simulation of the kurtotic case at 10%

marginal distribution for d=3. Finally, the MSE increases with the percentile of

marginal distribution. Regarding the sample variance, the ESE dominates the others

in terms of small sample variance.

For d=2, the average ratio of the MSE between the ESE and the KDE across six

distributions is 63% at 5% marginal distribution and 47% at 10% marginal distribu-

tion respectively; whereas for d=3 the average MSE ratio between the ESE and the

KDE is 75% and 53% respectively. The average ratio of MSE between the ESE and

the KDE improves with the dimensionality of the sample space.

It has been revealed that smoothing methods usually improve the estimates of

densities especially in the multivariate cases. However, there are some exceptions
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Table II. ISE of Tail Distribution Estimation

percentile 5% 10%

EM KDE ESE EM KDE ESE

d=2

uncorrelated normal 1.0320 1.7570 0.2949 2.6780 4.6047 1.1665

(1.7724) (2.3339) (0.4981) (4.0155) (5.7700) (1.9452)

correlated normal 1.8451 1.3867 0.9333 4.2959 3.2371 2.7643

(2.8861) (2.4799) (0.8883) (5.9669) (4.5019) (3.0975)

skewed 1.0076 0.7697 0.3493 3.0475 2.7579 1.8587

(1.6747) (1.2471) (0.4207) (4.2814) (4.0362) (2.1085)

kurtotic 1.3930 1.1677 0.6777 2.9170 2.5453 2.3564

(2.4307) (2.0369) (0.6613) (4.3901) (4.2056) (2.1718)

bimodal I 0.2045 0.3210 0.0483 1.0200 1.5901 0.3142

(0.3951) (0.5513) (0.0904) (1.7069) (1.9928) (0.5367)

bimodal II 0.2095 0.3652 0.0602 0.9720 1.5850 0.3962

(0.4327) (0.5585) (0.0910) (1.4723) (1.9710) (0.7425)

d=3

uncorrelated normal 0.1331 0.1352 0.0103 0.4535 0.6440 0.0805

(0.4129) (0.2539) (0.0218) (0.8620) (0.8642) (0.1819)

correlated normal 0.5059 0.2822 0.0971 1.7460 0.9812 0.5602

(1.2809) (0.6333) (0.0616) (2.5603) (1.7711) (0.5968)

skewed 0.1829 0.1111 0.0296 0.8814 0.5762 0.4666

(0.3992) (0.2475) (0.0134) (1.2628) (1.0695) (0.2811)

kurtotic 0.5730 0.3607 0.2699 1.8735 1.2931 1.4767

(0.9976) (0.6043) (0.0855) (2.8469) (2.1702) (0.9358)

bimodal I 0.0119 0.0080 0.0003 0.0996 0.0909 0.0076

(0.1063) (0.0263) (0.0007) (0.3228) (0.1711) (0.0134)

bimodal II 0.0080 0.0108 0.0004 0.1172 0.0995 0.0080

(0.0869) (0.0371) (0.0008) (0.3940) (0.2023) (0.0177)

NOTE:

1. EM = Empirical estimator
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that the KDE performs worse than the empirical estimator. On the other hand, the

ESE always outperforms the empirical estimator. Comparing between the ESE and

the KDE, the ESE is substantially better than the KDE, sometimes ten times better.

2.5. Empirical Application

Starting from 1990s, Asian financial markets have become an important role in

the global financial system. In the financial literature, more and more studies has

appeared to address the impact of Asian financial markets on the European and

American financial markets. Especially in 1998, the Asian financial crisis began in

many economies in Asia raised fears of worldwide economic collapse due to finan-

cial contagion. A statistical tool which is usually used to analyze the response given

some known information is the conditional probability of one market given the per-

formance of some other markets. In this section, we applied the proposed ESE to

the estimation of conditional probability density and copula density of stock return

indices. We examine the conditional probability density functions of monthly stock

return indices, S&P 500 (US) and FTSE 100 (UK) given marginal distributions of

Hangseng (HK) and Nikkei 225 (JP) below 15%, between 15% and 30%, between 40%

and 60%, between 70% and 85%, and above 85%. For more insightful information

of the comovement of the US and the UK markets, the copula density function is

estimated .

Monthly S&P 500 (namely Y1), FTSE 100 (namely Y2), Hangseng (namely Y3)

and Nikkei 225 (namely Y4) indices are collected for February 1978 through May 2006.

For each market, We calculate the rate of return Rt by logPt − logPt−1. To include

the dynamic structure, we use a GARCH (1,1) model which assumes Rt = µ + ut

where ut ∼ N(0, ht) and ht = γ + αu2
t−1 + βht−1 and then estimate the standardized
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residuals. To employ the two-stage ESE on estimate of conditional density of the US

and the UK markets based on the HK and the JP markets, we estimate the marginal

density and distribution functions by the KDE and the joint copula density of four

indices by the ESE. The model specification of the ESE is determined by the AIC and

the maximum order of moment is set to be four. The estimated conditional density

function by the ESE is then given by

f̂(y1, y2|y3 ∈ F̃−1
3 (∆), y4 ∈ F̃−1

4 (∆)) =
f̂1(y1) f̂2(y2) f̂3(y3)|y3∈F̃−1

3 (∆) f̂4(y4)|y4∈F̃−1
4 (∆)

f̂(y3, y4)|y3∈F̃−1
3 (∆),y4∈F̃−1

4 (∆)

·

ĉ(F̂1(y1), F̂2(y2), F̂3(y3), F̂4(y4))|(F̂3(y3),F̂4(y4))∈∆

where f̂i and F̂i are estimated marginal density and distribution functions for i =

1, · · · , 4. F̃−1
j are empirical quantile functions for j = 3 and 4. ĉ(·) is the estimated

copula density function by the ESE. ∆ is the assigned ranges of marginal distributions

of the HK and the JP markets. In this application, we focus on five different ranges:

∆ ∈ (0, 15%], (15%, 30%], (40%, 60%], (70%, 85%], and (85%, 1] which are denoted by

Range 1, 2, 3, 4, and 5.

Before the estimate of conditional density functions, we investigate the condi-

tional dependence between the US and the UK markets given the HK and the JP

markets in terms of the Kendall’s τ . The Kendall’s τ measures the nonlinear depen-

dence via the degree of dependence between two rankings. The Kendall’s τ is defined

as a function of the copula:

τ(C) = 4
∫

[0,1]2
C(u1, u2)dC(u1, u2)− 1

where C is the copula function. In this study, we first estimate the copula density
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Table III. Estimated Conditional Dependence Measures between S&P 500 (U.S.) and

FTSE 100 (U.K.)

percentile of marginal distribution Kendall’s τ

of Hangseng and Nikkei 225

0− 15% 0.2917

15%− 30% 0.3000

40%− 60% 0.3324

70%− 85% 0.3119

85%− 1 0.2928

function ĉ(F̂1(y1), F̂2(y2), F̂3(y3), F̂4(y4)) by the ESE and obtain the Kendall’s τ by

τ̂(C) = 4
∫

[0,1]2
Ĉ(u1, u2, u3, u4)|(u3,u4)∈∆ ĉ(u1, u2, u3, u4)|(u3,u4)∈∆du1du2 − 1

where Ĉ(·) is the copula function evaluated by the copula density function ĉ(·).

The estimated conditional Kendall’s τ is reported in Table III. The conditional

Kendall’s τ measure remains very similar across different marginal distributions of

the HK and the JP markets except ∆ ∈ (40%, 60%]. The conditional Kendall’s τ

coefficients at the low tails ∆ ∈ (0, 15%] and ∆ ∈ (15, 30%] are smaller than those

at ∆ ∈ (70%, 85%] and ∆ ∈ (85%, 1] respectively. This pattern suggests that the

US market has the higher degree of dependence with the UK market when the Asian

markets (e.q. HK and JP) boom. Besides, the largest conditional Kendall’s τ happens

at ∆ ∈ (40%, 60%], which implies the US and the UK markets exhibits the highest

degree of positive dependence when the HK and the JP markets remain stable.

The estimated conditional density functions of the US and the UK markets given

different ranges of marginal distribution of the HK and the JP markets estimated by
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the ESE are shown in Figure 1. Consistent with the estimated conditional Kendall’s

τ , the estimated conditional density function between the US and the UK markets ex-

hibits the highest degree of positive dependence at the middle range (∆ ∈ (40%, 60%])

of marginal distributions of the HK and the JP markets by its relatively narrow pro-

file along the diagonal. Besides, the estimated conditional densities of the US and

the UK markets given low stock returns of the HK and the JP markets exhibit that

there is a high possibility that the US and the UK markets simultaneously stagnate or

move down when the HK and the JP markets both go down. To gain further insight

into the interactions between the joint behavior of the US and the UK markets and

joint behavior of the HK and the JP markets, I investigate their corresponding copula

densities below.

The copula densities of the US and the UK markets given different ranges of

marginal distribution of the HK and the JP markets are shown in Figure 2. Except

for the saddle point shape of the copula density of the US and UK markets given

the middle range (∆ ∈ (40%, 60%]) of marginal distributions of the HK and the JP

markets, the copula densities of the US and the UK markets given the remaining

ranges (∆ ∈ (0, 15%], (15%, 30%], (70%, 85%], and (85%, 1]) exhibit the similar bell

shapes. Since all copula densities are defined on the unit square, their density values

could be compared. The comovement of the US and the UK markets are likely to

be influenced by the environments of the HK and the JP markets. For example,

when the HK and the JP markets are down, the joint behavior of the US and the

UK markets appears to be down too. On the other hand, the US and the UK stock

markets both boom when the HK and the JP stock markets are thriving. In general,

the joint behaviors of the US and UK markets have high correlations with those of

the HK and the JP markets especially when the HK and the JP markets are at their

peaks.
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(a) Range 1 (b) Range 2

(c) Range 3 (d) Range 4

(e) Range 5

Fig. 1. Contours of conditional density estimation of S&P 500 and FTSE 100 given

different ranges of marginal distributions of Hangseng and Nikkei 225
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(a) Range 1 (b) Range 2

(c) Range 3 (d) Range 4

(e) Range 5

Fig. 2. Contours of conditional density estimation of S&P 500 and FTSE 100 given

different ranges of marginal distributions of Hangseng and Nikkei 225
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The examination of the conditional densities provides important insight into the

joint behavior of the stock markets given the behavior of other markets. For example,

when the HK and the JP markets are thriving or declining, the conditional densities

of the US and the UK markets reveal an information that can not be found in the

unconditional density. The US and the UK markets are more likely to be influenced

by the environments of the HK and the JP markets when the HK and the JP markets

undergo a boom than when the HK and the JP markets suffer from a recession. The

asymmetric effects between the joint behavior of the US and the UK markets and

that of the HK and the JP markets imply the US and the UK markets are more

robust to the recession than the HK and the JP markets.

2.6. Conclusion

This study proposes a two-stage multivariate exponential series estimator via a

copula density. The marginal density and distribution functions of each variable are

estimated in the first stage and the joint copula density, in terms of the estimated

marginal distributions, is then approximated by the exponential series estimation.

Finally, the joint density is obtained by the product of marginal densities and the

joint copula density estimated in the second stage. A sequential updating method of

moment selection is incorporated to select informative moments.

I examine the finite sample performance of the estimator in two experiments. I

first investigate the performance using various multivariate normal mixtures. Besides,

I estimate the tail distribution. The results show that our method considerably

outperforms the kernel estimator in the density estimation. In addition, the proposed

method provides superior estimates to the kernel and empirical density estimators

in the tail distribution except for the kurtotic case. Finally, I apply our method
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to estimate the conditional copula density between S&P 500 and FTSE 100 given

Hangseng and Nikkei 225.
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CHAPTER III

EXPONENTIAL SERIES ESTIMATION OF COPULA-BASED FIRST ORDER

MARKOV PROCESS

3.1. Introduction

The measure of risk in financial portfolio analysis directly relies on the measure

of dependence among assets within the portfolio. For instance, the distribution of the

return on a portfolio relies not only on the distribution of individual asset but on the

dependence between assets, which could be captured by a copula function. A copula is

a statistical tool for modelling the multivariate dependence structure among variables

without any distribution constraint. By Sklar’s theorem, the model of a multivariate

density function can be separately identified by the individual marginal densities and

the copula density function. Embrechts, McNeil, and Straumann [13] provides general

reviews of application of copulas on financial analysis.

The number of papers on copula theory in analyzing contemporaneous depen-

dence between several time series has grown enormously in recent years but the model

of temporal dependence of a univariate time series has less been addressed in the lit-

erature. Robinson [33] applies multivariate Kernel probability density and regression

estimators to a univariate strictly stationary time series. Darsow, Nguyen, and Olsen

[11] study the Markov process using the copulas. Joe [22] studies a class of stationary

Markov models in terms of parametric marginal distributions and copulas. Ferma-

nian and Scaillet [14] consider a nonparametric kernel method to estimate the copulas

for time series. Moreover, Chen and Fan [6] propose a copula-based semiparametric

model for the estimation of a class of stationary Markov processes.

Many nonparametric methods such as splines and wavelets can be regarded as
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examples of sieve extremum estimation. The method of sieve, Grenander [16] , max-

imizes an empirical criterion function over a sequence of approximating spaces which

are called sieve spaces. The sieve space is chosen as a dense of the underlying param-

eter space and its size is allowed to increase with the sample size. Shen and Wong

[35] derived the convergent rates for general sieve M-estimation. Newey and Powell

[30] established the consistency of sieve minimum distance estimates. For weakly

dependent data, White and Wooldridge [41] establish consistency of sieve extremum

estimates. Chen and Shen [7] derive the convergence rates of sieve extremum esti-

mates and root-n asymptotic normality of sieve extremum estimates for stationary

β-mixing observations. Chen [5] obtains the rate of sieve extremum estimates for

both i.i.d. and weakly dependent data.

Another nonparametric estimators, called Exponential Series Estimator (ESE),

has also drawn considerable attention in the literature, e.q. Barron and Sheu [1],

Marsh [26] and Wu [43]. The ESE is based on the method of Maximum Entropy

density subject to a given set of moment conditions. Compared with other nonpara-

metric estimators, the effective number of parameters is largely reduced while using

the ESE for smooth functionals. Due to several appealing properties, the ESE is in-

creasingly used in the estimation and hypothesis testing in terms of density functions.

However, there is no study using the ESE on analyzing time series models, especially

on stationary Markov processes.

In this paper, I extend the semiparametric model by Chen and Fan [6] and study

a class of time series models in the context of the two-stage ESE in which the copulas

density function and the marginal distributions are estimated nonparametrically. In

particular, I focus on the stationary Markov process of order 1 with continuous state

space because it has the β-mixing property for the analysis of weakly dependent

processes. The copula density functions for time series models are approximated by
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the series estimate on sieve spaces. In this study, a finite dimensional linear space

spanned by a sequence of power functions is treated as the sieve space where the

estimation space of the copula density function is based. This sieve series estimator

can be characterized as the Exponential Series Estimator under mild smoothness

conditions. By using the β-mixing properties, I show that the copula density function

approximated by the ESE for stationary first-order Markov models has the same

convergence rate as the estimator of Wu [43]. It helps us establish the consistency

of the proposed two-stage estimator. To examine finite sample performance of the

proposed estimator, I undertake two sets of experiments. In the first example, I

discuss the in-sample estimation performance of the proposed estimator and then

I discuss the one-step-ahead forecasting performance of the proposed estimator in

the second example. The results show that our estimator outperform the kernel

estimator in the conditional density estimation except for the Frank copula-based

Markov model. In addition, the proposed estimator considerably dominates the kernel

estimator when used in the one-step-ahead forecast.

The rest of this paper is organized as follows. In Section II, I introduce the

exponential series estimator for the time series models. Also, the consistency of

the estimator is verified. A sequential updating method of moment selection is also

included in Section II. In Section III, I conduct Monte Carlo simulation to examine

the finite sample performance of the proposed estimator. Section IV concludes with

discussions.

3.2. Two-step Estimation of Copula-based Markov Models of Order 1

In this section, I present a two-stage estimator for a class of univariate copula-

based nonparametric time series models and derive its convergent rate. I also demon-
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strate the method of model specification for the second stage estimation of the copula

density function. Assume {Yt} is a stationary Markov process of order 1 with con-

tinuous state space. The joint distribution function of Yt−1 and Yt, say G(y0, y1),

can be used to determine to probabilistic property of Yt. By Sklar’s [36] theorem,

the joint distribution G(y0, y1) can be interpreted by the marginal distribution of Yt,

F (Yt) and the copula density function of Yt and Yt−1, c(F (yt−1), F (yt)). Therefore, to

estimate G(y0, y1), I can estimate the marginal distributions F (yt) and then estimate

c(F (yt−1), F (yt)) based on the estimated marginal distributions F̂ (yt).

3.2.1. First Step of Estimation of Copula-based Markov Models of Order 1

In this stage, I can use any nonparametric model to estimate the marginal density

f(yt) and the invariant distribution F (yt). In this study, I use the nonparametric

kernel estimators for f(yt) and F (yt) which are given by

f̂(yt) =
1

(T − 1)h

T∑
j=2

k(
Yj − yt
h

),

and

F̂ (yt) =
1

(T − 1)

T∑
j=2

G(
Yj − yt
h

)

where G(yt) =
∫ yt

−∞
k(v)dv and k(v) is a second order Gaussian kernel function. h

denotes the bandwidth which is selected based on the least square cross-validation

method.

3.2.2. Second Step of Estimation of Copula-based Markov models of Order 1

After estimating the marginal distributions, I can estimate the copula den-

sity function c(F̂ (yt−1), F̂ (yt)) which characterizes the scale-free temporal depen-

dence property. To ease notation, I define ut = (u0t, u1t) where u0t = F̂ (yt−1) and
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u1t = F̂ (yt) for t = 2, . . . , T . In this paper, I propose to use an alternative nonpara-

metric estimator which is the sieve series estimator for c(F̂ (yt−1), F̂ (yt)). In particu-

lar, this study uses finite-dimensional linear spaces spanned by the power functions as

sieve spaces such that the sieve series estimator coincides with the Exponential Series

Estimator (ESE) in Wu [43]. It turns out that I use the ESE for c(F̂ (yt−1), F̂ (yt)).

The ESE can be naturally derived from the method of Maximum Entropy subject to

a given set of moment constraints.

H =
∫

[0,1]2
−c(u) log c(u)du,

subject to the integration to unity

∫
[0,1]2

c(u)du = 1

and side conditions in terms of moments

∫
[0,1]2

gi(u) c(u) du = µ̂i, i ∈M,

where µ̂i = n−1 ∑n
t=1 gi(ut), du = du1du2 and gi(u) are a sequence of linearly inde-

pendent polynomials defined on [0, 1]2. The estimated bivariate copula density takes

the form

c(u; λ̂) = exp (−
∑
i∈M

λ̂igi(u)− λ̂0)

where

λ̂0 = log (
∫

[0,1]d
exp (−

∑
i∈M

λ̂igi(u))du)

and M ≡ {i : |i| > 0 and i ≤ m}.

Since analytical solutions for λ cannot be obtained, I need a nonlinear optimiza-

tion, namely Newton’s method, to solve for λ by iteratively updating

λ̂t+1 = λ̂t −H−1b
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where the gradient

bi = µ̂i −
∫
gi(u)c(u; λ̂t)du

and the Hessian matrix takes the form

Hij =
∫
gi(u)gj(u)c(u; λ̂t)du.

Given the marginal density functions, the estimated bivariate density is then

estimated by ĝ(yt|yt−1) = f̂(yt)c(F̂ (yt−1), F̂ (yt); λ̂).

3.2.3. Asymptotic Properties

The goal of this study is to estimate the conditional density of Yt given Yt−1

nonparametrically via g∗(yt|yt−1) = f ∗(yt) · c(F ∗(yt−1), F ∗(yt)). Therefore the con-

vergence rate of this conditional density estimator comes from the maximum of the

convergence rate of the estimator of c(F ∗(yt−1), F ∗(yt)) and the convergence rate of

the estimator of f ∗(yt). Using bivariate ESE for the copula density, I start with the

L2 convergence rate ||c− ĉ||2 for weakly dependent observations.

I first estimate the marginal distribution functions which are used as the frames

of copula density function. I can use existing nonparametric estimators such as the

kernel , the spline and the series estimators. In this study, I employ the exponential

series estimator of Barron and Sheu [1] for the estimation of marginals. Besides, the

support of true copula density c0 is the hypercube [0, 1]2. The basis functions φi are

a sequence of linear independent polynomials. I assume, without loss of generality,

φi are normalized Legendre polynomials.

Assumption 7 {Yt}nt=1 is a stationary first order Markov process generated by (F ∗(·),

C(·, ·)) where F ∗ is the true distribution function which is absolutely continuous with

respect to Lebesgue measure. C(·, ·) is the true copula function for (Yt−1, Yt) with
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unknown parameter α∗. This copula function is absolutely continuous with respect to

Lebesgue measure on [0, 1]2 and is neither the upper nor the lower bound of Frechet-

Hoeffding boundaries.

Note that under Assumption 7, {Ut : Ut ≡ F ∗(Yt)} is a stationary Markov process

of order 1 in which the joint distribution of Ut−1 and Ut is given by C(u0, u1) where

F ∗(Yt−1) = u0 and F ∗(Yt) = u1.

Proposition 8 If the copula density function is positive on (0, 1)2 and there are

constants λ̃ ∈ [0, 1), 0 < a, d <∞, a norm-like function Λ(·) ≥ 1 and a small set K

such that
∫ 1

0 Λ(u) · c(Ut−1, u)du ≤ Λ(Ut−1)−a · [Λ(Ut−1)]λ̃ +d · Ik(Ut−1) where c(·, ·) is

the copula density associated with C(·, ·), then under Assumption 7, {Yt} is β-mixing

with βt ≤ β0 · (1 + t)λ̃/(λ̃−1) for some β0 > 0.

Given Assumption 7, Proposition 8 presents that a stationary first order Markov

process {Yt} can be regarded as a β-mixing process with polynomial decay rate βt ≤

β0 · (1 + t)−λ̃/(−λ̃+1). In this study, I assume {Yt} converges fast enough in the sense

that λ̃ > 2/3. Therefore the {Yt}nt=1 satisfies Condition A.1 of Chen and Shen [7].

I next present the L2 convergence rate of two-stage ESE of copula density for

i.i.d. observations. The results here are based on Wu [43]. To make difference, I use X

to represent the i.i.d. random variable, which is different from the weakly dependent

random variable, Y .

Assumption 9 The observed data X1 = [X11, X21], X2 = [X12, X22], . . . , Xn =

[X1n, X2n] are i.i.d. continuous random samples with the joint density f0(x), the

marginal densities fj and the marginal distributions Fj.

Assumption 10 By Sklar’s theorem, I have f0(x) = (
2∏
j=1

fj(xj)) c0(F1(x1), F2(x2)).

Let p0(x) = log c0(x) such that |p0(x)| < ∞ for all x in the support of f0 and p0(x)
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is a member of a Sobolev space W r
2 in which p

(r−1)
0 (x) is absolutely continuous and∫

(p
(r)
0 (x))2dx < ∞ for r > 2. r = r1 + r2 for nonnegative integers r1 and r2 ,and

p
(r)
0 (x) = ∂pr0(x)/∂xr11 · ∂x

r2
2 .

Assumption 10 ensures that f0 is bounded away from zero and infinity on its

support. Let m = (m1,m2) for nonnegative integers m1 and m2. Define M = {i :

|i| > 0 and i ≤ m}. The proposed two-stage bivariate ESE of copula density takes

the form

cˆ̂
θ

= exp(−
∑
i∈M

θ̂i φi(F̂1(x1), F̂2(x2))− θ̂0)

where F̂1(x1) and F̂2(x2) are the exponential series estimators for F1(x1) and F2(x2),

and the normalization term θ̂0 = log[
∫ ∫

exp(−
∑
i∈M

θ̂i φi(F̂1(x1), F̂2(x2)))dx1dx2] <∞.

It follows that the log density pˆ̂
θ
(x) = −

∑
i∈M

θ̂i φi(F̂1(x1), F̂2(x2))− θ̂0.

Assumption 11
2∏
j=1

mj →∞, and (
2∏
j=1

mj
3)/n→ 0 as n→∞.

Proposition 12 If F1,and F2, are known, the ESE of copula density, cθ̂ = exp(−
∑
i∈M

θ̂i φi(F1, F2)− θ̂0), converges to c0 in L2 norm with the convergence rate

||c0 − cθ̂||2 = Op(
2∏
j=1

m
−rj
j +

√
m1 ·m2/n).

Now I establish the L2 convergence rate of the two-stage ESE for copula density,

||c0 − cˆ̂
θ
||2.

Proposition 13 The two-stage ESE for copula density cˆ̂
λ

converges to c0 in L2 norm

with the following rate

||c0 − cˆ̂
θ
||2 = Op(

2∏
j=1

m
−rj
j +

√
m1 ·m2/n).
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As aforementioned, the approximation of copula density c0 takes the form

cθ = exp(−
∑
i∈M

θi φi(F1(x1), F2(x2))−log[
∫ ∫

exp(−
∑
i∈M

θi φi(F1(x1), F2(x2)))dx1dx2]).

After taking logarithm, I have

log cθ = −
∑
i∈M

θi φi(F1(x1), F2(x2))− log[
∫ ∫

exp(−
∑
i∈M

θi φi(F1(x1), F2(x2)))dx1dx2].

Since log c0 ∈ W r
2 for r > 2, it implies that based on Sobolev embedding the-

orem, a real-valued log c0 is a p-smooth function if r > p + 1 . Let hθ(x) ≡

−
∑
i∈M

θi φi(F1(x1), F2(x2)). Therefore hθ ∈ Θn which is a linear subspace of the space

of finite many polynomial basis functions hθ. Θn can increase with n. In the literature

of sieve estimation, Θn is called a finite-dimensional linear sieve space. Hence log cθ

can be written as hθ(x) − log(
∫

exp(hθ)dx). Furthermore, f0(x) = log c0(x) is given

by h0(x)− log(
∫

exp(h0(x))dx).

The log-likelihood evaluated at a single observation Z is given by

l(hθ, Z) = hθ(Z)− log(
∫
Z

exp(hθ(x))dx).

Stone [38] showed that l(hθ, Z) is concave and En(l(hθ, Z)) is strictly concave in

hθ ∈ Θn. Therefore I next present that the bivariate ESE for copula density is a case

of the series estimator for the concave extended linear model, e.q. Huang [19].

Assumption 14 Assume r > p + 1 such that h is p-smooth if it is p1-times con-

tinuously differentiable on the support and Dα(h) satisfies a Hölder condition with

exponent p2 ∈ (0, 1] for all α with [α] = p1 where p = p1 + p2.

Proposition 15 Suppose Assumption 9, 10, 11 and 14 and Proposition 12 hold.

Let ρ2n ≡ infh∈Θn ||h0 − h||2 = m−r11 ·m−r22 . Then the series estimator ĥ for hθ exists
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uniquely with probability approaching one as n→∞ and

||h0 − ĥ||2 = Op(

√
m1 ·m2

n
+m−r11 ·m−r22 ).

The sieve estimator for the concave extended linear model is a special case of

Theorem 3.2 of Chen [5] by taking δn �
√

(m1 ·m2)/n and ||πnθ0 − θ0|| � ρ2n where

δn measures the complexity of the sieve space and ||πnθ0 − θ0|| measures the approx-

imation rate. See Chen [5] for details.

In the following theorem, I show that ||c0−cˆ̂
θ
||2 keeps the same for both β-mixing

data and i.i.d. observations.

Theorem 16 Suppose Proposition 8, 12, 13, 15 hold. ||c0 − cˆ̂
θ
||2 = Op(

√
m1 ·m2

n
+

m−r11 ·m−r22 ) for β-mixing data.

In the end of this section, I derive the convergence rate of the estimator of

conditional density ||g∗(yt|yt−1)− ĝ(yt|yt−1)||2.

By Sklar’s theorem, I have ĝ(yt|yt−1) = f̂(yt)·c(F̂ (yt−1), F̂ (yt); θ̂). Using Theorem

1 in Barron and Sheu [1], I have ||f ∗ − f̂ ||2 = Op(

√
m̃1

n
+ m̃−r̃1 ). It follows, using

Theorem 16,

||g∗(yt|yt−1)− ĝ(yt|yt−1)||2 = Op((

√
m1 ·m2

n
+m−r11 ·m−r22 ) + (

√
m̃1

n
+ m̃−r̃1 )).

So ||g∗(yt|yt−1)−ĝ(yt|yt−1)||2 = Op(

√
m1 ·m2

n
+m−r11 ·m−r22 ) if (

√
m1 ·m2

n
+m−r11 ·m−r22

) ≥ (

√
m̃1

n
+ m̃−r̃1 ) where m̃1 is the dimension of polynomial family in the univariate

case and assume log f ∗(yt) has r̃ square-integrable derivatives, see Barron and Sheu

[1] for details. Note that m̃1 does not necessarily equal to m1.
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3.2.4. Model Specification

Instead of including all feasible moment constraints at the same time, this study

adopts a t-based updating process for the selection of individual moments and employs

a data-driven method for the selection of the order of moments. In this study, I

impose the restriction that the polynomials corresponding to the first and the second

order of moments can not be replaced in the updating process since the first and the

second order of moments are sufficient statistics of Gaussian distribution. The process

starts with all polynomials corresponding to the second-order moment, K2 = {gi(u)

: |i| = 2} as well as the polynomials matching the first-order moment, K1 = {gi(u)

: |i| = 1}. I delete the cross moments inside K2 which go with the insignificant t

statistics. The set of remaining polynomials is denoted by k1 where k1 = K1∪K2\{x}

and {x} is the set of second-order cross moments without significant coefficients. The

AIC and BIC based on k1, called AIC1 and BIC1 are evaluated, too. In the next

step, the polynomials associated with the third-order moment, i.e. K3 = {gi(u) :

|i| = 3}, as well as the set of polynomials {k1} are used in the ESE of copula density.

Also, the same deletion process of polynomials is taken to leave behind those having

insignificant t statistics within K3. Let k2 denote the set of residual polynomials at

this step where k2 = ({k1, gi(u)} : gi(u) ⊂ K3 with significant coefficients ). Repeat

this procedure until the maximum order of moment, m, is reached, so are km, AICm

and BICm. Finally, one needs to specify the optimal order of moments for the

exponential series copula density estimator.In this study, a data-driven method, AIC,

is used as the criterion to select the optimal degree of moments.



45

3.3. Monte Carlo Simulation

In this section, I conduct two Monte Carlo simulations to address the finite

sample performance of the proposed estimator. In the first example, I discuss the in-

sample estimation performance of the proposed estimator and then I discuss the one-

step-ahead forecasting performance of the proposed estimator in the second example.

In each example, I also evaluate the performance of the kernel density estimator for

comparison. The underlying copula density functions used in our simulation follow

a part of setup organized in the simulation of Chen, Wu, and Yi [8]. Four types of

bivariate copula density functions including Gaussian, Frank, Clayton, and Gumbel

are used as benchmarks. In our experiments, the dependence parameter for each

type of copula is set such that their corresponding Kendall’s τ are ± 0.8 and ± 0.5

for Gaussian copula, ± 0.833 and ± 0.5 for Frank copula, and 0.5, 0.714, 0.833 and

0.857 for Clayton and Gumbel copulas. It has been revealed that the performance of

nonparametric copula estimation is not satisfactory when the marginal distribution

has fat tails. In our study, the copula density function is estimated by the ESE so

that the performance of the proposed estimator needs to be paid attention when the

marginal distribution of the time series is fat tailed. To address this point, this study

uses Student’s t distribution with three degrees of freedom as the distribution function

of the time series since Student’s t distribution with three degrees of freedom is fat

tailed relatively to the standard normal distribution. The marginal distributions, used

as the arguments for the copula density, and the marginal densities are estimated by

the kernel density estimator (KDE). While estimating the kernel densities in the

simulation, the second order Gaussian kernel is used and the bandwidth is chosen by

the least square cross-validation (LSCV).

In order to simulate a strictly stationary first-order Markov process from a bivari-



46

ate copula with the marginal distribution F ∗, this study follows the steps suggested

in Chen, Wu, and Yi [8], which are outlined as follows.

1. First I generate a sequence of i.i.d. random variables with uniform distribution,

say {Πt}nt=1.

2. Set Ω1 = Π1 and Ωt = C−1
2|1 [Πt|Ωt−1]. Note that C2|1[·|u] ≡ ∂

∂u
C(u, ·) is the

conditional distribution of the transformed variable Ut ≡ F ∗(Yt), given Ut−1 = u

and C−1
2|1 [q|u] is the qth conditional quantile of Ut, given Ut−1 = u.

3. Set Yt = F ∗−1(Ωt) for t = 1, . . . , n.

Our first example concerns the in-sample estimation of true conditional density.

I generate two sequences of time series which have length of 300 and 500 respectively,

but I delete the first 200 observations so the actual sample sizes are 100 and 300. Each

experiment is repeated for 50 times. I use both the AIC and the BIC to select the

actual moments to be incorporated in our estimator. For comparison, I also estimate

the conditional densities using the KDE. The in-sample performance is gauged by the

average of conditional integrated squared errors on yt−1 (ACISE), which is given by

∑
yt−1∈Yt

CISE(yt−1)/(T − 1)

where CISE(yt−1) is defined as

∫
k1∈yt

(ĝ(Yt = k1|yt−1)− g(Yt = k1|yt−1))2dk1.

The ACISE is evaluated on [−10, 10]2 with the increment of 0.2 in each dimension.

Because the performance of our method under the AIC and the BIC selection of

moments are similar, I only report the results using the AIC. The results are reported

in Table IV. Four panels of Table IV report the ACISE and the corresponding standard

error for Gaussian, Frank, Clayton and Gumbel copulas.



47

Table IV. ACISE of In-sample Conditional Density Estimation

KDE(N=100) ESE(N=100) KDE(N=300) ESE(N=300)

Gaussian copula τ = -0.8 0.0494 0.0254 0.0488 0.0249

(0.0106) (0.0023) (0.0095) (0.0030)

τ = -0.5 0.0192 0.0183 0.0197 0.0190

(0.0052) (0.0011) (0.0039) (0.0013)

τ = 0.5 0.0187 0.0180 0.0186 0.0181

(0.0055) (0.0013) (0.0042) (0.0013)

τ = 0.8 0.0496 0.0269 0.0479 0.0253

(0.0098) (0.0029) (0.0099) (0.0035)

Frank copula τ = -0.833 0.0680 0.0331 0.0661 0.0316

(0.0129) (0.0052) (0.0092) (0.0022)

τ = -0.5 0.0192 0.0170 0.0167 0.0170

(0.0082) (0.0024) (0.0036) (0.0013)

τ = 0.5 0.0165 0.0160 0.0165 0.0174

(0.0085) (0.0009) (0.0048) (0.0011)

τ = 0.833 0.0659 0.0415 0.0662 0.0353

(0.0165) (0.0081) (0.0091) (0.0035)

Clayton copula τ = 0.5 0.0190 0.0184 0.0199 0.0187

(0.0055) (0.0012) ((0.0041) (0.0019)

τ = 0.714 0.0570 0.0253 0.0470 0.0237

(0.0107) (0.0055) (0.0180) (0.0031)

τ = 0.833 0.0693 0.0472 0.0714 0.0398

(0.0205) (0.0108) (0.0148) (0.0050)

τ = 0.857 0.0710 0.0579 0.0763 0.0467

(0.0172) (0.0147) (0.0095) (0.0065)

Gumbel copula τ = 0.5 0.0176 0.0175 0.0204 0.0186

(0.0058) (0.0009) (0.0052) (0.0018)

τ = 0.714 0.0336 0.0229 0.0383 0.0227

(0.0079) (0.0032) (0.0090) (0.0029)

τ = 0.833 0.0565 0.0368 0.0607 0.0325

(0.0156) (0.0058) (0.0144) (0.0041)

τ = 0.857 0.0634 0.0430 0.0608 0.0369

(0.0256) (0.0078) (0.0150) (0.0044)
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For Gaussian copula-based Markov models with 100 observations shown in the

first panel of Table IV, the ESE performs better than the KDE in terms of the ACISE

over different Kendall’s τ . The same advantage of the ESE over the KDE remains

the same for Frank, Clayton and Gumbel copulas when the sample size is 100. The

average ratio of the ACISE between the ESE and the KDE across all Kendall’s τ and

all four copulas is 26%. When the sample size is 300, the ESE dominates the KDE over

different Kendall’s τ for Gaussian, Clayton and Gumbel copulas. However, for Frank

copula-based Markov models, the performance of the ESE is close but slightly worse

than the KDE when the Kendall’s τ = ±0.5. The corresponding average ACISE ratio

between the ESE and the KDE improves to 29%. The performance of both estimators

improve with the sample size except for the cases of Kendall’s τ = ±0.5 for Gaussian

and Frank copulas. Regarding the sample variance, the ESE dominates the KDE in

terms of small sample variance.

The second example concerns the out-of-sample forecasting performance of the

ESE and the KDE. The measure of out-of-sample performance relies on the inte-

grated square difference (ISD) between the forecasting conditional density and the

true conditional density. The ISD and the corresponding standard error are reported

in Table V. In the experiments, I use the last 10 observations for the use of forecast

and use the remaining samples for estimation. For example, suppose the sample size

is 100, I use the first 90 observations to estimate the conditional density and the

remaining 10 observations to forecast the conditional density. The underlying copula

densities, the sample size and the number of experiments remain the same as before.

The procedures and criteria used in the first example are also employed in the step

of estimation.

When sample size is 100, as shown in Table V, the ESE considerably outperforms

the KDE in all copula-based models. The average ratio of the ISD between the ESE
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Table V. ISD of One-step-ahead Conditional Density Forecast

KDE(N=100) ESE(N=100) KDE(N=300) ESE(N=300)

Gaussian copula τ = -0.8 0.1457 0.0982 0.0993 0.0784

(0.0814) (0.0706) (0.0784) (0.0973)

τ = -0.5 0.0180 0.0121 0.0113 0.0024

(0.0191) (0.0107) (0.0056) (0.0021)

τ = 0.5 0.0200 0.0159 0.0165 0.0045

(0.0109) (0.0145) (0.0100) (0.0071)

τ = 0.8 0.3314 0.2615 0.2636 0.2326

(0.6004) (0.2279) (0.3926) (0.2517)

Frank copula τ = -0.833 0.4411 0.2670 0.4360 0.2237

(0.2929) (0.2083) (0.3257) (0.1974)

τ = -0.5 0.0210 0.0038 0.0146 0.0031

(0.0151) (0.0037) (0.0074) (0.0024)

τ = 0.5 0.0218 0.0055 0.0197 0.0036

(0.0128) (0.0063) (0.0083) (0.0026)

τ = 0.833 0.4693 0.3463 0.4393 0.2901

(0.6261) (0.5542) (0.4992) (0.2959)

Clayton copula τ = 0.5 0.0474 0.0264 0.0393 0.0242

(0.1029) (0.0250) (0.0549) (0.0235)

τ = 0.714 0.2760 0.1115 0.2927 0.1087

(0.4334) (0.1331) (0.4561) (0.1847)

τ = 0.833 0.7837 0.4340 0.8662 0.4863

(0.7447) (0.4231) (0.7354) (0.4310)

τ = 0.857 1.0836 0.6779 1.1293 0.7759

(1.0137) (0.8724) (0.9115) (0.9140)

Gumbel copula τ = 0.5 0.0272 0.0082 0.0219 0.0070

(0.0189) (0.0095) (0.0218) (0.0096)

τ = 0.714 0.2014 0.1182 0.1572 0.0757

(0.3513) (0.1781) (0.4077) (0.2424)

τ = 0.833 0.7231 0.4975 0.5830 0.2603

(0.9712) (0.7146) (1.0631) (0.4381)

τ = 0.857 0.8058 0.5608 0.6259 0.3770

(0.9612) (0.7989) (1.1809) (0.5002)
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and the KDE across all Kendall’s τ and all four copulas is 43%. The general pattern of

performance remains the same when the sample size goes to 300. The corresponding

average ISD ratio between the ESE and the KDE improves to 51%. Besides, for

Gaussian, Frank and Gumbel copulas, the forecasting performance improves with the

sample size, shown in the first, second and the forth panels in Table V. However, the

ESE does not dominate the KDE in all cases in terms of the sample variance.

3.4. Conclusion

Different from the semiparametric stationary Markov models by Chen and Fan

[6], this paper studies a class of stationary Markov models of order 1 in the con-

text of the two-stage ESE in which the copulas density function and the marginal

distributions are estimated nonparametrically. Because of the β-mixing properties,

I focus on the stationary Markov process of order 1 with continuous state space.

The copula density functions in the second stage are approximated by the series es-

timate on sieve spaces. In this study, the sieve series estimator can be characterized

as the Exponential Series Estimator under mild smoothness conditions. The ESE

has information-theoretic interpretations and has no boundary bias. By using the

β-mixing properties, I show that the copula density function approximated by the

ESE for stationary first-order Markov models has the same convergent rate as the es-

timator of Wu [43]. I also establish the L2 convergent rate of the proposed estimator.

I also examine the finite sample performance of the proposed estimator in two

examples. In the first example, I discuss the in-sample estimation performance of the

proposed estimator and then I discuss the one-step-ahead forecasting performance of

the proposed estimator in the second example. The results show that our estimator

outperform the kernel estimator in the conditional density estimation except for the
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Frank copula-based Markov model. In addition, the proposed estimator considerably

dominates the kernel estimator when used in the one-step-ahead forecast.
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CHAPTER IV

SUMMARY

This dissertation applies exponential series methods to estimate the copula func-

tions. I focus on the theoretical development of multivariate density estimator which

includes the copula function that captures contemporary dependence among each

variable. In addition, I study the estimation of a class of copula-based nonparametric

stationary Markov models on the basis of the exponential series functions.

In the first essay I propose an alternative estimator for multivariate densities.

This estimator can be characterized as a transformation based estimator. The first

stage estimates each marginal density separately. In the second stage, the joint density

of estimated marginal cumulative distribution functions (CDF) are approximated by

the exponential series estimator. The final estimate is then obtained as the product

of the marginal densities and the joint density estimated in the second stage. I

derive the convergence rate in terms of the Kullback-Leibler Information Criterion

(KLIC). Another contribution of this study is to incorporate a variable selection

algorithm into a sequential updating process of moment selection to overcome the

curse of dimensionality. The Monte Carlo studies show that the proposed estimator

outperforms the kernel density estimator and the relative performance of our method

with respect to the kernel method increases with the dimensionality of sample space.

Besides, I also examine the performance of estimating tail distributions. My method

dominates the empirical and the kernel density estimators except for the fat-tailed

case. An empirical estimation of conditional copula density of stock returns is also

provided.

In the second essay, the nonparametric estimation of copula-based stationary

Markov Models is proposed. We extend the semiparametric model by Chen and Fan
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[6] and study a class of time series models in the context of the two-stage ESE in

which the copulas density function and the marginal distributions are estimated non-

parametrically. In particular, we focus on the stationary Markov process of order

1 with continuous state space because it has the β-mixing property for the analysis

of weakly dependent processes. The copula density functions for time series models

are approximated by the series estimate on sieve spaces. In this study, a finite di-

mensional linear space spanned by a sequence of power functions is treated as the

sieve space where the estimation space of the copula density function is based. This

sieve series estimator can be characterized as the Exponential Series Estimator un-

der mild smoothness conditions. To estimate the unknown copula density function,

we propose a two stage estimator in which the first stage estimates each marginal

density separately and in the second stage, the joint density of estimated marginal

cumulative distribution functions (CDF) are approximated by the exponential series

estimator. By using the β-mixing properties, we show that the copula density func-

tion approximated by the ESE for stationary first-order Markov models has the same

convergence rate as the estimator of Wu [43]. It helps us establish the consistency of

the proposed two-stage estimator. Extensive Monte Carlo studies show the proposed

estimator outperforms kernel estimators in the one-step-ahead forecast of conditional

density functions and in the estimation of conditional density functions except for the

Frank copula-based Markov models.

As the application of exponential series approximation is relatively new, much

work remains to be done. For example, Patton [32] applied parametric conditional

copulas to model the time-varying dependence. Manner and Reznikova [25] pro-

vides an in-depth review of time-varying copula. However, most of studies model

time-varying copulas in a parametric manner. Alternatively we could let the copula

dependence parameter to be time-varying in a regime-switching manner and approx-
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imate the regime-specific copula by exponential series functions. We shall investigate

this model in future work.
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APPENDIX A

TECHNICAL PROOFS

Proposition 4. Given Assumption 1, 2 and 3, the proof is straightforward by using

Proposition 1 and 2 and Theorem 4 in Wu [43].

Proposition 5. From Sklar’s theorem, it’s known that

pλ̂(x) = (
d∏
j=1

f̂j(Xj)) cλ̂(F1(X1), . . . , Fj(Xj)). Using Theorem 1 in Barron and Sheu

[1], we have D(fj||f̂j) = Op(m̃
−2sj
j + m̃j/n) so that

d∏
j=1

f̂j converges to
d∏
j=1

fj in the

sense of KLIC at rate Op(max
j

(m̃
−2sj
j + m̃j/n)). It follows, by using Proposition 4,

D(p0||pλ̂) = Op(max
j

(m̃
−2sj
j + m̃j/n) +

d∏
j=1

m
−2rj
j +

d∏
j=1

mj/n)

Theorem 6. The Kullback-Leibler distance between pˆ̂
λ

and p0 is denoted by

D(p0||pˆ̂
λ
) =

∫
p0(x) log

p0(x)

pˆ̂
λ
(x)

dx =
∫
p0(x) log

p0(x)

pλ̂(x)

pλ̂(x)

pˆ̂
λ
(x)

dx

=
∫
p0(x) log

p0(x)

pλ̂(x)
dx+

∫
p0(x) log

pλ̂(x)

pˆ̂
λ
(x)

dx.

From Proposition 5, we have

D(p0||pλ̂) =
∫
p0(x) log

p0(x)

pλ̂(x)
dx = Op(max

j
(m̃
−2sj
j + m̃j/n) +

d∏
j=1

m
−2rj
j +

d∏
j=1

mj/n)

Besides,

∫
p0(x) log

pλ̂(x)

pˆ̂
λ
(x)

dx =
∫

[p0(x) + pλ̂(x)− pλ̂(x)] log
pλ̂(x)

pˆ̂
λ
(x)

dx

=
∫
pλ̂(x) log

pλ̂(x)

pˆ̂
λ
(x)

dx+
∫

(p0(x)− pλ̂(x)) log
pλ̂(x)

pˆ̂
λ
(x)

dx
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For the first part, pˆ̂
λ
(x) − pλ̂(x) has the same convergence rate as the marginal

distribution F̂ − F in terms of KLIC. In addition, it’s known that, as the num-

ber of parameters mj goes to infinity, the convergence rate of marginal distribu-

tion is the optimal rate of convergence for nonparametric distribution estimation

and is faster than that of density function, e.q. Stone [38]. Therefore, we have∫
pλ̂(x) log

pλ̂(x)

pˆ̂
λ

(x)
dx = op(max

j
(m̃
−2sj
j + m̃j/n).

Wu [43] showed that the KLIC convergence implies convergence in terms of the inte-

grated squared error. Therefore, we have

∫
|p0(x)− pλ̂(x)| log

pλ̂(x)

pˆ̂
λ
(x)

dx→ 0

given log
pλ̂(x)

pˆ̂
λ

(x)
is bounded.

It implies ∫
(p0(x)− pλ̂(x)) log

pλ̂(x)

pˆ̂
λ
(x)

dx→ 0

given log
pλ̂(x)

pˆ̂
λ

(x)
is bounded.

So
∫

(p0(x)− pλ̂(x)) log
pλ̂(x)

pˆ̂
λ

(x)
dx is op(1).

Proposition 8. Based on Assumption 7 and conditions in this proposition, the

Markov process {Ut} is ergodic with the polynomial decay rate by Theorem 3.6 in

Jarner and Robert [20]. This and the definition of β-mixing for a stationary Markov

process imply {Ut} is β-mixing with βt ≤ β0 · (1 + t)λ̃/(λ̃−1) for some β0 > 0. Since

F ∗ is continuous and by the definition of β-mixing, {Yt} is β-mixing with βt ≤

β0 · (1 + t)λ̃/(λ̃−1).

Proposition 12. Given Assumption 9, 10 and 11, Wu [43] shows that cθ̂ converges

to cθ in the sense of KLIC with the rate

D(c0||cθ̂) = Op(
2∏
j=1

m
−2rj
j +

2∏
j=1

mj/n)



62

It follows that

||c0 − cθ̂||2 = Op(
2∏
j=1

m
−rj
j +

√
m1 ·m2/n)

by Corollary 5 of Wu [43].

Proposition 13. From the triangle inequality, we know that

||c0 − cˆ̂
θ
||2 ≤ ||c0 − cθ̂||2 + ||cθ̂ − cˆ̂

θ
||2

From Proposition 12, we have

||c0 − cθ̂||2 = Op(
2∏
j=1

m
−rj
j +

√
m1 ·m2/n)

Besides,

||cθ̂ − cˆ̂
θ
||2 = O(||F − F̂ ||)

It’s known that, as the number of parameters mj goes to infinity, the convergence

rate of marginal distribution is the optimal rate of convergence for nonparametric

distribution estimation and is faster than that of density function, e.q. Stone [38].

Therefore, we have ||cθ̂ − cˆ̂
θ
||2 = op(

2∏
j=1

m
−rj
j +

√
m1 ·m2/n).

Finally, we complete the proof.

Proposition 15. Θn is a linear subspace of the space of finite many polynomial

basis functions on the support [0, 1]2 and E(l(h, Z)) is strictly concave in h. These two

conditions imply h0 ≡ argmaxh∈W r
2
E(l(h, Z)) exists unequally and ||h0||∞ ≤ k0 <∞

can be supported by Lemmma A.2 of Wu [43]. Therefore, Condition A.1 in Huang

[19] is satisfied.

Let h1, h2 ∈ W r
2 be a pair of bounded functions, E(l(h1 + τ(h2−h1)), Z) is twice

continuously differentiable with respect to τ ∈ [0, 1] and ∂2

∂τ2
E(l(h1 + τ(h2 − h1)), Z)
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takes the form

E[
∂2

∂τ 2
l(h1 + τ(h2 − h1))] = E(−V ar(h2 − h1))

Using the fact that p0 is bounded away from zero and infinity, we know

V ar(h2 − h1) �
∫

(h2 − h1)2dZ

uniformly in τ ∈ [0, 1]. Therefore, Condition A.2 in Huang [19] holds.

Given the above conditions, we can define h̄ ≡ argmaxhθ∈ΘnE(l(hθ, Z)). For any

pair of functions g1, g2 ∈ Θn, l(g1 + τ(g2 − g1)) is twice continuously differentiable

with respect to τ ∈ [0, 1] and for g ∈ Θn

∂

∂τ
l(h̄+ τg)|τ=0 = En(

∂

∂τ
l(h̄+ τg)|τ=0)

and

En(
∂

∂τ
l(h̄+ τg)|τ=0) = En(g)− E(g).

Therefore,
∂
∂τ
l(h̄+ τg)|τ=0

||g||
=

(En − E)g

||g||
.

Condition A.4(1) in Huang [19] follows fron Lemma 11 of Huang [18].

Since, for g1, g2 ∈ Θn,

∂2

∂τ 2
l(g1 + τ(g2 − g1)) =

∂2

∂τ 2
E(l(g1 + τ(g2 − g1))).

Condition A.4(2) in Huang [19] follows from Condition A.2. Finally, following Lemma

1 of Huang [18] and Theorem 4.2.6 of Devore and Lorentz [12], we get

Anρ2n ≤ const.(m−r1+1
1 ·m−r2+1

2 )→ 0

A2
n(m1 ·m2)

n
≤ const.

(m3
1 ·m3

2)

n
→ 0
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as n→∞,m1 →∞,m2 →∞,r1 ≥ 1, r2 ≥ 1, r > 2. This completes the proof.

Theorem 16. We have shown that the bivariate ESE for copula density function

is the sieve estimator for the concave extended linear model in Proposition 15. So

we can demonstrate that this ESE for copula density function is a special case of the

series estimator in Theorem 3.2 of Chen [5]. Following Theorem 1 of Chen and Shen

[7], it yields that the convergence rate of the ESE for copula density function remains

the same for both β-mixing data and i.i.d. data.
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APPENDIX B

COEFFICIENTS FOR NORMAL MIXTURES

The coefficients for the bivariate normal mixtures can be obtained in Table 1

of Wand and Jones []40. A trivariate normal random variable is given by N(µ, σ, ρ)

where µ = (µ1, µ2, µ3), σ = (σ1, σ2, σ3), ρ = (ρ12, ρ13, ρ23). The coefficients for the

trivariate normal mixtures used in the simulation are as follows.

1. uncorrelated normal: N((0, 0, 0), (1
2
, 1√

2
, 1), (0, 0, 0))

2. correlated normal: N((0, 0, 0), (1, 1, 1), ( 3
10
, 5

10
, 7

10
))

3. skewed: 1
5
N((0, 0, 0), (1, 1, 1), (0, 0, 0)) + 1

5
N((1

2
, 1

2
, 1

2
), (2

3
, 2

3
, 2

3
), (0, 0, 0))

+ 3
5
N((12

13
, 12

13
, 12

13
), (5

9
, 5

9
, 5

9
), (0, 0, 0))

4. kurtotic: 2
3
N((0, 0, 0), (1,

√
2, 2), (1

2
, 1

2
, 1

2
)) + 1

3
N((0, 0, 0), (2

3
,
√

2
3
, 1

3
), (−1

2
,−1

2
, 1

2
))

5. bimodal I: 1
2
N((−1, 0, 0), (2

3
, 2

3
, 2

3
), (0, 0, 0)) + 1

2
N((1, 0, 0), (2

3
, 2

3
, 2

3
), (0, 0, 0))

6. bimodal II: 1
2
N((−3

2
, 0, 0), (1

4
, 1, 1), (0, 0, 0)) + 1

2
N((3

2
, 0, 0)(1

4
, 1, 1), (0, 0, 0)).
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