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ABSTRACT 

 
 
 
 

Investigating the Effects of Sample Size, 

Model Misspecification and Underreporting in Crash Data 

on Three Commonly Used Traffic Crash Severity Models. (May 2011) 

Fan Ye, B.E., Southeast University, China; 

M.S., Southeast University, China 

Chair of Advisory Committee: Dr. Dominique Lord  
 
 
 
 
Numerous studies have documented the application of crash severity models to explore 

the relationship between crash severity and its contributing factors. These studies have 

shown that a large amount of work was conducted on this topic and usually focused on 

different types of models. However, only a limited amount of research has compared the 

performance of different crash severity models. Additionally, three major issues related to 

the modeling process for crash severity analysis have not been sufficiently explored: 

sample size, model misspecification and underreporting in crash data. Therefore, in this 

research, three commonly used traffic crash severity models: multinomial logit model 

(MNL), ordered probit model (OP) and mixed logit model (ML) were studied in terms of 

the effects of sample size, model misspecification and underreporting in crash data, via a 

Monte-Carlo approach using simulated and observed crash data.  

The results of sample size effects on the three models are consistent with prior 

expectations in that small sample sizes significantly affect the development of crash 

severity models, no matter which model type is used. Furthermore, among the three 

models, the ML model was found to require the largest sample size, while the OP model 

required the lowest sample size. In addition, when the sample size is sufficient, the results 

of model misspecification analysis lead to the following suggestions: in order to decrease 
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the bias and variability of estimated parameters, logit models should be selected over 

probit models. Meanwhile, it was suggested to select more general and flexible model 

such as those allowing randomness in the parameters, i.e., the ML model. Another 

important finding was that the analysis of the underreported data for the three models 

showed that none of the three models was immune to this underreporting issue. However, 

setting data properly could minimize the bias and variability. Furthermore, when the full 

or partial information about the unreported rates for each severity level is known, treating 

crash data as outcome-based samples in model estimation, via the Weighted Exogenous 

Sample Maximum Likelihood Estimator (WESMLE), dramatically improve the 

estimation for all three models.    
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CHAPTER I 

INTRODUCTION 

 
 
 
 
Motor vehicle crashes are an issue of concern worldwide. In the U.S., traffic crashes 

bring about more loss to human life (as measured in human-years) than almost any other 

cause – falling behind only cancer and heart disease based on 2004 data (NHTSA, 2005). 

Furthermore, they are the leading cause of death for people between the ages of 3 and 34 

(NHTSA, 2009). Much progress has been made to improve traffic safety in the U.S. by 

implementing various traffic safety research programs, with the aim of reducing the 

number of deaths and serious injuries. For instance, in 2008, the fatality rate per 100 

million vehicle miles of travel (VMT) fell to a historic low of 1.27, compared to the 

number of 1.58 for the 1998 (NHTSA, 2009). However, the number of people involved 

in traffic crashes is still very high. In 2008, from the total of 5,811,000 police-reported 

traffic crashes, 37,261 people were killed, 2,346,000 people were injured, and 4,146,000 

crashes involved property damage only (NHTSA, 2009). The number of fatalities above 

indicates that an average of 102 people died each day in motor vehicle crashes which is 

equal to about one fatality every 14 minutes. The loss caused by traffic crashes is 

represented by the enormous economic cost, which was estimated to be $230.6 billion in 

the year of 2000, even without including the cost of delays imposed on other travelers 

which are also significant. In addition, traffic crashes are also one of the leading causes 

of death and injury in many other countries. For example, China, with only 1.9% of the 

world’s vehicles, has about 15% of global traffic deaths. Expressed differently, this is 

translated to the loss of 100,000 lives due to traffic crashes in the year of 2005 (NHTSA, 

2005) which is equivalent to 250 Boeing 747 Jumbo jets crashing every year, in China 

alone.  

 
This dissertation follows the style of Accident Analysis and Prevention. 
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A traffic crash is usually a consequence of the three elements: driver errors, vehicle 

characteristics and road environment. Therefore, in order to reduce the frequency of 

traffic crashes and their resulting injury severity, we need safer drivers, safer vehicles 

and safer roads. Some driver education programs and law enforcement will help drivers 

to increase their awareness with regards to safer driving. For safer vehicles, some new 

technologies used in vehicles can help drivers to avoid crashes or decrease the severity 

of crashes by controlling the vehicles better. These technologies include backup cameras, 

anti-lock braking systems, emergency brake assist, etc. In terms of road environment, it 

is important to improve road environment by incorporating safety information in 

geometric design of roadways with various traffic facilities. A good geometric design of 

roadways not only meets the design standard, but is also forgiving of the drivers’ 

mistakes, by providing sufficient clear zone, end treatments of guardrails, flat slope of 

roadside, etc.  

To raise awareness of the importance of road safety, increased attention is being paid to 

traffic safety analysis using various statistical models. They can be used to extract the 

information about the impacts of the contributing factors to traffic crashes based on 

crash records. Among all types of traffic safety analysis, the development and 

application of crash prediction models is one of the most important aspects. Usually 

there are two types of crash prediction models: crash count models and crash severity 

models. Crash count models are generally count regression models (e.g., Poisson and 

Negative Binomial distributions) which estimate the probability of observing the number 

of crashes falling into different severity levels. Crash severity models (e.g., various types 

of logit or probit models) intend to estimate the probability of a crash falling into one of 

the severity levels conditional on the fact that a crash has occurred. In addition, crash 

severity models using disaggregate data could capture the relationship between each 

crash and its contributing factors such as driver characteristics, vehicle characteristics, 

roadway conditions, and road-environment factors, while crash count models using 

aggregate data could not offer such a great insight. 
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As mentioned previously, crash severity models play an important role in traffic crash 

prediction. Therefore, developing a sound and reliable crash severity model is necessary 

for traffic safety analysis. The primary goal of this research is to study the three 

commonly used traffic crash severity models: multinomial logit model (MNL), ordered 

probit model (OP) and mixed logit model (ML), in terms of the effects of sample size, 

model misspecification and underreporting in crash data. This would equip researchers 

with a deeper understanding of the three models and furthermore to develop more sound 

and reliable crash severity models. The remainder of this chapter consists of three 

sections. Section 1.1 provides the problem statement. In Section 1.2, specific objectives 

of this research are provided. The outline of the dissertation is presented in Section 1.3. 

1.1 Problem Statement 

Crash severity models, such as various logit or probit models, are widely used in safety 

analyses. Among those, crash severity models can be categorized into two groups: 

nominal models and ordinal models. However, few research studies have been 

conducted on comparing different crash severity models, though each model type has its 

own unique benefits and limitations. So far, there is no consensus on which type of 

model performs the best. Some researchers prefer to choose nominal models instead of 

ordinal models because of the limitation of ordered models, which do not have the 

flexibility to explicitly control interior category probabilities (Washington et al., 2010). 

Thus, it is necessary to further compare various crash severity models to allow 

researchers to select the appropriate one for their analysis.  

In terms of model estimation for various crash severity models, sample size requirement 

is the first item to be considered. Similar to count data models, crash severity model can 

be influenced by the sample size from which they are estimated (see Lord, 2006). As 

discussed by Lord and Mannering (2010), crash data are often characterized by small 

sample sizes, which are attributed to the large cost of assembling crash data. Although it 
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is anticipated that the size of the sample will influence the performance of crash severity 

models, nobody has so far quantified how the sample size affects the most commonly 

used crash severity models and consequently provided guidelines on the data size 

requirements. A few have proposed such guidelines, but only for crash count models 

(Lord, 2006; Lord and Miranda-Moreno 2008; Park et.al, 2010). Thus, there is a need to 

examine how the sample size can influence the development of commonly used crash 

severity models. Providing this information could help safety analysts in their decision to 

use one model over another given the size of the data.  

Furthermore, even when the sample size is sufficient, there could still exist a bias in the 

estimated results when the specified model is not based on the true one for crash data. 

Even though we usually have no knowledge of the true model that crash data come from, 

there will be less bias in the estimation results if we fit the crash data with a model 

which is less affected by model misspecification. The model misspecification issue for 

crash severity models is yet to be studied. Therefore, there is a need to analyze how the 

model misspecification affects on the commonly used crash severity models. 

Finally, both the crash count and crash severity models are usually based on police 

reported crash data and are used for investigating crash occurrences that are related to 

highway design features, environmental conditions and traffic flow. However, many 

crashes often go unreported, particularly those associated with lower severity crashes. 

This results in underreported crash data, which can yield biased estimation when used to 

predict the probability of crash severity (Hauer and Hakkert, 1989). In other words, for 

estimating crash severity models, inferences about a population of interest will assuredly 

be biased if crash data are treated as a random sample coming from the population 

without considering the different unreported rates of each crash severity level. There are 

numerous studies that have investigated the level of incompleteness of police crash 

surveillance systems. However, few studies have deeply investigated underreporting 

issues in the analysis of traffic crash models (Kumara and Chin, 2005; Ma, 2009; 
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Yamamoto et al., 2008). Thus, it is necessary to explore the effects of underreporting 

crash data on the commonly used crash severity models. 

1.2 Research Objectives 

The primary goal of this research is to study the difference of three commonly used 

traffic crash severity models: the MNL, OP and ML models, in terms of sample size, 

model misspecification, and underreporting in crash data. To accomplish this goal, the 

following objectives are planned to be addressed in this research: 

1. Examine the effects of the sample size on the three most commonly used crash 

severity models, via a Monte-Carlo approach using simulated and observed crash 

data. The sample size requirements for the three models will be proposed after 

comparing the bias and variability caused by the small sample size of the data. 

2. Compare the bias and variability caused by model misspecification among the three 

commonly used crash severity models, via a Monte-Carlo approach using simulated 

data. The results will provide additional information about the differences between 

these models to help researchers select the appropriate crash severity model to 

minimize the bias and reduce the variability caused by a model misspecification. 

3. Investigate how each of the three commonly used models behaves in terms of the 

prediction results for various underreporting scenarios. In addition, the outcome-

based sampling method (the Weighted Exogenous Sample Maximum Likelihood 

Estimator, i.e., WESMLE is to be used in the study) will be quantified for crash 

severity models on how much it can account for specific underreporting conditions 

with different knowledge of unreported rates. A Monte-Carlo approach based on 

simulated and observed data will be used in the analysis. Eventually, 

recommendations will be developed for implementing the three crash severity 
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models when the full or partial information about the unreported rates for each 

severity level is known. 

1.3 Outline of the Dissertation 

The remainder of this dissertation is organized as follows: 

Chapter II provides a brief overview of various crash severity models that have been 

proposed for modeling crash data, and discusses the selection of three models for 

analysis in this research: the MNL, OP and ML models. Previous research studies related 

to the comparison of crash severity models are summarized, and the findings indicate 

that more model comparisons need to be demonstrated in order to provide more 

information on model selection for crash severity analyses. In addition, the 

underreporting issue in crash data and crash prediction models are described. In the last 

section of this chapter, the model estimation methods for underreported crash data are 

presented. 

Chapter III provides the methodologies for the three target crash severity models: MNL, 

OP, and ML models, as well as the WESMLE used in the model estimation for the crash 

severity models. The WESMLE method treats crash data as outcome-based samples 

rather than random samples to take account of the underreporting issue in crash data. 

Chapter IV applies the three crash severity models: the MNL, OP and ML models to 

observed crash data. The crash dataset includes 26,175 single-vehicle crashes involving 

fixed objects on rural two-way highways. Meanwhile, the estimation results of the three 

models are compared. Furthermore, the estimation results in this chapter are treated as 

baselines for the analysis of sample size (in Chapter V) and the underreporting issue (in 

Chapter VII), since the crash data used in this chapter are assumed as a complete dataset 

without any underreporting. 
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Chapter V examines the sample size requirements for the three models: the MNL, OP, 

and ML models. Using a Monte-Carlo approach based on simulated and observed crash 

data, the bias and variability caused by small sample sizes of the data for the three 

models are evaluated. At the end of this chapter, recommended sample sizes for applying 

the three models are given. 

Chapter VI compares the bias and variability caused by model misspecification among 

the three models (the MNL, OP and ML models) when sufficient sample sizes are used, 

based on the results obtained from Chapter V (which are assumed as baselines for 

analysis). A Monte-Carlo approach using simulated data is utilized for analysis. At the 

end of this chapter, the effects of model misspecification on the three crash severity 

models are described. 

Chapter VII investigates the effects of underreporting in data for the three crash severity 

models: the MNL, OP, and ML models, via a Monte-Carlo approach using simulated 

and observed crash data. More specifically, this chapter explores how each of these 

models performs for various unreported rates of crash severity levels. Furthermore, it 

quantifies how much the WESMLE method could account for specific underreporting 

conditions when transportation safety analysts have the full or partial knowledge about 

the unreported rates for each severity level. 

Chapter VIII summarizes the major results found in this research along with the general 

conclusions and recommendations for future research.  
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CHAPTER II 

BACKGROUND 

 
 
 
 
Motor vehicle crashes are usually categorized into five crash injury severity categories in 

decreasing order of levels of injury severity, in ―KABCO‖ scale: (K) fatal injury, (A) 

incapacitating injury, (B) non-incapacitating injury, (C) possible injury, and (O) no 

injury (NHTSA, 2010). The American National Standard ANSI D16.1-2007 (2007) 

provides the definition of the five injury levels. A fatal injury is any injury that results in 

death. An incapacitating injury refers to any injury, other than a fatal injury, which 

prevents the injured person from walking, driving or normally continuing the activities 

the person was capable of performing before the injury occurred. A non-incapacitating 

injury is any injury, other than a fatal injury or an incapacitating injury, which is evident 

to observers at the scene of the crash in which the injury occurred. A possible injury is 

any injury reported or claimed which is not a fatal injury, incapacitating injury or non-

incapacitating evident injury. A no injury also refers to property-damage-only (PDO).  

However, not all crashes satisfying the above definition of motor vehicle crashes are 

reportable. Reportable crashes should involve injury or significant property damage 

(Hauer, 2006). A reportable PDO crash includes damages to a vehicle that are estimated 

to be at least some monetary value specified by law, which is changeable from time to 

time, country to country, and state to state. For example, in Wisconsin (in 2003) the 

damage had to exceed $1000 or more to property owned by any person or $200 to 

government property. In Pennsylvania, a PDO crash is reportable if one of the involved 

vehicles cannot be driven from the scene of the collision under its own power (Hauer, 

2006). All the ―underreporting‖ mentioned in this research refers to the reportable 

crashes that go unreported. 
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Many crash severity models are used to predict the probability of each crash severity 

level once a crash occurs, based on crash data reported by police. In this chapter, various 

crash severity models that have been used for modeling traffic safety are reviewed, and 

model comparisons from previous research studies are summarized. In addition, the 

underreporting issue for crash data and crash prediction models are described, following 

which the model estimation methods for underreported crash data are presented.  

The chapter is divided into four sections. Section 2.1 provides a brief review of crash 

severity models which have been used so far to show how widely these models are used 

in crash analysis. Section 2.2 describes the underreporting issue in both crash count 

models and crash severity models. Section 2.3 presents the model estimation methods 

for underreported crash data where crash data are treated as outcome-based samples 

rather than random samples. Section 2.4 summarizes the chapter. 

2.1 Crash Severity Models  

Discrete outcome models (usually named as discrete choice models in the previous 

research) in traffic safety study are usually used to explore the relationship between 

crash severity and its contributing factors such as driver characteristics, vehicle 

characteristics, roadway conditions, and road-environment factors. Among others, the 

main discrete outcome models for crash severity analysis can be categorized into two 

groups: nominal models and ordinal models. Nominal discrete outcome models used for 

crash severity do not account for the ordinal nature of the severity level of each crash, 

but relax the limitation of the ordinal discrete outcome models (it will be stated later). 

Nominal models are widely used for crash severity analysis, including 

binomial/multinomial logit (MNL) models, nested logit models, mixed logit (ML) 

models and mixed probit models. In contrast to nominal models, ordinal discrete 

outcome models account for the ordering of injury-severity outcomes, including ordered 

logit models, ordered probit (OP) models and ordered mixed logit models. Differences 
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between these models are a result of different assumed distributions of unobserved 

factors (error terms) which can have an impact on model prediction results. For instance, 

the error term of all logit models is identically and independently distributed (IID) Type 

I extreme value (such as those for the MNL or nested logit models), or can be 

decomposed into a part that is IID Type I extreme value (such as those for the ML or 

ordered mixed logit models). Meanwhile, the error term of all probit models is joint 

normal distributed (such as those for the OP model), or can be decomposed into a part 

that follows normal distribution (such as those for the mixed probit models). 

Table 2.1 provides a list of these models utilized in previous crash-severity studies to 

show how widely they have been used in crash data analysis. From this table, it can be  

 
 
 

TABLE 2.1 Summary of Previous Research on Crash Severity Models 

Model Type Previous Research 

Nominal model 

Multinomial Logit Model 
(MNL) 

 

Lui et al., 1988; Hilakivi et al., 1989; Shibata and Fukuda, 
1993; Mannering and Grodsky, 1995; Farmer et al, 1996; 
James and Kim, 1996; Mercier et al., 1997; McGinnis et al., 
1999; Krull et al., 2000; Ossenbruggen et al. 2001; Al-
Ghamdi, 2002; Bedard et al, 2002; Dissanayake and Lu, 2002; 
Toy and Hammitt, 2003; Ulfarsson and Mannering, 2004; 
Khorashadi et al., 2005; Conroy et al., 2006; Savolainen and 
Mannering, 2007; Kim et al., 2008 

Nested Logit Model  Nassar et al., 1994; Shankar et al., 1996; Chang and 
Mannering, 1999; Savolainen and Mannering, 2007; Haleem 
and Abdel-Aty, 2010 

Mixed logit model 
(ML) 

Gkritza and Mannering, 2008; Milton et al., 2008; Pai et al., 
2009; Kim et al.,2010 

Ordinal model 

Ordered logit model  O’Donnell and Connor, 1996; Wang and Kockelman, 2005 
Ordered probit model  
(OP) 

Hutchinson, 1986; O’Donnell and Connor, 1996; Klop, 1998; 
Duncan et al., 1999; Khattak, 1999; Renski et al., 1999; 
Kockelman and Kweon, 2002; Quddus et al., 2002; Abdel-
Aty, 2003;  Zajac and Ivan, 2003; Abdel-Aty and Keller, 
2005; Garder, 2006; Ma and Kockelman, 2006; Xie et al., 
2009; Haleem, 2010 

Ordered mixed logit model Srinivasan, 2002; Eluru et al, 2008 
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seen that the MNL and OP models are the most prominent types of models used for 

traffic crash severity analysis. Meanwhile, the ML model is a promising model that has 

recently been used. Details of each model listed in the table are then discussed further. 

2.1.1 Nominal model 

This section describes the three nominal discrete outcome models used for crash severity 

studies. 

2.1.1.1 Multinomial Logit Model (MNL) 

Table 2.1 indicates that the MNL model is the most widely used one for traffic crash 

severity studies by many transportation safety researchers. A variation of the MNL 

model refers to as the multivariate multinomial logit model has also been used for 

modeling crash severity (Ulfarsson and Mannering, 2004). 

The MNL model is derived under the assumption that the unobserved factors are 

uncorrelated over the alternatives (or outcomes) and have the same variance for all 

alternatives, also known as the independence from irrelevant alternatives (IIA) 

assumption. This assumption is the most notable limitation of the MNL model since 

unobserved factors related to one alternative could be similar to those related to another 

alternative (Train, 2003). For example, level of alertness may not be a variable included 

when modeling crash severity and would be considered as an unobserved factor. 

However, a sleepy driver involved in a fatal crash might have a similar probability of 

being involved in an incapacitating injury crash; if so, the unobserved factors (level of 

alertness) affecting fatal crash and incapacitating injury crash would be correlated rather 

than independent. Despite this limitation, the IIA assumption makes the MNL model 

very convenient to use which also explains its popularity. 
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2.1.1.2 Nested Logit Model  

In order to release the IIA assumption of the MNL model and to account for the 

correlation of unobserved factors over alternatives, nested logit models have been used 

for traffic crash severity analysis. 

The nested logit model belongs to the family of Generalized Extreme Value (GEV) 

models, which allow partial relaxation of the IIA property since IIA holds within nests 

but not across nests (i.e. unobserved factors have the same correlation for all alternatives 

within a nest but no correlation for alternatives in different nests). The nested logit 

model structure is useful when there are similarities between some alternatives. In the 

previous mentioned sleepy driver example, fatal crashes and incapacitating crashes could 

be grouped into a nest to account for the possible correlation among unobserved factors. 

The nested logit model will collapse to the MNL  model when the existing correlation is 

zero. 

2.1.1.3 Mixed logit model (ML) 

The ML model has attracted considerable attention by traffic safety researchers because 

of its flexibility in model definition, allowing the unobserved factors to follow any 

distribution. Thus, the ML model overcomes the IIA limitation of the MNL model. In 

addition, Train (2003) illustrated that the ML was fully general which could approximate 

any discrete outcome model. From Table 2.1, it is found that the ML model has been 

widely used in traffic crash severity analysis in recent years. It has become popular due 

to the improvement of computer speed and the development of simulation techniques 

which are necessary for the model estimation.  

The ML model can approximate any discrete outcome model since it allows the 

unobserved factors to follow any specified distribution. It is obtained by decomposing 

the unobserved factors into two parts, one containing all the correlation by following any 
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distribution and the other following the IID Type I extreme value distribution (Train, 

2003).  

2.1.2 Ordinal model 

The crash severity categories do have an inherent order, with PDO being the least severe 

and fatal being the most severe. Some information is to be lost by ignoring the ordinal 

nature of the five crash severities. As stated by Amemiya (1985) that if ordinal data were 

fit by a nominal model, the estimated parameters remained consistent but less of 

efficiency. However, although ordered logit/probit models include the order information 

of the data, they restrict the effect of explanatory variables on ordered discrete outcome 

probabilities by using the same coefficient of an explanatory variable among different 

crash severities. Therefore, it causes the variable either to increase the probability of 

higher severities with the decrease of the probability of lower severities, or to reduce the 

probability of higher severities with the increase of the probability of lower severities 

(this will be described further in Section 3.2). This result may not be realistic because it 

is possible that some explanatory variables cause an increase in the probability of some 

outcomes predictions but a decrease in the probability of other outcomes predictions. For 

instance, inclement weather might lead to an increase in the probability of both highest 

severity (or severities) and lowest severity (or severities) and reduce the probability of 

all other severities. Meanwhile, ordered logit/probit models do not have the flexibility to 

explicitly control interior category probabilities (Washington et al., 2010). The effects on 

interior categories depend on the thresholds. 

The three most commonly used ordinal discrete outcome models in traffic safety studies 

are ordered logit model, ordered probit (OP) model, and ordered mixed logit model. 

They are described below. 
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2.1.2.1 Ordered logit model  

The ordered logit model is derived from specifying the MNL model for ordinal data. 

Standard ordered logit models are not frequently used in crash severity analysis, when 

compared to, the use of other ordinal models. O’Donnell and Connor (1996) used the 

ordered logit model to predict the severity of motor vehicle crash injuries. However, 

there are a couple of variations of ordered logit model used by researchers for crash 

severity studies. Wang and Kockelman (2005) used the heteroscedastic ordered logit 

model for studying the contributing factors of occupant injury severity, which 

parameterizes the variance of the error term as a function of some variables such as 

speed limit, vehicle type and vehicle curb weight. Wang and Abdel-Aty (2008) used a 

partial proportional odds model to examine the left-turn crash injury severity, for which 

some of the coefficients can differ across outcomes, with the relaxation of the parallel-

lines assumption for some variables. Eluru et al. (2008) and Yamamoto et. al. (2008) 

used sequential logit models for crash severity analysis, which relaxed the restrictions 

imposed by standard ordered logit model allowing separate parameter coefficients for 

variables. 

2.1.2.2 Ordered probit model (OP) 

The OP model is derived from specifying the standard probit model for ordinal data. 

Although the standard probit model is not used for crash severity analysis because of its 

estimation difficulties, the OP model has been widely used in crash severity analysis 

over the ordered logit model (as shown in Table 2.1) due to its underlying assumption of 

normality. A variation of the OP model (a.k.a., bivariate ordered probit model) was also 

used a few years ago to predict the probability of driver’s and passenger’s injury 

severities in collisions with fixed objects (Yamamoto and Shankar, 2000). 
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2.1.2.3 Ordered mixed logit model  

Similar to other ordinal discrete outcome models, the ordered mixed logit model is 

derived from specifying the ML model for ordinal data. Ordered mixed logit model 

generalizes the ordered logit model by allowing parameters of each variable for the 

model to follow any distribution. Srinivasan (2002) extends the ordered logit model by 

allowing random coefficients of variables in each severity level, and by a Chi-square test, 

ordered mixed logit model had a better goodness-of-fit (GOF) than ordered logit model. 

Eluru et al. (2008) developed an ordered mixed logit model to find the contributing 

factors to the non-motorist injury severity. 

2.1.3 Model comparison 

Each model type has its own unique benefits and limitations and there is no consensus 

on which model is the best. Some researchers prefer to choose nominal models instead 

of ordinal models because of the limitation of ordinal models, which restrict the effect of 

variables across outcomes (Khorashadi et al., 2005).  

From the literature, few researchers have directly examined different types of crash 

severity models. Abdel-Aty (Abdel-Aty, 2003), as one of the few researchers, compared 

the MNL, OP and nested logit models in driver injury severity analysis for roadway 

sections, signalized intersections and toll plazas. The author concluded that the OP 

model was easy to estimate and performed well in modeling driver injury severity. He 

also stated that the MNL model did not perform as well as the OP model, which resulted 

in fewer significant variables for the model and a lower GOF. The nested logit model 

had fewer significant variables than the OP model, but shared a slight improvement in 

the GOF. However, the nested logit was more complex than the OP model because the 

former requires the specification of a nested structure. Thus, he recommended the OP for 

modeling driver injury severities. 
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Haleem et al. (2010) compared the binary probit model, OP model and nested logit 

model in crash severity analysis at three- and four-legged unsignalized intersections in 

Florida from 2003 to 2006. By comparing the GOF of model estimation, the authors 

concluded that the binary probit model produces comparable if not better results than the 

OP model, and meanwhile it was found that the nested logit models did not show any 

improvement over the probit models. As a result, it was recommended that binary probit 

models be used for modeling crash severity at unsignalized intersections if the objective 

is to identify the factors contributing to severe injuries in general. However, it was also 

noted that binary probit models were not suitable for the analysis of a specific injury 

category since the crash severity levels were combined into two levels for binary probit 

models. 

A review of the literature reveals that more extensive model comparisons need to be 

conducted in order to provide more information on model selection in crash severity 

analysis. This task will be undertaken in this research, particularly for the purpose of 

analyzing sample size requirements, the effects of model misspecification and 

underreporting data for crash severity models.  

2.2 Underreporting Issue in Crash Data 

About twenty years ago, Hauer and Hakkert (1989) raised the issue that not all traffic 

crashes were reportable and not all reportable crashes were in fact reported1. This limited  

 
 
 
1 There is another possible issue about the accuracy of crash data that some crashes were incorrectly 
recorded for their severity levels. For instance, a crash of possible injury (C) was very likely to be 
categorized as no injury (PDO), and vice-verse. As stated by Winston et al. (2006), reporting errors of 
misclassifying the severity level of crashes would lead to biased parameter estimates. However, by 
applying the procedure developed by Hausman et al. (1998) to explore the effects of misclassification of 
crash severity levels on the model estimation results, they found their data were not subject to systematic 
misclassification of crash severities. More research studies need to be done on the misclassification issue 
in crash data. 
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the ability to manage road safety, since most of the analysis related to road safety was 

based on reported crashes. Analysis of underreported crash data would lead to a biased 

estimation of crash severity and thus result in ineffective treatments. Having realized the 

underreporting issue in crash data, some researchers began to study this topic in a greater 

detail (Hauer and Hakkert, 1989; James, 1991; Hvoslef, 1994; Stutts and Hunter, 1998; 

Aptel et al., 1999; Elvik and Mysen, 1999; Alsop and Langley, 2001; Cryer et al., 2001; 

Dhillon et al., 2001; Rosman, 2001; Amoros et al., 2006; Hauer, 2006; Tsui et al., 2009). 

These studies reveal that crashes are underreported in all the countries with high levels 

of motorization. In addition, underreporting issue in crash data is worse in developing 

countries. The probability of reporting was found to be influenced by crash severity, age 

of the victim, role of the victim (whether the victim is the driver, the passenger, or etc.), 

and number of vehicles involved (Hauer and Hakkert, 1989).  

Underreported data tend to produce biased estimations in both the crash count models 

and crash severity models. However, underreporting is more critical in crash severity 

models because of the different reported rates of various severity categories. Crashes 

with lower severity such as PDO are more likely to be unreported which leads to the 

over-representation of crashes with higher severity and under-representation of crashes 

with lower severity. It is widely accepted that fatal crashes have the highest reported rate 

and PDO crashes have the lowest reported rate. After reviewing 18 studies in which 

researchers examined police, hospital and insurance sources for common entries, Hauer 

and Hakkert (1989) concluded that the unreported rate was 5 percent for fatal injuries, 20 

percent for injuries requiring hospitalization, and perhaps 50 percent for all injuries. In a 

comprehensive meta-analysis, based on 49 studies in 13 countries, Elvik and Myssen 

(1999) found that 5 percent for fatal injuries, 30 percent for serious injuries, 75 percent 

for slight injuries, and 90 percent for very slight injuries went unreported. According to 

Blincoe et al. (2002), up to 25 percent of all minor injuries and almost 50 percent of 

PDO crashes likely went unreported because most drivers did not wish to involve the 

police or other authorities due to insurance concerns or legal repercussions; by contrast, 

fatal injuries were completely reported.  
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Several studies have investigated the effects of underreporting of crash data in both crash 

count models and crash severity models, as discussed in Section 2.2.1 and Section 2.2.2 

respectively. As a result, some approaches which were developed for outcome-based 

samples in discrete outcome models could be used to account for underreporting of crash 

data in traditional crash model studies, which will be described in Section 2.3. 

2.2.1 Underreporting in crash count models 

Kumara and Chin (2005) pointed out that a reliable crash data system was essential to 

develop a good representative model; however, the underreporting issue in crash studies 

might obscure true information about crashes. In their study, the standard Poisson 

regression model was modified into a Poisson underreporting model, which improved 

the quality of parameter estimation, while taking into account the effect of 

underreporting.  

Realizing that underreporting in crash data invalidates the assumptions of the standard 

Poisson regression model, Ma (2009) presented an approach to model underreported 

traffic crash data with a modified latent Poisson regression model, which was a simple 

form of the combination of a standard Poisson and a beta distribution. The modified 

latent Poisson regression model allowed for the fact that the crash data for model 

estimation might be underreported which differed from previous specifications of count 

data models. The underreporting Poisson regression model results were found to differ 

substantially from standard Poisson models that did not consider underreporting.  

The two studies discussed here did not verify their estimated results with actual crash 

data. Model validation is difficult since information on actual crash occurrences and the 

unreported rates for various crash severities is unknown. 
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2.2.2 Underreporting in crash severity models 

The inconsistent unreported rates among different severity levels lead to biased results, 

which cause the overestimation of probabilities of higher severity crashes and the 

underestimation of lower severity crashes, particularly PDO. In addition, underreporting 

causes biased parameters, which skew the inferences on the effects of key explanatory 

variables for the prediction models. However, only one study has been found that deals 

with modeling crash severity with underreported data, as described below. 

Yamamoto et al. (2008) investigated the effects of underreporting on parameter 

estimation for the OP and sequential binary probit models. In the study, the results 

indicated that the estimates of the explanatory variables and parameter elasticities for 

both models could be significantly biased if underreporting was not considered. In 

addition, the researchers regarded traffic crash data as outcome-based samples with 

unknown population shares of the crash severities, and used a pseudo-likelihood 

function (Cosslett, 1981a, b) to account for the effects of underreporting on parameter 

estimation for both models. The population shares of each severity category were 

estimated for each model, which provided insights on the levels of underreporting in 

each crash severity. However, the effectiveness and efficiency of the methods were not 

confirmed, and no analysis was conducted about the model effects of different 

combinations of unreported rates of each crash severity.  

2.3 Model Estimation Methods for Underreported Crash Data 

No matter which type of discrete outcome model is used for crash analysis, crash 

severity models are usually estimated based on random sampling without considering the 

underreporting in crash data. However, because of the unique underreporting 

characteristics in crash data, crash data should be treated as outcome-based or 

endogenous stratified samples. Without considering the underreporting issue for the 

model, model estimation results will definitely be biased (Yamamoto et al., 2008). 
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Though it is rare to treat crash data as outcome-based samples, outcome-based samples 

(a.k.a., choice-based samples) are commonly used in other areas of research. Choice-

based samples are usually collected by stratifying to obtain better information about 

alternatives that are infrequently chosen in the population when a random sampling does 

not collect enough samples for effective statistical analysis. For example, an analyst may 

want to analyze a product with a small market share by over-sampling users, while 

collecting sufficient data with a simple random sampling may require a prohibitively 

large sample size (Bierlaire et al., 2008).  

2.3.1 Sampling strategies  

To better understand the outcome-based samples of crash data, different sampling 

strategies are overviewed. As stated by Bierlaire et al. (2008) and Pendyala (1993), 

sampling strategies can be classified into two major categories: random sampling and 

stratified sampling. 

A simple random sampling, which is the most frequently used method of sampling, 

draws independent observations from the population and the probability of being 

sampled is equal for every unit. A random sample may contain few individuals having 

certain selection and thus lead to poor estimates of the relevant parameters, unless the 

sample size is large (Cosslett, 1981b).  

A stratified sampling requires dividing the population into groups according to a set of 

measurable variables and draws a random selection of participants at different rates from 

each group, called a "stratum". Over-sampling those individuals who select infrequently 

chosen alternatives allows for precise estimates than could be obtained from a random 

sample of the same overall sample size (Cosslett, 1981b).  

Stratified sampling can be exogenous or endogenous or both. Each of these is described 

below: 
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 An exogenous stratified sampling draws independent observations from the 

groups which are characterized only by exogenous variables or independent variable.  

 An endogenous stratified sampling, also called choice-based or outcome-based 

sampling, draws independent observations from the groups which are characterized by 

the endogenous variables or dependent variable only.  

 An exogenous and endogenous stratified sampling draws independent 

observations from the groups which are characterized by both the exogenous and 

endogenous variables. 

As mentioned above, crash data for model estimation consists of outcome-based samples 

since the unreported rates differ according to the crash severity category. As a result, this 

study is interested in the estimation of discrete outcome models for outcome-based 

sampling. 

The estimation of discrete outcome models is a very difficult task when the sampling 

strategy is based on the outcome, since the covariate distribution entering the likelihood 

function cannot be factored out. As stated by Lancaster (1997), unlike the random 

sampling with the covariate distribution factor out of the likelihood, the likelihood 

function of outcome-based sampling involves both an unknown finite parameter and an 

unknown distribution function of the covariates, so the likelihood function does not 

factor out and the inference problem is semi-parametric.  

2.3.2 Methods for treating outcome-based sampling in discrete outcome models 

There are several methods that have been developed by economists since 1977 to handle 

outcome-based samples as stated below.  

Seven main methods are in use to handle outcome-based samples in discrete outcome 

models: Weighted Exogenous Sample Maximum Likelihood Estimator (WESMLE), 

Conditional Maximum Likelihood Estimator, Full information Maximum Likelihood 
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Estimator, Weighted Generalized Method of Moments, Bayesian Weighted Exogenous 

Sample Maximum Likelihood Estimator, Smoothed Maximum Likelihood Estimator, 

and Weighted Conditional Maximum Likelihood Estimator. One of the methods will be 

selected for handling the underreported crash data, by treating underreported crash data 

as outcome-based samples for crash severity models. 

2.3.2.1 Weighted Exogenous Sample Maximum Likelihood Estimator (WESMLE) 

As long ago as 1977, Manski and Lerman (1977) demonstrated that the maximum 

likelihood estimator (MLE) is generally asymptotically biased and inconsistent when 

applied to outcome-based samples (Xie, 1989). As a correction, they developed the 

WESMLE as a simple method to yield consistent estimates for outcome-based sampling.  

The WESMLE is consistent and asymptotically normal, and can be computed easily by 

modifying the existing maximum likelihood function, but is not fully efficient. The 

WESMLE is the most widely used estimator, available when the population shares are 

known. The WESMLE for outcome-based samples is not efficient since its variance-

covariance matrices do not asymptotically attain the Cramer-Rao lower bound. However, 

its efficiency loss relative to more difficult estimation is typically modest which has been 

supported by its wide use among all the methods. Since the WESMLE was proposed in 

1977, various other estimators have appeared which are summarized as below (Xie, 

1989). 

2.3.2.2 Conditional Maximum Likelihood Estimator 

Manski and McFadden (1981) introduced a conditional maximum likelihood method, 

treating more generally the problems of sample design and estimation of discrete choice 

models. However, this method also has efficiency problems (Cosslett, 1981b), although 

Amemiya and Vuong (1987) noted that it is asymptotically more efficient than the 

WESMLE.  
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2.3.2.3 Full information Maximum Likelihood Estimator 

Cosslett (1981a) proposed a full information maximum likelihood estimator by 

involving the population proportion of outcomes in the likelihood function for 

parameters estimation under choice-based or outcome-based sampling. Cosslett’s 

method is efficient, but is very difficult to compute as it may require estimating the joint 

distribution of the exogenous variables, and it has only been applied by Hsieh et al. 

(1985). Furthermore, in Cosslett’s method, the knowledge of population proportion 

greatly improves the precision of the estimates, and estimators will have low efficiency 

without the knowledge of population proportion. Therefore, using Cosslett’s method to 

estimate parameters and unreported rates for crash severity models, as developed by 

Yomamoto (2008), may not give an efficient and valid result. 

2.3.2.4 Weighted Generalized Method of Moments  

More recently, Imbens (1992) developed an efficient weighted generalized method of 

moments (GMM) estimator for choice-based samples. Butler (2000) compared the 

variances of the WESMLE and weighted generalized GMM estimation and concluded 

that the latter could be more efficient than the former. However, both methods were less 

efficient than the full information MLE (Cosslett’s method) under choice-based 

sampling. In addition, simpler to compute than Cosslett’s, Imben’s estimator cannot be 

computed as simply as the WESMLE. 

2.3.2.5 Bayesian Weighted Exogenous Sample Maximum Likelihood Estimator 

Lancaster (1997) provided a Bayesian interpretation of the WESMLE for choice-based 

samples using a binary probit model. It was concluded that the knowledge of the 

marginal choice probabilities largely affected the precision of model estimation. 

However, this conclusion might not be generalized to multinomial choice or models 

other than probit. 
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2.3.2.6 Smoothed Maximum Likelihood Estimator 

Cosslett (2007) proposed a smoothed likelihood function to construct an efficient 

estimator for some semi-parametric models that contained unknown density functions 

together with parametric index functions. A binary choice model from a choice-based 

sample was estimated using this method to show the efficiency gains from knowledge of 

population shares. 

2.3.2.7 Weighted Conditional Maximum Likelihood Estimator 

Bierlaire et al. (2008) proposed the weighted conditional maximum likelihood (WCML) 

estimator. The WCML is a generalization of the conditional MLE by Manski and 

McFadden (1981) and the WESMLE by Manski and Lerman (1977). 

2.3.2.8 Method Selected for Crash Severity Models 

Among all the methods mentioned previously, though not efficient, the WESMLE is 

consistent and easy to compute which makes it the most widely used method for choice-

based samples. LIMDEP (on LIMDEP 9.0, Econometric Modeling Guide, 2007), a 

software program for estimating discrete outcome models also uses the WESMLE 

method to account for the outcome-based sampling. In this research, the WESMLE 

method will be used to estimate the three crash severity models for underreported crash 

data.  

2.4 Chapter Summary 

This chapter provided a review of crash severity models that have been used in traffic 

safety analysis. It was found that the MNL and OP models were the most prominent 

ones used for traffic crash severity analysis. Meanwhile, the ML is a promising model 

that has recently been widely used in many areas. Therefore, the three crash severity 

models: the MNL, OP and ML models were selected for analysis in this research. 
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Furthermore, each model type has its own unique benefits and limitations, but few 

research studies have been conducted on comparing different crash severity models. 

Thus, further model comparisons need to be demonstrated in order to provide more 

information on model selection in crash severity analysis. In this research, the 

comparisons among the three crash severity models (the MNL, OP and ML models) are 

developed, particularly for the purpose of analyzing sample size requirements, the 

effects of model misspecification and underreporting in crash data for crash severity 

models.  

In terms of the crash data used in the traffic safety studies, such as crash count models 

and crash severity models, those data are usually based on the police reported crashes. 

However, not all traffic crashes are reportable and not all reportable crashes are in fact 

reported. Thus, underreported crash data used for modeling crashes tend to produce 

biased estimations in both crash count models and crash severity models. In addition, 

underreporting produces a more critical issue for crash severity models. Reported rates 

of various severity categories differ that crashes with lower severity are more likely to be 

unreported than those with higher severity. Therefore, the probability of higher severity 

crashes such as fatal crashes are probably overestimated and on the other hand the 

probability of lower severity crashes particularly PDO usually are underestimated. 

Therefore, crash data should be treated as outcome-based samples rather than random 

samples from the population, and the WESMLE method was selected to treat the 

underreported crash data for all three crash severity models since it is consistent and 

easy to compute. 

Before discussing the effects of underreported data on three crash severity models (the 

MNL, OP and ML models) in Chapter VII, two basic issues in the estimation of crash 

severity models are demonstrated: sample size requirements and model misspecification 

effects on the three crash severity models, in Chapter V and VI respectively. The next 

chapter (Chapter III) describes the methodologies for the three crash severity models, 

and the WESMLE method for outcome-based sampling in crash severity models.  
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CHAPTER III 

METHODOLOGY 

 
 
 
 
This chapter provides the methodologies by which the three crash severity models (the 

MNL, OP and ML models) are used to predict the probabilities associated with each 

crash severity level. In addition, the WESMLE method is introduced in the chapter, 

which is used in the model estimation for the crash severity models, treating crash data 

as outcome-based samples rather than random samples to take account of the 

underreporting issue in crash data. 

This chapter contains five sections. Sections 3.1, 3.2, and 3.3 briefly discuss the structure 

and estimation method of the MNL, OP and ML models respectively. In Section 3.4, 

WESMLE is described with the comparison of the traditional model estimation method 

in crash severity models, i.e. Maximum Likelihood Estimator (MLE).  Finally, Section 

3.5 summarizes the chapter. 

3.1 Multinomial Logit Model (MNL) 

In the general case of a MNL model for crash severity outcomes, the propensity of crash

i  towards severity category k  is represented by severity propensity function, kiT , as 

shown in Equation (3.1) (Khorashadi et.al, 2005). 

 

kikikki XT   k                                         (3.1) 

 

 

 



27 
 

 

Where, 

k is a constant parameter for crash severity category k; k  is a vector of the 

estimable parameters for crash severity category k; k=1, C,  (C=5 in this 

research), representing all the five severity levels as KABCO; 

kiX  represents explanatory variables affecting the crash severity for thi  

individual crash at severity category k (geometric variables, environmental 

conditions, driver characteristics, etc.);  

ki  is a random error term following the Type I generalized extreme value (i.e., 

Gumbel) distribution; and, 

ni ,,1            n  is the total number of crash events included in the model. 

Equation (3.2) shows the formula used to calculate the probability of each crash severity 

type. Let )(kPi as the probability of thi  individual crash ending in crash severity category 

k, such that 
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For the MNL model, the unobserved effects associated with each severity category are 

independent from each other, which are evident by the fact that k  varies for different 

crash severity categories. Another important feature of the MNL model is that it could 

not account for any correlation among unobserved effects. However, the MNL model is 

relatively easy to calculate and implement. The MLE method is most commonly used for 

parameter estimation for the MNL model. The likelihood function of the data is shown 

in Equation (3.3). 
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Where, 

)( kyI i   is an indicator function. When kyi  , )( kyI i  =1, otherwise, )( kyI i 

=0. 

Since the probabilities for the crash severity categories must satisfy 1)( k i kP , the 

equations for the probabilities of five crash severity categories as shown in Equation (3.2) 

are mutually consistent and one of them is redundant. Thus, we only need to specify four 

P(k) functions, the other category is set as the baseline. The parameters are normalized 

to be zero in Equation (3.2) for whichever category is the baseline. In addition, as a 

fundamental property of the MNL model: the equivalent differences property 

(Koppelman and Bhat, 2006), the choice of baseline category is arbitrary and does not 

make any difference for the estimation results. Usually the baseline category is chosen in 

a manner that facilitates interpretation of the data. 

For the MNL model, elasticities are usually calculated to measure the magnitude of the 

impacts of a variable on the probability of crash severities. The elasticity is computed 

using Equation (3.4) (Savolainen and Mannering, 2007). 
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Where, 

kj  is the estimated coefficient of variable kjx . 

Elasticity values show how a percentage change in an explanatory variable will affect 

the probability of each crash severity, and cannot be interpreted for indicator variables 

that take on values of zero or one. For such indicator variables, pseudo-elasticity is used 

which gives the average probability change due to a variable change from zero to one. 
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The pseudo-elasticity of the indicator variable 
jx for severity k is given as shown in 

Equation (3.5) (Yamamoto et al., 2008). 
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Where,  

J is the number of explanatory variables; N
~ is the sample of crashes with 0j., x  

3.2 Ordered Probit Model (OP) 

The OP model uses a latent variable as shown in Equation (3.6) to disaggregate crash 

severity outcomes instead of using severity propensity function as for the MNL model. 

A latent variable iz  is:     i

T

ii Xz                                                 (3.6) 

 

Where, 
 T

imijii xxxX ,,,,,1 1  , the input value for the thi  individual crash; 

ijx  is the thj  explanatory variable for the thi  individual crash; 

 T

mj  ,,,,, 10  , the column vector of the coefficients for the 

explanatory variables; 

i  is a random error term following standard normal distribution; 

ni ,,1            n is the total number of crash events including in the model; 

mj ,,1           m is the total number of explanatory variables. 
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The dependent variable yi is an integer representing crash severity that has C categories 

(in this research, C=5). Usually, yi is set as 1 to C, either in an increasing order as 

OCBAK or in a decreasing order as KABCO. The value of yi is determined by: 
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Where, 

 Ck  ,,,0   are the threshold values for all crash severity categories. 

The relationship between these threshold values are subject to the constraint: 

  CCk  110  .  

Given the value of ix , the probability that the crash severity of thi  individual crash 

belongs to each category is 

 



















)(1)(

)()()(

)()1(

1

1

1







T

iCi

T

ik

T

iki

T

ii

XCyP

XXkyP

XyP

                  (3.8) 

 

Where, 

)(  stands for the cumulative probability function of the standard normal 

distribution. 

From formula (3.8), only C-1 thresholds need to be estimated. The unknown parameters 

to be estimated are  and   which are usually determined by the MLE method. The 

likelihood function of the data is: 
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Where, 

)( kyI i  is an indicator function. When kyi  , )( kyI i  =1, otherwise, )( kyI i 

=0. 

The parameters   and   can be determined by maximizing  ,(L |y). However, there 

are several limitations with the MLE method. For example, if the data are not 

representative of the population then the estimated model may be erroneous, since the 

parameter estimation results depend completely on the data. In addition, the 

maximization process is a nonlinear optimization problem, which is not guaranteed to 

converge to a global optimal solution (Xie et al., 2009). 

In terms of the effects of estimated parameters on the probabilities of each crash severity 

level, only the highest and lowest ordered category (fatal and PDO crashes) have 

unambiguous effects (Washington et al., 2010). Figure 3.1 illustrates this clearly. In 

Figure 3.1, the five crash severity levels are categorized in an increasing order as 

OCBAK. A smaller X  (a positive value of  with a decrease in X  or a negative value 

of   with an increase of X ) shows a shift of value Xk    from left to right, which 

leads to an unambiguous decrease of the probability of the highest crash level (y=5) and 

an increase of the lowest level (y=1). However, it is not clear about the corresponding 

probability changes of the ―interior‖ categories (i.e. y=2, 3, 4) since they could be either 

decreasing or increasing depending on whether Xk    is located on the left or right 

side of the peak. As stated by Washington et al. (2010), the direction of the effects on the 

interior categories could be attained from their marginal effects. 
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Figure 3.1  An Ordered Probability Model with a Decrease in X  

(Washington et al., 2010) 

 
 
 

3.3 Mixed Logit Model (ML) 

The ML probabilities are the integrals of standard logit probabilities over a density of 

parameters (i.e., it is a weighted average of the logit formula evaluated at different value 

of parameters (β), with the weights given by the density ƒ(β) ).  

The ML model shares the same structure of severity propensity function, kiT , as shown 

in Equation (3.1). Equation (3.10) shows the formula used to calculate the probability of 

each crash severity level for the ML model. 

Let )(kPi as the probability of thi  individual crash ending in crash severity category k, 

such that: 
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Where,  

)|( f  is the density function of   with   referring to a vector of parameters 

of the density function (mean and variance).  

For the ML model, )|( f  is usually specified to be continuous. If )|( f is discrete, 

with β taking a finite set of distinct values, then the ML model becomes a latent class 

model which could be regarded as a simplified version of the ML model. In addition, 

when )|( f is a fixed variable, then the ML model becomes a MNL model. This 

indicates that the ML model is a generalized one of the MNL model, and thus the ML 

model has some features of the MNL model such as the equivalent differences property. 

Usually for the ML model, )|( f is considered to use normal, lognormal (which 

restricts the impact of the estimated parameter to be strictly positive or negative), 

triangular and uniform distributions. 

A simulation-based maximum likelihood method instead of MLE is usually used for 

parameter estimation for the ML model. The MLE for the ML models is computationally 

cumbersome due to the required numerical integration of the logit function over the 

distribution of the random parameters. The most popular simulation approach uses 

Halton draws, which have been shown to provide a more efficient distribution of draws 

for numerical integration than purely random draws (Gkritza et al., 2008). 

As for the MNL model, elasticities or pseudo-elasticities are usually computed to assess 

the effect of variables on probabilities of each crash severity level, as shown in Equation 

(3.4) and (3.5). 
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3.4 Method for Outcome-based Sampling in Crash Severity Models 

The WESMLE is the maximand of the weighted likelihood function where the weights 

depend upon both the population share of each severity level (the fraction of each 

severity level in a complete dataset) and the sample share of each severity level (the 

fraction of each severity level in an underreported dataset). By weighting the 

observations appropriately, the WESMLE makes the outcome-based samples behave 

asymptotically as if they were random samples (Xie & Manski, 1989).  

The log-likelihood function for a WESMLE, as shown in Equation (3.11), is equivalent 

to that for the MLE except that each traffic crash is weighted by the ratio of the actual 

crash severity’s population share kQ , to the sample share kH  which is the severity share 

in the underreported crash data. 

 

Log-likelihood for WESMLE = ),|(ln)(
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Where,  

N       is the number of recorded crashes; 

nC     is the set of severity categories from which individual crash n belongs to, in 

the study, nC  =(K,A,B,C,O); 

nkd    is an indicator variable equal to 1 if individual crash n belongs to severity 

level k, and 0 otherwise; 

nx     is the vector of contributing factors associated with individual crash n; 

 β     is the vector of estimated parameters associated with contributing factors nx ;   
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),|k( nxP  is the probability of severity level belonging to k given the 

contributing factors,
 nx , and estimated β. 

Another difference between the WESMLE and MLE is the corrected asymptotic 

covariance matrix for the estimators. For the WESMLE, let H be the Hessian of the 

(weighted) log-likelihood (i.e., the usual estimator for the variance matrix of the 

estimators) and let GG '  be the summed outer products of the first derivatives of the 

(weighted) log-likelihood. The covariance matrix of the estimators for the WESMLE is 
1'1 )()(   HGGHV .  

3.5 Chapter Summary 

In this chapter, we have provided the fundamental methodologies of three crash severity 

models (the MNL, OP and ML models) selected for analysis in this research. The 

methodological approaches for the three models are similar, while the underlying 

theories of deriving these three models are different. The derivation of the three models 

from Section 3.1 to 3.3 not only offers the methodological supports for model 

estimations in the following chapters, but also helps to generate simulated data for three 

models in the later analysis with the provision of the structures of the three models.  

As described in Section 3.1, the MNL model is derived under the assumption that error 

term (or unobserved factor) ki  in the propensity function for each severity level is 

independent and identically distributed (IID) extreme value. The critical assumption of 

the MNL model is that the error terms are uncorrelated and having the same variance 

over the severity levels which is the largest limitation of the MNL model, though 

resulting in convenient computations for the model. As discussed in Section 3.3, the ML 

model relaxes the limitation of MNL model by allowing the parameters of individual 

variables to be variant over observations with any types of distribution. However, 
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introducing random parameters to the ML model makes the model estimation 

complicated. Both of the MNL model and ML model are nominal, while the derivation 

of the OP model (ordinal model) was provided in Section 3.2. The main differences 

between the OP model and two logit models (the MNL and ML models) are at the error 

terms and parameters. For the OP model, the error terms are standard normal distributed, 

and the parameter of each variable is fixed to be the same across crash severity levels 

which leads to the loss of flexibility to explicitly control interior category probabilities 

(for crash severity A,B, and C in this research). As stated by Washington et al. (2010), 

though the OP model recognizes the ordering of the crash severities, it loses the 

flexibility in model specification. 

After the investigation of the derivation of the three models, the WESMLE method was 

introduced in Section 3.4. Unlike the MLE or simulated MLE method in model 

estimation, the WESMLE method includes the weights of each observation in model 

estimation rather than directly treating each observation as a random sample. Therefore, 

the WESMLE method could be used in the estimation of all the three models to take 

account of the underreporting issue in the crash data, by treating the underreported 

crashes as outcome-based samples. However, the limitation of the WESMLE in model 

estimation is the requirement of the actual population shares of each outcome, which are 

usually not known for crash data. This will be further discussed in Chapter VII when we 

address the issue of crash underreporting in the three models. 
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CHAPTER IV 

MODEL ESTIMATION 

 
 
 
 
This chapter examines the performances of the three commonly used crash severity 

models: the MNL, OP and ML models, using a crash dataset which includes 26,175 

single-vehicle crashes involving fixed-object on rural two-way highways. Furthermore, 

based on a comparison of the estimation results of the three models, this chapter explores 

which model is more appropriate. The estimated results in this chapter are compared 

with the results from Monte-Carlo analyses for the crash data related to the effects of 

sample size and underreporting in crash data, discussed in Chapter V and VII 

respectively. 

This chapter is divided in three sections. Section 4.1 briefly discusses the crash data used 

for model estimation in the three models. In Section 4.2, the estimation results for the 

MNL, OP and ML models are given respectively, and the comparisons of the estimation 

results of the three models are summarized as well. Section 4.3 provides a summary of 

the chapter. 

4.1 Crash Data  

The primary data sources utilized in this study include four years (from 1998 to 2001) of 

traffic crash records provided by the Texas Department of Public Safety (TxDPS) and 

the Texas Department of Transportation (TxDOT) general road inventory. This research 

investigated the probability of each crash severity for single-vehicle traffic crashes 

involving fixed objects that occurred on rural two-way highways (excluding those 

occurring at intersections). There are two reasons for selecting this type of crashes for 

analysis in the research. Firstly, fixed-object crashes have more fatalities than other 
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crash types which could avoid the problem of insufficient sample sizes of fatal crashes 

(Generally, severe or fatal crashes are much fewer than the less severe crashes, such as 

PDO.). This is especially important when analyzing the effects of underreporting in 

crash data in Chapter VII, as too low percentage of fatal crashes probably leads to the 

issue of insufficient sample size for fatal crashes. Based on 2008 data, for the U.S, 

collisions with fixed objects accounted for 20 percent of all reported crashes, but 

resulted in 46 percent of all fatal crashes (NHTSA, 2009), which is much higher than 

that of other crash types. Also, crashes occurred on rural two-way highways have 

different contributing factors from those on urban highways, as crashes involving single 

vehicle compared to those involving multiple vehicles. Thus, it is necessary to choose a 

specific type of crash in order to decrease the variability of data for analysis. In addition, 

in order to have sufficient sample size for the dataset, it was decided to select single-

vehicle crashes involving fixed objects occurred on rural two-way highways, which 

occurred more often than those on urban highways. 

There are 26,175 usable records in the database, which contains a variety of information 

including weather conditions, roadway and driver’s characteristics, vehicle features as 

well as the crash severity level reported at the time of the crash. The crash severity was 

classified into five categories: PDO (O), possible injury (C), non-incapacitating injury 

(B), incapacitating injury (A), and fatal (K).  For this dataset, these categories have 

11,844 (45.3%), 5,270 (20.1%), 5,807 (22.2%), 2,449 (9.4%), and 805 (3.1%) 

observations for severity O, C, B, A, and K respectively. There are 26 independent 

variables used in the empirical analysis, as summarized in Table 4.1.  
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Table 4.1  Summary Statistics of Variables for Modeling 

Variable Type Description Mean St.d 

Road condition 

Log(ADT) Log of average daily traffic 7.597 0.999 
Shoulder width Shoulder width is between 0 and 20ft 4.865 3.264 
Lane width Lane width is between 8ft and 16ft 11.341 1.251 
Speed limit Maximum speed limit is between 

30mph and 75mph 58.330 6.935 

Curve & level indicator 1=curve, level; 0=otherwise 0.373 0.484 
Curve & grade indicator 1=curve, grade; 0=otherwise 0.002 0.048 
Curve & hill indicator 1=curve, hill; 0=otherwise 0.002 0.047 
Crash information 

Night indicator 1=night;0=day 0.495 0.500 
Dark with no light indicator 1=dark with no light; 0=otherwise 0.424 0.494 
Dark with light indicator 1=dark with light; 0=otherwise 0.033 0.177 
Rain indicator 1=rain; 0=otherwise 0.806 0.395 
Snow indicator 1=snow; 0=otherwise 0.005 0.068 
Fog indicator 1=fog; 0=otherwise 0.023 0.149 
Surface condition indicator 0=good surface(dry); 1=otherwise 0.267 0.442 
Driver information 

Vehicle type indicator 1=truck; 0=otherwise 0.474 0.499 
Driver gender indicator 1=female; 0=male 0.340 0.474 
Driver defect indicator 1=defect (including physical and 

mental defect); 0=otherwise 0.176 0.381 

Restraining device use 
indicator 

1=no restraining device used; 
0=otherwise 0.120 0.325 

Fatigue indicator 1=fatigued or asleep; 0=otherwise 0.151 0.358 
Airbag deploy indicator 1=air bag deployed; 0=otherwise 0.179 0.384 
Seat belt use indicator 1=seat belt used; 0=otherwise 0.649 0.477 
Fixed-object type information 

Hit pole indictor 1=hit pole; 0=otherwise 0.113 0.317 
Hit tree indictor 1=hit tree; 0=otherwise 0.224 0.417 
Hit fence indictor 1=hit fence; 0=otherwise 0.261 0.439 
Hit bridge indictor 1=hit bridge; 0=otherwise 0.052 0.222 
Hit barrier indictor 1=hit barrier; 0=otherwise 0.058 0.233 
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4.2 Model Estimation Results 

Using the data in Section 4.1, the three models were developed, estimating the 

probabilities for the five crash severity levels conditioned on a crash having occurred. 

NLOGIT version 4.0 (on NLOGIT 4.0, Reference Guide, 2007), an extension of 

LIMDEP for estimation of various discrete outcome models, was used for model 

estimation. The estimation of each model is described as follows. 

4.2.1 Analysis for the MNL model 

In the procedure for estimating the MNL model, all 26 explanatory variables listed in 

Table 4.1 were tested for inclusion, and only 10 variables were retained in the estimation 

result as shown in Table 4.2. The criteria used for variables inclusion are data 

availability, engineering judgment, and significance level (0.05 was used in this research 

study). For the five crash severities, fatal (K) was used as the base outcome. Initially, 

coefficients of a variable in the severity propensity function kiT  were specified to be 

different across all four severity categories (except for fatal, as a base outcome). If no 

significant difference at a 0.05 significance level was observed among the coefficients in 

any two of the severity propensity functions, they were set to be equal. Likelihood ratio 

tests2 were used to test whether the coefficients of a variable in the four severity 

propensity functions were significantly different from each other. 

 
 
2 The likelihood ratio test statistic is )]()([22

UR LLLL  －＝ . )( RLL  is the log-likelihood at convergence 

of the restricted model when the parameters of a variable in the severity propensity function kiT  are 
restricted to be the same value across some crash severity levels (not necessary across all of the four 
estimated crash severity levels). )( ULL   is the log-likelihood at convergence of the unrestricted model 
when there is no restriction of the parameters of a variable which means different values of parameters of a 
variable in the severity propensity function kiT  are used across all the four estimated crash severity levels. 
The statistic is 2  distributed with the degrees of freedom equal to the difference in the numbers of 
parameters between the restricted and unrestricted model. (See more details in Washington et al., 2010). In 
the dissertation, when the 2 -value is larger than the critical value of the test statistic at 0.05 significance 
level from standard statistical tables, the unrestricted model should be used. 
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Table 4.2   Estimation Result of the MNL Model 

                      Severity level    

 

 

 

 Variable 

PDO 
Possible 

injury 

Non-

incapacitating 

injury 

Incapacitating 

injury 

Coef. t-Ratio Coef. t-Ratio Coef. t-Ratio Coef. t-Ratio 

 Constant 4.489 11.99 4.166 11.14 3.816 10.21 3.213 9.32 
 Road condition 
 log(ADT) 0.153 7.48 0.074 3.72 0.074 3.72   
 Speed limit -0.020 -3.82 -0.020 -3.82 -0.020 -3.82 -0.020 -3.82 
 Crash information 
 Night indicator   -0.229 -6.80 -0.153 -5.16 -0.153 -5.16 
 Dark with light indicator 0.152 2.09       
 Rain indicator -0.933 -7.21 -0.819 -6.22 -0.523 -3.97 -0.394 -2.83 
 Snow indicator 0.473 2.40       
 Driver information 
 Driver defect indicator -1.255 -10.03 -0.280 -3.28 -0.280 -3.28 -0.280 -3.28 
 Fatigue indicator 0.465 4.59 -0.258 -5.24     
 Restraining device used                       
indicator -2.532 -30.77 -1.987 -23.15 -1.401 -17.53 -0.830 -9.77 
 Fixed-object type information  
 Hit tree indicator -1.046 -13.20 -0.826 -10.05 -0.612 -7.63 -0.363 -4.24 

Log-likelihood at zero = -42127.0 
Log-likelihood at convergence = -33926.2 

Adjusted 2 = 0.194 

* Shaded coefficients were made to be the same across respective crash severity categories. 

 
 
 
The final estimation results of the MNL model using the four-year traffic crash records 

are presented in Table 4.2. As shown in this table, 10 variables were retained in the final 

model: two variables of road condition, four variables of crash information, three 

variables of driver information and one variable of fixed-object type information. The 

absolute values of the t-ratios for all 10 variables retained are larger than 1.96, which 

means that these variables’ coefficients are significantly different from zero at the 5% 

level. The effects of each variable on the crash severity levels were quantified by  

 

 



42 
 

 

elasticity in Table 4.3. Overall model fit3 is 0.194 which is good given the large amount 

of variability in crash severity data. 

In order to directly explain the magnitude of the impact of a specific variable on crash 

severity probabilities, elasticities of each variable were calculated. The direct elasticity 

calculated by Equation (3.3) for the continuous variables log(ADT) and Speed Limit, 

and pseudo-elasticity calculated by Equation (3.4) for the rest of eight indictor variables 

are shown in Table 4.3 for the estimated MNL model. 

From Table 4.3, for road condition variables, the result shows that a 1% increase in 

log(ADT) results in a 63.3%, 45,2%, and 44.1% increase in the probability of PDO, 

possible injury, and non-incapacitating injury, respectively. This result is reasonable as 

more traffic is usually believed to lead to more crashes but of lower crash severity. All 

the negative values of elasticity for the variable of speed-limit show that increasing the 

speed limit which accordingly results in higher traffic speeds decreases the likelihood of 

getting involved in PDO, possible injury, non-incapacitating injury, and incapacitating 

injury crashes relative to fatal crashes. A 1% increase in speed limit results in a 64.5%, 

94.1%, 91.6%, and 106.8% decline in the probability of the above four injury severity 

outcomes respectively. This seems to support that a higher speed leads to a higher risk of 

drivers being involved in fatalities, once a single-vehicle crash involving fixed-object  

 
 
 
 
 
 
3 The adjusted rho-squared value ( 2 ), also called the likelihood ratio index, is widely used to describe 
the overall goodness-of-fit for discrete outcome models (Koppelman and Bhat, 2006). The rho-square with 
respect to zero is calculated as

)0(

)ˆ(
12

LL

KLL －
  , where )ˆ(LL represents the log-likelihood for the 

estimated model, )0(LL  represents the log-likelihood with zero coefficients (which results in equal 
likelihood of occurring each severity type), and K is the number of parameters (degrees of freedom) used 
for the model. For the MNL model estimation, the estimated parameters (degrees of freedom) is 27, the 
log-likelihood at zero is -42127.0 and the log-likelihood at convergence is -33926.2, so the adjusted rho-
squared for the zero model is 0.194. 
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occurs on rural two-way highways. Furthermore, the variable of speed-limit is elastic or 

near elastic for each severity level (except the baseline severity level: fatal) since the 

absolute values of the elasticity are greater than or close to 1. 

 
 
 

Table 4.3  Direct Elasticity Estimates of the MNL Model 

           Severity level    

 

 

 

Variable 

Elasticity and Pseudo-elasticity in percent (%) 

PDO 
Possible 

injury 

Non-

incapacitating 

injury 

Incapacitating 

injury 

Road condition 
log(ADT) 63.3 45.2 44.1  
Speed limit -64.5 -94.1 -91.6 -106.8 
Crash information 
Night indicator  -9.1 -6.0 -7.0 
Dark with light indicator 4.1    
Rain indicator -26.1 -33.4 -22.1 -18.4 
Snow indicator 11.6    
Driver information 
Driver defect indicator -39.4 -11.5 -11.3 -12.8 
Fatigue indicator 11.1 -10.5   
Restraining device used 
indicator -74.6 -71.4 -54.7 -37.3 
Fixed-object type information 
Hit tree indicator -32.3 -33.8 -24.9 -16.7 

 
 
 

Considering the pseudo-elasticity values of the indicator variables and turning first to the 

night indicator variable it was found that drivers driving at night were 9.1%, 6%, and 

7% less likely to be involved in possible injury, non-incapacitating injury, and 

incapacitating injury crashes. This finding reflects that driving at night on rural two-way 

highways increases the probability of fatal crash once the driver hits a fixed object. 

In terms of the pseudo-elasticity values of Dark with light indicator and Snow indicator 

variables, both are positive for PDO. It indicates that drivers driving at dark with road 



44 
 

 

light are 4.1% more likely to be involved in PDO crashes. Similarly, during snow days 

the probability for drivers to be involved in PDO crashes increases 11.6%. This is 

consistent with previous findings regarding the effects of snow on crash severities. For 

instance, a study, which analyzed crash rates in the 48 contiguous states, suggested 

during snowfall crash severity decreased due to drivers’ adjustment of their driving 

behavior such as driving slower (Eisenberg and Warner 2005). In both of the dark with 

road light and snowfall situation, the decrease in the probability of fatalities could be due 

to drivers slowing down and being more cautious, which leads to the decrease in driver 

and passenger injuries. 

The pseudo-elasticity value of rain indicator variable indicates a relative increase in the 

prediction of fatal crashes when it is raining, which results in a 26.1%, 33.4%, 22.1%, 

and 18.4% decline in the probability of PDO, possible injury, non-incapacitating injury, 

and incapacitating injury crashes relative to fatal crashes. This seems reasonable since in 

the rain, vehicles have less friction with the road surface, which increases the probability 

of their hitting a fixed object at high speeds. Thus, once a crash occurs in the rain, it is 

more likely to involve fatalities. 

The negative values of pseudo-elasticity of Driver defect indicator and Restraining 

device used indicator variables for all severity levels reflect that when drivers have 

physical or mental defects or they do not use any restraining devices, they are less likely 

to be involved in PDO, possible injury, non-incapacitating injury, and incapacitating 

injury crashes relative to fatal crashes. For drivers having physical or mental defects, a 

39.4%, 11.5%, 11.3%, and 12.8% decrease in the probabilities of the above four injury 

severity outcomes happens, respectively. For drivers without any restraining devices, the 

probabilities for being involved in the above four injury severities decrease by 74.6%, 

71.4%, 54.7% and 37.3% respectively. Another factor of drivers, fatigue, results in an 

11.1% increase in PDO crash and a 10.5% reduction in possible injury crash. 
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The negative values of pseudo-elasticity of Hit tree indicator variable show that the 

probabilities of all crash severities (except for fatal) decrease when drivers hit a tree in 

crashes. A 32.3%, 33.8%, 24.9% and 16.7% decline in the probability of PDO, possible 

injury, non-incapacitating injury, and incapacitating injury crashes respectively relative 

to fatal crashes, which indicates that hitting a tree increases the probability of being 

involved in a fatal crash.  

4.2.2 Analysis for the ML model 

The ML model allows for the randomness of parameters of individual variables, and thus 

in developing the model, it was first assumed that all parameters of the variables 

included in the model were random. The popular distributions (normal, uniform and 

lognormal distribution) were tested for random parameters, so numerous combinations 

were evaluated by modifying the parameter assumptions. Then, the t-test was used to 

examine their estimated standard deviations for exploring the randomness of each 

parameter: if their standard deviation was not found statistically different from zero at 

the 0.05 significance level, they were restricted to be fixed rather than random. 

Meanwhile, the simulation-based maximum likelihood method was used for the 

parameter estimation, with Halton draws=200.  

The final result of the ML model estimation is shown in Table 4.4, which is the final 

decision based on the engineering judgment with the consideration of a better GOF. The 

estimated ML model has 29 estimated parameters (degrees of freedom), the log-

likelihood at zero is -42127.0 and the log-likelihood at convergence is -33919.9. The 

adjusted rho-squared for the zero model is 0.195, almost the same value as that of the 

MNL model.  
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Table 4.4   Estimation Result of the ML Model 

                      Severity level    

 

 

 

 Variable 

PDO 
Possible 

injury 

Non-

incapacitating 

injury 

Incapacitating 

injury 

Coef. t-Ratio Coef. t-Ratio Coef. t-Ratio Coef. t-Ratio 

 Constant 4.43 11.50 4.155 10.84 3.764 9.79 3.235 9.21 
 Road condition 
 log(ADT) 0.167 7.65 0.079 3.73 0.079 3.73   
 Speed limit -0.020 -3.76 -0.020 -3.76 -0.020 -3.76 -0.020 -3.76 
 Crash information 
 Night indicator   -0.238 -6.86 -0.183 -5.21 -0.183 -5.21 
 Dark with light indicator 0.166 2.01       
 Rain indicator -0.939 -7.10 -0.810 -6.10 -0.997 -4.32 -0.397 -2.844 
      Std.dev. of distribution      1.568 4.043   
 Drive information 
 Driver defect indicator -1.359 -9.75 -0.240 -2.67 -0.240 -2.67 -0.240 -2.67 
 Fatigue indicator 0.507 4.39 -0.328 -5.71     
 Restraining device used 
indicator -3.406 -7.57 -2.003 -23.215 -1.252 -11.89 -0.834 -9.79 
       Std.dev. of distribution 2.220 3.03       
 Fixed-object type information  
 Hit tree indicator -1.144 -11.79 -0.857 -10.30 -0.561 -6.28 -0.378 -4.40 
     Std.dev. of distribution 0.939 2.40       

Log-likelihood at zero = -42127.0 
Log-likelihood at convergence = -33919.9 

 adjusted 2 = 0.195 

* Shaded coefficients were made to be the same across respective crash severity categories. 

 
 
 

As shown in Table 4.4, the ML model estimation has similar results as those from the 

MNL estimation. Both models have the same significant variables except for the Snow 

indicator, which is no longer significant for the ML model. Meanwhile, all the fixed 

parameters of the variables in both of the MNL and ML models have similar values with 

the same signs. However, there exists randomness for the Rain indicator in Non-

incapacitating injury, the Restraining device used indicator in PDO, and the Hit tree 

indicator in PDO. All of the three random parameters have a normal distribution. As the 
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signs and values of all the significant variables are consistent with the MNL model 

estimation results, only the three random variables are discussed further. 

For the Rain indicator variable in non-incapacitating injury, the parameter is estimated 

to be normally distributed with a mean equal to -0.997 and standard deviation equal to 

1.568, which indicates that the parameter sign switches from negative in 74% of the 

drivers to positive in 26% of the drivers. This implies that under most conditions, rain 

increases the probability of a non-incapacitating injury crash. The indicator variable 

Restraining device used has a randomness parameter in PDO outcome that is normally 

distributed with a mean equal to -3.406 and standard deviation equal to 2.220. This gives 

the parameter being less than zero for 94% of the drivers and greater than zero for 6% of 

the drivers, which indicates that for the majority of drivers, driving without using 

restraining devices decreases the likelihood of involving in PDO injuries relative to 

involving in fatalities once a crash occurs. Finally for the randomness of the Hit tree 

indicator variable in the PDO outcome, it was found that its parameter varies over the 

sample of drivers. The parameter has a normal distribution with a mean equal to -1.144 

and standard deviation equal to 0.939, which results in 89% of the distribution less than 

zero and 11% greater than zero. Thus, for the majority of drivers, hitting on the tree 

decreases the likelihood of being involved in a PDO crash relative to being involved in a 

fatal crash once a crash occurs. As described above, the three random parameters add 

more flexibility for the ML model, by capturing the variability of each parameter’s effect 

over the sample of drivers involved in crashes. 

4.2.3 Analysis for the OP model 

In the OP model estimation, all the 26 variables listed in Table 4.1 were available for the 

model, and the backward selection was used for simplification so that only those 

significant at the 0.05 significance level were included in the model. In addition, the five 

crash severities were set in an ascending order as OCBAK. The final result of the OP 

model is shown in Table 4.5. From this table, more significant variables were included in 



48 
 

 

the OP model (18 variables total) than the MNL (10 variables total) and ML models (9 

variables total).  

 
 
 

Table 4.5   Estimation Result of the OP Model 

Variable Coef. t-Ratio 

Constant 0.249 2.83 
Road Condition 
log(ADT) -0.049 -6.90 
Speed limit 0.002 2.47 
Curve & level indicator 0.062 4.18 
Crash Information 
Night indicator -0.124 -4.42 
Dark with no light indicator 0.064 2.28 
Fog indicator 0.106 2.29 
Surface condition indicator -0.259 -15.67 
Driver Information 
Vehicle type indicator 0.0561 3.83 
Driver gender indicator 0.132 8.62 
Driver defect indicator 0.398 9.38 
Restraining device used indicator 0.802 21.75 
Fatigue indicator -0.173 -3.82 
Airbag deploy indicator 0.447   12.62 
Seat belt use indicator -0.128 -3.87 
Fixed-object Type Information 
Hit pole indictor -0.076  -3.19 
Hit tree indicator 0.188 10.12 
Hit fence indictor -0.160 -8.83 
Hit barrier indictor -0.090  -2.87 
Threshold Parameters 

1  0.561 86.19 
2  1.393 139.62 
3  2.186 133.17 

Log-likelihood at zero = -42127.0 
Log-likelihood at convergence = -33328.9 

Adjusted 2 = 0.208 
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As discussed in Section 3.2, a positive value of a parameter implies that an increase of 

the variable value will increase the probability of fatal crash (the highest ordered discrete 

category in the research) and decrease the probability of PDO crash (the lowest ordered 

discrete category in the research). Thus, the largest positive parameter value among all 

variables is the Restraining device used indicator, which implies that not wearing 

restraining devices is the most critical factor that significantly aggravates the average 

risk of injury in hitting a fixed object crashes on rural two-way highways. 

The positive sign for the continuous variable speed limit implies that with a higher speed 

limit (accordingly, a higher traffic speed), the likelihood of a fatal crash will be 

increased and the likelihood of a PDO crash will be decreased. This finding is consistent 

with what was found by O’Donnell (O’Donnell, 1996) and with common knowledge 

regarding the effects of high speed on traffic safety. The negative sign for the continuous 

variable log(ADT) suggests that more traffic on the road results in a higher probability of 

PDO crash and a lower probability of fatal crash, consistent with the finding from the 

MNL estimation that more traffic results in more crashes of lower crash severity.   

The following dummy variables have positive signs of their parameters: Curve & level 

indicator, Dark with no light indicator, Fog indicator, Vehicle type indicator, Driver 

gender indicator, Driver defect indicator, Airbag deploy indicator, and Hit tree 

indicator. It indicates that drivers who travel at a curve and level segments, or in a dark 

with no light circumstance, or at a foggy weather, or in a truck are more likely to be 

involved in severe or fatal crashes. Meanwhile, female drivers, or drivers who have 

physical/mental defect have a higher probability to be involved in crashes that result in 

more severe injury. In addition, when airbags are deployed in a crash, or when drivers 

hit a tree, the odds of drivers suffering more severe injury also increase. All the findings 

are intuitive except that when airbags are deployed the average risk of injury increases, 

since airbags are known to prevent occupant fatalities. However, it is still possible that in 

a fixed-object crash, the deployment of airbag implies a high impact with the object, 

which could lead to a high injury severity of the crash. As described by Kent (2003), the 
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airbag was originally developed to provide protection for unbelted occupants. However, 

it was also found the airbag deployment significantly increased the abdominal injury risk 

for belted drivers in frontal crashes (Augenstein, et.al, 1995, Thor and Gabler, 2007). 

Potential explanations for this include the change in occupant kinematics after the chest 

and head engage the deployed airbag, or the excessive loading of the abdomen by the 

airbag itself or the rim of the steering wheel.  

Furthermore, the following dummy variables have negative parameters: Night indicator, 

Surface condition indicator, Fatigue indicator, Seat belt use indicator, Hit pole indictor, 

Hit fence indictor, and Hit barrier indictor. It shows that drivers have a lower 

probability of suffering fatal and a higher probability of being involved in PDO when 

drivers travel at night, drive on a bad road surface such as a wet road surface, drivers are 

fatigued or asleep, drivers wear seat belts, or drivers hit poles/fences /barriers. The 

estimated parameters for most of these variables have signs and values that are 

intuitively reasonable. However, the counterintuitive variables are Night indicator, and 

Surface condition indicator. These could be explained by the drivers’ tendency of 

driving more cautiously and slowly at night or on a bad road surface, which lowers the 

severity level of a crash, when it occurs. 

4.2.4 Comparison of model results  

Based on the outputs of three model estimations, it was found that the ML model is more 

interpretive than the MNL model, since the ML model includes the randomness 

associated with parameters for some variables. For the ML model, the involvement of 

the randomness in the parameters results in the prediction of a mean value and standard 

deviation for the probability of each severity level rather than a single point probability. 

Meanwhile, though accounting for the ordinal information of crash severities, the OP 

model still does not have the interpretive power of the MNL and ML models. The OP 

model restricts the effects of explanatory variables on ordered discrete outcome 

probabilities by using the same coefficient for an individual explanatory variable across 
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different crash severity levels. It causes the variable either to increase the probability of 

highest severity (fatal in the study) and decrease the probability of lowest severity (PDO 

in the study), or to decrease the probability of highest severity and increase the 

probability of lowest severity. This may not be realistic because it is possible that certain 

explanatory variable can create an increase in the probability for some outcome 

predictions but decrease the probability for other outcome predictions. For instance, 

inclement weather could lead to an increase in the probabilities for both the two highest 

severities (KA) and the lowest severity (O), but reduce the probability of the other 

severities (BC). In addition, it is not clear what the effect a positive or negative variable 

parameter has on the probabilities of the ―interior‖ severity levels: A, B, and C, as 

discussed in Section 3.2. 

In terms of the GOF among the three models, the OP model includes more significant 

variables (18 variables) which results in a slightly higher adjusted rho-squared value 

(Adjusted 2 = 0.208) than those of the MNL and ML models (Adjusted 2 =0.194 for 

the MNL model and Adjusted 2 =0.195 for the ML model, almost the same). Since the 

MNL model is a nested model of the ML model, we can further compare their GOF 

using a likelihood ratio test, even though both of them have nearly the same adjusted 

rho-squared value. From the MNL model estimation results, the log-likelihood function 

at convergence is -33926.2 with 27 estimated parameters (degrees of freedom, including 

four estimated constant variables), and the log-likelihood function at convergence for the 

ML model estimation is -33919.9 with 29 estimated parameters (three more randomness 

in the variables than the MNL model and one less significant variable Snow indicator). 

Thus, the likelihood ratio statistic is 2*(-33919.9-(-33926.2))=12.6 with 2 degrees of 

freedom, which is larger than the 2 table value of 5.99 for the 0.05 level of significance. 

This indicates that the ML model is statistically better than the MNL model in terms of 

GOF at the 5% significance level, thereby rejecting the null hypothesis that the MNL 

model has a better GOF than the ML model.  
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4.3 Chapter Summary 

In this chapter, the three most commonly used crash severity models: the MNL, OP and 

ML models were applied to a crash dataset that included 26,175 single-vehicle crashes 

involving fixed objects on rural two-way highways. The major aim of this chapter was to 

set a baseline for the Monte-Carlo analysis of the effects of sample size and 

underreporting in data on the three models using crash data, rather than to put insight 

into contributing factors such as characteristics of traffic, driver, vehicle, and road 

environment for single-vehicle crashes involving fixed objects on rural two-way 

highways. For this reason, only a brief description was provided on the estimated 

parameters of each variable for all the three models in this chapter. A total of 26 

variables were examined for each model. Only 10 variables were found to be significant 

for the MNL model and nine variables for the ML model, while 18 variables were 

significant for the OP model. The general trends produced by the estimated parameters 

for the common variables for the three models were similar.  

With this crash dataset, it was found that the ML model had a better interpretive power 

than the MNL model, while the MNL model had a superior interpretive power than the 

OP model. The OP model had the least interpretive power since it does not have the 

flexibility to explicitly control the probabilities of interior categories, which depend on 

the thresholds. Meanwhile, the OP model requires the variable either to increase the 

probability of highest severity crashes (fatal in the study) and decrease the probability of 

lowest severity crashes (PDO in the study), or to decrease the probability of highest 

severity and increase the probability of lowest severity. However, it does not allow the 

probabilities of both of the highest and lowest severity to increase or decrease. In 

addition, the OP model had a slightly better GOF than that of the MNL and ML models, 

while the ML model had a significant better fit than the MNL model at the 5% 

significance level for the crash dataset used in the study.  
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The estimated results in this chapter for the three models are set up as the baseline 

conditions for the analysis of effects of sample size and underreporting in data on 

observed crash data in Chapters V and VII respectively. That is, the model estimation 

results for observed crash data in Chapters V and VII will be compared to the estimated 

results in this chapter in order to quantify the bias and variability of model estimation 

due to the effects of small sample size and underreported data.  
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CHAPTER V 

MODEL COMPARISONS BY SAMPLE SIZE 

 
 
 
 
As stated in Chapter I, sample size is an important factor to be considered in model 

selection. In this chapter, simulated data is used as well as the observed crash data 

described in Chapter IV to examine the effects of sample size for the three crash severity 

models: the MNL, OP and ML models. Recall that the dataset from Chapter IV includes 

26,175 single-vehicle crashes involving fixed objects on rural two-way highways. 

Intuitively, it would seem that a small sample size in crash severity models lead to 

erratic results, which limits the ability to estimate the true parameters and results in an 

inaccurate prediction of the probabilities for each severity outcome. In order to find the 

differences in sample size requirements for the three models, a Monte-Carlo analysis 

based on both simulated data and crash data is used to examine the bias associated with 

different sample sizes for each model type. 

This chapter consists of three sections. Section 5.1 presents the analysis of the effects of 

sample size on the three models based on simulated data. In Section 5.2, the estimation 

results from the three models are compared for each sample size based on the crash 

dataset described in Section 4.1. Section 5.3 provides a summary of important 

conclusions. 

5.1 Analysis Based on Simulated Data 

Before studying the sample size requirements for the three models using real crash data, 

a Monte-Carlo analysis based on simulated data is performed. By repeating the sampling 

to produce estimates more clustered around the true values, the Monte-Carlo simulation 

is an ideal way to verify the sample size effects on three models. In this case, we create 
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the data with the knowledge of true values of estimators and true propensity functions. 

Thus, the bias and variability can be estimated by comparing the model estimation with 

the true values of estimators for different sample sizes. 

5.1.1 Simulation design 

All the variables included in a crash severity model are observation-related rather than 

outcome-related, which means that the variables keep the same values no matter what 

crash severity the target observed crash is (Khorashadi et.al, 2005). In other words, a 

variable included in the propensity functions for each severity outcome for an observed 

crash is identical though its parameters that describe the effects of the variable might 

differ across each severity level. Thus, an individual covariate in the propensity 

functions generated in the simulation should be kept the same at all severities for each 

observation. 

Since crash data usually has five severity categories, the number of parameters in the 

propensity functions is very large. For simplification, one covariate randomly generated 

from the standard normal distribution was introduced in all three models. In addition, 

five outcomes were used to replicate the five severity categories.  

The three datasets for each model were generated as follows:  

For the MNL model, data were simulated based on Equation (3.4). Outcome 5 (denoted 

as level 5) was set as the baseline whose propensity function was zero and, thus, we only 

need to design the propensity functions for outcome 1 through outcome 4 (denoted as 

level 1 to level 4). For the sake of simplification, the parameters of a covariate were kept 

the same with a value equal to 1 for level 1 to 4, i.e., k =1. k  (constant parameter) was 

0, 0.5, 1, 1.5 for level 1 through 4 (level 5 was the baseline with α5 = β5 =0). The 

covariate x  for each level was drawn from a normal distribution with mean equal to -2 

and variance equal to 1. The error term for each level was drawn independently from a 
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Type I extreme value distribution by obtaining draws from the uniform random 

distribution and applying the following transformation )]ln(ln[ u , where u  is a 

random number drawn from a uniform distribution between 0 and 1. This resulted in the 

following proportions 5.7%, 9.4%, 15.4%, 25.4%, and 44.1% for levels 1 to 5 

respectively, which represented their proportions observed in the data. Levels 1 to 5 in 

the simulation represented the five crash severities from fatal through PDO in a 

decreasing order (KABCO), since usually the more severe a crash is, the less likely it is 

expected to occur. 

For the OP model, as we did for the MNL model, only one covariate x  was designed for 

the function of latent variable as shown in Equation (3.5). As stated above, the effect of 

explanatory variables on all severity levels was restricted to be the same by using the 

identical coefficient for each explanatory variable across different crash severities, and 

then   was set as 1 for each level. Meanwhile, x  was drawn from a normal distribution 

with mean equal to 2.2 and variance equal to 1, and k  (threshold value, as shown in 

formula (3.6)) was 0, 0.8, 1.5 and 2.4 for levels 1 to 4. The reason to use these parameter 

values was to keep the population ratios of each level as close as possible to those for the 

MNL data, for purpose of simplification. The error term was standard normal distributed 

for each level. Thus, they gave the following proportions: 6.0%, 10.1%, 15.0%, 24.6%, 

and 44.3% for levels 1 to 5 respectively, which represented the proportions of the five 

crash severities from fatal to PDO in a decreasing order (KABCO) for the observed 

crash dataset.  

For the ML model, the steps for generating the dataset were very similar to those used in 

generating the dataset for the MNL model. The only difference was that the independent 

variable was assumed to have random parameter for level 1, which was assumed to be 

normally distributed (mean=1, variance=1). The population ratios for each level were 

14.1%, 8.7%, 14.3%, 23.6%, and 39.3% for levels 1 to 5, representing the proportions of 

the five crash severities from fatal to PDO (KABCO). 
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Table 5.1 summarizes the true values assumed for three models. The parameter values 

chosen for these three models were based on the assumption that the results would not be 

affected much by different values of the parameters for all three models. In addition, 

Table 5.2 summarizes the population ratio of each level for the three models based on 

the designed parameter values in Table 5.1. 

 
 
 

Table 5.1 True Parameter Values in the Simulation of Three Models 

Model Parameter 
True Values 

MNL OP ML 

Constant 
Parameter* 

α1 0 0 0 
α2 0.5 0.8 0.5 
α3 1 1.5 1 
α4 1.5 2.4 1.5 

Variable 
Parameter 

β1 1 

1 

N(1,1) 
β2 1 1 
β3 1 1 
β4 1 1 

Sample Size(N) 100, 250, 500, 1,000, 1,500, 2,000, 5,000, 10,000 

*Constant parameter for OP is represented by γ1- γ4, which are the threshold variables for each level in 
OP model. 

 
 
 

Table 5.2 Population Ratios of Each Level for the Three Models 

Outcome 
Population Ratio 

MNL OP ML 

Level 1 5.7% 6.0% 14.1% 
Level 2 9.4% 10.1% 8.7% 
Level 3 15.4% 15.0% 14.3% 
Level 4 25.4% 24.5% 23.6% 
Level 5 44.1% 44.3% 39.3% 
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Datasets of each model were repeatedly drawn 100 times for each sample size according 

to the designed true parameter values of the model. Therefore, summary statistics such 

as mean and standard deviation of 100 iterations of each parameter for a model could be 

calculated. The sample sizes were designed as 100, 250, 500, 1,000, 1,500, 2,000, 5,000, 

and finally 10,000. In addition, based on the summary statistics from 100 iterations for a 

designed sample size, the 95% confidence interval of each estimated parameter could be 

computed, which is to be compared with the true value of the parameter (as shown in 

Table 5.1). The entire process of the Monte-Carlo analysis on sample size for simulated 

data is described in a flowchart, as shown in Figure 5.1. Parts of the code in NLOGIT 

used to carry out the Monte-Carlo simulation for a specific sample size for each model 

are provided in Appendix A. 

5.1.2 Simulation results 

This section describes the results for the three models based on the above simulation 

design. 

5.1.2.1 Results of the MNL Model 

The graphs in Figure 5.2 show the relationship between 95% confidence intervals for the 

four estimated constant parameters and the parameters of independent variables for the 

sample sizes designed in Table 5.1. In each graph, the Y-axis is the parameter estimate, 

and the X-axis is the sample size. For each sample size, there are two estimates of the 

parameter, one for the lower-bound and the other for the upper-bound of the 95% 

confidence interval. Thus, the interval encloses a 95% probability of the real value of 

each parameter. 

 



59 
 

 

Figure 5.1 Monte-Carlo Analysis on Sample Size for Simulated Data 
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the 95% confidence interval & mean 
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Figure 5.2 Confidence Intervals of the Parameters by Sample Size for the MNL  
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Figure 5.2 Continued 
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From Figure 5.2, it can be seen that for each parameter, the range of 95% confidence 

interval becomes narrower as the sample size increases. In addition, as the sample size 

reaches 2,000, the 95% confidence interval gets narrow and stable around the true value 

for each parameter. In order to further examine the simulation results, the relationship 

between the mean value of each parameter and sample size was extracted and is 

illustrated in Figure 5.3. Figure 5.3 indicates that sample sizes of less than 2,000 are 

erratic and inconsistent in terms of the ability to find the true parameters. The mean 

value becomes stable for sample sizes larger than 2,000. 

5.1.2.2 Results of the OP Model 

As shown in Figures 5.4 and 5.5, larger sample sizes lead to the narrower range of the 95% 

confidence interval for parameters and closer value of the mean. When compared with 

the MNL model, the only difference for the OP model is that the stable point arrives at a 

smaller sample size, which is about half of that for the MNL model (1,000). In other 

words, as the sample size reaches 1,000, the 95% confidence interval of parameters 

becomes narrow and stabilizes around the true value. Meanwhile, the mean value 

stabilizes towards the true value for each parameter, as the sample size increases to 

1,000. 
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Figure 5.3 Mean of the Parameters by Sample Size for the MNL 
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Figure 5.4 Confidence Intervals of the Parameters by Sample Size for the OP        
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Figure 5.4 Continued. 
 

 

 

 
Figure 5.5 Mean of the Variable Parameters by Sample Size for the OP  
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5.1.2.3 Results of the ML Model 

Figures 5.6 and 5.7 demonstrate the relationships between both the 95% confidence 

intervals for the parameters and the mean value for each parameter as a function of the 

sample size. Very similar patterns as those observed in the previous figures can be seen 

in these two figures. However, certain differences can be noticed for 1 . Since the 

parameter 1  is random, its estimated value was found to be less stable, especially for 

small sample sizes. The point of stabilization is around 5,000, which is the largest 

amongst the three models. Finally, it is anticipated that a larger sample size may be 

needed for the ML model, if more random parameters are introduced into the model. 

 
 
 

 

Figure 5.6 Confidence Intervals of the Parameters by Sample Size for the ML 
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Figure 5.6 Continued I
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Figure 5.6 Continued II. 
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Figure 5.7 Mean of Variable Parameters by Sample Size for the ML 

 

 

 

5.1.2.4 Summary Results of the Simulated Data 

Although the previously discussed results were based on simulated data, there are still a 

few findings that could be generalized regarding sample sizes for the three models. 
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Firstly, crash severity models with sample sizes below 1,000 should not be estimated. In 

addition, the OP model is the one that requires the least samples (>1000), the ML model 

is the most demanding on samples (>5000), while the MNL model requirements are 

intermediate to that of the OP and ML models (>2000). 

5.2 Analysis Based on Crash Data 

For the sake of simplification, the previous section only included one variable which was 

assumed to be normally distributed. However, the crash severity data have a large 

amount of variation which might lead to different sample size requirements for the three 

models. Therefore, we conducted further analyses of sample size requirements using 

crash data described in Section 4.1. For this, the models estimated from the full dataset 

conditions (as estimated in Section 4.2) were set as the baselines. Then, the MNL, ML 

and OP models were estimated using a stratified sampling method (i.e., crash 

observations were randomly chosen at a probability based on their severity categories) 

for different sampling sizes: 100, 500, 2,000, 5,000, 10,000, and 20,000 crashes. The 

stratified sampling method was used in order to keep the same proportion rates as in the 

one used for the full dataset: 3.1%, 9.4%, 22.2%, 20.1% and 45.3% for severity of K, A, 

B, C, O, respectively. In all, 30 random samples were selected for each sample size.  

After model estimation results for the 30 estimated models were attained for a specific 

sample size, the average of the coefficients of each variable was taken. For example, 

Tables 5.3 through 5.5 are the average values of coefficients and their standard deviation 

from the 30 model estimations when the 10,000 crash records were used for the MNL, 

ML and OP models respectively. Then the average values of parameters were compared 

with those calculated from the baseline conditions (in this case, for the sample 

size=10,000 for the MNL model, parameters in Table 5.3 were compared with those in 

Table 4.2). According, the bias, absolute-percentage bias (APB) and root mean square 

error (RMSE) were attained for each parameter, which will be described in further detail 
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in following sections. Since there were a large amount of parameters included in each 

model (27 parameters for the MNL model, 22 parameters for the OP model, and 29 

parameters for the ML model), it was impractical to compare the bias based on each 

parameter as was done in the Monte-Carlo simulation in Section 5.1. Thus, the mean of 

APB, maximum of APB and total RMSE were estimated as functions of the sample size 

for each model, and used for comparison. 

 
 
 

Table 5.3   Average Estimation Result for the Sample Size=10,000 (MNL) 

                   Severity level    

 

 

 

 Variable 

PDO 
Possible 

 injury 

Non-

incapacitating 

injury 

Incapacitating 

injury 

Coef. St.d Coef. St.d Coef. St.d Coef. St.d 

 Constant 4.277 0.54 3.998 0.51 3.643 0.49 3.088 0.53 
 Road condition 
 log(ADT) 0.165 0.03 0.083 0.02 0.083 0.02   
 Speed limit -0.018 0.01 -0.018 0.01 -0.018 0.01 -0.018 0.01 
 Crash information 
 Night indicator   -0.241 0.04 -0.156 0.04 -0.156 0.04 
 Dark with light indicator 0.144 0.10       
 Rain indicator -0.945 0.14 -0.834 0.16 -0.531 0.16 -0.386 0.16 
 Snow indicator 0.481 0.37       
 Driver information 
 Driver defect indicator -1.235 0.18 -0.315 0.10 -0.315 0.10 -0.315 0.10 
 Fatigue indicator 0.403 0.17 -0.242 0.05     
 Restraining device used                                                                                                                          
indicator -2.536 0.08 -1.989 0.12 -1.385 0.07 -0.839 0.08 
 Fixed-object type information  
 Hit tree indicator -1.028 0.10 -0.820 0.09 -0.599 0.10 -0.342 0.11 

* Shaded coefficients were made to be the same across respective crash severity categories. 
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Table 5.4   Average Estimation Result for the Sample Size=10,000 (ML) 

                      Severity level    

 

 

 

 Variable 

PDO 
Possible 

injury 

Non-

incapacitating 

injury 

Incapacitating 

injury 

Coef. St.d Coef. St.d Coef. St.d Coef. St.d 

 Constant 4.223 0.56 4.013 0.52 3.612 0.51 3.126 0.55 
 Road condition 
 log(ADT) 0.180 0.03 0.085 0.02 0.085 0.02   
 Speed limit -0.019 0.01 -0.019 0.01 -0.019 0.01 -0.019 0.01 
 Crash information 
 Night indicator   -0.251 0.04 -0.186 0.04 -0.186 0.04 
 Dark with light indicator 0.152 0.12       
 Rain indicator -0.952 0.14 -0.825 0.17 -1.054 0.26 -0.389 0.16 
      Std.dev. of distribution      1.606 0.63   
 Drive information 
 Driver defect indicator -1.340 0.21 -0.270 0.11 -0.270 0.11 -0.270 0.11 
 Fatigue indicator 0.445 0.20 -0.314 0.06     
 Restraining device used 
indicator -.3.65 1.17 -2.007 0.12 -1.227 0.09 -0.844 0.09 
       Std.dev. of distribution 2.461 1.67       
 Fixed-object type information  
 Hit tree indicator -1.145 0.12 -0.852 0.09 -0.541 0.12 -0.357 0.11 
     Std.dev. of distribution 0.960 0.59       

* Shaded coefficients were made to be the same across respective crash severity categories. 
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Table 5.5   Average Estimation Result for the Sample Size=10,000 (OP) 

Variable Coef. St.d 

Constant 0.263 0.12 
Road Condition 
log(ADT) -0.052 0.01 
Speed limit 0.003 0 
Curve & level indicator 0.058 0.02 
Crash Information 
Night indicator -0.111 0.03 
Dark with no light indicator 0.055 0.04 
Fog indicator 0.099 0.05 
Surface condition indicator -0.258 0.02 
Driver Information 
Vehicle type indicator 0.060 0.02 
Driver gender indicator 0.132 0.02 
Driver defect indicator 0.395 0.05 
Restraining device used 
indicator 0.813 0.04 
Fatigue indicator -0.165 0.06 
Airbag deploy indicator 0.455 0.05 
Seat belt use indicator -0.118 0.04 
Fixed-object Type Information 
Hit pole indictor -0.079 0.03 
Hit tree indicator 0.184 0.02 
Hit fence indictor -0.164 0.02 
Hit barrier indictor -0.100 0.04 
Threshold Parameters 

1  0.562 0.01 
2  1.393 0.01 
3  2.185 0.02 

 
 
 

Based on the 30 estimated models, for each parameter, the bias was calculated as follows, 

baseliner )
ˆ(  －EBias   (where r is the number of replications (r=30), and   represents 

each parameter for the model); the RMSE was calculated using the following equation 

VarBiasRMSE  2 ; the APB was computed by dividing the absolute value of bias 

to the baseline value of each parameter, i.e. baseline/|| APB . Thus, the mean of the 

APB among all the parameters in a model could be calculated by taking the average of 
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the APB values of all parameters. Furthermore, the maximum of APB was determined 

by comparing the APB value of each parameter in a model. Finally, total RMSE was 

attained by summing up the RMSE value of each parameter for a model. As a summary, 

the process described above regarding the Monte-Carlo analysis on sample size for crash 

data is demonstrated in a flowchart, as shown in Figure 5.8. Furthermore, the values of 

the three criteria (the mean of APB, maximum of APB and total RMSE) for various 

sample sizes are listed in Table 5.6. 

 
 
 

Table 5.6 Three Criteria by Sample Size of Crash Data for the Three Models  

Sample 

Size 

Mean of APB Max of APB Total RMSE 

MNL ML OP MNL ML OP MNL ML OP 

100 5.50E+13 2.10E+11 143% 9.70E+14 2.90E+12 2.10E+01 7.40E+15 1.60E+13 20.7 
500 2.00E+14 1.10E+04 25% 4.50E+15 1.10E+05 94% 1.30E+16 1.20E+06 4.5 
2000 16% 26% 11% 45% 167% 40% 12.9 28.7 2.2 
5000 9% 13% 5% 27% 52% 20% 7.6 13.7 1.2 

10000 4% 5% 4% 13% 13% 14% 4.7 8.7 0.7 
20000 2% 3% 2% 9% 21% 9% 1.9 3.4 0.4 

Note: Smaller values in the table indicate better estimations with less bias. 

 
 
 

From Table 5.6, we note the following results: 

(1) As expected, all three models show the same tendency indicated as the simulated 

data: the increase in sample size leads to the reduction in all three criteria (mean of 

APB, max of APB and total RMSE), improving the accuracy of model estimation.  

(2) In terms of the values of all three criteria, the MNL and ML models are more 

sensitive to small sample sizes than the OP model and this is especially noticeable 
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for the sample sizes equal to 100 and 500. Nonetheless, for a sample size below 500, 

all models perform poorly.  

(3) Similar to the results shown in the previous section, the ML model needs a lot of data 

to lower the value of three criteria. Even at 5,000 observations, the mean of APB, 

max of APB and total RMSE for the ML model is still twice as large as those for the 

MNL model. 

(4) According to the three criteria, the minimum sample size for the OP, MNL and ML 

models should be 2,000, 5,000 and 10,000, respectively. At that point, the estimated 

values become very close to the ―true‖ values for all three criteria. In short, these 

findings are consistent with those found with the simulated data about which models 

are more affected by the small sample size problem. However, the minimum 

numbers are larger than the ones proposed in simulation. This may be partly 

explained by the large variability of crash data and the number of random samples 

running (30 for each sample size).   
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Figure 5.8 Monte-Carlo Analysis on Sample Size for Crash Data 
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5.3 Chapter Summary 

Although there have been a lot of studies that have documented the application of crash 

severity models, no research has been conducted about quantifying the sample size 

requirements for crash severity models. Similar to count data models, small data sets 

could significantly influence model performance for crash severity models. The 

objective of this chapter consisted in examining and quantifying the effects of different 

sample sizes on the performance of the three most commonly used crash severity 

models: the MNL, OP and ML models. The objective of this study was accomplished by 

using a Monte-Carlo analysis based on simulated data and observed crash data. The 

sample size investigated varied between 100 and 10,000 observations.  

The results from the simulated data and random samples drawn from 26,175 crash 

records, are consistent with prior expectations in that small sample sizes significantly 

affect the development of crash severity models, no matter which model type is used. 

Furthermore, among the three models, the ML model requires the largest sample size, 

while the OP model requires the lowest sample size. The sample size requirement for the 

MNL model is intermediate to the OP and ML models. Overall, the recommended 

absolute minimum numbers of observations for the OP, MNL, and ML models are 

1,000, 2,000 and 5,000, respectively. Although those values are recommended 

guidelines, larger datasets should be sought, as demonstrated by the analysis using 

observed crash data (larger variability in the crash data or more randomness estimated in 

the ML model). In order to minimize the bias produced by the insufficient sample size, 

the sequence of selecting a model among the three ones is OP, MNL and ML as 

mentioned previously. 
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CHAPTER VI  

COMPARISONS BY MODEL MISSPECIFICATION 

 
 
 
 
In Chapter V, the sample size requirements for the three most commonly used models 

were investigated. The comparison was accomplished by a Monte-Carlo analysis based 

on simulated and observed crash data. The analysis results from both data sources 

indicated that each model had different requirements for sample size in order to get 

reasonable estimation results. However, even with sufficient sample sizes, a bias of the 

model estimation results might still exist due to a model misspecification issue. Since the 

performance of model estimation is expected to depend on the accuracy of the 

underlying model specification, the purpose of this chapter is to investigate the amount 

of bias that exists when the specified model is not the true (or exact) one and does not 

reflect the actual characteristics of the data. When a dataset, which comes from one of 

the three model structures (the MNL, OP and ML models), is fit by some other model 

rather than the true one, it is expected to observe a bias in the model estimation. For 

instance, when using the MNL model to fit the MNL data (MNL data refers to a dataset 

generated according to a MNL model, such as the dataset simulated in Section 5.1.1), the 

estimated coefficients would be virtually unbiased. However, when the OP model is fit 

to the MNL data, it is expected to see some bias in the estimated probability of each 

crash severity level because the specified model deviates from the real underlying data 

structure, and vice-versa.  

It seems obvious to predict the existence of a bias in model estimation when the model 

structure is misspecified. However, what is the extent of the bias caused by model 

misspecification? Do different misspecified models lead to the same amount of bias for a 

dataset? No research study has been done to address these questions regarding the 
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misspecification issue among the three models. Therefore, this chapter attempts to 

answer the above questions based on the simulated datasets designed in Section 5.1.1.  

This chapter is divided into three sections. Section 6.1 describes the simulation design 

and the criteria for estimating the effects of model misspecification on the three models. 

In Section 6.2, bias due to model misspecification for each of the simulated datasets is 

compared for the three models. Section 6.3 provides a summary of the chapter. 

6.1 Simulation Design and Estimation Criteria 

As with the analysis of effects of sample size on the three models in Chapter V, this 

chapter examines these models, comparing the bias caused by model misspecification, to 

get a sense of which model has less bias based on various model misspecification 

scenarios. The results will provide researchers with a model selection criterion among 

the three models in terms of model misspecification. In order to investigate the models 

based on model misspecification, it is important to know what model structure the data 

has. However, it is impossible for researchers to know the true model structure of the 

observed crash data (model selection among the entire candidate models could only help 

to find the best fit model for a dataset, rather than the true one). Therefore, rather than 

observed crash data, simulated data, with the knowledge of true values of estimators and 

true propensity functions, are used to explore the bias caused by model misspecification.  

In terms of the approach of estimating the bias caused by model misspecification, the 

comparison of individual parameters between the estimated values and the true ones, as 

used for the sample size effects in Chapter V, is not suitable here. The comparison in this 

case is across different types of models in terms of model misspecification, and 

parameters for various models could not be compared directly since each model has 

different model structures and variables. For instance, when an OP model fits a MNL 

dataset, the estimated parameters cannot be compared with the true ones directly to get 
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the bias caused by model misspecification, since the MNL model and the OP model have 

different parameters due to different model structures. For the OP model, parameters of 

an individual variable are fixed to be the same across the five crash severity levels (i.e., 

one variable has only one parameter), while the MNL model has different values of 

parameters for a variable across the five crash severity levels. Therefore, to overcome 

the limitations associated with the measurement of bias for parameters, the estimated 

probabilities and true probabilities of each crash severity level were calculated, based on 

a specified value of independent variable. The probabilities of the five crash severity 

levels estimated in each model would well represent the performance of model 

estimation, and accordingly could be used in the quantification of the bias of model 

estimations due to model misspecification.  

The simulated datasets used for the analysis of model misspecification are the same as 

these used in Section 5.1 for sample size analysis for the three models. The true values 

of parameters that were designed for the three models were listed in Table 5.1, excluding 

the information of sample size. According to the result of Monte-Carlo simulation on 

sample size in Section 5.1.2, sample size equal to 10,000 was used in this chapter which 

was guaranteed to be sufficient for all the three models, since they were larger than the 

required sample sizes (the OP model >1000, the MNL model >2000, and the ML 

model >5000). In other words, it is assumed that using 10,000 samples in the model 

estimation would eliminate bias caused by sample size limits for the simulated dataset.  

For each of the three models, in order to estimate the probability of each crash severity 

level, it is necessary to designate values of independent variable x . Three different 

values of the independent variable x  were used for the probability calculation for each 

model (i.e., x = -2, -1, 0 for the MNL and ML models, and x = 2.2, 1, 0 for the OP 

model). Recall x  was drawn from a normal distribution with mean equal to -2 and 

variance equal to 1 for the MNL and ML model, and x  was drawn from a normal 

distribution with mean equal to 2.2 and variance equal to 1 for the OP model. It could be 
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noticed that the three selected x  values were the ones across the distribution of x  in 

order to cover different distribution of the probabilities for five crash severity levels. 

Each dataset was generated 100 times for each model as designed in Section 5.1.1; the 

estimated probability of each crash severity level was calculated based on both the 

estimated parameters from the 100 repetitions and the designated value of the 

independent variable. Therefore, 100 estimated probabilities of each crash severity level 

for each model specification were obtained. In addition, summary statistics such as the 

mean and the standard deviation for these probabilities of each crash severity level can 

be calculated according to the estimated probabilities. This provides the bias of the 

probabilities of each level trueobobEBias Pr)rP̂( r － , where r is the number of 

replications. In addition, absolute-percentage bias (APB) and root mean square error 

(RMSE) of each probability were also calculated for comparison. The APB was 

computed by dividing the absolute value of bias of the probability to the true probability 

value of each level, i.e. trueobobAPB Pr/|Pr| . Meanwhile, VarBiasRMSE  2  , 

which combined both of the bias and variability, was used to compare the estimated 

probabilities for different misspecified models. According to the above calculation, the 

mean of the APB among all the five probabilities of each crash severity levels for a 

misspecified model could be calculated by taking the average of the APB values of all 

the five probabilities. Furthermore, the maximum of APB was found by comparing the 

APB value of each probability in a model. Lastly, total RMSE was calculated by 

summing up the RMSE value of the five probabilities in a model. Therefore, the mean of 

APB, max of APB and total RMSE of the five estimated probabilities were used as three 

indexes to quantify the effects of model misspecification. The process of the Monte-

Carlo analysis on model misspecification for simulated data is also described in a 

flowchart, as shown in Figure 6.1. Also, part of the code in NLOGIT used to carry out 

the Monte-Carlo analysis on the simulated data for a model misspecification are 

provided in Appendix B.  



82 
 

 

 

Figure 6.1 Monte-Carlo Analysis on Model Misspecification for Simulated Data 
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6.2 Simulation Results 

In order to compare the bias due to model misspecification among the three models, for 

each dataset simulated for one model, another particular model (between the rest two 

models) was used to fit the simulated dataset. Recall the primary assumption that was 

made before, that the results would not be affected much by different designed values of 

the parameters. This assumption indicates here that the effects of model misspecification 

are independent of the datasets used for analysis for each model. Thus, it is reasonable to 

compare the model misspecification results by three different datasets for each model. 

Another point that needs to be mentioned is that the estimation of the ML model is more 

complicated than the other two models because the randomness of the model needs to be 

designated beforehand. Therefore, different assignments of random parameters and their 

distribution would lead to different model estimation results. In order to simplify the 

problem, one parameter β1 (the variable parameter for level 1) was designated as a 

random parameter, following a normal distribution. The estimation results for the three 

simulated datasets (the MNL, OP and ML data) are shown in Tables 6.1, 6.2 and 6.3 

respectively. 

 
 
 

Table 6.1 Model Estimation Results for the OP and ML Models for a MNL Data 

Model Parameter 

Parameter Values 

MNL(true) 
OP(estimated) ML(estimated) 

    mean st.d mean st.d 

Constant 
Parameter* 

α1 0 0.835 0.027 0.022 0.11 
α2 0.5 0.563 0.015 0.508 0.088 
α3 1 1.112 0.019 1.005 0.08 
α4 1.5 1.836 0.022 1.505 0.077 

Variable 
Parameter 

β1 1 

-0.427 0.011 

N(1.036,0.103) (0.079,0.116) 
β2 1 1.004 0.041 
β3 1 1.004 0.041 
β4 1 1.003 0.036 

* Constant parameters for the OP model are represented by γ1- γ4, which are the threshold variables for   
each level. 
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Based on the true and estimated parameters listed in Tables 6.1 to 6.3, the true and 

estimated probabilities of each level in terms of the three designated independent 

variables were calculated using Equations (3.2), (3.7) and (3.9) for the MNL, OP and 

ML models respectively. For the ML model, since some parameters of a variable for 

certain levels are not fixed, following some types of distribution, the probabilities of 

each level using Equation (3.9) are not easy to calculate. The probabilities were 

approximated using a numerical method as proposed by Train 4 (2003).   

 
 
 
 
 
 
 
 
 
 
 
 
 
4 The probabilities of each outcome for the ML model is calculated by Equation (3.9):  
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 is the logit function, represented by )( kiL  ; 

 k is the indication for five outcomes, k=1,2,3,4,5. 

The procedure of computing the probabilities of each outcome is demonstrated by an example, the 
calculation of the true probabilities of each outcome for a simulated ML data. As designed, for the ML 
model 

1  follows a normal distribution N(1,1), rather than a fixed value. Therefore, the probabilities of 
each outcome are approximated by simulation due to the required numerical integration of the logit 
function over the distribution of the random parameter in Equation (3.9). The procedure is listed as below:  
(1) Randomly draw a value of 

1  from )( 1f  which is N(1,1), and 
2  , 

3  , 
4  are fixed value as 

designed or estimated from each repetition. Label it r  , with the superscript r=1 referring to the first 
draw.  
(2) Calculate the logit function )( r

kiL   with this draw. 
(3) Repeat step 1 and 2 many times (we use 1000 times in the study), and average the results. The average 
value of )( r

kiL   is taken as the simulated probability of outcome k:  


R r

kii L
R
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~

 , where R is the 

number of draws (R=1000 here), )(
~

kPi
 is an unbiased estimator of )(kPi

 by construction. 
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Table 6.2 Model Estimation Results for the MNL and ML Models for an OP Data 

Model Parameter 

Parameter Values 

OP(true) 
MNL(estimated) ML(estimated) 

    mean st.d mean st.d 

Constant 
Parameter* 

γ1 0 4.584 0.129 4.666 0.143 
γ2 0.8 4.04 0.11 4.061 0.112 
γ3 1.5 3.397 0.1 3.404 0.1 
γ4 2.4 2.532 0.09 2.533 0.09 

Variable 
Parameter 

β1 

1 

-3.693 0.08 N(-3.882,0.396) (0.155,0.174) 
β2 -2.69 0.057 -2.703 0.059 
β3 -2.004 0.049 -2.008 0.05 
β4 -1.277 0.037 -1.277 0.037 

*Constant parameters for the MNL and ML models are represented by α1- α4. 
 
 
 

Table 6.3 Model Estimation Results for the MNL and OP Models for a ML Data 

Model Parameter 

Parameter Values 

ML(true) 

MNL(estimated) OP(estimated) 

    mean st.d mean st.d 

Constant 
Parameter* 

α1 0 -0.321 0.088 0.631 0.022 
α2 0.5 0.466 0.083 0.324 0.011 
α3 1 0.957 0.075 0.744 0.016 
α4 1.5 1.466 0.068 1.372 0.018 

Variable 
Parameter 

β1 N(1,1) 0.308 0.036 

-0.236 0.011 β2 1 0.984 0.042 

β3 1 0.979 0.037 

β4 1 0.984 0.03 

*Constant parameters for the OP model are represented by γ1- γ4, which are the threshold variables for 
each level. 
 
 
 
Both of the true probabilities and the estimated ones of all five levels are shown in 

Tables 6.4, 6.5, and 6.6 for the MNL, OP and ML data respectively. Furthermore, 

comparing the true probabilities of each level with the estimated ones, the bias, APB and 
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RMSE of the probabilities of each level were computed, which are also listed in Tables 

6.4 to 6.8. In addition to the three indexes of the effects of model misspecification, the 

mean value of APB, maximum value of APB, and total RMSE are also summarized in 

Tables 6.7 and 6.8. 

 
 
 

Table 6.4 Model Misspecification for the MNL Data 

Probability 

of 

True 

Value 

OP model ML model 

mean st.d bias mean st.d bias 

  x = -2 

Level 1 5.8% 4.6% 0.2% -1.2% 5.8% 0.3% 0.0% 
Level 2 9.6% 8.4% 0.2% -1.1% 9.6% 0.3% 0.0% 
Level 3 15.8% 15.2% 0.3% -0.6% 15.8% 0.4% 0.0% 
Level 4 26.0% 27.7% 0.4% 1.7% 26.0% 0.4% 0.0% 
Level 5 42.9% 44.2% 0.5% 1.3% 42.9% 0.6% 0.1% 

  x = -1 

Level 1 8.0% 10.3% 0.4% 2.4% 7.9% 0.4% 0.0% 
Level 2 13.1% 13.9% 0.4% 0.8% 13.2% 0.5% 0.0% 
Level 3 21.6% 19.8% 0.4% -1.8% 21.6% 0.6% 0.0% 
Level 4 35.7% 27.7% 0.4% -8.0% 35.7% 0.7% 0.0% 
Level 5 21.6% 28.3% 0.5% 6.7% 21.6% 0.7% 0.0% 

  x = 0 

Level 1 9.2% 20.2% 0.8% 11.0% 9.4% 0.8% 0.2% 
Level 2 15.2% 19.1% 0.5% 3.9% 15.2% 0.9% 0.0% 
Level 3 25.1% 21.6% 0.5% -3.5% 25.0% 1.1% 0.0% 
Level 4 41.3% 23.3% 0.4% -18.0% 41.2% 1.2% -0.1% 
Level 5 9.2% 15.8% 0.6% 6.6% 9.2% 0.6% -0.1% 

Note: Smaller values in the table indicate better estimations with less bias. 
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Table 6.5 Model Misspecification for the OP Data 

Probability 

of 

True 

Value 

MNL model ML model 

mean st.d bias mean st.d bias 

  x = 2.2 

Level 1 1.4% 1.3% 0.1% -0.1% 1.4% 0.2% 0.0% 
Level 2 6.7% 6.6% 0.3% 0.0% 6.6% 0.3% -0.1% 
Level 3 16.1% 15.8% 0.5% -0.3% 15.8% 0.5% -0.4% 
Level 4 33.7% 32.9% 0.5% -0.8% 32.9% 0.5% -0.8% 
Level 5 42.1% 43.4% 0.6% 1.3% 43.4% 0.6% 1.3% 

  x = 1 

Level 1 15.9% 16.4% 0.7% 0.6% 15.8% 0.8% -0.1% 
Level 2 26.2% 26.0% 0.8% -0.2% 26.3% 0.9% 0.1% 
Level 3 27.1% 27.1% 0.8% 0.1% 27.3% 0.8% 0.3% 
Level 4 22.8% 23.7% 0.8% 0.9% 23.8% 0.8% 1.0% 
Level 5 8.1% 6.7% 0.3% -1.3% 6.8% 0.3% -1.3% 

  x = 0 

Level 1 50.0% 49.4% 2.3% -0.6% 51.1% 2.6% 1.1% 
Level 2 28.8% 28.7% 1.7% -0.1% 27.9% 1.8% -0.9% 
Level 3 14.5% 15.1% 1.1% 0.6% 14.5% 1.2% 0.0% 
Level 4 5.9% 6.4% 0.5% 0.5% 6.1% 0.6% 0.2% 
Level 5 0.8% 0.5% 0.1% -0.3% 0.5% 0.1% -0.3% 

Note: Smaller values in the table indicate better estimations with less bias. 
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Table 6.6 Model Misspecification for the ML Data 

Probability 

of 

True Value MNL model OP model 

mean st.d mean st.d bias mean st.d bias 

  x = -2 

Level 1 14.7% 20.1% 15.2% 0.4% 0.5% 13.5% 0.4% -1.2% 
Level 2 8.7% 2.0% 8.6% 0.3% -0.1% 8.3% 0.3% -0.4% 
Level 3 14.3% 3.4% 14.2% 0.4% -0.1% 14.2% 0.4% -0.1% 
Level 4 23.5% 5.5% 23.4% 0.5% -0.2% 24.6% 0.5% 1.1% 
Level 5 38.8% 9.1% 38.6% 0.5% -0.2% 39.4% 0.4% 0.6% 

  x = -1 

Level 1 11.0% 9.8% 11.3% 0.5% 0.3% 19.3% 0.5% 8.3% 
Level 2 12.7% 1.4% 12.6% 0.5% -0.1% 10.1% 0.3% -2.6% 
Level 3 20.9% 2.3% 20.7% 0.6% -0.2% 15.8% 0.4% -5.2% 
Level 4 34.5% 3.8% 34.2% 0.7% -0.2% 24.2% 0.5% -10.3% 
Level 5 20.9% 2.3% 21.2% 0.6% 0.2% 30.7% 0.5% 9.8% 

  x = 0 

Level 1 9.2% 0.0% 7.1% 0.5% -2.1% 26.4% 0.7% 17.2% 
Level 2 15.2% 0.0% 15.5% 0.9% 0.3% 11.5% 0.4% -3.7% 
Level 3 25.1% 0.0% 25.4% 1.2% 0.3% 16.6% 0.4% -8.5% 
Level 4 41.3% 0.0% 42.2% 1.3% 0.9% 22.5% 0.4% -18.8% 
Level 5 9.2% 0.0% 9.8% 0.5% 0.5% 23.0% 0.7% 13.7% 

Note: Smaller values in the table indicate better estimations with less bias. 
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Table 6.7 APB ( 310 ) of Model Specification for the Three Models 

Probability 

of 

MNL data OP data ML data 

OP 

model 

ML 

model 

MNL 

model 

ML 

model 

MNL 

model 

OP 

model 

  x= -2 x= 2.2 x= -2 

Level 1 214 3 91 6 33 79 
Level 2 117 0 5 13 6 41 
Level 3 38 1 21 23 5 7 
Level 4 64 1 25 25 7 45 
Level 5 30 1 32 31 5 14 

mean APB 93 1 35 20 11 37 
max APB 214 3 91 31 33 79 

  x= -1 x= 1 x= -1 

Level 1 300 3 36 6 28 757 
Level 2 59 2 7 5 7 206 
Level 3 85 0 2 10 10 247 
Level 4 224 0 38 43 7 299 
Level 5 308 1 165 161 11 467 

mean APB 195 1 50 45 13 395 
max APB 308 3 165 161 28 757 

  x= 0 

Level 1 1190 18 13 21 231 1863 
Level 2 257 2 4 31 23 240 
Level 3 138 2 40 1 14 339 
Level 4 437 2 85 35 22 454 
Level 5 718 6 382 411 58 1491 

mean APB 548 6 105 100 69 878 
max APB 1190 18 382 411 231 1863 

Note: Smaller values in the table indicate better estimations with less bias. 
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Table 6.8 RMSE ( 310 ) of Model Specification for the Three Models 

Probability 
MNL data OP data ML data 

OP 

model 

ML  

model 

MNL 

model 

ML  

model 

MNL 

model 

OP 

model 

  x = -2 x = 2.2 x = -2 

Level 1 13 3 2 2 6 12 
Level 2 11 3 3 3 3 5 
Level 3 7 4 6 6 4 4 
Level 4 17 4 10 10 5 12 
Level 5 14 6 15 14 5 7 

Total RMSE 62 19 35 35 24 39 
  x = -1 x = 1 x = -1 

Level 1 24 4 9 8 6 83 
Level 2 8 5 8 9 5 26 
Level 3 19 6 8 9 7 52 
Level 4 80 7 12 12 8 103 
Level 5 67 7 14 13 6 98 

Total RMSE 198 27 51 52 31 362 
  x = 0 

Level 1 110 8 24 28 22 172 
Level 2 39 9 17 20 10 37 
Level 3 35 11 13 12 12 85 
Level 4 181 12 7 6 16 188 
Level 5 66 6 3 3 7 138 

Total RMSE 431 46 64 69 67 619 
Note: Smaller values in the table indicate better estimations with less bias and variability. 

 
 
 
According to Tables 6.4 through 6.8, it can be noted that as value of independent 

variable x  moves farther away from its mean, not only the bias but also the RMSE, total 

RMSE, mean APB and max APB of probabilities tends to be larger for each simulated 

dataset in terms of model misspecification. In another word, bias and variability caused 

by model misspecification were dependent on the value of the independent variable, and 

the smallest bias and variability were achieved at the mean value of independent variable

x . However, no matter what the values of independent variable were, there were some 



91 
 

 

common tendencies indicated from the above tables for model misspecification. They 

are listed as follows.  

(1) The smallest values of the three indexes existed for the MNL data estimated by the 

ML model. This is reasonable since the ML model is a generalized version of the 

MNL model, including randomness in the parameters. That is, among the three 

models, the ML model has the smallest effect on a model misspecification. 

(2) When the ML data was fit by the MNL model, all the three indexes were slightly 

higher than those from the MNL data when applied by the ML model, though still 

smaller compared to those from other misspecification scenarios. This is because that 

the MNL model is a specified version of the ML model. However, keeping the logit 

structure of the ML data for the estimated model led to the three indexes smaller than 

those from other misspecification scenarios.  

(3) The largest values of the three indexes occurred when the ML data was estimated by 

the OP model, and the second largest occurred when the MNL data estimated by the 

OP model. This was probably due to the difference between logit structure of the 

data and probit specification of the estimated model. In addition, the OP model could 

not take into account the randomness of parameters for the ML model, which might 

cause more bias and variability in the model estimation when the ML or MNL data 

was estimated by the OP model. 

(4) When the OP data estimated by the MNL and ML models, the three indexes were 

much smaller than those from the MNL and ML data when applied by the OP model. 

Combined with what found in point (3), it seemed that logit specification (both the 

MNL and ML models) could estimate the probit data (data from the OP model) well 

to some degree, but not vice-versa. Thus, when applying the OP model to a dataset, it 

should be kept in mind about whether the true model structure of the data follows an 



92 
 

 

ordered structure. If not, large bias and variability might exist as the data came from 

logit structure (the MNL or ML).   

What can be concluded from the above findings is that, in terms of model 

misspecification, without knowing the true underlying structure of the data, logit models 

(the MNL and ML models) are probably more accurate in model estimation than the OP 

model. In addition, in terms of the effects of model misspecification, between the MNL 

and ML models, the ML model is a better choice since it is more general than the MNL 

model, allowing for randomness in the parameters.  

6.3 Chapter Summary 

This chapter described the effects of model misspecification for the three models, with 

an in-depth analysis of their performances, in order to provide traffic safety researchers 

with another criterion for selecting models based on model misspecification. Simulated 

datasets described in Section 5.1.1 were used for analysis in this chapter. Due to the lack 

of the exact characteristics of observed crash data, such as the true underlying model 

structure of the crash data, the analysis could not be extended to real crash data. By 

applying a misspecified model to a simulated dataset, the estimated probabilities of each 

crash severity level were attained based on the estimated parameters and designated 

values of the independent variable. Accordingly, the bias and variability of the estimated 

probabilities could be calculated by comparing the estimated probabilities with the true 

known values. In addition, the mean value of APB, maximum value of APB, and total 

RMSE of the probabilities were computed as the three indexes of the effects of model 

misspecification. 

The results indicated that the performance of the estimated models depended on the 

accuracy of the underlying model specification. When the sample size was sufficient, 

specifying the probit structure to a logit data produced the largest bias and variability. 
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However, the logit models could estimate the probit data much better than using the 

probit models to estimate the logit data. Furthermore, for the logit models, misspecifying 

the ML model to a MNL dataset would probably lead to smaller bias and variability than 

those from misspecifying the MNL model to a ML dataset. This is because the ML 

model is a generalized model of the MNL model, allowing randomness in the parameters. 

Overall, in terms of the effects of model misspecifiction, without knowing the real model 

structure of a crash dataset, a suggested sequence of selecting crash severity model 

among the three models is: first the ML model, then the MNL model, and finally the OP 

model. 
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CHAPTER VII  

MODEL COMPARISONS BY DATA UNDERREPORTING 

 
 
 
 
As discussed in Chapter II, although a significant amount of work has been devoted on 

developing crash severity models to predict the probabilities of crashes for different 

severity levels, very few studies have considered the underreporting problem in the 

modeling process. After comparing the effects of sample size and model 

misspecification on the three commonly used crash severity models, the effects of data 

underreporting on the three models are explored in this chapter. Crash data is usually 

based on police reported crash data. It has been well documented that crashes are often 

unreported, particularly those associated with lower severity levels. This underreporting 

issue can yield to significant biases in the inferences about a population of interest if 

crash data are treated as random samples coming from the population without 

considering the different unreported rates for each crash severity level.  

The primary objective of this chapter is to examine the effects of underreporting for the 

three models. More specifically, this study investigated how each of these models 

performs for different unreported rates. A secondary objective consisted in quantifying 

how the outcome-based sampling method, via the Weighted Exogenous Sample 

Maximum Likelihood Estimator (WESMLE), could account for specific underreporting 

conditions when the transportation safety analyst had the full or partial knowledge of 

unreported rates for different severities. The study objectives were accomplished via a 

Monte-Carlo approach using simulated and observed crash data. 

This chapter consists of three sections. Section 7.1 describes the results for the three 

types of models by various underreported data generated by simulation. Section 7.2 
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further presents the modeling results for the three models using observed crash data. 

Section 7.3 provides the summary of this chapter. 

7.1 Analysis Based on Simulated Data 

In order to study the effects of underreporting on three models and verify the 

effectiveness of the WESMLE method for underreported data, a Monte-Carlo approach 

was developed using simulated and observed crash data. Since simulated data are 

controllable, we developed a couple of scenarios to simulate various underreporting 

cases in the dataset.  

7.1.1 Simulation design and estimation criteria 

The datasets generated in Section 5.1.1 for the three models based on the true parameters 

were treated as the complete datasets, i.e., the population. The underreported dataset 

were replicated by randomly eliminating some data according to the designed unreported 

rates. In order to generate sufficient samples even after the random removal of some data, 

the original sample size was set to be 50,000. In other words, the complete datasets had 

50,000 observations for three models and all the eliminated observations were 

considered to be the unreported ones (Recall in Chapter VI for the model 

misspecification study, we used sample size=10,000 which was guaranteed to be 

sufficient for all the three models. Since in this chapter we randomly eliminate some data 

to simulate underreporting, we have enlarged the sample size). 

In this part of the study, we developed three scenarios to evaluate the change in bias and 

variability of estimated parameters for different unreported rates for the three models. 

The objective of Scenario 1 is to verify the effects of the number of unreported 

observations on the bias and variability of estimated parameters, and the function of 

WESMLE based on various unreported rates for all three models. The goal of Scenario 2 

is to further examine the function of the WESMLE when underreporting exists in all five 
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levels. The aim of Scenario 3 is to evaluate the function of the WESMLE when using 

incorrect unreported rates. More details of each scenario are described in Section 7.1.2.  

Datasets for each model were repeatedly drawn 100 times for each designated 

unreported rate, according to the designed true parameter values of the model. Based on 

the 100 estimated models, the bias of each parameter was calculated as 

baseliner )
ˆ(  －EBias  , where r was the number of replications (r=100), and   

represented each parameter in the model (both constant parameters and variable 

parameters). The root-mean-square-error (RMSE) of each parameter for a model was 

calculated using the equation VarBiasRMSE  2 , and the total RMSE of all the 

variable parameters for each model was used to measure the underreporting effects since 

it comprised both bias and variability. As a summary, the whole process described above 

about the Monte-Carlo analysis on the effects of underreporting for simulated data is 

shown in Figure 7.1. Meanwhile, parts of the code in NLOGIT used to carry out the 

Monte-Carlo analysis on the simulated data for underreporting in data are provided in 

Appendix C. 
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Figure 7.1 Monte-Carlo Analysis on Underreporting for Simulated Data 
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7.1.2 Simulation results 

7.1.2.1 Scenario 1 

For Scenario 1, the change in bias and variability with the increase of the unreported 

rates (five unreported rates 5%, 10%, 20%, 40%, and 80% were simulated for each level) 

for the three models was examined, in order to quantify the effects of the number of 

unreported observations. (Note: for the complete datasets, based on the designed data for 

the MNL and the OP models, the number of observations for the outcomes increased 

from levels 1 to 5; while for the ML model, the number of observations ranked from low 

to high: levels 2, 1, 3, 4 and 5, respectively.)  In addition, for each underreported dataset, 

the WESMLE was used to verify whether it could provide a good model estimate based 

on the known unreported rates.  

After 100 repetitions, statistics such as the mean and the standard deviation were 

calculated. For example, the results from various unreported rates of level 1 or level 5 

are listed in Table 7.1 through 7.3 for the MNL, ML and OP models, respectively. In 

addition, the total RMSEs of each parameter in a model were compared across different 

unreported rates for each level and for all three models (see Table 7.4).  
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Table 7.1 Underreporting in Level 1 & 5 for the MNL Model Using Simulated Data 

Note: Smaller values of ―Total RMSE‖ in the table indicate better estimations with less bias and variability. 

 

 

Parameter 

Unreported Rates for Level 1  

5% 10% 20% 40% 80% 
MLE 

Mean  (St.d) 
WESMLE 

Mean (St.d) 
MLE 

Mean   (St.d) 
WESMLE 

Mean   (St.d) 
MLE 

Mean   (St.d) 
WESMLE 

Mean (St.d) 
MLE 

Mean   (St.d) 
WESMLE 

Mean (St.d) 
MLE 

Mean  (St.d) 
WESMLE 

Mean  (St.d) 

α1=0 -0.05 (0.04) 0.00 (0.04) -0.10 (0.04) 0.00 (0.04) -0.22 (0.04) 0.00 (0.04) -0.51 (0.05) 0.01 (0.05) -1.61 (0.08) 0.00 (0.08) 

α2=0.5 0.50 (0.04) 0.50 (0.04) 0.50 (0.04) 0.50 (0.04) 0.50 (0.04) 0.50 (0.04) 0.50 (0.04) 0.50 (0.04) 0.50 (0.04) 0.50 (0.04) 

α3=1 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 

α4=1.5 1.50 (0.03) 1.50 (0.03) 1.50 (0.03) 1.50 (0.03) 1.50 (0.03) 1.50 (0.03) 1.50 (0.03) 1.50 (0.03) 1.50 (0.03) 1.50 (0.03) 

β1=1 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.05) 1.00 (0.05) 

β2=1 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 

β3=1 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 

β4=1 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 

Total RMSE 0.23 0.21 0.28 0.21 0.39 0.21 0.68 0.22 1.80 0.28 

  

Unreported Rates for Level 5   

5% 10% 20% 40% 80% 
MLE 

Mean  (St.d) 
WESMLE 

Mean (St.d) 
MLE 

Mean   (St.d) 
WESMLE 

Mean   (St.d) 
MLE 

Mean   (St.d) 
WESMLE 

Mean (St.d) 
MLE 

Mean   (St.d) 
WESMLE 

Mean (St.d) 
MLE 

Mean  (St.d) 
WESMLE 

Mean  (St.d) 

α1=0 0.05 (0.04) 0.00 (0.04) 0.11 (0.04) 0.00 (0.04) 0.23 (0.04) 0.00 (0.04) 0.51 (0.04) 0.00 (0.04) 1.61 (0.05) 0.00 (0.05) 

α2=0.5 0.56 (0.04) 0.50 (0.04) 0.61 (0.04) 0.50 (0.04) 0.73 (0.04) 0.51 (0.04) 1.02 (0.04) 0.50 (0.04) 2.11 (0.05) 0.50 (0.05) 

α3=1 1.06 (0.03) 1.00 (0.03) 1.11 (0.03) 1.00 (0.03) 1.23 (0.04) 1.01 (0.04) 1.52 (0.04) 1.00 (0.04) 2.61 (0.05) 1.00 (0.05) 

α4=1.5 1.55 (0.03) 1.50 (0.03) 1.61 (0.03) 1.50 (0.03) 1.73 (0.03) 1.50 (0.03) 2.01 (0.03) 1.50 (0.03) 3.11 (0.05) 1.50 (0.05) 

β1=1 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 

β2=1 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 

β3=1 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 

β4=1 1.00 (0.02) 1.00 (0.02) 1.00 (0.01) 1.00 (0.01) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 

Total RMSE 0.33 0.21 0.52 0.21 0.99 0.21 2.14 0.23 6.54 0.29 
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Table 7.2 Underreporting in Level 1 & 5 for the ML Model Using Simulated Data 

Note: Smaller values of ―Total RMSE‖ in the table indicate better estimations with less bias and variability. 

 

Parameter 

Unreported Rates for Level 1  

5% 10% 20% 40% 80% 
MLE 

Mean  (St.d) 
WESMLE 

Mean (St.d) 
MLE 

Mean   (St.d) 
WESMLE 

Mean   (St.d) 
MLE 

Mean   (St.d) 
WESMLE 

Mean (St.d) 
MLE 

Mean   (St.d) 
WESMLE 

Mean (St.d) 
MLE 

Mean  (St.d) 
WESMLE 

Mean  (St.d) 

α1=0 -0.05 (0.07) -0.01 (0.07) -0.10 (0.07) -0.01 (0.07) -0.21 (0.08) -0.01 (0.08) -0.48 (0.11) -0.01 (0.09) -1.58 (0.17) -0.03 (0.13) 

α2=0.5 0.50 (0.06) 0.50 (0.06) 0.51 (0.06) 0.50 (0.06) 0.51 (0.06) 0.50 (0.06) 0.51 (0.06) 0.50 (0.06) 0.51 (0.06) 0.50 (0.06) 

α3=1 1.00 (0.05) 1.00 (0.05) 1.00 (0.05) 1.00 (0.05) 1.00 (0.05) 1.00 (0.05) 1.00 (0.05) 1.00 (0.05) 1.01 (0.05) 1.00 (0.05) 

α4=1.5 1.51 (0.04) 1.50 (0.04) 1.51 (0.04) 1.50 (0.04) 1.51 (0.04) 1.50 (0.04) 1.51 (0.04) 1.51 (0.04) 1.51 (0.04) 1.50 (0.04) 

β1=1 0.99 (0.16) 1.00 (0.16) 0.99 (0.16) 1.00 (0.16) 0.97 (0.18) 1.00 (0.18) 0.92 (0.20) 0.99 (0.21) 0.79 (0.26) 1.01 (0.33) 

β2=1 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 

β3=1 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 

β4=1 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 

σ1=1 0.97 (0.18) 1.00 (0.18) 0.94 (0.17) 1.00 (0.18) 0.89 (0.18) 1.00 (0.20) 0.76 (0.19) 0.99 (0.24) 0.52 (0.20) 0.99 (0.40) 

Total RMSE 0.65 0.64 0.70 0.64 0.85 0.69 1.25 0.76 2.67 1.09 

  

Unreported Rates for Level 5   

5% 10% 20% 40% 80% 
MLE 

Mean  (St.d) 
WESMLE 

Mean (St.d) 
MLE 

Mean   (St.d) 
WESMLE 

Mean   (St.d) 
MLE 

Mean   (St.d) 
WESMLE 

Mean (St.d) 
MLE 

Mean   (St.d) 
WESMLE 

Mean (St.d) 
MLE 

Mean  (St.d) 
WESMLE 

Mean  (St.d) 

α1=0 0.03 (0.07) -0.01 (0.07) 0.07 (0.07) -0.01 (0.07) 0.16 (0.07) -0.02 (0.07) 0.39 (0.08) -0.01 (0.08) 1.30 (0.08) -0.02 (0.09) 

α2=0.5 0.55 (0.06) 0.50 (0.06) 0.61 (0.06) 0.50 (0.06) 0.72 (0.06) 0.50 (0.06) 1.00 (0.06) 0.50 (0.06) 2.06 (0.08) 0.50 (0.08) 

α3=1 1.05 (0.05) 1.00 (0.05) 1.10 (0.05) 1.00 (0.05) 1.22 (0.05) 1.00 (0.05) 1.50 (0.05) 1.00 (0.05) 2.56 (0.06) 0.99 (0.06) 

α4=1.5 1.56 (0.04) 1.50 (0.04) 1.61 (0.04) 1.50 (0.04) 1.72 (0.05) 1.50 (0.05) 2.00 (0.05) 1.50 (0.05) 3.06 (0.06) 1.50 (0.06) 

β1=1 1.00 (0.16) 0.99 (0.16) 1.00 (0.16) 0.99 (0.16) 0.99 (0.16) 0.99 (0.16) 0.93 (0.15) 0.99 (0.16) 0.40 (0.10) 0.99 (0.16) 

β2=1 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 1.00 (0.03) 0.98 (0.04) 1.00 (0.04) 

β3=1 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.03) 1.00 (0.03) 0.99 (0.03) 1.00 (0.03) 0.97 (0.03) 1.00 (0.03) 

β4=1 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.02) 1.00 (0.03) 0.98 (0.03) 1.00 (0.03) 

σ1=1 1.01 (0.18) 0.99 (0.18) 1.03 (0.19) 0.99 (0.18) 1.06 (0.19) 0.99 (0.19) 1.08 (0.19) 0.99 (0.19) 0.38 (0.22) 0.99 (0.18) 

Total RMSE 0.72 0.65 0.88 0.65 1.29 0.66 2.35 0.69 7.37 0.73 
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Table 7.3 Underreporting in Level 1 & 5 for the OP Model Using Simulated Data 

Note: Smaller values of ―Total RMSE‖ in the table indicate better estimations with less bias and variability. 

 

 

Parameter 

Unreported Rates for Level 1  

5% 10% 20% 40% 80% 
MLE 

Mean  (St.d) 
WESMLE 

Mean (St.d) 
MLE 

Mean   (St.d) 
WESMLE 

Mean   (St.d) 
MLE 

Mean   (St.d) 
WESMLE 

Mean (St.d) 
MLE 

Mean   (St.d) 
WESMLE 

Mean (St.d) 
MLE 

Mean  (St.d) 
WESMLE 

Mean  (St.d) 

α1=0 0.03 (0.01) 0.00 (0.01) 0.06 (0.01) 0.00 (0.01) 0.12 (0.01) 0.00 (0.01) 0.28 (0.01) 0.00 (0.01) 0.83 (0.01) 0.00 (0.02) 

α2=0.8 0.82 (0.01) 0.80 (0.01) 0.83 (0.01) 0.80 (0.01) 0.87 (0.01) 0.80 (0.01) 0.97 (0.01) 0.80 (0.01) 1.37 (0.01) 0.80 (0.01) 

α3=1.5 1.52 (0.01) 1.50 (0.01) 1.54 (0.01) 1.50 (0.01) 1.59 (0.01) 1.50 (0.01) 1.70 (0.01) 1.50 (0.01) 2.15 (0.01) 1.50 (0.01) 

α4=2.4 2.42 (0.01) 2.40 (0.01) 2.44 (0.01) 2.40 (0.01) 2.49 (0.01) 2.40 (0.01) 2.61 (0.01) 2.40 (0.01) 3.07 (0.01) 2.40 (0.01) 

β=1 1.00 (0.01) 1.00 (0.01) 0.99 (0.01) 1.00 (0.01) 0.99 (0.01) 1.00 (0.01) 0.97 (0.01) 1.00 (0.01) 0.94 (0.01) 1.00 (0.01) 

Total RMSE 0.10 0.06 0.19 0.06 0.39 0.06 0.89 0.06 2.77 0.06 

  

Unreported Rates for Level 5   

5% 10% 20% 40% 80% 
MLE 

Mean  (St.d) 
WESMLE 

Mean (St.d) 
MLE 

Mean   (St.d) 
WESMLE 

Mean   (St.d) 
MLE 

Mean   (St.d) 
WESMLE 

Mean (St.d) 
MLE 

Mean   (St.d) 
WESMLE 

Mean (St.d) 
MLE 

Mean  (St.d) 
WESMLE 

Mean  (St.d) 

α1=0 0.00 (0.01) 0.00 (0.01) -0.01 (0.01) 0.00 (0.02) -0.01 (0.01) 0.00 (0.02) 0.00 (0.02) 0.00 (0.02) 0.05 (0.01) 0.00 (0.02) 

α2=0.8 0.80 (0.01) 0.80 (0.01) 0.80 (0.01) 0.80 (0.01) 0.81 (0.01) 0.80 (0.01) 0.82 (0.01) 0.80 (0.01) 0.84 (0.01) 0.80 (0.01) 

α3=1.5 1.51 (0.01) 1.50 (0.01) 1.51 (0.01) 1.50 (0.01) 1.53 (0.01) 1.50 (0.01) 1.56 (0.01) 1.50 (0.01) 1.64 (0.01) 1.50 (0.01) 

α4=2.4 2.42 (0.01) 2.40 (0.01) 2.45 (0.01) 2.40 (0.01) 2.50 (0.01) 2.40 (0.01) 2.62 (0.01) 2.40 (0.01) 3.10 (0.02) 2.40 (0.02) 

β=1 1.00 (0.01) 1.00 (0.01) 1.00 (0.01) 1.00 (0.01) 0.99 (0.01) 1.00 (0.01) 0.97 (0.01) 1.00 (0.01) 0.89 (0.01) 1.00 (0.01) 

Total RMSE 0.07 0.06 0.10 0.06 0.17 0.06 0.35 0.06 1.04 0.07 
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Table 7.4 Total RMSE for Different Unreported Rate Using Simulated Data  

Outcome in 

Underreporting 

  

Unreported Rate 

5% 10% 20% 40% 80% 5% 10% 20% 40% 80% 

MLE WESMLE 

the MNL Model 

Level 1 0.23 0.28 0.39 0.68 1.80 0.21 0.21 0.21 0.22 0.28 
Level 2 0.23 0.28 0.39 0.68 1.79 0.21 0.21 0.21 0.22 0.25 
Level 3 0.23 0.28 0.39 0.68 1.79 0.20 0.20 0.21 0.21 0.24 
Level 4 0.23 0.28 0.40 0.69 1.80 0.21 0.21 0.21 0.21 0.25 
Level 5 0.33 0.52 0.99 2.14 6.54 0.21 0.21 0.21 0.23 0.29 

the OP Model 

Level 1 0.10 0.19 0.39 0.89 2.77 0.06 0.06 0.06 0.06 0.06 
Level 2 0.09 0.15 0.28 0.56 1.25 0.06 0.06 0.06 0.06 0.06 
Level 3 0.08 0.12 0.21 0.42 0.91 0.06 0.06 0.06 0.06 0.06 
Level 4 0.08 0.13 0.23 0.48 1.12 0.06 0.06 0.06 0.06 0.07 
Level 5 0.07 0.10 0.17 0.35 1.04 0.06 0.06 0.06 0.06 0.07 

the ML Model 

Level 1 0.65 0.70 0.85 1.25 2.67 0.64 0.64 0.69 0.76 1.09 
Level 2  0.63 0.71   0.79 1.10 2.65  0.60 0.62 0.65 0.65 0.85 
Level 3  0.66  0.69  0.78 1.13  2.68 0.64 0.60 0.67 0.66 0.77 
Level 4 0.67 0.71  0.88 1.15  2.75 0.64 0.63 0.66 0.66 1.01 
Level 5 0.72 0.88 1.29 2.35 7.37 0.65 0.65 0.66 0.69 0.73 

Note: Smaller values in the table indicate better estimations with less bias and variability. 

 
 
 
There are four key findings for Scenario 1: 

 

(1) For all three models, with larger unreported rates, the total RMSE increased using the 

MLE method. However, when the WESMLE method is used to take account of the 

underreporting issue, considering the variation caused by the randomness in the ML 

model, the total RMSE remained relatively constant given the change in unreported 

rate for the three models.  
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(2) When the MLE was used for model estimation (i.e., without considering the 

underreporting issue in the data), the underreported data did not show any clear 

effects on the total RMSE. Instead, for either the MNL model or the ML model, with 

the same unreported rate, similar total RMSE values were observed for the 

parameters from levels 1 to 4, and while a much larger value of total RMSE was 

found when level 5 contained underreported data. This is reasonable since level 5 was 

used as the baseline outcome in both the MNL and ML models. The probabilities of 

other levels (levels 1 through 4) are based on the baseline outcome, so underreporting 

of baseline outcome would cause more bias in the likelihood function than other 

levels and accordingly it leads to more bias in the model estimation. It was further 

verified whether the underreporting of the baseline level would result in more bias in 

the model estimation using the MLE method. In this case, the MNL model was 

applied to the simulated data with underreporting in level 1 and level 5 respectively, 

while setting level 1 as the baseline rather than level 5. After 100 repetitions, statistics 

such as the mean and the standard deviation were calculated, as shown in Table 7.5. It 

should be noted that the true values of each parameter were changed as the baseline 

level was switched from level 5 to level 1, where α1 = β1 =0 rather than α5 = β5 =0 

(when level 5 was set as a baseline). The true values of parameters for level 1 to 4 

could easily be calculated by normalizing α1 and β1 to zero for the designed 

parameter values in Table 5.1, according to the equivalent differences property of the 

MNL model (Koppelman and Bhat, 2006). In addition, the total RMSEs of 

parameters were compared with those when level 5 was set as baseline level in the 

MNL model estimation (see Table 7.1), across different unreported rates. The results 

are shown in Table 7.6. 
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Table 7.5 Underreporting in Level 1 & 5 for the MNL Model Using Simulated Data 

when Baseline Level Changed to Be Level 1 (the MLE method) 

Parameter 

Unreported Rates for Level 1  

5% 10% 20% 40% 80% 
Mean (St.d) Mean (St.d) Mean (St.d) Mean (St.d) Mean (St.d) 

α5=0 0.05 (0.04) 0.10 (0.04) 0.22 (0.04) 0.51 (0.05) 1.62 (0.08) 
α4=1.5 1.55 (0.04) 1.61 (0.04) 1.72 (0.04) 2.01 (0.05) 3.12 (0.08) 
α3=1 1.05 (0.04) 1.11 (0.04) 1.22 (0.05) 1.51 (0.05) 2.62 (0.09) 
α2=0.5 0.55 (0.04) 0.61 (0.04) 0.72 (0.04) 1.01 (0.05) 2.12 (0.08) 
β5=-1 -1.00 (0.02) -1.00 (0.02) -1.00 (0.02) -1.00 (0.03) -1.00 (0.05) 
β4=0 0.00 (0.02) 0.00 (0.02) 0.00 (0.02) 0.00 (0.03) 0.01 (0.05) 
β3=0 0.00 (0.02) 0.00 (0.02) 0.00 (0.02) 0.00 (0.03) 0.01 (0.05) 
β2=0 0.00 (0.02) 0.00 (0.02) 0.00 (0.03) 0.00 (0.03) 0.01 (0.05) 
Total 
RMSE 0.35 0.54 1.00 2.16 6.69 

  

Unreported Rates for Level 5  

5% 10% 20% 40% 80% 
Mean (St.d) Mean (St.d) Mean (St.d) Mean (St.d) Mean (St.d) 

α5=0 -0.05 (0.04) -0.11 (0.04) -0.22 (0.04) -0.51 (0.04) -1.61 (0.05) 
α4=1.5 1.50 (0.04) 1.50 (0.04) 1.50 (0.04) 1.50 (0.04) 1.50 (0.04) 
α3=1 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 1.00 (0.04) 
α2=0.5 0.50 (0.04) 0.50 (0.04) 0.50 (0.04) 0.50 (0.04) 0.50 (0.04) 
β5=-1 -1.00 (0.02) -1.00 (0.02) -1.00 (0.02) -1.00 (0.02) -1.00 (0.02) 
β4=0 0.00 (0.02) 0.00 (0.02) 0.00 (0.02) 0.00 (0.02) 0.00 (0.02) 
β3=0 0.00 (0.02) 0.00 (0.02) 0.00 (0.02) 0.00 (0.02) 0.00 (0.02) 
β2=0 0.00 (0.02) 0.00 (0.02) 0.00 (0.02) 0.00 (0.02) 0.00 (0.02) 
Total 
RMSE 0.27 0.32 0.43 0.72 1.82 

Note: Smaller values of ―Total RMSE‖ in the table indicate better estimations with less bias and variability. 
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Table 7.6 Total RMSE for Different Unreported Rate Using Simulated Data with 

Different Baseline Level for the MNL Model (the MLE method) 

Baseline Level Unreported Rates for Level 1  

5% 10% 20% 40% 80% 
Level 1 0.35 0.54 1.00 2.16 6.69 

Level 5 0.23 0.28 0.39 0.68 1.80 

  Unreported Rates for Level 5 

5% 10% 20% 40% 80% 
Level 5 0.33 0.52 0.99 2.14 6.54 

Level 1 0.27 0.32 0.43 0.72 1.82 
Note: Smaller values in the table indicate better estimations with less bias and variability. 

 
 
 

From Table 7.6, it is seen that when the baseline level is the one with underreporting, 

the total RMSEs of parameters for the MNL model are much larger for various 

unreported rates than those when baseline level was set as another level without 

underreporting. Since the ML model has the same model structure as the MNL 

model, the ML model would also exhibit this feature regarding the baseline level. 

Thus, when the MNL and ML models are used for model estimation with the MLE 

method, analysts should avoid setting an outcome with large unreported rate as a 

baseline level.  

 

(3) From Table 7.4, when the MLE method was used for model estimation, the OP model 

had a different result (the largest total RMSE existed when level 1 was underreported) 

from the other two models when outcomes were setup in an ascending order (the 

outcomes were ranked from levels 1 to 5). In order to verify whether the same 

unreported rate for the level with the lowest order produces the largest total RMSE, 

the same generated datasets for the OP model were estimated again, but in a 

descending order this time (from levels 5 to 1). The total RMSE for each unreported 

rate is shown in Table 7.7. From this table, with the same unreported rate when level 

5 was underreported, the total RMSE achieved the largest which supports the idea 

that underreporting for the outcome with the lowest rank caused the largest total 

RMSE. Thus, when the OP model is used for underreported data with the MLE 
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method, the analysts should avoid ranking the outcomes in an order with the lowest 

order having the largest unreported rate. 

 
 
 

Table 7.7 Total RMSE for the OP Model with Outcomes in a Descending Order 

Using Simulated Data 

Outcome in 

Underreporting 

  

Unreported Rate 

5% 10% 20% 40% 80% 

MLE 

Level 1 0.07 0.10 0.17 0.37 1.00 
Level 2 0.07 0.10 0.17 0.34 0.77 
Level 3 0.07 0.10 0.19 0.37 0.81 
Level 4 0.10 0.18 0.36 0.75 1.75 
Level 5 0.10 0.19 0.37 0.84 2.68 

  WESMLE 

Level 1 0.06 0.06 0.06 0.06 0.06 
Level 2 0.06 0.06 0.06 0.06 0.06 
Level 3 0.06 0.06 0.06 0.06 0.06 
Level 4 0.06 0.06 0.06 0.06 0.07 
Level 5 0.06 0.06 0.06 0.06 0.07 

Note: Smaller values in the table indicate better estimations with less bias and variability. 

 
 
 
(4) The WESMLE method worked well no matter how large the unreported rates and 

unreported data were for each level for all three models. It gave a more accurate 

estimation of parameter to the true value with the total RMSE dramatically decreased 

from that by the MLE method.  

 

7.1.2.2 Scenario 2 

As seen in the previous analysis, the WESMLE method works very well to minimize the 

underreporting issue in data characterized by underreporting in one of the levels. 

However, in reality, all five severity levels of crash data have underreporting issue to 

different degrees. To further examine the function of the WESMLE when underreporting 

exists in all five levels, another scenario was set for three models with the unreported 
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rates equal to 5%, 20%, 30%, 50%, and 70% for levels 1 to 5 respectively. The mean and 

standard deviation of the parameters from both the MLE and WESMLE estimation are 

listed in Table 7.8. In addition, the total RMSE was also calculated to compare the bias 

and variability from the MLE and WESMLE for three models. 

 
 
 

Table 7.8 Underreporting in All Outcomes in Three Models Using Simulated Data 

Parameter 
MLE 

  Mean        (St.d) 

WESMLE 

 Mean          (St.d) 
the MNL Model 

α1=0 1.16 (0.05) 0.00 (0.05) 
α2=0.5 1.49 (0.05) 0.51 (0.05) 
α3=1 1.85 (0.05) 1.01 (0.05) 
α4=1.5 2.01 (0.04) 1.50 (0.05) 
β1=1 1.00 (0.02) 1.00 (0.02) 
β2=1 1.00 (0.02) 1.00 (0.02) 
β3=1 1.00 (0.02) 1.00 (0.02) 
β4=1 1.00 (0.02) 1.00 (0.02) 
Total RMSE 3.61 0.28 

the OP Model 

γ1=0 -0.23 (0.02) 0.00 (0.02) 
γ2=0.8 0.84 (0.01) 0.80 (0.01) 
γ3=1.5 1.62 (0.01) 1.50 (0.01) 
γ4=2.4 2.55 (0.01) 2.40 (0.02) 
β=1 0.99 (0.01) 1.00 (0.01) 
Total RMSE 0.55 0.06 

the ML Model 

α1=0 0.89 (0.08) -0.02 (0.09) 
α2=0.5 1.44 (0.07) 0.49 (0.07) 
α3=1 1.80 (0.07) 0.99 (0.07) 
α4=1.5 1.97 (0.07) 1.50 (0.07) 
β1=1 0.63 (0.14) 0.99 (0.16) 
β2=1 0.98 (0.03) 1.00 (0.04) 
β3=1 0.98 (0.03) 1.00 (0.04) 
β4=1 0.98 (0.03) 1.00 (0.03) 
σ1=1 0.96 (0.27) 0.99 (0.18) 
Total RMSE 3.90 0.75 

Note: Smaller values of ―Total RMSE‖ in the table indicate better estimations with less bias and variability. 
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From Table 7.8, it is seen that using the WESMLE in model estimation dramatically 

decreases the bias of estimated parameters in all three models compared to using the 

MLE. It indicates that the WESMLE method works well not only for single level 

underreporting but also for multiple levels of underreporting. 

 

7.1.2.3 Scenario 3 

Though the WESMLE performs well for various underreporting situations, the 

prerequisite for using the WESMLE method is that the analysts have knowledge of actual 

unreported rates for each outcome, which is usually not fully known for crash data. As 

shown in Equation (3.11), the WESMLE method includes weights in the log-likelihood 

function, which are the ratio of population share Qi to the sample share Hi for each level. 

Actually, the ratio of the weights rather than the value of weights themselves make the 

estimated parameters different, which maximizes the log-likelihood function of the 

WESMLE.  The ratio of the five weights could be calculated as shown below. 

Since weight of level i  is: 

 

        

 






))](1(*[

))(1(*
)(

irateN

irateN

NN

H

Q
iweight

i

i

ii

i

i                                (7.1) 

 

Where,  

iN  is the number of observations for level i  in the population, and )(irate  is the 

unreported rate assumed for level i . 

 

Then the ratio of weight( i ) for the five levels is: 
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If we have the full information about the unreported rates for all five levels, the above 

ratio will be the true ratio of weights: 
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Where,  

)(iTrate  is the true unreported rate for level i . 

 

Intuitively, the closer the weights ratio is to the true value, the better the estimation 

obtained using the WESMLE method. In order to prove this idea, a simple example was 

used. In the simulation, the true unreported rate was designed to be 40% in one of the five 

levels, but assume that this number is not known and the best assumption for it is 20% or 

60%. Unreported rate of 20% in one of the levels should give a closer weight ratio to the 

true one than unreported rate of 40%. For instance, the unreported rate for level 1 is 40% 

with other levels fully reported, and then the true relative weight ratio is

01
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1
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01
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01
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.401

1

－－－－－
. The relative weight ratio for the assumption of 

unreported rate of 20% for level 1 is 
01

1
:
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1
:
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1
:

01

1
:

.201

1

－－－－－
, and the relative 

weight ratio of unreported rate of 60% in level 1 is 
01

1
:
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1
:

01

1
:

01

1
:

.601

1

－－－－－
. It is 

obvious that when unreported rate equal to 20% for level 1, the relative weight ratio is 

much closer to the true one. 

 

The total RMSE using different unreported rates were calculated for the three models, as 

shown in Table 7.9. For comparison, the estimation based on the MLE method without 

taking account of the underreporting are also listed in this table. 
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Table 7.9 Total RMSE by Incorrect Unreported Rate Using Simulated Data 

Outcome in 

Underreporting 

40% (true) 
20% 

(assumed) 

60% 

(assumed) 

MLE WESMLE WESMLE WESMLE 

the MNL Model 

Level 1 0.68 0.22 0.46 0.59 
Level 2 0.68 0.22 0.47 0.60 
Level 3 0.68 0.21 0.47 0.62 
Level 4 0.69 0.21 0.48 0.62 
Level 5 2.14 0.23 1.25 1.69 

the OP Model 

Level 1 0.89 0.06 0.49 0.70 
Level 2 0.56 0.06 0.35 0.54 
Level 3 0.42 0.06 0.23 0.34 
Level 4 0.48 0.06 0.26 0.37 
Level 5 0.35 0.06 0.20 0.29 

the ML Model 

Level 1 1.25 0.76 0.99 1.15 
Level 2 1.10 0.65 0.89 0.99 
Level 3 1.13 0.66 0.90 1.04 
Level 4 1.15 0.66 0.92 1.06 
Level 5 2.35 0.69 1.53 2.16 

Note: Smaller values in the table indicate better estimations with less bias and variability. 

 
 
 
Table 7.9 shows that the incorrect unreported rates with the WESMLE method increased 

the total RMSE compared to those when the true underreporting information was used. 

However, it still provided a better estimation than without considering the underreporting 

in the data (i.e., using the MLE). Furthermore, the incorrect unreported rates do not refer 

to any random numbers used as unreported rates with the WESMLE. When the assumed 

unreported rates shift the weights ratio into another direction (such as making the weights 

of five levels in a reverse order from the true one), it might give a larger bias than using 

the MLE method alone. Some sense of the unreported rates for each level is definitely 

needed to get reasonable results using the WESMLE method, even if it is not perfect. In 

addition, the tentative idea was shown that an unreported rate of 20% had a lower total 
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RMSE than the one equal to 60%. Thus, it supports the hypothesis that the closer the 

weights ratio is to the true value, the better estimation will be using the WESMLE 

method.  

7.2 Analysis Based on Crash Data 

After the analysis of the three models by various underreported data generated by 

simulation, this section further conducted the analysis using observed crash data. For the 

simulated data in Section 7.1, only one variable is included with the assumption of 

normal distribution. However, crash data have a large amount of variation which might 

lead to different patterns of parameter bias and variability caused by data underreporting. 

Therefore, further analyses are needed using observed crash data (described in Section 

4.1). Three corresponding scenarios were developed for observed crash data, which are 

stated in Section 7.1.2. 

7.2.1 Scenario 1 

For Scenario 1, the change in bias and variability with the increase of the unreported rates 

(two unreported rates 10% and 40%, were designed in each severity level) for the three 

models is examined in order to verify how the number of unreported observations 

influences these two items. The procedure of the Scenario 1 analysis is shown in the 

following steps.  

 

First, assume the dataset described in Section 4.1 is a complete one without 

underreporting issue. The model estimations from the three models (the MNL, OP and 

ML models) for the full dataset (which were demonstrated in Section 4.2), were treated as 

the baseline condition for each model.  

Next, the underreported crash datasets were generated by randomly removing some 

crashes for specific severity levels from the full dataset according to the designed 

unreported rates (10% or 40% for each crash severity level). For simplicity, 30 

underreported datasets were replicated based on a designed unreported rate for crash data 
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(rather than 100 used for the simulated data), and each one of the 30 underreported 

datasets was estimated by each model. In addition, the same 30 generated underreported 

crash datasets for each designed unreported rate were estimated again for the three 

models, using the WESMLE method to take account of the underreporting issue in the 

crash data. For each underreporting situation, based on the 30 estimated results, basic 

statistics such as mean and variance of each parameter could be easily calculated. As an 

example, Tables 7.10 to 7.12 show the average values of coefficients and their standard 

deviation from the 30 model estimations when fatal crashes are underreported with 

unreported rate equal to 40% for the MNL, ML and OP models respectively. Meanwhile, 

Tables 7.13 to 7.15 show the corresponding results for the three models when the 

WESMLE method was used for model estimation. 

 
 
 

Table 7.10   Average Estimation Result of the MNL Model for  

the Unreported Rate=40% in Fatal Crashes (using MLE) 

              Severity level 

 

 

 

Variable 

PDO Possible injury 

Non-

incapacitating 

injury 

Incapacitating 

injury 

Coef. St.d Coef. St.d Coef. St.d Coef. St.d 

Constant 4.803 0.35 4.478 0.35 4.129 0.35 3.558 0.35 
Road condition 
log(ADT) 0.157 0.00 0.079 0.00 0.079 0.00   
Speed limit -0.018 0.01 -0.018 0.01 -0.018 0.01 -0.018 0.01 
Crash information 
Night indicator   -0.225 0.00 -0.149 0.00 -0.149 0.00 
Dark with light indicator 0.159 0.01       
Rain indicator -0.867 0.09 -0.752 0.09 -0.457 0.09 -0.328 0.09 
Snow indicator 0.467 0.01       
Driver information 
Driver defect indicator -1.265 0.08 -0.285 0.07 -0.285 0.07 -0.285 0.07 
Fatigue indicator 0.471 0.01 -0.256 0.00     
Restraining device used 
indicator -2.558 0.06 -2.015 0.06 -1.429 0.06 -0.859 0.06 
Fixed-object type information  
Hit tree indicator -1.034 0.05 -0.814 0.05 -0.601 0.05 -0.353 0.05 

* Shaded coefficients were made to be the same across respective crash severity categories. 
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Table 7.11   Average Estimation Result of the ML Model for  

the Unreported Rate=40% in Fatal Crashes (using MLE) 

                      Severity level    

 

 

 

 Variable 

PDO 
Possible 

injury 

Non-

incapacitating 

injury 

Incapacitating 

injury 

Coef. St.d Coef. St.d Coef. St.d Coef. St.d 

 Constant 4.726 0.36 4.454 0.36 4.061 0.36 3.568 0.36 
 Road condition 
 log(ADT) 0.171 0.00 0.083 0.00 0.083 0.00   
 Speed limit -0.018 0.01 -0.018 0.01 -0.018 0.01 -0.018 0.01 
 Crash information 
 Night indicator   -0.236 0.00 -0.179 0.01 -0.179 0.01 
 Dark with light indicator 0.172 0.01       
 Rain indicator -0.867 0.09 -0.739 0.09 -0.890 0.09 -0.328 0.09 
      Std.dev. of distribution      1.509 0.03   
 Drive information 
 Driver defect indicator -1.371 0.08 -0.247 0.07 -0.247 0.07 -0.247 0.07 
 Fatigue indicator 0.517 0.01 -0.325 0.00     
 Restraining device used 
indicator -3.427 0.07 -2.029 0.06 -1.264 0.06 -0.862 0.06 
       Std.dev. of distribution 2.283 0.08       
 Fixed-object type information  
 Hit tree indicator -1.122 0.05 -0.843 0.05 -0.547 0.05 -0.368 0.05 
     Std.dev. of distribution 0.920 0.05       

* Shaded coefficients were made to be the same across respective crash severity categories.  
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Table 7.12   Average Estimation Result of the OP Model for  

the Unreported Rate=40% in Fatal Crashes (using MLE) 

Variable Coef. St.d 

Constant 0.250 0.018 
Road Condition 
log(ADT) -0.050 0.001 
Speed limit 0.002 0.000 
Curve & level indicator 0.063 0.003 
Crash Information 
Night indicator -0.129 0.006 
Dark with no light indicator 0.062 0.005 
Fog indicator 0.109 0.014 
Surface condition indicator -0.250 0.002 
Driver Information 
Vehicle type indicator 0.056 0.003 
Driver gender indicator 0.137 0.004 
Driver defect indicator 0.401 0.008 
Restraining device used 
indicator 0.801 0.012 
Fatigue indicator -0.183 0.007 
Airbag deploy indicator 0.479 0.011 
Seat belt use indicator -0.086 0.010 
Fixed-object Type Information 
Hit pole indictor -0.074 0.004 
Hit tree indicator 0.172 0.004 
Hit fence indictor -0.163 0.003 
Hit barrier indictor -0.107 0.006 
Threshold Parameters 

1  0.567 0.000 

2  1.428 0.002 

3  2.383 0.012 
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Table 7.13 Average Estimation Result of the MNL Model for  

the Unreported Rate=40% in Fatal Crashes (using WESMLE) 

                  Severity level    

 

 

 

Variable 

PDO Possible injury 

Non-

incapacitating 

injury 

Incapacitating 

injury 

Coef. St.d Coef. St.d Coef. St.d Coef. St.d 

Constant 4.324 0.35 4.000 0.35 3.651 0.35 3.044 0.35 

Road condition 
log(ADT) 0.153 0.00 0.074 0.00 0.074 0.00   
Speed limit -0.018 0.01 -0.018 0.01 -0.018 0.01 -0.018 0.01 

Crash information 
Night indicator   -0.227 0.00 -0.151 0.01 -0.151 0.01 
Dark with light indicator 0.155 0.01       
Rain indicator -0.868 0.09 -0.754 0.09 -0.458 0.09 -0.329 0.09 
Snow indicator 0.464 0.01       
Driver information 
Driver defect indicator -1.263 0.08 -0.286 0.07 -0.286 0.07 -0.286 0.07 
Fatigue indicator 0.467 0.01 -0.257 0.00     
Restraining device used 
indicator -2.562 0.06 -2.017 0.06 -1.430 0.06 -0.859 0.06 
Fixed-object type information  
Hit tree indicator -1.037 0.05 -0.817 0.05 -0.603 0.05 -0.354 0.05 

* Shaded coefficients were made to be the same across respective crash severity categories. 
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Table 7.14   Average Estimation Result of the ML Model for 

the Unreported Rate=40% in Fatal Crashes (using WESMLE) 

                      Severity level    

 

 

 

 Variable 

PDO 
Possible 

injury 

Non-

incapacitating 

injury 

Incapacitating 

injury 

Coef. St.d Coef. St.d Coef. St.d Coef. St.d 

 Constant 4.257 0.36 3.986 0.36 3.593 0.36 3.062 0.36 
 Road condition 
 log(ADT) 0.166 0.01 0.078 0.00 0.078 0.00   
 Speed limit -0.018 0.01 -0.018 0.01 -0.018 0.01 -0.018 0.01 
 Crash information 
 Night indicator   -0.236 0.01 -0.181 0.01 -0.181 0.01 
 Dark with light indicator 0.168 0.01       
 Rain indicator -0.871 0.09 -0.743 0.09 -0.945 0.09 -0.331 0.09 
      Std.dev. of distribution      1.593 0.05   
 Drive information 
 Driver defect indicator -1.367 0.08 -0.246 0.08 -0.246 0.08 -0.246 0.08 
 Fatigue indicator 0.508 0.01 -0.329 0.01     
 Restraining device used 
indicator -3.436 0.09 -2.033 0.06 -1.279 0.06 -0.863 0.06 
       Std.dev. of distribution 2.221 0.12       
 Fixed-object type information  
 Hit tree indicator -1.131 0.05 -0.848 0.05 -0.551 0.05 -0.370 0.05 
     Std.dev. of distribution 0.905 0.07       

* Shaded coefficients were made to be the same across respective crash severity categories.  
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Table 7.15   Average Estimation Result of the OP Model for  

the Unreported Rate=40% in Fatal Crashes (using WESMLE) 

Variable Coef. St.d 

Constant 0.253 0.027 
Road Condition 
log(ADT) -0.049 0.002 
Speed limit 0.002 0.000 
Curve & level indicator 0.063 0.004 
Crash Information 
Night indicator -0.128 0.008 
Dark with no light indicator 0.066 0.007 
Fog indicator 0.111 0.021 
Surface condition indicator -0.256 0.003 
Driver Information 
Vehicle type indicator 0.054 0.005 
Driver gender indicator 0.131 0.005 
Driver defect indicator 0.401 0.012 
Restraining device used 
indicator 0.810 0.017 
Fatigue indicator -0.174 0.011 
Airbag deploy indicator 0.448 0.016 
Seat belt use indicator -0.125 0.015 
Fixed-object Type Information 
Hit pole indictor -0.073 0.006 
Hit tree indicator 0.187 0.005 
Hit fence indictor -0.161 0.005 
Hit barrier indictor -0.091 0.009 
Threshold Parameters 

1  0.561 0.001 

2  1.393 0.003 

3  2.185 0.012 
 
 
 
For each underreporting situation, comparing the average estimation of the 30 estimated 

results with the baseline condition for each model, the bias of parameter was calculated 

by baseliner )
ˆ(  －EBias   (where r is the number of replications (r=30), and   represents 

each parameter for the model); the RMSE was calculated by VarBiasRMSE  2 . 

Furthermore, upon the RMSE of each parameter the total RMSE was computed as an 

index of underreporting effects. The total RMSEs for each underreporting rate are shown 

in Table 7.16. It can be found from Table 7.16 that the OP model was estimated in both 
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ascending and descending order. This is due to the purpose of examining whether the 

order of severity level had effects on the total RMSE when crash data were underreported. 

 
 
 

Table 7.16 Total RMSE for Different Unreported Rates using Crash Data 

Unreported 

Rate 

MNL ML OP(KABCO) OP(OCBAK) 

MLE WSMLE MLE WSMLE MLE WSMLE MLE WSMLE 

O=10% 0.37 0.27 1.10 0.98 0.25 0.12 0.33 0.12 
C=10% 0.30 0.23 0.64 0.49 0.11 0.04 0.18 0.04 
B=10% 0.30 0.21 0.76 0.55 0.18 0.08 0.18 0.07 
A=10% 0.34 0.25 0.60 0.48 0.20 0.10 0.18 0.09 
K=10% 0.99 0.90 1.08 1.00 0.24 0.10 0.13 0.08 

 O=40% 1.12 0.73 3.37 2.01 1.06 0.32 1.45 0.32 
C=40% 0.92 0.56 1.71 1.08 0.40 0.09 0.70 0.10 
B=40% 0.92 0.53 2.20 1.36 0.67 0.20 0.68 0.17 
A=40% 1.17 0.72 1.71 1.31 0.74 0.22 0.67 0.28 
K=40% 3.01 2.68 3.27 3.01 0.96 0.28 0.46 0.20 

Note: Smaller values in the table indicate better estimations with less bias and variability. 

 
 
 
Table 7.16 shows that the results are consistent with the simulation output in section 7.1. 

Some observations are as follows: 

(1) For all three models, the larger unreported rates were associated with a higher total 

RMSE values.  

(2) Using the WESMLE method with the knowledge of the unreported rates, the total 

RMSE decreased for all underreporting situations for the three models.  

(3) For the MNL model, when the baseline severity level (fatal or K) was underreported, 

the total RMSE achieved the largest value compared to the values attained when other 

severity levels had the same unreported rate. For the ML model, though the total 

RMSE value for the PDO underreporting was slightly larger than the baseline severity 

level (fatal) with the same unreported rate, the value in fatal underreporting is much 
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larger than other severity levels (C, B, A). For crash data, as mentioned before, PDO 

crashes are more likely to be unreported and fatal crashes usually have the highest 

reported rate. Thus, when the MNL and ML are used to predict the probability of 

crash severity level, fatal should be set as the baseline level in order to minimize the 

bias and variability. For the OP model, comparing the total RMSE values using the 

MLE from descending order (KABCO) and ascending order (OCBAK), lower total 

RMSE values were obtained for the underreporting in O, C, and B when the 

descending order was used. Since crash data have more serious underreporting 

problem for lower severity crashes, using descending order provides a better approach 

to reduce the bias and variability in the estimation of the parameters for the OP model.  

7.2.2 Scenario 2 

The analysis of Scenario 1 described above was based on only one severity level that was 

underreported. In this scenario, further examination was performed to determine the bias 

and variability of the estimated parameters when different unreported rates were used. 

The following unreported rates were used: 5%, 20%, 30%, 50%, and 75% for severity 

KABCO, respectively. Following the same procedure of Scenario 1 in Section 7.2.1, the 

total RMSE values from the MLE and WESMLE with the knowledge of real unreported 

rates were obtained and listed in Table 7.17. As expected, the WESMLE method 

dramatically decreased the value of total RMSE compared to the MLE. It indicates that 

the WESMLE method not only works well when a single crash severity is underreported 

but also when multiple severities have different unreported rates as long as the unreported 

rates are known (which is not always the case with real crash data). 

 
 
 

Table 7.17 Total RMSE by Unreported Rates for Each Severity Type 

Estimation method MNL ML OP(K-O) OP(O-K) 

MLE 3.84 11.24 2.35 2.56 

WESMLE 
real unreported rates 1.99 6.03 0.68 0.69 

fatal=5% 4.08 11.50 2.42 2.65 
PDO=50% 3.27 7.65 1.14 1.20 

Note: Smaller values in the table indicate better estimations with less bias and variability. 
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7.2.3 Scenario 3 

As discussed in Scenario 3 in the simulation study, when partial rather than perfect 

information of the unreported rates was used, the change in total RMSE was also 

examined. In this case, instead of using 5%, 20%, 30%, 50%, and 75% for severity 

KABCO for the weight calculation with the WESMLE method, two hypothetical 

examples were used: one assumed an unreported rate of 5% in fatal crashes (example 1), 

while the unreported rate for the PDO was 50% (example 2), with keeping all other 

severity levels complete. The results are shown in Table 7.17.  

This table illustrates that using an unreported rate of 50% in PDO crashes decreased the 

total RMSE than that from the MLE method for all three models, while, using an 

unreported rate 5% in fatal crashes increased the total RMSE. After verifying the ratio of 

the five severity weights as followings, these results would be found reasonable. 

The true ratio of weights for KABCO is 
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For the unreported rate of 5% in fatal crashes, the ratio of weights for KABCO is 
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For the unreported rate of 50% in PDO crashes, the ratio of weights for KABCO is 
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It was obvious that using unreported rate of 5% in fatal crashes shifted the weights ratio 

into an opposite direction where the weight of lower crash severities should be larger than 

the fatal crashes due to the larger unreported rate for the lower crash severity levels. 

However, the unreported rate of 50% in PDO crashes still followed the same direction as 

that of the true weights ratio, in which the weight of PDO was larger than the other 

severity levels, though not as accurately.  
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The findings here further supported the findings of Scenario 2 which was discussed 

previously: the closer the weights ratio was to the true one, better the estimation would be 

using the WESMLE method. On the other hand, incorrectly including the unreported 

rates in the model estimation for all three models might lead to a worse model estimation 

with larger bias and variability. Therefore, it is important to formulate the weight of each 

severity level with the same rank as the true one among the five severity levels, for each 

model. Without the full knowledge of the true unreported rates, one conservative way is 

to only include the unreported rate for the PDO (the most significant underreported level 

among all the severity levels) in the weight calculation. Meanwhile, a reasonable 

unreported rate for the PDO needs to be assumed, based on previous research and as 

much knowledge as possible about the crash data used for estimating the crash severity 

models. 

7.3 Chapter Summary 

This chapter aimed at studying the effects of underreporting on three commonly used 

traffic crash severity models. A secondary objective consisted of quantifying how the 

outcome-based sampling method in model estimation, via the WESMLE method, can 

account for specific underreporting conditions when the transportation safety analysts 

have the full and partial knowledge of the unreported rates for each severity level. A 

Monte-Carlo approach using simulated and observed crash data was utilized for 

evaluating the three models. 

 

The results of this chapter showed that the analysis using simulated and observed crash 

data achieved consistent results on the effects of underreporting for three models, with 

and without accounting for the underreporting for each crash severity level. In order to 

minimize the bias and reduce the variability of the model, fatal crashes should be set as 

the baseline severity level for the MNL and ML models. For the OP model, the rank of 

the crash severity should be set from fatal to PDO in a descending order. It should be 

pointed out that none of the three models was immune to this underreporting issue. 
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The results also showed that when the actual information about the unreported rates of 

each severity level was known, the WESMLE dramatically improved the estimation for 

all three models compared to the result produced by the MLE (which did not take into 

account the underreporting issue for crash data). However, for crash data, the unreported 

rate for each severity level is rarely known with certainty. When partial or imperfect 

knowledge about unreported rates are available, the WESMLE still gives better 

estimation results than those without considering the underreporting in the data (via the 

MLE), though the estimation is not as robust as when the exact underreporting 

information is obtainable. In addition, the closer the weights ratio is to the true value, the 

better the estimation will be with the WESMLE method. 

  



123 
 

 

CHAPTER VIII 

SUMMARY AND CONCLUSIONS 

 
 
 
 
The development and application of crash prediction models (including crash count 

models and crash severity models) are important aspects of traffic safety analysis, which 

can help to extract the relationship between each crash severity level and its contributing 

factors. They include driver and vehicle characteristics, roadway conditions, and road-

environment factors. Though crash severity models (such as various logit and probit 

models) are widely used in safety analysis, few research studies have been conducted on 

comparing different crash severity models, especially in terms of the effects of sample 

size, model misspecification and underreporting in crash data. Sample size, model 

misspecification and underreporting in crash data are the three major issues for the 

estimation of crash severity models, which have not been paid enough attention to in the 

previous research.  

Sample size requirement is the first thing to be considered in the process of model 

estimation for a crash severity model. Crash severity models can be heavily influenced by 

the size of the sample from which they are estimated. Meanwhile, various crash severity 

models would have different requirements of sample size for achieving sufficiently 

accurate estimation. Therefore, with the knowledge of sample size requirements for 

various crash severity models, safety researchers can make a better choice among all the 

candidate models in terms of the sample size of their dataset. In addition, even when the 

sample size is sufficient, there could still exist a bias in the estimated results when the 

model structure is misspecified, which is termed as misspecification bias in the study. 

Even though researchers usually do not have any knowledge of the true model that crash 

data comes from, there will be less bias in the estimation results if crash data are fit by a 

model which is less affected by model misspecification. Lastly, an important issue of data 

used in the crash severity models is that crash data are usually based on police reported 

records. However, crashes often go unreported, particularly those associated with low 
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severity crashes such as PDO crashes. When used to predict probabilities of crash 

severity levels for a crash severity model, underreported crash data would yield biased 

results. Overall, according to the three issues stated above, there is a need to examine 

how the sample size, model misspecification, and underreported crash data affect the 

estimation results for crash severity models. 

In the research, three commonly used crash severity models: the MNL, OP and ML 

models were selected to develop comparisons among them in terms of the effects of 

sample size, model misspecification, and underreporting in crash data. This would help 

researchers to have a deeper understanding of the three models and furthermore to 

develop a more sound and reliable crash severity model for a targeted dataset. 

This chapter highlights the main findings of this research and puts forward a few 

recommendations for using the three models. This dissertation concludes with a 

discussion on possible directions in which the research can be extended in the future. 

8.1 Main Findings 

There are a few main findings summarized from the previous chapters for not only the 

model estimation, but also the effects of sample size, model misspecification, and 

underreporting in crash data for the three models. These findings related to the effects of 

these three concerns were based on the Monte-Carlo analyses for both the simulated and 

observed crash data. 

In Chapter IV, the three models were applied to an observed crash dataset including 

26,175 single-vehicle crashes involving fixed objects on rural two-way highways and it 

was found that the ML model had a better interpretive power than the MNL model, while 

the MNL model had a superior interpretive power than the OP model. The OP model had 

the least interpretive power since it does not have the flexibility to explicitly control 

interior category probabilities, which depend on the thresholds. Meanwhile, the OP 

model requires the variable either to increase the probability of highest severity (fatal in 
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the study) and decrease the probability of lowest severity (PDO in the study), or to 

decrease the probability of highest severity and increase the probability of lowest severity. 

However, it does not allow the probabilities of both of the highest and lowest severity 

increase or decrease. On the other hand, the OP model had a slightly better GOF than that 

of the MNL and ML models, while the ML model had a significant better fit than the 

MNL model at a 5% significance level for the observed crash data used in the research.  

In Chapter V, the effects of sample size for the three models were examined by a Monte-

Carlo analysis using both simulated data and observed crash data. The results of the 

analysis are consistent with the prior expectation that small sample sizes significantly 

affect the development of the three crash severity models. Furthermore, among the three 

models, in order to attain sufficiently accurate estimation, the ML model requires the 

largest sample size, while the OP model requires the smallest sample size. The sample 

size requirement for the MNL model is intermediate to the OP and ML models.  

In Chapter VI, the effects of model misspecification on the three models were compared, 

by a Monte-Carlo approach using simulated datasets (as designed in Section 5.1.1) for the 

three models. The estimated results for the three models indicated that the performance of 

model estimation depended on the accuracy of the underlying model specification. When 

the sample size is sufficient, specifying the probit structure to a logit data produced the 

largest bias and variability, while the logit models would estimate probit data better. 

Furthermore, for the logit models, allowing the randomness in parameters, misspecifying 

the ML model to a dataset probably led to a lesser bias than misspecifying the MNL 

model to the same dataset (since the ML model is a generalized version of the MNL 

model).  

In Chapter VII, the effects of underreported data for the three models were studied, by 

quantifying the function of outcome-based sampling method in model estimation for 

specific underreporting conditions, via the WESMLE. A Monte-Carlo approach using 

simulated and observed crash data was utilized for evaluating the three models with 

underreporting in the data. The results of this study showed that none of the three models 

was immune to this underreporting issue. When the actual information about the 
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unreported rates for each severity level was known, the WESMLE method dramatically 

improved the estimation for all three models compared to the result produced by the MLE. 

Furthermore, when the partial or imperfect knowledge about unreported rates were 

available, the closer the weights ratio was to the true value, the better the estimation 

would be using the WESMLE method. Another finding was that setting data properly for 

model estimation would minimize the bias and variability of the estimation results, such 

as presetting an appropriate severity level as the baseline outcome for the MNL and ML 

models, and the rank of the severity levels for the OP model, based on the characteristics 

of underreporting in the data. It will be further stated in the next section about how to set 

the data properly for the three models. 

8.2 Recommendations 

Based on the findings from this research, we have the following recommendations for 

choosing one of the three models in terms of the effects of sample size, model 

misspecification and underreporting in crash data. 

For the sample size, the recommended absolute minimum number of observations for the 

OP, MNL, and ML models is 1,000, 2,000 and 5,000, respectively. Although those values 

are recommended guidelines, larger datasets should be sought, as demonstrated by the 

analysis using the observed crash data (such as when larger variation in the crash data, or 

when more randomness estimated for the ML models). On the other hand, when sample 

size of data is limited, choose simpler models for model estimation since a simpler model 

requires less sample size for a reasonable estimation result. For instance, the OP model is 

relatively simpler than the MNL model in model structure, and the former also has 

relatively less parameters because of its constraint of the same coefficient across all crash 

severity levels for an explanatory variable. Meanwhile, the MNL model is simpler than 

the ML model, with the parameter fixed. In another word, when sample size of a dataset 

is limited, the suggested sequence of model selection among the three crash severity 

models is the OP, MNL and ML.  



127 
 

 

In terms of model misspecification, even though the results are based on a theoretical 

analysis using simulated datasets, some guidelines are still applicable for crash data. 

Under the prerequisite that sample size of the dataset is sufficient, without knowing the 

real model structure of a crash dataset, a suggested sequence of selecting a crash severity 

model among the three models is the ML, MNL and OP. Generally, in order to decrease 

the bias and variability of estimated parameters by model misspecification, choose logit 

model rather than probit model, and select more general and flexible model such as those 

allowing randomness in the parameter, i.e., the ML model. However, it is possible that 

for a crash dataset, the OP model has a better model estimation than the ML model in 

terms of GOF. In that case, it will be a difficult decision to select a model between the 

above two models, which is a trade-off between emphasis more on data and more on the 

model itself (as stated by Lord and Mannering (2010), the fundamental characteristics of 

crash data often result in methodological limitations). The ML model is still 

recommended to be used in such a case even when it has a lower GOF, since it is more 

robust than the OP model and more properly reflect the crash-data generating process. All 

in all, the same recommendation mentioned above are given for the three models despite 

of the GOF.  

For taking account of the underreporting issue of the crash data, it is important to 

formulate the weights of each severity level as the same rank as the true one for the five 

severity levels. In addition, without the full knowledge of the true unreported rates 

(which is most likely the case), one conservative approach is to only include the 

unreported rate of the PDO crash for the weight calculation, assuming a reasonable 

unreported rate based on the previous research studies and the knowledge of the used 

crash data. Furthermore, in order to minimize the bias and reduce the variability of the 

model estimation, fatal crashes should be set as the baseline severity for the MNL and 

ML model, and for the OP model, the rank of crash severities should be set from fatal to 

PDO in a descending order (KABCO). 
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8.3 Future Research Areas 

It is the hope that the information provided in this dissertation will be useful for 

transportation safety analysts who are interested in developing crash severity models for 

crash data, in order to find contributing factors that influence each crash severity level. 

Although the objectives of this research have been achieved, some limitations and 

valuable extensions merit further study in the future. 

 In this dissertation, three commonly used crash severity models were selected for 

analysis. Aside from the three models, more crash severity models should be included 

in the study in order to enlarge the scope of knowledge of crash severity models, 

especially in terms of the effects of sample size, model misspecification and 

underreporting in crash data. 

 Except for the three issues in crash severity models: sample size, model 

misspecification and underreporting in crash data, additional assessments of crash 

data characteristics should be developed, such as the spatial and temporal correlations 

of crash data (Lord and Mannering, 2010; Savolainen et al., 2010). Crashes that occur 

in close proximity in location or time are likely to share the same unobserved effects. 

Without including such correlations in crash data analysis, the results will be 

susceptible to the risk of losing precision and efficiency. In fact, the issue has been 

acknowledged and there have been some research studies on the spatial and temporal 

correlations of the crash count data (Aguero-Valverde and Jovanis, 2008; Flahaut 

et.al, 2003; Guo et.al, 2010; MacNab,2004; Miaou and Song, 2005; Song et.al, 2006; 

Ulfarsson and Shankar, 2003; Quddus, 2008; Wang and Abdel-Aty, 2006). However, 

none of the research analysis has been found addressing the spatial and temporal 

correlations in crash severity models.  

 In terms of the simulated datasets for the three models in this dissertation, an 

assumption was made that the results would not be affected much by different 

designed values of the parameters (i.e., results are independent on the dataset used for 

comparison for each model). With the assumption, it is reasonable to compare the 
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three models based on three specific designed simulated datasets, in terms of the 

effects of sample size, model misspecification and underreported data. However, this 

assumption needs to be further verified. Otherwise, there always exist some doubts 

that the simulated data for the three models are three different datasets modeling 

different things and could not be compared directly. Meanwhile, for a model, the 

results (i.e., bias and variability of parameters or probabilities due to the insufficient 

sample size, model misspecification and underreporting in data) would be suspected 

to only represent a specific simulated dataset, and could not be generalized to other 

datasets for a model. In addition, this assumption should also be verified for observed 

crash data. In the research, only one set of crash data was used for analysis. In the 

future, the results attained from this research should be examined for different crash 

datasets in the sake of generalization. 

 In this research, bias and variability of parameters or probabilities of each crash 

severity level were used to quantify the effects of sample size, model misspecification 

and underreporting in data on the three models. However, the effects on model GOF 

were not discussed here. Likelihood ratio index, as the most commonly used GOF 

statistic for crash severity models, was found to depend on the sampled proportions of 

each level for logit and probit models (Tardiff, 1976). Tardiff (1976) stated that the 

minimum value of the likelihood ratio index was not zero as expected, and instead, its 

value was dependent on the relative proportions of sampled individual selecting the 

various levels. In our simulated datasets for each of the three models, different 

designed parameter values might lead to different relative proportions of sampled 

crash severity levels, and accordingly resulted in the change of the minimum 

likelihood ratio index. Therefore, there is also a need to verify whether GOF statistics 

of crash severity model (such as likelihood ratio index) would be affected by different 

designed values of the parameters, before analyzing the effects of sample size, model 

misspecification and underreporting in data on model GOF. 
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 This research is just the first step of model comparison for the effects of sample size, 

model misspecification and underreporting in data for crash severity models. There 

are some limitations in the research. For instance, in order to attain the bias and 

variability of parameters or probabilities based on the three effects, the true values of 

parameters or probabilities were compared to those estimated values with one of the 

effects. For comparison purposes, the same set of variables was included in a model, 

with and without the function of those effects on a model, rather than only those 

significant ones. In future research, the analysis could be extended to the change of 

significant variables included in a model with those effects.  

 Another point to consider with regard to future work is that for sample size, the 

recommended absolute minimum numbers of observations for the OP, MNL, and ML 

models given in the study need to be generalized. Furthermore, since small sample 

size is always a big concern in safety analysis, especially when a specific crash 

dataset needs to be worked on, more discussions should be made when sample size is 

less than the recommended number for a model. Further research is needed to 

generalize the sample size requirements for developing the three models, which may 

be dependent upon the characteristics of the data, as discussed by Savolainen et al. 

(2010).  

 Last but not the least, the hardest part of this research was to examine the effects of 

underreporting in data for the three models. Without knowing the real unreported 

rates of each severity level for crash data (i.e. the ―truth‖), the analysis is not 

definitive and there is a bias using the WESMLE method to take account of the 

underreporting issue for a crash severity model. If the truth could be determined in 

the future (for instance, new types of crash injury-severity data might become widely 

available in the future, such as some administrative records), a definitive analysis 

could be performed. In addition, except for the WESMLE method, some other 

outcome-based methods described in Section 2.3.2 could be evaluated to account for 

the underreporting effects on crash data. For instance, if Cosslett’s method (full 

information maximum likelihood estimator), which was applied by Yomamoto (2008), 
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is verified to be reliable for the underreported crash data, then the unreported rates of 

each crash severity level would be estimated by this method.  

  



132 
 

 

REFERENCES 
 
 
 
 
Abdel-Aty, M., 2003. Analysis of driver injury severity levels at multiple locations using 

ordered probit models. Journal of Safety Research 34, 597-603. 
 
Abdel-Aty, M., Keller, J., 2005. Exploring the overall and specific crash severity levels at 

signalized intersections. Accident Analysis & Prevention 37(3), 417-425. 
 
Aguero-Valverde, J., Jovanis, P.P., 2008. Analysis of road crash frequency with spatial 

models. Transportation Research Record 2061, 55-63. 
 
Amemiya, T.,1985. Advanced Econometrics. Harvard University Press, Cambridge, MA. 
 
Amemiya, T., Vuong, Q.H., 1987. A comparison of two consistent estimators in the 

choice-based sampling qualitative response model. Econometrica, 55(3), 699-702. 
 
American National Standard, 2007. ANSI D16.1-2007: Manual on classification of motor 

vehicle traffic accidents. 
(http://downloads.nsc.org/pdf/D16.1_Classification_Manual.pdf, accessed May 
2010) 

 
Amoros, E., Martin, J., Laumon, B., 2006. Under-reporting of road crash casualties in 

France. Accident Analysis & Prevention 38, 627-635. 
 
Al-Ghamdi, A.S., 2002. Using logistic regression to estimate the influence of accident 

factors on accident severity. Accident Analysis & Prevention 34(6), 729-741. 
 
Alsop, J., Langley, J., 2001. Under-reporting of motor-vehicle traffic crash victims in 

New-Zealand. Accident Analysis & Prevention 33(3), 353-359. 
 
Aptel, I., Salmi, L.R., Masson, F., Bourd´e, A., Henrion, G., Erny, P., 1999. Road 

accident statistics: discrepancies between police and hospital data in a French island. 
Accident Analysis & Prevention 31(1), 101-108. 

 
Augenstein, J.S., Digges, K.H., Lombardo, L.V., Perdeck, E.B., Stratton, J.E., Malliaris, 

A.C., Quigley, C.V., Craythorne, A.K., Young, P.E., 1995. Occult abdominal injuries 
to airbag-protected crash victims: a challenge to trauma systems. The Journal of 
Trauma: Injury, Infection, and Critical Care 38, 502-508.  

 
Bedard, M., Guyatt, G.H., Stones, M.J., Hirdes, J.P., 2002. The independent contribution 

of driver, crash, and vehicle characteristics to driver fatalities. Accident Analysis & 
Prevention 34(6), 717-727. 

 

http://downloads.nsc.org/pdf/D16.1_Classification_Manual.pdf


133 
 

 

Bierlaire, M., Bolduc, D., McFadden, D., 2008. The estimation of generalized extreme 
value models from choice-based samples. Transportation Research, Part B 42, 381-
394. 

 
Blincoe, L., Seay, A., Zaloshnja, E., Miller, T., Romano, E., Luchter, S., Spicer, R., 2002. 

The Economic Impact of Motor Vehicle Crashes, 2000. Report No. DOT HS 809 
446. 

 
Butler, J.S., 2000. Efficiency results of MLE and GMM estimation with sampling 

weights. Journal of Econometrics 96, 25-37. 
 
Chang, L., Mannering, F., 1999. Analysis of injury severity and vehicle occupancy in 

truck- and non-truck-involved accidents. Accident Analysis & Prevention 31, 579-
592. 

 
Cosslett, S.R., 1981a. Efficient estimation of discrete-choice methods. In: Manski, C., 

McFadden, D. (Eds.), Structural Analysis of Discrete Choice Data Using 
Econometric Applications. MIT Press, Cambridge, MA. 

 
Cosslett, S.R., 1981b. MLE for choice-based samples. Econometrica 49, 1289-1316. 
 
Cosslett, S.R., 2007. Efficient estimation of semiparametric models by smoothed 

maximum likelihood. International Economic Review 48(4), 1245-1272.  
 
Conroy, C., Hoyt, D.B., Eastman, A.B., Erwin, S., Pacyna, S., Holbrook, T.L., T., 

Vaughan, Sise, M., Kennedy, F., Velky, T., 2006. Rollover crashes: predicting 
serious injury based on occupant, vehicle, and crash characteristics. Accident 
Analysis & Prevention 38(5), 835-842. 

 
Cryer, P.C., Westrup, S., Cook, A.C., Ashwell, V., Bridger, P., Clarke, C., 2001. 

Investigation of bias after data linkage of hospital admission data to police road 
traffic crash reports. Injury Prevention 7(3), 234-241. 

 
Dhillon, P.K., Lightstone, A.S., Peek-Asa, C., Kraus, J.F., 2001. Assessment of hospital 

and police ascertainment of automobile versus childhood pedestrian and bicyclist 
collisions. Accident Analysis & Prevention 33 (4), 529-537. 

 
Dissanayake, S., Lu, J.J., 2002. Factors influential in making an injury severity difference 

to older drivers involved in fixed object-passenger car crashes. Accident Analysis & 
Prevention 34(5), 609-618. 

 
Duncan, C., Khattak, A., Council, F., 1999. Applying the ordered probit model to injury 

severity in truck-passenger car rear-end collisions. Transportation Research Record, 
1635, 63-71. 

 



134 
 

 

Eluru, N., Bhat, C.R., Hensher, D.A., 2008. A mixed generalized ordered response model 
for examining pedestrian and bicyclist injury severity level in traffic crashes. 
Accident Analysis & Prevention 40, 1033-1054. 

 
Elvik, R., Mysen, A.B., 1999. Incomplete accident reporting—meta-analysis of studies 

made in 13 countries. Transportation Research Record 1665, 133-140. 
 
Eisenberg, D., Warner, K., 2005. Effects of snowfalls on motor vehicle collisions, 

injuries, and fatalities. American Journal of Public Health 95(1), 120-124. 
 
Farmer, C.M., Braver, E.R., Mitter, E.R., 1996. Two-vehicle side impact crashes: the 

relationship of vehicle and crash characteristics to injury severity. Accident Analysis 
& Prevention 29(3), 399-406. 

 
Flahaut, B., Mouchart, M., San Martin, E., Thomas, I., 2003. The local spatial 

autocorrelation and the kernel method for identifying black zones: a comparative 
approach. Accident Analysis & Prevention 35(6), 991-1004. 

 
Garder, P., 2006. Segment characteristics and severity of head-on crashes on two-lane   

rural highways in Maine. Accident Analysis & Prevention 38(4), 652-661. 
 
Gkritza, K., Mannering, F.L., 2008. Mixed logit analysis of safety-belt use in single- and 

multi-occupant vehicles. Accident Analysis & Prevention 40, 443-451. 
 
Guo, F., Wang, X., Abdel-Aty, M., 2010. Modeling signalized intersection safety with 

corridor spatial correlations. Accident Analysis & Prevention 42(1), 84-92. 
 
Haleem, K., Abdel-Aty, M., 2010. Examining traffic crash injury severity at unsignalized 

intersections. Journal of Safety Research 41(4), 347-357. 
 
Hauer, E., Hakkert, A.S., 1989. Extent and some implications of incomplete accident 

reporting. Transportation Research Record 1185, 1-10. 
 
Hauer, E., 2006. The frequency-severity indeterminacy. Accident Analysis & Prevention 

38, 78-83. 
 
Hilakivi, I., Veilahti, J., Asplund, P., Sinivuo, J., Laitinen, L., Koskenvuo, K., 1989. A 

sixteen-factor personality test for predicting automobile driving accidents of young 
drivers. Accident Analysis & Prevention 21(5), 413-418. 

 
Hsieh, D.A., Manski, C.F., McFadden, D., 1985. Estimation of response probabilities 

from augmented retrospective observations. Journal of the American Statistical 
Association 80(391), 651-662. 

 



135 
 

 

Hutchinson, T., 1986. Statistical modeling of injury severity, with special reference to 
driver and front seat passenger in single-vehicle crashes. Accident Analysis & 
Prevention 18, 157-167. 

 
Hvoslef, H., 1994. Under-reporting of road traffic accidents recorded by the police at the 

international level. Public Roads Administration, Norway, 126. 
 
Imbens, G.W., 1992. An efficient method of moments estimator for discrete choice 

models with choice-based sampling. Econometrica 60(5), 1187-1214. 
 
James, H.F., 1991. Under-reporting of road traffic accidents. Traffic Engineering Control 

32, 573-583. 
 
James, J.L., Kim, K.E., 1996. Restraint use by children involved in crashes in Hawaii, 

1986-1991. Transportation Research Record 1560, 8-11. 
 
Kent, R.W., 2003. Air Bag Development and Performance: New Perspectives from 

Industry, Government and Academia. Pressed by SAE International. 
 
Khattak, A., 1999. Effect of information and other factors on multi-vehicle rear-end 

crashes: crash propagation and injury severity. Presented at the 78th Annual Meeting 
of the Transportation Research Board, Washington, D.C. 

 
Khorashadi, A., Niemeier, D., Shankar, V., Mannering, F., 2005. Differences in rural and 

urban driver-injury severities in accidents involving large-trucks: an exploratory 
analysis. Accident Analysis & Prevention 37(5), 910-921. 

 
Kim, J.K., Ulfarsson, G.F., Shankar, V.N., Kim, S., 2008. Age and pedestrian injury 

severity in motor-vehicle crashes: a heteroskedastic logit analysis. Accident Analysis 
& Prevention 40(5), 1695-1702. 

 
Kim, J-K, Ulfarsson, G.F., Shankar, V.N., Mannering, F.L., 2010. A note on modeling   

pedestrian-injury severity in motor-vehicle crashes with the mixed logit model. 
Accident Analysis & Prevention 42(6), 1751-1758. 

 
Klop, J., 1998. Factors influencing bicycle crash severity on two-lane undivided 

roadways in North Carolina. Presented at the 78th Annual Meeting of the 
Transportation Research Board, Washington, D.C. 

 
Kockelman, K.M., Kweon, Y.J., 2002. Driver injury severity: an application of ordered 

probit models. Accident Analysis & Prevention 34(3), 313-321. 
 
Koppelman, F.S., Bhat, C., 2006. A self instructing course in mode choice modeling: 

multinomial and nested logit models. Course Manual. 
(http://www.scribd.com/doc/24988004/A-Self-Instructing-Course-in-Mode-Choice-
Modeling-Multinomial-and-Nested-Logit-Models, accessed May 2009) 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Ulfarsson%20GF%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Shankar%20VN%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kim%20S%22%5BAuthor%5D


136 
 

 

Kumara, S. P., Chin, H. C., 2005. Application of Poisson underreporting model to 
examine crash frequencies at signalized three-legged intersections. Transportation 
Research Record 1908, 46-50. 

 
Krull, K., Khattak, A., Council, F., 2000. Injury effects of rollovers and events sequence 

in single-vehicle crashes. Presented at the 80th Annual Meeting of the Transportation 
Research Board, Washington, D.C. 

 
Lancaster, T., 1997. Bayes WESML posterior inference from choice-based samples. 

Journal of Econometrics 79, 291-303. 
 
LIMDEP 9.0, Econometric Modeling Guide, 2007. Pressed by Econometric Software, 

Inc., Plainview, NY, USA. 
 
Lui, K.J., McGee, D., Rhodes, P., Pollock, D., 1988. An application of a conditional 

logistic safety belts, principal impact points, and car weights on driver’s fatalities. 
Journal of Safety Research 19(4), 197-203. 

 
Lord, D., 2006. Modeling motor vehicle crashes using Poisson-gamma models: 

examining the effects of low sample mean values and small sample size on the 
estimation of the fixed dispersion parameter. Accident Analysis & Prevention 38(4), 
751-766. 

 
Lord, D., Miranda-Moreno, L.F., 2008. Effects of low sample mean values and small 

sample size on the estimation of the fixed dispersion parameter of Poisson-gamma 
models for modeling motor vehicle crashes: A Bayesian Perspective. Safety Science 
46(5), 751-770. 

 
Lord, D., Mannering, F., 2010. The statistical analysis of crash-frequency data: a review 

and assessment of methodological alternatives. Transportation Research, Part A 
44(5), 291-305. 

 
Ma, J., Kockelman, K.M., 2006. Crash frequency and severity modeling using clustered 

data from Washington state. Presented at the IEEE Intelligent Transportation 
Systems Conference 2006, Toronto, Canada. 

 
Ma, J., 2009. Bayesian analysis of underreporting Poisson regression model with an 

application to traffic crashes on two-lane highways. Presented at the 88th Annual 
Meeting of the Transportation Research Board, Washington, D.C.. 

 
MacNab, Y.C., 2004. Bayesian spatial and ecological models for small-area crash and 

injury analysis. Accident Analysis & Prevention 36(6), 1019-1028. 
 
Manski, C.F., Lerman, S.R., 1977. The estimation of choice probabilities from choice 

based samples. Econometrica 45(8), 1977-1988. 
 



137 
 

 

Manski, C.F., McFadden, D., 1981. Alternative estimators and sample designs for 
discrete choice analysis. In: Manski, C. and McFadden, D. (Eds.), Structural Analysis 
of Discrete Choice Data with Econometric Applications. MIT Press, Cambridge, 
MA. 

 
Mannering, F.L., Grodsky, L.L., 1995. Statistical analysis of motorcyclists’ perceived 

accident risk. Accident Analysis & Prevention 27 (1), 21-31. 
 
McGinnis, R., Wissinger, L., Kelly, R., Acuna, C., 1999. Estimating the influences of 

driver, highway, and environmental factors on run-off road crashes using logistic 
regression. Presented at the 78th Annual Meeting of the Transportation Research 
Board, Washington, D.C. 

 
Mercier, C.R., Shelley, M.C., Rimkus, J., Mercier, J.M., 1997. Age and gender as 

predictors of injury severity in head-on highway vehicular collisions. Transportation 
Research Record 1581, 37-46. 

 
Miaou, S.-P., Song, J.J., 2005. Bayesian ranking of sites for engineering safety 

improvements: decision parameter, treatability concept, statistical criterion and 
spatial dependence. Accident Analysis & Prevention 37(4), 699-720. 

 
Milton, J.C., Shankar, V.N., Mannering, F.L., 2008. Highway accident severities and the 

mixed logit Model: an exploratory empirical analysis. Accident Analysis & 
Prevention 40(1), 260-266. 

 
Nassar, S., Saccomanno, F., Shortreed, J., 1994. Road accident severity analysis: a micro 

level approach. Canadian Journal of Civil Engineering 21, 847-855. 
 
National Highway Traffic Safety Administration (NHTSA), 2010. General estimates 

system coding and editing manual 2009.  
(http://www-nrd.nhtsa.dot.gov/Pubs/811354.pdf, accessed May 2010) 

 
National Highway Traffic Safety Administration (NHTSA), 2005. Traffic safety facts, 

2004 data. (http://www-nrd.nhtsa.dot.gov/Pubs/809911.PDF, accessed May 2010) 
 
National Highway Traffic Safety Administration (NHTSA), 2009. Traffic safety facts 

2008: a compilation of motor vehicle crash data from the fatality analysis reporting 
system and the general estimates system.  
(http://www-nrd.nhtsa.dot.gov/Pubs/811170.pdf, accessed May 2010) 

 
NLOGIT 4.0, Reference Guide, 2007. Pressed by Econometric Software, Inc., 2007, 

Plainview, NY, USA. 
 
O’Donnell, C., Connor, D., 1996. Predicting the severity of motor vehicle accident 

injuries using models of ordered multiple choices. Accident Analysis & Prevention 
28, 739-753. 

http://www-nrd.nhtsa.dot.gov/Pubs/809911.PDF
http://www-nrd.nhtsa.dot.gov/Pubs/811170.pdf


138 
 

 

Ossenbruggen, P.J., Pendharkar, J., Ivan, J.N., 2001. Roadway safety in rural and small 
urbanized areas. Accident Analysis & Prevention 33(4), 485-498. 

 
Pai, C.W., Hwang K.P., Saleh W., 2009. A mixed logit analysis of motorists’ right-of-

way violation in motorcycle accidents at priority T-junctions. Accident Analysis & 
Prevention 41(3), 565-573. 

 
Park, B.-J., Lord, D., Hart, J., 2010. Bias properties of Bayesian statistics in finite 

mixture of negative regression models for crash data analysis. Accident Analysis & 
Prevention 42(2), 741-749. 

 
Pendyala, R.M, Goulias, K.G., Kitamura, R., Murakami, E., 1993. Development of 

weights for a choice-based panel survey sample with attrition. Transportation 
Research, part A 27(6), 477-492. 

 
Quddus, M. A., Noland, R. B., Chin, H. C., 2002. An analysis of motorcycle injury and 

vehicle damage severity using ordered probit models. Accident Analysis & 
Prevention 33, 445-462. 

 
Quddus, M.A., 2008. Time series count data models: an empirical application to traffic 

accidents. Accident Analysis & Prevention, 40(5), 1732-1741. 
 
Renski, H., Kattak, A.J., Council, F.M., 1999. Effect of speed limit increases on crash 

injury severity: analysis of single-vehicle crashes on North Carolina interstate 
highways. Transportation Research Record 1665, 100-108. 

 
Rosman, D.L., 2001. The western Australian road injury database (1987-1996): ten years 

of linked police, hospital and death records of road crashes and injuries. Accident 
Analysis & Prevention 33(1), 81-88. 

 
Savolainen, P.T., Mannering, F., 2007. Probabilistic models of motorcyclists’ injury 

severities in single- and multi-vehicle crashes. Accident Analysis & Prevention 
39(5), 955-963. 

 
Savolainen, P. T., F. L., D. Lord, M. A. Quddus, 2011. The statistical analysis of highway 

crash-injury severities: a review and assessment of methodological alternatives. 
Accident Analysis & Prevention (in press).  

 
Shankar, V., Mannering, F., Barfield, W., 1996. Statistical analysis of accident severity 

on rural freeways. Accident Analysis & Prevention 28, 391-401. 
 
Shibata, A., Fukuda, K., 1993. Risk factors of fatality in motor vehicle traffic accidents. 

Accident Analysis & Prevention 26(3), 391-397. 
 
Song, J.J., Ghosh, M., Miaou, S., Mallick, B., 2006. Bayesian multivariate spatial models 

for roadway traffic crash mapping. Journal of Multivariate Analysis 97(1), 246-273. 



139 
 

 

Srinivasan, K.K., 2002. Injury severity analysis with variable and correlated thresholds: 
ordered mixed logit formulation. Transportation Research Record 1784, 132-142. 

 
Stutts, J., Hunter, W., 1998. Police reporting of pedestrians and bicyclists treated in 

hospital emergency rooms. Transportation Research Record 1635, 88-92. 
 
Tardiff, T.J., 1976. A note on goodness-of-fit statistics for Probit and Logit models. 

Transportation 5(4), 377-388. 
 
Thor, C.P., Gabler, H.C., 2007. Abdominal injury with airbag deployment for belted 

drivers in frontal crashes. Biomedical Sciences Instrumentation 45, 262-267. 
 
Toy, E.L., Hammitt, J.K., 2003. Safety impacts of SUVs, vans, and pickup trucks in two 

vehicle crashes. Risk Analysis 23(4), 641-650. 
 
Train, K.E., 2003. Discrete Choice Methods with Simulation. Cambridge University 

Press. 
 
Tsui, K.L., So, F.L., Sze, N.N., Wong, S.C., Leung, T.F., 2009. Misclassification of 

injury severity among road casualties in police reports. Accident Analysis & 
Prevention 41, 84-89. 

 
Ulfarsson, G.F., Shankar, V.N., 2003. An accident count model based on multi-year 

cross-sectional roadway data with serial correlation. Transportation Research Record 
1840, 193-197. 

 
Ulfarsson, G.F., Mannering, F.L., 2004. Differences in male and female injury severities 

in sport-utility vehicle, minivan, pickup and passenger car accidents. Accident 
Analysis & Prevention 36(2), 135-147. 

 
Wang, X., Abdel-Aty, M., 2006. Temporal and spatial analyses of rear-end crashes at 

signalized intersections. Accident Analysis & Prevention 38(6), 1137-1150. 
 
Wang, X., Abdel-Aty, M., 2008. Analysis of left-turn crash injury severity by conflicting 

pattern using partial proportional odds models. Accident Analysis & Prevention 
40(5), 1674-1682. 

 
Wang, X.K., Kockelman, K.M., 2005. Occupant injury severity using a heteroscedastic 

ordered logit model: distinguishing the effects of vehicle weight and type. Presented 
at the 84th Annual Meeting of the Transportation Research Board, Transportation 
Research Board, Washington, D.C. 

 
Washington, S.P., Karlaftis, M.G., Mannering, F.L., 2010. Statistical and Econometric 

Methods for Transportation Data Analysis, Second Edition. Chapman and Hall/CRC, 
Boca Raton, FL. 

 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Thor%20CP%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Gabler%20HC%22%5BAuthor%5D


140 
 

 

Xie Y., Manski, C. F., 1989. The logit model and response-based samples. Sociological 
Methods & Research 17(3), 283-302. 

 
Xie, Y., Zhang Y., Liang F., 2009. Crash injury severity analysis using Bayesian ordered 

probit models. Journal of Transportation Engineering 135(1), 18-25. 
 
Yamamoto, T., Shankar, V., 2000. Bivariate ordered-response probit model of driver’s 

and passenger’s injury severities in collision with fixed objects. Presented at the 81th 
Annual Meeting of the Transportation Research Board, Washington, D.C. 

 
Yamamoto, T., Hashijib, J., Shankar, V.N., 2008. Underreporting in traffic accident data, 

bias in parameters and the structure of injury severity models. Accident Analysis & 
Prevention 40(4), 1320-1329. 

 
Zajac, S. S., Ivan, J. N., 2003. Factors influencing injury severity of motor vehicle 

crossing pedestrian crashes in rural Connecticut. Accident Analysis & Prevention 35, 
369-379. 

  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V5S-4S08X71-1&_user=952835&_coverDate=07%2F31%2F2008&_rdoc=1&_fmt=high&_orig=search&_sort=d&_docanchor=&view=c&_searchStrId=1402776578&_rerunOrigin=google&_acct=C000049198&_version=1&_urlVersion=0&_userid=952835&md5=c03fbdcd68ebac504d6c478a6ac4a9e6#aff2


141 
 

 

APPENDIX A 

EXAMPLES OF NLOGIT CODE FOR  

MONTE-CARLO SIMULATION ON SAMPLE SIZE 

 
 
 
 
This appendix provides example code for Monte-Carlo simulation on sample size for the 

three models. The code for the MNL, OP and ML models is listed as Example 1, 2 and 3, 

respectively. Steps of the code are listed as follows. Firstly, for each model, a dataset is 

generated with sample size equal to 10,000, based on the designated values of parameters 

and designed distribution of independent variables as shown in Table 5.1. Secondly, the 

model is used to estimate the dataset generated above and the estimated parameters are 

recorded. Thirdly, repeat the first and second steps for 100 times and record the results. 

Lastly, the basic statistics of the estimated parameters from the 100 simulations are 

calculated. What needs to mention is that the comparisons between the estimated 

parameters to the true ones are not coded in NLOGIT, which are achieved by a Macro in 

Excel. 

Example 1: Code for the MNL Model 

/* Monte Carlo Simulation: the MNL data, Sample Size = 10,000*/ 
reset 
calc; ran(57139) $ 
 
proc=mcset $ 
calc; ni=100; i=0 $ 
sample; 1-10000 $ 
matrix; fit=init(ni,1,0) $ 
matrix; estb=init(ni,8,0) $ 
endproc 
 
proc=mcrun $ 
calc; i=0 $ 
label; 9999 $ 
sample; 1-10000 $ 
 



142 
 

 

create; Ta1=0;Ta2=0.5;Ta3=1;Ta4=1.5;Tb=1 $ 
create;x=-2+rnn(0,1) $ 
create;h1=rnu(0,1);h2=rnu(0,1);h3=rnu(0,1);h4=rnu(0,1);h5=rnu(0,1) $ 
create;e1=-log(log(1/h1));e2=-log(log(1/h2));e3=-log(log(1/h3));e4=-log(log(1/h4));e5=-
log(log(1/h5)) $ 
create;u1=Ta1+Tb*x+e1; 
  u2=Ta2+Tb*x+e2; 
  u3=Ta3+Tb*x+e3; 
  u4=Ta4+Tb*x+e4; 
  u5=e5 $ 
create; if (u1>u2 & u1>u3 & u1>u4 & u1>u5) c1=1;(else) c1=0; 
   if (u2>u1 & u2>u3 & u2>u4 & u2>u5) c2=1;(else) c2=0; 
   if (u3>u1 & u3>u2 & u3>u4 & u3>u5) c3=1;(else) c3=0; 
   if (u4>u1 & u4>u2 & u4>u3 & u4>u5) c4=1;(else) c4=0; 
   if (u5>u1 & u5>u2 & u5>u3 & u5>u4) c5=1;(else) c5=0 $ 
create; if (c1=1) choice=1; if (c2=1) choice=2; if (c3=1) choice=3; if (c4=1) choice=4; if 
(c5=1) choice=5 $ 
nlogit; lhs=choice 
; choices=c1, c2, c3, c4, c5 [1] 
; rh2=one,x   $ 
matrix;fit(i,*)=LOGL $ 
matrix; estb(i,*)=b $ 
calc; list; i=i+1 $ 
go to; 9999; i<=100 $ 
endproc 
 
exec; proc=mcset $ 
exec; proc=mcrun $ 
 
sample; 1-100 $ 
matrix;LL=part(fit,1,100,1,1) $ 
matrix; totest=estb $ 
matrix; c1E=part(totest,1,100,1,1); b1E=part(totest,1,100,2,2); 
 c2E=part(totest,1,100,3,3); b2E=part(totest,1,100,4,4); 
 c3E=part(totest,1,100,5,5); b3E=part(totest,1,100,6,6); 
 c4E=part(totest,1,100,7,7); b4E=part(totest,1,100,8,8) $ 
create;mcLL=LL $ 
create; mcc1E=c1E $ 
create; mcc2E=c2E $ 
create; mcc3E=c3E $ 
create; mcc4E=c4E $ 
create; mcb1E=b1E $ 
create; mcb2E=b2E $ 
create; mcb3E=b3E $ 
create; mcb4E=b4E $ 
dstat; rhs=mcLL,mcc1E, mcc2E, mcc3E, mcc4E,mcb1E, mcb2E, mcb3E, mcb4E $ 
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stop $ 

Example 2: Code for the OP model 

/* Monte Carlo Simulation: the OP data, Sample Size = 10,000*/ 
reset 
calc; ran(57139) $ 
 
proc=mcset $ 
calc; ni=100; i=0 $ 
sample; 1-10000 $ 
matrix; fit=init(ni,1,0) $ 
matrix; estmu=init(ni,3,0) $ 
matrix; estb=init(ni,2,0) $ 
endproc 
 
proc=mcrun $ 
calc; i=0 $ 
label; 9999 $ 
sample; 1-10000 $ 
 
create; Ta1=0;Ta2=0.8;Ta3=1.5;Ta4=2.4;Tb=1 $ 
create;x=2.2+rnn(0,1) $ 
create;e=rnn(0,1) $ 
create;Z=Tb*x+e $ 
create; if (z<=0) choice=0; 
   if (z>0 & z<=0.8) choice=1; 
   if (z>0.8 & z<=1.5) choice=2; 
   if (z>1.5 & z<=2.4) choice=3; 
   if (z>2.4) choice=4 $ 
ordered; lhs=choice;rhs=one,x   $ 
matrix;fit(i,*)=LOGL $ 
matrix; estb(i,*)=b $ 
matrix;estmu(i,*)=mu $ 
calc; list; i=i+1 $ 
go to; 9999; i<=100 $ 
endproc 
 
exec; proc=mcset $ 
exec; proc=mcrun $ 
 
sample; 1-100 $ 
matrix;LL=part(fit,1,100,1,1) $ 
matrix; c1E=part(estb,1,100,1,1);  
 c2E=part(estmu,1,100,1,1);  
 c3E=part(estmu,1,100,2,2); 
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 c4E=part(estmu,1,100,3,3);  
 bE=part(estb,1,100,2,2) $ 
create;mcLL=LL $ 
create; mcc1E=c1E $ 
create; mcc2E=c2E $ 
create; mcc3E=c3E $ 
create; mcc4E=c4E $ 
create; mcbE=bE $ 
dstat; rhs=mcLL,mcc1E, mcc2E, mcc3E, mcc4E,mcbE $ 
stop $ 

Example 3: Code for the ML Model 

/* Monte Carlo Simulation: the ML data, Sample Size = 10,000*/ 
reset 
calc; ran(57139) $ 
 
proc=mcset $ 
calc; ni=100; i=0 $ 
sample; 1-10000 $ 
matrix; fit=init(ni,1,0) $ 
matrix; estb=init(ni,9,0) $ 
endproc 
 
proc=mcrun $ 
calc; i=0 $ 
label; 9999 $ 
sample; 1-10000 $ 
  
create; Ta1=0;Ta2=0.5;Ta3=1;Ta4=1.5;Tb1=1+rnn(0,1)  $ 
create;x=-2+rnn(0,1) $ 
create;h1=rnu(0,1);h2=rnu(0,1);h3=rnu(0,1);h4=rnu(0,1);h5=rnu(0,1) $ 
create;e1=-log(log(1/h1));e2=-log(log(1/h2));e3=-log(log(1/h3));e4=-log(log(1/h4));e5=-
log(log(1/h5)) $ 
create;u1=Ta1+Tb1*x+e1; 
       u2=Ta2+1*x+e2; 
       u3=Ta3+1*x+e3; 
       u4=Ta4+1*x+e4; 
       u5=e5 $ 
create; if (u1>u2 & u1>u3 & u1>u4 & u1>u5) c1=1;(else) c1=0; 
        if (u2>u1 & u2>u3 & u2>u4 & u2>u5) c2=1;(else) c2=0; 
        if (u3>u1 & u3>u2 & u3>u4 & u3>u5) c3=1;(else) c3=0; 
        if (u4>u1 & u4>u2 & u4>u3 & u4>u5) c4=1;(else) c4=0; 
        if (u5>u1 & u5>u2 & u5>u3 & u5>u4) c5=1;(else) c5=0 $ 
create; if (c1=1) choice=1; if (c2=1) choice=2; if (c3=1) choice=3; if (c4=1) choice=4; if 
(c5=1) choice=5 $ 
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rplogit; lhs=choice 
;choices=c1, c2, c3, c4, c5[1] 
;rh2=one,x;fcn=c1_x1(n);halton;pts=200 $ 
matrix;fit(i,*)=LOGL $ 
matrix; estb(i,*)=b $ 
calc; list; i=i+1 $ 
go to; 9999; i<=100 $ 
endproc 
 
exec; proc=mcset $ 
exec; proc=mcrun $ 
  
sample; 1-100$ 
matrix;LL=part(fit,1,100,1,1) $ 
matrix; totest=estb $ 
matrix; b1E=part(totest,1,100,1,1); c1E=part(totest,1,100,2,2); 
      c2E=part(totest,1,100,3,3); b2E=part(totest,1,100,4,4); 
      c3E=part(totest,1,100,5,5); b3E=part(totest,1,100,6,6); 
      c4E=part(totest,1,100,7,7); b4E=part(totest,1,100,8,8); 
      s1E=part(totest,1,100,9,9)  $ 
create;mcLL=LL $ 
create; mcc1E=c1E $ 
create; mcc2E=c2E $ 
create; mcc3E=c3E $ 
create; mcc4E=c4E $ 
create; mcb1E=b1E $ 
create; mcb2E=b2E $ 
create; mcb3E=b3E $ 
create; mcb4E=b4E $ 
create; mcs1E=s1E $ 
dstat; rhs=mcLL,mcc1E, mcc2E, mcc3E, mcc4E,mcb1E, mcb2E, mcb3E, mcb4E,mcs1E 
$ 
stop $ 
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APPENDIX B 

EXAMPLES OF NLOGIT CODE FOR  

MONTE-CARLO SIMULATION ON MODEL MISSPECIFICATION 

 
 
 
 
This appendix provides example code for Monte-Carlo simulation on model 

misspecification for the MNL data. The code for the estimation by the OP and ML 

models is listed as Example 1 and 2, respectively. Since the code for the model 

misspecification of the OP and ML data is similar to the one for the MNL data, it is not 

provided here. Steps of the code are listed as follows. Firstly, a MNL dataset is generated 

with sample size equal to 10,000, based on the designated values of parameters and 

designed distribution of independent variables as shown in Table 5.1. Secondly, other 

two models (the OP and MNL models here) are applied to estimate the dataset generated 

above and the estimated parameters are recorded. Thirdly, repeat the first and second 

steps for 100 times and record the results. Fourthly, the basic statistics of the estimated 

parameters from the 100 simulations are calculated. Lastly, the probabilities of each 

outcomes (five levels in our study) are calculated based on: the mean values of the 

estimated parameters from the fourth step, and the specified values of independent 

variables as well. What needs to mention is the comparisons between the estimated 

probabilities of each level to the true ones are not coded in NLOGIT. 

Example 1: Code for the MNL Data Estimated by the OP Model 

/* Monte Carlo Simulation: the MNL data, Sample Size = 10,000*/ 
reset 
calc; ran(57139) $ 
 
proc=mcset $ 
calc; ni=100; i=0 $ 
sample; 1-10000 $ 
matrix; fit=init(ni,1,0) $ 
matrix; estmu=init(ni,3,0) $ 
matrix; estb=init(ni,2,0) $ 
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endproc 
 
 
proc=mcrun $ 
calc; i=0 $ 
label; 9999 $ 
sample; 1-10000 $ 
 
create; Ta1=0;Ta2=0.5;Ta3=1;Ta4=1.5;Tb=1 $ 
create;x=-2+rnn(0,1) $ 
create;h1=rnu(0,1);h2=rnu(0,1);h3=rnu(0,1);h4=rnu(0,1);h5=rnu(0,1) $ 
create;e1=-log(log(1/h1));e2=-log(log(1/h2));e3=-log(log(1/h3));e4=-log(log(1/h4));e5=-
log(log(1/h5)) $ 
create;u1=Ta1+Tb*x+e1; 
  u2=Ta2+Tb*x+e2; 
  u3=Ta3+Tb*x+e3; 
  u4=Ta4+Tb*x+e4; 
  u5=e5 $ 
create; if (u1>u2 & u1>u3 & u1>u4 & u1>u5) c1=1;(else) c1=0; 
   if (u2>u1 & u2>u3 & u2>u4 & u2>u5) c2=1;(else) c2=0; 
   if (u3>u1 & u3>u2 & u3>u4 & u3>u5) c3=1;(else) c3=0; 
   if (u4>u1 & u4>u2 & u4>u3 & u4>u5) c4=1;(else) c4=0; 
   if (u5>u1 & u5>u2 & u5>u3 & u5>u4) c5=1;(else) c5=0 $ 
create; if (c1=1) choice=0; if (c2=1) choice=1; if (c3=1) choice=2; if (c4=1) choice=3; if 
(c5=1) choice=4 $ 
ordered; lhs=choice;rhs=one,x   $ 
matrix;fit(i,*)=LOGL $ 
matrix; estb(i,*)=b $ 
matrix;estmu(i,*)=mu $ 
calc; list; i=i+1 $ 
go to; 9999; i<=100 $ 
endproc 
 
exec; proc=mcset $ 
exec; proc=mcrun $ 
 
sample; 1-100 $ 
matrix;LL=part(fit,1,100,1,1) $ 
matrix; cE=part(estb,1,100,1,1);  
 mu1E=part(estmu,1,100,1,1);  
 mu2E=part(estmu,1,100,2,2); 
 mu3E=part(estmu,1,100,3,3);  
 bE=part(estb,1,100,2,2) $ 
matrix;z1E=-cE+2*bE $   /* specify x=-2 for the probability calculation */ 
matrix;z2E=mu1E+z1E$ 
matrix;z3E=mu2E+z1E$ 
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matrix;z4E=mu3E+z1E $  
create;mcLL=LL $ 
create; mccE=cE $ 
create; mcmu1E=mu1E $ 
create; mcmu2E=mu2E $ 
create; mcmu3E=mu3E $ 
create; mcbE=bE $ 
create;mcz1E=z1E $ 
create;mcz2E=z2E $ 
create;mcz3E=z3E $ 
create;mcz4E=z4E $ 
create;p1=phi(mcz1E);p2=phi(mcz2E)-phi(mcz1E);p3=phi(mcz3E)-
phi(mcz2E);p4=phi(mcz4E)-phi(mcz3E);p5=1-phi(mcz4E)$ 
dstat; rhs=mcLL,mccE, mcmu1E, mcmu2E, mcmu3E,mcbE,p1,p2,p3,p4,p5 $ 
stop $ 

Example 2: Code for the MNL Data Estimated by the ML Model 

/* Monte Carlo Simulation: the MNL data, Sample Size = 10,000*/ 
reset 
calc; ran(57139) $ 
 
proc=mcset $ 
calc; ni=100; i=0 $ 
sample; 1-10000 $ 
matrix; fit=init(ni,1,0) $ 
matrix; estb=init(ni,9,0) $ 
matrix; prep1=init(500,100,0) $  
matrix; prep2=init(500,100,0) $  
matrix; prep3=init(500,100,0) $  
matrix; prep4=init(500,100,0) $  
matrix; prep5=init(500,100,0) $  
endproc 
 
proc=mcrun $ 
calc; i=0 $ 
label; 9999 $ 
sample; 1-10000 $ 
 
create; Ta1=0;Ta2=0.5;Ta3=1;Ta4=1.5;Tb=1 $ 
create;x=-2+rnn(0,1) $ 
create;h1=rnu(0,1);h2=rnu(0,1);h3=rnu(0,1);h4=rnu(0,1);h5=rnu(0,1) $ 
create;e1=-log(log(1/h1));e2=-log(log(1/h2));e3=-log(log(1/h3));e4=-log(log(1/h4));e5=-
log(log(1/h5)) $ 
create;u1=Ta1+Tb*x+e1; 
  u2=Ta2+Tb*x+e2; 
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  u3=Ta3+Tb*x+e3; 
  u4=Ta4+Tb*x+e4; 
  u5=e5 $ 
create; if (u1>u2 & u1>u3 & u1>u4 & u1>u5) c1=1;(else) c1=0; 
   if (u2>u1 & u2>u3 & u2>u4 & u2>u5) c2=1;(else) c2=0; 
   if (u3>u1 & u3>u2 & u3>u4 & u3>u5) c3=1;(else) c3=0; 
   if (u4>u1 & u4>u2 & u4>u3 & u4>u5) c4=1;(else) c4=0; 
   if (u5>u1 & u5>u2 & u5>u3 & u5>u4) c5=1;(else) c5=0 $ 
create; if (c1=1) choice=1; if (c2=1) choice=2; if (c3=1) choice=3; if (c4=1) choice=4; if 
(c5=1) choice=5 $ 
rplogit; lhs=choice 
;choices=c1, c2, c3, c4, c5[1] 
;rh2=one,x;fcn=c1_x1(n);halton;pts=200 $ 
matrix;fit(i,*)=LOGL $ 
matrix; estb(i,*)=b $ 
calc; list; i=i+1 $ 
go to; 9999; i<=100 $ 
endproc 
 
exec; proc=mcset $ 
exec; proc=mcrun $ 
 
sample; 1-100$ 
matrix;LL=part(fit,1,100,1,1) $ 
matrix; totest=estb $ 
matrix; b1E=part(totest,1,100,1,1); c1E=part(totest,1,100,2,2); 
      c2E=part(totest,1,100,3,3); b2E=part(totest,1,100,4,4); 
      c3E=part(totest,1,100,5,5); b3E=part(totest,1,100,6,6); 
      c4E=part(totest,1,100,7,7); b4E=part(totest,1,100,8,8); 
      s1E=part(totest,1,100,9,9)  $ 
create;mcb1E=b1E $ 
create;mcs1E=s1E $ 
create;mcb2E=b2E $ 
create;mcb3E=b3E $ 
create;mcb4E=b4E $ 
create;mcc1E=c1E $ 
create;mcc2E=c2E $ 
create;mcc3E=c3E $ 
create;mcc4E=c4E $ 
 
proc=mcprob $ 
calc;j=0 $ 
label;9 $ 
create;brandom=rnn(mcb1E,mcs1E) $ 
create;v1E=(-2*brandom)+mcc1E $ /* specify x=-2 for the probability calculation */ 
create;v2E=(-2*mcb2E)+mcc2E $ 
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create;v3E=(-2*mcb3E)+mcc3E$ 
create;v4E=(-2*mcb4E)+mcc4E$ 
create;p5=1/(1+exp(v1E)+exp(v2E)+exp(v3E)+exp(v4E));p1=exp(v1E)*p5;p2=exp(v2E)
*p5;p3=exp(v3E)*p5;p4=exp(v4E)*p5 $ 
matrix; prep1(j,*)=p1 $ 
matrix; prep2(j,*)=p2 $ 
matrix; prep3(j,*)=p3 $ 
matrix; prep4(j,*)=p4 $ 
matrix; prep5(j,*)=p5 $ 
calc; list; j=j+1 $ 
go to; 9; j<=500 $ 
endproc 
exec; proc=mcprob $ 
 
matrix;avep1=1/500*prep1'1 $ 
matrix;avep2=1/500*prep2'1 $ 
matrix;avep3=1/500*prep3'1 $ 
matrix;avep4=1/500*prep4'1 $ 
matrix;avep5=1/500*prep5'1 $ 
create;mcavep1=avep1 $ 
create;mcavep2=avep2 $ 
create;mcavep3=avep3 $ 
create;mcavep4=avep4 $ 
create;mcavep5=avep5 $ 
dstat; rhs=mcc1E, mcc2E, mcc3E, mcc4E,mcb1E, mcb2E, mcb3E, 
mcb4E,mcs1E,mcavep1,mcavep2,mcavep3,mcavep4,mcavep5 $ 
stop $ 
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APPENDIX C 

EXAMPLES OF NLOGIT CODE FOR  

MONTE-CARLO SIMULATION ON DATA UNDERREPORTING 

 
 
 
 
This appendix provides example code for Monte-Carlo simulation on data underreporting 

for the ML model. Since the code for the MNL and OP models is similar to the one for 

the ML model, it is not provided here. The example is to simulate the underreporting in 

the simulated data for Scenario 2. Steps of the code are listed as follows. Firstly, a ML 

dataset is generated with sample size equal to 50,000, based on the designated values of 

parameters and designed distribution of independent variables as shown in Table 5.1. 

Secondly, the underreported dataset is replicated by randomly eliminating some data 

according to the designed unreported rates. The following unreported rates are used: 5%, 

20%, 30%, 50%, and 75% for severity levels 1 to 5 (as to simulate the unreported rates of 

KABCO accordingly). Thirdly, the ML model is used to estimate the underreported 

dataset generated above and the estimated parameters are recorded. Both of the MLE (it 

is not included in the example code below) and WESMLE methods are used for model 

estimation by setting the weights of each severity level. Fourthly, repeat the first and 

second steps for 100 times and record the results. Lastly, the basic statistics of the 

estimated parameters from the 100 simulations are calculated. What needs to mention is 

the comparisons between the estimated parameters to the true ones are not coded in 

NLOGIT, which are achieved by a Macro in Excel. 

Example 1: Code for the ML Model 

/* underreporting data with weights: the ML data, Sample Size – 50,000*/ 
reset 
timer 
calc; ran(57139) $ 
 
proc=mcset $ 
calc; ni=100; i=0 $ 
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sample; 1-50000 $ 
matrix; fit=init(ni,1,0) $ 
matrix; estb=init(ni,9,0) $ 
endproc 
 
proc=mcrun $ 
calc; i=0 $ 
label; 9999 $ 
sample; 1-50000 $ 
 
create; Ta1=0;Ta2=0.5;Ta3=1;Ta4=1.5;Tb1=1+rnn(0,1)  $ 
create;x=-2+rnn(0,1) $ 
create;h1=rnu(0,1);h2=rnu(0,1);h3=rnu(0,1);h4=rnu(0,1);h5=rnu(0,1) $ 
create;e1=-log(log(1/h1));e2=-log(log(1/h2));e3=-log(log(1/h3));e4=-log(log(1/h4));e5=-
log(log(1/h5)) $ 
create;u1=Ta1+Tb1*x+e1; 
       u2=Ta2+1*x+e2; 
       u3=Ta3+1*x+e3; 
       u4=Ta4+1*x+e4; 
       u5=e5 $ 
create; if (u1>u2 & u1>u3 & u1>u4 & u1>u5) c1=1;(else) c1=0; 
   if (u2>u1 & u2>u3 & u2>u4 & u2>u5) c2=1;(else) c2=0; 
   if (u3>u1 & u3>u2 & u3>u4 & u3>u5) c3=1;(else) c3=0; 
   if (u4>u1 & u4>u2 & u4>u3 & u4>u5) c4=1;(else) c4=0; 
   if (u5>u1 & u5>u2 & u5>u3 & u5>u4) c5=1;(else) c5=0 $ 
create; if (c1=1) choice=1; if (c2=1) choice=2; if (c3=1) choice=3; if (c4=1) choice=4; if 
(c5=1) choice=5 $ 
sort;lhs=choice;rhs=Tb1,x,h1,h2,h3,h4,h5,e1,e2,e3,e4,e5,u1,u2,u3,u4,u5,c1,c2,c3,c4,c5 $ 
calc;list;n1=sum(c1);n2=sum(c2);n3=sum(c3);n4=sum(c4);n5=sum(c5) $ 
calc;list;missn1=int(0.75*n1); 
 missn2=int(0.5*n2); 
 missn3=int(0.3*n3); 
 missn4=int(0.2*n4); 
 missn5=int(0.05*n5); 
 totmiss=missn1+missn2+missn3+missn4+missn5 $ 
calc;list;weight1=(50000-totmiss)/50000/(1-0.75); 
   weight2=(50000-totmiss)/50000/(1-0.5); 
   weight3=(50000-totmiss)/50000/(1-0.3); 
   weight4=(50000-totmiss)/50000/(1-0.2); 
   weight5=(50000-totmiss)/50000/(1-0.05) $ 
create; if (c1=1) weight=weight1 $   
create; if (c2=1) weight=weight2 $  
create; if (c3=1) weight=weight3 $  
create; if (c4=1) weight=weight4 $  
create; if (c5=1) weight=weight5 $ 
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calc; if (missn1>0) end1=missn1; (else) end1=1 $ 
sample;1- end1 $ 
create;choice=-999 $ 
 
calc;st2=n1+1 $ 
calc;if (missn2>0) end2=n1+missn2; (else) end2=st2 $ 
sample;st2-end2 $ 
create;choice=-999 $ 
 
calc;st3=n2+n1+1 $ 
calc;if (missn3>0) end3=n2+n1+missn3; (else) end3=st3  $ 
sample;st3-end3 $ 
create;choice=-999 $ 
 
calc;st4=n3+n2+n1+1 $ 
calc;if (missn4>0) end4=n3+n2+n1+missn4; (else) end4=st4   $ 
sample;st4-end4 $ 
create;choice=-999 $ 
 
calc;st5=n4+n3+n2+n1+1 $ 
calc;if (missn5>0) end5=n4+n3+n2+n1+missn5; (else) end5=st5    $ 
sample;st5-end5 $ 
create;choice=-999 $ 
 
sample;1-50000 $ 
skip 
rplogit; lhs=choice 
;choices=c1, c2, c3, c4, c5[1];wts=weight 
;rh2=one,x;fcn=c1_x1(n);halton;pts=200 $ 
matrix;fit(i,*)=LOGL $ 
matrix; estb(i,*)=b $ 
calc; list; i=i+1 $ 
go to; 9999; i<=100 $ 
endproc 
 
exec; proc=mcset $ 
exec; proc=mcrun $ 
 
sample; 1-100$ 
matrix;LL=part(fit,1,100,1,1) $ 
matrix; totest=estb $ 
matrix; b1E=part(totest,1,100,1,1); c1E=part(totest,1,100,2,2); 
      c2E=part(totest,1,100,3,3); b2E=part(totest,1,100,4,4); 
      c3E=part(totest,1,100,5,5); b3E=part(totest,1,100,6,6); 
      c4E=part(totest,1,100,7,7); b4E=part(totest,1,100,8,8); 
      s1E=part(totest,1,100,9,9)  $ 
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create;mcLL=LL $ 
create; mcc1E=c1E $ 
create; mcc2E=c2E $ 
create; mcc3E=c3E $ 
create; mcc4E=c4E $ 
create; mcb1E=b1E $ 
create; mcb2E=b2E $ 
create; mcb3E=b3E $ 
create; mcb4E=b4E $ 
create; mcs1E=s1E $ 
dstat; rhs=mcLL,mcc1E, mcc2E, mcc3E, mcc4E,mcb1E, mcb2E, mcb3E, mcb4E,mcs1E 
$ 
stop $ 
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