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ABSTRACT 

 
 
Sub-Nyquist Rate Sampling Data Acquisition Systems Based on Compressive Sensing. 

 (May 2011) 

Xi Chen, B.S., Fudan University;  M.S., Texas A&M University. 

Chair of Advisory Committee: Dr. Sebastian Hoyos 

             

             This dissertation presents the fundamental theory and design procedure of the 

sub-Nyquist rate sampling receiver front-end that exploits signal sparsity by employing 

Compressive Sensing (CS) techniques. The CS receiver serves as an Analog-to-

Information Conversion (AIC) system that works at sampling rates much lower than the 

Nyquist rate. The performance of a parallel path CS front-end structure that employs 

current mode sampling techniques is quantified analytically. Useful and fundamental 

design guidelines that are unique to CS are provided based on the analytical tools. 

Simulations with IBM 90nm CMOS process verify the theoretical derivations and the 

circuit implementations. Based on these results, it is shown that instantaneous receiver 

signal bandwidth of 1.5 GHz and 44 dB of signal to noise plus distortion ratio (SNDR) 

are achievable in simulations assuming 0.5 ps clock jitter is present.  The ADC and 

front-end core power consumption is estimated to be 120.8 mW. The front-end is 

fabricated with IBM 90nm CMOS process, and a BPSK sub-Nyquist rate 

communication system is realized as a prototype in the testing. A 1.25 GHz reference 

clock with 4.13 ps jitter variance is employed in the test bench. The signal frequency, 
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phase and amplitude can be correctly reconstructed, and the maximum signal SNR 

obtained in the testing is 40 dB with single tone input and 30 dB with multi-tones test.  

The CS system has a better FOM than state-of-art Nyquist rate data acquisition systems 

taking into account the estimated PLL power.  
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CHAPTER I 

INTRODUCTION 

 

The sampling rate of traditional analog-to-digital conversion (ADC) architectures 

needs to be at least twice the signal bandwidth to achieve alias free sampling [1]-[2]. The 

increasing demand for systems with both higher bandwidth and lower power 

consumption motivates the search of innovative ADCs, especially when sampling rates 

reach several GHz. To this end, the time-interleaving structure [3] [4] [5] [6] [7] and the 

multi-channel filter-bank approach [8] [9] have been proposed. However, the power 

consumption of these topologies is still high for many pressing applications such as 

wideband systems or power spectral estimation in cognitive radios [10]  

 

Fig. 1.1 Signals found in wireless systems are spare in the frequency domain 

[11]. Fortunately, a closer look at some of these applications reveals that the signal 

bandwidth is not always fully occupied simultaneously. In the particular case of wireless 

communications, many channels are typically unoccupied [12] which leads to a signal  

____________ 
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that exhibits sparsity in the frequency domain as shown in Fig. 1.1. The sparsity of many 

real systems is a remarkable property that can also be found in several cases such as 

time-domain for impulse radio UWB signals [13], and the wavelet-domain for images 

[14]. 

     When the signal is very sparse, the receiver can operate at a much lower frequency 

than the Nyquist rate [15] [16], enabling the realization of efficient signal digitizers for 

several transformative applications that are unrealizable with conventional receiver 

front-ends and data converters.  

      A frequency sparse signal such as the one shown in Fig.1.1 can be digitized using 

traditional superheterodyne radio receivers where the signal channels are selected 

individually for down-conversion to baseband [17]. However, in applications such as 

cognitive radio, it is desired to simultaneously observe the entire frequency spectrum 

composed of many channels, and then to isolate the signals of interest whose location is 

unknown a priori [10] [11]. Achieving this with multiple local oscillators and traditional 

down-conversion becomes cumbersome and impractical. To this end, the CS analog 

front-end replaces the LO mixing signal with a pseudo-random signal that emulates 

white noise as depicted in the architecture shown in Fig. 1.2. By mixing the input signal 

with a random LO signal, the signal is randomized and the information of each channel 

spreads over the entire bandwidth. Depending on the sparsity level, it is possible to use a 

low speed ADC to sample the randomized  
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Fig. 1.2 Compressive sample parallel topology for sampling wideband signals with low 

speed ADCs 

signal. Given these samples, several reconstruction algorithms can be used to estimate 

the signal information [15][16][18].  

    The CS front-end can be realized by circuit architectures similar to traditional 

receivers as presented in the following subsections. However, the impact of circuit level 

non-idealities is fundamentally different in CS receivers. 

In this dissertation, a circuit implementation of the CS architecture is taken as an 

example to provide a thorough analysis of circuit noise, jitter, distortion and other 

impairments. The dissertation is organized as follows. Chapter II gives a brief 

introduction to the CS theory and the basic circuit architecture is discussed. 

Implementation at the circuit level is provided in Chapter III. Further analysis on the 

practical limitations due to jitter, noise and distortion is provided in Chapter IV and V. In 

Chapter VI, the detailed design specifications and simulation results employing a 

conventional 90nm CMOS technology are included. Chapter VII presents the testing 

results of a CS system implemented with discrete components and the CS front-end 

fabricated with the 90 nm CMOS process, with the conclusions provided in the last 

Chapter. 
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CHAPTER II 

CS THEORY AND THE BASIC CIRCUIT ARCHITECTURE  

 

In this Chapter, as an example to introduce the basic concepts of the CS theory, the 

input signal is assumed to be sparse in the frequency domain.  Let the input signal be 

represented by a vector 1Nx R  . Define 1Ny R   as the spectrum of the original signal x, 

and we have y x , where N NC   is the N-point Fourier transform matrix. Since x is 

sparse in the frequency domain, there are only K significant elements in y, with K N . 

The other N-K elements have very small contribution to the signal and can be ignored. 

When the other N-K elements are set to “0”, we can still almost perfectly reconstruct the 

input signal via Hx y , which means that the original input x is compressed into an 

effectively shorter vector y. Due to the sparsity, y is able to fully capture the information 

contained in x (Fig. 2.1).  

 

 

Fig. 2.1 An example of signal compression 

A matrix transform such as the FFT is usually done in the digital domain and the ADC 

still needs to work at high frequency to fully sample x before the compression. However, 
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a CS receiver front-end can condition x before the sampling so that the ADC can work at 

lower speed. The original input x can be reconstructed with high probability by sampling 

only M linear random projections of x: s x  , where M NR  , 1Ms R   and M<<N. 

The matrix   is a known realization of a random process. In this work, random binary 

elements (+1/-1) are employed because they are readily generated using simple high 

bandwidth circuitry. Since y x and s x  , we have  H y s . The vector y is 

shorter than s, so there exist many solutions for y that satisfy this condition. According to 

CS theory, if x is a sparse signal over  , the y with minimum number of non-zero 

elements is the solution that correctly represents x. In other words, y can be solved via 

the optimization problem given by, 

 

1
arg miny y , . . Hs t y s  . 

 

The original signal can be reconstructed when y is solved through Hx y . Algorithms 

for solving this optimization problem are discussed in classical CS literature 

[15][16][18]. The reconstruction complexity depends on the specific reconstruction 

algorithm. For example, the computational complexity is )( 3S  when LP is used for 

signal reconstruction; whereas the computational complexity is )( 2SK  for the OMP 

algorithm [18]. The number of measurements M only needs to be greater than 

 2log /K N K  to ensure that the sampled information is sufficient with high probability. 

An example of OMP reconstruction algorithm is included in Appendix A. The CS theory 
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is only applicable when the signal is sparse.  Note that the signal reconstruction 

complexity is higher than the FFT, although there are many ongoing efforts to bring the 

complexity down to that of the FFT (NlogN).  

     The sampled vector s can be generated by the circuit architecture in Fig. 2.2. The 

signal is fed into the parallel paths, and each path is associated with an independent 

pseudo-random number (PN) binary sequence. These PN sequences form the rows of the 

matrix  . The integration results in the inner product of x and the PN sequence, each of 

which is an element of s. Then, s is sampled and processed in the digital domain for 

signal reconstruction. The continuous analog input signal is represented as a discrete 

time vector x whose data rate equals the PN sequence. This representation is alias-free 

only if the data rate of the PN sequence is higher than twice the bandwidth of the analog 

input. Thus the speed of the PN generator circuit needs to be as high as the Nyquist rate.  

 

MS

2S
1S

 

Fig. 2.2 Parallel circuit implementation of traditional compressed sensing 
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Fig. 2.3 Parallel segmented compressed sensing 
 

Fig. 2.2 illustrates the idea of traditional CS, where each parallel path generates one 

sample during one signal period. From the implementation perspective, this is unrealistic 

because of the necessity of many parallel paths. Therefore, we use segmentation, i.e. 

windowing, to reduce the number of parallel paths, and each path generates multiple 

samples each of which is a random projection of one segment of the signal, as illustrated 

in Fig. 2.3 [19]. In this proposed Parallel Segmented CS (PSCS) architecture, the 

randomized signal after the mixer is equally divided into Q segments in the time domain. 

Each path integrates Q segments of the randomized signal, yielding Q samples in each 

path. Reference [19] shows that the required number of overall samples remains the 

same as compared to Fig.2.2, and thus the required number of paths in Fig.2.3 is P=M/Q. 

The signal reconstruction is performed digitally using the sampled matrix S (Fig.2.3). 

The math representation of the optimization problem for PSCS is given in Appendix B. 

     The reconstructed signal quality is simulated and plotted in Fig. 2.4. Suppose the 

input signal contains 256 sub-carriers and the bandwidth is around 1.5 GHz. The 

locations of K active sub-carriers are chosen randomly. The signal sparsity representing 
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the spectral occupancy is defined as K/256. In the simulation, all active sub-carriers have 

the same amplitude and 1000 iterations are run for each sparsity setup. The signal quality 

is represented by its signal to noise ratio (SNR). The CS system sampling rate is defined 

as SRpathP, where SRpath is the sampling rate of each single path and P is the number of 

paths. 

      Fig. 2.4 shows that the required sampling rate for a given SNR depends on the signal 

sparsity. For example, when there are 10 active tones in the signal bandwidth (4% 

sparsity and spectral occupancy), the required system sampling rate to achieve perfect 

signal quality (SNR>100 dB) is as low as 26% of the Nyquist rate, or roughly 800 MHz.  

Based on Fig. 2.4 we propose a PSCS receiver that detects wideband signals over 10 

MHz ~ 1.5 GHz bandwidth as an example in following Chapters. For illustration, the 

input signal is assumed frequency domain sparse. Also it is assumed that the input signal 

sparsity is 10/256 with which the system sampling can be significantly lowered, but it 

needs to be emphasized that the approach is flexible and the system is adaptable to 

varying levels of sparsity.  

      The system incorporates 8 parallel paths whose outputs are sampled at 110 MHz. 

The input signal power is assumed to be -20 dBm referred to 50 ohm. 

In reality the reconstructed SNR is limited by many circuit non-idealities such as 

clock jitter, thermal and flicker noise, distortion and the quantization noise of ADCs. In 

the following Chapters it is shown that the impact of the non-idealities is different from 

that in traditional receivers due to the signal randomization. The reconstructed SNR of 

the proposed system is targeted at 44 dB (7 bits) in simulations. The error energy 
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individually induced by jitter, circuit noise, distortion and the quantization noise is 

designed to be less than -50 dB as referred to the signal power in order to achieve an 

overall SNDR of 44 dB. 
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Fig. 2.4 Reconstructed Signal SNDR vs. signal sparsity & sampling rate 
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CHAPTER III 

CIRCUIT LEVEL IMPLEMENTATION 

 

 
3.1 The PSCS front-end circuit architecture 

 

    A current mode parallel-path front-end is suitable because current mode architectures 

have the benefit of allowing convenient design of mixers and reconfigurable integrators. 

The applicable front-end is shown in Fig. 3.1. An example of PN generator can be found 

in [20]. It is assumed that an out-of-chip high-order anti-aliasing filter is present at the 

input of the receiver and selects the signal bandwidth 10 MHz ~1.5 GHz. The input 

voltage is converted into signal current through the transconductance stages Gm. The 

signal current is then mixed with the PN binary sequences (1 or -1) from the PN 

generator. The mixer output current is integrated over segmented integration windows. 

The integrators’ outputs are then digitized and post-processed digitally. The integrator 

consists of two time-interleaved branches that provide successive integration windows. 

A simplified schematic of the integrator is shown in Fig.3.2. The capacitors are first 

reset, and then the mixer output current is injected into one of the capacitors CS during 

the integration time Ti. After that the charge is transfer to the ADC. The integrator also 

serves as the sample and hold (S&H) circuit before the ADC. The sampling rate is 

reconfigurable, depending on the frequency of the controlling clocking scheme and is set 

according to the signal sparsity. It can also operate up to Nyquist rate if the signal does 

not exhibit enough sparsity to be processed using the CS theory.  
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(b) 

Fig. 3.1  a) Circuit implementation of the proposed CS receiver 

b) Detailed circuitry of one path 
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Fig. 3.2 Simplified two branch passive integrator 

 

Fig. 3.3 Frequency response of the windowed integrator 
 

The final realization of the integrator in Fig.3.1b incorporates two operational 

transconductance amplifiers (OTAs) to optimize the operation of the mixers by limiting 

the switches signal swing due to the low impedance provided by the closed loop 

operation of the OTA. The sinc type frequency response of the windowed integrator is 
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shown in Fig.3.3, where Ti is the duration of a single segmented integration time 

window. The -3 dB bandwidth of the transfer function is 1/2Ti, which is also controlled 

by the clock frequency.  

 

3.2  Parallel path ADCs 

 

Each path employs a low speed ADC that samples the randomized signal at the 

output of the integrator. The sampling rate is around 110 MS/s and the effective number 

of bits (ENOB) of the ADC needs to be 8 bits to achieve 50 dB SNR. Pipeline ADCs or 

SAR ADCs can meet this specification with low power consumption. In [21], a pipeline 

ADC achieves 7.9 ENOB and 50 MS/s with power consumption of 1.44 mW. In [22], a 

SAR ADC achieves 8.53 ENOB and 100 MS/s sampling rate with power consumption 

of 1.46 mW. Performance, non-idealities, and the design procedure of traditional 

Nyquist ADCs have been extensively discussed in existing literatures. Rather than 

designing an ADC, the published state of art ADCs were drawn on to realistically 

estimate the power consumption of the system with ADCs incorporated. The achievable 

signal to noise plus distortion ratio (SNDR), power consumption and sampling rate of 

relevant ADCs published in ISSCC08 and 09 are shown in Fig.3.4. According to the 

technology trend [23], a 110 MHz / 8 ENOB ADC consumes approximately 3.5 mW 

power. It is then expected that the 8 ADCs should consume an overall power around 28 

mW. 



 

 

14

 

Fig. 3.4 Performance of State-of-art ADCs reported in ISSCC-08-09 
 

3.3 Front-end signal gain 
 

We begin the analysis by calculating the signal gain of the front-end as, 

 
2

2 ,

2
,

. sig output
S

sig input

V
Gain

V
                                                                                                          (3.1) 

 

2
_ 

clk

Power Density
f

 

Fig. 3.5 The transfer function of the integrator, the spectrum of the PN sequence and the 

spectrum of the sparse input signal 
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Here 2
,sig inputV is the total signal power present at the receiver input and 2

,sig outputV  is the 

total signal power at the output of one integrator. 

The transfer function of the integrator, the sinc type spectrum of the PN sequence 

and the typical signal spectrum are shown in Fig. 3.5. The transfer function of the 

windowed discrete time integrator can be found as, 

 ( ) . i
i i

S

T
H f Sinc f T

C
                                                                                             (3.2) 

The power spectrum of the PN sequence is given by, 

    
2

2 2
.

 
  

 clk clk

f
PN f Sinc

f f
                                                                                            (3.3) 

The spectrum of the PN sequence rolls off at high frequency, so the signal tones at 

higher frequencies contribute less power to the randomized signal. By combining Eqns. 

(3.1)-(3.3), the front-end signal gain is given by, 

   
     

 

22 2 2
,2 0

1.5 2
,10

.


    


sig input i

S GHz

sig inputMHz

V f Gm PN f H f df
Gain

V f df
                                    (3.4) 

Where the symbol * stands for convolution. Notice that the front-end gain is frequency 

dependent. Since the locations of the input signal tones are random, it is not possible to 

predict a fixed gain. However some practical cases can be considered. When the input 

tones are concentrated at very low frequencies, the front-end yields a maximum gain 

given by, 
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2 2
2 1

.
 

  
 

S iMAX
s clk

Gm
Gain T

C f
                                                                                            (3.5) 

On the other hand, when the input signal power is at the upper edge of the signal 

bandwidth, which is fclk/2, the front-end power gain is degraded by   2
/ 2Sinc  and 

yields a minimum gain given by, 

2 2
2 1

0.4 .
 

  
 

S iMIN
s clk

Gm
Gain T

C f
                                                                                    (3.6) 

Additionally, when the signal tones are normally distributed over the entire signal 

bandwidth, the signal gain can be approximated as, 

2 2
2 1

0.67 .
 

  
 

S iNormal
s clk

Gm
Gain T

C f
                                                                       (3.7) 

Therefore, in general the signal gain can be expressed as, 

2 2
2 1

 
  

 
S i

s clk

Gm
Gain T

C f
 ,                                                                                  (3.8) 

where   is a factor varying between 0.4 and 1.  is determined by the spectral 

distribution of the input signal; e.g. with a single tone input   2

/  signal clkSinc f f  and 

with a normally distributed multi-tone input the value of  is around 0.67. 

 

Fig. 3.6 Signal current splits between parasitic and the active integrator 
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3.4  Front-end bandwidth 

       As depicted in Fig.3.6, at the output of the Gm stage the blocking capacitor 

introduces significant parasitic capacitance to ground. The switches in the mixer also 

contribute with additional parasitic capacitance at this node. Cp takes away part of the 

signal current and limits the system bandwidth. The receiver bandwidth depends on Cp 

and the input impedance of the active integrator Zeq. 

        Detailed analysis shows that Zeq varies with different OTA structures. For instance, 

let’s consider the two stage OTA [24] shown in Fig. 3.7 (a); the simplified single-ended 

model for the active integrator is shown in Fig. 3.7 (b). At high frequency CS and CC  can 

be considered as AC short circuits, then Zeq can be approximated as, 

 1 2 1

1 1 1
/ / / / .

 eq
o L

Z
gm gm s C C

                                                                           (3.9) 

When the active integrator is sampling the input current, the ‘read’ switches in Fig.3.1 

are OFF and the ADC is not loading the OTA. In this case, Co1+CL in Fig.3.7 (b) is 

small compared with Cp in Fig.3.6, leading to, 

2 1

1
.

eqZ
gm gm

                                                                                                    (3.10) 

The bandwidth of the signal current path that feeds the mixers and integrators is given 

by, 

2 1 .
2


path
p

gm gm
BW

C
                                                                                              (3.11) 
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(a) 

 

(b) 

Fig. 3.7 a) A typical two stage Miller compensation OTA  

                                        b) simplified active integrator model  

 
      Therefore, enough power at the second stage must be used to increase gm2. This 

usually leads to over-designing the second stage of the OTA. In this case, the OTA can 

achieve enough phase margin without the compensation resistor in series with CC, hence 

the compensation resistor is removed to lower noise.  e.g., with Cp = 300 fF and BW = 

1.5 GHz, gm2 needs to be 3 mS larger than gm1.  
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3.5 The PN generator 

 

In a Compressive Sensing receiver, the requirements on the analog circuit blocks 

are significantly relaxed. The baseband filter and the ADC work at low frequency. 

However, the speed of the PN sequence needs to be at least equal to the Nyquist rate so 

the PN generator still needs to work at high speed. The maximum input bandwidth that 

the receiver can process depends on how fast the PN generator is. The design bottle neck 

is moved from analog parts to digital clock generating blocks such as the PN generator.  

D0 Q0 D1 Q1 D2 Q2 DN QN

Parity 
Generator

CLK

 

Fig.3.8 A traditional PN generator 

A typical PN generator formed by a flip-flops pipeline is shown in Fig.3.8. The outputs 

of the flip-flops are fed back to the first one through a parity generator, which yields 

output of '1' if an odd number of its inputs are at logic '1' and yields '0' if an even number 

of its inputs are at logic '1'. The generated PN sequence only maintains the randomness 

within finite lengths and it will repeat itself when the PN generator keeps running at the 

end of the finite length of pseudo-random sequences. With different number of flip-

flops, different specific parity generators are required to yield the maximum achievable 

length.  Denote N as the number of the employed flip-flops, the maximum achievable 
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PN length is 2 1N . It is preferred to choose a parity generator with minimum number of 

inputs in order to minimize its delay. For example, when 11 flip-flops are used, the 

optimum parity generator is simply a XOR gate, fed by the outputs of the 8th and the 

11th flip-flops.  Assume a single flip-flop is composed of two D-latches as shown in 

Fig.3.9, 

  

Fig.3.9 Signal delay in the PN generator 

The first D-latch keeps its state when CLK is '1' while the latter one keeps its state when 

CLK is '0', then the flip-flops are triggered at the rising edge of the master CLK. The 

most critical signal delay in the feedback loop is from one of those flip-flops that feed 

the parity generator to the first flip-flop. Denote the delay of a D-latch as t1, and the 

delay of the XOR gate as t2. Before the rising edge of CLK, the output of D-latch3 has 

settled to the output of the previous flip-flop. After the rising edge of the CLK, it takes 

2t1+t2 for D-latch1 to settle. Note that the next rising edge of CLK needs to come later 

than D-latch1 settles in order to ensure a well-defined logic state, then the minimum 

period of the master CLK is 2t1+t2, and the maximum speed of the PN generator is 

1/(2t1+t2). With the IBM 90nm CMOS technology t1 and t2 are around 100 ps. The 
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conservative maximum speed of the PN generator is around 3 GHz. In this case, the 

maximum allowed input signal bandwidth of the Compressive Sensing front-end is 1.5 

GHz. We may push the PN generator to work at higher speed such as 4 GHz by carefully 

designing the layout. 

For going to higher signal bandwidth, new PN generator architectures need to be 

explored. Sometimes the parity generator has multiple inputs and its high complexity 

makes t2 dominate. In order to relax the delay requirement of the parity generator, the 

two D-latches in the first flip-flop may be exchanged to make it be triggered at the 

falling edges of CLK (Fig.3.10). The triggering moment of D-latch2 comes half a period 

later so the minimum period of CLK is (2t1+t2)/1.5. However, after the falling edge of 

CLK, the first D-latch of the second flip-flop needs to settle before the following rising 

edge of CLK, so the minimum period of CLK needs to be longer than 4 t1. The maximum 

speed of the PN generator is 1/ max [(2t1+t2)/1.5, 4 t1]. The architecture in Fig.3.10 may 

boost the speed of PN when t2 is significantly longer than t1.  

Furthermore, high speed PN sequence may be generated by combining multiple 

parallel PN generators. As shown in Fig.3.11, a parity generator may be employed to 

 

 Fig.3.10 Signal delay in the modified PN generator 
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combine outputs of several PN generators. The CLKs of those PN generators are at the 

same speed but different phases. Assume there are M PN generators, the phase of the nth 

CLK is 2 /n M .  

2 / M

 

Fig.3.11 Parallel PN generation 
 

Ideally the speed of the final generated PN sequence is boosted by M times. However, 

note that the speed of this PN sequence is still limited by the delay of the parity 

generator and the complexity and delay of the parity generator increase when it has more 

inputs. It is impossible to stack infinite number of PN generators to get an extremely 

high speed PN. 

The length of the final generated PN sequence is MQ where Q is the length of the 

low speed PN sequence generated by each single PN generator. To maintain the 

randomness of the final PN sequence, those M low speed PN sequences need to be un-

correlated. In order to achieve this, each single PN generator needs to be capable of 

generating a PN sequence of length MQ. Those PN generators are reset to different 

initial states so that the PN sequence of length MQ is equally divided into M un-

correlated pieces, each of which is generated by a single PN sequence generator.  
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 Fig.3.12 Illustration of the high speed PN generation 

 
The final PN sequence is generated by combining those M un-correlated low speed 

PN sequences (Fig.3.12). For example, assume two individual PN generators are 

combined to generate a high speed PN sequence of length 2047, each PN generator 

needs to contain 11 flip-flops. Both of them can generate a PN sequence of length 2047. 

One of them starts at the very beginning of the PN sequence while the other starts with 

the 1024th number. The parity generator is a XOR gate, combining the two un-correlated 

PN sequence. Assume the two PN generators run at 4 GHz, the period of the CLK 

signals is 250ps. The CLK of the second PN generator lags 125ps. The data rate of the 

final PN sequence is 8 GHz. An example of a 8 GHz PN sequence simulated with SPICE 

is shown in Fig.3.13. 

 

Fig.3.13 A 8 GHz high speed PN sequence 
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Each individual PN generator only affects the final output when it flips, and only one PN 

generator is flipping at the same time, so the jitter variance at the transition of the final 

high speed PN sequence is expected to be the same with each single PN sequence. 
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CHAPTER IV 

CLOCKING JITTER 

 

4.1 Overall jitter impact to the CS receiver 

 

Jitter in the PN sequences and the sampling clocks limit the achievable SNR. The 

noise introduced by jitter in the PN sequences may dominate the SNR performance since 

the speed of the PN sequences is much higher than the sampling clock frequency. Thus, 

only the PN jitter is considered in the following analysis whereas the sampling clock 

jitter is ignored. The jitter in the PN sequences introduces some pulse errors, as shown in 

Fig.4.1. The width of each pulse is equivalent to the timing jitter at that switching 

instant, which randomly changes according to the jitter distribution. Denoting the real 

PN sequence and the ideal sequence as PNr and PNi, respectively, then, 

( )r iPN PN e t  ,                                                                                                     (4.1) 

where e(t) is the jitter error, which can be assumed uncorrelated with PNi . The typical 

spectra of PNi and e(t) are plotted in Fig. 4.2. Denoting Nj
2

 as the jitter induced noise 

power at the output of the integrator, it follows that 

 
2

2
,0

( ) ( ) ( )j sig input iN V f Gm E f H f df


    ,                                                           (4.2) 

where E(f) and Vsig,input(f) are the power spectrum of e(t) and the input signal. Hi(f)  is the 

transfer function of the integrator. e(t) is composed of a train of randomly spaced out 

narrow impulses. Then the spectrum E(f) is rather flat throughout the bandwidth of 
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Vsig,input (f) and Hi (f). Therefore E(f) can be approximated as thermal noise, whose 

variance is determined by the voltage controlled oscillator and buffer noise components 

present in the PN block. The power spectral density of  e(t) shows that the density of E(f) 

in the bandwidth of interest is given by 24 j clkf /Hz, where  j is the jitter standard 

deviation (also known as the jitter root-mean-squared (rms) value). The density of E(f) is 

derived in section 4.2. Substituting into equation (4.2) and using (3.2), it can be found 

that, 

,

2
22 2 21

2 .
 

  
 

sig inputj i j clk
s

N T f V Gm
C

                                                                           (4.3) 

According to equation (3.8), the power of the ideal signal output with an ideal PN 

sequence is given by, 

,

2 2

2 2
,

1
.

 
  

 
sig inputsig output i

s clk

Gm
V T V

C f
                                                                     (4.4) 

The jitter-limited SNR, denoted as SNRj can be obtained with the help of (4.3) and (4.4) 

as follows, 

2
,

2 2 2
.

2




 sig output

j j clk

V

N fjSNR                                                                               (4.5) 

 varies with different spectrum distribution of the input signal. Assuming that the input 

signal’s spectrum is normally distributed then   is approximately 0.67 leading to, 

2 2

0.335




j clkfjSNR                                                                                                          (4.6) 
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For example, for fclk  =3 GHz, SNRj is limited to 36 dB by 3 psrms jitter and 52 dB by 0.5 

psrms of jitter standard deviation. 

 

Fig. 4.1 The ideal and real PN sequences with jitter included 

 

2

clkf

clkf  

Fig. 4.2 Spectrums of the PN sequence and the jitter induced PN error E(f) 
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(b) 

Fig. 4.3 Reconstructed Signal SNDR vs. signal sparsity & sampling rate with presence of 

(a) 3 psrms jitter and (b) 0.5 psrms jitter 

 

The reconstructed SNRs with 3 psrms and 0.5 psrms of jitter were simulated at the 

system level and plotted in Fig. 4.3. State of the art clock generators have achieved clock 



 

 

29

signals with 0.2 psrms jitter; e.g. [25]. In the simulations presented in Chapter VI, the 

jitter level was assumed  0.5 psrms.  

 

4.2 Spectrum density of E(f) 

 

In section 4.1 it states that the density of E(f) in the bandwidth of interest is given 

by 24 j clkf /Hz. This conclusion is derived in this section. 

PN jitter induced error e is not a periodic function so it needs to be tested in a time 

window much longer than the clock period to estimate its spectrum distribution. As 

shown in Fig. 4.4, we consider e over time duration T, and T>>1/fclk, where fclk is the 

clock frequency of the PN generator and 1/fclk is the minimum possible spacing between 

two adjacent error impulses. A single error impulse is shown in Fig. 4.5 and its spectrum 

is estimated as follows. 

 

 

Fig.4.4 The PN error function 
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2




2



 

Fig.4.5 A single error impulse 

 
Define the centre of the single impulse as the origin. For simplicity assume the 

magnitude of this impulse is positive. The single error impulse can be represented by, 

( ) 2i t  , for 
2 2

t
 

                                                                                        (4.7) 

( ) 0i t  , otherwise                                                                                                       (4.8) 

The fourier series of i(t) is given by, 

/2

0 /2

21
( )

T

T
a i t dt

T T




                                                                                                (4.9) 

 
/2

/2

2
( ) cos 2 /

T

n T
a i t nt T dt

T



 

4
sin

n

n T

 


 
  

 
                                            (4.10) 

When we only consider the power density at low frequencies, 1
n

T

 
 , we have, 

4
na

T


                                                                                                                     (4.11) 

The power density at low frequency is given by, 
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2 1

2
na

P
f




                                                                                                                 (4.12) 

Where f is the frequency spacing between  cos 2 /nt T  and  cos 2 1 /n t T    , which is 

equal to 1/T. We have, 

2
8 /P T                                                                                                               (4.13) 

Within the time window T, the PN sequence contains fclkT random binary numbers, error 

impulse only occurs when the binary number switches. The possibility of switching at 

the end of random binary numbers is 50%. Approximately the PN switches fclkT/2 times 

so there exist fclkT/2 error impulses. They are uncorrelated and their low frequency 

power density adds up. The overall low frequency power density of the PN sequence is 

give by, 

  2 28 / / 2 4PN clk j clkmean
P T f T f                                                             (4.14) 

where 2 j is the jitter variance. 
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CHAPTER V 

NOISE AND DISTORTION 

 

 
5.1  Noise analysis 

 

    In conventional receivers, the in-channel noise is a major concern. However, in a CS 

receiver, the signal is randomized such that the signal spectrum spreads out and overlaps 

with the noise present over the entire bandwidth. The noise in a single channel cannot be 

isolated and the total integrated noise over the signal bandwidth needs to be considered 

to estimate the SNR. In the rest of the dissertation, SNR always refers to the total 

integrated signal and noise power. Assuming that the anti-aliasing filter removes the out-

of-band noise and blockers, the system’s input SNR can be defined as, 

     
2 2

, ,/ sig input N INV VinputSNR ,                                                                                   (5.1) 

where 2
,sig inputV is the total input signal power and 

2
,N INV is the total input source noise 

power over the signal bandwidth BW . The output SNR of the system is defined by, 

    
2 2

, ,/ sig output N OUTV VoutputSNR ,                                                                            (5.2) 

where 
2

,sig outputV is the total signal power sampled at the output and 
2

,N OUTV is the total 

integrated noise power at the receiver output, with the following components, 

     
2 2 2 2

, , , ,  N OUT N Gm N OTA N IIV V V V .                                                                          (5.3) 
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Here
2

,N IIV is induced by the input source noise
2

,N INV while 
2

,N GmV and 
2

,N OTAV  are the 

output referred additive noise due to the RF-Gm stage and baseband OTA. Defining the 

noise gain and the signal gain as 
2 2 2

, ,/N N II N INGain V V  and 2 2 2
, ,/S sig output sig inputGain V V , 

the Noise Figure of the whole front-end NFA is given by,  

 10log /ANF input outputSNR SNR  

           10 log 1       ,                                                                             (5.4) 

Where 

         22 2
, ,/  N OTA S N INV Gain V                                                                      (5.5) 

         22 2
, ,/  N Gm S N INV Gain V                                                                         (5.6) 

         2 2 2
/ .  N S SGain Gain Gain                                                       (5.7) 

  and  represents the SNR degradation due to the OTA and the Gm stage, 

respectively.   is determined by the difference between the noise gain and the signal 

gain. The front-end gain is sensitive to the spectrum distribution of the signal according 

to (3.4). Since often the noise and the signal have different spectrum distributions, then 

the noise gain is usually not equal to the signal gain. 

         The parameters in equation (5.5)-(5.7) are quantified as follows. We mainly consider 

the impact of both thermal and flicker noise sources. 
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a)  Noise from the Gm stage 

The simplified noise analysis of the Gm stages is presented in this section. A more 

detailed mathematical analysis is provide in section 5.4. 

The blocking capacitor in Fig.3.6 removes the majority of the flicker noise 

generated in the Gm stages so only thermal noise is considered. Noise current outputting 

the Gm stage is mixed with the PN sequence and then integrated in Cs. By integrating 

the convolution of the Gm noise and the PN sequence shaped by the Sinc integrator in 

frequency domain, the total Gm-induced thermal noise power at the receiver output is 

given by, 

 
2

2
, ,

1 1

2
 

 
  

 
N Gm f i f Gm

s

V K T kTGm n
C

,                                                              (5.8) 

where Kf is the technology-dependant noise factor and nf,Gm is the additive noise factor 

depending on the circuit topology. For the employed 90nm CMOS process, Kf is 2.7. If 

an NMOS transistor is used as the main amplifying transistor biased by a PMOS, nf,Gm is 

around 1.3. Ti is the duration of the sampling phase and     is a numerical function 

depending on the normalized noise bandwidth  , 

/ 2   N clkf ,                                                                                                           (5.9) 

where N  is the bandwidth of the noise current due to the Gm stage, according to (3.11) 

we have,  

 2 1 / 2 .  N pgm gm C                                                                                   (5.10) 
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    is plotted in Fig.5.1. For example, when N is equal to 2 clkf ,    1 0.82    , 

then we have, 

2

2
, ,

1
0.41 .

 
  

 
N Gm f i f Gm

s

V K T kTGm n
C

                                                                   (5.11) 

Substituting equations (3.8) and (5.8) into (5.6), with fclk  being twice the signal 

bandwidth, yields, 

 
, 2

,

 






f f Gm

N IN

K n kT
GmV

,                                                                              (5.12) 

 

 

Fig. 5.1     vs. N  
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where 2
,N INV is the input source thermal noise density. The impact of the Gm stages in 

terms of Noise Figure is similar to that in the conventional receiver, but scaled by and 

 . The equation (5.8) is derived in section 5.4 in details. 

 

b) Noise from the OTA 

 

The simplified noise analysis of the OTAs is presented in this section. A more detailed 

mathematical analysis is provide in section 5.5. 

    Part of the high frequency thermal noise folds over the baseband spectrum due to the 

sampling operation and cannot be filtered by the subsequent filters. This sets the 

fundamental noise floor in Cs and limits the maximum achievable SNR of the whole 

system [26]. In this section, the noise floor introduced by thermal and flicker noise 

sources are quantified. 

Referring to Fig. 3.1, when the sampling switch S is ON, the single-ended equivalent 

circuit around the OTA is shown in Fig. 5.2. RO,Gm in the figure represents the series of 

the output resistor of the Gm stage and switch resistance. At the end of the integration, 

when the sampling switch is turned OFF, the stored noise in CS is equal to the total 

integrated noise in CS over the entire bandwidth. Assuming RO1 is comparable with RO2 

and gm1RO1>>1, gm2RO2>>1, the stored thermal noise in CS is given by,   

2 1
. , 1 2 2

,

1 1

4
O

Therm N Cs f f O
S O Gm

R
V K n kT gm R

C R
 ，                                                  (5.13) 
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Fig. 5.2 Active integrator equivalent circuit when sampling switch S is ON 
 

where nf1 is the additive noise factor of the first OTA stage, which is around 1.3 for this 

design. Since 2
,ThermN CsV  is stored in CS, it adds to the noise generated when S is OFF.  

When the sampling switch S is OFF and the ‘read’ switch is ON, the R0,Gm is removed 

and CL is dominated by the sampling capacitor of the following ADC denoted as CL.ADC. 

Assuming gm1RO1>>1, and 1

, 2

1C

L ADC

C gm

C gm
, the total integrated thermal noise at the 

output node is computed as, 

2
. , 1 2

,

1 1 1 1

4 4Therm N O f f f f
C L ADC

V K n kT K n kT
C C

   ，                                        (5.14) 

where nf2 is the additive noise factor of the second OTA stage. The first term in (5.14) is 

due to the first stage, mainly depending on the size of CC. The second term is contributed 

by the second stage and is determined by the size of the input capacitance of the ADC. 
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Since the OTA’s second stage employs a PMOS as the main amplifying transistor nf2 is 

around 4.3.  

    According to equations (5.13) and (5.14), the OTA-induced thermal noise that goes to 

the ADC is given by, 

2 2 2
. , . , . , . Therm N OTA Therm N Cs Therm N OV V V                                                       (5.15) 

The flicker noise of the OTA also makes a significant contribution at baseband. 

Illustrations of the flicker noise, thermal noise and the desired signal at the output of the 

integrator are shown in Fig. 5.3 (a). The density of the flicker noise can be modeled by a 

roll-off function A/f, however it is difficult to predict the amount of flicker noise by a 

general equation because A/f is an approximation and the parameter A depends on both 

the employed CMOS process technology and circuit parameters such as the transistor 

gate dimensions and the DC current that feeds the circuit. Flicker noise power in 

advanced submicron CMOS technology is significant. Simulations show that the total 

integrated flicker noise is over 10 times stronger than the thermal noise at the output of 

the integrators. Fortunately, the main part of the flicker noise concentrates at low 

frequency and can be filtered by a High-Pass Filter (HPF) in the digital domain. 

Assuming we include a digital HPF after the ADC that removes information in 

bandwidth 0-5 MHz as shown in Fig.5.3 (b), the flicker noise contribution approximately 

equals the total integrated thermal noise at the output of the integrator. In order to 

sample sufficient randomized signal information for the reconstruction, the bandwidth of 

the integrator needs to increase by 5 MHz in order to keep the same signal bandwidth. 

Therefore, the low IF signal bandwidth to be sampled is shifted by 5 MHz, so that the 
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rate of each path ADC needs to increase by 10 MHz. In the proposed receiver, the 

sampling rate of each ADC is 110 MHz instead of 100 MHz that was predicted in 

Fig.2.4. System level simulations have confirmed that the sampling scheme in Fig.5.3 

(b) has no negative impact on the signal reconstruction compared to that in Fig. 5.3(a).  

 

Fig. 5.3 (a) Illustrations of the flicker noise, thermal noise and the desired signal  

(b) The signal baseband is shifted by 5MHz 
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      Considering both thermal noise and flicker noise, 2
,N OTAV in equation (5.5) is given by, 

   
2 2

, . ,N OTA Therm N OTAV V  ,                                                                                   (5.16) 

where 
2

. ,Therm N OTAV is the thermal noise given by (5.15) and  is an additive factor due 

to the flicker noise that can be reduced by increasing the offset frequency in Fig.5.3 (b), 

leading to a low IF architecture. In this prototype,   is 1.8 when the frequency offset is 

5 MHz.  Equations (5.13) and (5.14) are derived in details in section 5.5 

 

c) Noise gain of the front-end 2

NGain  

By calculating 
2

,N IIV in the same way as
2

,N GmV is calculated, the noise power gain 

2

NGain is given by, 

2 2 2
, ,/N N II N INGain V V  

 
2

21 1
. 

 
  

 
i

s clk

T Gm
C f                                                                             (5.17) 

    depends on the bandwidth of 
2

,N INV . Given that the anti-aliasing filter before the 

Gm stages removes the out-of-band noise, the bandwidth of 2
,N INV is equal to the desired 

signal bandwidth BW. Typically BW is half fclk. Then    0.5 0.67     and the noise 

gain is given by, 

2
2 21 1

0.67 .
 

  
 

N i
s clk

Gain T Gm
C f

                                                                      (5.18) 
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Substituting (3.8) and (5.18) into (5.7), yields, 

 
0.67

.





                                                                                                           (5.19) 

When the signal is normally distributed, the noise gain equals the signal gain and 0  . 

When most of the signal power is located at low frequency the signal gain is larger than 

the noise gain and 0  , while 0   if the input signal is concentrated at high 

frequencies, leading to lower SNR figures.  

 

5.2 Distortion 

 

The Gm stage introduces non-linearity before the randomization. The most 

significant issue is the third-order inter-modulation distortion (IM3).  IIP3 (in dB) of the 

Gm stage represents how much IM3 is generated. With the input signal power denoted 

Pin (in dB), the signal to distortion ratio SDR at the output of the Gm stage is equivalent 

to 2(IIP3-Pin), and the distortion power is 3Pin-2IIP3 [27]. Assuming the full scale input 

is Pmax, the worst case distortion is 3Pmax-2IIP3. To achieve the desired SDR, IIP3 needs 

to be better than (3Pmax- SDR)/2. 

After the signal randomization at the mixer, the OTA in the active integrator also 

introduces non-linearity. However, the OTA does not directly distort the input signal. 

Rather, the OTA distorts elements in the Matrix S in Fig.2.3, which is the sampled data 

in CS. This alleviates the impact of the OTA-induced distortions, because signal 

reconstruction in the digital domain applies a random matrix, which is the inverse of the 
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applied PN sequences, to the sampled data S.  This randomizes the OTA-induced 

distortion in S. In the reconstructed signal spectrum, the randomized distortions appear 

as broad band random noise, and there are no significant spurious tones. Thus the 

ultimate impact of distortion from the OTA is similar to that caused by analog thermal 

noise. The amount of introduced noise power is equal to the power of the distortion 

generated by the active integrator. SDR at the integrator needs to be better than the 

targeted SNDR, so that the reconstructed noise floor does not rise.  

 

5.3 Other non-idealities 

 

Although the digital PN sequences are known, their analog waveforms are distorted 

by several unavoidable non-idealities such as clock timing offset and charge leakage at 

the sampler. Thus, a calibration step is necessary to obtain the actual matrix H V  

needed for signal reconstruction. To accomplish this, priori known single tone signals 

may be transmitted through the system to measure the system output response. Thus, the 

matrix H  obtained will include the effect of all the linear time-invariant errors in the 

front-end [28]. The calibration scheme is explained in details in chapter VI. It is 

preferred to design a fully differential front-end to make it more tolerant to clock feed-

through, power supply noise and other common-mode noise sources. 
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5.4 The mathematical derivations of the noise from the Gm stages 

 

The Gm stage generates thermal noise current  2
,N GmI f  at its output, given by 

 2
, , 2

1

21
N Gm f f Gm

N

I f K kTGm n
j f



 


                                                           (5.20) 

where N  is the -3 dB noise bandwidth. According to equation (3.11), 2 1

2N
p

gm gm

C





 .  

fK is a parameter depending on the process. It is equal to 2.7 with IBM 90nm CMOS 

process. Before going into the integrator this noise is mixed with the PN sequence. Let 

the power density of the PN sequence be  2PN f , given by 

 
2

2 1.8  
  

 clk clk

f
PN f Sinc

f f
,                                                                                  (5.21) 

where clkf  is the clock frequency of the PN generator. 

Now, let the noise current density after the mixer be  2
,N mixedI f , so 

     2 2 2
N,mixed ,   




  N GmI f I f PN d .                                                             (5.22) 

2
,N mixedI   enters the integrator and is shaped by the sinc type low pass filter  intH f . 

Assume the noise density at the output is  2
,N outV f , then 

      22 2
, , intN out N mixedV f I f H f  
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   
2

2
,  i

N mixed i
S

T
I f Sinc f T

C
.                                                                               (5.23) 

At the end of the integration window, the sampling switch S turns off and the noise 

power is sampled and conserved in Cs, so that the noise power over the entire bandwidth 

folds back into the signal band. Let the overall integrated noise power at the output be 

2
,N outV , 

   
2

2 2
, ,0




  i
N out N mixed i

S

T
V I f Sinc f T df

C
.                                                    (5.24) 

Because the -3 dB bandwidth of the sinc filter 1/2Ti is usually much smaller than the 

bandwidth of  2
,N mixedI f , the noise is almost constant in the band of interest. We 

assume  2
, 0 _ N mixed fI f N D , where N_D is the density of  2

,N mixedI f  at very 

low frequency.  Now, 

 
2

2
, 0

_ 


  i
N out i

S

T
V N D Sinc f T df

C

2
1

_
2

 
  
 

i

s

T
N D

C
.                      (5.25) 

A closed form expression for N_D is not available due to the convolution in  2
,N mixedI f , 

so system level simulation is employed to explore the relationship between N_D and 

critical design parameters. N_D versus / 2N CLKf  is simulated and N_D is given by, 

,_ f f GmN D K kTGm n                                                                                (5.26) 

 is plotted in Fig.5.1. The output noise power is given by, 
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2

2
, ,

1 1

2N Gm f i f Gm
s

V K T kTGm n
C


 

  
 

                                                                      (5.8)        

                    

5.5 The mathematical derivations of the noise from the OTAs. 

 

A useful equation is given here before the derivations, 

 

22 2 2 2
2 1 0 2 1 0 1 3 0 0 3 2 2 0 3 0

3 20
3 2 1 0 3 2 1 3 0 0

21

4






    


   
s j

n s n s n n d d n d d n d d n n d d
df

d s d s d s d d d d d d d
            (5.27) 

 

Fig. 5.4 The small signal model of the two stage OTA 

 

The open loop gain of the two stage OTA shown in Fig. 5.4 is derived as bellows.  

 1
1

   X
in C X O

O

V
V gm sC V V

R
                                                                         (5.28) 

 2
2

   O
X C X O L O

O

V
V gm sC V V sC V

R
                                                              (5.29) 
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(5.28) 
1 1 1

11


 


C O O in O

X
C O

sC R V V gm R
V

sC R
                                                                   (5.30) 

Substitute (5.30) into (5.29), 

1 1 1 1 1 1
2

1 1 21 1

  
      

C O O in O C O O in O O
C O L O

C O C O O

sC R V V gm R sC R V V gm R V
gm sC V sC V

sC R sC R R
 

 

1 1 2 2
2

2
1 2 1 2 2 2 2 1

1

1

 
 

  
    

C
O O

O

in C O L O C O O L O C O C O

sC
gm R gm R

gmV

V s C R C R s C R gm R C R C R C R
 

 

1 1 2 2
2

2
1 2 1 2 2 2

1

1

 
 

 
  

C
O O

C O L O C O O L O

sC
gm R gm R

gm

s C R C R s C R gm R C R
                                             (5.31) 

The overall transconductance of the two stage OTA is derived as bellows. Assume the 

output node is grounded, then, 

1
1

  X
in C X

O

V
V gm sC V

R
1 1

11
 


O

in X
C O

gm R
V V

sC R
                                            (5.32) 

2 out X C XI V gm sC V 2 1 1 1 1

1 11 1
   

 
O C O

out in in
C O C O

gm gm R sC gm R
I V V

sC R sC R
                (5.33) 

1 1
2

2
1

1

1

 
 

  


C
O

eq
C O

C
gm R s

gm
gm gm

sC R
                                                                      (5.34) 

Referring to Fig.3.1, when the sampling switch is turned off, the equivalent circuit is 

shown in Fig.5.5. The parasitic capacitor at the input of the OTA is ignored. 

 



 

 

47

 2
,N iV f

 

Fig. 5.5 Active integrator equivalent circuit when sampling switch is off  

 

Let  2
1,N iV f  be the input referred noise voltage density of the first stage and  2

2,N iV f  be 

the input referred noise voltage density of the second stage, the overall input referred 

noise is  2
,N iV f , 

 2
1, 1

1
N i f f

kT
V f K n

gm
                                                                                                                (5.35) 

  2 22
2, 2

f f
N i

eq

K n kTgm
V f

gm
                                                                                                                  (5.36) 

Substitute (5.34) into (5.36), we have,  

  22
2, 2

1 1
2

2
1

1

1

f f
N i

C
O

C O

K n kT
V f

C
gm R s

gm
gm

sC R


  

  
  

 
  
 

                                                                            (5.37) 

Then we have, 
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  22
, 1 2

1

1 1
2

2
1

1

1

f f
N i f f

C
O

C O

K n kTkT
V f K n

gm C
gm R s

gm
gm

sC R

 
  

  
  

 
  
 

                                                              (5.38) 

Where nf1 is the additive noise factor of the first OTA stage and nf2 the noise factor of the 

second stage. Let  Hn f  be the closed loop noise transfer function from  2
,N iV f  to the 

output node Y, given by 

   

 

1 1 2 2
2

2
1 2 1 2 2 2

1 1 2 2
2

2
1 2 1 2 2 2

1

1
H

1

1
1

 
 

 
  


 
 

 
  

C
O O

C O L O C O O L O
n

C
O O

C O L O C O O L O

sC
gm R gm R

gm

s C R C R s C R gm R C R
f

sC
gm R gm R

gm

s C R C R s C R gm R C R

 

 
1 1 2 2

2

2
1 2 1 2 2 2 1 1 2 2

2

1

H

1

 
 

 
 

     
 

C
O O

n

C
C O L O C O O L O O O

sC
gm R gm R

gm
f

C
s C R C R s C R gm R C R gm R gm R

gm

 

   

1 1 2 2
2

2
1 2 1 2 2 2 1 1 2 2

1

H

 
 

 
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C
O O

n
C O L O C O O L O O O

sC
gm R gm R

gm
f

s C R C R s C R gm R C R gm R gm R
                              (5.39) 

Now 2
, 1O NV  is the total integrated noise due to the first stage at the output, according to 

(5.27), 

 2 2
, 1 1,0

H


 O N n N iV f V df

 

2

1 1 2 2
2

1 20
1 1 2 1 2 2 2 1 1 2 2

1 C
O O

f f
C O L O C O O L O O O

sC
gm R gm R

gmkT
K n df

gm s C R C R s C R gm R C R gm R gm R



 
 

 
        
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2

2
1 0 2 1 2 2 21

1 2 1 1 2 2

1

1

C

f f
C L C O O L O

O O

sC

gmkT
K n df

C C C R gm R C Rgm s s
gm gm gm R gm R
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



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    

1
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1

1 2

1
1
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C

L
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C

O

C gm

C gm
K n kT

C
C

R gm





                                                                                                       (5.40) 

Now 2
, 2O NV  is the total integrated noise due to the second stage at the output, according to 

(5.27), 

 2 2
, 2 2,0

H


 O N n N iV f V df            

 
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2 1 1 2 2 1
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K n kT gm R gm R sC R
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 
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2 2 0 2 1 22 1 1
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1

1

f f C O
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C C C R gm Cgm gm R s s
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 



 

  

1
1 2 1

2

1
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1 1
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L
C O

O
f f
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C O

C
C R

gm gm R
K n kT

CC C R
gm





                                                                                           (5.41) 

Equation (5.14) is obtained by summing (5.41) and (5.40) with assumptions such as 

gm1RO1>>1, and 1

, 2

1C

L ADC

C gm

C gm
. 
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Fig. 5.6 The small signal model of the active integrator when the sampling switch is ON 

 

In Fig.3.1, when the sampling switch is turned ON, the output resistance of the previous 

stage is presented at the input of the active integrator (Fig.5.6). Here we use RIN  to 

generally represent this resistance. Assume RIN is bigger than RO2, by ignoring loading 

effects of the feedback path, going through the similar derivations for equation (5.31), 

we have,  

 
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     (5.42) 

Let  Hn f  be the closed loop noise transfer function from the input to the voltage across 

Cs, given by, 
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  (5.43) 

 

Now 2
, 1Cs NV  is the total integrated noise on Cs due to the first stage, according to (5.27), 
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Now 2
, 2Cs NV  is the total integrated noise due to the second stage at the output, according to 

(5.27), 
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Comparing (5.45) with (5.44), the noise given by the first stage is usually dominant. We 

got equation (5.13) by replacing INR  with ,O GmR in (5.44). 
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CHAPTER VI 

THE DESIGN PROCEDURE AND SIMULATIONS 

 
6.1  Specifications of critical blocks and block level simulations 
 

A CS front-end circuit was designed in the IBM 90nm CMOS technology. In 

simulation 0.5 ps state of art jitter variance is assumed and the system targets for 44 dB 

(7 bits) reconstructed signal quality. Performance of key circuit blocks and the power 

consumption are estimated by post-layout simulations. Parasitic extractions and 

simulations were done with Calibre and Cadence Spectre. The outputs of the front-end 

are connected to buffers that drive the external ADCs’ loading capacitance CL,ADC.  The 

external ADCs’ may be implemented on the PCB or emulated by digital oscilloscopes. 

In the simulations, a capacitor is inserted at the output of the integrator to emulate the 

ADCs’ loading. The power consumption of the testing-purpose buffers is not included. 

System level design specs are listed in Table 6.1.  

       For 50 ohms input impedance matching 2
,N INV is equivalent to -174dBm/HzBW , 

which corresponds to -82.24 dBm when integrated in BW=1.5 GHz.  In the proposed 

receiver 2
,sig inputV is expected to be -20 dBm and SNRinput is around 62 dB. The noise 

figure of the front-end is 12 dB to achieve 50 dB SNR. 2

SGain is around 20 dB to 

amplify the input signal up to the range of 0 dBm.  

Assuming R01 is comparable with R0,Gm and gm2R02  10, according to equations 

(5.13)-(5.15), CS, CC, and CL,ADC  needs to be 500 fF, 50 fF and 165 fF  to set up an 
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Table 6.1 Design specs of the CS front-end 

Input Signal Bandwidth 10 MHz ~ 1.5 GHz 

Number of  Parallel Paths 8 

Single Path sampling rate  

(10/256 signal sparsity) 
110 Ms/s  

Overall System Sampling rate 
880 MS/s 

 (29% Nyquist Rate) 

SNDR  with 0.5 ps jitter  44 dB 

Max. signal gain at the front-end around 20 dB 

Fullscale input / output  

-20 dBm / -2 dBm  

(referred to 50 ohms) 

 

0.06 / 0.5Vpp 

 

overall thermal noise floor such that SNR>50 dB. Leaving 3 dB design margin for the 

flicker noise, we used CS of 1 pF and CL,ADC  of 330 fF while CC is 300 fF to get enough 

OTA phase margin for the OTAs. The transfer function (Magnitude and phase) of the 

designed OTA is shown in Fig.6.1. The OTA used in the active integrator achieves 37 

dB DC gain and GBW of 251 MHz with 1.2 mW power consumption while driving CS 

and CL,ADC. The phase margin is 69 degrees. The worst case SDR of the active integrator 

is around 52.8 dB when a full scale signal is applied. According to simulations the OTA 
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induced noise is -52 dB with reference to the full scale signal when flicker noise between 

0~5 MHz is not accounted. The contribution of flicker noise above 5 MHz is 44 %. The 

noise contributions are distributed as shown in Fig.6.2. 

 

 

Fig.6.1 The Bode plot of the OTA 

 

 

Fig.6.2 The noise contribution distributions in the active integrator 
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      The Gm stages achieve Gm=6.5 mS and IIP3=6 dBm (referred to 50 ohm) with a 

power consumption of 2 mW. The Gm stages used in the 8 parallel paths consume 16 

mW. The SDR is 52 dB for an input signal power of -20 dBm. The simulated NF of each 

Gm stage is 10.2 dB. In the CS receiver, the Gm induced noise factor needs to be scaled 

by  /  , finally resulting in NF of  11.1 dB assuming   is 0.82 and   is 0.67. A plot 

of the NF over frequencies is shown in Fig.6.3. 

 

 

Fig.6.3 Noise Figure of the designed Gm stage 

 
A single PN generator that operates up to 3 GHz is designed with the employed 90nm 

CMOS technology. A screen shot of the PN sequence obtained through Cadence is 

shown in Fig. 6.4. The screen shot of the PN spectrum in simulation is shown in Fig.6.5. 

All the digital clocking circuits consume 57.6 mW. 
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Fig. 6.4 Example of the PN sequence 

 

Fig. 6.5 The spectrum of the PN sequence at 3GHz data rate 

 
At the final output of a single path, the output waveform looks like a few steps (Fig.6.6), 

each of which at the ‘read’ phase is a sampled data that forms the Matrix S. The output 

nodes are actually floating at the ‘reset’ phase. At that time the voltage is determined by 

the previous output and the charge injection from switches. The data at the moment is 

not usable. Useful data at ‘read’ phases are sampled by the following ADCs. 
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Fig. 6.6 The waveform of the output of a single path 

 

     Power consumption of the proposed system is summarized in Table 6.2, with power 

of ADCs included, as estimated in Section 3-2. According the block level simulations 

shown above, 7 bits SNR is achievable with this front-end. The layout of a single path is 

shown in Fig.6.7. The overall chip area for 8 paths is estimated to be 1000um x 1400um. 

 

Table 6.2 Compressive sensing system power summary 

Power 

consumption

@ 800 Ms/s 

Gm stages 16 mW 

Integrators 19.2 mW 

Clocks 

57.6 mW PN 

sequences 

ADCs 28 mW 

Overall 
120.8 

mW 
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Fig. 6.7 Layout of a single path in IBM 90 nm CMOS 

 

6.2  System level simulation and signal reconstructions 

 
Block level simulations suggest a SNR above 44 dB. However, the signal needs to 

be reconstructed from the simulated outputs of the front-end in Cadence to confirm the 

achievable reconstructed signal quality. Theoretically speaking, once we know the PN 

sequences that we employed, we can easily use the algorithm provided in Chapter II to 

reconstruct the incoming signals. The PN sequences are generated by known digital 

circuits so we know what exactly the binary sequences we sent to the mixers. However, 

In fact we don’t really know the actual PN sequences applied in the real circuit, because 

they are distorted by many kinds of circuit non-idealities. A few examples are shown as 

below. 
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a) Charge leakage 

Gm 
0V

 

Fig.6.8 Illustration of a single path circuit 

 
The simplified schematic of a single path is shown in Fig.6.8. The integrated signal 

charge in the sampling capacitor Cs keeps leaking exponentially through the finite 

output resistance of the Gm stage, denoted as RO,Gm. The time constant is given 

by sGmo CAR , , where A is the DC gain of the OTA. Due to the leakage, signal 

amplitude at the beginning of the sampling window is attenuated and the realistic 

sampling window is approximated as shown in Fig. 6.9. The amplitude of the real PN 

sequence is shaped by the sampling window, introducing signal errors.  

 

b) Clock offset 

The sampling clock generator and the PN generator are fed by a master clock signal 

however the master clock signal goes across the whole circuit chip so it arrives at 

different digital circuit blocks at different instants.  The sampling window of each single  
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Fig. 6.9 Ideal and real sampling windows and PN sequence 

 
path is shifted by this timing-offset. After the mixer, the signal is randomized so it 

consists of significant high frequency component. When high frequency signal is 

sampled, very little timing-offset of the sampling window will create considerable signal 

error.  

 

c) Finite rising / falling time and clock feed-throughs 

In reality, finite rising and falling time, as well as clock feed-throughs will further 

distort the PN sequence (Fig. 6.10). 

 

Fig. 6.10 The PN sequence with finite rising/falling time and clock feed-throughs 
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In order to show the effect of circuit imperfections on the signal reconstruction 

quality, a series of simulations have been conducted. In the simulation, the input signal 

to the front-end is assumed to be a 16-sparse frequency-domain multi-carrier signal with 

128 subcarriers, i.e. 128=S  and 16=K . The subcarrier-spacing 

MHzGHzf 7.8125=/1281=  and the symbol duration time nsfT 128=1/=  . The 

location of the 16 active subcarriers are chosen randomly and changed every T  seconds.  

Fig.6.11 gives the MSE (Mean Square Error) of the reconstructed signal versus the 

NSR (Normalized Sampling Rate) when there is no circuit imperfection.  As shown, the 

MSE is around -200dB when the NSR is increased up to around 0.5, which means that 

the signal can be viewed as reconstructed perfectly when the sampling rate goes beyond 

half of the Nyquist rate.  

 

Fig. 6.11 MSE of the reconstructed signal versus the normalized sampling rate when 

there is no imperfection 
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Fig. 6.12 shows the MSE of the reconstructed signal when the PN sequences have 

finite settling time, from these figures, we can see the system performance degrades if 

the circuit non-ideal factors are not treated properly. For example, with a finite settling 

time of 30ps, the best achieved MSE is only -20dB.     
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Fig. 6.12 MSE of the reconstructed signal versus the normalized sampling rate when the 

random PN sequences have finite settling time 

 
Calibrating those high order errors in post digital domain is difficult. However, 

fortunately the circuit non-idealities shown above are static errors and may be calibrated 

by the training technique shown in Fig.6.13. 

In Fig.6.13, y is the spectrum of the input signal and S is the sampled 

measurements. V+V is the distorted H  that contains all the linear static non-

idealities V in the circuit. Size of V+V is M*N, where N is the length of y, which is 

equal to the number of overall carriers in our case, and M is number of the overall 
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sampled measurements for each input carrier, depending on the expression 

 2log /K N K in section II. When every known single carrier signal is transmitted through 

the receiver, the output S is actually the single column of  V+V. The whole V+V can 

be measured by transmitting all N(256) carriers through the receiver. In other words the 

number of calibration iterations is equal to the number of sub-carriers N. The time that 

we need to transmit a single carrier needs to be integral multiples of periods of all 

carriers so it is 1/_f, where _f is the minimum frequency spacing among those N 

carriers.  

 

Fig. 6.13 Illustration of the direct training approach to deal with the circuit imperfections 

 

Validating the direct training approach with circuit level simulations is very time-

consuming (several months of simulations). The reason is that in the system there are 



 

 

65

both high frequency sources such as the PN sequence and low frequency signal such as 

the compressed output signal. High frequency signal makes the timing step for transient 

simulation very small and low frequency output can only be measured if used a very 

long time window. Due to the signal compression, the required time window for our 

simulation is extremely long compared to the timing step.  As explained above, the 

proposed calibration process requires transmitting all carriers one by one through the 

receiver, this requires several simulation months to get the reconstruction matrix V via 

simulation. Though it is impossible to simulate the entire matrix V of the proposed 

carriers’ base, validating the training technique with fewer carriers can be done within a 

few weeks. Here special simplified input signal with smaller carrier bases are employed 

to simulate the reconstructed signal quality through direct training, for making the 

simulation time reasonable. 

Assume we have 20 tones normally distributed over bandwidth of 0~1GHz. Only 2 

tones among them are active. The spectral occupancy (sparsity) is 10%. According to 

Fig.2.4, the required sampling rate is 46%. In simulation the receiver’s sampling speed is 

adjusted to 46% of the Nyquist rate which is 2GHz. The speed of the PN sequence is 

also dropped to 2GHz in order to increase the simulation time step. We ran coarse 

transient simulation 20 times to get the reconstruction matrix V, then we transmit a two-

tone signal through the receiver, finally we are able to reconstruct the original two-tone 

input with a SNDR around 40 dB. An example of the reconstructed spectrum is shown in 

Fig.6.14. 
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Fig.6.14 The reconstructed signal spectrum through directly training with coarse 

transient simulations 

 
Note that accurate conservative transient simulation takes too long time so coarse 

simulation setup were used. Though the result is not accurate, the reconstructed SNDR is 

close to what the block level simulations expect.  

The proposed receiver can be compared to a stand alone 3 GS/s and 44 dB SNDR 

ADC. Such a high speed and medium resolution ADC can be implemented employing a 

time-interleaved ADC architecture. Some recently published high speed time-interleaved 

ADCs are listed in Table 6.3. A flash ADC [29] is also included in the table. The Figure 

of Merit (FOM) is defined as the consumed energy per conversion step. When the signal 

is sparse, the FOM of the proposed receiver is significantly better due to the power 

reduction.  
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Table 6.3 Performance overview of comparable stand alone ADCs 

Design [5] [6] [7]a [7]b [29] 

This 

work 

(sim.) 

Sampling Rate   (GS/s) 1 0.8 1.35 1.8 3.5 3 

ENOB  

(SNDR in dB) 

 

8.85

(55) 

 

 

9 

(56) 

 

 

7.7 

(48.2)

 

 

7.9 

(49.4)

 

 

4.9 

(31.18) 

 

 

7 

(44) 

 

Power consumption (mW) 250 350 180 420 98 120.8 

Process(nm) 130 90 130 130 90 90 

FOM （pJ/conversion step） 0.56 0.85 0.64 0.98 0.94 0.31 

Signal Sparsity Arbitrary 4% 

2ENOB

P
FOM

SR
 ,  

where P is the power and SR is the ADC sampling rate. 

 

The power consumption of the digital PN and clock generators is as high as 62% of the 

overall power in the proposed RF front-end, which will shrink significantly with 

technology scaling. In table 6.3, only the ADC core power is considered. A finer 

comparison that takes into account the power consumption of the master clock 

generating circuit (such as the Phase Lock Loop) is provided in Chapter VII.  
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The sampling rate of the integrator and the sampler only depend on the clocking 

scheme, leading to a flexible reconfigurability that enables the system to accommodate 

input signals with different sparsity levels. Although the system designed in this Chapter 

targets a signal sparsity of around 4%, by over-designing the OTAs and ADCs, the 

sampling rate of the system can be increased up to the Nyquist rate to sample non-sparse 

signals. As shown in Fig. 2.4, when an input signal exhibits a high degree of sparsity, the 

required system sampling rate is low and signals are readily reconstructed with a CS 

algorithm. When the signal sparsity is 25% or larger, the required sampling rate 

approximates the Nyquist rate and the Least Square (LS) algorithm may be used to 

reconstruct the signal [30]. The LS algorithm is able to reconstruct signals with arbitrary 

sparsity when the system works at Nyquist rate. The OTA needs a GBW of 600 MHz to 

settle within 7 bits resolution. Furthermore, the sampling rate of the following ADCs 

needs to be tunable up to 380 MS/s.  
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CHAPTER VII 

TESTING OF THE CS DATA ACQUISITION SYSTEM 

 

7.1 The testing with discrete components  

 
Before the testing of the integrated front-end designed in chapter VI and fabricated 

with IBM 90nm CMOS process, a CS system implemented with discrete components 

and microcontrollers was built and tested for the purpose of prove of concept. Discrete 

components have different characteristics from the integrated circuits so the front-end 

topology is a little bit different from what is proposed in Chapter III. For example, the 

Gm stages implemented by discrete amplifiers have very large output resistance and 

fairly good linearity due to large supply voltages so active integrators are not necessary 

and only passive integrators are employed. Furthermore, sampling windows of two 

integrator branches overlap at their edges for providing the flexibility on setting the 

locations of the nulls of the sinc type LPF [28].  

The simplified math model of the system is shown in Fig.7.1. The math model is a 

little bit different from that introduced in Chapter II because of the overlapping sampling 

window so the variables mentioned in this section are clarified as follows. The received 

signal )(tr  is the transmitted frequency-domain K-sparse real signal )(tx  plus the 

additive white noise.  For  the time period of ][0,Tt , the received signal is sent to the 

proposed N -path receiver. At the ith path, the received signal is mixed with a local  
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Fig.7.1 System architecture 

 
random signal )(ti  and the output of the mixer is sent to an integrator. The integrator 

has an integration duration of  cT  which is a segment of T . Moreover, two adjacent 

integration periods have an overlapping time of mc TT  . The output of the integrator is 

read out and the integrator is reset every mT  seconds (Note: the first read and reset 

operations happen after cT  seconds).  

Alternatively, the above mixer and integration procedure can be viewed as the 

received signal )(tr  is segmented into M  pieces 1
0=|)()(=)( M

mmm twtrtr  with a duration 

time cT and overlapping period mc TT  , where, )(twm  is the windowing function, and 

then the time windowed signal )(trm is sent to the integrator with a integration period of 

T .  
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Since each path produces M  samples, there are total MNL =  samples generated 

every T  seconds and the thm  measurement of the thn  branch is given by:  

 dtttrdtttrttry nmN
cTmmT

mmTnm

T

nmNmnmN )()()()(=)(),(= **

0 



                  (7.1) 

 Where, )()()( twtt mnnmN    is chosen randomly for all m  and n .  

In the back-end of the receiver, the total MNL =  samples are processed together 

using  the Orthogonal Matching Pursuit (OMP) to reconstruc the transmitted signal. 

 

a) Parameter setting 

 

In the built prototype, the input signal is a BPSK modulated multi-tone sparse 

signal with a bandwidth of 200 KHz, the transceiver consists of 4 parallel paths working 

at 32 KHz, which means that each path works at only 8% of the Nyquist rate and the 

whole receiver works at 32% of the Nyquist rate.  The input signal is assumed to be a 4-

tone BPSK modulated multi-carrier signal which range over the frequencies of 0~200 

KHz. The channel spacing is 2 KHz. The complete testing period is 500µs so all the 

channels have integral number of periods during the testing period.  Matlab simulation 

shows that the system can achieve a BER(Bit Error Rate) of 5.36E-4 when each parallel 

path produces 16 samples over 500µs, i.e.,  16M . The Gm stages are implemented 

with TIOPA861 that provides 116 mS transconductance gain. The switches are 

implemented with discrete transmission gates CD4066BCN. The sampling capacitor is 

17 nF.  Tc is 36.5 µs and TOV is 5.6 µs.  



 

 

72

b) The implementation of the Test-bed and building blocks 

 

The overall configuration of the test-bed is shown in Fig.7.2, where the digital part 

is responsible for generating the input sparse signal, the triggering signal, the pseudo-

random basis and the clock. The analog part is used to realize the random basis 

projection that is essential for the signal reconstruction. The build-in ADC in the 

oscilloscope is used to collect the sampled data. Then, the collected data is sent to PC 

and processed by Matlab code to reconstruct the signal.  

 

 

Fig.7.2 Overall configuration of the test-bed 

 

Agilent 33120A arbitrary waveform generator is used to generate the input multi-

tone sparse signal. The output port of the generator is triggered by the mico-controller in 

order to synchronize with the integrator clock that is also generated by the micro 

controller. Fig. 7.3 gives an example of a five-tone signal which consists of carriers at 2 

kHz, 8 kHz, 10 kHz, 16 kHz and 18 kHz. Fig. 7.4 shows the actually photo shot of an 

example of the generated multi-tone waveforms. 
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Fig.7.3 Multi-tone signal with frequencies 2kHz, 8kHz, 10kHz, 16kHz, 18kHz 

 

 

Fig. 7.4 The photo shot of the generated multi-tone waveforms 

 

The integrator schematic is shown in Fig.7.5. 
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Fig.7.5 Schematic of the integrator with overlapping windowing 

 

1  and 1  are two integration switches for the left and right branches, respectively. 1o  

and 2o  are readout switches; r1 , r2  are reset switches. The clock diagram is shown in 

Fig.7.6.  

 

Fig.7.6 Clock diagram of the integrator 
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As shown in Fig.7.6, phase1 and phase3 are two overlapping durations, phase2 and phase4 

are readout phases for the right and left branches, respectively. The equivalent 

integration windows are shown in Fig.7.7. 

 

 

Fig.7.7 Time window of the integrator 

 
The complete circuit implementation for a single path is shown below in Fig.7.8. 
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Fig. 7.8 The circuits implementation for a single path 
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At each path, the mixer consists of transmission-gate switches controlled by PN 

sequences. The PN sequence is implemented with a linear feedback shift register 

(LFSR). In our prototype, the clock frequency is chosen to be 1 MHz, which is higher 

than the Nyquist sampling rate. There are 4 parallel paths and 4 independent PN 

sequences with a length of 500 are needed. An 11-bit LFSR is used to generate a PN 

sequence with a length of 2047 and then divided into 4 segments.  

The inherent ADC of the oscilloscope (Tectronix TDS 3054 500MHz, 5Gs/s) 

samples the output of the integrators. The sampled data is transferred to the PC via the 

GBIP port.  

The signal is reconstructed in Matlab through the Orthogonal Matching Pursuit by 

exploiting the direct training method introduced in Changer VI. 100 single-tone training 

symbols are first sent to form the 64 by 100 reconstruction matrix. Then, the system is 

tested with multi-carrier data symbols: 
i

ii tfatr 2cos)( , where 1or  1 ia , 

)100,2,1( )1*2(  iKHzif i . Some reconstructed examples are shown in Table 

7.1, where the signal is expressed as a vector of its frequency components with the 

negative sign representing the BPSK modulated information of “-1”. The frequencies 

and their modulated phases are correctly reconstructed. The system can reconstruct 

multi-tones signal with number of tones up to 4. The photo shot of the complete test 

bench is shown in Fig.7.9. The employed print circuit board is shown in Fig.7.10. The 

actual generated clock signals that control the integrators are shown in Fig.7.11. An 

example of the final output waveform exiting the integrator is given in Fig.7.12. In 
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Fig.7.12 it is shown that during the reading and holding phases the waveform is not flat, 

it is because of the leakage current from the sampling capacitor. Though it is difficult to 

avoid leakage current with discrete circuit parts, this problem is later solved with the 

integrated front-end where the leakage current is comparably small. 

 

Fig.7.9 The whole test bench setup 
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Fig. 7.10 View of the circuit board 

 

 

Fig.7.11 System clocks generated by the microcontroller 
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Fig. 7.12 An example of the waveform at the output of a single path 

 

Table 7.1 Measurement results 

Sub-carrier’s  

amplitude (mV) 

Input Testing signal 

frequency (kHz) 

Reconstructed signal’s 

frequency (kHz) 

0.3 [61, 121] [61, 121] 

0.3 [41, 131] [41, 131] 

0.3 [41, -131] [41, -131] 

0.3 [-51, 63, 111] [-51, 63, 111] 

0.2 [71, -85, 91, -101] [71, -85, 91, -101] 

 



 

 

80

7.2  An IC front-end fabricated with 90nm CMOS process  

 
a)  Introduction 

 
The CS front-end designed in Chapter VI is fabricated with IBM 90nm CMOS 

process. The on-chip system contains one single path including the Gm stage, the 

differential mixer, the active integrator, the sampling clock generator and the PN 

generator. Some auxiliary circuit blocks such as the biasing current generator, the clock 

buffers and the output testing buffers are also included. The complete 8 paths CS system 

may be implemented on a single print circuit board incorporated with 8 individual 

fabricated chips. In chapter VI the system is originally designed for accommodating 

wide band input signal from 0~1.5GHz. In this chapter, the arbitrary wave generator 

agilent N8241A which is employed in the testing to generate the wide band multi-tone 

signal provides a maximum signal bandwidth of 500 MHz, so the input bandwidth is 

0~500 MHz in the testing. The internal clock of the arbitrary signal generator is 1.25 

GHz, which is used as the master clock of the PN generator. 

The input is assumed to be a multi-tone BPSK signal. The frequency spacing 

between adjacent carriers is assumed 5 MHz. The 100 carriers’ base is from 5MHz to 

500MHz. It is also assumed that the frequency domain sparsity of the input signal is 

around 4%, which means that there are at most 4 active tones. The minimum required 

data rate of the PN sequence needs to be as high as the Nyquist rate, which is 1 GHz. In 

our test bench, the speed of the PN generators is 1.25 GHz. According to Fig.2.4, the 

minimum required sampling rate is 26% of the Nyquist rate. In the testing, we set the 
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system sampling rate conservatively at 36%, which is 360 MS/s. Since 8 paths are 

employed to form the whole CS system, each path samples at 45 MHz. 

The time duration of a single testing run is 1 / 5 MHz = 200 ns so that it is the 

integral multiples of the all carriers’ periods. The employed PN generator contains 11 

flip-flops and generates a PN sequence with overall length of 2047. The length of each 

PN sequence in a single path is about 256, with a time during of 256/1.25=204.8 ns 

which is sufficient to cover the complete testing duration. The input signal power is 

assumed -20 dBm referred to 50 ohm. The system level specifications of the CS system 

in the testing are provided in Table 7.2.  

 

Table 7.2 Design specs of the CS front-end in testing 

Input Signal Bandwidth 5 MHz ~ 500MHz 

Number of  Parallel Paths 8 

Single Path sampling rate  

(10/256 signal sparsity) 
45 Ms/s  

Overall System Sampling rate 
360 MS/s 

 (36% Nyquist Rate) 

Fullscale input / output  
-20 dBm / -2 dBm  

(referred to 50 ohms) 
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b)   The testing setup 

   
          At the beginning of the testing run, the 8 PN sequence generators in the 8 paths 

need to be reset to the required initial states for generating different uncorrelated PN 

sequences. The suggested initial states for the 8 PN generators are listed in Table 7.3. 

QN represents the output state of the Qth flip-flop. 

 

Table 7.3 Initial conditions for 8 independent PN sequences 

 
Q
1 

Q
2 

Q
3 

Q
4 

Q
5 

Q
6 

Q
7 

Q
8 

Q
9 

Q 
10 

Q 
11 

PN1 1 1 1 1 1 1 1 1 1 1 1 
PN2 1 1 1 0 1 0 1 0 1 1 0 
PN3 0 0 0 0 0 0 1 0 1 0 1 
PN4 1 1 1 1 0 1 0 1 0 0 1 
PN5 0 0 1 0 1 0 1 1 0 0 0 
PN6 0 0 1 0 1 0 1 0 0 1 0 
PN7 1 1 0 1 0 0 0 0 1 1 0 
PN8 1 1 1 0 1 1 1 1 0 0 1 

 

 

        In this chapter, one single path is re-used to emulate the behavior of the 8 paths 

system for lowering testing cost. The data sampled in the first 200 ns are considered as 

the data from the first path. The single testing duration 200 ns is the integral multiples of 

any carrier’s period, so the wideband input signal repeats again from 200 ns to 400 ns 

and the tested path emulates the operation of the second virtue path. In this time period, 

the PN sequence is un-correlated with the PN sequence’s first section from 0 ns to 200 

ns, and the data sampled from 200 ns to 400 ns are considered as the data sampled from 
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the second path. In the same way, the tested path emulates the third path from 400 ns to 

600 ns. The testing duration lasts for 1600 ns to get sampled data of all the 8 paths. The 

test bench diagram is shown in Fig.7.13. A photo copy of the test bench is shown in 

Fig.7.14. The ADC is emulated by the digital oscilloscope DSA91304A. The differential 

front-end outputs are sent to the oscilloscope by the differential probe 1169A. The clock 

signals, triggering signals, as well as the arbitrary wideband tested signal, are all 

generated by the arbitrary waveform generator N8241A so they are readily synchronized 

and phased locked inside the N8241A. The jitter variance of the 1.25 GHz clock signal 

provided by N8241A is 4.13 ps, so the proposed system targets for SNR of 41 dB 

according to equation (4.6). 

      On the PCB, RF transformers cx2156 with bandwidth 2.3MHz~2700MHz turn the 

single-ended arbitrary input signal and the single-ended clock signals into differential 

signals. Differential signals are sent into the one-path chip for rejecting common mode 

noises. Furthermore, due to the bondwire inductance, the GND inside the chip and the 

GND on the PCB are not exactly the same. The mismatches between the board GND and 

the chip GND are also rejected when differential clocks are sent. Biasing voltages and 

currents are controlled by potentiometers. The photo copy of the PCB is shown in 

Fig.7.15.  
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Fig.7.13 The diagram of the complete test bench 

 

 

Fig.7.14 The photo copy of the test bench 
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Fig.7.15 The photo copy of the PCB 

 

c)  The testing result and the signal reconstruction 

 
       An example of the output wave is shown in Fig.7.16. Each path needs to obtain 200 

ns * 45 MHz = 9 samples. When one single path is reused, overall 72 samples are 

obtained at the output. The green waveform is the reset/trigger signal that synchronizes 

the starting point of the PN sequence and the phase of the input carrier signal. The 

enlarged waveform is shown in Fig.7.17, with the reading and resetting phase marked. 
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Fig.7.16 The screen shot of an example of the output waveforms (50MHz input) 

 

 

Fig.7.17 Illustration of the reading and resetting phase (a piece of the output waveform 

with 50MHz input) 
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      Sampled data that are distributed to 8 paths are illustrated in Fig.7.18. 

 

 

Fig.7.18 The reusing of a single path to get sampled data from 8 paths 

 
      Direct training is employed to reconstruct the input signal in digital domain. Each 

tone is transmitted through the front-end and the output vectors are measured and stored 

to form the reconstruction matrix. If the input signal has arbitrary phases, both sin waves 

and cosine waves of all the carrier frequencies need to be trained to obtain the complete 

reconstruction matrix that associates both sin and cosine carriers’ base. In the proposed 

prototype the BPSK signal is present at the input and the phases of the desired signals 

are either 0 or 180 degree. Thus only sine waves of the carrier frequencies need to be 

trained to reconstruct the assumed BPSK signal. If the input signal is a QPSK signal or 

signals with arbitrary starting phases, the cosine waves at carrier frequencies also need to 

be trained. 

 With the measured reconstruction matrix, arbitrary wideband BPSK input signals 

over 5MHz~500MHz frequency range with a frequency domain sparisty of 4% or less 

can be reconstructed. We defined the reconstructed signal SNR as the overall power at 

the desired signal carriers over noise power over all other undesired frequency spectrum 
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(overall integrated power of the noise floor). The SNR obtained in the single tone test 

over the band of interest is shown in Fig.7.19.  
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Fig.7.19 The reconstructed SNR vs. frequency 

 
      Some reconstructed spectrums obtained with multi-tones input signals are shown as 

belows. The reconstructed SNRs are between 24 dB and 30 dB.  The Spectrums of case 

1~5 are plotted with absolute values. The spectrum of case 6 is plotted with the original 

amplitude including the negative signs. 

 

Case 1:  

Freq=20MHz, 70MHz, 250MHz, 450MHz 

The reconstructed SNR= 27.74dB 

The reconstructed spectrum is shown in Fig.7.20. 
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Case 2: 

Freq=50MHz, 250MHz, 490MHz 

The reconstructed SNR=29.2627dB 

The reconstructed spectrum is shown in Fig.7.21. 

 

Case 3: 

Freq=50MHz, 150MHz, 250MHz, 490MHz 

The reconstructed SNR= 29.42 dB 

The reconstructed spectrum is shown in Fig.7.22. 

 

Case 4: 
 
Freq=50MHz, 250MHz, -490MHz (with 180 degree initial phase) 

The reconstructed SNR= 29.616 dB 

The reconstructed spectrum is shown in Fig.7.23. The plotted amplitudes are the 

absolute values. 

 

Case 5: 
 
Freq=20MHz, -70MHz (with 180 degree initial phase), 250MHz, 450MHz 

The reconstructed SNR= 26.657 dB 

The reconstructed spectrum is shown in Fig.7.24. The plotted amplitudes are the 

absolute values. 
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Case 6: 
 
Freq= -20MHz (with 180 degree initial phase), -70MHz (with 180 degree initial phase), 

250MHz, 450MHz 

The reconstructed SNR= 24.53 dB 

The reconstructed spectrum is shown in Fig.7.25. 
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Fig.7.20 The reconstructed spectrum with the input at 20M, 70M, 250MHz, 450M  
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Fig.7.21 The reconstructed spectrum with the input at 50M, 250M, 490M  
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Fig.7.22 The reconstructed spectrum with the input at 50M, 150M, 250M, 490M 
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Fig.7.23 The reconstructed spectrum with the input at 50MHz, 250MHz, -490MHz 

(phases shifted by 180 degree) 
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Fig.7.24 The reconstructed spectrum with the input at 20MHz, -70MHz (phases shifted 

by 180 degree), 250MHz, 450 MHz 

 

Fig.7.25 The reconstructed spectrum with the input at -20MHz (shifted 180 degree), -

70MHz (shifted 180 degree), 250MHz, 450MHz 
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      Higher frequency carriers are with higher signal amplitudes because of the pre-

distortion operation (applying an internal equalizer) inside the arbitrary waveform 

generator N8241A. The spectrum of the 10 tones signal exiting the N8241A is shown in 

Fig.7.26. The spectrum is tested and calculated directly by the FFT function of the 

oscilloscope DSA91304A. 

 

 

 

Fig.7.26 The pre-distorted spectrum of the multi-tone wideband signal exiting the 

N8241A 
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      The reconstructed SNRs with multi-tones input signals are summarized in Table 7.4. 

The symbol ‘-‘ represents a signal with 180 degree phase shift. 

 

Table 7.4 Reconstructed multi-tones signals from the GHz CS system 

Input Testing Signal 

Frequencies (Hz) and phases 

Reconstructed Frequencies 

(Hz)  and phases 
Reconstructed SNR  

20 M, 70 M, 250 M, 450 M 20 M, 70 M, 250 M, 450 M 27.74 dB 

50 M, 250 M, 490 M 50 M, 250 M, 490 M 29.2627 dB 

50 M, 150 M, 250 M, 490 M 50 M, 150 M, 250 M, 490 M 29.42 dB 

50 M, 250 M, -490 M 50 M, 250 M, -490 M 29.616 dB 

20 M, -70M, 250 M, 450 M 20 M, -70M, 250 M, 450 M 26.657 dB 

-20 M, -70M, 250 M, 450 M -20 M, -70M, 250 M, 450 M 24.53 dB 

 

The reconstructed SNR is mainly limited by the 4.13 ps PN jitter. The maximum 

achievable SNR with the single tone test is around 40 dB. The SNR with a single tone 

input degrades gradually to 34 dB with the frequency increasing because the gain of the 

front-end rolls off at high frequency as explained in Chapter III. When multi-tones input 

signals are present at the input, due to the low peak-to-average value, the overall signal 

power is lower than the single tone input signal with the same fullscale peak-to-peak 

amplitude, so the input SNR as well as the reconstructed SNR is around 10 dB lower 

than that in single tone tests. The tested system may be considered as an A-to-D system 

with 6 bits ENOB and 1 GS/s sampling rate. The power consumption of the system as 



 

 

95

well as the estimated power consumption of the ADCs is scaled down compared to that 

in Table 6.2 due to working at lower frequency. The overall power consumption of the 

tested system is around 54 mW. 

 
 

d)  Comparison to the state-of-art Nyquist rate data acquisition system 

 
Simple comparison between the tested CS system and the Nyquist rate data 

acquisition system can be made by calculating the traditional ADCs’ FOM as shown in 

Table 6.3. However, FOMs shown in the table didn’t take into account the power 

consumption of the master clock generating circuit (PLL). The performance of high 

speed data acquisition systems significantly relies on the quality of the master clock. For 

example, in the time-interleaved ADC architecture, the sampling clock jitter limits the 

maximum achievable SNR. Also in the tested CS system, the PN jitter setups the 

reconstructed noise floor. Power consumption of the PLL that generates the required low 

jitter clock needs to be considered. The ISSCC low-jitter PLL designs demonstrate an 

average FOM of -230 dB [32]. The PLL’s FOM is defined as below [32], 

 

2

10log
1 1
jitter PLL

PLL

Power
FOM

s mW

         
    

                                                (7.2) 

 

        In the proposed CS system, due to the signal compression, the sampler works at low 

frequency so the reconstructed SNR is usually not limited by the sampling jitter. The 



 

 

96

system suffers less from the clock jitter compared to that in traditional Nyquist rate 

ADCs. 40 dB maximum SNR is achieved with 4.13 ps jitter variance. (7.2) suggests that 

the power consumption of the required PLL is below 1 mW. The power consumption of 

the ADC, front-end core plus the PLL is about 55 mW. The FOM of the complete data 

acquisition system is 0.66 pJ/conversion step. The proposed CS system achieves 44 dB 

ENOB with 0.5 ps jitter variance in simulation. In that case, the modified FOM is 0.41 

pJ/conversion step taking into account the estimated 40 mW PLL power. 

      In traditional Nyquist rate sampling circuits, the signal SNR is limited by the 

sampling jitter [33], 

 

 20log 2 signal jitterSNR f                                                                     (7.3) 

 
 In reference [5], 55 dB ENOB is achieved. The maximum signal frequency is 500 

MHz which is half the sampling rate. Assume that the jitter limited SNR is 60 dB, 

leaving reasonable margin for the thermal noise, quantization noise and distortions. 

According to (7.3) the required jitter variance is 0.32 ps. (7.2) suggests that the required 

PLL burns 97.6 mW. The overall power of the complete ADC system is 347.6 mW. The 

FOM of the system is 0.78 pJ/conversion step.  

The modified FOMs including those of [6] and [7] are calculated and listed in  table 

7.5. It is shown that when the signal exibits 4% sparisty in frequency domain, the 

proposed CS data acquisition system has a better FOM.  

 

 



 

 

97

 
Table 7.5 FOMs of state-of-art data acquisition systems including estimated power of 

PLLs 

Design [5] [6] [7]a [7]b 

This 

work 

(sim) 

This 

work 

(test) 

Sampling Rate   (GS/s) 1 0.8 1.35 1.8 3 1 

ENOB  

(SNDR in dB) 

 

8.85

(55) 

 

 

9 

(56) 

 

 

7.7 

(48.2)

 

 

7.9 

(49.4) 

 

 

7 

(44) 

 

6.4 

(40) 

 

Power consumption (mW) 348 448 217 509 160.8 55 

Process(nm) 130 90 130 130 90 90 

FOM （pJ/conversion step） 0.78 1.08 0.77 1.19 0.41 0.66 

Signal Sparsity Arbitrary 4% 4% 

2ENOB

P
FOM

SR
 ,  

where P is the power and SR is the ADC sampling rate. 
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CHAPTER VIII 

CONCLUSIONS 

 

The Compressive Sensing theory suggests that a sparse signal may be partially 

compressed before the sampling. In communication applications, frequency domain 

sparse signal is commonly present at the input of the front-end. The sampling rate of the 

ADC can be lowered by compressing the incoming signal before it is sent to the ADC. 

According to the basic math model of Compressive Sensing theory, it is shown that the 

compression operation before the sampling can be implemented with front-end 

architecture that is similar with traditional RF receiver front-ends, except for that the 

local oscillator signal is replaced with a Pseudo-random number sequence. The PN 

sequence randomizes the spectrum of the input signal and creates the fundamental 

mechanism allowing a low frequency ADC to sample part of the information of the input 

signal at very low frequency range. The sampled data are finally sent to the following 

ADC and reconstructed in digital domain. Without the impact of noise and other circuit 

non-idealities, the signal can be perfectly reconstructed with sampling rate much lower 

than the Nyquist rate, enabling us to simultaneously detect the whole ultra-wide 

bandwidth with acceptable power consumption. In reality, the reconstructed signal SNR 

is limited by noise, distortion and clock jitter. Among those non-idealities, jitter variance 

is the most critical because the operation of the front-end strongly relies on various 

control clocking signals. The impact of circuit noise and distortion is different from that 

in conventional RF front-end due to the signal randomization. Specific equations and 
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design procedures should be employed to determine the circuit specifications. The 

prototype designed in Chapter VI achieved 7 bits resolution and 3 GS/s effective 

sampling rate in simulation assuming a 0.5 ps state-of-art jitter variance. In the testing, 

with a 4.13 ps clock jitter and 1 GS/s effective sampling rate, 40 dB maximum SNR is 

achieved with single tone input and 24~30 dB SNR is obtained with multi-tone input 

signal. Frequencies and phases of all the various input carriers are reconstructed 

correctly. The proposed system achieves better Figure of Merit compared with the high 

speed state-of-art ADCs.  

A low frequency version of the CS system is also designed and implemented with 

discrete components in very noisy environment. It is shown that the CS reconstruction 

algorithm is very robust to noise’s impact and there is no problem to reconstruct the 

correct frequencies and phases. 

The PN sequences that are applied to the real circuit are distorted by the charge 

leakage, the finite rising/falling time and clock skews. It is difficult to calibrate those 

higher order errors in digital domain. Direct training method may be employed to form 

the reconstruction matrix that contains all the static circuit non-idealities. All the input 

carriers need to be transmitted through the front-end tone by tone in order to complete 

the training process.  

      The design bottle neck of the CS data acquisition system is transferred from the 

analog parts such as the ADCs to digital circuits such as the PN sequence generators. 

The speed, or data rate, of the PN sequence needs to be at least the Nyquist rate of the 

input signal bandwidth to avoid aliasing so the maximum input signal bandwidth is 
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determined by how fast the PN sequence is. Also, the jitter noise from the PN generator 

is also a main source that contributes to the reconstructed noise floor. Parallel PN 

generators may be employed to boost the data rate of the generated PN sequences. The 

hardware requirements on the analog parts are significantly relaxed due to the signal 

compression. The base band filters and the ADCs are working at low frequency and the 

power consumption is reduced. Almost half of the overall power consumption of the 

designed prototype comes from the digital clocking generators, which is supposed to 

shrink further in future with the technology scaling. 
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APPENDIX A 

PSEUDO-CODE FOR CS RECONSTRUCTION WITH OMP 

(Definitions of  x, s, and   are given in chapter II) 

 

Initialization: s0z =  

 

Iteration: for = 1:k K , do 

       (1) Calculate the projection of the residue over the direction of jV  for all j   

                , 1=k j k jb  z ,V  

              where, jV  is the jth  column of  the reconstruction matrix H V  

       (2) Find the column 
ki

V  such that  

                ,= arg maxk k ji b  

       (3) Compute the new residue kz   

               ˆ = k

k k

k i
k

i i

a
 

 

z , V

V , V
 

               1 ˆ=k k k ik
a z z V  

 

 Output the reconstructed signal:  
=1

ˆ=
K H

k ik k
x a  

where, H
ik

  is the ki th  column of H
ik

 . 
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APPENDIX B 

OPTIMIZATION PROBLEM FOR PSCS 

 

In the PSCS architecture, the input signal yx H  is fed into P  parallel paths. In the 

thp  path, x  is mixed with a random basis function p . The output of the mixer is then 

sent to segmented timing windows with a width of iT  and integrated. The output of the 

integrators are sampled and Q  samples are collected at each path. The thq  sample of the 

thp  branch is given by,  

.=
)1(,  

i

i

qT

Tq ppq dtxs  

     There are a total of PQM =  samples collected and these samples are organized into 

a vector as follows,  

1 2= [ , , , ] ,T T T T
Qs s s s    

where, ,1 ,2 ,= [ , , , ]T
q q q q Ps s s s   is the vector consisting of the thq  samples from all P  

branches. 

      The reconstruction matrix is given by, 

,= { }i j M Nv V .  

The element at the   pPq 1  row and the n  column is given by, 

  .=
)1(,1   iqT

iTq p
H
nnpPq dtV  
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The optimization problem for PSCS is given by,  

1
= arg min ,     . .y y s t s y= V             

An example of solutions is given in Appendix A. 
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