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ABSTRACT

Hybrid Geometric Feedback Control of

Three-Dimensional Bipedal Robotic Walkers

with Knees and Feet. (May 2011)

Ryan Wesley Sinnet, B.S., California Institute of Technology

Chair of Advisory Committee: Dr. Aaron D. Ames

This thesis poses a feedback control method for obtaining humanlike bipedal

walking on a human-inspired hybrid biped model. The end goal was to understand

better the fundamental mechanisms that underlie bipedal walking in the hopes that

this newfound understanding will facilitate better mechanical and control design for

bipedal robots. Bipedal walking is hybrid in nature, characterized by periodic contact

between a robot and the environment, i.e., the ground. Dynamic models derived

from Lagrangians modeling mechanical systems govern the continuous dynamics while

discrete dynamics were handed by an impact model using impulse-like forces and

balancing angular momentum. This combination of continuous and discrete dynamics

motivated the use of hybrid systems for modeling purposes.

The framework of hybrid systems was used to model three-dimensional bipedal

walking in a general setup for a robotic model with a hip, knees, and feet with the

goal of obtaining stable walking. To achieve three-dimensional walking, functional

Routhian reduction was used to decouple the sagittal and coronal dynamics. By do-

ing so, it was possible to achieve walking in the two-dimensional sagittal plane on the

three-dimensional model, restricted to operate in the sagittal plane. Imposing this

restriction resulted in a reduced-order model, referred to as the sagittally-restricted

model. Sagittal control in the form of controlled symmetries and additional con-

trol strategies was used to achieve stable walking on the sagittally-restricted model.
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Functional Routhian reduction was then applied to the full-order system. The sagit-

tal control developed on the reduced-order model was used with reduction to achieve

walking in three dimensions in simulation.

The control schemes described resulted in walking which was remarkably an-

thropomorphic in nature. This observation is surprising given the simplistic nature

of the controllers used. Moreover, the two-dimensional and three-dimensional dynam-

ics were completely decoupled inasmuch as the dynamic models governing the sagittal

motion were equivalent. Additionally, the reduction resulted in swaying in the lateral

plane. This motion, which is generally present in human walking, was unplanned

and was a side-effect of the decoupling process. Despite the approximate nature of

the reduction, the motion was still almost completely decoupled with respect to the

sagittal and coronal planes.
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CHAPTER I

INTRODUCTION

The concept of bipedal robotic walking has been present in the minds of scientists

for as long as the concept of robots. There is something intrinsically fascinating

about the idea of a robot that walks like a human which inspires awe in the minds

of all, scientists and laymen alike. Many attempts have been made in recent history

to achieve bipedal robotic walking—most of these attempts involve some form of

control engineering—and yet the majority of walking that has been achieved, either

in implementation or in simulation, has displayed statically-stable walking or, at the

very least, is a far cry from the walking seen in humans. Indeed, dynamically-stable

walking was only first introduced in 1990 by McGeer [1]. This cardinal paper ushered

in a new era of research into dynamically-stable robotic walking. Over the next two

decades, new research was conducted which resulted in the development of control

schemes which allow for dynamically-stable walking in robotic models. Some of the

approaches used involve passivity-based control [2, 3], control of zero-moment point

[4, 5], hybrid zero dynamics [6–8], central pattern generators [9, 10], compliance-based

control [11], and human-inspired feedback control [12, 13].

The objective of this thesis is to show how anthropomorphic bipedal walking

The journal model is IEEE Transactions on Automatic Control.
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h
Knee-Lock Heel-Strike

hs

klkl ts

Toe-StrikeToe-Lift

tl

Fig. 1: Directed graph for the hybrid model considered in this thesis.

can be achieved through simulation on a bipedal robot model. In order to achieve

truly anthropomorphic walking, it will be necessary to first examine the human gait

and isolate those characteristics which define the gait. There is a sizeable body

of work studying human walking (see, for example [14–19]) and in the majority of

studies, the human gait is broken down into discrete phases—this can be represented

mathematically as a directed graph as illustrated by example in Fig. 1. The definition

of each phase and the number of phases vary from study to study. For example, in

[14], the human gait is broken down into swing and stance phases for each leg, and the

swing phase is further broken down into three sub-phases: initial swing, mid swing,

and terminal swing.

Traditionally, control of bipedal robots considers a relatively small number of

domains; i.e., five domains or less. For example, the compass gait walker which has

been studied to exhaustion (see, e.g., [1], or see [20] for a more detailed analysis) has
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only a single domain whereas the kneed biped considered in [21] has a gait consisting

of two domains and the kneed biped with feet considered in [22] has a gait consisting

of five domains. When designing a biped it is important to carefully consider the

domains which will comprise the model’s graph. Two models with different graphs

could require substantial differences in controller design in order to achieve walking. In

this thesis, a model will be considered in which the domain breakdown was determined

through a subjective analysis of human walking. One literally observes a human

walking and tries to ascertain what is happening. Some simplifications, e.g., knee-

lock are made to simplify controller design. Indeed, this is the traditional method for

designing a hybrid model of a biped. However, recent results show how to create a

hybrid model through objective analysis of experimental human walking data [23].

The study of bipedal walking requires research in either robotics and control

or biomechanics. In the context of biomechanics, researchers are often interested

in forces and dynamics [19, 24]; specifically, forces and loading have been studied

at the foot [25, 26] and at the hip [27, 28]. Such analysis is useful in the design

of prostheses and hip replacements yet fails to give a complete picture of human

walking. While many studies have been conducted in the context of biomechanics

[29], few have been done with respect to control engineering [30, 31]. When studying

the biomechanics of walking, researchers use force plates and force loading models to

measure and estimate the distribution of musculoskeletal forces and ground reaction

forces [32]. This is used in conjunction with either inverse-dynamic models [33, 34]

or forward-dynamic models [35–37].

Another important concept in the study of bipedal walking is the idea of single

support and double support phases. In a single support phase, the system has only a

single point or collection of points on a rigid body—for example, a foot can be flat on

the ground—on the system in contact with the ground whereas in a double support
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phase, the system has multiple points or collections of points on different rigid bodies

in contact with the ground—for example, this could mean that the stance foot is in

flat contact with the ground and the non-stance foot is rolling about the toe. Double

support phases introduce a new level of complexity when modeling the mechanics of

bipeds because virtual forces must be imposed to achieve the desired interaction of the

model with the ground; these forces are typically referred to as Lagrange multipliers

in the literature [38]. Despite the difficulties associated with double support phases,

it is still important to consider double support when trying to achieve humanlike

walking. Indeed, humans spend an appreciable portion of their walking gaits having

double support.

A major concern that arises when designing controllers for bipedal walkers is the

physical limitation of the system. Specifically, ground reaction forces must be obeyed

before a controller can be implemented on a physical model. As an example, consider

a robot with feet. It must be verified that the feet do in fact stay flat and do not roll

about an edge. Additionally, it must be verified through impact that specific contact

constraints are physically satisfied. For example, if the non-stance heel strikes the

ground, one must check the constraint forces to see whether or not the back foot

leaves the ground instantaneously. Finally, friction must be considered to ensure that

the robot does not slip.

Another problem that arises in bipedal walking is the increase in complexity when

trying to achieve walking three dimensions. Two-dimensional walking, i.e., walking

in the sagittal plane, is comparatively easy to obtain. Results on three-dimensional

walking are limited [21, 39–42] due to the difficulty of the problem. Most research on

bipedal robots comes from three major schools of thought:1 controlled symmetries,

1These schools of thought are related to the control of bipedal robots to obtain
dynamically-stable walking. There is a wealth of literature on a technique known
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hybrid zero dynamics and reduction-based techniques. Controlled symmetries [2, 53] is

a technique for translating passive walking down varying slopes to controlled walking

on flat ground [54]; the greatest shortcoming of this theory is that it requires full

actuation. In order to deal with underactuated bipeds, the notion of hybrid zero

dynamics was introduced [6, 8, 55–57]. This theory creates a lower-dimensional system

that captures the behavior of the higher-dimensional system and has been successful in

the construction of two two-dimensional bipeds, RABBIT and MABEL (see [58, 59]).

The first two techniques predominantly have been applied to two-dimensional bipeds.

(Although hybrid zero dynamics has recently been extended to three-dimensional

bipedal robots [39–41, 60], this extension is still in its initial stages.)

The desire to have an intuitable and straightforward bridge between two- and

three-dimensional walking motivates the introduction of reduction-based techniques.

Reduction-based techniques will be the main theoretical tool used in this thesis to

extend two-dimensional walking to three dimensions. Reduction-based techniques use

geometric reduction—in the form of functional Routhian reduction (first introduced

in [61])—to decouple the sagittal and coronal dynamics of a biped and have been

successfully applied to obtain three-dimensional walking for simpler bipeds than the

one considered in this thesis, e.g., [21, 62, 63] (all of which were fully-actuated). The

technique used in this paper works as follows:

In the control scheme presented in this paper (cf. [42]), three different control laws

will be leveraged—energy shaping, functional Routhian reduction, and input/output

linearization—along with a set of control laws which gives walking for the sagittally-

as zero moment point (ZMP) [5, 43–46]. In addition, obtaining dynamically-stable
walking without control through minimal mechanical design has also been well-studied
[1, 3, 47–51]. Finally, see [52] for a good review on the comparison between the
“humanoid” (using ZMP techniques) and “minimalist” (using mechanical design)
approach to bipedal robots.
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Fig. 2: Overview of reduction control scheme.

restricted biped. (Many different sets of control laws would work for this; however,

in this thesis, a set of laws similar to those in [22] will be used.) These control laws

will be combined in a novel fashion to obtain a single control law that will be applied

on each discrete domain where the biped is fully-actuated as indicated in Fig. 2.

More specifically, sagittal control is applied to a two-dimensional biped obtained by

restricting the three-dimensional biped to the sagittal plane. The first control law then

uses energy shaping to transform the Lagrangian modeling the dynamics of the three-

dimensional biped; this results in a hybrid system amenable to functional Routhian

reduction. The second control law, functional Routhian reduction, is then applied

to this system—the reduced system obtained by applying this form of geometric

reduction is exactly the two-dimensional biped—thus decoupling the sagittal and

coronal dynamics while simultaneously stabilizing the coronal dynamics (for certain

initial conditions satisfying the Theorem 1 of this thesis). Finally, the third control

law, input/output linearization, stabilizes to the surface of initial conditions for which

the decoupling afforded by the second control law is valid through the use of a virtual

output chosen so that, when zero, the proper initial conditions are satisfied.

It is important to understand how the application of the above control laws
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is affected by the discrete structure and relationship to the continuous dynamics.

Specifically, there are only three discrete domains (of four) in which the biped is

fully-actuated (domains tl , kl , and hs in Fig. 1). Yet, the above control scheme

requires full actuation and thus can only be used in those three discrete domains.

Surprisingly, this is enough since the majority of the gait is spent in these three

domains. This illustrates the relationship between the discrete representation and

continuous dynamics and the importance of drawing inspiration from human walking.

This thesis starts with a discussion of mechanics and modeling of bipedal robots.

Next, the notion of a hybrid system is introduced. These ideas will then be combined

to construct the hybrid model of a three-dimensional biped that will be studied in

this thesis. This will be followed by a discussion of controller design for the two-

dimensional sagittaly-restricted biped and it will be shown how the designed con-

trollers can be to achieve walking gaits; the results of a simulation doing this will be

given. Then, functional Routhian reduction will be described and control laws will

be given which implement reduction. These control laws will be applied to the three-

dimensional biped and simulation results will be given which show three-dimensional

walking. The thesis will conclude with a discussion of open problems and potential

ideas worthy of future study.
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CHAPTER II

MODELING BIPEDAL ROBOTS

Bipedal robots are modeled as kinematic chains. A kinematic chain is essentially

a series of rigid bodies connected by joints. Modeling can be done using any of

a number of mathematical formalisms ubiquitous in the field of mechanics such as

the method of exponential twists [64] or the Denavit-Hartenberg convention [65].

Computation of the dynamics of such a system can be performed many different ways;

however, straightforward implementation of the corresponding mathematical formulas

generally results in unnecessary computational complexity. It is possible—and, in

fact, common practice—to simplify the process of obtaining the system dynamics by

using well-known numerical methods such as those found in [66]. Modeling methods

are well known and can be found, for example, in [67, 68].

An important aspect of bipedal walking is ground contact. At different points in

a walking gait, a biped will have either one point or multiple points in contact with

the ground. Because different types of ground contact require different constraints,

it will be natural to model different walking phases by the constraints imposed. This

will lead to the requirement that hybrid systems be used to model bipedal walking.

Hybrid systems combine continuous dynamics—the continuous-time evolution of the

state variables that govern the configuration of the system as differential equations—

and discrete dynamics—changes in which constraints are being applied to the system

(for example, heel-strike). Hybrid systems will be formally defined and discussed in

the next chapter. Before formally introducing hybrid systems, however, it will be
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convenient to first discuss continuous and discrete dynamics.

This chapter will start by discussing how to model a kinematic chain in a gener-

alized configuration with no constraint assumptions such as ground contact. It will

be shown how to calculate the Lagrangian of a robotic model and then how to use

the Lagrangian to obtain a dynamic model. After discussing Lagrangian mechanics,

a general formalism for constraints will be introduced and then used to deal with the

concept of ground contact. It will be shown how to impose constraints and verify

the validity of a given constraint taking into consideration ground reaction forces and

friction. Combining the mechanics and constraints will give a complete model for the

continuous dynamics of a biped. The chapter will end with a discussion of impact

dynamics which will constitute the discrete dynamics of a biped.

A. Generalized Model

The generalized robot model which will be considered is an n-link kinematic chain

in free space. The model will be developed in three dimensions and later, where ap-

propriate, two-dimensional models will be considered. It will be trivial to obtain the

two-dimensional equations given the formulation in three dimensions. The formula-

tion given here will be similar to the one used in [40].

First, consider a robot that is free to move in the world frame. Therefore, let R0

be the world frame—this is an inertial reference frame which is fixed with respected

to the environment. Then, let Rb be a reference frame attached to a point on the

robot as in Fig. 3.1 Let pb ∈ R
3 represent the Cartesian position of Rb as measured in

1There are infinite choices of where to place Rb but some choices of location result
in simpler dynamics. In general, the simplest dynamics result when Rb is placed at
the center of the hip. The reason that this is simpler than, for instance, the foot
is that the forward kinematics of each link of the system is found as the product of
rotation matrices. Each additional product substantially increases the complexity of
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the world frame R0 and let φb ∈ SO(3)2 represent the orientation of Rb as measured

with respect to R0. Next, let q ∈ Q ⊆ R
n be the shape coordinates3 of the system

where Q is the system’s configuration space. Combining these variables results in a

set of coordinate that can model an n-link robot in a generalized configuration:

qe =









pb

φb

q









. (2.1)

For simplicity, define the generalized configuration space Qe as

qe ∈ Qe = R
3 × SO(3)×Q. (2.2)

This will be useful later as it will define part of the state space for the nonlinear

control system modeling the dynamics of the robot.4

Now that a proper choice of coordinates has been given, the dynamics can be

found using the method of Lagrange (see, for example, [70, pp. 253–260]). The first

step is to calculate the Lagrangian of the system. This is easily done using, for

example, the method of exponential twists found in [64, pp. 168–169]. The kinetic

energy of a mechanical system, Te : TQe → R, can be written in the following form:

Te(qe, q̇e) =
1

2
q̇e

TDe(qe) q̇e

the dynamics. Therefore, placing Rb to minimize the largest number of product terms
required to calculate the forward dynamics of the end-effector generally results in the
minimal complexity.

2SO(3) represents the special orthogonal group in three dimensions and is some-
times called a rotation group. For more on this, see [69].

3Sometimes, q will be referred to as the configuration variable as it defines the
configuration of the system with respect to the body-fixed frame Rb.

4The state space of the system will later be given as X = TQe.
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R0

Rb

Rf

Fig. 3: Robot showing a body frame Rb and a world frame R0. The body frame is

attached to the robot and the world frame is an inertial reference frame. A frame Rf

is attached to a foot.

where De : Qe → R
ne×ne is the manipulator inertia matrix with ne = dimQe = 6+ n

and the potential energy, Ve : Qe → R, is written Ve(qe). The potential energy will be

a result of gravity and, if present, mechanical springs. Combining the kinetic energy

and the potential energy results in the Lagrangian Le : TQe → R given by

Le(qe, q̇e) = Te(qe, q̇e)− Ve(qe). (2.3)

Using the above Lagrangian (2.3), the dynamics of the robot can be calculated using

the Euler-Lagrange equation (see [71]):

ELqe(Le) ,
d

dt

∂Le

∂q̇e
(qe, q̇e)−

∂Le

∂qe
(qe) = Be(qe)u(qe, q̇e) + Υnc(qe, q̇e) (2.4)

where Be : qe → R
ne×ne is a torque distribution matrix which is constant for the

proper choice of coordinates, u(qe, q̇e) represents state feedback control and Υnc(qe, q̇e)

represents nonconservative forces other than control. Without loss of generality, these
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force terms will sometimes be grouped as

Υ(qe, q̇e) = Be(qe)u(qe, q̇e) + Υnc(qe, q̇e) (2.5)

such that Υ : TQe → R
n
e represents all nonconservative forces acting on the system,

e.g. viscous dampers or control (see [72, pp. 34–45]). Following the procedure in [64,

pp. 171], (2.4) for a robot can be written

De(qe) q̈e + Ce(qe, q̇e) q̇e +Ge(qe) = Υ(qe, q̇e) (2.6)

where Ce : TQe → R
ne×ne contains Coriolis terms and centrifugal terms and Ge :

Qe → R
ne , which is given by

Ge(qe) =
∂Ve

∂qe
(qe), (2.7)

contains terms resulting from the potential energy, i.e., gravitational forces and spring

forces. For convenience, the dynamic model can be written as a control system (fe, ge)

where

fe(qe, q̇e) =






q̇e

D−1
e (qe) (−Ce(qe, q̇e) q̇e −Ge(qe) + Υnc(qe, q̇e))




 ,

ge(qe) =






0n×m

D−1
e (qe)Be(qe)




 (2.8)

are the vector and control fields, respectively. In (2.8), Be(qe) is a torque distribution

matrix as in (2.4) and (2.5).

B. Constraints

As mentioned previously, a central feature of bipedal locomotion is ground contact.

In the previous section, a model for a robot in a generalized position was given. This
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model is free to translate and rotate in space. To properly achieve bipedal walking, it

will be necessary to impose constraints on the dynamics of the system in order to keep

points on one foot or both feet in contact with the ground. In general, a bipedal robot

can have two types of support: single support and double support. Single support is

categorized by those domains of the gait in which only one foot is in contact with

the ground while double support represents those domains in which both feet are in

contact with the ground simultaneously. Both single support and double support can

be achieved by imposing constraints on (2.6). Imposing constraints acts to constrain

the operational space of the system to be on some restricted submanifold. This fact

will be used later to define a domain of admissibility for the system.

Two types of constraints will be defined in this section: holonomic constraints

and unilateral constraints.5 Holonomic constraints will be constraints that physically

restrict the motion of a system. For this reason, holonomic constraints are sometimes

called kinematic constraints as they provide restrictions on the kinematics of a sys-

tem. Holonomic constraints have a number of uses6 but, in this paper, they will be

used to enforce ground contact and knee-lock. Unilateral constraints will be used to

parameterize the distance to impact of, for instance, the heel of the non-stance foot

of a robot. It will become clear soon how unilateral constraints are used to derive the

impact dynamics of the system. Unilateral constraints will not restrict the kinematics

of a system however they will restrict the operational range of the system; i.e., the

robot is not permitted to go below the ground. Holonomic constraints will affect both

the continuous and discrete dynamics of a system whereas unilateral constraints will

only affect the discrete dynamics (i.e., the impact equations).

5See [40] for more information on both types of constraints
6Some examples of this can be found in [21, 22].
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1. Holonomic Constraints

Holonomic constraints will be considered first as they provide actual constraints on the

kinematics of the system. Consider the following definition of a holonomic constraint:

Definition 1. A holonomic constraint is defined to be a tuple η = (Q, L, η), where

• Q is the configuration space,

• L : TQ → R is a hyperregular Lagrangian with q ∈ Q,

• η : TQ → R
c provides c holonomic constraints on the configuration space; we

assume that the zero level sets of the constraints, η−1
i (0)∀i ∈ [1, c], are smooth

manifolds.

A holonomic constraint provides an implicit constraint on the system (see [73] );

that is, a holonomic constraint cannot be written in explicit form and must instead

be written as an implict equation of the form:

η(q, q̇) = constant.

Consider the holonomic constraint η = (Q, L, η) with q ∈ Q as given in (2.1)

and (2.2) and L as given in (2.3). This tuple represents a holonomic constraint7 on

the robot’s configuration space Q. The actual constraint, η(q, q̇), when imposed on

the system, will satisfy the following equation:

η(q, q̇) = J(q) q̇ = constant. (2.9)

It is important to note that J(q) should have full rank; that is, rank J(q) = c where

7The actual equation of the constraint η(q, q̇) contained in the tuple η can be
a vector containing multiple constraints. At the risk of introducing ambiguity, a
holonomic constraint will be considered to be a single equation as the constraints are
written in vector form.
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c = dim η(q, q̇). The matrix J(q) is commonly called a Jacobian matrix.

In general, a holonomic constraint of dimension c, when imposed on the dynamic

model of the system, will act to restrict the tangent bundle of the system’s configura-

tion space. The result will be that the system operates on a codimension-c embedded

submanifold. According to the principle of virtual work found in [64, 74–76], there

exists a wrench 8 F containing forces and/or torques that, when applied to the sys-

tem, will cause (2.9) to be satisfied provided that J(q) has full rank. This wrench is

imposed on the system by augmenting the dynamic model (2.6) as follows:

D(q)q̇ + C(q, q̇)q̇ +G(q) = Υ(q, q̇) + JT (q)F (q, q̇). (2.10)

The expression for F (q, q̇) can be found by combining (2.9) and (2.10). Differ-

entiating (2.9) gives

J̇(q, q̇) q̇ + J(q) q̈ = 0. (2.11)

Premultiplying (2.10) by D−1(q) and rearranging terms gives

q̈ = D−1(q)
(
Υ(q, q̇) + JT (q)F (q, q̇)− C(q, q̇)q̇ −G(q)

)
. (2.12)

Substitution of (2.12) into (2.11) yields

J̇(q, q̇) q̇ + J(q)D−1(q)
(
Υ(q, q̇) + JT (q)F (q, q̇)− C(q, q̇)q̇ −G(q)

)
= 0. (2.13)

Rearranging terms from (2.13) gives

J(q)D−1(q)JT (q)F (q, q̇) = (2.14)

−J̇(q, q̇) q̇ + J(q)D−1(q) (Υ(q, q̇)− C(q, q̇)q̇ −G(q)) .

8See [77] for more on wrenches.
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Finally, premultiplying by (J(q)D−1(q)JT (q))−1 gives the desired expression for the

wrench F (q, q̇) which imposes the kinematic constraint (2.9):

F (q, q̇) = −
(
J(q)D−1(q)JT (q)

)−1 · (2.15)
(

J̇(q, q̇)q̇ + J(q)D−1(q) (Υ(q, q̇)− C(q, q̇)q̇ −G(q))
)

.

Thus, the force F (q, q̇) from (2.15) has limitations of the form:

F (q, q̇) < 0.

For example, for a system with friction coefficient µ, horizontal force Fh, and vertical

force Fv, to avoid linear slipping requires that the following constraint be satisfied

(see [78, pp. 132]):

|Fh| < µFv

where Fv is assumed to be oriented in the direction of gravity. Combining (2.10) and

(2.15) leads to the following vector and control fields:

f(q, q̇) =










q̇

D−1(q)

(

(I − JT (q)Ξ(q)A(q)D−1(q)) ·

(Υnc(q, q̇)− C(q, q̇)q̇ − G(q))− JT (q)Ξ(q)J̇(q)q̇

)










,

g(q) =






0(n×m)

D−1(q)
(
I − JT (q)Ξ(q)J(q)D−1(q)

)
B(q)




 , (2.16)

with Ξ(q) defined as

Ξ(q) :=
(
J(q)D−1(q)JT (q)

)−1
. (2.17)

These results will soon be used to model ground contact, but, first, a discussion
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of unilateral constraints is pertinent.

2. Unilateral Constraints

Unilateral constraints are constraints which are not physically imposed on a system.

Instead, they are used, in the case of bipedal robots, to parameterize the distance

to impact of an end-effector. Consider, for example, the unilateral constraint shown

in Fig. 4. In this case, the unilateral constraint is the height of the non-stance heel

above the ground. When this height reaches zero, an impact will occur and it will be

time to transition to the next domain (or phase) of the walking gait. It is therefore

easy to to see how unilateral constraints can be used to obtain guards or switching

surfaces. Consider the following formal definition of a unilateral constraint:

Definition 2. A unilateral constraint is defined to be a tuple h = (Q, L, h(q)), where

• Q is the configuration space,

• L : TQ → R is a hyperregular Lagrangian with q ∈ Q,

• h : Q → R provides a unilateral constraint on the configuration space; we

assume that the zero level set of the constraint, h−1(0), is a smooth manifold.

As mentioned previously, a unilateral constraint can naturally lead to a guard

for a given domain on a hybrid system. Due to the hybrid nature of the guard, this

discussion will be deferred until the next chapter. Having introduced both holonomic

and unilateral constraints, it is now possible to introduce the domain of admissibility.

C. Domain of Admissibility

As can be seen in the previous section, holonomic and unilateral constraints introduce

restrictions on the configuration space of the system. In other words, the system will
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h(q)

Fig. 4: Example of a unilateral constraint, h(q). This example constraint parameter-

izes the height of the non-stance heel above the ground.

be required to operate on a restricted submanifold called the domain of admissibil-

ity. Mathematically, the domain of admissibility, D, is a submanifold of the tangent

bundle of a configuration space; i.e., for a given configuration space, Q, it holds that

D ⊆ TQ.

Consider a system with Lagrangian L and configuration variable q ∈ Q. Then

assume this system is constrained with domain restriction vector H(q, q̇, u) satisfying

H(q, q̇, u) < 0.

This can result from a combination of holonomic constraints and/or a unilateral

constraint as will be seen in the following sections. The domain restriction vector acts

to confine the system to operate on the space of the domain where H(q, q̇, u) < 0;

this leads to the following definition for domain of admissibility:

Definition 3. Given a configuration space Q and a domain restriction vector H(q, q̇, u),

the domain of admissibility of a system is given by

D =

{[

qT q̇T uT

]T

∈ TQ× R
m : H(q, q̇, u) > 0

}

(2.18)
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Rflat

Fig. 5: An example of a robot with flat foot ground contact. A reference frame, Rflat ,

is attached to a flat foot.

with m the number of control inputs.

In order for the assumptions of walking to be valid, the system must operate

within the domain of admissibility on any given domain. It will be shown in the next

sections how to apply this concept to the system of interest.

D. Ground Contact

Holonomic constraints, as discussed in the previous section, will be the tool of choice

for dealing with ground contact. The dynamic model for such a system will be of

the form given in (2.10) and the ground contact wrench that will maintain ground

contact will be of the form (2.15). In order to properly model ground contact, it

will be necessary to consider a system with generalized configuration space Qe. This

section will now consider the different types of ground contact which can occur in the

various phases composing the walking gait of a bipedal robot.

1. Flat Foot Contact

In order to achieve humanlike bipedal locomotion, it is required that the feet of the

robot do not slip. In other words, the friction between the feet and the floor must
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be sufficient to avoid slipping. For the case of a foot in flat contact with the ground

as in Fig. 5, a holonomic constraint will be used to prevent the foot from moving.

To begin, attach a reference frame Rflat to the flat foot as in Fig. 5 and let flatT0(qe)

be a (4 × 4) homogeneous transformation matrix which represents a transformation

between the world frame R0 and the flat foot frame Rflat . According to [79, pp. 329],

the velocity transformation matrix flat
0 Ωflat(qe, q̇e)

9 is given by

flat
0 Ωflat(qe, q̇e) =

flatT T
0 (qe)

flat Ṫ0(qe, q̇e)

=






flat
0 ωflat(qe, q̇e)

flatvflat(qe, q̇e)

01×3 0




 (2.19)

where flatvflat(qe, q̇e) is the linear velocity of the origin of Rflat with respect to R0

expressed in Rflat and
flat
0 ωflat(qe, q̇e) is a skew-symmetric matrix (see [80]) containing

the angular velocity of Rflat with respect to R0 expressed in Rflat . The angular

velocities can be found from the following equation (cf. [79, pp. 298]):

flat
0 ωflat(qe, q̇e) =









0 −ωz(qe, q̇e) ωy(qe, q̇e)

ωz(qe, q̇e) 0 −ωx(qe, q̇e)

−ωy(qe, q̇e) ωx(qe, q̇e) 0









(2.20)

For convenience, group the angular velocities into a vector:

flat
ωflat(qe, q̇e) =









ωx(qe, q̇e)

ωy(qe, q̇e)

ωz(qe, q̇e)









. (2.21)

9flat
0 Ωflat expresses the body velocity of the flat foot’s frame Rflat with respect to

the world frame R0 in the flat foot’s frame Rflat .
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Using equations (2.19), (2.20), and (2.21), the holonomic constraint necessary to

achieve flat foot contact can be expressed as

ηflat(qe, q̇e) = Jflat(qe) q̇e =






flatvflat(qe, q̇e)

flat
ωflat(qe, q̇e)




 = 06×1. (2.22)

Requiring that the linear and angular velocities of the foot be zero effectively fixes

the foot on the ground. This holonomic constraint can be imposed on the dynamic

model (2.10) using the wrench Fflat(qe, q̇e), which can be calculated using (2.15) with

the kinematic constraint given in (2.22), which is expressed in the frame Rflat . The

first three components of Fflat(qe, q̇e) are the ground reaction forces and the last three

components are the ground reaction torques:

Fflat(qe, q̇e, u) = (F fx
flat , F

fy
flat , F

fz
flat , F

mx
flat , F

my
flat , F

mz
flat )

T , (2.23)

where the dependence of each element on qe, q̇e has been suppressed.

In general, the constraining ground reaction wrench will have limitations. There

is no limitation on the normal force in the positive direction, but to avoid take-off, it

is necessary that

F fz
flat(qe, q̇e, u) > 0. (2.24)

The force of friction exerted by the ground on the foot has limitations on its magni-

tude. If the force becomes to great, the robot will slip. This leads to the constraint

√
(

F fx
flat(qe, q̇e)

)2

+
(

F fy
flat(qe, q̇e)

)2

< µF fz
flat(qe, q̇e),

where µ is the coefficient of static friction. This represents a friction cone which is

nonlinear; to use linear constraints, this can be replaced with a friction pyramid which
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Rfoot

ℓa ℓb

wa

wb

x

y

z

Fig. 6: The dimensions of robot foot. These measurements specify lengths from the

origin of the foot-fixed frame Rfoot to the edges.

gives a conservative approximation:

|F fx
flat(qe, q̇e, u)| <

µ√
2
F fz
flat(qe, q̇e, u), (2.25)

|F fy
flat(qe, q̇e, u)| <

µ√
2
F fz
flat(qe, q̇e, u). (2.26)

Additionally, the ground reaction torque preventing the foot from rotating up onto

an edge is limited by (see [81, 82]):

−wbF
fz
flat(qe, q̇e, u) < Fmx

flat (qe, q̇e, u) < waF
fz
flat(qe, q̇e, u), (2.27)

−ℓaF
fz
flat(qe, q̇e, u) < Fmy

flat (qe, q̇e, u) < ℓbF
fz
flat(qe, q̇e, u), (2.28)

where wa, wb, ℓa, ℓb are as shown in Fig. 6. In the literature, (2.25) is called the Zero

Moment Point (ZMP) (see [44, 46]).

The constraints (2.24), (2.25), (2.27), (2.28) must all be satisfied for the walking

to be physically realizable. Because the equations are linear inequalities, they can be

grouped into the domain restriction vector

Hflat(qe, q̇e, u) := AT
Fflat

(qe)Fflat(qe, q̇e, u) > 0. (2.29)
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Note the dependence on the applied torque, u. Using Definition 3, the domain of

admissibility is as in (2.18):

Dflat =

{[

qTe q̇e
T uT

]T

∈ TQe × R
m : Hflat(qe, q̇e, u) > 0

}

(2.30)

Satisfying these constraints can be extremely difficult. The most difficult con-

straints to meet are (2.27) and (2.28) and there are a variety of control schemes which

achieve walking by doing so; see [43, 83]. In this thesis, it is assumed that the foot is

sufficiently wide and long to satisfy and that friction is sufficiently large; however, it

is checked that (2.24) is satisfied

2. Rolling Contact

At times in a bipedal gait, the ground contact is not always confined to have a flat foot.

Sometimes, the foot is rotating about an edge. For example, when a human walks, he

typically lands on his heel and his foot rolls forward until it is flat. Similarly, the heel

of the back foot generally leaves the ground before the toe. See [15] for pictures of

human walking. In dealing with rolling contact, it is assumed that the contact occurs

at either the toe edge of the heel edge and therefore occurs about the y-axis.

As in the treatment of flat foot contact, attach a reference frame Rroll to a foot as

in Fig. 5. The y-axes of the reference frame and the axis of rotatin must be colocated;

that is, the y-axis of Rroll must be lined up with the toe or heel edge. Let rollT0(qe)

be a (4 × 4) homogeneous transformation matrix which represents a transformation

between the world frame R0 and the foot frame Rroll . As before, let rollvroll (qe, q̇e)

be the linear velocity of the origin of Rroll with respect to R0 expressed in Rroll and

roll
ωroll(qe, q̇e) be the body-fixed angular velocity vector for Rroll .

Using rollvroll (qe, q̇e) and roll
ωroll (qe, q̇e), the holonomic constraint necessary to
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achieve rolling foot contact can be expressed as

ηroll (qe, q̇e) = Jroll(qe) q̇e =









rollvroll(qe, q̇e)

ωx(qe, q̇e)

ωz(qe, q̇e)









= 06×1. (2.31)

It can be seen that (2.31) is similar to the flat foot case (2.22). The one difference

is that (2.31) does not have ωy(qe, q̇e). Removing this entry from (2.22) allows for

rotation about the y-axis; i.e., the foot can roll about the heel or toe.

This holonomic constraint can be imposed on the dynamic model (2.10) using the

wrench Froll (qe, q̇e), which can be calculated using (2.15) with the kinematic constraint

given in (2.31), which is expressed in the frame Rroll . The first three components of

Froll (qe, q̇e) are the ground reaction forces and the last two components are the ground

reaction torques:

Froll (qe, q̇e) =

[

F fx
roll F fy

roll F fz
roll Fmx

roll Fmz
roll

]T

(2.32)

where the dependence of each element on qe, q̇e has been suppressed.

As in the case of flat foot contact, there exist restrictions on ground reactions

forces and torques; specifically, equations (2.24), (2.25), and (2.27) are applicable here

as follows

F fz
roll > 0. (2.33)

|F fx
roll | <

µ√
2
F fz
roll , (2.34)

|F fy
roll | <

µ√
2
F fz
roll . (2.35)

−wbF
fz
roll < Fmx

roll < waF
fz
roll , (2.36)

where wa, wb are as shown in Fig. 6 and µ is the coefficient of static friction. As
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before, these constraints can be written linearly as AFroll
(qe)Froll (qe, q̇e, u) and can be

expressed as a domain restriction vector:

Hroll (qe, q̇e, u) = AT
Froll

(qe)Froll (qe, q̇e, u) > 0.

Using this vector the domain of admissbility is as given in (2.18):

Droll =

{[

qTe q̇e
T uT

]T

∈ TQe × R
m : Hroll (qe, q̇e, u) > 0

}

(2.37)

E. Knee-Lock

When making kneed bipeds walk, it greatly simplies the problem to introduce periods

of the gait where the knee is locked. Landing on a locked knee prevents the biped from

crumpling over upon heel-strike. This type of contact can be implemented physically

using a lock or clutch system. In modeling the biped, the locked knee is treated

with a holonomic constraint. The necessary constraint for the choice of coordinates

considered in this thesis is simple. Let ϑknee represent a knee angle. In the models

considered, this will be ϑ2 or ϑ5. Locking the stance and non-stance knee can therefore

be expressed as kinematic constraints:

ηstklock (qe, q̇e) = J stk
lock(qe) q̇e = ϑ̇2, (2.38)

ηnsklock (qe, q̇e) = Jnsk
lock(qe) q̇e = ϑ̇5. (2.39)

The above constraints (2.38) and (2.39) will lock the stance and non-stance knees,

respectively. Assuming the knees lock in the zero position leads to restrictions on the

system viz.

Hstk
lock (qe, q̇e) = (ϑ2, ϑ̇2)

T ,

Hnsk
lock (qe, q̇e) = (ϑ5, ϑ̇5)

T ,
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which lead to the following domains of admissibility as given in (2.18):

Dstk
lock =

{[

qTe q̇e
T uT

]T

∈ TQe × R
m : Hstk

lock (qe, q̇e) = 0

}

, (2.40)

Dnsk
lock =

{[

qTe q̇e
T uT

]T

∈ TQe × R
m : Hnsk

lock (qe, q̇e) = 0

}

. (2.41)

These domains of admissbility mean that the corresponding knee angle is reduced

from the system entirely and a reduced model can be used that does not include this

angle if desired. Furthermore, there are no restrictions on the strength of the lock.

F. Combining Constraints

There will be times in the gait when more than one of the previously described

constraints will be required. The most interesting example of this is the case of

double support—for this, it would be necessary to constrain both feet to the ground

in some combination of flat contact and rolling contact. Another example which

applies for the continuous dynamics of every domain is knee-lock. This is applied on

one or both knees in every domain and must be applied alongside the constraints on

foot contact.

Double support is an important component of the human gait. Indeed, an appre-

ciable portion of the gait is spent in double support (see [84]). Much of the literature is

concerned with instantaneous double support phases. This thesis, however, considers

double support through the continuous dynamics of some parts of the gait.

Combining constraints is relatively straightforward. First, consider c holonomic

constraints on a system, η1 = (Q, L, η1(q, q̇), . . . ,ηc(q) = (Q, L, ηc(q, q̇)). Following

the procedure for flat foot contact and rolling contact, let J1(q), · · · , Jc(q) be Jacobian



27

matrices satisfying

η1(q, q̇) = JT
1 (q) q̇ = 0,

· · · ,

ηc(q, q̇) = JT
c (q) q̇ = 0

where 0 is the zero matrix of appropriate dimension in each case. Now, the constraints

can be combined to have Jacobian

J(q) = Basis

(

RowSp

([

JT
1 (q) · · · JT

c (q).

]T
))

Now assume that each of the above constraints has a domain restriction vector,

H1(q, q̇, u), . . . ,Hc(q, q̇, u), where the vector can possibly be of zero dimension; this

occurs for knee-lock where any restraining force is admissible. These domain restric-

tion vectors can be combined viz.

H(q, q̇, u) =
(
HT

1 (q, q̇, u), . . . ,HT
c (q, q̇, u)

)T
.

which results in the domain of admissibility

D = D1 ∩ · · · ∩ Dc

with D1, . . . ,D2 the domains of admissibility given the associated constraints.

G. Model Reduction

The model of interest in this thesis has a discrete graph composed of four domains.

In each of these domains, different holonomic constraints are imposed to achieve the

desired ground contact and knee-lock behaviors. To simplify computation, model re-

duction can be used on each domain, removing constrained coordinates. For example,
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if the knee is locked, it is not necessary to consider the knee angle as a variable since

it is constant through the domain. Such a trick is common in the literature [21, 22].

By reducing the number of coordinates, we can simulate the system more quickly.

H. Impact Model

Impacts occur throughout the gait at various points as a function of gait design. A

impact occurs when a point, line, or surface comes into contact with the ground. The

contact is assumed to be rigid and plastic. In the hybrid model considered in this

thesis, there are three impacts that occur during one step: toe-strike, knee-lock, and

heel-strike. The mechanics is involved but can be found in, for example, [85, 86]. For

robotic manipulators, the mechanics of has been addressed for tool use in [87, 88].

Various different types of impact models have been considered. For example, one

model assumes an elastic impact and model deformation of rigid bodies as in [56, 89].

While this type of model provides a more accurate description of the impact than

does a rigid model, many of the necessary parameter must be estimated and so the

accuracy of such a model is questionable.

The impacts considered in this thesis follow the rigid impact model developed

by [90]. Such an impact results in an instantaneous change in velocity as a result of

conservation of angular momentum; angular positions, however, remain unchanged.

Therefore, let q−e and q+e represent the velocities right before and right after impact,

respectively, and let t− and t+ represent the times corresponding to these velocities.

Then introduce an impulsive force vector δFimp
which acts on a system during impact

via the dynamic model:

De(qe) q̈e + Ce(qe, q̇e) q̇e +Ge(qe) = Be(qe)u(qe, q̇e) + JT (qe)δFimp
(qe, q̇e).
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Integrating this model under the assumption that the actuators do not produce im-

pulsive torques yields:

De(qe)(q̇e
+ − q̇e

−) = JT (qe)Fimp(qe, q̇e) (2.42)

where

Fimp =

∫ t+

t−
δFimp

(qe(τ), q̇e(τ)) dτ.

For this system, JT (qe)Fimp(qe, q̇e) is a measure of angular momentum. Specifically,

the equation (2.42) represents conservation of angular momentum through impact. In

order to determine how the forces are applied, it is necessary to determine the value

of the Jacobian matrix J(qe). The procedure for this is the same as in the continuous

case. Assume that the impact is to be constrained with holonomic constraint η =

(Qe, Le, η(qe, q̇e)). Then, the appropriate J(qe) satisfies

η(qe, q̇e) = J(qe) q̇e = 0. (2.43)

Imposing such a constraint will ensure that, after impact, the constraints are satisfied;

for example, the foot is flat on the ground and not moving. Combining (2.42) and

(2.43) results in the following impact model:






De(qe) −JT (qe)

J(qe) 0











q̇e
+

Fimp(qe, q̇e)




 =






De(qe) q̇e
−

0




 (2.44)

where 0 represents the zero matrix of appropriate size. The model (2.44) can be

used to calculate post-impact velocities using conservation of angular momentum.

Using the Schur complement (c.f. [91]), it is possible to give an expression for the



30

post-impact velocity map P : Ge → De as

P (qe) =
(

I −D−1
e (qe)J

T (qe)
(
J(qe)D

−1
e (qe)J

T (qe)
)−1

J(qe)
)

q̇e. (2.45)

This map takes a point (qe, q̇e) ∈ Ge on the guard and maps it back to the domain of

the system. Using the expression (2.45) eliminates the impulsive force Fimp ; however,

when checking the assumptions on a gate, it is necessary to see if the impulsive forces

in Fimp are physically reasonable; that is, does the system belong to the domain

of admissibility. These must be checked in the same manner as in the continuous

case. Therefore, the reader is referred to the previous sections on flat foot and rolling

contact; specifically, the domains of admissibility for these types of contact were given

in (2.30) and (2.37), respectively. The general definition of domain of admissbility

was given in Definition 3; see (2.18).

Remark 1. It is important to note that the impact model is only valid if the resulting

state belongs to the domain of admissibility. For example, if that a constraint will be

imposed after impact, but this assumption turns out to be false based on the forces in

Fimp, then the impact model must be recomputed removing the constraint which was

violated.

One last important point is leg switching. In order to take advantage of the

natural symmetry of walking, a variable can be introduced representing which leg is

the stance leg. The end result will be a biperiodic gait. Swapping the legs is done

on the transition from hs to ts using a relabeling matrix R(qe). Using the relabeling

matrix and the post-impact velocity map, it is possible to give an expression for the

reset map:

∆(qe, q̇e) =






R(qe) qe

R(qe)P (qe, q̇e)




 (2.46)
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Remark 2. Depending on the model and the conditions impact, an interesting phe-

nomenon can occur in whihc the foot bounces slightly and rebounds an infinite number

of times over a finite time interval. Such a phenomenon is refered to in the literature

as the Zeno phenomenon; see [92–95]. In general, this behavior is not desireable and

should be avoided through control design.
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CHAPTER III

HYBRID SYSTEMS

In this chapter, we define the notion of a hybrid system and describe how it can be

constructed to model a physical system. In order to model hybrid systems, we must

first formally define hybrid systems. Hybrid systems or systems with impulse effects

[8] are dynamical systems which consist of both continuous dynamics—a differential

equation representing the continuous motion of a mechanical system as a function of

time—and discrete dynamics—mechanical impacts resulting from contact with the

environment or the system itself which result in discrete (instantaneous) changes in

the velocity variable of a system.

A. Formal Definition of Hybrid Systems

Consider the following definition of a hybrid system:

Definition 4. A hybrid system is a tuple

H = (Γ,D,G,∆,F),

where

• Γ = (V,E) is an oriented or directed graph, i.e., V and E are each a set of

vertices and edges, respectively, and there exists a source function sor : E → V

and a target function tar : E → V which associate to an edge its source and

target, respectively.
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• D = {Dv}v∈V is a set of domains, where Dv ⊆ R
n is a smooth submanifold of

R
n,

• G = {Ge}e∈E is a set of guards, where Ge ⊆ Dsor(e),

• ∆ = {∆e}e∈E is a set of reset maps, where each ∆e : Ge → Dtar(e) is a smooth

map,

• F = {fv}v∈E , where fv is a dynamical system on Dv, i.e., ẋ = fv(x) for x ∈ Dv.

A hybrid system can be used to model various mechnical system which consist of

both continuous and discrete dynamics such as a bouncing ball. Such a systems has

one domain and is called a simple hybrid system as shown in Fig. 7. It can be seen

that the reset map carries the trajectory back to the same domain. It can be seen

that this definition does not allow for control. In the case of bipedal walking, it will

be necessary to have some type of control. This motivates the following definition of

a hybrid control system:

Definition 5. A hybrid control system is a tuple

H C = (Γ,D,U ,G,∆,FG),

where

• Γ = (V,E) is an oriented or directed graph, i.e., V and E are each a set of

vertices and edges, respectively, and there exists a source function sor : E → V

and a target function tar : E → V which associate to an edge its source and

target, respectively.

• D = {Dv}v∈V is a set of domains, where Dv ⊆ R
n is a smooth submanifold of

R
n,
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x+ = R(x¡)G

_x = f(x)
+ g(x)u

D µ Rn

Fig. 7: Graphical interpretation of a simple hybrid system.

• U = {Uv}v∈V is a set of admissible controls (in this paper, assumed to be equiv-

alent to R
m),

• G = {Ge}e∈E is a set of guards, where Ge ⊆ Dsor(e),

• ∆ = {∆e}e∈E is a set of reset maps, where each ∆e : Ge → Dtar(e) is a smooth

map,

• FG = {(fv, gv)}v∈E, where (fv, gv) is a control system on (Dv,Uv), i.e., ẋ =

fv(x) + gv(x)u for x ∈ Dv and u ∈ Gv.

A hybrid system is simply a hybrid control system with U = {0}, in which case

F = {fv} with ẋ = fv(x).

B. Poincaré Map

Solutions to hybrid systems, or hybrid flows or hybrid executions, are defined in the

traditional manner (see [96]). A solution to a hybrid system is k-periodic if it returns

to the same point after passing through the domain in which it is contained k times.

(In the process it may pass through an arbitrary number of other domains of the hy-

brid system.) One can consider the local exponential stability of k-periodic solutions

in the obvious way (see [63] for this definition in the case of a hybrid system with one
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domain). One can associate to a k-periodic solution of a hybrid system a Poincaré

map, and the stability of the k-periodic solution can be determined by considering the

stability of the Poincaré map. Finally, stability can be determined numerically using

approximations of the Jacobian of the Poincaré map (see [57, 97]). This method will

be used to determine that the periodic orbits for the models considered in this paper

are stable.
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CHAPTER IV

BIPEDAL MODELS

Recall that the overarching goal of this thesis is to obtain walking on a three-

dimensional bipedal model. In order to achieve humanlike walking, it is necessary to

have a humanlike model. Therefore, this thesis considers a biped having knees and

feet. Adding knees to a biped is important not only because humans have knees but

because knees allow the biped to achieve ground clearance for the swing foot. Adding

feet is even more important because it allows a biped to have full actuation for at least

part of the gait—in other words, there will be one degree of acuation for each degree

of freedom. In the case of bipeds, this means that a robot will have actuation at the

ankle. As will later be shown in simulation, much of the sagittal motion is a result

of actuation on the stance ankle. Additionally feet will allow for lateral stabilization

of the biped (see [21, 42, 48]).

Before describing the model considered, it will be helpful to define the concept of

full actuation and underactuation. Following the definition, illustrative example will

be given.

Definition 6. Let m represent the number of control inputs to a system and let n

represent a choice of general coordinates on the system. The coordinates of the system

must chosen such that the number of coordinates give the minimal representation; i.e.,

there are no redundant coordinates. Then: A system is said to be fully-actuated or

to have full actuation if the number of control inputs, m, is equal to the number of

degrees of freedom of the system, n, that is m = n, or to be underactuated or to have
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Fig. 8: Different types of actuation.

underactuation if the number of control inputs, m, is less than the number of degrees

of freedom of the system, n, that is, m < n.

Example 1. Fig. 8 shows the difference between full actuation and underactuation.

For underactuation, one can see that there is an additional angle between the foot and

the ground that is not present in the fully-actuated biped, yet there is no additional

actuator. How can one connect a motor between the foot and the floor? This lack of

actuation is one of the fundamental challenges encountered when designed point-footed

robots and is an important reason for considering feet.

Now that the difference between underactuation and full actuation has been

made clear, it is possible to describe the bipedal models of interest in this thesis.

To be clear, a three-dimensional model is considered as well as a sagittaly-restricted

version of this model. Due to space constraints and the complexity of the expressions,

the specific equations for the Lagrangians and constraint functions used to define the

systems are not included but can be found online at [98].

The models will be defined as follows: first, the three-dimensional model will

be described completely. Then, a sagittal restriction will be applied to the three-

dimensional model which will result in a reduced, two-dimensional model.

Consider the following hybrid control system which will define the three-dimensional
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h
Knee-Lock Heel-Strike

hs

klkl ts

Toe-StrikeToe-Lift

tl

Fig. 9: Domain graph, Γ, of the hybrid model the biped.

bipedal model:

H C 3D = (Γ3D,D3D,U3D, {G3D,i}, {∆i
3D}, {FG3D,i}) (4.1)

for i ∈ {ts , tl , kl , hs} with the elements in (4.1) as defined in Definition 5. The

elements of this tuple will be given in the remainder of this section which will fully

define the hybrid control system for the three-dimensional model.

A. Discrete Structure

The model considered has discrete structure—with four states in a loop with a specific

temporal order—defined by the oriented graph Γ3D, given by

Γ3D =
(
{ts , tl , kl , hs}, {ets = (ts , tl), etl = (tl , kl), ekl = (kl , hs), ehs = (hs , ts)}

)
.

A visual representation of the discrete structure can be seen in Fig. 9.
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B. Mechanical Configuration

The bipedal model has feet and locking knees. Both feet and locking knees will require

the use of holonomic constraints. Which constraints are enforced on each domain will

be described shortly. The mechanical configuration is governed by the generalized

coordinates

qe = (px, py, pz, φx, φy, φz, ϑ, ϕ) ∈ R
3 × T

3 × S × T
2 = Qe,

where the shape space S has coordinates

(ϑ1, ϑ2, ϑ3, ϑ4, ϑ5, ϑ6) ∈ S

and ϕ = (ϕ1, ϕ2).

The admissible control on all domains will be U3D = R
8; however, on domains

with locked knees, it will not be helpful to apply actuation to the locked knees, so no

control will be applied to a knee when it is locked.

The physical configuration of the biped is given in Fig. 10. This mechanical

model has Lagrangian

Le(qe, q̇e) =
1

2
q̇e

TDe(qe)q̇e − Ve(qe) (4.2)

which can be used to derive the dynamic model of the system. The maps De : Qe →

R
n×n and Ve(qe) : Qe → R represent the inertia matrix and potential energy of the

biped, respectively, and can be found using the standard methods [64]. The dynamic

model for a given domain will depend on which holonomic constraints are enforced

in that domain.

The model considered has a hip and moves in three-dimensions to the extent

allowed by the angles of the system. Specifically, the biped can fall over on its side
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ℓ
2
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w

Fig. 10: Physical model of biped. Body coordinates q3D and physical parameters of

the biped are shown.

by rolling laterally (i.e., rotation in the coronal plane). Incidentally, this problem will

be taken care of by the reduction scheme used in this thesis. Additionally, as will be

mentioned later, when appropriate, reduction will make use of a sagittal restriction—

this essentially removes the coronal angles from the system by setting them to zero.

This fact will be used later when designing control laws which give two-dimensional

walking in the sagittal plane.

The four domains in the hybrid model will now be considered, one at a time,

and the rest of the elements of (4.1) will be given. These remaining elements will

potentially be different on each domain, depending on the constraints on the system.
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1. Domain 1 (ts)

The non-stance knee is unlocked and the system is rotating about the stance heel,

i.e., there is rolling contact as in Section II-D-2. Furthermore, the stance knee is

locked and the non-stance toe is fixed in place on the ground. These two conditions

motivate holonomic constraints to model the system.

a. Constrained Dynamics

The constraint vector will combine the kinematic constraints for rolling contact on

both the stance heel and non-stance toe with a kinematic constraint for knee lock of

the stance knee into the following holonomic constraint

η3D,ts = (Qe, Le, η3D,ts)

where the vector constraint η3D,ts(q3D, q̇3D) on the kinematics of the system is









ηsthroll(qe, q̇e)

ηnshflat (qe, q̇e)

ηstklock (qe, q̇e)









= η3D,ts(qe, q̇e) = J3D,ts(qe) q̇e (4.3)

where ηsthroll (qe, q̇e) and ηnshroll (qe, q̇e) are given in (2.31) with reference frames aligned with

the stance heel and non-stance toe, respectively, and ηstklock (qe, q̇e) is as given in (2.38).

Using the constraint (4.3), the dynamic model is given by (2.10) with Jacobian matrix

Jts(qe) satisfying Jts(qe) q̇e = η3D,ts(qe, q̇e) and F3D(qe, q̇e, u) the constraint force given
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by (2.15). The corresponding control system is then FG3D,ts = (f3D,ts , g3D,ts) where

f3D,ts(qe, q̇e) =










q̇e

D−1
e (qe)

(

(I − JT
ts(qe)Ξ(qe)Jts(qe)D−1

e (qe)) ·

(Υnc(qe, q̇e)− Ce(qe, q̇e)q̇e − Ge(qe))− JT
ts(qe)Ξ(qe)J̇ts(qe)q̇e

)










,

g3D,ts(qe) =






0(n×m)

D−1
e (qe)

(
In − JT

ts(qe)Ξ(qe)Jts(qe)D−1
e (qe)

)
Be(qe)




 , (4.4)

with Ξ(qe) as in (2.17).

The guard for this domain is toe-strike which occurs when the stance toe rolls

into the ground. This is realized as the unilateral constraint

h3D,ts = (Qe, Le, η3D,ts) (4.5)

with h3D,ts : Qe → R
+
0 a scalar, representing the height of the stance toe above the

ground.

The constraints (4.3) and (4.5) can be combined to obtain a domain restriction

vector:

H3D,ts(qe, q̇e, u) =









Hsth
roll (qe, q̇e, u)

Hnsk
roll (qe, q̇e, u)

h3D,ts(qe)









where Hsth
roll (qe, q̇e, u) and Hnsk

roll (qe, q̇e, u) are as given in (2.31) and h3D,ts(qe) is as in

(4.5). This vector leads to the domain of admissibility

D3D,ts =
{
(qTe , q̇e

T , uT )T ∈ TQe × R
m3D : H3D,ts(qe, q̇e, u) > 0

}
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and the guard

G3D,ts =

{

(qTe , q̇e
T , uT )T ∈ TQe × R

m3D : h3D,ts(qe) = 0

and
∂h3D,ts(qe)

∂qe

dqe
dt

< 0

}

b. Reset Map

As mentioned previously, the transition to the next domain is toe-strike. For this

impact, it is desired that, after impact, the stance foot be in flat contact with the

ground, that the non-stance toe stays fixed on the ground through impact and that

the stance knee stays locked. This suggests the use of a holonomic constraint for

flat foot contact as in (2.22) as well as a holonomic constaint for rolling contact on

the non-stance foot given by (2.31) and the constraint for knee lock of the stance

knee given in (2.38). Combining the associated Jacobian matrices gives the necessary

constraint:

J ts→tl
3D (qe) =









J stt
flat(qe)

Jnst
roll (qe)

J stk
lock (qe)









. (4.6)

Using the holonomic constraint whose Jacobian matrix is given in (4.6) and the impact

model (2.44) results in the reset map ∆ts→tl
3D : TQe → TQe given in (2.46). The

relabeling matrixR is simply the identity matrix; in other words, no relabeling occurs.

2. Domain 2 (tl)

The non-stance knee is unlocked and there is flat foot contact of the stance foot.

Furthermore, the stance knee is locked and the non-stance toe is fixed in place on the

ground. These conditions introduce holonomic constraints on the system.
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a. Constrained Dynamics

The constraint vector will combine the kinematic constraint for flat foot contact on

the stance foot with a kinematic constraint for rolling contact on the non-stance toe

and a kinematic constraint for locking of the stance knee into the following holonomic

constraint

η3D,tl = (Qe, Le, η3D,ts)

where the constraint vector η3D,tl on the kinematics of the system is

η3D,tl(q3D, q̇3D) =









ηsthflat(q3D, q̇3D, u3D)

ηnstroll (q3D, q̇3D, u3D)

ηstklock (q3D, q̇3D, u3D)









(4.7)

with ηsthflat(qe, q̇e) and ηnshroll (qe, q̇e) given in (2.22) and (2.31), respectively, and having

reference frames aligned with the stance heel1 and non-stance toe, respectively, and

ηstklock (qe, q̇e) as given in (2.38). Using the constraint (4.7), the dynamic model is

given by (2.10) with J(qe) the Jacobian matrix satisfying J(qe) q̇e = η3D,tl(qe, q̇e) and

F3D(qe, q̇e, u) the constraint force given by (2.15). The corresponding control system

1This frame can be attached to any point on the stance foot since the foot is not
moving or rotating.
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is then FG3D,tl = (f3D,tl , g3D,tl) where

f3D,tl(qe, q̇e) =










q̇e

D−1
e (qe)

(

(I − JT
tl (qe)Ξ(qe)Jtl(qe)D−1

e (qe)) ·

(Υnc(qe, q̇e)− Ce(qe, q̇e)q̇e − Ge(qe))− JT
tl (qe)Ξ(qe)J̇tl(qe)q̇e

)










,

g3D,tl(qe) =






0(n×m)

D−1
e (qe)

(
In − JT

tl (qe)Ξ(qe)Jtl(qe)D−1
e (qe)

)
Be(qe)




 , (4.8)

with Ξ(qe) as in (2.17).

The constraints (4.7) can be used to write the domain restriction vector,

H3D,tl(q3D, q̇3D, u3D) =






Hsth
flat(q3D, q̇3D, u3D)

Hnsk
roll (q3D, q̇3D, u3D)




 ,

which leads to the domain of admissibility

D3D,tl =
{
(qT3D, q̇

T
3D, u

T
3D)

T ∈ TQe × R
m3D : H3D,tl(q3D, q̇3D, u3D) > 0

}
.

b. Reset Map

The transition to the next domain is toe-lift. This will naturally occur when the

normal force on the non-stance toe goes to zero from the positive side; a positive

normal force corresponds to the the force applied by the ground to prevent the toe

from falling through the ground. This motivates the following guard:

G3D,tl =

{

(qT3D, q̇
T
3D, u

T
3D)

T ∈ TQe × R
m3D :

(
F nst
roll (q3D, q̇3D, u3D)

)fz
= 0

and Lf3D,tl

(
F nst
roll (q3D, q̇3D, u3D)

)fz
< 0

}

where F nst
roll (q3D, q̇3D, u3D) is as given in (2.32) and Lf3D,tl

(F nst
roll (q3D, q̇3D, u3D))

fz
is a Lie

derivative. Note that in u3D is feedback control and is properly written u3D(q3D, q̇3D).
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In this transition, there is no impact and so the reset map is simply the identity

map ∆ts
3D : TQe → TQe given by R(q3D, q̇3D) = (qT3D, q̇

T
3D)

T .

3. Domain 3 (kl)

The non-stance knee is unlocked and there is flat foot contact of the stance foot. Fur-

thermore, the stance knee is locked. These conditions introduce holonomic constraints

on the system.

a. Constrained Dynamics

The constraint vector will combine the kinematic constraint for flat foot contact on

the stance foot with a kinematic constraint for knee lock on the stance knee into the

following constraint vector:

η3D,kl = (Qe, Le, η3D,kl).

The constraint vector η3D,kl(q3D, q̇3D) on the kinematics of the system is

η3D,kl(q3D, q̇3D, u3D) =






ηsthflat(q3D, q̇3D, u3D)

ηstklock (q3D, q̇3D, u3D)




 (4.9)

with ηsthflat(qe, q̇e) given in (2.22) having reference frame fixed to the stance foot and

ηstklock as given in (2.38). Using the constraint (4.9), the dynamic model is given by

(2.10) with J3D,kl(qe) the Jacobian matrix satisfying J3D,kl(qe) q̇e = η3D,kl(q3D, q̇3D) and

constraint force F3D(q3D, q̇e, u) given in (2.15). The corresponding control system is
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then FG3D,kl = (f3D,kl , g3D,kl) where

f3D,kl(qe, q̇e) =










q̇e

D−1
e (qe)

(

(I − JT
3D,kl(qe)Ξ(qe)J3D,kl(qe)D−1

e (qe)) ·

(Υnc(qe, q̇e)− Ce(qe, q̇e)q̇e − Ge(qe))− JT
3D,kl(qe)Ξ(qe)J̇3D,kl(qe, q̇e)q̇e

)










,

g3D,kl(qe) =






0(n×m)

D−1
e (qe)

(
In − JT

3D,kl(qe)Ξ(qe)J3D,kl(qe)D−1
e (qe)

)
Be(qe)




 , (4.10)

with Ξ(qe) as in (2.17).

The guard for this domain is knee-lock which occurs when the non-stance knee

swings to an angle of zero and locks. This is realized as the unilateral constraint

h3D,kl = (Qe, Le, η3D,kl) (4.11)

with h3D,kl : Qe → R
+
0 a scalar, representing the angle of the non-stance knee. Specif-

ically, h3D,kl(q3D) = ϑ5.

The constraints (4.9) and (4.11) can be combined to obtain the domain restriction

vector

H3D,kl(q3D, q̇3D, u3D) =






AT
Fflat

(q3D)Fflat(q3D, q̇3D, u3D)

h3D,kl(q3D)






This leads to the domain of admissibility

D3D,kl =
{
(qT3D, q̇

T
3D, u

T
3D)

T ∈ TQe × R
m3D : H3D,kl(q3D, q̇3D, u3D) > 0

}
.
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b. Reset Map

As mentioned previously, the transition to the next domain is knee-lock. The unilat-

eral constraint h3D,kl(q3D) leads to the guard

G3D,kl =

{

(qT3D, q̇
T
3D, u

T
3D)

T ∈ TQe × R
m3D : h3D,kl(q3D) = 0

and
∂h3D,kl(q3D)

∂q3D

dq3D
dt

< 0

}

.

For this domain, it is desired that, after impact, the stance foot be in flat contact with

the ground and that the stance knee and non-stance knee be locked. This suggests the

use of the holonomic constraint for flat foot contact as in (2.22) as well as constraints

for knee lock as in (2.38) and (2.39). Combining the associated Jacobian matrices

gives the necessary constraint:

Jkl→hs
3D (qe) =









J stt
flat(qe)

J stk
lock (qe)

Jnsk
lock (qe)









. (4.12)

Using the holonomic constraint whose Jacobian matrix is given in (4.12) and the

impact model (2.44) results in the reset map ∆kl→hs
3D : TQe → TQe given in (2.46).

The relabeling matrix R is simply the identity matrix; in other words, no relabeling

occurs.

4. Domain 4 (hs)

Both knees are locked and there is flat foot contact of the stance foot as in Section II-

D-1. These conditions introduce holonomic constraints on the system.
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a. Constrained Dynamics

The constraint vector will combine the kinematic constraint for flat foot contact of

the stance foot as in (2.22) with kinematic constraints on the angles of the stance knee

and non-stance knee as in (2.38) and (2.39) into the following holonomic constraint

η3D,hs = (Qe, Le, η3D,hs)

The constraint vector η3D,hs(q3D, q̇3D, u3D) on the kinematics of the system is

η3D,hs(q3D, q̇3D) =









ηsthflat(q3D, q̇3D, u3D)

ηstklock (q3D, q̇3D, u3D)

ηnsklock (q3D, q̇3D, u3D)









(4.13)

Using the constraint (4.13), the dynamic model is given by (2.10) with J3D,hs(q3D) the

Jacobian matrix satisfying J3D,hs(q3D) q̇3D = η3D,hs(q3D, q̇3D) and F3D(q3D, q̇3D, u3D) the

constraint force given by (2.15). The corresponding control system is then FG3D,hs =

(f3D,hs , g3D,hs) where

f3D,hs(qe, q̇e) =










q̇e

D−1
e (qe)

(

(I − JT
3D,hs(qe)Ξ(qe)J3D,hs(qe)D−1

e (qe)) ·

(Υnc(qe, q̇e)− Ce(qe, q̇e)q̇e − Ge(qe))− JT
3D,hs(qe)Ξ(qe)J̇3D,hs(qe, q̇e)q̇e

)










,

g3D,hs(qe) =






0(n×m)

D−1
e (qe)

(
In − JT

3D,hs(qe)Ξ(qe)J3D,hs(qe)D−1
e (qe)

)
Be(qe)




 , (4.14)

with Ξ(qe) as in (2.17).

The guard for this domain is knee-lock which occurs when the non-stance knee

swings to zero degrees and locks. This is realized as the unilateral constraint

h3D,hs = (Qe, Le, η3D,kl) (4.15)
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with h3D,hs : Qe → R
+
0 a scalar, representing the angle of the stance knee. Specifically,

h3D,hs(q3D) = ϑ5.

The constraints (4.9) and (4.11) can be combined to obtain

H3D,ts(q3D, q̇3D, u3D) =






AT
Fst

(q3D)Fst(q3D, q̇3D, u3D)

h3D,kl(q3D)






This leads to the domain of admissibility

D3D,kl =
{
(qT3D, q̇

T
3D, u

T
3D)

T ∈ TQe × R
m3D : H3D,kl(q3D, q̇3D, u3D) > 0

}

and the guard

G3D,kl =

{

(qT3D, q̇
T
3D, u

T
3D)

T ∈ TQe × R
m3D : h3D,kl(q3D) = 0

and
∂h3D,kl(q3D)

∂q3D

dq3D
dt

< 0

}

b. Reset Map

As mentioned previously, the transition to the next domain is heel-strike. This is the

last domain in a step and, therefore, the legs will be swapped in the transition to the

next domain. For this domain, it is desired that, after impact, the non-stance heel be

in rolling contact with the ground, that the stance foot begins to roll up about the

toe, and that the non-stance knee stays locked. Bare in mind that the non-stance heel

strikes the ground, but, after reset, this becomes the stance heel. These conditions

suggest the use of a holonomic constraint for rollng foot contact with the stance toe

and non-stance heel as in (2.31) as well a constraint for knee lock as in (2.39) on the

non-stance knee. Combining the associated Jacobian matrices gives the necessary
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constraint:

Jhs→ts
3D (qe) =









J stt
roll (qe)

Jnsh
roll (qe)

Jnsk
lock (qe)









. (4.16)

Using the holonomic constraint whose Jacobian matrix is given in (4.16) and the

impact model (2.44) results in the reset map ∆hs→ts
3D : TQe → TQe given in (2.46).

The relabeling matrix R(qe), which is just a linear transformation, for this domain is

the mirror of the identity matrix or R(qe) = antidiag(1n) for the choice of coordinates

given in Fig. 10.
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CHAPTER V

SAGITTAL CONTROL LAWS

The overall goal of this thesis is to achieve bipedal walking in three dimensions. As

mentioned previously, the first step will be to apply a sagittal restriction to the three-

dimensional model, thereby reducing the dimensionality of the system and, more

importantly, effectively restricting the system to operate in the sagittal plane. Walk-

ing in the sagittal plane is quite easy to achieve in comparison to three-dimensional

walking and has been achieved on models with feet using a variety of methods, see,

for example, [7, 22, 99]. This chapter will introduce control laws which can be used to

obtain walking for the sagitally-restricted model. In Chapter VII, these control laws

will be used with additional control laws to migrate this walking to three dimensions.

The Lagrangian of the three-dimensional biped has the general form:

L3D(q3D, q̇3D) =
1

2

(

ϑ̇T ϕ̇T

)






Dϑ(ϑ, ϕ) DT
ϕ,ϑ(ϑ, ϕ)

Dϕ,ϑ(ϑ, ϕ) Dϕ(ϑ, ϕ)











ϑ̇

ϕ̇






︸ ︷︷ ︸

D3D(q3D)

−V3D(ϑ, ϕ)

(5.1)

where the inertia matrix D3D(q3D) is in block-form and V3D(q3D) is the potential

energy.

A. Reduced Dynamics

Consider the sagittal dynamics of the three-dimensional biped obtained by applying

the sagittal restriction to the three-dimensional model. These dynamics have con-
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figuration space S = R
n−m (where m is the number of almost-cyclic variables (these

will be defined later) in the three-dimensional system) with coordinates ϑ. The La-

grangian is given by

L2D(ϑ, ϑ̇) =
1

2
ϑ̇TD2D(ϑ)ϑ̇− V2D(ϑ),

with D2D(ϑ) = Dϑ(ϑ, ϕ)|ϕ=0(m×1)
a submatrix as defined in (5.1) and V2D(ϑ) =

V3D(ϑ, ϕ)|ϕ=0(m×1)
. These equations yield the control system (f2D, g2D) as in (2.8).

B. Fundamental Control Laws

This section describes the control laws used to obtain walking on the reduced model;

i.e., these control laws give walking in the sagital plan on a two-dimensional biped.

1. Controlled Symmetries

The first law considered is controlled symmetries, motivated by [1]. This controller

works by shaping the potential energy of the associated Lagrangian to that of a

passive biped walking down a slope. A group action, which effectively “rotates the

world”, operates on the potential energy V . It was shown in [100] that a kneed walker

can walk passively down a slope and further shown in [21] that controlled symmetries

gives a stable gait for a kneed walker on flat ground.

Consider the group action Ψ : S×Q → Q given by

Ψγ(q) := q + (γ, 0n−1)
T ,

for slope angle γ ∈ S, q ∈ R
n and 0k the zero vector of length n. From this, define

the feedback control law

Kγ
2D(q) = B−1(q) (G(q)−G(Ψγ(q))) , (5.2)
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where B(q) is a torque distribution map as in (2.4). Note that this control law requires

full actuation (i.e., B must be full rank it is must be invertible). Application of this

control law to the control system (f, g) given (2.8) yields the modified vector field

f γ
2D(q, q̇) := f2D(q, q̇) + gγ2D(q)K

γ
2D(q)

which is simply the vector field associated to the shaped Lagrangian:

L2Dγ(q, q̇) =
1

2
q̇TD(q)q̇ − V (Ψγ(q)).

2. Spring-Damper Controller

Motivated by the elasticity of the human ankle and the need to keep the foot from

spinning freely when not on the ground, a spring-damper controller is considered

which creates forces on the system equivalent to those of a linear spring-damper

system. Consider j relative angles Θ : Q → T
j of the system with angular velocities

Θ̇ : TQ → R
j and define the feedback control law:

KΘ
2D(q, q̇) =

[

−kΘ(Θ(q)−Θ0)− cΘΘ̇(q, q̇)
]

BΘ(q), (5.3)

with kgainsd > 0 a diagonal matrix of corresponding spring constants, cΘ > 0 a diagonl

matrix of viscous damping coefficients, Θ0 the undeflected angles of the springs, and

BΘ a torque distribution matrix corresponding to the relative angles Θ(q); i.e., B(q) =

∂Θ(q)
∂q

. Applying to (f, g) yields

fΘ
2D(q, q̇) = f2D(q, q̇) + gΘ2D(q)K

Θ
2D(q, q̇).

3. Scuffing Prevention Controller.

The final control law considered is designed to prevent scuffing. This control law is

a simple nonlinear feedback control law introducing an effect similar to gravity, but
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with a repulsive force, given by

KS

2D = −α e−ρ hnst(q) (5.4)

where α, ρ ∈ R are positive constants, hnst : Q → R is the heiht of the non-stance toe,

α represents the strength of repulsion and ρ represents the spatial dissipation rate.

Applying this controller yields

fS

2D(q) = f2D(q, q̇) + gS

2D(q)K
S

2D(q),

where the superscript S is used to represent the set of control gains S = {α, ρ}.

C. Two-Dimensional Control Law Construction

In this subsection,a description is given of how the control laws of the previous sub-

section are implemented in each domain on the sagitally-restricted model. In all

domains, the spring-damper controller is implemented as this control law would be

replaced by a spring-damper system in a physical construct. This control law, there-

fore, is implemented in both ankles with control input KΘ
2D(q2D, q̇2D) as given in (5.3).

As mentioned previously, damping forces of the form Fnc = Υnc q̇2D will be imple-

mented in this manner.

1. Domain 1 (ts)

In this domain, the system is underactuated because neither foot is flat on the

ground—the stance foot is rolling about the heel and the non-stance foot is rolling

about the toe. The presence of underactuations prevents the application of controlled

symmetries; however, the amount of time spent in this domain is short and, as a re-

sult, the system is able to progress through this domain with only the spring-damper
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controller as in (5.3). The control law on this domain is as follows:

KΘ
2D,ts(q2D, q̇2D) = KΘ

2D(q2D, q̇2D). (5.5)

Implementing this control law on the system gives the closed-loop vector field

fΘ
2D,ts(q2D, q̇2D) = f2D(q2D, q̇2D) + g2D(q2D)K

Θ
2D,ts(q2D, q̇2D).

2. Domain 2 (tl)

In this domain, the stance foot is flat on the ground, so the system is fully-actuated.

Since this domain has full actuation, controlled symmetries can be applied. Addi-

tionally, the spring-damper controller is applied. Combining these controllers gives

the applicable control law on this domain:

Kγ,Θ
2D,tl(q2D, q̇2D) = Kγ

2D(q2D) +KΘ
2D(q2D, q̇2D) (5.6)

Implementing this control law results in the closed-loop vector field

f γ,Θ
2D,tl(q2D, q̇2D) = f2D,tl(q2D, q̇2D) + g2D(q2D)K

γ,Θ
2D,tl .

3. Domain 3 (kl)

In this domain, the stance foot is flat on the ground, so the system is fully-actuated.

The non-stance foot is off the ground. To prevent the non-stance toe from passing

through the ground, the scuffing prevention controller is used. Since this domain has

full actuation, controlled symmetries is implemented. And, as in all domains, the

spring-damper controller is used. Thus, the control law on this domain is

Kγ,Θ,S
2D,kl (q2D, q̇2D) = Kγ

2D(q2D) +KΘ
2D(q2D, q̇2D) +KS

2D(q2D). (5.7)
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Fig. 11: A stable gait obtained from simulation.

Table I.: Model parameters for biped considered in simulation.

M .5kg mt .5kg mc 50mg mf 2.5mg ℓ 1m

ℓt .175m ℓc 37.5cm rh 5cm rt 15cm rf 5cm

ra 5cm γ .0575rads kθ 2Nm/rad cθ .01Nm/rad θ0 0◦

Applying this control law to the system yields the following closed-loop vector field:

f γ,Θ,S
2D,kl (q2D, q̇2D) = f2D,kl + g2D(q2D)K

γ,Θ,S
2D,kl .

4. Domain 4 (hs)

In this domain, the stance foot is flat on the ground. Thus, the system has full

actuation and accordingly, controlled symmetries can be applied. The non-stance

foot is off the ground so the scuffing prevention controller is used to keep the non-

stance toe from passing through the ground. Like the previous domains, this domain

also uses the spring-damper controllers. The control law governing this domain is
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Fig. 12: Temporal breakdown of domains.

given by

Kγ,Θ,S
2D,hs (q2D, q̇2D) = Kγ

2D(q2D) +KΘ
2D(q2D, q̇2D) +KS

2D(q2D). (5.8)

Imposing this control law gives the closed-loop vector field

f γ,Θ,S
2D,hs (q2D, q̇2D) = f2D,hs + g2D(q2D)K

γ,Θ,S
2D,hs .

D. Two-Dimensional Simulation Results

The results of a simulation of a sagitally-restricted biped operating in two dimensions

will now be presented. As mentioned earlier, the scuffing prevention controller is

applied in domains kl and hs using the parameters S = {α = 1, ρ = 100}. The

physical parameters used in simulation can be seen in Table I. The simulation started

in the domain kl at a fixed point (qT
∗
, q̇T

∗
)Ton the guard Gkl .

q2D,∗ = (0.05032 −0.40797 −0.40797 −0.40476)T ,

q̇2D,∗ = (1.08454 0.42106 −8.87553 −8.87555)T .

The gait is shown in Fig. 11 (and a video can be found at [98]). A temporal

breakdown of the gait is shown in Fig. 12. One can observe that the majority of

the gait is spent in domain ts . This is beneficial because controlled symmetries is
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Fig. 13: Two-dimensional simulation phase portraits with absolute angles.

implemeneted in this domain. In domain kl , no form of control is implemented, and

so it is fortunate that this domain is short-lived.

The primary motivation behind adding feet is to allow for the use of controlled

symmetries in a realistic model, i.e., a model with underactuation. A system with

point feet is necessarily underactuated and is thus incompatible with controlled sym-

metries. Past research in controlled symmetries has largely considered bipeds with

point feet and assumed full actuation [53] in order to develop controlled symmetries.

This work shows that controlled symmetries and be expended to bipeds with phases

of underactuation. The behavior of the feet through most of the limit cycle does not

play a significant role in the gait of the biped. This is supported by the fact that

the phase portrait of the legs shown in Fig. 13(a) is qualitatively similar to the phase

portrait of a 3D kneed walker without feet as in [21].

The addition of feet introduces a new phenomenon: heel roll. Heel roll occurs

when the heel of the non-stance foot strikes the ground before the toe. When this

happens, the system is underactuated. Underactuation is undesirable, yet landing on

the heel seems to yield a more natural-looking and energy-efficient gait. And so these
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events can be effected using the control laws discussed.

It can be seen from Fig. 11 that the non-stance toes stays on the ground until the

normal force crosses zero from positive to negative. In other words, the non-stance toe

does not go through the ground upon impact. In the majority of the literature (e.g.,

[8, 53]), an instantaneous double-support phase is considered. The double-support

considered in this paper is more realistic and prevents the non-stance toe from passing

through the ground (scuffing).

Scuffing occurs when the non-stance foot strikes the ground at an unexpected

time. Previous work has largely ignored this problem, yet this problem seems to play

an important role in anthropomorphic gaits. That is, a biped must avoid the ground

when walking and doing so has an effect on the overall gait. The scuffing prevention

controller implemented in this model results in a gait that appears more natural than

previous gaits, such as that in [21].

The phase portraits of the various angles are shown in Fig. 13. Note specifically

the large angular velocity of the non-stance foot. This occurs for only a short period

of time after toe-lift as can be seen from Fig. 14 and is caused by the spring-damper

controller and the scuffing prevention controller. Thus, the qualitative behavior of

the phase portraits of the feet are heavily dependent upon the parameters chosen for

these two controllers.

Fig. 15 shows the Lagrange multipliers at the non-stance toe in domains ts and

tl (in all other domains, the non-stance toe is unconstrained). Discrete transitions

are represented by vertical dotted lines (see the figure legend). The important data

set to consider is λy, which specifies the constraining force at the ground. When

this number reaches 0, the toe-lift event occurs and the system transitions to domain

kl . This occurs as a byproduct of the biped’s hip and thigh moving forward. It

is also interesting to note that the toe would physically remain in contact with the
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Fig. 14: Two-dimensional state data in absolute angles.

ground since the normal force is positive. Thus, the previous impacts, heel-strike and

toe-strike, should not assume unconstrained movement of the non-stance toe.

One can verify numerically that the limit cycle is locally exponentially stable by

examining the eigenvalues of a linearized Poincaré map and calculating the Jacobian

at a fixed point by perturbing along the guard. For convenience, choose the Poincaré

section to be the guard Gkl which is knee-lock. Since the fixed point is on the guard,

there will be n − 1 eigenvalues, where n is the dimension of the domain. Domain kl

has dimension n = 7 so there are six eigenvalues. The fixed point x∗ = (qT2D,∗, q̇
T
2D,∗)

T

which is the initial condition used for the simulation.

The eigenvalues have magnitudes: 0.9526, 0.2761, 0.2761, 0.0023, 1.2520×10−4,

1.7775×10−5 and 3.7287×10−6. Note that all these eigenvalues have magnitude

less than 1, indicating stability. Further note that number of eigenvalues shown is

less than the number of degrees of freedom of the system. This is explained in the



62

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

 

 
λx

λy

ts → tl

tl → kl

Fig. 15: Lagrange multipliers (x and y).

following remark:

Remark 3. On hybrid systems with multiple domains, the number of nonzero eigen-

values is limited by the dimension of the appropriate Poincaré section for the domain

with the minimum dimension. If the configuration space of this domain is, say, d,

then the dimension of the phase space is 2d and the number of nonzero eigenvalues is

2d− 1. The dimension is one less than the dimension of the phase space because the

Poincaré map is a tranvsere submanifold of the trajectory; in this thesis, the Poincaré

section is chosen to be the guard. The rank properties of Poincaré maps are explained

in detail in [101].
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CHAPTER VI

FUNCTIONAL ROUTHIAN REDUCTION

One of the primary challenges of bipedal walking introduced by removing the restric-

tion to the sagittal plane (and thereby allowing motion in three dimensions) is the

intrinsic coupling between the sagittal and coronal dynamics—this motion is non-

linear and it can be quite difficult to design controllers which result in walking at

all let alone anthropomorphic walking. Some work has been done on achieve three-

dimensional walking in bipeds (see [40] for a survey). For example, the method of

hybrid zero dynamics (see [6, 8]) has been used to achieve three-dimensional walking

on compass-gait bipeds (see [60]) as well as kneed bipeds (see [39, 41]). Mathemati-

cally, the method of hybrid zero dynamics is very elegant and can be optimized for

efficiency with respect to specific cost of transport; see [102] for more on the specific

cost of transport.

As formal as this method is, it is intuitively complex and does not offer much in-

sight into the fundamental mechanisms that underlie bipedal walking. In this thesis,

a variant of geometric reduction—functional Routhian reduction (first introduced in

[61])—will be used to achieve walking in three dimensions. It will be seen that appli-

cation of functional Routhian reduction will allow for decoupling of the sagittal and

coronal dynamics thereby allowing two-dimensional walking to be easily extended to

three dimensions. This is very beneficial as it is much easier to achieve anthropomor-

phic and efficient walking in the sagittal plane than it is to achieve three-dimensional

walking.
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Functional Routhian reduction, like classical geometric reduction, allows the tra-

jectories of “cyclic” variables to be controlled as the system evolves. However, unlike

classical reduction, in which these trajectories are based on a constant conserved

quantity (generally a momentum), functional Routhian reduction allows the “cyclic”

variables to be controlled according to a functional conserved quantity or a momen-

tum map. This method has been shown to be very effective when used for bipedal

walking; to name a few examples, [21, 42].

A. Almost-Cyclic Lagrangians

Consider a system with configuration space Q = S ×T
m, where S is called the shape

space. Let the coordinates be represented by q = (ϑT , ϕT )T with ϑ ∈ S and ϕ ∈ T
m.

A Lagrangian is Lλ : TS × TTm → R is almost cyclic if it takes the form

Lλ(ϑ, ϕ, ϑ̇, ϕ̇) =
1

2

[

ϑ̇T ϕ̇T

]

Dλ(ϑ)






ϑ̇

ϕ̇




−Wλ(ϑ, ϕ, ϑ̇)− Vλ(ϑ, ϕ) (6.1)

with

Dλ(ϑ) =






Dϑ(ϑ) +DT
ϕ,ϑ(ϑ)D

−1
ϕ (ϑ)Dϕ,ϑ(ϑ) DT

ϕ,ϑ(ϑ)

DT
ϕ,ϑ(ϑ) Dϕ(ϑ)




 , (6.2)

Wλ(ϑ, ϕ, ϑ̇) = λT (ϑ)D−1
ϕ (ϑ)Dϕ,ϑ(ϑ)ϑ̇,

Vλ = Vfct(ϑ)−
1

2
λT (ϑ)Dϕ(ϑ)λ(ϑ),

for some function λ : Tm → R
m. Note that Dϑ : S → R

(n−m)×(n−m) and Dϕ : § →

R
m×m are positive definite and symmetric.
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B. Momentum Maps

Reduction is based on the concept of a momentum map, J : TQ → R
m, which

specifies the conserved quantities of a system and is given by

J(ϑ, ϕ, ϑ̇, ϕ̇) =
∂Lλ

∂ϕ̇
(ϑ, ϕ, ϑ̇, ϕ̇) = Dϕ,ϑ(ϑ) ϑ̇+Dϕ(ϑ) ϕ̇

Unlike standard Routhian reduction, in which the map is a constant, functional

Routhian reduction allows us to set this map equal to a function a function λ(ϕ).

C. Functional Routhians

For an almost-cyclic Lagrangian Lλ, define the corresponding functional Routhian

Lfct : TS → R:

Lfct(ϑ, ϑ̇) =
[

Lλ(ϑ, ϕ, ϑ̇, ϕ̇)− λT (ϕ)ϕ̇
]

J(ϑ,ϕ,ϑ̇,ϕ̇)=λ(ϕ)
(6.3)

Because J(ϑ, ϕ, ϑ̇, ϕ̇) = λ(ϕ) implies that

ϕ̇ = D−1
ϕ (ϑ)

(

λ(ϕ)−Dϕ,ϑ(ϑ)ϑ̇
)

, (6.4)

by direct calculation the functional Routhian is given by

Lfct(ϑ, ϑ̇) =
1

2
ϑ̇TDϑ(ϑ)ϑ̇− Vfct(ϑ). (6.5)

Assume there is external forcing of the form Υ(ϑ, ϑ̇) acting on the ϑ component of

the system; that is, Υ : TS → R
n−m. In this case, the vector field can be written as

fLλ
(q, q̇) =






q̇

−D−1
λ (q)

(

ELq(Lλ)−Dλq̈ −Υ(ϑ, ϑ̇)
)




 , (6.6)
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with ELq(L) given in (2.4). In addition, the vector field, fLfct
, corresponding to Lfct

is given by (2.5) and (2.6).

D. Reduction Theorem

Solutions of the forced Lagrangian vector field fLfct
can be related to solutions of the

forced Lagrangian vector field fLλ
and vice versa (in a way analogous to the classical

Routhian reduction result, see [103]). This fact will now be stated formally:

Theorem 1. Let Lλ be an almost-cyclic Lagrangian with m almost-cyclic variables

and Lfct the corresponding functional Routhian with shape space S = R
n−m. Addi-

tionally, let Υ : TS → R
n represent external forcing applied to the system satisfying:

1. Υ(ϑ, ϑ̇) does not depend on ϕ, ϕ̇,

2. Υi(ϑ, ϑ̇) = 0 for i = n−m+1, . . . , n. (I.e., no external forces act on the angles

of the almost-cyclic variables.)

Then, (ϑ(t), ϕ(t), ϑ̇(t), ϕ̇(t)) is a solution to the forced vector field fLλ
given by

(6.6) on the interval [t0, tF ] with

ϕ̇(t0) = D−1
ϕ (ϑ(t0))

(

λ(ϕ(t0))−Dϕ,ϑ(ϑ(t0)) ϑ̇(t0)
)

, (6.7)

if and only if (ϑ(t), ϑ̇(t)) is a solution to the forced vector field fLfct
given by (2.6)

and (ϕ(t), ϕ̇(t)) satisfies:

ϕ̇(t) = D−1
ϕ (ϑ(t))

(

λ(ϕ(t))−Dϕ,ϑ(ϑ(t)) ϑ̇(t)
)

. (6.8)

Before proving this theorem, some additional information is necessary. First,

note that the Lagrangian can be written as

Lλ(ϑ, ϕ, ϑ̇, ϕ̇) = Lfct(ϑ, ϑ̇) + Rem(ϑ, ϕ, ϑ̇, ϕ̇)
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with

Rem(ϑ, ϕ, ϑ̇, ϕ̇) =
1

2
λT (ϕ)D−1

ϕ (ϑ)λ(ϕ) +
1

2
ϑ̇TDt

ϕ,ϑ(ϑ)D
−1
ϕ (ϑ)Dϕ,ϑ(ϑ) ϑ̇

+
1

2
ϕ̇TDϕ(ϑ) ϕ̇+ ϕ̇TDϕ,ϑ(ϑ)ϑ̇− λT (ϕ)D−1

ϕ (ϑ)Dϕ,ϑ(ϑ) ϑ̇.

Application of the Euler-Lagrange equations then gives

d

dt

∂Lλ

∂ϑ̇i

− ∂Lλ

∂ϑi

=
d

dt

∂Lfct

∂ϑ̇i

− ∂Lfct

∂ϑi

+
d

dt

∂Rem

∂ϑ̇i

− ∂Rem

∂ϑi

= Υi(ϑ, ϑ̇)

d

dt

∂Lλ

∂ϕ̇j

− ∂Lλ

∂ϕj

=
d

dt

∂Rem

∂ϕ̇j

− ∂Rem

∂ϕj

= 0

with i = 1, . . . , n−m and j = 1, . . . , m. The derivatives of Rem are given in Table II.

It will be necessary to show that the Euler-Lagrange equations are satisfied when

the functional quantity given in (6.4) is satisfied. This is accomplished through direct

substitution. Differentiating (6.4) gives

ϕ̈ = D−1
ϕ (ϑ)

(
d

dt
[λ(ϕ)]− d

dt
[Dϕ,ϑ(ϑ)] ϑ̇−Dϕ,ϑ(ϑ)ϑ̈

)

(6.13)

−D−1
ϕ (ϑ)

d

dt
[Dϕ(ϑ)]D

−1
ϕ (ϑ)

(

λ(ϕ)−Dϕ,ϑ(ϑ)ϑ̇
)

.

Substituting (6.4) and (6.13) into (6.9) and substituting (6.4) into (6.10) yields

d

dt

∂Rem

∂ϑ̇

∣
∣
∣
∣
J(ϑ,ϕ,ϑ̇,ϕ̇)=λ(ϕ)

= 0,

∂Rem

∂ϑ

∣
∣
∣
∣
J(ϑ,ϕ,ϑ̇,ϕ̇)=λ(ϕ)

= 0.

Similarly, substituting (6.4) and (6.13) into (6.11) and (6.4) into (6.12) and combining

the equations yields

d

dt

∂Rem

∂ϕ̇
− ∂Rem

∂ϕ

∣
∣
∣
∣
J(ϑ,ϕ,ϑ̇,ϕ̇)=λ(ϕ)

= 0.
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Table II.: Derivatives of remainder terms in reduction proof.

d

dt

∂Rem

∂ϑ̇i

= ϑ̈TDT
ϕ,ϑ(ϑ)D

−1
ϕ (ϑ)Dϕ,ϑ(ϑ)ei + ϑ̇T d

dt
[DT

ϕ,ϑ(ϑ)]D
−1
ϕ (ϑ)Dϕ,ϑ(ϑ)ei

+ ϑ̇TDT
ϕ,ϑ(ϑ)

d

dt
[D−1

ϕ,ϑϑ]Dϕ,ϑϑei + ϑ̇TDT
ϕ,ϑ(ϑ)D

−1
ϕ (ϑ)

d

dt
[Dϕ,ϑ(ϑ)]ei

+ ϕ̈qTDϕ,ϑ(ϑ)ei + ϕ̇T d

dt
[Dϕ,ϑ(ϑ)]ei −

d

dt
[λT (ϕ)]D−1

ϕ (ϑ)Dϕ,ϑ(ϑ)ei

− λT (ϕ)
d

dt
[D−1

ϕ (ϑ)]Dϕ,ϑ(ϑ)ei − λT (ϕ)D−1
ϕ (ϑ)

d

dt
[Dϕ,ϑ(ϑ)]ei (6.9)

∂Rem

∂ϑi

=
1

2
ϑ̇TDT

ϕ,ϑ(ϑ)
∂

∂ϑi

[D−1
ϕ (ϑ)]Dϕ,ϑ(ϑ)ϑ̇+ ϑ̇TDT

ϕ,ϑ(ϑ)D
−1
ϕ (ϑ)

∂

∂ϑi

[Dϕ,ϑ(ϑ)]ϑ̇

+
1

2
ϕ̇T ∂

∂ϑi

[Dϕ(ϑ)]ϕ̇+ ϕ̇T ∂

∂ϑi

[Dϕ,ϑ(ϑ)]ϑ̇− λT (ϕ)
∂

∂ϑi

[D−1
ϕ (ϑ)]Dϕ,ϑ(ϑ)ϑ̇

− λT (ϕ)D−1
ϕ (ϑ)

∂

∂ϑi

[Dϕ,ϑ(ϑ)]ϑ̇ +
1

2
λT (ϕ)

∂

∂ϑi

[D−1
ϕ ]λ(ϕ) (6.10)

d

dt

∂Rem

∂ϕ̇j

= eTj Dϕ(ϑ)ϕ̈+ eTj
d

dt
[Dϕ(ϑ)]ϕ̇+ eTj

d

dt
[Dϕ,ϑ(ϑ)]ϑ̇+ eTj Dϕ,ϑ(ϑ)ϑ̈ (6.11)

∂Rem

∂ϕj

= − ∂

∂ϕj

[λT (ϕ)]D−1
ϕ (ϑ)Dϕ,ϑ(ϑ)ϑ̇+

∂

∂ϕj

[λT (ϕ)]D−1
ϕ (ϑ)λ(ϕ) (6.12)

Thus, the Euler-Lagrange equations become

d

dt

∂Lλ

∂ϑ̇
− ∂Lλ

∂ϑ

∣
∣
∣
∣
J(ϑ,ϕ,ϑ̇,ϕ̇)=λ(ϕ)

=
d

dt

∂Lfct

∂ϑ̇
− ∂Lfct

∂ϑ
= Υ(ϑ, ϑ̇), (6.14)

d

dt

∂Lλ

∂ϕ̇
− ∂Lλ

∂ϕ

∣
∣
∣
∣
J(ϑ,ϕ,ϑ̇,ϕ̇)=λ(ϕ)

= 0. (6.15)

Using this background, Theorem 1 can now be proved.

Proof. (⇒) Let (ϑ(t), ϕ(t), ϑ̇(t), ϕ̇(t)) be a flow of the forced vector field fLλ
given by

(6.6) on [to, tF ] with ϑ̄(t0) = ϑ(t0) and
˙̄θ(t0) = θ̇(t0). In addition, let ϕ̄(t) be a curve
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satisfying

ϕ̄(t0) = ϕ(t0),

˙̄ϕ(t0) = D−1
ϕ (ϑ̄(t))

(
λ(ϕ̄(t))−Dϕ,ϑ(ϑ̄(t))

) ˙̄ϑ(t).

It follows from (6.14) that the curve (ϑ̄(t), ϕ̄(t), ˙̄ϑ(t), ˙̄ϕ(t)) satisfies the forced Euler-

Lagrange equations corresponding to Lλ and is thus a flow of the forced vector field

fLλ
on [t0, tF ]. Moreover, because both curves have the same initial conditions, it

follows by uniqueness that

(ϑ(t), ϕ(t), ϑ̇(t), ϕ̇(t)) = (ϑ̄(t), ϕ̄(t), ˙̄ϑ(t), ˙̄ϕ(t))

and therefore (ϑ(t), ϑ̇(t)) is a flow of the vector field fLfct
on [t0, tF ] and ϕ̇(t) satisfies

(6.8).

(⇐) Let (ϑ(t), ϑ̇(t) be a flow of the vector field fLfct
on [t0, tF ] and (ϕ(t), ϕ̇(t)) be

a pair satisfying (6.8). It follows from (6.14) that the Euler-Lagrange equations for

Lλ are satisfied since the curve (ϑ(t), θ̇(t)) satisfies the Euler-Lagrange equations for

Lfct by definition and, therefore, (ϑ(t), ϕ(t), ϑ̇(t), ϕ̇(t)) is a solution to fLλ
on [t0, tF ]

satisfying (6.7).
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CHAPTER VII

REDUCTION CONTROL LAWS

This chapter will introduce reduction control laws which will be applied to the three-

dimensional hybrid biped model given in (4.1). The control laws for the sagittally-

restricted biped, Kδ
2D,i∈V (q2D, q̇2D), (with δ a set of control gains on each domain

i ∈ V = {ts , tl , kl , hs}), defined earlier as (5.5), (5.6), (5.7), and (5.8), which give

stable walking for the sagitally-restricted model. Without loss of generality, the

domain subscript will be dropped for the rest of this section.

Recall that the Lagrangian of the 3D biped considered in this paper has the

general form (on each domain) given by (5.1). The control system associated to this

Lagrangian is given in (2.8). Further, recall that application of the sagittal restriction

gives the Lagrangian

L2D(ϑ, ϑ̇) =
1

2
ϑ̇TD2D(ϑ)ϑ̇− V2D(ϑ),

with D2D(q2D) as in (5.1) and V2D(q2D) = V3D(q2D, ϕ)|ϕ=0. These equations yield

the control system (f2D, g2D) as in (2.8), (2.16). Applying the existing control law,

Kδ
2D,i∈V (q2D, q̇2D), yields the dynamical system:

f δ
2D(q2D, q̇2D) = f2D(q2D, q̇2D) + g2D(q2D, q̇2D)K

δ
2D,i∈V (q2D, q̇2D), (7.1)

which will later be specialized to each domain

Having defined the three-dimensional system and its reduced, two-dimensional

counterpart, the focus will now shift to shaping the three-dimensional system so
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that Theorem 1 can be applied, making it equivalent to the two-dimensional system

through reduction. In an attempt to satisfy the conditions of Theorem 1, two control

laws will be implemented. The first control law transforms the three-dimensional

Lagrangian, Le, given by (6.1), into an almost-cyclic Lagrangian as in the statement

of Theorem 1. The second control law uses hybrid zero dynamics to stabilize to

the surface of initial conditions (given by (7.7)) for which the reduction is valid.

Combining these control laws with the two-dimensional control law, Kδ
2D,i∈V (q2D, q̇2D),

will result in walking for the three-dimensional biped.

A. Fundamental Control Laws

1. Lagrangian Shaping Controller

Having an almost-cyclic Lagrangian makes a system amenable to reduction. This

controller, therefore, shapes the Lagrangian of the system into an almost-cyclic La-

grangian. Consider the almost-cyclic Lagrangian Lα(q3D, q̇3D) given in (6.1), where

the function λ(ϕ) is chosen to be

λ(ϕ) = −αϕ

where

α = −diag(α1, . . . , αm)

with αi > 0 ∀i ∈ [1, m]∩Z constants specifying the rate of convergence. The subscripts

are switched accordingly to represent the new control gain, α.

Let Kδ
3D(q3D, q̇3D) = ((Kδ

2D(q2D, q̇2D))
T , 0m×1)

T represent the two-dimensional

walking controller in a form which can be applied to the three-dimensional system

by padding the control vector with m zeros representing the control inputs on the m
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cyclic variables (in this case, two). Then define the feedback control law:

Kα,δ
3D (q3D, q̇3D) = B−1(q3D)(C3D(q3D, q̇3D) q̇3D + G3D(q3D) (7.2)

+D3D(q3D)D−1
α (q3D)(K

δ
3D(q3D, q̇3D)− Cα(q3D, q̇3D) q̇3D − Gα(q3D) + Υnc(q3D, q̇3D)).

where, as given in (6.2), Dα(q3D, q̇3D) is the shaped inertia matrix, Cα(q3D, q̇3D) is the

shaped Coriolis matrix, and Gα(q3D) = ∂Vα(q3D)
∂q3D

with Vα(q3D) having the potential

energy of the 2D system Vfct(q3D) = V2D(q2D). Applying this control law yields the

dynamical system:

fα,δ
3D = f3D(q3D, q̇3D) + g3D(q3D)K

α,δ
3D (q3D, q̇3D). (7.3)

Let the vector field of the two-dimensional system having control inputKδ
2D(q2D, q̇2D)

be represented by f δ
2D(q2D, q̇2D) as in (7.1). By Theorem 1, we then have the following

relationship between the behavior of fα,δ
3D (q3D, q̇3D) and f δ

2D(q2D, q̇2D):

Proposition 1. (ϑ(t), ϕ(t), ϑ̇(t), ϕ̇(t)) is a solution to the vector field fα,δ
3D (q3D, q̇3D)

on [t0, tF ] with

ϕ̇(t0) = −D−1
ϕ (q3D)(ϑ(t0))(αϕ(t0) +Dϕ,ϑ(ϑ(t0))ϑ̇(t0), (7.4)

if and only if (ϑ(t), ϑ̇(t)) is a solution to the vector field fα,δ
2D (q2D, q̇2D) and (ϕ(t), ϕ̇(t))

satisfies:

ϕ̇(t) = −D−1
ϕ (ϑ(t))(αϕ(t) +Dϕ,ϑ(ϑ(t))ϑ̇(t). (7.5)

Thus for initial conditions satisfying (7.4), the dynamics of H C 3D can be ef-

fectively decoupled into the sagittal and coronal dynamics with the control law

Kα,δ
3D (q3D, q̇3D). Note that this control law, as defined in (7.2), contains the two-

dimensional control law, Kδ
2D(q2D, q̇2D). Further, the coronal dynamics evolve accord-
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ing to (7.5). Because Proposition 1 requires very specific initial conditions, another

controller must be implemented to deal with situations where (7.4) is not satisfied.

2. Zero Dynamics Controller

Reduction effectively decouples the sagittal and coronal dynamics but only when the

conditions (7.4) of Proposition 1 are satisfied. Since these conditions may not always

be satisfied by implementing only the Lagrangian shaping controller, it is necessary to

introduce a second controller to drive the system to the surface where these conditions

are satisfied; this will be accomplished using the standard method of input/output

linearization. (See [104, ch. 9] for the continuous case and [55, 57] for the hybrid

analogue.)

Begin by defining a new control system, (fα,δ
3D , g3D), with g3D(q3D) given by

gZD(q3D) = g3D(q3D)






0(n−m)×(n−m) 0(n−m)×m

0n×(n−m) Im




 . (7.6)

and fα,δ
3D (q3D, q̇3D) given in (7.3). Define the output

y(q3D, q̇3D) = ϕ̇+D−1
ϕ (ϑ)

(

αϕ+Dϕ,ϑ(ϑ) ϑ̇
)

.

Because this output is a function of q̇3D, it has relative degree one. Having y(q3D, q̇3D) =

0 would satisfy (7.4). Thus, it is desired to drive the system to the so-called zero dy-

namics surface

Z =












q3D

q̇3D




 ∈ TQe : y(q3D, q̇3D) = 0







. (7.7)

With this in mind and motivated by the standard method of input/output lineariza-



74

tion for a relative-degree-one system, define the feedback control law:

Kε,α,δ
3D (q3D, q̇3D) = − (LgZD

y(q3D, q̇3D)
−1

(

L
f
α,δ
3D

y(q3D, q̇3D) +
1

ε
y(q3D, q̇3D)

)

, (7.8)

where LgZD
y(q3D, q̇3D) is the Lie derivative of y(q3D, q̇3D) with respect to gZD(q3D)

and L
f
α,δ
3D

y(q3D, q̇3D) is the Lie derivative of y(q3D, q̇3D) with respect to fα,δ
3D . Note that

Kε,α,δ
3D (q3D, q̇3D) is well-defined—specifically, LgZD

y(q3D, q̇3D) has a finite inverse—as

we examine LgZD
y(q3D, q̇3D) numerically. Applying this control law results in the

dynamical system:

f ε,α,δ
3D (q3D, q̇3D) = fα,δ

3D (q3D, q̇3D) + gZD(q3D)K
ε,α,δ
3D (q3D, q̇3D). (7.9)

B. Three-Dimensional Control Law Construction

In this section, it will be shown how the control laws of the previous section are imple-

mented in each domain on the three-dimensional biped model. In each domain, the

sagittal control laws designed previously for the sagitally-restricted two-dimensional

biped are used. Assume these control laws are padded with zeros in place of the

cyclic variables such that they can be applied to the three-dimensional model; let

the resulting control laws be written Kδ
3D,i∈V (q3D, q̇3D). The goal is to apply these

control laws (on each domain) in addition to applying reduction, to achieve walking

for the three-dimensional biped. Note that the system has full actuation of the ϕ

(almost-cyclic) coordinates only in domains tl , kl , and hs ; thus, reduction can only

be applied in these domains (see Theorem 1).

1. Domain 1 (ts)

In Domain 1 (ts), the system is underactuated, therefore, it is not possible to im-

plement reduction (see Theorem 1) as the assumptions of reduction are not satisfied;
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namely, full actuation is required. Thus, this domain only implements the sagittal

control law Kδ
3D,ts(q3D, q̇3D) which, when applied to the control system, results in the

closed-loop vector field

f δ
3D,i(q3D, q̇3D) = f3D,i(q3D, q̇3D) + g3D,i(q3D)K

δ
3D,i(q3D, q̇3D).

For the other three domains, reduction will be performed.

2. Domain 2 (tl)

The existing control law Kδ
3D,tl(q3D, q̇3D) is implemented in addition to reduction.

Start with the control law Kα,δ
3D,tl given in (7.2) which gives the vector field

fα,δ
3D,tl(q3D, q̇3D) = f3D,tl(q3D, q̇3D) + g3D,tl(q3D)K

α,δ
3D,tl(q3D, q̇3D)

as in (7.3). Combining this vector field with the control field of (2.8) gives the control

system (f3D,tl , g3D,tl). Finally the control law K3D,tlε, α, δ(q3D, q̇3D) as given in (7.8) is

implemented which yields the dynamical system:

f ε,α,δ
3D,tl (q3D, q̇3D) = fα,δ

3D,tl(q3D, q̇3D) + gZD,tl(q3D)K
ε,α,δ
3D,tl(q3D, q̇3D).

3. Domain 3 (kl)

The existing control law Kδ
3D,kl(q3D, q̇3D) is implemented in addition to reduction.

Start with the control law Kα,δ
3D,kl given in (7.2) which gives the vector field

fα,δ
3D,kl(q3D, q̇3D) = f3D,kl(q3D, q̇3D) + g3D,kl(q3D)K

α,δ
3D,kl(q3D, q̇3D)

as in (7.3). Combining this vector field with the control field of (2.8) gives the control

system (f3D,kl , g3D,kl). Finally the control law Kε,α,δ
3D,kl(q3D, q̇3D) as given in (7.8) is
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implemented which yields the dynamical system:

f ε,α,δ
3D,kl(q3D, q̇3D) = fα,δ

3D,kl(q3D, q̇3D) + gZD,kl(q3D)K
ε,α,δ
3D,kl(q3D, q̇3D).

4. Domain 4 (hs)

The existing control law Kδ
3D,hs(q3D, q̇3D) is implemented in addition to reduction.

Start with the control law Kα,δ
3D,hs given in (7.2) which gives the vector field

fα,δ
3D,hs(q3D, q̇3D) = f3D,hs(q3D, q̇3D) + g3D,hs(q3D)K

α,δ
3D,hs(q3D, q̇3D)
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as in (7.3). Combining this vector field with the control field of (2.8) gives the control

system (f3D,hs , g3D,hs). Finally the control law K3D,hsε, α, δ(q3D, q̇3D) as given in (7.8)

is implemented which yields the dynamical system:

f ε,α,δ
3D,hs(q3D, q̇3D) = fα,δ

3D,hs(q3D, q̇3D) + gZD,hs(q3D)K
ε,α,δ
3D,hs(q3D, q̇3D).

5. 3D Simulation Results

The results of a simulation of the three-dimensional biped will now be presented. The

physical configuration of the biped is shown in Fig. 16. For this simulation, the model

parameters shown in Table I are used.

We perform our simulation starting in domain hs , using the initial condition (on

the guard G3D,hs):

(q3D)0 = (4.050×10−4 −2.510×10−4 0.068 −0.298 −0.298 −1.868)T ,

(q̇3D)0 = (3.693×10−3 −1.658×10−3 0.913 0.106 −6.130 −6.094)T .

Note that some coordinates are not present as we use model reduction. For example,

the stance knee is locked, so the corresponding coordinate is not included.

The gait is shown in Fig. 17 (and a video of the walking can be found at [98]).

It is interesting to note that this walking is virtually identical to the two-dimensional

gait from Fig. 11. This can be more easily seen by comparing the phase portraits

in Fig. 13 and Fig. 18. Because our reduction scheme requires full actuation, it is

only possible to implement reduction in domains tl , kl , and hs . Reduction allows

us to implement our sagittal control laws and prevents the biped from falling over

laterally. This coronal stabilization is not present in domain ts ; however, the biped

is able to walk as the amount of time spent with (underactuation) is small (∼ 20%)

(see Fig. 12).

Because the foot rotation in the coronal plane is small (as can be seen in Fig. 18(c)),
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Fig. 17: A gait obtained from simulation.
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Fig. 18: Phase portraits for three-dimensional simulation with absolute angles.

we make the simplifying assumption that the foot has no coronal rotation when it

strikes the ground. This greatly reduces the complexity of the model without signif-

icantly affecting its validity. An additional consequence of ignoring foot rotation is

that the width of the foot is irrelevant as long as it is not so narrow that the coronal

actuation of the ankle and mass distribution of the biped cause the foot to roll on its

side. In this paper, the feet are wide enough to negate this concern.

Consider the initial conditions for both the two- and three-dimensional simula-
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tions, q∗2D and q∗3D, respectively. The initial condition for the two-dimensional simu-

lation represents a fixed point of a limit cycle. Thus, given the Poincaré return map

P 2D : TQ2D → TQ2D (on a domain) of the two-dimensional system (with Q2D the

configuration space of the two-dimensional model), it is true that P 2D(q∗2D) = q∗2D.

This is simply the definition of a Poincaré map and in fact this is seen from simula-

tion. It is verified through simulation that the same is true of the three-dimensional

system—that P 3D(q∗3D) = q∗3D given P 3D : TQ3D → TQ3D for configuration space Q3D

(on a domain)—yet stability cannot be numerically verified as in the two-dimensional

case due to the extradimensional complexity of the three-dimensional model. How-

ever, that the Poincaré return map returns the system to the same point q∗3D seems

to indicate that q∗3D is, in fact, a fixed point and that the system is stable.

It is interesting to note the similarity between the “fixed points” in both the

two- and three-dimensional models. Many of the respective angles are very similar

in value. This indicates the effectiveness of functional Routhian reduction as a tool

to translate gaits in two-dimensional to gaits in three dimensions. Another metric

by which to gauge the efficacy of the reduction is a comparison of phase portraits.

Notice the similarities between the two-dimensional phase portraits from Fig. 13 and

the three-dimensional phase portraits from Fig. 18. This indicates that the reduction

controller seems to operate correctly.

A required condition for Proposition 1 is that the system needs to satisfy (7.4),

i.e., the system needs to stabilize to the surface (7.7). In order to drive the system to

this surface, we utilize input/output linearization to drive the system to the surface

at an exponential rate. The required control decreases as the system approaches the

surface. Further, note that the surface is forward invariant and thus no control is

needed to stay on the surface.

Consider Fig. 18(c). This figure shows the coronal rotation of the system. Unlike
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the two-dimensional system, the three-dimensional systems sways from side-to-side.

Thus, the two-dimensional system must go through four domains to return to the

fixed point while the three-dimensional system must go through eight domains. In

other words, the three-dimensional system is biperiodic. This side-to-side swaying

motion is beneficial in that it allows for extra clearance of the non-stance foot as it

is swinging. It can also be seen from Fig. 18(c) that the coronal rotation is small

(≈ 10−3). This is a result of the reduction controller keeping the biped nearly upright

in order to satisfy the conditions of Theorem 1.
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CHAPTER VIII

CONCLUSIONS

This thesis began by introducing a generalized framework in which to model mechani-

cal systems subject to constraints for which the biped considered is a specific example;

the hope is that this framework will be useful in the modeling of a wide range of con-

strained mechanical systems undergoing impacts. After studying how constraints

yield the different components of hybrid systems, a four-domain hybrid model of a

bipedal robot was introduced. First, a two-dimensional sagittally-restricted model

was considered and stable walking was obtained by using controlled symmetries in

the fully-actuated domains combined with local control laws designed to achieve spe-

cific objectives. The main theoretical result of this thesis is establishing the validity of

functional Routhian reduction in the presence of multiple cyclic variables with exter-

nal forcing. This result was used with input/output linearization to achieve walking

for the three-dimensional biped; in this case, the reduced system obtained through

reduction was the two-dimensional sagittally-restricted biped. Finally, a discussion

was given on the anthropomorphic nature of the walking with comparison to human

data.

Future work includes considering more realistic models, possibly with more do-

mains and higher degrees of freedom. The first step in obtaining even more realistic

bipedal models is incorporating more degrees of freedom into the model—especially

at the hip. In the case of the biped of interest, there is only one degree of freedom.

Finally, some aspects of modeling have been disregarded, e.g., studying the friction
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between the foot and the ground. Before constructing a biped, it would be important

to test the force of friction to make sure slippage does not occur as well as the other

constraints on ground reaction forces and torques mentioned in the modeling section

of this thesis.

Additional future work will be directed toward the development of numerical

algorithms and simplification of the existing model to accelerate calculations. It was

possible to verify stability for the two-dimensional walking by numerically calculating

eigenvalues of the Jacobian of the Poincaré map; however, this was not possible

for the three-dimensional biped due to computational limitations. Thus, it would

be worthwhile to attempt different methods of eigenvalue approximation. A final

important topic is the approximation of the domain of attraction of limit cycles in

hybrid systems. In general, this is an interesting research problem which would be

especially challenging for bipeds due to their high dimensionality. Yet having a metric

to quantify system robustness through estimation of the domain of attraction would

be invaluable.
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