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ABSTRACT 

 

Assessing Available Woody Plant Biomass on Rangelands with Lidar and Multispectral 

Remote Sensing. (May 2011) 

Nian-Wei Ku, B.S., National Chiayi University, Taiwan 

Chair of Advisory Committee: Dr. Sorin C. Popescu 

  

 The majority of biofuels are produced from corn and grain. The drawback to 

these sources of biofuels is the vast amount of cultivated land needed to produce 

substantial amounts of biofuel, potentially increasing the price of food and livestock 

products. Mesquite trees, a type of woody plant, are a proven source of bioenergy 

feedstock found on semi-arid lands. The overall objectives of this study were to develop 

algorithms for determining woody plant biomass on rangelands in Texas at plot-level 

using terrestrial lidar and at the local scale by integrating reference biomass and 

multispectral imagery.  

Terrestrial lidar offers a more efficient method for estimating biomass than 

traditional field measurements. Variables from the terrestrial lidar point cloud were 

compared to ground measurements of biomass to find a best fitting regression model. 

Two processing methods were investigated for analyzing the lidar point cloud data, 

namely: 1) percentile height statistics and 2) a height bin approach. Regression models 

were developed for variables obtained through each processing technique for estimating 

woody plant, aboveground biomass. Regression models were able to explain 81% and 
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77% of the variance associated with the aboveground biomass using percentile height 

statistics and height bins, respectively. The aboveground biomass map was generated by 

using the cokriging interpolation method with NDVI and ground biomass data. 

According to cross-validation, ordinary cokriging estimated biomass accurately (R2 = 

0.99). The results of this study revealed that terrestrial lidar can be used to accurately 

and efficiently estimate the aboveground biomass of mesquite trees in a semi-arid 

environment at plot level. Moreover, spatial interpolation techniques proved useful in 

scaling up biomass estimates to local scale.  
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1. INTRODUCTION AND LITERATURE REVIEW 

 

More than 85% of energy consumed, including approximately two-thirds of 

electricity and the majority of transportation fuel in the United States (Department of 

Energy, 2010), is derived from fossil fuels. Fossil fuels are the result of organic material 

being under pressure millions of years and include coal, petroleum, and natural gas. 

After the industrial revolution, the demand for fossil fuels increased. As a result of the 

enormous demand for fossil fuels, the Earth’s reserves of fossil fuels are decreasing 

dramatically. Therefore, people are searching for alternatives to fossil fuels to support 

the ever increasing energy demands. 

Plants are increasingly being considered as a bioenergy source, including solid 

biomass, liquid fuels and various biogases (Demirbas, 2009). The majority of liquid 

biofuels are refined as ethanol from corn and grain. Statistically, around 8 billion gallons 

of ethanol were produced in the US in 2008 and required one-fifth of the 80 million 

acres dedicated to growing corn and an additional 27 million tons of grain (Clayton 

2008). As such, a vast amount of corn and grain is utilized for producing ethanol rather 

than food products and livestock feed, potentially increasing the price of food products 

and livestock feed.  

The encroachment of woody plants on rangelands and cultivated lands is a 

critical issue to land owners and scientists (Van Auken, 2000). Woody plant  

____________ 
This thesis follows the style of Remote Sensing of Environment. 
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encroachment directly threatens the grass forage production for livestock and reduces the 

area of cultivated lands. In Texas, an overwhelming amount of rangeland and grassland 

is infested with various species of woody plants because the mechanical and chemical 

treatments to reduce the amount and density of woody plants are becoming increasingly 

uneconomical (Brown and Archer, 1989). The rate of woody plant encroachment is 

increasing rapidly in the rangelands of the southwestern US.  

Mesquite and other rangeland trees have been considered bioenergy feedstock 

(Felker 1984; Ansley et al., 2010). If mesquite trees can be removed from rangelands 

without significantly disturbing grasses and the bioenergy benefits can be obtained, the 

removal of woody plants can serve a dual-purpose: to mitigate the negative effects 

associated with woody plant encroachment and provide bioenergy feedstock. 

In order to know the amount of bioenergy feedstock available from woody 

plants, the woody plant biomass has to be estimated. Trees normally have one basal stem 

for each root system (e.g., pine or oak), but rangeland woody plants generally have 

multiple basal stems for each root system (e.g., mesquite) (Figure 4). The conventional, 

manual measurements of tree height and individual basal stem diameter are used to 

calculate both woody plant and tree biomass; however, basal stem diameter is measured 

at 10 or 15.24 cm above ground for woody plants while tree basal stem diameter is 

measured at 1.4m (referred to as diameter at breast height (DBH)) (Chojnacky, 2002; 

Jenkins et al., 2003; Northup et al. 2005; Ansley et al., 2010). The conventional 

measurements are time-consuming, particularly measuring the stem diameter; thus, more 
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efficient measurement strategies, such as utilizing remote sensing, should be developed 

to estimate the biomass of woody plants over large forest and rangeland areas. 

Lidar (Light Detection and Ranging) is an active remote sensing system that 

significantly differs from passive remote sensing systems in that it provides its own 

energy source instead of relying on energy reflected off of or radiated from the object 

under observation. Because of this, passive remote sensing cannot directly measure the 

terrain elevation and the height of objects, while lidar acquires three-dimensional 

information (Lefsky et al., 2002). Lidar remote sensing provides the capability to 

analyze woody plant structure at a high level of detail and the ability to estimate biomass 

more efficiently over the entire study extent.  

Airborne lidar systems have been used for forest assessment since the 1980s 

(Nelson, 1988). Lidar creates a convenient and efficient approach for obtaining forest 

measurements. Recently, lidar data have been applied in a variety of forest and 

rangeland studies, such as deriving forest characteristics (Nelson, 1988; Popescu et al., 

2003), forest biomass estimation (Lefsky et al., 1999; Popescu, 2007), forest structure 

analysis (Maltamo et al., 2005), carbon content estimation in forest (Patenaude et al., 

2004), and identifying individual trees in rangelands (Chen et al., 2006). 

Lidar systems can be mounted on a variety of platforms, such as satellites, 

aircraft, or terrestrial (both mobile and static). The majority of studies describe the use of 

lidar data collected from satellite and airborne platforms. In contrast, the use of 

terrestrial lidar systems, or terrestrial laser scanners, for forest and woody plant research 

accounts for only a small number of studies. Terrestrial lidar has demonstrated promise 
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as an objective and consistent forest assessment tool (Hopkinson et al., 2004). Terrestrial 

lidar has also developed rapidly in surveying as an efficient tool for fast and reliable 

three-dimensional data acquisition, giving merit to its potential for forest measurement. 

Methods for the automatic detection of trees in terrestrial lidar data as well as the 

automatic determination of diameter at breast height (DBH), tree height, and 3D stem 

profiles are outlined in Maas et al. (2008). Moreover, terrestrial lidar can capture 

detailed stem profiles of standing trees to derive accurate DBH and assess branch 

heights, where measurement of the branches near the base of the live crown and below it 

have excellent accuracy (Henning and Radtke, 2006a). Terrestrial lidar can also provide 

high-resolution and spatially-explicit assessments of plot-level forest canopy structure 

(Henning and Radtke, 2006b). Forest understories can be depicted much more accurately 

with terrestrial lidar than airborne lidar and other two-dimensional remote sensing 

technologies, such as aerial photographs or satellite imagery. 

Vegetation indices are indicators used to analyze vegetation from spectral 

information collected by remote sensing system. In particular, the normalized difference 

vegetation index (NDVI) is commonly applied to measure regional vegetation patterns. 

Anderson et al. (1993) employed Landsat TM data to derive NDVI for semiarid 

rangeland and concluded that the green biomass and NDVI have a high degree of 

association. Anderson et al. (1993) also noted that when NDVI was combined with 

greenness strata, it was possible to predict green biomass levels using univariate 

regression models. Zheng et al. (2004) used Landsat ETM+ data to estimate 

aboveground biomass for pine forests and found a strong relationship between 
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aboveground biomass and the correct NDVI. Regional examples, such as those presented 

above, provide evidence that NDVI could be used to estimate aboveground biomass at a 

local scale.  

Although terrestrial lidar has been applied in forest studies, many of these studies 

were in nursery conditions or using plastic trees indoors. Of those studies conducted in 

field conditions, most concentrated on forest structure analysis and deriving tree 

characteristics. Few lidar studies focused on rangeland woody plants. This study aims to 

develop a methodology for utilizing terrestrial lidar data to assess plot-level 

aboveground woody plant biomass by developing algorithms to estimate woody plant 

biomass and investigate the relationship to ground-measured biomass. In addition, the 

reference biomass data was combined with vegetation indices data to calculate woody 

plant biomass at a local level. This study addresses the following objectives: 

1) Development of algorithms to determine aboveground woody plant biomass 

at plot level from terrestrial lidar data. 

2) Investigate a synergistic approach that integrates terrestrial lidar data and 

multispectral imagery with geostatistics techniques to calculate aboveground 

woody plant biomass at the local scale. 
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2. METHODOLOGY AND MATERIALS 

 

2.1 Study area 

 

The study area is located at the northern limit of honey mesquite’s range (Figure 

1A), in the Texas AgriLife Research and Extension Center’s Smith Walker Research 

Unit, outside of Vernon in Wilbarger County, Texas (Figure 1B). Wilbarger County is 

located on the Texas Rolling Plains, consisting of sandy, loam, and clay loams soils that 

support tall grasses, mesquite (Table 1.), and shinnery oak trees. Average annual 

precipitation is 25.65 inches, and temperatures range from an average minimum of 29˚F 

in January to an average maximum of 98˚F in July (TSHA 2010).  

The Smith Walker Research Unit (34˚02’ N, 99˚14’ W) is approximately 223 

hectares of cultivated land and 684 hectares of rangeland. The cultivated land is used 

predominantly for small grains and the forage crop research program. The rangelands are 

used for range animal nutrition programs and rangeland ecology and management 

programs. Terrestrial lidar data were collected in the rangeland area of the research unit. 

The land cover in the Smith Walker Research Unit consists of grass, honey 

mesquite (regrowth, young, and old), bare soil, and water. Using the patch-corridor-

matrix model from landscape ecology (Forman 1995) to describe the research unit, the 

matrix is grass with honey mesquite (Prosopis glandulosa) as the dominant patch. 

Honey mesquite is an introduced species that can reach 6 meters in height, averaging 3-4 

meters within the study area, excluding regrowth. Patches of honey mesquite vary in  
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(A) 

 

(B) 

Figure 1. (A) Distribution map of mesquite trees in North America (Little, 1976). (B) 

The location of Smith Walker Research Unit, Vernon, Texas. 
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size, with small patches containing only one or two trees while large patches are 

comprised of hundreds of trees. The majority of the old mesquite trees are located in the 

northern portion of the study area where the young and new regrowth are found 

throughout. 

 

 

Table 1. Honey mesquite characteristics (Little, 1980) 

Height ~ 6 m 
Diameter ~ 0.3 m 
Leaves Bipiinately compound 7.5 to 20 cm 
Twigs Slightly zigzag with stout, yellowish, mostly 

pared spines 0.6 to 2.5 cm 
Flowers 6 mm long; stalkless, light yellow 
Fruit 9 to 20 cm long; narrow pod; maturing in 

summer 
Habitat Sandy plain and sandhill; in short grass, desert 

grasslands, and deserts 
 

 

Terrestrial lidar was used to scan 25 plots during the leaf-off season to reduce 

laser occlusion caused by leaves. Mesquite tree age is homogenous within each plot and 

ranges from regrowth to mature. Heights range between 1 and 6 m. The plots are 

distributed randomly in the Smith Walker Research Unit and are located on various soil 

types and are grouped according to mesquite tree age and soil type: (1) bottomland with 

mature mesquite; (2) deep clay loam upland with mature mesquite; (3) deep clay loam 

upland with regrowth mesquite; and (4) shallow upland with mature mesquite.  
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2.2 The terrestrial lidar system 

 

 

Figure 2. Terrestrial lidar system, Leica ScanStation2, in the field setting of this study. 

 

The terrestrial lidar system, a Leica ScanStation 2 laser scanner, was designed for 

infrastructure surveys, topographic surveys of small sites, and for scanning buildings 

(Figure 2). The scanner is safe for field technicians, cuts initial survey costs, and reduces 

site re-visits. In addition, compared to other terrestrial lidar systems, the Leica 

ScanStation 2 has a higher pulsed scan frequency which significantly reduces the 

amount of time needed for field work. After completing the time-consuming, 

conventional measurements to obtain biomass estimates, the scanner was employed to 

collect point cloud data for each plot. 

The Leica ScanStation 2 scanner uses a pulsed green laser (532 nm) with a 

maximum scan rate of 50,000 points/second with reported single point accuracies of 
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4mm for distance measurement and 6mm positional measurement from 1 to 50 m. The 

scanner has a range of 300 m for surfaces with 90% reflectivity, all with a small beam 

diameter. The laser scanning system provides a 360 degree horizontal and 270 degree 

vertical field of view, omitting only a small area on the ground, just below the scanner.  

 

2.3 Field survey 

 

The terrestrial lidar data were collected from 25 study plots in Smith Walker 

Research unit (Figure 3) in December 2008, March 2009, and December 2009, leaf-off 

season. The scan time for each plot ranged from 1.5 to 2 hours, with two separate scans 

completed at each plot. Due to battery constraints, the terrestrial lidar could not scan 

more than 4 plots per day. Although the terrestrial lidar is an active remote sensing 

system that can work in day time and night time conditions, the scanner cannot operate 

in the extremely cold or hot temperatures ( < 0˚C or > 40˚C) or during precipitation 

events. The resolution of terrestrial lidar data depends on the field of view and the range 

(or depth) parameter settings. In the study, the field of view was 140 degree in the 

horizontal direction and 100 degree in the vertical direction. The point spacing at 20 m 

from the scanner was 1.78x2.14 cm in the horizontal and vertical directions. Table 2 

shows specific information for the lidar point data of each plot. 
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Figure 3. The locations of all study plots in Smith Walker Research Unit. Plot labels are 

displayed in orange. 
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Figure 4 Mesquite trees with multiple stems on the study plot (Plot U16). 

 

 

Figure 5. Scattered mesquite trees in a study plot (Plot U20) and a target (red) used for 

merging the two scans of a plot from opposite directions. The white PVC pipes were 

used to mark the boundary of a study plot. 



 

 
 

 

13

Each study plot measured 5 m wide by 20 m long and contained honey mesquite 

of similar age and height (Figure 5). The dimensions of the plots were designed to 

efficiently estimate standing mesquite tree biomass based on basal stem diameters, both 

manually and using the scanner. A larger plot would have been time-consuming to 

measure and a smaller plot would have been too small to contain trees of average size 

for the area. The terrestrial lidar scanner was positioned along one of the long-

boundaries of the plot for the first scan and then moved to the opposite side for the 

second scan. The two stationary targets were positioned near the short boundaries of the 

plot (Figure 6). The arrangement of the terrestrial lidar scanner and the targets can be 

modified so the targets can clearly be scanned from both scanner locations without being 

moved. The two targets served as reference points in each lidar point cloud, which 

allowed them to be seamlessly merged into a single three-dimensional model using the 

Leica Cyclone software package, which is also used to run the scanner in the field. Table 

2 shows the lidar point cloud data of each study plot. 

 

 

Figure 6. A conceptual diagram of the arrangement of the terrestrial lidar and targets for 

a plot. The dashed arrows indicate the angular extents of the scans. 

20M 

5M 

S2 

S2 Scan location 2 
S1 Scan location 1 

Targets 
Scan Stations 

S1 
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Table 2. The lidar point cloud data of each plot 

Plot ID Points Density 
(points/m3)* 

Mean Height 
(m) Standard Deviation Max Height  

(m) 
B3 314 1.47 1.40 5.72 
B4 943 1.12 1.26 5.87 
B5 1643 0.84 1.01 4.29 
D1 1486 0.34 0.62 3.90 
D2 314 1.90 1.80 6.73 
M13 157 2.04 1.81 6.53 
M3 871 1.27 1.30 5.69 
M6 1014 0.91 1.30 5.93 
S4 1557 0.64 0.71 3.64 
S6 1243 0.53 0.56 3.03 
U10 1043 2.11 1.66 5.73 
U14 1171 1.64 1.60 6.50 
U15 1271 1.72 1.67 6.31 
U16 886 1.23 1.20 4.74 
U17 1200 1.34 1.25 5 
U18 1071 1.77 1.60 6.56 
U19 1257 0.39 0.56 2.90 
U20 1114 0.50 0.58 3.11 
U21 757 1.28 1.03 4.25 
U22 1471 0.32 0.35 2.18 
U23 857 0.45 0.45 2.12 
U3 929 0.94 1.15 4.70 
U5 1886 0.41 0.68 3.15 
U7 714 0.95 1.19 5.42 
U8 1571 1.05 1.10 4.33 

* The height of computing the point density is assumed 7 m and the base area is the plot size. 
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(A) 

 

(B) 

 

(C) 

Figure 7. (A) Dense (Plot B3) (B) moderate (Plot M3) (C) thin (Plot D1) mesquite tree 

study plot. 
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(A) 

 

(B) 

Figure 8. An example of mesquite tree height variation between plots (A) 6 m height 

(Plot M13) (B) 3 m height (Plot S6). 

6 m 

3 m 
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2.4 Reference data for aboveground biomass 

 

The manual measurements of stem diameters for the aboveground biomass 

reference data were collected during the same time period as the laser scans. The manual 

estimates of tree biomass in each plot included the measurement of diameter of each 

basal stem in each scanned plot between 5 and 15 cm above ground. 

The total aboveground biomass of each stem was estimated using the allometric 

equation (eq. 1) developed by Ansley et al. (2010), based on the relationship between 

oven dried (OD) plant biomass and basal stem diameter. Regression showed a high 

correlation (R2 =0.97). Biomass of all stems was summed to determine biomass per plot. 

Biomass estimates were then extrapolated from the 100 square meter plot area to one 

hectare.  

 

   Y=0.0175x2.831      (eq. 1) 

Y: Oven dried (OD) plant biomass (kg) 

x: Stem diameter (cm) 
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2.5 Lidar point cloud data processing 

 

The lidar point cloud data were processed using Leica Cyclone and Quick 

Terrain Modeler (QTM) software, before the point cloud data were analyzed. Cyclone 

provided the complete set of tools for merging the point clouds captured from different 

scanner positions at each plot. QTM is a three-dimensional point cloud and terrain 

visualization software package developed by John Hopkins University’s Applied 

Imagery Lab. The Above Ground Level (AGL) analysis tool in QTM was used to 

calculate the relative height of the points above the ground. 

Since the scanning process resulted in two point clouds for each plot, the first 

step for processing the data was to merge the two point clouds using Cyclone (Figure 9). 

The process created a single point cloud containing data from both scanner locations. 

Next, the points located in the 5m x 20m rectangular plot were extracted from the initial 

three-dimensional model in order to correlate them with the reference biomass data. This 

three-dimensional point cloud was compared with aerial photos and the GPS-generated 

shapefiles to identify the scanned plot. The plot boundaries were easily identified in the  
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point cloud using four PVC pipes positioned at the corners of each plot. Next, a 

boundary was created using Cyclone’s fence tool and the points outside of the plot were 

removed. After selecting and extracting the scanned plot, the next step was to remove 

non-natural points visible within the plot, such as the reference targets and PVC pipes. In 

the end, a point cloud of the scanned plot was generated. 

After the plot was extracted using Cyclone, each point cloud was exported to an 

ASCII file and imported into Quick Terrain Modeler. The AGL analysis tool calculated 

and assigned an elevation value by estimating a height to the ground surface for every 

point in the point cloud. Heights assigned to points by the AGL analysis can be used as 

criteria for selective removal of non-useful vegetation and canopy information from a 

point cloud allowing users to clearly see and identify objects under foliage or other 

obstructions. The ground points were removed to produce an initial vegetation height 

model. 
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Figure 9. Flow chart of lidar point cloud data processing.  
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2.6 Lidar point cloud data analysis 

 

In order to derive independent variables needed for the regression models of 

woody plant biomass estimation, the point cloud data were analyzed in two approaches. 

The first approach used the mean height, standard deviation and percentile heights as 

independent variables for the regression model. Magnussen and Boudewyn (1998), 

Næsset and Bjerknes (2001), and Næsset (2004) used a similar approach with airborne 

lidar for estimating tree height measurements, tree crown properties, and forest stand 

inventory parameters. 

The mean height, standard deviation and percentile heights of lidar point cloud 

data were calculated from points in the vegetation height mode with heights above 0.5 m 

(VHM5) for each plot. Points below 0.5 m may result from laser shots hitting the ground 

and grass (Figure 10). VHM5 reduced the influence of low lying vegetation, ground, and 

rocks. 

 



 

 
 

 

22

 

(a) 

 

(b) 

Figure 10. The distribution of point cloud data in the vegetation height model and the 

distribution of point cloud data in the vegetation height model above 0.5 m for a 

single plot. (Plot B3) 
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The 25th, 50th, 75th, 90th, and 95th percentile height and Maximum height were 

computed from VHM5 (Table 3). Mean height, standard deviation, and each percentile 

of vegetation height model were individually compared to the biomass reference data to 

build the regression relationships. Statistics extracted from VHM5 were compared to 

ground biomass reference data to establish a correlation. 

The second approach used lidar height bins (Popescu and Zhao, 2008). 

Generally, lidar height bins represent layers or slices of point cloud data at vertical 

height intervals above ground (Figure 11). The height bins are essentially conventional, 

multiband, two-dimensional representations of lidar-derived voxels, or volumetric 

pixels, as they contain the frequency of laser returns within a three-dimensional space. 

The normalized height bins were also extracted from VHM5. The first height bin 

contained points between 0.5 m and 1 m and the rest of the height bins are at 1 m 

intervals (i.e., 1-2m, 2-3m, etc.) (Figure 12). The last height bin contained points with 

heights greater than 6 m. Next, all height bins were divided by the total amount of laser 

points above 0.5 m to normalize the data and eliminate the effect of varied point density 

throughout the plots, resulting in seven normalized height bins to build another new 

biomass equation from. 
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Table 3. The list of variables 

Variables of Lidar metrics Description 
Standard deviation, mean  

and percentile heights 
 

Mean_h The mean height 
Std_h The standard deviation 

Per25_h 25 percentile height 
Per50_h 50 percentile height 
Per75_h 75 percentile height 
Per90_h 90 percentile height 
Per95_h 95 percentile height 
Max_h Maximum (100 percentile) height 

Height Bins  
NHbin1 Normalized height bins from 0.5 m to 1 m 
NHbin2 Normalized height bins from 1 m to 2 m 
NHbin3 Normalized height bins from 2 m to 3 m 
NHbin4 Normalized height bins from 3 m to 4 m 
NHbin5 Normalized height bins from 4 m to 5 m 
NHbin6 Normalized height bins from 5 m to 6 m 
NHbin7 Normalized height bins greater than 6 m 

 

 

 

Figure 11. The concept of height bins in a study plot. The interval between height bins is 

user-defined height (Table 3). Points are colored based on the height bin they belong 

to. 
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Figure 12. The height bin images of study plot D2. 

(A) Below 0.5 m (B) 0.5 to 1 m 

(C) 1 to 2 m (D) 2 to 3 m 

(E) 3 to 4 m (F) 4 to 5 m 

(G) 5 to 6 m (H) Above 6 m 
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A stepwise regression was employed to select the appropriate variables for the 

multiple linear regression model (R. R. Hocking, 1976). The regression analysis used 

both forward selection and backward elimination to select the best variable combination. 

The lidar metrics used as independent variables were separated into two groups; one 

group contained mean height, standard deviation and percentile heights, and the other 

included normalized height bins. These groups of variables correspond to the two 

different approaches for analyzing the lidar data. 

 

2.7 Multispectral aerial image classification 

 

Two digital orthophoto quarter quads (DOQQ), Lockett and Boggy Creek, were 

downloaded from the Texas Natural Resources Information System (TNRIS) and 

included natural color (blue, green, and red bands) and color-infrared (green, red, and 

near infrared bands) images. Both images were acquired during leaf-on season in 2008, 

and cover the Smith Walker Research Unit in Wilbarger County, TX by the USDA 

National Agriculture Imagery Program (NAIP). The images were resampled from their 

native resolution of 1 x 1 m to 0.5 x 0.5 m resolution using bicubic spline interpolation 

and obtained from TNRIS this way. The pair of images for each DOQQ were stacked to 

create a four-band image including the blue, green, red, and near-infrared bands. 

The classification maps were created using the stacked DOQQs with an object-

oriented approach implemented the Definiens software. The object-oriented 

classification algorithm starts with segmentation. Segmentation groups similar, 



 

 
 

 

27

contiguous pixels into objects based on parameters defined by the user. The 

multiresolution segmentation algorithm used in Definiens uses parameters, such as scale, 

color (DN value) vs. shape (complexity), compactness vs. smoothness, and layer weights 

to determine the homogeneity criteria for creating objects. Parameters were chosen 

based on multiple trials and personal experience with using DOQQ of similar study 

areas. Figure 13 (Definiens Developer 7 Reference Book) is a concept flow diagram of 

the multiresolution segmentation and Table 4 shows the parameters used.  

 

 

Figure 13. A concept flow diagram of the multiresolution segmentation (Definiens, 

2007). 

 

  



 

 
 

 

28

Table 4. The parameters for multiresolution segmentation algorithm 

Criteria Value 

Layer Weight 

Blue: 1 
Green: 1 
Red: 1 
NIR: 4 

Scale Parameter 10 
Color vs. Shape 0.9 vs. 0.1 
Compactness vs. Smoothness 0.8 vs. 0.2 

 

 

 The final classes in the classification map were (1) mesquite trees, (2) grass, and 

(3) non-vegetation. The two final classification maps were mosaicked to create one map 

(Figure 14). The accuracy assessment was conducted by manually assigning a class to 

each of the 159 randomly selected points (53 per class) when overlaid on the DOQQ The 

accuracy assessment showed an overall accuracy of 91.20% and kappa coefficient of 

0.87, with a kappa coefficient greater than 0.8 representing strong agreement between 

the classification map and ground points (Jensen, 2005). The classification map was 

used to mask the non-vegetation pixels from the NDVI map derived in the next step.  
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Figure 14. Classification map of Smith Walker Research Unit. 
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2.8 Normalized difference vegetation index  

 

Vegetation indices are recognized as important vegetation biophysical indicators 

extracted and modeled using remotely sensed data (Jensen, 2007). A vegetation index 

should maximize sensitivity to plant biophysical parameters, normalize the model’s 

external effects and the atmosphere, normalize internal effects and differences in 

senesced or woody vegetation, and be coupled to some specific measurable biophysical 

parameter. In particular, the Normalized difference vegetation index (NDVI) is broadly 

applied as an indicator of vegetation “greenness” and is highly correlated with green 

biomass (Anderson et al. 1993). The following equation shows the NDVI calculation: 

 

NDVI= ൫NIR-Red൯ (NIR+Red)⁄     (eq. 2) 

NIR: Near Infrared band 

Red: Red band 

 

2.9 Generating a biomass map 

 

The color-infrared DOQQs were used to generate the NDVI map of the study  

 

 

 



 

 
 

 

31

area (Figure 15) using equation 2. The classification map was then used to mask out the 

non-mesquite pixels. Excluding two regrowth plots, 23 individual plot NDVI maps were 

extracted from the NDVI map of the entire Smith Walker Research Unit. Next, the 

reference biomass data were converted to geolocated point data based on 98, manually 

selected, mesquite tree pixels to be used as training points. The reference biomass for 

each plot was divided by the number of pixels classified as mesquite trees within that 

plot to calculate each mesquite pixel average biomass. Three to four training points were 

manually selected from each plot to build the cokriging model. Moran’s I, a measure of 

spatial autocorrelation, indicated spatial autocorrelation with an index of 0.68. Values of 

Moran’s I range from -1 (perfect dispersion) to 1 (perfect correlation) and zero value 

indicates a random spatial pattern. The NDVI pixels corresponding to the 98 training 

points were extracted from the plot-level NDVI map. Finally, the corresponding NDVI 

pixel and training point pairs were used in the cokriging interpolation procedure to 

generate a biomass prediction map at a local scale. 
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(A)     (B) 

Figure 15. The preprocessing data for generating a biomass map (A) Color-Infrared 

vegetation imagery of Smith Walker Research Unit. The black areas are non-

vegetation. (B) Vegetation NDVI map. The darker pixels represent low NDVI values 

and lighter pixels represent high NDVI values. 

 

 Cokriging is one member of the kriging family of interpolation methods and 

allows two variables to be processed together. The accuracy of cokriging predictions is 

better than other kriging interpolation methods when the two variables have a strong 

relationship. With a documented relationship between vegetation biomass and NDVI 

(Anderson et al. 1993), cokriging is appropriate for generating a biomass map. The 

following is the ordinary cokriging model: 
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ቐ
Z1(s)=μ1+ε1(s)

Z2(s)=μ2+ε2(s)
�        (eq.3) 

 

Where ߤଵand ߤଶ are unknown constants. The ܼଵ(ݏ) is the biomass data of 

interest and the ܼଶ(ݏ) is the NDVI value. The ߝଵ(ݏ) and ߝଶ(ݏ) are random error 

parameters. ܼଵ(ݏ) leverages information from the ܼଶ(ݏ) variable to help make 

predictions. 
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3. RESULTS 

 

3.1 The relationship between terrestrial lidar data and reference biomass 

 

3.1.1 Mean height, standard deviation and percentile heights 

 

Figure 16 shows the regression plots of reference biomass, mean height, standard 

deviation, and percentile heights, respectively. The relationship between lidar metrics 

and the reference biomass was nonlinear. Thus, a natural logarithm transformation was 

employed to transform the reference biomass and the result is shown in figure 17. 

The transformation improved R-squared values, indicating a stronger relationship 

between the individual lidar metrics and the reference biomass data. In addition, the 

transfomation leads to a linear relationship between the individual lidar metrics and the 

reference biomass data. Figure 17 shows that the natural logarithm of biomass has a 

linear relationship with the point cloud height variables. 
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Figure 16. Scatter plots of ground biomass data and the first group of lidar metrics. The 

points represent each study plot.  
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Figure 17. Scatter plots of logarithm transformation biomass and the first group of lidar 

metrics. The points represent each study plot. 

 

 Because a high level of correlation between the percentile height variables 

existed (Figure 17), each variable was used as a simple independent variable and the 
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R-squared and adjusted R-squared values ranged from 0.73 to 0.82 and 0.71 to 0.81, 

respectively. The high R-squared values indicated that the lidar metrics had high 

correlation with the natural logarithm of reference biomass. The results show that the 

reference biomass can be predicted using lidar metrics derived from terrestrial lidar point 

cloud data. 

 

Table 5. The multiple and adjusted R-square value for each simple linear regression 

model using the natural logarithm transformation in reference biomass 

Point cloud height Multiple R2 Adjusted R2 
25th percentile 0.73 0.71 
50th percentile 0.75 0.74 
75th percentile 0.81 0.80 
90th percentile 0.82 0.81 
95th percentile 0.82 0.81 
Max 0.81 0.80 
Mean 0.80 0.79 
Standard deviation 0.80 0.80 
 

 

Although the 90th and 95th height percentiles tied for the highest R-squared 

values among the group in table 5, the 95th percentile was chosen to be the individual 

variable to estimate biomass. Therefore, the relationship between the 95th height 

percentile and the nature logarithms of the reference biomass was used to develop an 

equation for biomass estimation, as follows:  

 

Y෡=100×exp(2.34 + 0.81per95_h + 1.12)      (eq. 4) 
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Where the first constant,100, extrapolates the biomass estimation from plot level 

to hectare level. ෠ܻ is the total biomass (kg/ha) and the last constant is the correction 

factor needed to counteract the systematic bias introduced by the logarithmic 

transformation (Finney 1941; Baskerville 1972; Sprugel, 1983).  

 

Figure 18. The relationship between ground biomass data and the predicted biomass of 

point cloud height. The predicted biomass was calculated using equation 3.  
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3.1.2 Normalized height bins 

 

The second group of lidar metrics includes the normalized height bins. Figure 19 

shows a nonlinear relationship in the scatter plots of reference biomass versus 

normalized height bins. The plots showed the data distributed along a curve with 

variability increasing as biomass increases. Thus, a natural logarithm transformation was 

used to transfer the reference biomass and the result is shown in Figure 20. 

The logarithmic transformation resulted in improved R-squared values, and 

indicated that some of the normalized height bins were correlated to the reference 

biomass data. NHbin1 and NHbin2 have a negative correlation with the natural 

logarithm of ground biomass data. NHbin3 has a weak relationship with the ground 

biomass data, but NHbin4 and NHbin5 showed positive correlation. NHbin6 and 

NHbin7 had many pixels with a zero value, so they were not considered in the regression 

models. Intially, NHbin1, NHbin2, NHbin4 and NHbin5 were chosen as the independent 

variables in the height bin model by analyzing the plots of variables against biomass.  
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Figure 19. Scatter plots of ground biomass data and the second group lidar metrics. The 

point represents each study plot. 
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Figure 20. Scatter plots of logarithm transformation biomass and the second group of 

lidar metrics. The point represents each study plot. 
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multicollinearity effects. Multicollinearity effects appear when two or more variables of 

the multiple regression model have a strong correlation with each other. The final model 

(eq. 5) showed no multicolinearity using NHBin1 and NHBin2, as indicated by the VIF 

for each variable being less than 5.  

NHbin1 and NHbin2 are the independent variables in the final height bin model 

and the natural logarithm of ground biomass data is the dependent variable. The model is 

given below. 

 

Y෡=100×exp(8.18 - 3.18NHbin1 - 6.29NHbin2 + 1.14)    (eq. 5) 

 

Where the first constant,100, extrapolates the biomass estimation from plot level 

to hectare level, ෠ܻ is the total biomass (kg/ha), and the last constant item is the correction 

factor mentioned in the previous paragraph. The multiple R-squared value of the 

equation was 0.79 and the adjusted R-squared value was 0.77. The final height bin 

model indicates that the information between 0.5 to 2 m is the most useful for estimating 

mesquite tree biomass. 
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Figure 21. The relationship between ground biomass data and the predicted biomass of 

height bins. The predicted biomass was calculated using  (eq.5). 
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3.2 Local scale biomass map 

  

The model of ordinary cokriging was determined by the covariance spherical 

model (Figure 22). The major range was 256.74 m, the lag size was 29.25 m, the partial 

sill was 14437 and the number of lags was 12. After the model of ordinary cokriging was 

determined, cross-validation was used to diagnose the model and found its associated 

parameter values to be reasonable, as shown in figure 23. Cross-validation removes one 

data location at a time and predicts the associated data value and compares the measured 

and predicted value. The multiple and adjusted R-squared values were both 0.99 and the 

root mean square error (RMSE) was 8.3 (kg/ha). The cross-validation results show the 

cokriging model to be reasonable for generating a biomass map. 

The biomass map is shown in Figure 24. The values of mesquite standing 

biomass in the map represent the biomass of mesquite standing per pixel, with the pixel 

size being 0.25 m2. The green color indicates higher biomass, and the red color shows 

pixels with less biomass values. The biomass map indicates a decreasing biomass 

gradient in the North-South direction. The reason is that the plots in the northern part of 

the research unit have larger trees, while the southern part has younger trees.  
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Figure 22. The model of ordinary cokriging –covariance spherical model. The points 

represent the training points. 
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Figure 23. The cross-validation results of ground biomass data (reference value) and 

predicted biomass (predicted value) using ordinary cokriging to estimate mesquite 

biomass. The points represent the training points. The solid line is the fitted line and 

the dashed line shows a one-to-one relationship. 
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Figure 24. The result of biomass map was created by ordinary cokriging at Smith Walker 

Research Unit. 
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4. DISCUSSION 

 

In a forest, the individual tree and forest structures could be accurately derived 

by terrestrial lidar (Zande et al., 2006; Strahler et al., 2008). However, while we acquired 

the terrestrial lidar over woody plant vegetation, the individual tree structures were 

difficult to characterize. The multiple stem mesquite trees had short trunks that made 

individual stem identification and DBH or stem diameter measurements difficult to 

estimate using terrestrial lidar data. The terrestrial lidar was able to capture the complex 

architecture of branches and stems of the mesquite trees. Therefore, we investigated the 

usefulness of variables derived from lidar point cloud data as independent variables for 

our biomass estimation equations. 

Mesquite tree biomass has been estimated by measuring basal stem diameter and 

tree height (Felker et al., 1982; Northup et al. 2005; Ansley et al. 2010). Linear 

regression using woody plant metrics, basal stem diameter and tree height, as 

independent variables has been used to estimate the green weight of woody plants as 

well as oven dried biomass. Felker et al. (1982) found the natural logarithm of basal area 

and stem diameter had high R-squared values (0.9) when compared to the natural 

logarithm of green weight. Northup et al. (2005) and Ansley et al. (2010) found the 

relationship between basal stem diameter and oven dried biomass had high correlation, 

with R-squared values of 0.95 and 0.92, respectively. These results show that basal stem 

diameter can be a good predictor for estimating both fresh and oven dried biomass. In 
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our study, the height percentile approach had an R-squared value of 0.81 and the height 

bins approach had an R-squared value of 0.77 for oven dried biomass.  

The comparison of the height percentile and height bins approaches showed the 

height percentile approach to have a stronger relationship with the woody plant biomass 

than the height bins approach at plot level, as indicated by the higher R-squared. 

However, the result of the height bins approach can be more easily interpreted than the 

height percentiles approach, because height bins have fixed dimensions where height 

percentiles can vary in the vertical dimension among plots. The height bins model used 

the lower height bins (NHBin1 and NHBin2) because every plot contained trees at least 

that tall, whereas not all plots had trees tall enough to have values in the upper height 

bins (NHBin5, NHBin6 and NHBin7). 

NDVI is a modified Simple Ratio Vegetation Index (SR) used to represent the 

reflectance of near infrared energy, with healthy vegetation having higher NDVI values. 

In this study, the assumption that the NDVI and reference biomass data would be highly 

correlated was investigated but found to be weak. The reason could be that although 

NDVI has been used to estimate vegetation biomass, only one vegetation index may not 

be enough to accurately predict vegetation biomass. Foody et al. (2003) used more than 

one hundred LandSat TM band ratios to estimate the correlation between band ratios and 

biomass. Todd et al. (1998) also used green vegetation index, bright index, wetness 

index and NDVI to estimate vegetation biomass. In our study, we only investigated 

NDVI with ground biomass data to create a biomass map. The training points showed 

strong spatial autocorrelation (Moran’s I = 0.68) because the plots were only 100 m² and 
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a multiple training points had to be selected from each plot to have enough training 

points to have a large enough sample size to get significant results. Selecting only a 

single point from each of the 23 plots would eliminate the spatial autocorrelation but 

would not be enough to estimate biomass. Subsequently, we selected three to four points 

for each plot, which caused the spatial autocorrelation. As seen in Figure 5, some of the 

study plots were clumped. To reduce the spatial autocorrelation in the future, training 

plots should be better distributed throughout the Smith Walker Research Unit. However, 

our results, when shifting the biomass area reporting units from 0.25 m2 to 1 hectare, 

agree with other studies. Whisenant and Burzlaff (1978) found the biomass of old-

growth mesquite standing was 19.4 Mg ha-1 in Texas and Ansley et al. (2010) also 

indicated the biomass of mesquite standing at a typical tree density of 750 tree ha-1 was 

22.1 Mg ha-1.  

Satellite images with high spatial resolution could also be used instead of the 

NAIP aerial image, but the images are more expensive. Future work could investigate 

the use of high resolution satellite imagery for scaling up biomass estimates and 

ancillary data, such as maps of soil types, slope, and aspect. Maps of biomass 

availability can also be combined with road maps to estimate the cost effectiveness of 

harvesting and transporting mesquite trees to biomass plants for bioenergy production. 
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5. CONCLUSION 

 

The study provides new methodologies for rangeland managers and researchers 

to estimate the biomass of woody plants at plot level and this non-destructive method 

may be helpful in quantifying the amount of bioenergy that can be generated by 

removing woody plants from an area. The height bin model is more easily interpreted 

than the height percentile model. Although the height percentile model had a higher R-

squared value than the height bin model, the independent variables used with the height 

bin model are robust. Future studies could combine terrestrial and airborne lidar data to 

improve the height bin model with a data fusion approach. Airborne lidar could provide 

better point cloud data at the top of the woody plants canopy while terrestrial lidar has 

the ability to scan lower layers of the canopy.  

Multispectral imagery covered a larger area than the terrestrial lidar data. Future 

studies could focus on the development of methods by using high spatial resolution 

satellite imagery or airborne lidar data for assessing woody plant biomass at local to 

regional scales. Furthermore, we need a better distribution of training points to improve 

our biomass map. 

Overall, the study used an emerging lidar technology to assess woody plant 

biomass and create new equations for estimating woody plant biomass. In addition, the 

study used NAIP aerial imagery to create a biomass map at a local level. 

  



 

 
 

 

52

REFERENCES 

 

Anderson, G. L., Hanson, J. D., & Haas, R. H. (1993). Evaluating Landsat Thematic 

Mapper derived vegetation indices for estimating above-ground biomass on 

semiarid rangelands. Remote Sensing of Environment, 45, 165–175. 

Ansley, R. J., Mirik, M., & Castellano, M. J. (2010). Structural biomass partitioning in 

regrowth and undisturbed mesquite (Prosopis glandulosa): implications for 

bioenergy uses. Global Change Biology Bioenergy, 2, 26-36. 

Boelman, N. T., Stieglitz, M., Rueth, H. M., Sommerkorn, M., Griffin, K. L., Shaver, G. 

R., & Gamon, J. A. (2003). Response of NDVI, biomass, and ecosystem gas 

exchange to long-term warming and fertilization in wet sedge tundra. Oecologia 

135(3), 414-421. 

Brown, J. R. & Archer, S. (1989). Woody plant invasion of grasslands: establishment of 

honey mesquite (Prosopis glandulosa var. glandulosa) on sites differing in 

herbaceous biomass and grazing history. Oecologia, 80, 19-26. 

Chen, Q., Baldocchi, D., Gong, P., & Kelly, M. (2006). Isolating individual trees in a 

savanna woodland using small footprint lidar data. Photogrammetric Engineering 

and Remote Sensing, 72(8), 923-932. 

Chojnacky, D. C. (2002). Allometric scaling theory applied to FIA biomass estimation. 

In McRoberts RE, Reams GA, Van Deusen PC, Moser JW (Eds.), Proceedings of 



 

 
 

 

53

Third Annual Forest Inventory and Analysis Symposium, 17-19 October 2001, 

Traverse City, MI. (pp. 96–102) Gen. Tech. Rep. NC-230. St. Paul, MN: U.S. 

Department of Agriculture, Forest Service, North Central Research Station.  

Clayton, M. (2008). As global food costs rise, are biofuels to blame? Christian Science 

Monitor. http://www.csmonitor.com/Money/2008/0128/p03s03-usec.html. last 

accessed on Apr. 4, 2010. 

Davis, Charles G. Vernon, TX. Handbook of Texas Online. http://www.tshaonline.org 

/handbook/online/articles/hev01, accessed November 25, 2010. 

Definiens Developer 7 Reference Book. (2007). http://www.pcigeomatics.com/products 

/pdfs/definiens/ReferenceBook.pdf, accessed on December 21, 2010. 

Demirbas, A. (2009). Political, economic and environmental impacts of biofuels: A 

review. Applied Energy, 86, 108-117. 

Department of Energy (2010). Fossil Fuels. http://www.energy.gov/energysources 

/fossilfuels.htm, last accessed on Sept. 02, 2010. 

Felker, P. (1984). Economic, environmental, and social advantages of intensively 

managed short rotation mesquite (Prosopis spp) biomass energy farms. Biomass, 5, 

65-77. 

Felker, P., Clark, P. R., Osborn, J. F., & Cannell, G. H. (1981). Screening Prosopis 

(Mesquite or Algarrobo) for biofuel production on semiarid lands. Symposium on 



 

 
 

 

54

Dynamics and Management of Mediterranean-type Ecosystems. June 22-26, 1981, 

San Diego, CA. 

Felker, P., Clark, P. R., Osborn, J. F., & Cannell, G. H. (1982). Biomass estimation in a 

young stand of mesquite (Prosopis spp), ironwood (Olneya tesota), Palo Verde 

(Cercidium floridium, and Parkinsonia aculeata), and Leucaena (Leucaena 

leucocephala). Journal of Range Management, 35(1), 87-89. 

Foody, G.M., Boyd, D.S., & Cutler, M.E.J. (2003). Predictive relations of tropical forest 

biomass from Landsat TM data their transferability between regions. Remote 

Sensing of Environment, 85, 463–474. 

Forman, R.T.T. (1995). Some general principles of landscape and regional ecology. 

Landscape Ecology, 10, 133-142 

Henning, J. G., & Radtke, P. J. (2006a). Detail stem measurements of standing trees 

from ground-based scanning lidar. Forest Science, 52(1), 67-80. 

Henning, J. G., & Radtke, P. J. (2006b). Ground-based laser imaging for assessing three-

dimensional forest canopy structure. Photogrammetric Engineering & Remote 

Sensing, 72(12), 1349-1358. 

Hierro, J. L., Branch, L. C. Villarreal D., & Clark, K. L. (2000). Predicted equations for 

biomass and fuel characteristics of Argentine shrubs. Journal of Range 

Management, 53(6), 617-621. 



 

 
 

 

55

Hopkinson, C., Chasmer, L., Young-Pow , C., & Treitz, P. (2004). Assessing forest 

metrics with a ground-based scanning lidar. Canadian Journal of Forest Research. 

34, 573-583. 

Jenkins, J. C., Chojnacky, D. C., Heath, L. S., & R. Birdsey, A. (2003). National-scale 

biomass estimators for United States tree species. Forest Science, 49(1), 12-35. 

Jensen, John R. (2005). Introductory digital image processing-A remote sensing 

perspective. (3rd ed.). Upper Saddle River, NJ: Pearson Education, Inc. 

Jensen, John R. (2007). Remote sensing of the environment-An earth resource 

perspective. (2nd ed.). Upper Saddle River, NJ: Pearson Education, Inc. 

Kiniry, J. R., (1998). Biomass accumulation and radiation use efficiency of honey 

mesquite and eastern red cedar. Biomass & Bioenergy, 15(6), 467-473. 

Lefsky, M. A., Cohen, W. B., Parker, G. G. & Harding, D. J. (2002). Lidar remote 

sensing for ecosystem studies. Bioscience, 52(1), 19-30. 

Lefsky, M. A., Harding, D., Cohen, W. B., Parker, G. & Shugart, H. H. (1999). Surface 

lidar remote sensing of basal area and biomass in deciduous forests of eastern 

Maryland, USA. Remote Sensing of Environment, 67(1), 83-98. 

Little, E.L., Jr. (1976). Atlas of United States trees, volume 3, minor Western 

hardwoods: U.S. Department of Agriculture, Washington, D.C. Miscellaneous 

Publication No. 1314. 



 

 
 

 

56

Little, E.L., Jr. (2006). Field guide to trees-eastern region. New York: Alfred A. Knopf, 

Inc. 

Maas, H. -G., Bienert, A., Scheller, S., & Keane, E. (2008). Automatic forest inventory 

parameter determination from terrestrial laser scanner data. International Journal of 

Remote Sensing, 29(5), 1579-1593. 

Magnussen, S., & Boudewyn, P. (1998). Derivations of stand heights from airborne laser 

scanner data with canopy-based quantile estimators. Canadian Journal of Forest 

Research. 28, 1016-1031. 

Maltamo, M., Packalen, P., Yu, X., Eerikainen, K., Hyyppa, J., & Pitkanen, J. (2005). 

Identifying and quantifying structural characteristics of heterogeneous boreal forests 

using laser scanner data. Forest Ecology and Management, 216(1-3), 41-50. 

Næsset, E. & Bjerknes, K.-O. (2001). Estimating tree heights and number of stems in 

young forest stands using airborne laser scanner data. Remote Sensing of 

Environment, 78, 328-340. 

Næsset, E. (2004). Practical large-scale forest stand inventory using a small-footprint 

airborne scanning laser. Scandinavian Journal of Forest Research, 19, 164 -179. 

Navar, J., Najera J., & Jurado, E. (2002). Biomass estimation equations in the 

Tamaulipan thornscrub of north-eastern Mexico. Journal of Arid Environments, 

52(2), 167-179. 



 

 
 

 

57

Nelson, R., Krabill, W., and Tonelli, J. (1988). Estimating forest biomass and volume 

using airborne laser data. Remote Sensing of Environment, 24(2), 247-267. 

Northup, B.K., Zitzer, S.F., Archer, S., McMurtry, C.R., & Boutton, T.W. (2005). 

Above-ground biomass and carbon and nitrogen content of woody species in a 

subtropical thornscrub parkland. Journal of Arid Environments, 62, 23-43. 

Paruelo, J. M., Epstein, H. E., Lauenroth, W. K., & Burke, I. C. (1997). ANPP estimates 

from NDVI for the central grassland region of the United States. Ecology, 78(3), 

953–958. 

Patenaude, G., Hill, R.A., Milne, R., Gaveau, D.L.A., Briggs, B.B.J., & Dawson, T.P. 

(2004). Quantifying forest above ground carbon content using LiDAR remote 

sensing. Remote Sensing of Environment, 93, 368-380. 

Popescu, S.C. (2007). Estimating biomass of individual pine trees using airborne lidar. 

Biomass & Bioenergy, 31, 646-655. 

Popescu, S.C., & Zhao, K. (2008). A voxel-based lidar method for estimating crown 

base height for deciduous and pine trees. Remote Sensing of Environment, 112, 767-

781. 

Popescu, S.C., Wynne, R.H., & Nelson, R.F. (2003). Measuring individual tree crown 

diameter with lidar and assessing its influence on estimating forest volume and 

biomass. Canadian Journal of Remote Sensing, 29, 564-577. 



 

 
 

 

58

Smith, J.E., Heath, L.S., Jenkins, J.C., & United States. Forest Service. Northeastern 

Research Station. (2003). Forest volume-to-biomass models and estimates of mass 

for live and standing dead trees of U.S. forests. Newton Square, PA: U.S. Dept. of 

Agriculture, Forest Service, Northeastern Research Station. 

 Strahler, A.H., Jupp, D. L. B., Woodcock, C.E., Schaaf, C.B., Yao, T., Zhao, F., Yang, 

X., Lovell, J., Culvenor, D., Newnham, G., Ni-Meister, W. And Boykin-Morris, W. 

(2008). Retrieval of forest structural parameters using a ground-based lidar 

instrument (Echidna®). Canadian Journal of Remote Sensing, 34, S426—S440. 

Todd, S.W., Hoffer, R.M., & Milchunas, D.G. (1998). Biomass estimation on grazed and 

ungrazed rangelands using spectral indices. International Journal of Remote 

Sensing, 19, 427–438. 

Van Auken, O. W. (2000). Shrub invasions of North American semiarid grasslands. 

Annual Review of Ecology and Systematics, 31, 197-215. 

Van der Zande, D., Hoet, W., Jonckheere, L., van Aardt, J., & Coppin, P. (2006). 

Influence of measurement set-up of ground-based LiDAR for derivation of tree 

structure. Agricultural and Forest Meteorology, 141, 147-160. 

Whisenant, S.G., & Burzlaff, D.F. (1978). Predicting green weight of mesquite 

(Prosopis glandulosa torr). Journal of Range Management, 31, 396-397 

Zheng, D.L., Rademacher, J., Chen, J.Q., Crow, T., Bresee, M., le Moine, J., & Ryu, 

S.R. (2004). Estimating aboveground biomass using Landsat 7 ETM+ data across a 



 

 
 

 

59

managed landscape in northern Wisconsin, USA. Remote Sensing of Environment, 

93, 402-411 

 



 

 
 

 

60

VITA 

 

Name:  Nian-Wei Ku 

Education: B.S. Forestry-National Chiayi University, Taiwan (ROC) 

M.S. Forestry-Texas A&M University, USA 

Address: Department of Ecosystem Science and Management, 

Spatial Sciences Laboratory, 

1500 Research Plaza, Office 217, 

College Station, TX 77843-2120, USA 

E-mail: goofno17@tamu.edu 

 


