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ABSTRACT

Toward a Classification of the Ranks and Border Ranks of All (3,3,3) Trilinear Forms.
(April 2011)

Derek James Allums
Department of Mathematics
Texas A&M University

Research Advisor: Dr. J.M. Landsberg
Department of Mathematics

The study of the ranks and border ranks of tensors is an active area of research. By the
example of determining the complexity of matrix multiplication I introduce the reader to
the notion of the rank and border rank of a tensor. Then, after presenting basic prelimi-
nary material from algebraic geometry and multilinear algebra, I quantify precisely what it
means for some tensor to be of given rank, border rank, symmetric rank or symmetric rank.
Objects of a given (symmetric) border rank are then interpreted geometrically as elements
of certain secant varieties of Veronese and Segre varieties. Using this, I describe some of
the techniques used to arrive at the classification of all (3,3,3) trilinear forms presented by
Kok Omn Ng. The main result of this thesis is a classification of all the border ranks and
some of the ranks of the 24 normal forms given by Kok Omn Ng in The classification of

(3,3,3) trilinear forms.
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CHAPTERI
INTRODUCTION

Given some procedure to be executed, such as computing a bilinear map, one is interested
in how efficiently it can be performed. For our purposes, we will formalize the notion of
“efficiency” by looking at the ranks and border ranks of tensors, to be be defined in a later
chapter. However, a special case of these more general concepts is that of multiplication of
n X n matrices since it may be understood as a bilinear map. That is, My, : M xM — M
where M denotes the vector space of n x n complex-valued matrices. A particular reason
one is interested in the efficiency of matrix multiplication is that the applications are vast
since in the world of technology, where matrices are an invaluable tool for organizing data,

the fastest execution possible is preferred.

The first non-trivial case to examine is the 2 x 2 case and the standard algorithm is as

follows:

al a} y b} b} B albl +alb? albl+alb3 _ e

a? a3 b? b3 a?bl +asb?  aibl + a3b3 ¢t 3
Notice there are exactly 8 multiplications required to execute this map and indeed it is
the number of multiplications as opposed to the number of additions which are of greatest

interest. Though it might seem obvious that this is the best one could do, whether or not it

was the best was not known until 1969. V. Strassen showed it is not the best by giving an
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algorithm which gives the desired product using only 7 multiplications. Let

I=(aj+a3)(b] +b3),
11 = (a} +d3)b!,
I = —al (bl —b3),
1V = 3(—b! +b?),
V = (af +a3)b3,
VI = (—a} +a})(b} + b)),

VII = (ab —a3)(b? +b3).
Then,

cl=I1+1V-V4VII,
ct=11+1v,
cy=11I+V,

s=I+1I-1+VI

gives the product using 7 multiplications. An immediate consequence of this case is the
application to multiplication of 2" x 2" matrices since we can multiply in blocks using the
same algorithm, thus greatly reducing the number of multiplications needed. Additionally,
one can extend n X n matrices to 2™ x 2" matrices for some m € N with blocks of zeroes.

(7) o 281

Then, one can multiply n X n matrices using only ~ n/?82 . versus the standard
ply g only

approach which would require n° multiplications.

As previously mentioned, matrix multiplication is a bilinear map. Since our vector spaces

will be over C unless otherwise noted, we can write out the map more explicitly (recall V*



denotes the dual space of the vector space V):
Mypn: C” xC" - C"™

and after a choice of elements af € (C")*, B € (C)*,¢c; € (C™),v,w € C", we can write
r . .
Mn,n,n (V7 W) = Z O{’l(v)Bl (W)Ci'
i=1

Later we will see that M), ,, , € ((C”Z)*®((C”2)*®((C”2) where ® denotes the tensor product.

This motivates the following provisional definition of rank.

Definition .1. The minimal number r over all such presentations of My, ., is called the rank

of My nn and is denoted R(M, , ).

Note that each term of the form o(v)B‘(w)c; is one one multiplication since it sends the
scalar o (v)B!(w) to the ¢; spot in the product. Thus, R(M222) <7 by the previous dis-
cussion of Strassen’s algorithm. It was later proved by [4] that equality holds. One should
now be gaining a clearer perspective of the central problem at hand: finding tests for the
rank of some multilinear map, that is, finding tests for the efficiency of a given mapping.
This problem can be examined through various lenses each of which gives the researcher a

different and enlightening perspective.

Toward the goal of the classification of the (symmetric) ranks and (symmetric) border ranks
of all trilinear forms, this research aims to accomplish this goal for all (3,3, 3) trilinear
forms. All (2,a,b) trilinear forms have been classified in this respect, so this is the first

open case to be determined [2].



CHAPTER II

METHOD

This research uses both algebra and geometry and thus, one needs some basic background
knowledge from both. This first section relates some elementary concepts from multilinear

algebra.

Multilinear algebra
Although a substantial of knowledge of group theory is not necessary, two groups will

appear several times throughout this thesis and their understanding is crucial.

Definition .2. Let V be a vector space. Denote by GL(V) the group of invertible linear

maps V — V under composition.

Note that after fixing a basis of V, the group GL(V) can be realized as the group of changes
of bases of V. For our purposes, the most important aspect of this group is the way it acts
on V* End(V) and the space of homogeneous polynomials of degree d on V for each d.
The second group we will need is the group of permutations of n objects and is called the

symmetric group on n letters, denoted S,,. Its importance will be seen later.

Let V be a vector space. Recall V* := {a: V — C: ais linear}. That is, V* is the space of
linear functionals on V. Then, for vector spaces V, W, let V*®@W denote the space of linear
maps from V to W. Accordingly, VW denotes the space of linear maps from V* to W.
Note that dim(V@W) = dim(V*@W) = dim(V) - dim(W). There is a natural generalization

to k-linear maps.

Definition .3. Let V1,...,V; be vector spaces. A function f : Vi X --- X Vi — C is said to

be k-linear, or multilinear, if it is linear in each factor V;. We denote the space of such



multilinear functions V|'® - - -®V;" and call this new space the tensor product of the vector
spaces Vi', ..., Vi, An element T € V'®---QV}" is called a tensor, or more specifically a

k-tensor.

We can generalize further and define V{'®--- @V ®@W as the space of multilinear maps
f Vi x---xV, — W for a vector space W. Additionally, it is an easy exercise to see
that V®W may be defined as the space of linear maps V* — W, the space of linear maps
W* — V, the space of bilinear maps V* x W* — C or the dual space of V*@W*. From this,

one can realize V1®- - - ®Vj any number of ways depending on the situation.

Also important to this research are symmetric tensors. They can be defined formally in
several different ways and below are four equivalent definitions for the two factor case. At
the end of this section, the skew-symmetric tensors are defined which are a cousin of the

symmetric tensors.

Definition .4. Let V®2 = VRV with basis {viovj| 1 <i,j <n} and 6 € S». Define the

space of symmetric 2-tensors

S*V :=span{vi@v;+v;av; |1 <i,j <n}
=span{v®v|veV}
={X eVaV[X(a,p) =X(B,a)vo,p €V}

={X eV®V|Xoo=X}.

Note that for ¢ € S>V and g € GL(V), g-¢ € S?V and similarly for A>V. Furthermore,
there is a natural generalization to S?V for arbitrary d. But first, we must define the map

g : V&4 — V&4 on elements vi® - - - @vy € V9 by



Then SV := ng(V®9) is called the d'" symmetric power of V. Note that this definition is

indeed a generalization of the previous definitions of S?V since we have

SV ={X e V¥ |ng(X) = X}

={X cV¥|Xoc=XVoeS,}.

Additionally, it is not hard to see that S?V is invariant under the action of GL(V'). Further-
more, there is yet another useful way to realize SV and one which is exploited constantly
in this area of research. Namely, SV * is the space of homogeneous polynomials of degree
d on V. To be precise, let Q be some multilinear form. Then the map x — Q(x,...,x) is
a polynomial mapping of degree d. The process of passing from a homogeneous polyno-
mial to a multilinear form is called polarization. In general, for some arbitrary symmetric

multilinear form, the polarization identity is

Ox1,...,xq) = % Z (—l)dme (Zx,-)

IC[d],17#0 il
where we denote [d] = {1,...,d}. It is important to note that SV C S*V®S?~*V in a very
natural way via polarization. For ¢ € S?V, write Os5.a—s € V@897V for it’s image. By
previous statements, we know S*V®S9~5V can be thought of as the space of linear maps

S$SV* — §475V and so O q—s(01 -+ 0s) = (01, ..., 0,",...,). | make one more important

definition regarding symmetric tensors before moving to the skew-symmetric case.

Definition .5. For a vector space V, let V© = @kZOV@’k. Then, the symmetric tensor
algebra is given by S°V := ®4S?V where multiplication is defined by ofp = Ts(a®B) for
oae€SVandp e SV.

Definition .6. Let V2 = V®V with basis {vi@v;| 1 <i,j < n} and 6 € Sy. Define the



space of skew-symmetric 2-tensors

A%V :=span{vi@v;—v;av; |1 <i, j,<n}
=span{v@w —wv |v,w € V}
={X e VaV|X(a,p) = -X(B,o)Vo,p €V}

Now, we make a similar generalization from A%V to A*V by defining a map 7y : V¢ — &k
by

1
VIQ @V VA A= o0 ) (s8n(6))vs(1)® - @vo
*oEeS,

where sgn(c) denotes the sign of the permutation 6 € Sy as usual. The image of this map
is called the space of skew-symmetric (or alternating) k-tensors. Again note that this is a

valid generalization from the above case when k = 2 since

AV = {X e V¥ |X 06 = sgn(6)X Vo € S}

A final important note regarding group actions: the actions of Sy and GL(V) on V®¢ com-

mute with each other. That is, for 6 € Sy, g € GL(V), T € V¥¢, wehave6-¢-T =g-6-T.

Algebraic geometry: first definitions

As previously mentioned, it is important to consider not just the algebraic perspective, but
the geometric one as well. As such, I present some basic terminology and concepts from
algebraic geometry. Specialized topics central to this research appear in the last subsection.

First, we need the following fundamental definition.

Definition .7. Define n-dimensional complex projective space to be P" = PC" := (C"*1\{0})/ ~



where ~ is the equivalence relation given by C" 3 (vi,...,v,) ~ (Avy,...,Av,) for some

non-zero scalar \.

Denote the set of equivalence classes of some v € V by [v] € PV. Furthermore, for a
vector space V, let ©: V\{0} — PV denote the projection. For a subset Z C PV, let Z :=
n~!(Z) denote the cone over Z. Call the image of such a cone in projective space its

projectivization.

Definition .8. An algebraic variety is the projectivization of the set of common zeroes of
some collection of homogeneous polynomials on V. The ideal, denoted 1(X) C S*V*, of

some variety X C PV is the set of all polynomials vanishing on X.

Definition .9. Let Z C PV be a subset. Then define

1(Z):={PeSV"|P

ZEO}

Additionally, define Z to be the set of common zeroes of I(Z). Call Z the Zariski closure of
Z.

Several basic facts about ideals which are not too difficult to prove but whose qualitative
statements are important to keep in mind are that if X C Y are varieties, then /(Y) C I(X),

I(YUZ)=1(Y)NI(Z) for varieties Y,Z and X NY is a variety if X,Y C PV are.

Rank, border rank and their symmetric analogs
First, a tensor in V|® - --®V,, is said to be of rank 1 if it is of the form v|®- - - ®v,, where

eachv; €V,

Definition .10. Let V1, ..., V, be vector spaces and T € V|® ---RQV,,. The rank of T, denoted
R(T) is the smallest natural number r such that T = Z;:l T; where each Tj € V1® -+ - ®V,

is of rank 1.



Definition .11. Using the notation in the previous definition, T is said to be of border rank

r, denoted R(T) = r, if it is the limit of tensors of rank r but not of any s < r.

Border rank being such a crucial concept, I offer a simple example from [2]. Namely, the
3-tensor

T =a1®bi®ci1+a1Rb1®cr + a1 @byRc1 + ar@b1Rcy

can be shown to be of rank 3 since we have
T =a;®b1®(c1 +c2) +a1®@bryRc) + ay@b1Rcy .

However, R(T) = 2 since T is the limit as € — 0 of the following sequence of rank 2

tensors:
1
T(e)= E[(E— a1 ®@b1®@c1 + (a1 +€a2)@(b1 +€b2)®(c1 +€c2)].

Definition .12. Let ¢ € S?V for some vector space V. The symmetric rank of ¢, denoted
Rs(0), is the smallest number r such that ¢ = x4 + - -- + x4 where each x; € V. That is,
Rs(0) = r if and only if r is the minimal natural number such that ¢ is the sum of r d'"

powers in'V.

Definition .13. Using the notation in the previous definition, the symmetric border rank of
o € SV, denoted R (0) is the smallest r such that there exists a sequence of polynomials

O¢, each of rank r, such that ¢ is the limit as € — 0 of {0¢}.

Joins and secant varieties
There exists elegant geometric interpretations of the algebraic concept(s) of (the variations
of) rank. But first, more background information is needed. To better understand the

general idea of secant varieties, it is helpful to begin with a straightforward special case. In
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particular, I will describe the join of a curve C € PV and a point x € PV: J(x, C). The cone

over C with vertex x is defined to be

J(x,C) := | J all points on a P},
yec

where the bar denotes Zariksi closure as previously defined. Now, I present the following,

more general, definition.

Definition .14. Let Y,Z € PV be varieties. The Join of Y, Z is defined to be

J(Y,Z) = | ] all points on a Pl
yeyY
zeZ
An important special case is when Y = Z. If this occurs, J(Y,Z) = J(Y,Y) =: 62(Y) is
called the secant variety of ¥ and contains all points on all tangent and secant lines of Y.

Inductively, if Yy, ...Y, € PV are varieties, then J(Y1,...,Y,) =J(J(Y1,...,Y,—1),Y;) or

J(Y1,....Y,) = U pointson P < yy,...,y, >
ijYj

where < - > denotes the linear span as usual. Then, if ¥; =Y for each j, we define

6,(Y) :==J(Y,...,Y) to be the /" secant variety of the variety Y.

r

Two more important varieties (indeed the most important for this thesis) are the n-factor

Segre variety and the d"" Veronese embedding.

Definition .15. Let Vi,...,V, be vector spaces and define V := V|®---RQV,. Then the n-

factor Segre is the image of the following map:

Seg : PV x---x PV, - PV

(V1] [vn)) = 1® -+ - @wy).

The importance of this map is not yet clear, but will become so in the next section. For
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now, note that for fixed n € N, the Segre is the projectivization of the rank one n-tensors.
In particular, for n = 2, we have the projectivization of rank one matrices, after choosing

bases.

Definition .16. The d'"* Veronese embedding of PV,v4(PV) C PS?V, is defined as the image

of the following map:

vy PV — PSV

V] — [vd] =[r®@---@v].

d
Notice vy (PV) C Seg(PV x --- x PV). Also, I will omit the underbrace or overbrace when

the number of factors is understood.

The concepts of border rank and symmetric border rank each have geometric interpreta-
tions. Let 0¥ C P(V;®---®V,) denote the projectivization of tensors of rank at most r.
Then, define 6, := 69. The fact that I am using notation seen in the previous section on se-
cant varieties is not a coincidence. In particular, 6,(Seg(PV; x - -- x PV,))) = o,. A similar
statement holds for symmetric rank and border rank. All this information is best summa-

rized in the more general concept of X-rank.

Definition .17. Let X C PV be a variety not contained in a hyperplane and let p € PV.
Define the X-rank of p, denoted Rx (p), to be the smallest number r such that p is in the
linear span of r points of X. Thus, if 6,_1(X) # PV, then 6,(X) is the Zariski closure of
the set of points of X-rank r. Furthermore, the X-border rank of p, denoted Ry (p), is the

smallest r such that p € 6,(X).

So, if X = Seg(PVy x ---xPV,) and p € V =V|®---®V,, then Ry([p]) = R(p) as usual
and Rx ([p]) = R(p). Similarly, if p € V = SW and X = v;(PW), we have that Ry ([p]) =

Rg(p) and Rx([p]) = Rs(p). Such an interpretation is crucial when seeking resolution of
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the border rank version of a conjecture of P. Comon which states that equality holds in
R(0) > R(¢) for some symmetric tensor ¢. Namely, confirming the conjecture would
amount to showing that (for ¢ € S?V) [0] € 6,(v4(PV))\6,_1(v4(P(V)) but

d
(0] & 0,—1(Seg(PV x --- x PV)).

In the coming pages I will use these geometric techniques to describe the ideas behind Ng’s

classification of all 7 € C3@C3®C3 [3].
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CHAPTER III
RESULTS

Ottaviani’s version of Strassen’s equations

One of the main results of this research was the computation of the border ranks of all
T € C3®C3®C? on Ng’s list via Ottaviani’s version of Strassen’s equations. After a choice
of bases of A,B,C = C3, one can write T = x; ®A| + x2@A2 + x3RA3 where in this case

each A; is a 3 x 3 matrix B* — C and x; € A. Then define

0 Az —Ap
= -4s 0 A
Ay —A; 0

Theorem .18. [2]. Let T € AQBRC. Assume 3 < dim(A) < dim(B) < dim(C).

(1) IfR(T) < r,then rank(T{") < r(dim(A) —1).

(2) If T € A®BRC is generic and dim(A) = 3,dim(B) = dim(C) > 3, then rank(T{") = 3 - dim(B).

. /\ . . A
Thus, for k even, the (k+ 1) x (k+ 1) minors of T;' furnish equations for S (asBecy the

set of 3-tensors of border rank at most %
The following example illustrates this method. Consider the following tensor in matrix
form:

a 0 a 1 00 0 01 000
T'=10 a O0]|=a|0 0 0|+ta|0 1 0f+az|0 0 0
0 a1 a3 010 000 0 01

=a1QA] + arRA) + az®A3.

Computation reveals that det(7}") = 0. Equivalently, the 9 x 9 minor(s) of 7" are zero so



14

by above T € 6, (agpzc)- To see that T ¢ 63 (agpec), We compute the 7 X 7 minors to see

that some are non-zero. Thus, R(7") = 4. This process was repeated for the 24 cases below.

On the techniques used to classify all 7 € C3@C3@C3

First recall the projective linear group PGL(V) = GL(V) / Z(V) where Z(V) is the group of
scalar transformations on V and quotients out naturally since we’re in projective space. De-
fine G := PGL(A) x PGL(B) x PGL(C). Then note that if some ¢ € A®B2C = C*@C3®C?

is represented as a matrix in
Hom(A*, B®C) <= Hom(A*,Hom(C*, B)),

that is, as a 3 x 3 matrix of linear forms on A*, the action of G is realized as row and
column transformations. Ng’s classification is up to this action. The first step is to move
the problem of classification into projective space so we consider P(AQ BRC). Note that
we can also have ¢ € Hom(B*,A®C) or ¢ € Hom(C*,A®B) so without loss of generality

only the realization A* — B®C is considered. Now consider the
P> = P(¢(A*)) C P(BRC) = P?

and note Seg(P? x P?), 6(Seg(P? x P?) C P(B®C) where these varieties are of dimension
4 and 7 respectively. Then one looks at the curve in P? N o(Seg(IP? x P?)). If ¢ is generic,
it is a known fact to the specialist that the curve is smooth. If ¢ is not generic, it has some
singularities. Since the degree of the curve is 3 there is a natural upper bound on the num-

ber of potential singularities and the bulk of the paper is a study of these 24 cases.

It is also important to realize exactly how one represents a tensor ¢ € AQB®C as a ma-
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trix. Choose bases {aj,a3,as},{b},b5,b3},{c],c5,c3} of A*, B*,C* respectively and say
a = Zaia?‘, b* = ijb}f, chck, o= Z 0, j1Xi®y j @z
i J i,j.k
where the x;,y;,z; are elements of A, B,C respectively and a;,bj,ci are linear forms on
A* B*,C* respectively. Then the three associated matrices (parameterized by a*,b*,c*

respectively) are given by

q)Ja (Z q)t]kat) q)Jb* (Z q)l]kb ) q)JC (Z (Pz]ka) .
J.k ik i,j

Ng considers the first representation in his paper but for the purposes of classifying the
tensors with respect to rank it is often useful to look at the other representations. These

have been calculated for each of the 24 cases below.

Classification of ranks, border ranks of all 7 € C3C3@C?
In what follows, I present a classification of the border ranks and ranks of these tensors.
Various methods were used to calculate the rank and the proofs can differ significantly. In

general, the goal is to use the following theorem [2]:

Theorem .19. Let T € AQBRC. Then R(T) equals the number of rank one matrices needed

to span (a space containing) T (A*) C BRC (and similarly for permuted statements).

Note that only one tensor , (1), is symmetric and both it’s symmetric rank and symmetric

border rank are trivially 3.

ai 0 O b1 0 O (&} 0 O
M 0a*)=10 a 0 [,(0")=[0 by 0],(0sc)=[0 ¢ 0

0 0 as 0 0 b3 0 0 Cc3
T =a1®b1®c) + a2@byRc2 + a3®@b3Rc3.

Proposition .20. R(T) =R(T) = 3.
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Proof. The naive approach gives R(7") < 3 and since R(7") = 3, equality holds. O

ai 0 O b1 0 O (&1 0 (&)
) (0a")= a3 ap 0 [ (@2b6")=]by by 0 |,(0¢")=[0 ¢ O

0 0 a3 0 0 b3 0 0 as
T =a1®b1®c1 + ar®@bryRcy + azRb1®cr + az®b3zRcs3.

Proposition .21. R(T) =R(T) =4.

Proof. Immediate by using same arguments as in (3). U

a 0 a by b3 0O ct 0 O
30wa)=[0 a 0 [.,(0)=[0 b, 0[,(0")=]c3 2 O

Oa1 as b20b3 OC1 Cc3
T =a1®b1®ci + a1 RbyRc3 + arRb3Rc1 + arRbyRcy + a3 Rb3zRcs.

Proposition .22. R(T) <5,R(T) =4.

Proof. There are 5 entries in (¢_a") with no immediate way to combine any, thus giving

an upper bound on the rank of 5. U

ag 0 0 by 0 0 ct 00
@ (0ua*) =0 ay a; |, (0D )=1b3s by 0|, (d2c")=]¢3 ¢ O

0 a1 a3 by 0 b3 ca 0 c3
T =a1®b1®ci + a1 RbyRc3 + a1 Rb3Rcr + arRbyRcy + a3 Rb3zRcs.



Proposition .23. R(T) =R(T) =4.

Proof. Notice that the space of 2 x 2 symmetric matrices is spanned by 3 rank one

matrices:
1 1 1 0 00

11 0 0 01

Thus, R(T) =3+ 1=4.

ap az ap b1 by by cit 0 O
(5) (q)Ja*) =10 a O a(q)Jb*) =10 b O ,((DJC*) =10 &
0 0 as 0 0 b3 0 Cl C3

T =a1®b1®c1 + ar@b3Rc1 + ay®br ¢ + azRby®c1 + a3 @bz Rc3.

Proposition .24. R(T) =R(T) =4.

Proof. As amap C* — A®B, (5) is the same as (4) after relabeling. Thus, R(7T") = 4.

a 0 O by 0 O cl €3
(6) (q)Ja*) =las a» O a(q)Jb*) =10 by b ,((DJC*) =10 ¢ O
a 0 a3 0 by b3 0 0 c

T = a1®b1®c1 + ar@byRcr + ay®b1Rc¢3 + azRb1®cy + a3 @bz Rcs3.

Proposition .25. R(T) =R(T) = 4.

Proof. As amap B* — A®C, (6) is the same as (4) after relabeling. Thus, R(7T) = 4.

17
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0 ar @ by b3 0
(7 (92a*)=]-a; 0 a3, (0")=]-b 0 by |:(¢ac”) =
—ap —}\«a3 0 0 —b —kbz

C1 0 —7»C3 T =
0 C1 )
a1®@by®c1 +a1Q(—b1)®c2 + a2Qb3®c1 +a2@(—b1)®c3 +a3@b3Rc2 +a3®(—Ab2)®c3.

Proposition .26. R(T) <6,R(T) =5.

Proof. There are 6 entries with no immediate way to combine any, providing an upper

bound on the rank of 6. O

ay az ap b1 b3 b2 C1 0 0
8) (q)Ja*) =10 a a a(q)Jb*) =1b3 by O ,((DJC*) =10 ¢ ¢

0 0 a3 0 0 b3 c2 Cc1 3
T =a1®b1®c1 +a1®b3®c2 + ax®@b3zRc1 + a20b2y ¢ + a3 @br@c1 + azRb3Rc3.
Proposition .27. R(T) =5,R(T) = 4.

Proof. With (8) as a map A* — B®C and (9) as amap C* — A®B, (8) = (9). Thus,
R(T) =5. [

a 0 ar by b3 0 ci 0 O
9) (02a*) =10 a a; |, @b )=1|b3 by 0|, (0c")=]¢c3 ¢ 0

0 a1 as by 0 bs c 1 C3
T =a1®b1®c1 4+ a1Rb3Rcr + a1 @by Rc3 + arRb3Rc) + ar@brRcy + az @bz Rc3.
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Proposition .28. R(T) =5,R(T) = 4.

Proof. Consider T : C* — A®B. Since R(T') = 4, we may assume R(7') = 4 to arrive at a

contradiction, proving R(7') = 5. Make the identification

1 00 000 0 0O S1t1 S1tr  Sit3
Si=10 0 0-%2=]01 0[,83=|1 0 0of.P= St Sl $ol3
010 1 00 0 01 S3f1  S3fr  S313

If R(T) =4, each X; €< P, X1, X»,X3 > where each X; is of rank one. Then, in particular,
S1 would be in the span of S5, S3, P, X; for some i and we would be able to find constants

o, B such that

1 00 Sity sit2 si13
Xi = B o O+ |s2t1 sotr sot3
a 1 B S3f1 S3lr  S313

would be of rank one.

I will first show that o, B # 0. First assume o = 0. Then we have S; + 3S3 + P = X. Thus,

-1 00 0 0 0 -1 rn m 0 rn npP
P= —-B 0 0|,]0 O O |:;|-B rnB nPplor|0 rn mnp
8 00 § -1 —B 0 0 0 0 —1 —P
which implies
000 1 00 0 r nm 1 rn rP

Xi=100 0[|,|B O Of|:|0 rnPB mplor|B rn nB|;
O 1 B 6 00 0o 1 B 0 0 O
respectively for r; £ 0 and d a constant. Note that the first two cases are equivalent and the

last two cases are equivalent and for the last two cases, X; is rank one only if B = +1.

Now, if the rank of 7 is indeed four, we would only need 2 more matrices of rank one to
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span (a space containing) < S1,S5,,53 >. It is not hard to see that this is not possible. In

particular, we would to be able to obtain the subspace

000
2|10 1 0
1 00

and in either case we could only do this setting

000 000
XX=1010(.X=1000
000 1 00

However, (in either case) we have < S, 57,53 >¢Z < P, X1, X>, X3 > so it cannot be the case

that oo = 0. The case for 3 # 0 is similar. In particular, we could have S; + aS, + P = X.

Thus
-1 r 0) (0 0 0} (0 L o -1 00
P=(0 0 0,0 -2 0[]0 —ax OfOr ] a® 0 0O
—o or; 0 0 -1 0 0 0 0 0 00
so we have
0 rn 0 1 ool (1 1o 0 00
Xi=|0 « of,]0 0o0],]0 0 0OJor|o? a O

o 1 0

[S—
=]

0 I+or, — a 0 0 o

respectively where r| # 0. As before, the claim is that with these matrices taking up two

spots in the spanning set, it is impossible to contain all of < Sy,S5,,53 > using only two
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more rank one matrices. In particular, to obtain the subspace

000
311 00
0 01

we would need at least one of the following two matrices

000 000
1 00,0 0O
000 0 01

Note that if s; = O then it is immediate that X; has rank at least 2.
Now, if one subtracts ‘—f times the first row from the second row, :—f times the first row from

N

the third row and é times the second row from the third row in that order, one obtains

1+s111 s12 5183

* a 0
* 0 B
which is of rank at least 2 as long as a, § # 0, which is true. Thus, R(7') = 5. O
a 0 O by 0 O ci1 c3 0

(10) (00a®) = 0 ar a; |,(020")= b3 by O |,(0ac")=]c3 ¢ O

a ay aj by by b; c2 0 c3
T =a1®b1®c1 4+ a1®b3®cy + a1 QbrRc3 + ar@b1Rc3 + a; @by Rcr + az @bz Rcs.

Proposition .29. R(T) =5,R(T) = 4.

Proof. With (10) as amap C* — A®B and (9) as a map B* — A®C, (10) = (9). Thus,
R(T)=5. [
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0 a a
A1) (¢a*)= | —ay—ar—a3 0 a3 |,(92b") =
=) —az 0
by b3 0 —C —C—C3 —C2
—by —by —bi+b3|,(0ac") =] ¢ 0 c3
0 by —by 0 c1 c2

T =a1®@by@c) +a1R(—b1)®cr + a,@b3@c¢1 + ar®(—b1)®cr + ar@(—by)®c3 +

azR(—b1)Rcr + a3@b3Rcs + a3R(—by)Rcs.

Proposition .30. R(T) < 6,R(T) =5.

Proof. Consider the tensor as a map A* — B®C. Then notice that
0 00

—da) —dady—das 00

0 00

is rank one. Thus, the naive approach yields R(7) < 6. O

ai 0 as by 0 bs cit 0 O
12) (q)Ja*): 0 a+a O a(q)Jb*): by by O ,((DJC*): cp € C3

0 as ar 0 b3 b2 0 c3 (1
T =a1®b1®ci + a1 RbyRcy + arRbyRcr + arRb3Rc3 + a3 Rb3Rcy + a3 RbrRcs3.

Proposition .31. R(T) =?,R(T) = 4.

Proof. As amap C* — A®B, (12) is the same as the transpose of (14) as a map
A* — BRC after relabeling. Thus, R(T) = 5. O



23

ar ap 0 b1 b2 0 C1 0 0
(13) (q)Ja*): 0 ar a3 v(q)Jb*): 0 by b3 ,((DJC*): 0 c14cp c3

0 a3 ai bs; 0 b C3 0 (&)
T =a1®b1®c1 +a1®b3®c3 + arRbrRc1 + ar @by Ry + a3 @bz ¢ + az @by Rc3.

Proposition .32. R(T) =?,R(T) = 4.

Proof. As amap B* — A®C, (13) is the same as (14) as a map C* — A®B after
relabeling. Thus, R(T') = 5. O

ai 0 0 b1 0 0 cl C2 0
(14) (q)Ja*): a az as v(q)Jb*): 0O bi+by b3 ,((DJC*): 0 ¢ c;

0 a3 ai bs 0 by ez 0
T =a1®b1®c1 +a1®b3®c3 + arRb1Rcy + ar@bry Ry + a3 @b3 ¢y + az @by Rcs.

Proposition .33. R(T) =5,R(T) = 4.
Proof. Consider T : A* — B®C and make the identification

1 00 000 000
Si=(0 0 0f,%2=(110[,5=[0 01
0 01 000 010

If R(T) =4, each S; €< P,X;,X>,X3 > where each X;, P is of rank one. Then, in

particular, S; would be in the span of S3, 53, P, X; for some i and we would be able to find
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constants o, 3 such that

1 0 O S1t1 S1tr  Sit3
o o B + | o1 s otz | = Xi
0 B 1 S3f1  S3fr  S313

is rank 1. Note that if o = 0 or B = 0 then it is immediate that X; has rank at least 2.

Furthermore, if s; = 0, then

S Q™=

P=|mPB —a —B|lor|0o 0
ro—p -1 0 —B —1

which implies

1 00 11 B
Xi=la+mB 0 Ofor oo a B
r 00 0 0O

for some constant r, respectively. Per the logic in the proof of (9), these matrices do not
allow for a choice of two additional matrices of rank one which contain < §1,52,53 >. In

particular, to obtain the subspace

0 00O
all 1 0
0 00O

one would need to annihilate the other entries using only two rank one matrices. It is not

hard to see this is impossible. So we now assumed s; # 0.

In this case, subtract :—f times the first row from the second and :—f times the first row from
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the third in that order to obtain :
148511 s16y $113
o — f—f oa B
_:_f B 0

which is of rank at least 2 as long as § # 0. If p = 0, then

1 0 0
Xi=|la a 0| +P

0 01

has rank one only if o = 0. I now show that it is not possible for both o, 3 = 0 which in

turns shoes that X; has rank at least 2, proving the rank of 7T is 5 as desired.

So assume o, B =. Then, S| + aS; + BS; + P = X; reduces to S + P = X;. Without loss of

generality, set X; = X;. Then, since each S; €< X1, X3, X3, P > we have

St =a1 X1 +axXo +a3Xz +aqP
So = b1 X1 + b2Xo + b3 X3+ baP

S3 =c1X] +c2Xp 4+ c3X3 +c4P
which then reduces to

S1=a1S1+axXs +a3X3 + (a1 +a4)P
S2=b1S1 4+ b2 X2 + b3X3+ (bg + by )P

S3=c1S1+ e Xo+ce3Xz+ (ca+cp)P

where S| €< X,, X3, P > implies S, S3 €< X, X3, P >. That is, this implies R(7') =3

which contradicts the fact that R(7') = 4. Thus, not both o, = 0 and the proof is



complete.
(7»— 1)a3 aj ar b2 b3 (7»— l)bl
15) (¢ua*)=| —q 0 a3, (06")=]|-b 0 b3  (9ac”)
—a) —7LCl3 0 0 —b1 —kbz
—Cy —C3 (7»— 1)C1
c1 0 —\e3 T =a1®by®c) 4+ a1@(—b1)Rcy + ay@b3Rc +
0 C1 2
@ (—b1)®c3 +a3@(A— 1)b1®c) +az@(—Ab2)®c3 + az@b3Rc).
Proposition .34. R(T) <7,R(T) =5for h# —1 and R(T) = 4 for A = —1.
Proof. The naive approach yields an upper bound on the rank of 7.
(16)
ar haz —ar b1 —b3 Ab S )
(q)Ja*) —laz a 0 v(q)Jb*) =10 by by ,((DJC*) =10 ¢ Ay
a 0 as 0 b1 b3 0 —c1 c3
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T =a1®b1®c| +ar®(—b3)®c) + ar@bryRc) + ayRb1@c3 + a3z @b Rcy + az@bzRcs +

a3®(Aby)Rcy.
Proposition .35. R(T) <6,R(T) =4.

Proof. The naive approach yields an upper bound on the rank of 6.



a O 0 by 0 O T 3
a7) (q)Ja*) —la3 a —ai v(q)Jb*) = 1| —bs by b ,((DJC*) = )\«C3 ¢ 0
a) Aha; as Aby by bz —c2 0 3

T =a1®0b1®c1 +a1®(—b3)®c2 + a1@(Ab2)@c3 + ax@br@cy + arx@b1@c3 +

azRb1Rcr + azRb3Rc3.
Proposition .36. R(T) <6,R(T) =4.

Proof. The naive approach yields an upper bound on the rank of 6.

ay a3 a by by by cic 0 O
(18) (q)Ja*) =10 a Aaq a(q)Jb*) =|Abs by O ,((DJC*) =| —-c3 ¢
0 —a1 a3 —by 0 b3 A2y 1 c3

T =a1®b1®c) +a1R(Ab3)Rcy + a1 @ (—br)Rc3 + arx@b3Rc) + ar @by Rcy +

azRbrRc1 + azRb3Rc3.
Proposition .37. R(T) <6,R(T) =4.

Proof. The naive approach yields an upper bound on the rank of 6.

a ai ap by  bi+bs3 0
(19) (¢9a*) = | —a 0 az | (020") = | —b, 0 by |.(¢uc) =

—ay ar—az O 0O —bi+by —b

27
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—cy c1—c3 O
1 3 —c3 |- T =a1®by®cy +a1®(—=b1)®cr + ar®@b1®c| + a;Rb3Rc +

0 Cl 2
2@ (—b1)Rc3 + a2Q0br®¢3 + az@bzRc2 + a3 (—b2)®c3.

Proposition .38. R(T) <6,R(T) =5.

Proof. The naive approach yields and upper bound on the rank of 6. U

0 ar ax+paz by b3 ub;3
20) (0a*)=a, 0 a3 L@ =10 b b3 |, (0" =
as a 0 0 by b
0 o c3
1 c3 0 . T =a1@bry®c1 + arx@b3Rc) + ar @b Rcy + ar@by@c3 +
0 c1 pci+c
a3®(ub3)®c) 4+ a3@b3Rcy + a3@b R c3.

Proposition .39. R(T) =5,R(T) = 4.

Proof. Notice that the transpose of (20) as a linear map B* — A®RC, (21) is equivalent to

(21) (as a linear map B* — A®C). Thus, R(T) =5. O
0 aj 0 b2 0 0
QD (9" )= [ay a3 a1 |(0b) =] by by by [, (0sc") =

az 0 pai+a ubsy bz b
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0 ) C3
c1 0 T =a1®by®c| + a1@b3Rcy + a1 (ub3)Qcs + ar@b3Rc3 +

crtucy c3 0
ary@b1Rcy 4+ azR@brRcy + azRb Rcs.

Proposition .40. R(T) =5,R(T) = 4.

Proof. Notice that as a linear map B* — A®C, (21) is equivalent to (22) (as a linear map

C* — A®B). Thus, R(T) = 5. O
0 a a3 0 by bs3
22) (¢a’)=]a; a3 0 |,0)=| b 0 by|,(9c")=
0 a pai+ap by+ubsy b3y O
¢ 0 0
3 ¢ o |- T=a1®b1®c2+a1®@br®c3 +a1@(ub3)Dc3 + a2 @by Rcy +

ucs ¢z cl
ar®@bz®c3 +az@b3Rcy +az@bryXcs.

Proposition .41. R(T) =4,R(T) =5.

Proof. Consider the following (row-equivalent) subspace of T'(C*):

¢ 0 0
0 C3 0
c3 C1 Cp

I will show that the number of rank one matrices needed to span (a space containing) this
space is at least 5. Since rank is non-decreasing, this proves the rank of our original tensor

is at least 5. Note that the naive approach yields a rank of 5 so this would prove the claim.
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As before, assume R(7') = 4. Then make the identification

1 00 000 000 s1t1

S1tr  S113
Si=10 0 0|,%2=]01 0],8={(0 0 O0].P= St Sty Stz
0 01 1 00 0 01 S3f1  S3fr  S313

so that < 81, 82,53 >€< X, X3, X3, P > for matrices of rank one X;. In particular,

S| €< 85,83, P, X; > for some i. That is, we would be able to find constant o, 3 such that

1 00 S1f1 S1hy S113
Xi=10 a O+ Sl Sty Stz
o B 1 §3f1  $3fr  $313

would be of rank one. I first show o # 0. Suppose the contrary. Then

0 Bra m -1 Brn n
<P,X,->:< O 0 O01]5]0 o0 O

0 —p -1 0 0 0

0O 0 O -1 0 0
<P7Xi>:< 0O 0 O}, 0 0O
r —p -1 r 00

as per the logic used in the proof of (9). In the first case, notice that to generate the

subspace
00O
ct|0 0 O
010

one would either add this matrix to the spanning set as some X;, which would mean it
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would be impossible to generated the subspace

000
3101 0
1 00

or one would need at least two rank one matrices to eliminate other entries. Thus this case
is impossible. The situation is nearly identical in the second case, thus & # 0 and I now
assume this.

Note that if s; = 0 then X; is visibly of rank at least 2. So assume s; 7 0 and subtract :—f

times row one from row two and :—f times row one from row three in that order to obtain

148511 s1r2 s1f3
-5 o 0
a—g B
The bottom two rows are independent so the matrix has rank one, in particular, only if
o = 0, which I have shown to not be the case. Thus, X; is always of rank at least 2 and

equivalently, R(T') > 5. O

(A= 1)ay
FA—12A2 A+ 1D)az  A+Dx (B +1Daz+ (A —1az
(23) (9ua*) = | +(A? = 1)(A> + A1+ 1)as]
—(A+Day —(A=Da; A —=Dar+ A +1)a3

—ap —as 0

(91b) =
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(o 1oy + (et 1), [(A=1)2A2+A+1)by [ =1)(A2+A+1)b
+(A% + 1)b3) +(A2 —1)b3]
—(A+1)by—(A—1)by (A2 —1)b3 (A2 +1)b;
0 —by —by
A=D1 — A+ A=1D2A2+r+1)er - A2 =1D)A+M)er
(@ac") = [ A+ 1D)er — (A= Dea 0 —c3
0 M +Der+ A =1z A2 =Der+ A+ 1)ea

Proposition 42. R(T) <7,R(T) =4 forh=—1,R(T) =5 for L # —1.

Proof. The naive approach gives an upper bound on the rank of 7. U
pray —paz  a a
24) (¢a”) = —ay  pa; —2uay+az |, (0b7) =
—ap —as 0
by 1*by+b3  —pb; —cy  pPei—c3 —pc
—bi+uby  —2uby by |, (0a)=| ¢ +ucy 0 —c3
0 —by —by 0 c1—2ucy;

T = a1®by®c1 + (—a1)@b1®c2 + (ua1)@br@cs + (4?a2)@b1®c1 + ar@b3zRct +

(—2,ua2)®b3®C2 + (—a2)®b1®C3 + (—,ua3)®b1®cl + azRb3Rcy + (—a3)®b2®C3.
Proposition 43. R(T) <7,R(T) =5.

Proof. The naive approach yields an upper bound of 7 for the rank. U



33

CHAPTER 1V
SUMMARY AND CONCLUSIONS

Building on Ng’s classification of all ¢ € C3®C3®C? up to the action of PGL(C?) x
PGL(C?) x PGL(C?), T have presented a partial classification of these tensors with respect
to their rank and border rank. In particular, upper bounds were found for each of the 24
normal forms given in Ng’s paper and the bounds were proved to be tight in 15 cases. The
methods of proof varied but were largely algebraic and far from a routine task. At times
a suitable upper bound was visibly immediate but in other cases one used more advanced
techniques such as considering the tensor as a direct sum of a pencil (two dimensional space
of matrices) and a one dimensional space and putting the pencil in Kronecker normal form
then invoking a theorem of Grigoriev and Ja’Ja’ to deduce it’s rank [1]. This technique is
not discussed because in the cases I was able to classify, it was always possible to achieve
this same upper bound using more basic techniques, however it mya be the case that this

will be useful in the completion of the classification.

The border ranks were calculated using Ottaviani’s version of Strassen’s equations. I im-

plemented these equations in the program Wolfram Mathematica 8 and recorded the results.

The main results are best summarized in Table 1 below.



# | R(T) | R(T)
1| 3 3
@ | 4 4
(3) | 4 4
@ | 4 4
(5) | 4 5
© | 4 4
M| 5 | <6
@) | 4 5
© | 4 5

(10) | 4 5
an| s | <6
(12)| 4 5

Table 1: Summary of main results.

# R(T) R(T)
(13) 4 5
(14) 4 5
(15) | 4 for A=—1,5 for A£—1| <7
(16) 4 6
(17) 4 6
(18) 4 6
(19) 5 <6
(20) 4 5
Q1) 4 5
(22) 4 5
(23) | 4 for A=—1,5 for A£—1| <7
(24) 5 <7

34
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