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ABSTRACT 
 

Fault Detection in Dynamic Systems Using the Largest Lyapunov Exponent. 

(May 2011) 

Yifu Sun, B.S, Beijing Institute of Technology 

Chair of Advisory Committee: Dr. Alexander G. Parlos 

 

A complete method for calculating the largest Lyapunov exponent is developed in 

this thesis. For phase space reconstruction, a time delay estimator based on the average 

mutual information is discussed first. Then, embedding dimension is evaluated 

according to the False Nearest Neighbors algorithm. To obtain the parameters of all of 

the sub-functions and their derivatives, a multilayer feedforward neural network is 

applied to the time series data, after the time delay and embedding dimension are fixed. 

The Lyapunov exponents can be estimated using the Jacobian matrix and the QR 

decomposition. The possible applications of this method are then explored for various 

chaotic systems. Finally, the method is applied to some real world data to demonstrate 

the general relationship between the onset and progression of faults and changes in the 

largest Lyapunov exponent of a nonlinear system. 
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CHAPTER I 

INTRODUCTION 

1.1 Research Motivation 

These days, failures of machinery and industrial equipment often cause down-

time, costly repairs, and possibly catastrophic events. Therefore the fault detection and 

diagnosis of dynamical systems has become both a useful and important field. Numerous 

books and papers are devoted to various approaches to fault detection and diagnosis. 

Common fault detection and diagnosis methods include the model-based method, the 

data-based method, and the knowledge-based method. But in most practice situations, an 

accurate model of the dynamical system in question is not available. Even worse, very 

often only little knowledge and information about the system is known, and only time-

series experimental output data is available. As a result, the data-based or data driven 

method is often the more promising route. Besides, nonlinear dynamical systems 

sometimes exhibit chaotic behavior, and the Lyapunov exponent is a useful tool to 

distinguish and measure the extent of chaos. Previous studies on chaos and on the 

Lyapunov exponents have found applications to several fields such as turbulence, 

communication, heartbeats, and so on. However, little research has been done on the 

relationship between the behavior of Lyapunov exponents and fault detection. 
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1.2 Literature Review 

In the history of the field of fault detection, many methods have been proposed to 

extract and analyze experimental data in order to detect faults and assist in diagnosis, 

including autoregressive modeling [1], empirical model decomposition [2], wavelet and 

wavelet packet methods [3], etc. However, in real world situations, the failures of 

systems such as electric power systems, manufacturing machines, and automatic control 

systems are always accompanied by nonlinear dynamics which may exhibit chaotic 

behavior, especially as motion changes from regular to chaotic. Many traditional 

methods can’t effectively extract these useful nonlinear features. As a result, during last 

two decades researchers have begun to propose a wide variety of methods geared toward 

detecting faults in nonlinear dynamical systems, such as time-frequency analysis, and so 

on. However it is still difficult to detect faults early on due to certain weakly developing 

faults usually covered by background noise and other chaotic elements. If the signal to 

noise ratio (SNR) is low, weak fault signals may not be extracted from background noise 

using only the above-mentioned methods. In recent years, as chaos theory has 

developed, some new technologies (especially phase space reconstruction) have begun to 

be applied to extract information hidden beneath experimental data. 

Chaos was first experimentally identified in weather prediction problems by 

Edward Lorenz in 1960 and the discovery was published in 1963[4]. For distinguishing 

whether or not chaos appears, the Lyapunov exponent is usually considered as a very 

important and useful indicator, especially with the development of the phase space 

reconstruction technique. According to Oseledec’s fundamental paper [5], Lyapunov 
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exponents measure the exponential rates of divergence or convergence of nearby orbits 

of an attractor in the state space. A system with one or more positive Lyapunov 

exponents is defined as chaotic. An analysis of Lyapunov exponents can give researchers 

information about the extent of chaotic contribution in the system. Generally, Lyapunov 

exponents can be applied as features during the diagnostic process in order to 

differentiate one system state from another. 

Wolf et al [6] presented the first algorithm to estimate non-negative Lyapunov 

exponents from an experimental time series data set; such a data set is usually available 

from observations. This algorithm examines the orbital divergence of length scales that 

are always as small as possible, using the Gram-Schmidt reorthonormolization (GSR) 

procedure to reconstruct the phase space of the system while the Lyapunov exponent is 

calculated by the phase space evolution.  

In Wolf’s method, the embedding dimension and the reconstruction time delay 

need to be provided or estimated. An unsuitable embedding dimension or time delay 

could cause an undesirable calculation result of the Lyapunov exponent. At the time this 

research was first published, a number of researchers focused on exploring methods to 

find the ideal embedding dimension and the time delay. 

Rhodes [7] originally developed the algorithm called False Nearest Neighbors 

(FNN) to determine the embedding dimension of an autonomous time series. This 

method is a tool used to determine if one prescribed vector contains enough information 

to predict another vector directly, solely from the properties of the data. In this paper, the 
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author introduces the definition of the False Nearest Neighbor and the method by using 

the False Nearest Neighbor as a criterion. 

Then Kennel and Abarbanel [8] demonstrate a more reliable method False 

Neighbors and False Strands, to estimate the minimum necessary embedding dimension. 

This research improves upon previous work by correcting for systematic effects. With 

greater cost of computation, the method can distinguish easily between colored noise and 

low-dimensional dynamics. In 2002, Min Lei et al. used another method, the Symplectic 

Geometry (SG) method [9], to estimate the embedding dimension. The SG method, 

which measures preserving characteristic and is capable of retaining unchanged the 

essential character of the primary time series while performing symplectic similar 

transformations. In addition, the SG method does not strongly depend upon the length of 

the time series, and is not impacted by either noise or sampling time. 

On the one hand, the embedding dimension can be evaluated by many methods, 

especially FNN (which is the most well developed method). On the other hand, a lot of 

work has been done by researchers on the reconstruction delay time. In Michael T. 

Rosenstein’s paper [10], the author mentioned that the best delay time was obtained 

when the autocorrelation function drops to 1-1/e of its initial value.  

Andrew M. Fraser and Harry L. Swinney found a superior criterion in [11], 

which they called first minimum mutual information, for the choice of time delay. An 

O(NlogN) algorithm for calculating mutual information is described in their research, 

and several systems that were applied to this criterion were demonstrated in the paper. 

N.J.I. Mars in [12] proposed that the average mutual information as the criterion be 
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applied to non-linear systems. With these methods, an iteration probability density 

estimation procedure is needed. The frequency histogram method was illustrated by 

Emanuel Parzen [13] and the kernel density estimator was introduced by Young-II 

Moon, Balaji Rajagopalan, and UpmanuLall [14].  

Besides these traditional methods used to evaluate time delay and embedding 

dimension, recently Hongguang Ma, Chongzhao Han in [15] illustrated a method for 

choosing a pair of embedding dimension and time delay operating from the viewpoint 

that both the embedding dimension and time delay are closely related. The technique is 

based upon a non-biased multiple autocorrelation approach [16]. 

After deciding on the embedding dimension and time delay, some researchers 

began to develop other algorithms to estimate the largest Lyapunov exponent or the 

spectrum of Lyapunov exponents (excluding the above-mentioned GSR method [6]). 

In [17], Ramazan Gencay and W. Davis Dechert gave a detailed introduction to 

the recursive QR decomposition procedure for finding the eigenvalues of products of 

matrices and the determination of local Lyapunov exponents for finite time lengths 

based on QR decomposition. This method is now widely used because it has some 

advantages over the GSR method: all Lyapunov exponents can be obtained at the same 

time, and the results are more accurate. 

Neural networks were described in many fields of biology before they became 

rapidly-developing tool used in many fields. This tool can now be used in the calculation 

of Lyapunov exponents.  
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Kevin Gurney’s book Introduction to Neural Networks [18] and Simon Haykin’s 

book Neural Networks: a Comprehensive Foundation [19] offered definitions of neural 

networks, the least mean square algorithm and multilayer feedforward networks.  

Ramazan’s paper [17] applies the multivariate feed forward network estimation 

technique to the Lyapunov exponent calculation process. Based on a trained neural 

network and calculated derivatives of formulated functions, the Lyapunov exponents 

were evaluated through the QR-decomposition method.  

Daniel F. McCaffrey, Stephen Ellner, A. Ronald Gallant and Dougas W. Nychka 

[20], based on algorithm similar to that in [17], estimate the dominant Lyapunov 

exponent of a nonlinear dynamic system with additive noise. They also show results 

from several implementations, and prove that the neural network regression method can 

provide reliable values for the largest Lyapunov exponent, at least in the case of a Hénon 

map. 

Based on those methods mentioned above, researchers began to use the 

Lyapunov exponents to study other fields. In Mototsugu Shintani and Oliver Linton’s 

paper [21], Lyapunov exponent estimator using a neural network is used, to develop a 

statistical framework for testing a chaotic hypothesis and apply it to daily stock return 

data. 

In addition, the papers discussed above are all based on time delay phase space 

reconstruction, which is commonly used to evaluate Lyapunov exponents. Nevertheless, 

Pengcheng Xu calculated Lyapunov exponents based on a differential phase space 

reconstruction instead of time a delay phase space reconstruction, as described in [22]. 
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Theoretically, the chaotic attractor of a differential phase space should be more accurate, 

and the Lyapunov exponents should be nearly the same to the theoretical values. 

However, until now, there has been little research in this area. 

Besides the above-mentioned evaluation of the largest Lyapunov exponent, other 

methods to detect the presence or absence of chaos in a dynamical system have been and 

continue to be developed. The newly developed 0-1 Test method was first derived by 

Georg A. Gottwald and Ian Melbourne [23]. Their method is applied directly to the time 

series data and does not require phase space reconstruction. The test developed from 

statistical methods can be viewed as an algorithm to determine binary quantities. The 

output of the test can only be 1 or 0, representing chaos or regularity, respectively, for a 

dynamical system. The authors subsequently published papers [24] and [25] to provide 

further evidence of the effectiveness of this method. 

The above discussion has focused on the time domain of chaotic dynamical 

systems. Power spectrum analysis provides a new view of the chaotic system analysis: 

frequency domain. Publications [26] and [27], by Brian D. Storey and H. P. F. 

Swinnerton-Dyer, respectively, provide different ways to obtain a power spectrum from 

a scalar time series. Additionally, M C Valsakumar and S V M Satyanarayana [28] 

investigated the nature of the computed spectral density of a discrete and finite length 

body of time series data, and performed a comparison between the theoretical power 

spectrum and the numerical power spectrum. The feature of decay in the high frequency 

part of the power spectrum in all chaotic dynamical systems could turn out to be a useful 
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tool for distinguishing the presence or absence of chaos, though this method has not been 

sufficiently proven. 

Though some publications mentioned Lyapunov exponents in some cases for 

fault detection [29] [30], until now, no one explored the relationship between Lyapunov 

exponents and fault detection. 

1.3 Problem Statement 

Fault detection in dynamical systems is a very important issue. However, it is 

difficult to extract the weak and early fault signal for some nonlinear systems. The 

largest Lyapunov exponent is usually used to distinguish and to measure chaos of 

dynamical systems. The exponent or its change can have some relationships with system 

faults. Usually, the equations of the dynamical systems are difficult to obtain directly; 

only time series data sets are observable. Thus, researchers must propose methods of 

calculating the largest Lyapunov exponent from time series data. Based on these 

methods, the way faults within a dynamical system change the Lyapunov exponents 

needs to be explored. 
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1.4 Research Contribution 

This research has made the following contributions: 

 A method for calculating the Lyapunov exponents from time series data is 

implemented. 

 This method of computing Lyapunov exponents is applied to some simple 

problems and to a set of experimental data acquired from a real world system to 

explore the relationship between the largest Lyapunov exponent and incipient 

fault progression. 

1.5 Organization  

In Chapter II, a definition of chaos and a description of chaotic dynamical system 

are both given. To better understand these concepts, some classic examples and well-

known attractors are briefly presented. Then the main characteristic of chaos, which is 

the sensitive dependence on initial conditions, and the Lyapunov exponent, which is the 

indicator of chaos are both introduced.  

In Chapter III, the method of calculating the Lyapunov exponents from a time 

series data set is illustrated. The first step is that of phase space reconstruction, in which 

the widely used algorithms for evaluating the embedding dimension (False Nearest 

Neighbors) and the time delay (Average Mutual Information) are introduced. Then, the 

QR decomposition and its application to the Lyapunov exponents calculation are 

derived. Finally, the neural networks, especially the Multilayer Neural Network, is 

illustrated and applied to the process of estimating the Lyapunov exponents.  
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In Chapter IV, the complete algorithm developed in Chapter III is used on the 

data extracted from three different chaotic systems: Lorenz, Hénon and Rössler. In the 

study of the application to the Lorenz system, the system with perturbed parameters, 

added noise and inputs are also tested. Furthermore, the effect of changing parameters on 

a large scale, on the Lyapunov exponents is also exhibited. 

In Chapter V, a real world data set acquired from an induction motor is used to 

study the relationship between fault detection and the Lyapunov exponents. Based on the 

calculation results obtained by using the method mentioned in Chapter III, the changes 

of the largest Lyapunov exponent and their distributions through the entire motor 

bearing damage process are presented and analyzed.  

In Chapter VI, the method of calculating the Lyapunov exponent, the 

performance of the method to several systems and the application of the method on fault 

detection are summarized and some conclusions are drawn. Rooted in the experimental 

results, the advantages and drawbacks of the method are demonstrated. In addition, 

further research possibilities are addressed. 
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CHAPTER II 

INTRODUCTION OF CHAOS  

AND LYAPUNOV EXPONENTS 

2.1 Introduction 

Dynamical systems can be presented by attractors in phase space, and chaotic 

behavior sometimes occurs in these systems. In this section, a description of chaos is 

offered and two examples are described: a dripping faucet and a magnet near a 

superconductor. Then, different varieties of dynamical systems are briefly introduced. 

The attractors in these systems can be categorized into four groups: fixed point 

attractors, periodic attractors, quasi-periodic attractors and chaotic attractors. In order to 

develop a better understanding of these attractors, examples and the phase space 

appearance for each kind are shown. Furthermore, the main feature of chaos, sensitive 

dependence on initial conditions, is illustrated. A description of the most important 

indicator of chaos, the Lyapunov exponent, is offered in the next section. For 

comparison purposes, other methods of distinguishing chaos (the 0-1 test and the power 

spectrum method) are briefly discussed. The final section is dedicated to the chapter 

summary. 
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2.2 Description of Chaos 

The greatest power of science lies in its ability to relate causes to effects. 

Eclipses, for instance, can be predicted in advance due to the universal law of 

gravitation. However, there are numerous other natural phenomena that are not 

predictable, such as weather, the roll of a dice, smoke as it leaves the end of a cigarette, 

and so on. These phenomena are not easy to predict. These types of phenomena are 

collectively called chaos. Several researchers have performed experiments geared 

toward observing and studying chaos and chaotic behavior. 

The dripping faucet is an everyday occurrence in our life, but the experiment 

performed by Shaw (1984) demonstrates how a dripping faucet illustrates chaos. In this 

experiment, water drops fall from the faucet, and the discrete time intervals between 

each drop are recorded. When the flow rate is small, the time intervals are equal. As the 

flow rate is increased to certain level, the time intervals become periodic. When the flow 

rate is further increased until it is sufficiently high, no apparent regularity of the 

sequence of time intervals can be observed. This irregularity is an example of chaos. The 

explanation of this phenomenon is the oscillation of the water at the tip (see in Fig. 2.1). 

The oscillation has an effect on the initial condition of the following drop. When the 

flow rate is small, the drops seem to follow some regular pattern. But as the flow rate 

increases, the variation in initial conditions becomes significant and the result is chaos. 
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Fig. 2.1. The oscillation of the water at the tip before and after the water drop [31]. 

 

Another famous example is Francis Moon’s experiment involving a magnet near 

a superconductor. A sketch of the experiment setup is shown in Fig. 2.2, as taken from 

[32]. A thin cantilevered beam with a cylindrical rare earth magnet is suspended at the 

tip. The beam and the magnet act as a pendulum with additional restoring forces due to 

the bending of the clamped end of the beam. The magnet vibrates above the cylindrical 

disc of the superconductor. The elastic beam is in the form of a thin steel cantilever and 

the rare earth cylindrical magnet is attached to the end of the elastic beam with its 

cylindrical axis transverse to the long direction and parallel to the wide face of the beam. 

The clamped end of the beam vibrates with a Sinusoidal input motion. A strain gauge, 

attached to the clamped end of the beam, is used to detect the lateral motion of the 

magnet. The results obtained from the gauge provide an example of chaotic behavior. 

 



14 

 

 

 
Fig. 2.2. Sketch of a magnet, superconductor, and elastic beam support and excitation 

apparatus. 

2.3  Categories of Dynamical Systems 

A dynamical system is defined as a mathematical description for time evolution 

of a system in a state space. State space is the set of all possible states of a dynamical 

system, and each state corresponds to a unique trajectory in the space. State space 

represents the motion of the dynamical system in geometric form. A good example of a 

dynamical system is a simple pendulum. Its motion is determined by only two variables: 

position and velocity. Thus, the state of the pendulum is a point in the state space 

marked by the two coordinates that are the degrees of freedom in the system’s motion. 

The point moves following a path or orbit through the state space as the pendulum 

swings back and forth in time. If the pendulum is ideal and frictionless, as shown in Fig. 

Strain gage

Elastic beam

Rare earth 

magnet
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2.3 (left), the orbit is a closed curve through a sequence of the states, and the attractor 

(an attractor is the behavior into which the system settles, or to which it is attracted) is 

called a limit cycle. If the pendulum experiences friction, as shown in Fig. 2.3 (right), 

the orbit spirals to a fixed point because the pendulum eventually comes to a halt. This 

orbit is known as a fixed point attractor. 

 
Fig. 2.3. The real space and state space of a pendulum with and without friction. 

 

The next important and more complicated attractor is a torus, which is the 

surface of revolution generated by revolving a in circle within a three-dimensional space 

about an axis coplanar with that circle. It looks like a doughnut, as shown in Fig. 2.4. 

Because two independent oscillations make up this shape of motion, it is also called 

quasi-periodic motion. Furthermore, some attractors can be of higher dimensional torus 

when they represent a combination of more than two oscillations. 
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Fig. 2.4. The appearance of a torus attractor [33]. 

 

Although a torus is much more complicated than a fixed point attractor and a 

limit cycle, quasi-periodic motion is still predictable. Compared with the three above-

mentioned predictable systems, chaotic dynamical systems have unpredictable behavior. 

In the state space, the chaotic behavior stems from the repeated operation of stretching 

and folding, so the chaotic attractor (which is also called the strange attractor) has a 

much more complicated structure than the other three attractors. The chaotic attractor 

does not have a smooth surface, but instead has folds at large scales. Fig. 2.5 shows the 

chaotic attractor of a Van der Pol equation, which is one of the simplest chaotic systems. 

 
Fig. 2.5. The phase space of a Van der Pol attractor. 
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The evolution of a dynamical system may occur either in continuous time or in 

discrete time. The former is called flow, and the latter is called map. For nonlinear 

systems, continuous flow and discrete map are also two mathematical concepts used to 

model chaotic behavior.  

The earliest and the most famous concrete example of low dimension continuous 

flow for chaotic dynamics is the Lorenz system, which was discovered by Edward N. 

Lorenz of the Massachusetts Institute of Technology in 1963. Motivated by a desire to 

understand the unpredictability of the weather, he simplified the motion equations to 

three dimensions and obtained an attractor now known as the Lorenz attractor.  

  frequently found example in the literature of a discrete map is the H non map, 

which is a model invented to investigate the properties of chaos. Detailed descriptions of 

the Lorenz system and the H non map are provided in  hapter IV. 

2.4 Sensitive Dependence upon Initial Conditions 

For a simple dynamical system such as a frictionless pendulum, motion is 

completely determined by the initial conditions. The three kinds of predictable attractors 

mentioned above all have the same feature: if the starting points of the orbits are near to 

one another, they will remain near to one another at all future times. 

However, chaotic dynamical systems exhibit behavior that is extremely sensitive 

or exponentially sensitive and dependent upon initial conditions. The stretching and 

folding operations gradually remove the initial information and replace it with other 

information. After a short time interval, all causal connections between the past and the 
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future are lost. Thus, small variations in initial conditions produce differences that vary 

exponentially over time. This is the main property of chaotic systems that make them 

different from other systems.  

In fact, exponential divergence is a local feature because attractors have a finite 

size and the two orbits that from a chaotic attractor cannot diverge forever. The orbits 

follow different paths, but eventually pass close to one another due to the stretching and 

folding. 

For non-chaotic dynamical systems, since the nearby points stay close in the 

future, the measured errors are not enlarged. In other words, the non-chaotic systems are 

not sensitive to measurement errors. For chaotic dynamical systems, the stretching 

operation may make small-scale uncertainties larger and the folding operation may bring 

widely separated trajectories together and erase large scale bodies of information. In this 

light, a tiny change could have a huge effect on a chaotic system. A frequently 

mentioned poetic description of chaos is that a butterfly in China can cause a hurricane 

in the Atlantic. 

2.5 Indicators of Chaos 

Chaos can be observed in a time series or in a phase space plot, but this is not 

very accurate. Therefore, the problem of detecting and qualifying chaos has become an 

important issue for researchers. At present, there are a number of methods employed to 

detect chaos in dynamical systems, such as power spectrum analysis, the 0-1 test, 

calculating the Lyapunov exponents, and so on. 
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  power spectrum is a plot of a given signal’s power or energy per unit time 

through different frequencies. The most common way to generate a power spectrum is 

based on a Fourier transform and autocorrelation. Power spectrum analysis provides a 

framework for analyzing chaos. For chaotic systems, a power spectrum has features of 

broadband signals and its tail is exponentially decaying at high frequencies. These 

features can be used to detect the existence of chaos.  

A recently developed method is the 0-1 Test which is used to extract a binary 

quantity from a power spectrum. It is designed to distinguish between regular and 

chaotic dynamics for a deterministic dynamical system. The inputs are time series data 

and the output is 1, which represents chaos or 0 which represents non-chaos. 

The Lyapunov exponents, especially the largest Lyapunov exponent, of a 

dynamical system have been shown to be the most important and most useful of a 

number of invariants, for fundamentally characterizing attractors and chaos. This 

exponent not only shows whether the system experiences chaos, but it also gives the 

level of the chaos within the system. 

In mathematics, the Lyapunov exponent of a dynamical system is a quantity that 

characterizes the rate of separation of infinitesimally close trajectories. If the initial 

separation of two trajectories in phase space can be expressed as a vector and denoted as 

     , the divergence after some time t can be represented as 

                                               ‖     ‖     ‖     ‖                                                (2.1) 

where       is the separation vector of the two state vectors of the two trajectories, and 

the exponent   varies with time. The properly averaged exponent,  , is called the 

http://en.wikipedia.org/wiki/Mathematic
http://en.wikipedia.org/wiki/Dynamical_system
http://en.wikipedia.org/wiki/Trajectory
http://en.wikipedia.org/wiki/Phase_space
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Lyapunov exponent. For systems with more than one dimension, the rate of separation 

can be different for the different orientations of the initial separation vector. 

Thus the Lyapunov exponent is precisely defined as the average exponential rate 

of divergence or convergence of two trajectories with nearby initial conditions. In a 

dynamical system or phase space with d dimensions, the separation rate of different 

orientations may be different and the number of Lyapunov exponents should be equal to 

the number of dimensions d. This group of Lyapunov exponents ordered from the largest 

to the smallest is called the spectrum of Lyapunov exponents, and the largest exponent 

which called the Maximal or Largest Lyapunov Exponent (MLE or LLE), is usually 

considered to be the indicator of chaos because it determines the predictability of a 

dynamical system. A positive Lyapunov exponent denotes a system to be chaotic, and a 

negative one indicates no chaos. 

The expression used to calculate the Lyapunov exponents can be stated as 

                                             
 

 
∑    

        

      
 
   ,                                              (2.2) 

for a discrete system; and 

                                                    
 

 
   

      

      
 ,                                            (2.3) 

for a continuous system.     ) or     ) is the ith state of the state vector. When N or t is 

finite,   is also called the local Lyapunov exponent. 

The LLE is a useful tool to distinguish various types of orbits and the 

characteristics of different dynamical systems. When the LLE is negative, the orbit 

attracts a stable fixed point or a stable limit cycle. A negative LLE is a characteristic of a 
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dissipative or non-conservative system. Such systems exhibit asymptotic stability; the 

more negative the exponent, the greater the stability. When the LLE is zero, the orbit is a 

neutral fixed point (or an eventually fixed point). An LLE of zero indicates that the 

system is in some sort of a steady state mode. A physical system with zero exponent is 

conservative. Such systems exhibit Lyapunov stability. When the LLE is positive, then 

the orbit is unstable and chaotic. Nearby points, no matter how close they are, will 

diverge to any arbitrary separation. All neighborhoods in the phase space will eventually 

be visited. For a discrete system, the orbits will look like snow on a television set. For a 

continuous system, the phase space will be a tangled sea of wavy lines, like in a pot of 

spaghetti. 

2.6 Chapter Summary 

In this chapter some basic concepts of chaos were introduced, along with some 

famous examples from the literature. Then, the demonstration of different kinds of 

dynamical systems and their attractor appearances in phase space led to an unpredictable 

dynamical system called a chaotic dynamical system. For chaos, sensitivity to initial 

conditions is the most distinguishable character trait, and its measurement is used in 

determining the Lyapunov exponent. The definition equation for calculating the 

Lyapunov exponent was stated in this chapter, but in reality the equations and the states 

of systems are not always available. Thus, calculating the Lyapunov exponents from 

time series data becomes an important problem to solve. This issue is presented in the 

next chapter. 



22 

 

 

CHAPTER III 

COMPUTING THE LYAPUNOV EXPONENTS 

FROM MEASUREMENTS 

3.1 Introduction 

Based on the information presented in Chapter II, it is clear that calculation of the 

LLE is significant for an accurate analysis of chaos in dynamical systems. This chapter 

focuses on the methods for calculating the LLE. In the next section, a method based on 

the previously discussed definition of the Lyapunov exponent is briefly introduced. 

Then, Wolf’s algorithm to evaluate the LLE directly from a time series data set is 

discussed. An implementation of this algorithm is also illustrated. And then a more 

comprehensive method is described in the following sections, in an effort to achieve 

more accurate results. The first step in this method is phase space reconstruction, the key 

points of which are the decisions regarding time delay and the embedding dimension. 

The next step is to attain the sub-functions and their derivatives by using neural 

networks. The last step is to formulate the Jacobi matrices, and calculate the Lyapunov 

exponents based on those matrices by using the QR decomposition.  
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3.2 Problems with Computing the Lyapunov Exponents 

If all of the relevant information in the system is well known, the calculation of 

the theoretical Lyapunov exponents can be based on the equations of that system. This 

method includes repeatedly using equation linearization and the Gram-Schmidt 

Reorthonormalization (GSR) procedure on the vector frame. The Lyapunov exponents 

are calculated, then, from the growth rates of the vectors.  

In reality, the equations in a given system are not easy to obtain. However, time 

series data sets can easily be acquired. When only time series data are recorded, the 

calculation method introduced above is impossible to use. Therefore, the problem of 

computing the Lyapunov exponents directly from a time series is significant to 

researchers in this area.  

Alan Wolf [6] offers an algorithm to use in order to compute the LLE from time 

series data. The general idea is to follow two nearby orbits and calculate their average 

logarithmic rate of separation. Whenever they get too far apart, one of the orbits must be 

moved back to the vicinity of the other along the line of separation. Based on this 

method, J. C. Sprott published a conservative procedure for calculating the LLE [34]. 

This procedure can briefly be summarized as follows:  

Step 1: Start with any initial condition in the basin of attraction. A better choice would 

be to start with a point known on the attractor, in which case Step 2 can be omitted. 

Step 2: Iterate until the orbit is on the attractor. This requires some judgment or prior 

knowledge of the system under study. For most systems, it is safe only to iterate a few 

hundred times and assume that is sufficient.  
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Step 3: Select a nearby point with a separation of   . An appropriate choice of    is one 

that is about 1000 times larger than the precision of the floating point numbers that are 

being used.  For example, in a case of (8-byte) double-precision (the minimum 

recommended for such calculations), variables have a 52-bit mantissa, and the precision 

is calculated as                . Therefore, a value of          will usually be 

sufficient. 

Step 4: Advance the two orbits one iteration and calculate the new separation   . The 

new separation is the distance between the two new points in the phase space. So, for a 

2-dimensional system with variables x and y, the separation would be        

   
         

     , where the subscripts (a and b) denote the two orbits, 

respectively. 

Step 5: Evaluate    |     |  in any convenient base. By convention, the natural 

logarithm (base-e) is usually used, but for maps, the Lyapunov exponents are often 

quoted in bits per iteration, in which case one would need to use base-2. (Note that 

                 ). 

Step 6: Readjust one orbit so its separation is    in the same direction as   .This is 

probably the most difficult and error-prone step. For example (in 2-dimensions), suppose 

orbit b is to be adjusted and its value after one iteration is (   ,   ).  It would then be 

reinitialized to                       and                        .  

Step 7: Repeat Steps 4-6 many times and calculate the average of Step 5. It is better to 

discard the first few values obtained to be sure the orbits have oriented themselves along 

the direction of maximum expansion.  If the system is a continuous flow that consists of 
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ordinary differential equations, the procedure is the same except that the result of the 

exponent should be derived by the iteration step size. In such a case, the unit of the 

exponent is inverse seconds instead of inverse iterations. 

However, the method is only good for estimating the first few non-negative 

Lyapunov exponents, and it offers better results for discrete rather than continuous 

systems. Thus, a method which can be more robust and more widely used needs to be 

developed. Fig. 3.1 shows a flow chart of the method used in this research, and the 

details of each part are introduced in Sections 3.3 to 3.5. 

 

 
Fig. 3.1.Flow chart for calculating Lyapunov exponents. 
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3.3 Phase Space Reconstruction 

In a dynamical system, phase space or state space is a collection of possible 

coordinates needed to describe the system. However, for an experiment, the available 

information is usually not a phase space but only time series data from some of the 

states. Therefore the problem of converting time series data into an induced state space is 

well known, and commonly referred to as phase space reconstruction. For phase space 

reconstruction, the time-delay method is the most useful technical solution, and is 

summarized below. 

Assume a discrete time series data set: 

{                            }. 

From the data set, a general time-delay vector can be formed as: 

                                                         ;                    (3.1) 

                    

where “T” denotes “transpose”,   is a suitable time delay and   is the embedding 

dimension. For a nonlinear dynamical system, when the embedding dimension is large 

enough, the information regarding the behavior of the system can be fully represented 

regardless of which variable of the system is measured. The time delay   should not be 

too large, because too large a   can cause two nearby vectors to be independent and lose 

their relationship to one another. 

Thus, there are two main quantities that need to be decided upon to reconstruct 

the phase space from the measured time series data of a given dynamical system: the 
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time delay and the embedding dimension. A number of methods exist for evaluating a 

suitable time delay and embedding dimension. 

One the one hand, there are several functions that can be used to evaluate the 

time delay: autocorrelation and power spectrum functions, Average Mutual Information 

functions (AMI); degree of separation functions. However, the AMI method is already 

well developed and commonly used. On the other hand, analytical methods used to 

determine the embedding dimension include: the False Nearest Neighbors (FNN) 

method, the Bad Prediction method (BP), and application of the fractal and the 

correlation dimensions. The FNN method is the most widely used. An introduction of 

the Average Mutual Information and the False Nearest Neighbors methods are provided 

in Sections 3.3.1 and 3.3.2, respectively.  

3.3.1 Average Mutual Information 

According to probability theory, mutual information is a measurement of the 

mutual dependence of two random variables, and this quantity can reflect the similarity 

of those two variables. The data collected through experiments or via a computer is 

always a sampled type of data, so mutual information is only considered in the discrete 

type of situation described. Two groups of finite numbers of values are assumed as X = 

{  }, i=1, … , N and Y  = {  }, j=1, … , M, which are used to develop the expression of 

the mutual information. 
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The occurrence probability of    in the group X and the occurrence probability of 

   in group Y are respectively denoted as       and   (  ). The joint occurrence 

probability is defined as: 

         (     )   (    |    )         (    |    ) (    ).      (3.2) 

Therefore, 

                                         ∑ ∑    (     )    
   

 
   .                                                  (3.3) 

In an experiment, any of these probabilities can be estimated by certain methods 

such as frequency histogram or kernel density estimation. 

The mutual information between these two groups of data can be defined as 

                                                   
   (     )

        (  )
 .                                                   (3.4) 

If X and Y are independent, their joint probability    (     ) is equal to the 

product of        and   (  ), so that the mutual information is zero.  

Furthermore, the average mutual information of these two groups of data is 

defined as: 

                                     ∑ ∑    (     )   
   (     )

        (  )

 
   

 
    .                        (3.5) 

This is useful for identifying sampled multivariate as either related or 

independent. The original time series data set is considered to be X, and the time delay 

time series data set is taken as Y. The first minimum of the average mutual information is 

usually proposed as a criterion for choosing the suitable time delay  . This choice is 

better than other criteria such as that obtained from the autocorrelation function, 

especially for the situation of nonlinear systems. 
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3.3.2 False Nearest Neighbors Method 

The False Nearest Neighbors (FNN) method is a way of using previous vectors to 

predict future vectors based only on the properties of the data set itself. In a scalar of 

well sampled data, the embedding dimension of the reconstructed phase space is chosen 

as follows: if the embedding dimension is very small, then points near the space 

coordinates may be due to the folding effect of the projection and not the close data in 

the original dynamical system. If this is the case, the predictions from this phase space 

are not convincible. These close points caused only by folding are known as false 

neighbors. To detect false neighbors, vectors from the data are constructed in dimensions 

1, 2, 3 and so forth, and the fractions of the nearest neighbors in the data set are 

calculated. After increasing the dimension several times until the dimension d for which 

all the nearest neighbors are also the nearest neighbors in dimension 1, the necessary 

minimum embedding dimension can be found. 

The steps of the False Nearest Neighbors method can be summarized as follows: 

Step 1: Find the closest point and its distance to a given point in the time delay 

reconstructed phase space. For instance, the vector                          

         can be also viewed as a point in a d dimensional phase space. After 

searching all the points in this space, the point                          

         which is closest to       in the Euclidean sense can be found.      is 

known as the nearest neighbor to      . 

Step 2: Distinguish the false neighbors and the real neighbors, using the flow chart 

shown in Fig. 3.2. The fraction of nearest neighbors is calculated and compared with a 



30 

 

 

previously given threshold value R. If the fraction is smaller than R, the neighbors are 

real neighbors. Otherwise, the neighbors are considered false neighbors. 

Step 3: Apply the Step 1 and Step 2 to all data in the data set and compute the percentage 

of the false nearest neighbors from all data. 

Step 4: Increase the dimension d until the percentage frequency of the false nearest 

neighbors is at an acceptably low level such that this d can be considered an ideal 

embedding dimension. 

 

Fig. 3.2. Flow chart for distinguishing false neighbors and real neighbors. 

After determining the time delay and the embedding dimension, the phase space 

can be reconstructed from the data set by using Equation (3.1). 

3.4 Jacobian Matrix and the QR Decomposition 

The definition and the theoretical calculation of Lyapunov exponents were 

introduced in previous sections. Wolf’s method [6] for calculating Lyapunov exponents 

from time series data has also been summarized. In this section, a method for evaluating 

the full spectrum of Lyapunov exponents by calculating the eigenvalues of a Jacobian 

matrix is stated. 
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If a time series of data X is available for a dynamical system, a phase space for 

the system can be reconstructed, as discussed in Section 3.3. The time delay vector can 

be stated as                                   , where   is the time delay 

and d is the dimension of the vector      . In the time series of data X with   samples, 

there should be (N–d+1) time delay vectors and (N-d) transfer maps (functions) 

  ,  ,…    ,       where    is the map from one vector       to the next vector 

       . The relationship between the two adjacent time delay vectors, such as       

and        , can be stated as follows: 

Assume the value of data        can be calculated from the previous n data 

                          by a function   . 

                     (                         ),                       (3.6) 

Then,

  

: ( ) ( )

( ) ( ) ( )

( ) ( 2 ) ( 2 )

:

( ( 2) ) ( ( 1) ) ( ( 1) )

( ( 1) ) ( ) ( ( ), ( ),..., ( ( 1) ))

n d d

n

n

n n

x n x n x n

x n x n x n

x n d x n d x n d

x n d x n d f x n x n x n d



 

  

  

   

 

      
     

  
     
      
     

          
               

g

g

y y

, (3.7)

 

 

 

 

 



32 

 

 

The derivative of the map    is 
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,               (3.8) 

which is also called the Jacobian matrix. 

For a dynamical system with d states, there should be d Lyapunov exponents, 

represented as {  ,   , … ,   }, and ordered from the largest to the smallest where    is 

the largest. 

The product of        ,        ,…,    ,     is renamed as 

              .       is the initial time delay vector, and can be expressed as the 

transpose of              (      ) . The spectrum of Lyapunov exponents with this 

initial vector can be represented as 

                                           

1
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y

y

y
,                                                            (3.9) 

and the ith Lyapunov exponent           can be evaluated as   

                                                            ,                                                 (3.10) 

where         is the ith eigenvalue of         , and where 

                             
      (     )          (     )              .     (3.11) 
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All of the Lyapunov exponents can be evaluated by calculating the Jacobian 

matrices of all the maps. There is a convenient and commonly used method to extract the 

eigenvalues called the QR decomposition, which can significantly simplify the 

calculation process. 

In linear algebra, QR decomposition (also called QR factorization) of a matrix M 

states that any matrix can be decomposed into an orthogonal matrix and an upper 

triangular matrix, so that 

                                                                 ,                                                       (3.12) 

where Q is the orthogonal matrix, and R is the upper triangular matrix. If         is 

considered as the matrix M and the QR decomposition is applied to it, then 

                                                                 .                                               (3.13) 

Applying the QR decomposition to the product         aims to build the relationship 

between      and   . Based on this equation,            , in which the first 

matrix     is initialized to be an identity matrix. Then the following formulation is 

obtained: 

             (        
  )(            

  )  

                           (      
  )(       

  )                  .                (3.14) 

From Equation (3.14), it is simple to find the eigenvalues of the R matrices, 

because they are upper triangular matrices and their eigenvalues are simply their 

diagonal elements. The eigenvalues of the products of all the R matrices are the products 

of the corresponding diagonal elements. In addition, if the number of the sample N is 

http://en.wikipedia.org/wiki/Matrix_(mathematics)
http://en.wikipedia.org/wiki/Orthogonal_matrix
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large enough, then the matrix    can be ignored. Based on Equations (3.10) (3.11) and 

(3.14), the full Lyapunov exponents can be stated as:  
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and 
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where   
   represents the ith element of the diagonal of the matrix   . 

The requirement of the QR decomposition is the acquisition of the transfer maps 

of connecting the time delay vectors and then the derivatives. The implementation of 

acquiring these maps is best realized by using neural networks. The concept and the 

implementation will be introduced in the next section.    
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3.5 Artificial Neural Networks 

3.5.1 Introduction of Artificial Neural Networks 

The term “artificial neural networks” refers to a computational paradigm that can 

said to mimic the processing within the human brain. Many researchers have offered a 

variety of explanations of this term. One relatively accurate definition that encompasses 

most of the key concepts for this study is as follow:  “a artificial neural network is an 

interconnected assembly of simple processing elements, units or nodes, whose 

functionality is loosely based on the animal neuron. The processing ability of the 

network is stored in the interunit connection strengths, or weights, obtained by the 

process of adaptation to, or learning from, a set of training patterns” [18]. 

In artificial neural networks, the basic unit is the artificial neuron, whose 

structure is shown in Fig. 3.3. The inputs   ,   ,…,    are multiplied by weights    , 

   ,…,     respectively, and the weighted values are fed to the summing junction. The 

sum is added by a bias b to form the net input    which is the argument of the activation 

function. The activation is then compared to a threshold; if the activation exceeds the 

threshold, the unit produces a high valued output. Otherwise, its output is zero. 
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Fig. 3.3. The structure of an artificial neuron. 

One neuron forms the simplest network. More neurons can be combined in a 

layer, and networks can contain several such layers. One example of a multilayer neural 

network is shown in Fig. 3.4. Each neuron is represented by a circle. 

 
Fig. 3.4. The structure of a multilayer neural network. 
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3.5.2 Neural Network Learning 

Suppose that a set of input vectors and a set of target vectors which are both 

given. Based on the feedforward neural network and the inputs, the outputs are obtained 

corresponding to the target set. For each input vector, the difference or error between an 

output vector and a target vector can be calculated. In order to minimize this error, the 

network is trained according to the “ daline” or “Least Mean Square” (Widrow-Hoff) 

adaptation rule.  

The Least Mean Square (LMS) algorithm is also known as the delta rule or the 

Widrow-Hoff rule; it operates with a single linear neuron model. As with the scheme 

shown in Fig. 3.5,   ,   ,…,    is a group of input data;   ,   ,…,    is the set of 

weights. The activation function is linear. The aim is to determine the optimum set of 

weights in order to minimize the difference between the output of the system and the 

desired value, in the sense of a mean-square.  

 

Fig. 3.5. A single neuron structure. 

∑
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Before we can have a proper discussion of the LMS algorithm, Wiener-Hoff 

equations need to be introduced. Reference [19] provides the detailed derivation of the 

equations. 

The input-output equation can be simply written as: 

                                                               ∑     
 
    .                                            (3.17) 

The difference between the desired value and the output is defined as: 

                                                                       ,                                                 (3.18) 

where d is the target value. 

The mean-squared error is defined as: 

                                                                   
 

 
∑  .                                                  (3.19) 

After substituting Equations (3.17) and (3.18) into equation (3.19) and 

interchanging the order of expectation and summation due to the linear property, the new 

equation obtained is  

                     
 

 
   ∑    ∑       

    
 

 
∑ ∑ [    ∑(    )]

 
   

 
                   (3.20) 

The equation is simplified as:  

                         
 

 
   ∑          

    
 

 
∑ ∑             

   
 
                         (3.21) 

where        ∑     , k=1, 2, … , p is the cross-correlation function between the 

target value and the input data   ; and         ∑(    ), j, k=1, 2, … , p is the 

autocorrelation function of the set of inputs. 
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To obtain the minimum value of J, the cost function J is differentiated with 

respect to the weight   , and the result is set at zero for all k. The derivative of J with 

respect to    is called the gradient, and is represented by,  

                                                 
  

  

   
,    k=1, 2, … , p .                                        (3.22) 

Finally, the Wiener-Hoff equations are obtained as follows: 

                                  ∑            
          ,   k=1, 2,… , p .                              (3.23) 

The LMS algorithm is based on the use of instantaneous estimated values for the 

cost function J. The inputs   ,   ,…,    and the weights   ,   ,…,    are viewed as 

two vectors x=[  ,   , … ,   ] and w=[  ,   ,…,   ]. 

From Equation (3.17) and (3.18), the error for the nth iteration is expressed below: 

                                                                   ,                                       (3.24) 

Thus,  

                                                         
     

     
       ,                                                 (3.25) 

and,   

                                           
     

     
     

     

     
           .                                 (3.26) 

Based on established rules of calculus, the partial derivative of the error of the 

network or the mean square error with respect to each weight    can help us learn the 

direction in which the network error is moving. The negative of this derivative is taken 

and added to the weight in order to decrease the error until a local minimum value is 

reached. This process can be described through an iteration equation as follows:  
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 ,                                    (3.27) 

where   is the learning rate parameter. 

This algorithm is also known as the gradient descent or method of steepest descent. 

Substituting Equation (3.26) into equation (3.27), the formulation of the LMS 

algorithm can be stated as follows:  

                                                  ̂       ̂             ,                              (3.28) 

where  ̂ instead of w emphasizes that the weight vector is an estimate. 

3.5.3 Multilayer Feedforward Networks 

A multilayer feedforward network is a kind of network which consists of at least 

three layers (the input layer, the hidden layer and the output layer), with each layer 

downstream of another layer acting as the input vector. Usually, multilayer feedforward 

networks consist of three layers, but in some special cases four layers (two hidden 

layers) are required. 

There are three characteristics of multilayer feedforward networks: (1) the 

network must include a nonlinear activation function such as the logistic function which 

is used in this research. The reason for this requirement is that without nonlinearities, the 

network can be reduced to a single-layer network and lose the input-output relation 

properties of nonlinear networks; (2) the network must contain one or more hidden 

layers that can enable the network to handle complex tasks; (3) The network must 

exhibit a high degree of connectivity, determined by the weights of the network. 
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In a fully connected multilayer feedforward network, each neuron in one layer is 

connected by the multiplied weight of every neuron in the layer downstream to it. A bias 

is also associated with each of these weighted sums. Thus, in computing the value of 

each neuron in the hidden and output layers, the sum of the weighted sums and the bias 

must  be calculated and fed into the activation function (as with the sigmoid function) in 

order to calculate the neuron's output. 

The multilayer feedforward network can be represented as, 

                                                     ∑      (        )
  
   ,                                (3.29) 

where v is the activation function. 

There are several common neuron activation functions that can be chosen, some 

of which are shown in Fig. 3.6. They are all critical to neuron information processing. 

The most widely used function is the sigmoid function, which is an “S” shaped function. 

The sigmoid function often refers to a special case of the logistic function which has a 

lower bound of zero and upper bound of 1, and a cross point with the y axis (0, 0.5). The 

mathematical formulation of the logistic function is  

                                                        s      
 

   −𝑡 
 ,                                           (3.30) 

where the e is the base of the natural logarithm. 
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Fig. 3.6. Neuron activation functions. 

Sigmoid functions are often used in neural networks to introduce nonlinearity in 

the model, and to make sure that certain signals remain within a specified range. A 

neural net element computes a linear combination of its input signals and applies a 

bounded sigmoid function to the result; this model can be seen as a "smoothed" variant 

of the classical threshold neuron. In simple terms as the gain increases, the slope of the 

activation function of the neurons decreases.  

One reason for its popularity in neural networks is the sigmoid function satisfies 

the following  property: 

                            
 

  
                                .                       (3.31) 

This simple polynomial relationship between the derivative and itself is 

computationally easy to perform.  

Inputs entering a neuron not only get multiplied by weights, they also get 

multiplied by the neurons transfer function. The sigmoid function is a typical neuronal 

Sigmoid-Function Tangenshyperbolikus-

Function

Multiquadratische-

Function

Gauss-Function
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nonlinear transfer function that helps to make outputs reachable. The nonlinearity is 

significant.  If the transfer function was linear, each of the neuronal inputs would get 

multiplied by the same proportion during training. This would cause the entire system to 

"drift" during training runs. The system would lose outputs it has already tracked while 

attempting to track new outputs. The non-linearity in the system helps to isolate specific 

input pathways. 

Moreover, the use of the logistic function is biologically motivated, since it 

attempts to account for the refractory phase of real neurons. 

After choosing the logistic function as the activation function, the multilayer 

network can be stated as:  

                                ∑      (        )  ∑
    

   
−          

  
   

  
    .                   (3.32) 

The neural network learns and evaluates the weights by the way of 

backpropagation. 

Backpropagation, which is usually applied to neural networks, is a very powerful 

tool, especially in the areas of pattern recognition, dynamic modeling and faults 

diagnosis. This algorithm is based on error-correction learning. The core principle of 

backpropagation is to calculate the derivatives exactly and efficiently within a system. 

The theorem underlying backpropagation is the chain rule for ordered derivatives.  

Similar to the algorithm of LMS, backpropagation takes the partial derivatives of 

the error or mean square error and applies them to each of the weights, starting from the 

output layer to the hidden layer weights, and then the hidden layers to the input layer 

weights. As it turns out, this is necessary since changing these sets of weights requires 
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that we know the partial derivatives calculated in the layer downstream. This is the 

reason this algorithm is called the "back propagation algorithm." 

3.6 Chapter Summary 

In this chapter, a method for calculating Lyapunov exponents from time series 

data is described. The method mainly includes three parts: phase space reconstruction, a 

multilayer neural network, and an evaluation of the Lyapunov exponents using the QR 

decomposition. In the next chapter, this method is applied to several example problems 

in order to compute the Lyapunov exponent. 
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CHAPTER IV 

SIMULATION RESULTS 

4.1 Introduction 

In this chapter, the previously developed method for calculating the LLE is 

applied to several simple chaotic systems: Lorenz and Rössler for continuous flow and 

Hénon for discrete map. For the Lorenz system, the effects of changing parameters and 

adding noises to the inputs are analyzed. In order to study chaotic dynamics, the 

Rayleigh number, a parameter of the Lorenz system is changed in a large scale. The 

estimated results are compared with the theoretical values which are directly calculated 

from the equations of the systems. All of the simulation results are included in this 

chapter. 

4.2 The Lorenz Attractor 

4.2.1 Introduction of the Lorenz Attractor and Its Phase Space Reconstruction 

The Lorenz attractor is very important in the field of non-linear mathematics. It 

was firstly introduced by Edward Lorenz in 1963. The equations are based on a 

simplified model of atmospheric convection rolls. The three coupled differential 

equations are 

                                                            
  

  
       , 

                                                            
  

  
        ,                                           (4.1) 

                                                            
  

  
      , 
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where x, y, z are the three states of the system and   (Prandtl number),   (Rayleigh 

number),   are three parameters characterizing the particular properties of the flow. 

Different parameters can change the appearance of the Lorenz attractor. Analysis of the 

effects of changing these parameters is discussed in Section 4.2.3. In this example, the 

three parameters are set to σ = 10, β = 8/3 and R = 28, and the Lorenz system exhibits 

chaotic behavior. The time series plots for each variable and the three-dimension 

appearance in phase space of this Lorenz attractor are shown in Fig. 4.1 and Fig. 4.2, 

respectively.  

 

 
Fig. 4.1. Time series plots for the three states of the Lorenz system. 
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Fig. 4.2. Three-dimensional plot of the Lorenz system. 

The trajectory is generated by solving the ordinary differential equations using 

the Runge-Kutta method with 0.001 second max step. The initial conditions for the three 

variables are (1, 0, 0). The data is extracted with 0.01 second sampling time. Trajectory 

recording begins after 20 seconds to allow the states to be on the attractor. Then, 1000 

seconds of data are recorded and saved in a file.  

Assuming only the states are available and the other information is unknown, the 

phase space can be reconstructed by the methods stated in the previous chapter. The time 

delay and the embedding dimension are computed by applying the Average Mutual 

Information and the False-Nearest-Neighbors method, respectively. Fig. 4.3 shows the 

mutual information based on the data file. The x-axis is for the time delay with units of 

second and the y-axis is for the Average Mutual Information of the original data and the 

time-delayed data. 
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Fig. 4.3. Average mutual information for the Lorenz system. 

From the plot of the Average Mutual Information, the first local minimum value 

is obtained as the time delay around 0.16 second. Actually, the time delay does not need 

to be the exact theoretical value. The effect of the time delay on calculating the LLE of 

this Lorenz system is further discussed in later section. In fact, use of 0.1 second time 

delay provides a slight improvement.  

After obtaining the sufficiently accurate time delay, the False Nearest Neighbors 

method with 0.01 of the fraction R is applied to compute the embedding dimension. The 

result is three dimensions for the Lorenz system. The plot of the percentage frequency of 

the false nearest neighbors through the embedding dimension is shown in Fig. 4.4. If the 

time delay of 0.16 second is used, the plot is similar, and the embedding dimension is 

still three. 

 



49 

 

 

 
Fig. 4.4. The result of applying the False Nearest Neighbors method to the Lorenz 

system. 

After the determining the time delay and the embedding dimension, the phase 

space can be reconstructed from the time series data, and the LLE can be calculated 

through the reconstructed phase space. 

4.2.2 The Largest Lyapunov Exponent Calculation for the Lorenz System 

The Lorenz system with parameters     , R = 28,      , has the theoretical 

LLE of 0.9022. In order to test the calculation method based on the multilayer 

feedforword neural network, the hidden neurons and the number of lags must be 

specified. The number of hidden neurons in each particular case should be determined 

by taking into account the complexity of the problem. The more complicated the 

mapping, the more hidden neurons that are required. Unfortunately, there is no universal 

rule that can be applied. Usually, the number of the hidden neurons is determined by 
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experience and experiment. In general, if the number of the hidden neurons is too large, 

the calculation will be very slow. Conversely, if the number of the hidden neurons is too 

small, the neural network is unable to accurately produce the desired signals. In addition, 

too many neurons can contribute to over fitting, in which all training points are well fit, 

but the fitting curve takes wild oscillations between these points. The number of 100 

hidden neurons is arbitrarily selected in this test. The number of lags uses the embedding 

dimension, which is estimated by using the False Nearest Neighbors method. The 

previously obtained result of the embedding dimension is three. Consequently, the 

Lorenz system is tested with a neural network using three lags. 

In order to obtain a good evaluation result, a reasonable tested data size or the 

time length must be chosen, and the optimal time delay needs to be verified. Larger data 

size can obviously produce a better evaluation result. However, much more time and 

memory resources are needed. If the sampling time is chosen as 0.16 second as the result 

of calculating average mutual information method, a group of data sets with different 

time lengths (from 50 seconds to 400 seconds) are applied. 

In addition, the initial values of the weights and the biases of the neural network 

are randomly chosen since it is assumed that nothing is known about the model before 

training. Consequently, errors can be induced in the neural network model. Several 

statistical methods such as multi-testing and averaging are used to reduce the errors. 

In the test, one data set is used both for training the neural network and 

estimating the largest Lyapunov exponent. The evaluation is done ten times repeatedly 

with different randomly initial weights and biases to obtain ten values of the LLE. Then, 
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the average value is attained, and the plot of the average value for 50-400 seconds is 

shown in Fig. 4.5. 

 
Fig. 4.5. Calculated value of the LLE for the Lorenz system. 

From the plot, the calculation drops sharply between 50 to 100 seconds. Then the 

evaluated value stays close to the theoretical value. In order to obtain a better sense of 

the evaluation results, the relative error and the standard deviation of the LLE are 

calculated as follows: 

                                                      |
   ̅̅ ̅̅ ̅    ̂

   ̂
|                                             (4.2) 

where    ̅̅ ̅̅ ̅ is the average of the multi-testing LLE,    ̂ is the theoretical value of LLE. 

The standard deviation σ is computed as: 

                                                      √
∑         ̅̅ ̅̅ ̅  

   
                                                   (4.3) 
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where      is the ith calculation for the LLE. 

Fig 4.6 and Fig. 4.7 show the results, and the trends are similar to the average 

value. To satisfy the small relative error and low standard deviation, a choice of 200 

seconds is reasonable. The corresponding result values are listed in Table A.1 in 

Appendix A. 

 

 
Fig. 4.6.Relative error of the LLE for the Lorenz system. 
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Fig. 4.7. Standard deviation of the LLE for the Lorenz system. 

After determining the time length of the time series data, the time delay is further 

verified. The method of Average Mutual Information can give us a general time delay. 

However, it may not be the best. In order to verify the optimal time delay, the data sets 

with different time delays are tested. The time delay varies from 0.01 to 0.2 second. 

When the time delay is changed, the embedding dimension always needs to be evaluated 

again by the False Nearest Neighbors method. But for this test, the reevaluated 

embedding dimension is still three. 

Then, the LLE can be evaluated ten times for each case. The average value, the 

relative percent error and the standard deviation are calculated in the same way as the 

previous test. The results are shown in Figs. 4.8-4.10, respectively. 
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Fig. 4.8. Average LLE for the Lorenz system with different time delay. 

 

 
Fig. 4.9. Relative error of the LLE for the Lorenz system with different time delay. 
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Fig. 4.10. Standard deviation of the LLE for the Lorenz system with different time delay. 

 

From Fig. 4.8 to Fig. 4.10, the best evaluation is obtained at a range of the time 

delay, but not only exact one. The time delay of 0.1 second is used in the later tests, 

because the evaluation results by using this time delay is better than the results of using 

0.16 second. The comparison of these two time delays is displayed in Table 4.1. 

Table 4.1. Comparison between the largest Lyapunov exponent evaluation results with 

0.1 and 0.16 seconds time delays. 

 

When all of the sets are fixed, a new question arises. How often should the neural 

network be updated? To answer this question, a new experiment is performed. For the 

test, two time series data sets are extracted from the Lorenz system. The second set is 

Time Delay (Sec) 0.10 0.16

LLE 0.9002 0.9060

LLE Relative Error (%) 0.22% 0.42%

LLE Standard Deviation 0.0143 0.0340
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from 0 to 9000 seconds following the first set. The first set is for training the neural 

network, and the second set is for estimating the LLE. After ten times of calculations for 

each case, the average value, the relative percent error, and the standard deviation can be 

obtained. The results are summarized in Table 4.2. 

Table 4.2. Summary of the results for different time gaps between the data set for 

training the neural network and the data set for evaluating the LLE. 

 

From the table, the calculated value is always near the theoretical LLE, and the 

relative percent error and the standard deviation remain small. The results prove that the 

trained neural network can be used to evaluate the LLE for a long time without updating 

the neural network, at least 9000 seconds (2.5 hours) for the Lorenz system case. 

Up to now, most features for the evaluation of the LLE based on the time series 

data from the original Lorenz system are verified, and reasonable results are obtained. 

But in reality, the parameters of a dynamical system possibly change for several reasons, 

such temperature, humidity, background noise, and so on. Thus, the test of applying the 

method on the system with changed parameters is valuable. First, the evaluation is 

performed without retraining the neural network. In this test, the neural network trained 

by the original Lorenz system data is still used. The parameters of the Lorenz system are 

changed to get a new time series data, which is used to perform the LLE evaluation. The 

parameters σ, R, β are each changed ±5% and ±10%. The theoretical value and the 

Time Gap (Sec) 0 1000 2000 3000 4000 5000 6000 7000 8000 9000

LLE 0.9078 0.9162 0.9268 0.9102 0.9103 0.9149 0.9041 0.9324 0.9061 0.9050

LLE Relative Error (%) 0.0062 0.0155 0.0272 0.0088 0.0090 0.0140 0.0021 0.0334 0.0043 0.0031

LLE Standard Deviation 0.0081 0.0197 0.0158 0.0197 0.0094 0.0156 0.0213 0.0172 0.0222 0.0137
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calculated value of LLE are shown in Fig. 4.11. The selected parameters for each case 

and the corresponding calculation results are listed in Table A.2 in Appendix A. 

 
Fig. 4.11. The theoretical value and the calculated value of the LLE for the 5% or 10% 

parameters changed Lorenz system without retraining the neural network. 

Furthermore, the neural network is trained by the data from the system with 3% 

parameter changes, and the data from the system with 5% parameter changes is used to 

evaluate the LLE. Fig. 4.12 shows the results. Table A.3 in Appendix A gives the 

selected parameters for each case and the calculation results. 
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Fig. 4.12. The theoretical value and the calculated value of the LLE with the neural 

network trained by 3% parameters changed Lorenz system data. 

From Fig. 4.11 and Fig. 4.12, the application of the networks trained by the 

original Lorenz system onto the data from the system with 5% or 10% parameter 

changes can find the change directions of the LLE. However, the changes are obviously 

enlarged. The networks trained by the data with 3% parameter changes can lead the 

same trends but are closer to the theoretical values. In addition, different parameters 

have different effects on the LLE evaluation. The parameter   has little effect on the 

theoretical value of the LLE. But the parameters R and β affect the LLE relatively more. 

Besides, the change of the LLE becomes larger when the parameter changes are larger.  

Next, the evaluation with retraining the network is performed. The time series 

data obtained from one Lorenz system is used both to train the neural network and to 

evaluate the largest Lyapunov exponent. Fig. 4.13 and Fig. 4.14 show the results for 5% 
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and 10% parameters changed Lorenz systems. The corresponding values are shown in 

Table A.4 and Table A.5 in Appendix A. 

 
Fig. 4.13. The theoretical value and the calculated value of the LLE for 5% parameters 

changed Lorenz system with retraining neural network. 

 

 
Fig. 4.14. The theoretical value and the calculated value of the LLE for 10% parameters 

changed Lorenz system with retraining neural network. 
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From Fig. 4.13 and 4.14, using the data from the same system both for training 

neural networks and evaluating LLE can always attain the results close to the theoretical 

values. So in reality, the neural network must be updated regularly, because the 

parameters of the dynamical system have possibly changed in a short time. 

In the real world, systems can be also disturbed by some external excitation, of 

which Sinusoidal function is a common formulation. In order to check such effects on 

LLE, a Sinusoidal function as input is added to the first function of the original Lorenz 

system. The amplitude of the input is varied from 0.1 to 50 and the frequency is changed 

from 1 Hz to 10 Hz, respectively. The three-dimensional plots are shown in Table 4.3. 

According to this group of plots, if the amplitude of the Sinusoidal function is very 

small, the attractor is not significantly affected. When the amplitude is large, the shape 

of the attractor is seriously varied while the frequency is changing. 

Table 4.3 Three-dimensional plots for Lorenz system with different Sinusoidal inputs. 
 Amplitude 

Frequency 

Frequency 

0.1 1 10 30 50 

1 Hz 

     

10 Hz 

     

 

From Table 4.3, the shape is changed from the original Lorenz attractor to some 

other attractors when the amplitude increases. Then the input of Sinusoidal function with 
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the amplitude 1, 5, 10 and the frequency 1 to 10 Hz are induced to the Lorenz system for 

LLE evaluation. Tables A.6-A.8 in Appendix A list the theoretical values, numerical 

average values, the relative percent errors, and the standard deviation of the LLE. Figs. 

4.15-4.17 compare the theoretical values and the numerical results. 

 

 
Fig. 4.15. The theoretical value and the numerical value of the LLEs for the Lorenz 

system added Sinusoidal function input with the amplitude of 10. 
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Fig. 4.16 The theoretical value and the numerical value of the LLEs for the Lorenz 

system added Sinusoidal function input with the amplitude of 5. 

 

 
Fig. 4.17. The theoretical value and the numerical value of the LLEs for the Lorenz 

system added Sinusoidal function input with the amplitude of 1. 
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In the real world, the systems are always accompanied with noise. The effect of 

noise sometimes cannot be ignored. In this research, the Gaussian white noise is added 

to the original Lorenz system. A scalar SNR which specifies the signal-to-noise ratio per 

sample is used to evaluate the noise large or small. It is expressed as 

                                                                    (
 

 
)                                         (4.4) 

where S is the input signal power, and N denotes the noise power. 

SNR is valued 4.7712, 6.9897, 10, 13.0103, 20, corresponding S/N equals to 3, 5, 

10, 20, 100 respectively. 5 new groups of data from these systems with added noise are 

obtained. 

First, the neural network trained by the original Lorenz system data is used, and 

the data from the system with added noise is used to evaluate the LLE. The results are 

recorded in Table A.9. in Appendix A. 

Next, the noise-added data is used to both train the neural network and evaluate 

the LLE. The results are recorded in Table A.10. in Appendix A. 

Fig. 4.18 compares the theoretical LLE for the original Lorenz system and the 

estimated LLE for the added-noise system with and without retraining neural network. 
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Fig. 4.18. The theoretical LLE for the original Lorenz system and the numerical LLEs 

for the noise-added Lorenz system. 

From the plot, when the noise is small, the evaluation result without retraining 

network can match the theoretical LLE. However, the evaluation with retraining network 

is different. Because the theoretical value for the system with noise is changed and 

unknown.  

4.2.3 Chaotic Dynamics of the Lorenz System 

The Lorenz system tested in Section 4.1 is still used in this section and the 

system is rewritten below as 

                                                           
   

  
 σ      , 

                                                           
  

  
         ,                                             (4.5) 

                                                           
  

  
    β  . 
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The parameters σ, R and β of Lorenz system can change its behavior. 

Usually σ = 10 and β = 8/3. For the case of fixed σ and β, the shape of this 

system varies with the different values of R. The equilibrium conditions are separated as: 

(1) When R < 1, the system is stable at point (0, 0, 0). 

(2) When 1 < R < c, the system is still stable, but there are three stable 

equilibrium points which are (0, 0, 0), (√β     , √β     , R-1) and ( √β     , 

 √β     , R-1) where  c  σ
σ β 3

σ β 3
.  

(3) R > c, the system goes into chaos. Small change of parameter R or small 

change of initial condition may change the appearance of the attractor severely.  

Fig. 4.19 shows 3-D plots of some examples for the three different conditions. 

Fig. 4.19 (a) shows the behavior of the Lorenz system with R= 0.5, which belongs to 

condition (1) above; Fig. 4.19 (b) is for the system with R= 10, which belongs to the 

condition (2) above; and the behavior of the system with R= 28, which belongs to 

condition (3) above, is shown in Fig. 4.19 (c). 

The Lorenz system with different values of the parameter R is tested by the 

method of calculating the LLE. The parameters σ and   are fixed, and the parameter R is 

varied from 10 to 30. Fig. 4.20 (a) shows the plot of the LLE versus R for the system 

without noise. Then, three different Gaussian white noise levels (SNR=20, 13, 10) are 

added to this system, respectively. The results are shown in Fig. 4.20 (b)-(d).  
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(a) 

 
(b) 

 
(c) 

Fig. 4.19. The 3-dimensional plot of the Lorenz system with the parameters (a) σ=10, 

R=0.5, β=8/3; (b) σ=10, R=10, β=8/3; (c) σ=10, R=28, β=8/3. 
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(a) 

 
(b) 

Fig. 4.20. Largest Lyapunov exponent evaluation for (a) the non-noise Lorenz system; 

(b) the Lorenz system added the noise with SNR=20; (c) with SNR=13; (d) 

SNR=10. 
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(c) 

 
(d) 

Fig. 4.20. Continued. 
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Fig. 4.20 (a) gives a clear relationship of the largest Lyapunov exponent and the 

parameter R. The evaluated value matches the theoretical value. The results can 

distinguish chaos and no chaos. Fig. 4.20 (b)-(d) show the effect of noise on the 

evaluation results. When the noise is low, the evaluated LLE can still indicate the 

occurrence of chaos like the no-noise system. But as the noise increases, the relationship 

pattern for the parameter R and the LLE is not very clear. Thus when the noise is not 

very large, the method for calculating the LLE has a certain level of robustness, and is 

capable of detecting chaos in a dynamical system under noise background. 

4.3 The Hénon Map 

The Hénon map is a discrete map, which is one of the most studied examples of 

dynamical system models for chaos. It is a two-dimension iterated map. Its chaotic 

solutions are proposed as a simplified model of the Poincare map for the Lorenz model 

by the French astronomer Michel Hénon in 1976. The Poincare map is known as a two 

dimensional map which is extracted from an attractor of a continuous dynamical system 

with more than two dimensions. The Hénon map is expressed by the coupled equations 

                                                        ,                                 (4.6) 

                                                              , 

where a and b determine the map. For different values, the map may be chaotic, 

intermittent, or periodic. When a=1.4 and b=0.3, the map is Canonical Hénon map 

which exhibits chaotic behavior. The two dimensional attractor is shown in Fig. 4.21. 
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Fig. 4.21. The appearance of the attractor of Hénon map. 

There are two Lyapunov exponents for the Hénon map due to the two 

dimensions. The theoretical values of the two exponents for Canonical Hénon map are 

0.419217 and -1.623190 respectively. The discrete-time series data of the Hénon map 

can be obtained by an iteration process. With the time delay set to 1, the embedding 

dimension can be evaluated by the method of False Nearest Neighbors (FNN). The result 

of the dimension is 2. The resulting plot of the FNN method, the fraction R versus the 

embedding dimension, is shown in Fig. 4.22. 
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Fig. 4.22. The result of applying the False Nearest Neighbors method to the Hénon map. 

Because the Hénon map is a two-dimensional map and the system is much 

simpler than Lorenz, the number of hidden neurons needn’t be large. Three hidden 

neurons are enough for this multilayer neural network to perform well, and the 

numerical results are: LE1 = 0.4195 and LE2 = -1.6245, which are very close to the 

theoretical values.  ctually, Wolf’s method introduced in Chapter 3 can also provide 

similar results. 

4.4 The Rössler Attractor 

The Rössler attractor is not a famous attractor. However, it is a rather nice 

attractor which draws a nifty picture. Rössler systems, which are a series of prototype 

systems for ordinary differential equations in three-dimensional phase space, were 

originally introduced by Otto Rössler in the 1970s.  
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Rössler was inspired by the geometry of flows in three dimensions and, in 

particular, by the reinjection principle [35]. This principle is based on the feature of 

relaxation-type systems that often present a Z-shaped slow manifold in their phase space. 

On this manifold, the motion is slow until an edge is reached, whereupon the trajectory 

jumps to the other branch of the manifold. This feature allows not only for periodic 

relaxation oscillations in dimension two (see Fig. 4.23(a)), but also for higher types of 

relaxation behavior (see Fig. 4.23(b)) as noted by Rössler (1979a). In dimension three, 

the reinjection can induce chaotic behavior if the motion is spiraling out on one branch 

of the slow manifold. 

 
Fig. 4.23. Illustration of the reinjection principle between the two branches of a Z-

shaped slow manifold allowing (a) periodic relaxation oscillations in dimension 

two and (b) higher types of relaxation behavior in dimension three [35]. 

In this way, Rössler invented a series of systems, the most famous of which is 

Rössler 1979a which is formed with a series of Navier-Stokes-like equations, namely: 
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      , 

                                                             
  

  
      ,                                                   (4.7) 

                                                             
  

  
          , 

where a = 0.15, b = 0.20, c = 10.0 and the initial conditions are x(0) = 1, y(0) = 1, z(0) = 

1. This attractor is shown in Fig. 4.24. 

 
Fig. 4.24. The appearance of the Rössler attractor. 

From this plot, this Rössler system generates a simpler chaotic attractor with a 

single lobe, compared with Lorenz attractor which has two lobes. The trajectory is 

generated by using the Runge-Kutta method with 0.001 second max step. The trajectory 

is integrated from an initial condition of (1, 1, 1). 

For the Rössler attractor, the Average Mutual Information is shown in Fig. 4.25. 
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Fig. 4.25. Average mutual information of the Rössler attractor. 

After the ideal time delay 0.1second is obtained, the False Nearest Neighbors 

method with 0.01 of the fraction R is applied to acquire the embedding dimension. The 

result is three dimensions for this Rössler system. The plot of the percentage of the false 

nearest neighbors versus the embedding dimension is shown in Fig. 4.26. 

 
Fig. 4.26. The result of applying the False Nearest Neighbors method to the Rössler 

attractor. 
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The average value of ten evaluation times is 0.0914, which is close to the 

theoretical value 0.9. 

4.5 Chapter Summary 

The method for calculating the LLE is applied to the Lorenz attractor, the Hénon 

map, and the Rössler attractor. From these results, the estimated value matches the 

theoretical value very well. Though the calculated value has a little randomness because 

of the initial conditions of the weights and the biases of the neural network, the average 

value is usually accurate and the standard deviation is small. In addition, the neural 

network must be regularly updated because of the noise and the parameter variations. 

Based on the analysis of these theoretical models, the method has been proven to be 

feasible. In the next chapter, the method is applied to a real-world data set with the goal 

of finding a way to detect mechanical faults. 
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CHAPTER V 

APPLICATION OF LARGEST LYAPUNOV 

EXPONENT TO FAULT DETECTION 

5.1 Introduction 

In this chapter, based on the algorithm of calculating the largest LLE, this metric 

is used to detect faults in dynamical systems. In the next section, the proposed method is 

introduced. Then, a real world system of an induction motor and the acquired data set 

from the stator currents are described. The proposed method is applied on this data set, 

and the results show some relationships between the damage levels and the percentage 

changes of the LLE. Finally, the summary of method and the conclusion of the 

application for fault detection are given.  

5.2 Proposed Method for Incipient Fault Detection 

There are varieties of faults which are hard to detect directly from the data itself. 

The LLE is the indicator of divergence or convergence of two trajectories with nearby 

initial conditions, and it could be sensitive to small changes of the systems. However, the 

relationship between the LLE and the system damage level is not clear and rarely studied 

up to now. 

In the previous chapter, the calculated LLE has already been applied to three 

simple systems: Lorenz, Hénon and Rössler. However, the theoretical LLE is not known 

for real world data. From dynamic analysis of the Lorenz system, it is observed that the 

LLE varies following the changes in the system’s parameters no matter whether the LLE 
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is positive or negative. In the real world, faults may cause changes in the parameters, and 

the parameters may change the LLE. Therefore, the changes of the LLE may exhibit the 

occurrence of the system’s faults. Based on the LLE calculation method and considering 

the conditions of a real system and the measured data, the changes of the LLE are 

applied to fault detection.  

5.3 A Real World Example 

The time series experimental data was obtained from the stator currents Ia, Ib, Ic 

of an induction motor. In the experiment, the bearing of the motor was damaged in four 

steps. In each step, some currents were injected for some hours to put excessive stress on 

the bearing to compromise it. Then the current injection was stopped, and the motor was 

operated in that state for a number of days. Finally, the bearing was badly damaged. The 

steps used in the staged motor fault are shown in Fig. 5.1. The healthy state is named as 

damage level 0. 

 
Fig. 5.1. Steps used in staged motor fault. 

 

For each state, several data files are recorded. The sampling rate of the obtained 

data is 8 kHz, and each file contains 30 seconds of signals. The first available data file is 

file #10598 which corresponds to the healthy system, so the data from the file #10598 

are considered as the baseline situation of the system. 
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In order to better understand the experimental data, two time series plots as the 

samples are shown in Fig. 5.2. The first sample is the data of the current Ia from the file 

#10598, and the second sample is the data of the current Ia from the file #57292 which 

belongs to the damage level 4. 

 
Fig. 5.2.The time series plots of the data from (a) data file #10598 (b) data file #57292. 

From Fig. 5.2, it is difficult to distinguish the differences between the healthy 

situation and the situation of badly damaged bearings. Therefore, the method introduced 

in Chapter III is used to calculate the LLE for each file, and the calculation results and 

the analysis are displayed in the next section. 
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5.4 Experimental Results 

For studying fault detection by using the LLE, the first step is to separate and 

select the data groups. The four current injection stages are ignored due to their unsteady 

behavior, and the five steady states are considered: damage level 0 to damage level 4. 

These 5 cases are used to evaluate their LLE and compare their changes. 

The time delay and the embedding dimension are determined by the methods 

described in Chapter III. By using the data of the file #10598 with 8 kHz sample rate, the 

Average Mutual Information is obtained and its changes through different time delay are 

shown in Fig. 5.3. 

 
Fig. 5.3. Average mutual information of the data from the file #10598. 

From Fig. 5.3, the first minimum value occurs at around 0.0005 seconds (1/2000 

Hz
-1

). Since the frequency of the stator currents is 60 Hz, 1920 Hz (32×60) frequency is 
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usually considered as the resample frequency to reduce the background noise. Therefore, 

the time delay is set to equal to the sampling time (the inverse of the sampling rate). 

In order to obtain high accuracy, the fraction R is set to be 0.001, and the false-

nearest-neighbors method with this fraction R is applied to determine the embedding 

dimension. Then the plot of the percentage of the false nearest neighbors versus the 

embedding dimension is shown in Fig. 5.4. The left plot is full view, and the right plot is 

a zoomed in for clairity. The embedding dimension is set to be 4. 

 
Fig. 5.4.The result of applying the False Nearest Neighbors method to the time series 

data from the induction motor system. 

Based on the setup time delay and the embedding dimension, the data set is 

considered as the input for the multilayer neural network to train. After automatically 

training, the evaluation of the LLE can be obtained. The two files #10598 and #57292 

are applied and compared. The comparison plots for the changes of the LLE through 20 

seconds time length of the used data are shown in Fig. 5.5. The top plot is for the file 

#10598, and the bottom plot is for the file #57292. 
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Fig. 5.5. Comparison of the Lyapunov exponents for the file #10598 and the file #57292 

for 20 seconds of the evaluation time. 

From the Fig. 5.5, the differences are easily found by the final values of the LLEs 

for these two files. The baseline file has the exponent of about -0.43, and -9 of the 

exponent is for the data file of the damaged bearing situation.  

Two data files can not accurately represent the real situations. To further study 

the changes of the LLE and their distribution for different damage levels, more files are 

used to do the experiments. For the case of the damage level 0, 30 data files are used; for 

the damage level 1, only 7 files are used (because only 7 files are available); for the 

damage level 2 to 4, 50 data files are used, respectively.  



82 

 

 

The value of the LLE itself has less meaning since the theoretical value is 

unknown. Thus the percentage changes of the LLE for each file from the LLE of the 

baseline file are calculated as 

                                               
                

            
      .                         (5.1) 

The percentage changes plot of the current Ia for all selected data files are 

displayed in Fig. 5.6. Similar results from currents Ib and Ic can be obtained as well. 

 
Fig. 5.6 Changes of the LLE for the current Ia through the entire damage process. 

From Fig. 5.6, it is generally observed that the results of the percentage changes 

are not always the same for each damage level. Actually, the results are scattered, 

especially for the case of damage level 4. The extent of the separation tends to be larger 

as the damage level increases and the bearing becomes worse. In order to get more clear 

and convincible conclusion, the average value of percentage changes for each damage 
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level with the error bars of +/-1 standard deviations are presented in Fig. 5.7. The plot is 

for the current Ia, whereas the other two currents have the similar results.  

 
Fig. 5.7. The average value of the percentage changes of the LLE with error bars for 

each damage level. 

Except for damage level 2 and damage level 3 which have similar values, the 

trend line is tending up as the damage level is increasing. Furthermore, the slope of the 

trend is related to the conditions before injecting currents and the current injection time. 

The 1st current injection is 25.38 hours; the 2nd current injection is 8 hours; the 3rd 

current injection is 2.47 hours; the 4th current injection is 1.38 hours. The slope from 

damage level 0 to damage level 1 and the slope from damage level 1 to damage level 2 

are not very sharp, because before injecting current, the state is healthy or damaged very 

little though the current is injected for a lot of hours. The values for damage level 2 and 

damage level 3 are almost the same, since the time of injection current is short. Finally, 

the slope from damage level 3 to damage level 4 is sharp, because the bearing is close to 
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complete damage. So, only after a short time, approximately 1.38 hours, the bearing 

becomes badly damaged.  

For additionally confirmation the trend with the damage process, the maximum 

of the percentage changes of the LLEs of the current Ia for each damage level are shown 

and compared in Fig. 5.8. The trend of this plot is similar to the plot for average values. 

The average, maximum, minimum and standard deviation of the LLE for each damage 

level for the three currents Ia, Ib, Ic are listed in Table B.1-B.3 in Appendix B. 

 
Fig. 5.8. The maximum value of the percentage changes of the LLE for each damage 

level. 

Based on all of these experiments, the results are scatted no matter which case it 

is, but the distribution and the statistics analysis of results can indicate the changes both 

of the currents and the bearing conditions. In order to show clear results of the 

differences between the healthy system and the faulty system, the distribution frequency 

is shown for comparison in Fig. 5.9. 
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Fig. 5.9. Comparison of the distributions for the healthy system and the faulty system. 

From the Fig. 5.9, the faulty system has a broadened histogram and several very 

large percentage changes in LLE compared with healthy system. The changes of the 

distribution can be a clear indicator for detecting faults for this real system. 

5.5 Chapter Summary 

From the results of testing the proposed method, a clear ascent trend of the 

percentage changes following the damage levels is shown. No matter which variable of 

the three currents is tested, the result is always similar. In addition, the distribution 

frequency of the percentage changes of the LLEs can give us a clear ability to 

distinguish and detect faults of a system. 
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CHAPTER VI 

SUMMARY AND CONCLUSION 

6.1 Summary 

Chaos is a developing research topic, but its application in a number of scientific 

fields has a promising future. As the most important indicator of chaos, Lyapunov 

exponent (LE) is studied by lots of researchers. They developed several calculation 

methods for LE and applied them onto the studies of chaotic attractors. However, the 

application of Lyapunov exponent on detecting the faults in real world dynamical 

systems is rarely developed. So, the method of detecting faults by using the LLE is 

proposed in this thesis work.  

In order to obtain the LLE from the experimental time series data, a method 

mainly based on phase space reconstruction and neural networks is demonstrated. The 

phase space reconstruction requires a time delay and an embedding dimension. For 

estimating the best time delay, the average mutual information is evaluated and the first 

minimum value is taken as the criterion. For evaluating the embedding dimension, the 

method of false nearest neighbors is used. Then the multilayer feedforward neural 

network is introduced to train the state points in the reconstructed phase space to predict 

the sub-functions of the unknown system and their derivatives. The last step is to 

calculate the eigenvalues of the Jacobi matrix through QR decomposition for 

simplification to attain the Lyapunov exponents. 
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Before applying the method on some real data, three chaotic models, the Lorenz, 

the Hénon and the Rössler, are used to test the method. After the analysis of the 

calculation results by using the data from these three theoretical models, the method is 

applied to some real world data from an induction motor during the damage bearing 

process. The relationship between the system fault and the calculated LLE is presented. 

6.2 Conclusion 

The conclusions of this thesis work are as following: 

 The distribution of the LLE’s percentage change can reflect changes in a 

mechanical system. 

 The change of the LLE is a good indicator to detect the occurrence of faults. 

6.3 Limitation and Future work 

The proposed method for calculating the LLE from the time series can give a 

very good evaluation for the simple chaotic systems or the systems with a little noise. 

Nevertheless, when the signal-to-noise ratio is relatively small which means the 

amplitude of the noise is large, the calculated result cannot perfectly match the 

theoretical value. In addition, the trained neural network needs to be updated in time, 

because the parameters of the network are fixed after training. If the system has a subtle 

change, the evaluation based on the previous network will not be exactly correct. So, the 

robustness and feasibility of the method must be improved, and the performance of the 

method in the presence of noise is needed to be enhanced.  
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The result of the application of the method to the real world data shows the 

separation but not a specific value. In order to reduce this separation, more data is 

needed. However, the more data is used, the more costs of time and memories are 

needed. Thus, the ways of shortening the implementation time are needed to be explored 

in the future. Also, the accuracy of the calculated Lyapunov exponent from the real data 

cannot be proved since the theoretical value is not known. So, how to double check the 

calculated Lyapunov exponent is a significant future work for the application on fault 

detection. Lastly, other failure modes need to be further tested. 
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APPENDIX A 
 

The calculation results of the average value, the relative error and the standard 

deviation of LLE for the Lorenz system with different time length are shown in Table 

A.1. 

Table A.1. The LLEs for the Lorenz system with different time length. 

 

 

The changed parameters of the Lorenz systems and the corresponding calculation 

results of the LLEs are listed in Tables A.2 - A.5. 

 

Table A.2. The LLEs for the 5% and 10% parameters changed Lorenz systems without 

retraining the neural network. 

 

 

 

 

 

 

 

 

 

50 100 150 200 250 300 350 400

Average value 1.4166 0.9244 0.9350 0.9060 0.9095 0.9130 0.9259 0.9118

Relative %error 57.01% 2.46% 3.64% 0.42% 0.80% 1.20% 2.62% 1.06%

Standard deviation 0.2536 0.0794 0.0333 0.0340 0.0144 0.0270 0.0230 0.0266

CASE 0 1 2 3 4 5 6 7 8 9 10 11 12

SIGMA1 10 10 10 10 10 10 10 10 10 10 10 10 10

R1 28 28 28 28 28 28 28 28 28 28 28 28 28

BETA1 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67 2.67

SIGMA2 10 10.5 9.5 10 10 10 10 11 9 10 10 10 10

R2 28 28 28 29.4 26.6 28 28 28 28 30.8 25.2 28 28

BETA2 2.67 2.67 2.67 2.67 2.67 2.8 2.5333 2.67 2.67 2.67 2.67 2.9333 2.4

Theoretical value 0.9022 0.9007 0.8997 0.9434 0.872 0.9202 0.8953 0.9018 0.9024 0.964 0.8344 0.9268 0.8704

Average value 0.9002 0.7053 1.0624 1.1591 0.7378 1.1688 0.7206 0.6202 1.1836 1.2833 0.9440 1.3794 0.7755

Relative %error 0.0022 0.2169 0.1808 0.2286 0.1539 0.2701 0.1952 0.3123 0.3116 0.3312 0.1313 0.4883 0.1090

Standard deviation 0.0143 0.0260 0.0258 0.0219 0.0246 0.0305 0.0344 0.0481 0.0312 0.0133 0.0734 0.0330 0.0922
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Table A.3. The LLEs with the neural network trained by 3% parameters changed Lorenz 

system data. 

 

Table A.4. The LLEs with the neural network trained by 5% parameters changed Lorenz 

system data. 

 

Table A.5. The LLEs with the neural network trained by 10% parameters changed 

Lorenz system data. 

 

CASE 1 2 3 4 5 6

SIGMA1 10.3 9.7 10 10 10 10

R1 28 28 28.84 27.16 28 28

BETA1 2.67 2.67 2.67 2.67 2.75 2.59

SIGMA2 10.5 9.5 10 10 10 10

R2 28 28 29.4 26.6 28 28

BETA2 2.67 2.67 2.67 2.67 2.80 2.53

Theoretical value 0.9007 0.8997 0.9434 0.872 0.9202 0.8953

Average value 0.8522 0.9807 1.0408 0.8052 1.0348 0.8137

Relative %error 0.0539 0.0900 0.1032 0.0766 0.1245 0.0912

Standard deviation 0.0200 0.0136 0.0108 0.0207 0.0198 0.0334

CASE 1 2 3 4 5 6

SIGMA1 10.5 9.5 10 10 10 10

R1 28 28 29.4 26.6 28 28

BETA1 2.67 2.67 2.67 2.67 2.80 2.53

SIGMA2 10.5 9.5 10 10 10 10

R2 28 28 29.4 26.6 28 28

BETA2 2.67 2.67 2.67 2.67 2.80 2.53

Theoretical value 0.9007 0.8997 0.9434 0.872 0.9202 0.8953

Average value 0.9005 0.8972 0.9397 0.8862 0.9139 0.8988

Relative %error 0.0002 0.0028 0.0040 0.0162 0.0069 0.0039

Standard deviation 0.0257 0.0188 0.0207 0.0119 0.0215 0.0248

CASE 1 2 3 4 5 6

SIGMA1 11 9 10 10 10 10

R1 28 28 30.8 25.2 28 28

BETA1 2.67 2.67 2.67 2.67 2.93 2.40

SIGMA2 11 9 10 10 10 10

R2 28 28 30.8 25.2 28 28

BETA2 2.67 2.67 2.67 2.67 2.93 2.40

Theoretical value 0.9018 0.9024 0.964 0.8344 0.9268 0.8704

Average value 0.9064 0.9255 0.9720 0.8361 0.9323 0.8917

Relative %error 0.0051 0.0256 0.0082 0.0020 0.0060 0.0244

Standard deviation 0.0191 0.0196 0.0192 0.0174 0.0257 0.0169
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The Sinusoidal functions with different frequencies and different amplitude  are 

added to the Lorenz system. The calculation results of the LLEs are shown in Tables A.6 

- A.8. 

 

Table A.6. The largest Lyapunov exponent of the Lorenz system added Sinusoidal 

function input with the amplitude of 10. 

 

Table A.7. The largest Lyapunov exponent of the Lorenz system added Sinusoidal 

function input with the amplitude of 5. 

 

Table A.8. The largest Lyapunov exponent of the Lorenz system added Sinusoidal 

function input with the amplitude of 1. 

 

 

 

 

 

 

 

Frequency(Hz) 1 2 3 4 5 6 7 8 9 10

Theoretical value -0.4244 -0.5406 -1.0450 0.1312 0.5746 1.0586 0.7556 0.7668 0.8178 0.8650

Average value -7.9764 -8.5523 -4.3038 -9.1729 -0.6281 1.6826 1.5324 1.2572 1.1042 1.1416

Relative %error 1779.34% 1481.90% 311.85% 7093.00% 209.31% 58.94% 102.81% 63.95% 35.02% 31.98%

Standard deviation 3.4817 2.9762 1.2410 1.8475 0.5945 0.5376 0.3617 0.1461 0.0935 0.1392

Frequency(Hz) 1 2 3 4 5 6 7 8 9 10

Theoretical value -0.6512 -0.1443 0.7724 0.9018 1.0375 0.7746 0.8187 0.8316 0.8539 0.8392

Average value -4.4922 -6.4287 1.2937 1.8242 1.4101 1.4077 1.4870 1.1254 1.1431 1.0807

Relative %error 589.87% 4356.52% 67.49% 102.29% 35.92% 81.72% 81.62% 35.33% 33.87% 28.77%

Standard Deviation 1.3516 1.8251 0.4140 0.2437 0.1287 0.2204 0.2093 0.0966 0.0924 0.1013

Frequency(Hz) 1 2 3 4 5 6 7 8 9 10

Theoretical value 1.03565 0.86118 1.03517 0.88218 0.79777 0.86022 0.84734 0.87619 0.87215 0.85614

Average value 2.59102 1.74142 4.25304 3.94714 1.78857 1.47720 1.02880 0.97005 1.00244 0.96445

Relative %error 150.18% 102.21% 310.85% 347.43% 124.20% 71.72% 21.42% 10.71% 14.94% 12.65%

Standard Deviation 0.27127 0.23720 0.81897 0.45499 0.17281 0.14867 0.13076 0.07198 0.09990 0.11754
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The Gaussian white noise with different signal-to-noise ratio is added to the 

Lorenz system. The calculation results of the LLEs are shown in Tables A.9 - A.10. 

 

Table A.9. The largest Lyapunov exponents evaluated from noise-added system data 

with the neural network trained by non-noise Lorenz system data. 

 

Table A.10. The largest Lyapunov exponents evaluated from noise-added system data 

with retraining neural network. 

 

 

 

  

SNR

Interval time 0 4000 8000 0 4000 8000 0 4000 8000 0 4000 8000 0 4000 8000

Average value 1.3368 1.3467 1.2238 1.2612 1.1476 1.2822 1.0674 1.0001 1.0048 0.9783 1.0321 0.9709 0.8905 0.9146 0.8839

Relative %error 48.17% 49.27% 35.65% 39.79% 27.20% 42.12% 18.31% 10.85% 11.37% 8.43% 14.39% 7.61% 1.30% 1.37% 2.03%

Standard deviation 0.0900 0.0792 0.0748 0.0680 0.0586 0.0655 0.0472 0.0456 0.0480 0.0286 0.0263 0.0332 0.0198 0.0214 0.0184

4.7712 6.9897 10 13.0103 20

SNR

Interval time 0 4000 8000 0 4000 8000 0 4000 8000 0 4000 8000 0 4000 8000

Average value 2.4683 2.7334 2.5597 2.2221 2.0569 2.2068 2.1943 1.9878 1.8169 1.7660 1.8057 1.8190 1.4597 1.4693 1.4713

Relative %error 173.58% 202.97% 183.72% 146.29% 127.98% 144.60% 143.21% 120.32% 101.39% 95.75% 100.15% 101.61% 61.79% 62.86% 63.08%

Standard deviation 0.4844 0.5476 0.5156 0.6496 0.6798 0.7229 0.3304 0.1989 0.2678 0.3226 0.3766 0.3354 0.1373 0.1647 0.1124

4.7712 6.9897 10 13.0103 20
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APPENDIX B 
 

 

The LLEs for the three currents of the motor, Ia, Ib and Ic, during the entire 

damage process are calculated. The average, maximum, minimum and standard 

deviation of the LLE for each damage level are listed in Tables B.1 - B.3. 

 

Table B.1 The largest Lyapunov exponents of current Ia for 5 different damage levels. 

 

Table B.2 The largest Lyapunov exponents of current Ib for 5 different damage levels. 

 
 

Table B.3 The largest Lyapunov exponents of current Ic for 5 different damage levels. 

 
 

Damage level 0 1 2 3 4

Average of the largest 

Lyapunov exponents
-0.44523 -1.52785 -2.68449 -2.5113 -4.60214

Maximum of the largest 

Lyapunov exponents
-0.0481 -0.37123 -0.1663 -0.208 -0.4059

Minimum of the largest 

Lyapunov exponents
-1.5969 -4.99735 -14.3552 -14.7197 -36.7801

Standard deviation 0.31196 1.584841 3.192624 3.374332 7.742202

Damage level 0 1 2 3 4

Average of the largest 

Lyapunov exponents
-0.54598 -1.07261 -2.78715 -2.35668 -4.6279

Maximum of the largest 

Lyapunov exponents
-0.0939 -0.3744 0.0142 -0.168 -0.1938

Minimum of the largest 

Lyapunov exponents
-1.7373 -3.05738 -14.0942 -15.7505 -39.9594

Standard deviation 0.330599 0.94629 3.37928 3.4081 8.314678

Damage level 0 1 2 3 4

Average of the largest 

Lyapunov exponents
-0.71333 -1.20474 -2.6908 -2.2429 -4.6698

Maximum of the largest 

Lyapunov exponents
-0.2008 -0.5014 -0.27485 -0.0798 -0.3985

Minimum of the largest 

Lyapunov exponents
-2.0737 -3.33783 -11.9814 -13.5551 -34.5237

Standard deviation 0.456921 0.987945 3.094062 3.108331 8.210244



99 

 

 

VITA 

Yifu Sun grew up in Beijing, China. He finished his B.S. degree in the 

Department of Automation Control at Beijing Institute of Technology, Beijing, China in 

2008. He received his M.S. degree in the Department of Mechanical Engineering at 

Texas A&M University, College Station, Texas in 2011. 

 

Contact Address:          Texas A&M University 

                                      Department of Mechanical Engineering 

                                      3123 TAMU 

                                      College Station TX 77843-3123 

Email Address:             tom19851031@neo.tamu.edu 

Phone Number:             979-739-3227 

 

mailto:tom19851031@neo.tamu.edu

