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ABSTRACT

A Comparison of Clustering Methods for Developing Models of User Interest. (May

2011)

Prasanth Ganta, B.Tech., Indian Institute of Technology, Guwahati

Chair of Advisory Committee: Prof. Frank Shipman

For open-ended information tasks, users must sift through many potentially

relevant documents assessing and prioritizing them based on relevance to current

information need, a practice we refer to as document triage. Users often perform

triage through their interaction with multiple applications, and to efficiently sup-

port them in this process an extensible multi-application architecture Interest Profile

Manager(IPM) was developed in the prior research at Texas A&M University. IPM

infers user interests from their interactions with documents, especially the interests

expressed by the user through an interpretive action like assigning a visual charac-

teristic color, coupled with the document’s content characteristics. IPM equates each

specific color and application as an interest class and the main challenge for the user is

to consistently maintain interest class-color scheme across applications forever which

is not practical.

This thesis presents a system that can help reduce potential problems caused

by these inconsistencies, by indicating when such inconsistencies have occurred in

the past or are happening in the user’s current triage activity. It includes (1)a clus-

tering algorithm to group similar triage interest instances by choosing the factors

that could define the similarity of interest instances, and (2)an approach to identify

sequences of user actions that provide strong evidence of user’s intent which can be

used as constraints during clustering. Constrained and unconstrained versions of three

Agglomerative Hierarchical Clustering algorithms: (1)Single-Link, (2)Complete-Link,
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(3) UPGMA(Unweighted Pair Group Method with Arithmetic Mean) have been stud-

ied. The contribution of each of the three factors: (1)Content Similarity, (2)Temporal

Similarity, and (3)Visual Similarity to the overall similarity between interest instances

has also been examined. Our results indicate that the Single-Link algorithm performs

better than the other two clustering algorithms while the combination of all three sim-

ilarity factors defines the similarity between two instances better than considering any

single factor. The use of constraints as strong evidence about user’s intent improved

the clustering efficiency of algorithms.
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CHAPTER I

INTRODUCTION

The continued growth in easily accessible information exposes users to an unmanage-

able and unknowable amount of information. Hence, users often resort to browsing

sites with which they have prior experience or using a generic search engine to locate

information across different domains in varied formats. Studies on Information Re-

trieval (IR) techniques are ongoing to bring order to this information chaos. Whether

it is in the presentation of search results or the organization of content into a do-

main/concept model, many approaches to aiding users locate information treat each

individual the same. There is an ever increasing demand to make information access

more effective, by building systems that not only mimic human behavior, but also

understand the expectations, goals, needs, and desires of a user in terms of specific

information environment. These systems that incarnate users in terms of informa-

tion access are called user models or interest models and the process of constructing,

maintaining and utilizing user models is User Modeling.

Some user activities have specific information needs that can be satisfied by lo-

cating a single piece of information, such as to find the temperature of a place, value

of a stock or the president of a country. Our current research focus is on open-ended

tasks where there is generally no conclusive document providing an accurate answer.

These open ended tasks are more challenging as the user is not aware initially of

what to search for and where to search from. As the users skim through prelimi-

nary documents to assess their relevance to their information needs, they learn more

about their activity. As a result, they identify new information needs, revise existing

The journal model is IEEE Transactions on Automatic Control.
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information needs, find relevant alternative terminology, and unexpectedly encounter

partial answers to other questions. Such learning results in new search queries and

more documents to be scanned. The users’ judgments in selecting documents (or

data segments) to view, skim or read from those provided by search engines or other

information sources determines how quickly and efficiently information needs can be

satisfied. This rapid assessment of documents (or data segments) and prioritizing

them based on their relevance to the current information need is document triage [2]

or information triage [29]. Document triage involves how users sift through the many

potentially relevant documents by prioritizing which documents to examine in more

detail; identifying the most useful parts of documents; and keeping track of their

progress through the search results.

A system can actively support document triage by developing models of the user’s

interest, determining each document’s relevance to these models and recommending

the documents that best match a user’s interests. If such a process is successful, the

user’s time will be spent more efficiently by focusing on the most relevant documents.

A variety of sources of information may be used and a variety of techniques may be

followed when building these interest models and generating the recommendations.

They can be based on the interests shown or activities done by the user, outcomes

of similar information tasks performed by other users and they can also be based on

similarity or relationships among the documents.

Users often interact with multiple applications while working on an open ended

task: they may use a Web browser to perform searches, view the results or read the

content; they may use specific reading tools like Adobe Acrobat or Microsoft Word

to examine the contents of individual documents; they may use tools like Microsoft

Word, PowerPoint or extensions to Web browsers to capture valuable information

and take notes; and they may use organizing tools like spatial hypertext (e.g. VKB3)
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[3], [40] to organize their thoughts. Though the interest models can be developed

separately for each individual application with relative ease, a system supporting an

efficient Document Triage process needs to compute an aggregated interest model

accumulated from partial models across multiple triage-related applications. Prior

research on Document Triage at Texas A&M University has developed an extensible

multi-application architecture, the Interest Profile Manager (IPM) [3] that initially

supported an information workspace and a document reader.

The Interest Profile Manager acts as an independent server inferring, sharing

and storing user interest profiles while the triage-related applications connect to the

server via a linkable software library. It supports the document triage process through

four steps: (1) Recognizing the interests demonstrated by users through implicit and

explicit indicators while sifting through documents, (2) Representing the recognized

User Interests in a generic format and inferring the aggregated interest model to be

shared across multiple applications, (3) Recognizing documents of potential interest

by using information retrieval techniques to assess the relevance of each document

with the interest model and, (4) Indicating the documents of potential interest by

visually distinguishing them. IPM supports VKB3, a spatial hypertext workspace

application and Mozilla Firefox which is a browsing and reading application.

IPM infers interest models by taking user’s interactions with documents [3], espe-

cially interests expressed by the user in their interpretation of the document combined

with document’s content characteristics. The primary form of interpretation being

considered is when a user assigns a visual characteristic like a color to a document or

a document segment. In the remainder of this thesis, each such interpretive action

is referred as Interest Instance. The IPM equates each specific color and application

as an interest class. For the color coding of interests to be consistent, this interest

class-color scheme has to be consistently maintained by the user during all the interest
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instances across multiple applications and across time. This is a root of the problem

being addressed in this thesis, namely that the initial user interest models generated

by the IPM are based on the colors applied to documents and document segments in

each application and these colors are used to indicate when new documents match an

inferred user interest.

It is not realistic for the user to remember the interest class-color scheme forever

across applications. Nor is it realistic to assume the colors will remain the same

across applications as different applications are likely to provide different colors for

interpreting and annotating documents. Also, given the limited number of colors

available in many applications that are acceptable to users, colors can be reused for

multiple categories of interest.

The work discussed in this thesis investigates this issue and presents a new ap-

proach to automatically group the similar interest instances from past assignments

based on an understanding of the user’s intent. These can be reviewed by the user

to correct his previous wrong assignments and to better the consistency in his future

assignments. It makes use of a modified IR clustering technique [23] customized to

suit the needs of document triage and considers three main factors while calculating

the similarity between the instances: (1) Content Similarity, which is based on the

similarity of the textual content of interest instances; (2) Temporal Similarity, which

is based on time when the interest instances are last modified by the user and; (3)

Visual Similarity, which is based on how similar the visual characteristics are for the

interest instances. The system implicitly derives constraints on interest instances

from the user behavior during the triage activity and supplies them as an input to

the clustering algorithm.

Users often interact with multiple applications while working on an open-task

and it is essential that a system implementing document triage supports multiple
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triage-related applications. Though IPM already supports an organizing application

and a reading application, it doesn’t support any note taking or authoring tools.

Such tools are important in the context of document triage, as users often capture

important points from the documents they encounter as notes for later use. Thus,

we believe information from user authoring tools will be a valuable contributor in

inferring the user’s interest during triage process. Part of the work presented here

is the inclusion of user activity data from two important authoring tools, Microsoft

Word and PowerPoint.

The remainder of the thesis is organized as follows. The problem statement for

the thesis is more formally presented in the next section. Related Work on document

triage applications and clustering techniques is briefly discussed in section 3. Section

4 presents the prior work on the Interest Profile Manager. Section 5 and section 6 de-

scribe the Approach and System Design respectively. Section 7 reports the evaluation

process and analysis of the results.
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CHAPTER II

PROBLEM STATEMENT

Turning records of user activity in applications into a user interest model is diffi-

cult. Each application provides a unique way of interacting with information and,

thus, users of an application indicate interest through a variety of application-specific

interaction behaviors. The Interest Profile Manager [3] plays a key role during the

document triage process by collecting and aggregating the partial interests of the user

provided from multiple applications. Once the user interest is aggregated, the relative

user interest for all target documents with respect to each of the interest classes is

calculated by the IPM and the results are broadcast to all the registered applications.

Currently, IPM takes user-assigned colors as the prime indicator of interest shown by

the user to associate a document with an interest class and other document attributes

are used to characterize the document.

As the user assigns more colors while expressing their interest, the knowledge

base of the inferred user interests grows, hopefully resulting in the system being able

to come up with better recommendations. This is true as long as the user is accurate

and consistent in his interest class-color scheme. The user needs to maintain the same

coloring scheme for interest classes across different applications and time. Inconsis-

tencies in assigning these colors result in interest classes not strongly representing

any single interest of the user thereby, decreasing IPM’s efficiency in the prediction of

similar documents. On the other hand, it is not practical for a user to remember the

coloring schemes of his interest classes forever. In such systems, there is a need for

a mechanism that identifies situations where the same color has been used for more

than one interest or that different colors have been used for the same interest. Such

identification can be used in multiple ways. It can be used to recommend changes to
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make the visual mapping more consistent. Alternatively, it can be used to provide

legends that indicate the mappings between interests and all the associated colors.

Two sub problems are identified to build such capabilities: identifying the bounds

in terms of time and/or space of a mapping between an interest and a color, and

grouping the resulting interests into meaningful higher-level user interests.

A. Identifying Sequences of Interest Instances that Suggest User’s Real Intent

Users perform many different actions while interacting with the applications during

the triage process but often only few of these actions are currently used to infer his/her

interests. By taking into account time and other information concerning sequences

of these few interactions, the system can determine how good the evidence is for a

user’s interests. For example, when a user assigns the same color to two documents

(d1, d2) at almost the same time (say within less than a minute), it is strong evidence

that they belong in the same interest class (c1). In another scenario, a document d3

is initially assigned a different color (interest class c2) and after a long gap (say 1

month) document d4 is also assigned the color used for c2. It is more probable that

the intent in the first scenario is to define a classification including d1 and d2 than

it is the intent to define a classification including d3 and d4. Identifying sequences

of actions that provide the strong evidence exemplified in the first situation will help

the system infer user models that match user intent as it can provide constraints for

merging or not merging interest instances into interest classes.

B. An Approach to Group Similar Interest Instances Based on User’s Intent

As discussed earlier, expression of interests by a user may display many inconsistencies

such as two interest instances might be assigned the same color even though they are
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considered to be classified into distinct interest classes by the user. Similarly, two

interest instances may be assigned different colors even though they belong to a

single interest class from a user’s perspective.

A system can help reduce potential problems caused by these inconsistencies by

indicating when such inconsistencies have occurred in the past or are happening in

the user’s current activity. Such identification requires a mechanism to group similar

interest instances by choosing the factors that could define the similarity of interest

instances. This thesis presents an approach to clustering user interest instances and

an approach to identify strong evidence that can be used as constraints for clustering

(or not clustering) instances.
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CHAPTER III

RELATED WORK

Related work falls into three main categories: (1) research into methods for identifying

user interests and building interest models, (2) investigations in the field of document

triage technology and practice and, (3) information retrieval clustering techniques to

group similar documents.

A. Methods for Identifying User Interests and Building Interest Models

Recommendation and adaptive filtering systems are being applied for a wide range

of information sources and are often successful in supporting a cooperative process

for information location. Examples include Netflix recommending movies to users

based on their prior movie ratings or Amazon recommending new products based

on past user interaction. These systems need to understand the information need

and preferences of the users with whom they are interacting. This knowledge can be

acquired through variety of sources and interpreted in many ways. This user specific

knowledge is usually referred as interest model or user model. User interest modeling

enables a variety of services like helping and advising the user [35], [20], [41], tutoring

systems [46] and error correction tools [30].

Research into methods for gathering and recognizing user interests includes an-

alyzing explicit expression of user interests (e.g. ratings), implicit expression of user

interest (e.g. scrolling time, click-through records) or a combination of both.

1. Explicit Indicators

The most obvious source for systems gaining an understanding of a user’s interest

is to ask them. Many recommendation systems use this approach, asking users to
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explicitly express their interest in an entity, for example, the rating for a movie, book

or a cellphone. Several digital library systems also use this approach [34], [36].

As explicit indicators are direct information from the user, they are generally

of high information value with respect to user interests, easy to understand and

require no further interpretation. However, it requires extra effort from the users

as they have to spend their own time to tell the system what they think about a

piece of information, which may result in altering their normal reading and browsing

patterns [10]. Users may not rate unless they find an incentive for their efforts [21]

and can even lose interest in reading if prompted repeatedly. Moreover, users rate

far fewer documents than they read [39] leaving many documents not associated to

any explicit indicators. Thus the benefits of having high information value from the

explicit indicators may be offset by their drawbacks.

2. Implicit Indicators

Implicit interest indicators are less intrusive but rely on methods of inferring user

interests based on user behavior rather than directly obtaining it from the user.

During the triage activity, a user’s interest in a piece of information is also indicated

by their interaction with the information: the time spent on a document or document

segment while reading or editing; how much of the document they examine (e.g. how

far into a document they scroll); the scrolling speed; how they categorize the document

(e.g., stacking it with other interesting documents); and through other behaviors that

in part rely on the tools they are using. All these activities may be recorded in the

background while the user interacts with the system.

The influence of each of these implicit indicators is not yet thoroughly under-

stood and research into their use is on-going. Morita and Shinoda [31] studied the

relation of the amount of time spent reading Usenet News articles with users’ interest
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in a controlled experimental environment and carefully chosen news domain. It is

observed that the time users spend on reading Usenet news articles was the primary

indication of their interest. Konstan et al [26] described how the GroupLens system

for filtering Usenet news can be used to study the correlation between time spent

reading an article and explicit indicators. They observed that predictions based on

reading time are nearly as accurate as predictions based on explicit indicators. Clay-

pool et al [10] extended these studies into alternative domains in a less controlled

environment and by greatly expanding the number of implicit indicators examined.

They found that the time spent on a page, the amount of scrolling on a page, and the

combination of time and scrolling had a strong correlation with explicit interest, while

individual scrolling methods and mouse-clicks alone were ineffective in predicting the

explicit interests. Mac Aoidh et al [28] investigated the effects of implicit indicators

in the context of geographic information systems (GIS). They examined the mouse

movements and map browsing behavior of the user and found that the interests can

be inferred reasonably effectively for spatial information using mouse movement data,

but may not be sufficiently accurate as a stand-alone interest indicator. Other studies

considered alternative user activities, like using the overlap between bookmark files to

determine similarity among individuals [38], and the saving of references to an item

as a strong indicator of interest [27].

Using implicit indicators for user modeling provides the system with many ad-

vantages. These include removing the extra user effort required to examine and rate

items and turning every user interaction into potential indication of user interest and

an opportunity for feedback. Though implicit indicators are less likely to be as accu-

rate as explicit indicator, combining them with other implicit or explicit indicators

may result in a more accurate and complete representation of user interest.
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B. Document Triage

Document triage is the critical point in the information seeking process when the

user first decides the relevance of a document to their information need. Different

aspects of the document triage activity have been studied: Cool et al [12] investigated

what document characteristics, like titles, length, embedded images, affect the user’s

judgments on relevance of a document to a particular information need; Bae et al [2],

Marshall and Shipman [29] studied on how users interpret, structure and categorize

the documents in a task context; Buchanan and Loizides [9] investigated how triage

activity differs on paper from triage activity with electronic media tools.

A close look at the characteristics of documents and of the triage activity shows

some limitations in current systems. First, documents are generally treated as one

atomic unit but many useful documents might be long and may be dealing with mul-

tiple subtopics even though the user is interested in only a few segments. Second, the

systems monitor the user activity only within a single application even though real

triage activity involves user activity in multiple applications (e.g. a reader applica-

tion, note taking application, organizing workspace). Prior research at Texas A&M

University showed that models combining interest information from multiple applica-

tions are more effective than those that rely on information from a single application

[1]. Based on the investigation of these two issues, the Interest Profile Manager [3]

has been developed.

As shown in Fig. 1, Interest Profile Manager acts as the central server coordinat-

ing with all triage-related applications. It accumulates implicit and explicit indicators

from each application representing user’s partial interests, analyzes them and infers

combined user interests and finally provides information so applications can generate

appropriate visualizations. There is also support for the user to show interest on
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Fig. 1. IPM’s Interaction with Triage-Related Applications

selected segments instead of the whole document.

C. Clustering

Clustering is the process of grouping elements together based on some measure of

similarity or overall desirability. More formally, given a set of N patterns (i.e. data

points), the task of clustering is to come up with a labeling scheme so that each pattern

pi is assigned a label L(pi) := Liϵ{1, ...., K}. The patterns with the same label Lj

form the cluster Cj. The basic and standard approaches to clustering data can be

described with the help of the hierarchy shown in Fig. 2. This taxonomy is based on

a survey of clustering approaches [23], although other taxonomical representations of

approaches to clustering are possible.

Partitional Clustering algorithms obtain a single partition of the data (i.e. gen-

erates one level of groupings) and many applications frequently use these computa-
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Fig. 2. A Taxonomy of Clustering Approaches

tionally efficient clustering algorithms, such as K-means. The K-means problem for

a given set of n patterns, S = (p1, ...., pn) is to form a k-block set partition of S so

as to minimize the vector quantization error. The K-means algorithm finds a local

minima and has linear complexity of O(kmni), where ’k’ is the number of instances,

’m’ is the number of attributes, ’n’ is number of clusters and ’i’ is the number of

iterations of the algorithm. However, the algorithm is sensitive to the choice of the

initial starting conditions [17], [8] and hence in practice needs to be restarted many

times, randomly or otherwise choosing the starting conditions for each application of

the algorithm.

Hierarchical clustering algorithms are run once and create a tree dendrogram

which is a tree structure containing a k-block set partition for each value of k between

1 and n. Most hierarchical clustering algorithms are variants of the (1) single-link

[42]; (2) complete-link [24]; and minimum-variance [45], [32] algorithms. Though,
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these algorithms are useful in the domains where clusters naturally form hierarchy,

they come with some additional complexity [33], [19] in time and space, since the

implementation requires O(mn2) computations and O(n2) space.

Clustering with constraints [4], [6], [11], [14], [18] is another active area of research

in Data Mining which allows the incorporation of background domain expertise into

the algorithms. In the last few years, there has been extensive work on incorporating

instance-level constraints into clustering methods [44], [25], [47]. These constraints

help in creating clusters with desirable properties.

There can be different types of constraints at each level of clustering. Two types

of instance level constraints were introduced by Wagstaff [43]: (1) must-link denoted

by c=(x, y), which means two instances must be in the same cluster; and (2) cannot-

link denoted by c ̸=(x, y), which means two instances cannot be in the same cluster.

There are also cluster level constraints like δ-constraint which requires the distances

between any pair of points in two different clusters to be at least δ; the ϵ-constraint,

which for any cluster Ci with two or more points, requires that for each point xϵCi,

there must be another point yϵCi such that the distance between x and y is at most

ϵ [13]. In other words, δ is a minimum distance for points in different clusters while

ϵ is a maximum distance for points in the same cluster.

There are two ways in which the clustering algorithms try to implement these

constraints. The first one is to use them to modify the cluster assignment stage of

the clustering algorithm so as to enforce their satisfaction of the constraints as much

as possible. The papers [44], [15] discuss about techniques with strict enforcement

while [5], [16] discuss about techniques with partial enforcement. Second, the distance

function of the clustering algorithm can also be trained from the constraints either

before or during the actual clustering. Many clustering algorithms using the trained

distance measures [22] have been employed for constrained clustering, including single-
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link [7], complete link agglomerative clustering [25] and K-Means [47].

In the present work, two instance level constraints,must-linked and cannot-linked,

are considered. The constrained clustering approach of training a distance function

used to perform agglomerative clustering was chosen for this work.
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CHAPTER IV

PRIOR WORK

Prior work at Texas A&M University on the Interest Profile Manager provides the

context for the work in this proposal. Fig. 1 shows the high level block diagram of

Interest Profile Manager’s interactions with multiple applications during document

triage process. It collects information about interest-related activity from different

triage-related client applications, aggregates them, saves as an interest profile for each

user and uses it to infer new documents of interest for the user. The inferred results

are broadcasted across all participating client applications.

IPM is designed to act as the central server guiding the whole process while

extensions are written for the triage-related applications to act as clients. It has

three main modules: (1) Request Handler, (2) User Profile Handler and, (3) Inference

Manager. Request Handler receives the requests from different client applications,

analyzes them, calls User Profile Handler for the user profile to be updated and

if required generates appropriate requests to be forwarded to Inference Manager.

Inference Manager receives requests from Request Handler, interacts with User Profile

Handler to get the complete user profile and infers various user interests depending on

the kind of request. User Profile Handler interacts with Request Handler to collect the

partial interests of the user as they appear, aggregates them to form a complete user

profile, interacts with Inference Manager to provide the aggregated user profile and

also has the provision for serializing interest profiles so they persist across sessions.

IPM is implemented to be easily extensible so that additional applications can be

added as appropriate, for example a new viewing/reading application to enable the

user work with new content types.

Any application that is extended to implement interest profile client software
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interface can communicate with IPM server by exchanging interest profiles in a generic

predefined format and can act as a client in the IPM architecture. These client

applications can be implemented to support two-way communication or, one way

communication in which they could merely provide information to the IPM or only

receive information from the IPM. In the prior implementation, client extensions were

written for two applications both supporting two-way communication: an extension

for VKB3 [3], which is a spatial hypertext workspace for collecting, analyzing and

organizing documents; and WebAnnotate extension for Mozilla Firefox, a reading

application for web pages.

Fig. 3 shows the block diagram of different modules interacting in prior IPM

implementation.

A. IPM Client for VKB3

Fig. 4 illustrates a triage scenario in the VKB3 application. In this scenario, the user

is investigating Apple Corporation and is starting with 10 Google search results. The

user has colored blue one document which he perceives as valuable on Apple gadgets

and colored red a document on general information about Apple. It can be observed

in Fig. 4 that the system has provided suggestions to the user by coloring the shadow

of documents which possibly correspond to each of the interest classes expressed by

the initial coloring of the first two documents. This is possible through the interaction

of VKB3 with IPM. It is likely the workspace will grow to contain more collections

as the user works with the documents and discovers the need for further searches; he

may also create new collections to categorize documents and manage the space.

For the triage investigation, VKB 3 was extended to communicate with the Inter-

est Profile Manager (IPM). Communication with the IPM is two-way: VKB 3 sends
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Fig. 3. IPM Module Interaction

two kinds of information to the IPM as input to the algorithm that computes user

interests: (1) Records of user actions and the attribute/value pairs that characterize

Web document objects in the workspace. In other words, as users open, move, color,

delete, or otherwise modify document objects, records containing these actions are

sent to the IPM; likewise, as document objects are added to the workspace or the

attributes’ values are edited, this information is also sent to the IPM. (2) VKB also

receives information about user interests from the IPM, which it uses to modify the

system layer of Web document objects in the workspace. The IPM infers user interest

based on information collected across all of the triage applications and sends the in-

ferred interest back to VKB (as well as to the other client applications). Each item in

the IPM results includes three components: information ID (so VKB can determine

which object the interest applies to), interest classification (to specify topic), and
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interest level (to specify intensity).

 

Fig. 4. VKB3 During Document Triage

B. WebAnnotate Client for Mozilla Firefox

To further facilitate triage, an add-on was developed for Mozilla Firefox called We-

bAnnotate that provides basic annotation capabilities, collects data on users’ inter-

actions with documents, and uses interest data returned from the IPM to create

visualizations designed to focus readers’ attention on the portions of documents rele-
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Fig. 5. Mozilla Annotation Toolbar

vant to their interests. These visualizations enable users to quickly locate what they

want to read without taking the selected material out of context.

WebAnnotate supports several representative forms of annotation on HTML doc-

uments; once users activate the annotation toolbar (Fig. 5), they can highlight text

in different colors and can create colored sticky notes (editable translucent text boxes

that can be moved anywhere on the HTML document). It stores the reader’s annota-

tions separately from the HTML document, in the IPM, where they are used as input

to the interest estimation algorithm. Whenever a user opens a HTML document,

WebAnnotate checks the IPM for annotations to that document. If any are found,

WebAnnotate regenerates them.

The communication between WebAnnotate and the IPM is two-way, similar to

the communication between VKB and the IPM. When a user opens a Web page, We-

bAnnotate extracts document attributes and sends them to the IPM. WebAnnotate

parses the text content into paragraphs and assigns paragraph IDs to them. This

information is used by the IPM to infer and communicate potential interest on spe-

cific paragraphs to WebAnnotate. Annotation information that is sent to the IPM

includes the color and type of the annotation (whether it is a highlight or sticky note)
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Fig. 6. WebAnnotate Interacting with IPM

as well as other terms necessary to reconstruct and describe the annotation (e.g. the

anchor text or text of the note and the annotation’s location). The annotation repre-

sentation assumes that documents are static, an assumption that reflects the nature

of the triage task. The documents’ DOM structure is used to specify the highlight’s

anchor location; likewise, sticky notes are reattached to Web pages according to their

absolute (x, y) positions. Unlike VKB, which sends events as they occur, WebAn-

notate aggregates events until the user’s attention turns elsewhere and the browser

window loses focus.

The IPM communicates inferred user interests to WebAnnotate in a form similar

to those sent to VKB; they are represented by information ID, interest classification,
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and interest level. Unlike VKB, the information ID consists of a document URL and

a set of paragraph ids, because user interests are calculated at the paragraph level

rather than the whole document level. WebAnnotate brings paragraphs to a user’s

attention by underlining them (i.e., users highlight; the system underlines) as shown

in Fig. 6.
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CHAPTER V

APPROACH

The discussion so far explained prior work on Interest Profile Manager and identified

issues limiting its effectiveness in inferring the interests of the users accurately. This

section discusses the approaches adopted to tackle the issues identified in the earlier

state of IPM.

A. Identifying Sequences of Interest Instances that Suggest User’s Real Intent

Applications provide unique ways for the user to interact with information and each

user interacts with information through an application differently. Though users

perform many actions during these interactions, only some of these actions may be

used to derive his/her interests while other actions are not useful in the deduction

of interests. The actions which contribute in deriving users interests may be explicit

actions by the user like highlighting or implicit actions like scrolling speed (e.g. slow

scrolling through a document against scrolling through a document of similar length

quickly.) During the triage process, such actions are correlated with the user’s real

intent with respect to information.

While working on a triage activity, the user has intentions for each action he/she

performs. For example, the action of assigning different colors to pieces of information

is indicating his/her classification of the information. A successful interest modeling

mechanism needs to properly estimate the intent of a user’s actions and include that

estimation in the algorithm that generates recommendations. Such recommendations

could be personalized for each user, given an approach to learn mappings between

actions and intents, so that the suggestions are more closely aligned with his/her

interest.
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The user’s actions during information triage may be intentional or mistake when

measured against their actual intent. For example, when assigning colors to interest

instances, the user might deliberately apply different colors to two interest instances

or might mistakenly assign the wrong color to one of the instances classifying it to

be in a different interest class though his/her intention was to put it in the same

interest class. As such, the same actions may be interpreted differently in different

circumstances.

We have developed a ’Constraint Builder’ module which is a preprocessing step

before the actual clustering algorithm (described in the next section) that analyzes all

the user actions and identifies the sequences of actions that will be used in interpreting

the user’s intent. In particular it uses heuristics to identify sequences for which

the system will assume the user’s actions will be interpreted as consistent. Two

types of constraints, must-linked [43] and cannot-linked [43], are developed from these

identified sequences of actions and passed to the clustering algorithm as conditions

to be satisfied.

The heuristics were developed based on two observations of user behavior. First,

some users remember the color-to-interest class mapping in IPM for long periods of

time and use them consistently while others forget (or ignore) the mapping after a

while, resulting in inconsistent coloring patterns. This effect may vary based on the

user’s ability to remember. But, if considered in extremely short intervals of time,

most users maintain consistency in their assignments. Second, the user is more likely

to be consistent in assigning colors when using a single application than when using

multiple applications. These two observations are used by the Constraint Builder

module to identify constraints.

The entire timeline of the triage activity on IPM by a user is divided into tiny

time intervals and his/her actions are monitored separately in each of these intervals.
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Fig. 7. Interest Instances Example in Mozilla

If the user assigns same color to two different instances in the same time interval and

in the same application, it is highly probable that user wants to keep these instances

in the same interest class. These actions by the user imply that they have to be in

same interest class though the system is not sure of what else may be in the same

interest class. So, a must-linked constraint between these two interest instances is

created. Likewise, if the user assigns different colors to two instances in the same

time interval and in the same application, it is highly probable that user wants these

two instances to be in different interest classes. Thus, in such cases the Constraint

Builder assumes that the user intends the instances to be in different interest classes

though it is not sure which of the interest classes. So, a cannot-linked constraint

between these two interest instances is created. All the identified must-linked and

cannot-linked constraints are supplied as input to the clustering algorithm (described

in the next section) to use while grouping similar interest instances.
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Fig. 8. Interest Instances Example in VKB

Fig. 7 and Fig. 8 illustrate a triage scenario in which the user is investigating

the Android mobile operating system. The user has initially opened Wikipedia about

Android OS in the Mozilla application and created three interest instances within a

duration of 1 minute as shown in Fig. 7: II1 is on the Google acquisition of Android

and is colored red; II2 is also related to news about a Google acquisition in the

mobile market and is colored red; and II3 is related to the creation of Open Handset

Alliance and is colored blue. After 24 hours the user opens VKB, searches for ’Android

Samsung Captivate’ and creates an interest instance II4 (Fig. 8) by coloring one of
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the results red. This web document is from the AT&TWireless web site and describes

the Samsung captivate phone. Though II1, II2 and II4 are assigned the same color,

II4 was created a long duration after the creation of II1 and II2, so there is a good

possibility that user may have forgotten the color-interest class mapping. But II1,

II2 and II3 are created within a short duration of one minute, so it is highly probable

that the user has been consistent while creating these instances. As discussed earlier,

the Constraint Builder module analyzes the actions in this scenario and creates must-

link constraints between II1-II2, and creates cannot-link constraints between II1-II3,

II2-II3 while nothing can be clearly inferred from the II4 instance. These constraints

are forwarded to the clustering algorithm.

B. An Approach to Group Similar Interest Instances Based on User’s Intent

As discussed earlier, the prior instantiation of the IPM required that the user main-

tains consistency in color-interest class assignment of all interest instances across

multiple applications and across time. Inconsistent assignment of color to an interest

class could result in drastically reducing the IPM’s inferring efficiency as the repre-

sentation of the interest classes would become noisy as multiple interests were merged

or a single interest was repeated. In practice, there are many reasons for inconsistent

color assignment. Users may misremember the color-interest class mapping; a user

may forget the existence of an interest class and start similar interest class with a new

color; two assigned colors may be visually very close and the user may be confused

while choosing among them.

A system can help reduce these inconsistencies by making recommendations when

the user is initially assigning colors to information items and by locating color-interest

class mappings that are computationally ambiguous. The first type of recommenda-
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tion was already provided by the visualization mechanisms based on the results of

the IPM analysis although the recommendations could be improved by improving

the recognition of the bounds of user interests. The second type of recommendation

mechanism needs methods for grouping similar interest instances based on features

other than purely color assignment.

In the current work, we are using variations of Agglomerative Hierarchical Clus-

tering (AHC) to group similar interest instances into interest classes. Agglomerative

Hierarchical clustering algorithms are a type of clustering algorithms in which suc-

cessive clusters are found using previously established clusters. They create, from the

bottom up, a dendrogram which is a tree structure containing a k-block set partition

for each value of k between 1 and n. For example, given six patterns A, B, C, D, E,

F represented as points in a two-dimensional space (shown in Fig. 9), it can be ob-

served how an AHC clustering algorithm constructs dendrogram from these patterns,

shown in Fig. 10. At each level in the dendrogram the two patterns which are most

similar (closest in the two-dimensional space) are merged to form a single cluster.

The Agglomerative Hierarchical Clustering approach best suited the requirements of

our present problem and it was chosen over Partitional clustering approaches like

K-Means, as the number of clusters ’k’ (e.g. in our problem, the number of discrete

user interest classes) is not available as input.

All the variations of HAC developed take as input, the interest instances which

can be represented in n-dimensional feature space and, must-linked and cannot-

linked constraints built from the Constraint Builder module (discussed in the pre-

vious section). Six versions of AHC algorithms are developed: (1) Unconstrained

Complete-Link Agglomerative Hierarchical Clustering Algorithm, (2) Constrained

Complete-Link Agglomerative Hierarchical Clustering Algorithm, (3) Unconstrained

Single-Link Agglomerative Hierarchical Clustering Algorithm, (4) Constrained Single-
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Fig. 9. Data Points in Two-Dimensional Space

 

Fig. 10. Dendrogram Constructed using AHC Algorithm from Data Points in Figure

9
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Link Agglomerative Hierarchical Clustering Algorithm, (5) Unconstrained UPGMA

(Unweighted Pair Group Method with Arithmetic Mean) Agglomerative Hierarchi-

cal Clustering Algorithm, and (6) Constrained UPGMA Agglomerative Hierarchical

Clustering Algorithm. All these algorithms have a preprocessing step that creates a

proximity matrix which has the similarity score between any given two data points

(indicating interest instances). Each of these algorithms is discussed below:

1. Unconstrained Complete-Link Agglomerative Hierarchical Clustering Algorithm

In the complete-link (CL) AHC algorithm, the similarity between two clusters is the

similarity of their most dissimilar members, so at each step the two clusters whose

merger has the smallest diameter are merged. No constraints are considered in this

algorithm and, starting with the proximity matrix from the preprocessing step,the

dendrogram is constructed using the CL approach at each step.

2. Constrained Complete-Link Agglomerative Hierarchical Clustering Algorithm

This approach uses the must-Linked and cannot-Linked constraints in deciding which

clusters to merge during the construction of the dendrogram. In this constrained

version of the above discussed algorithm, the proximity matrix from the preprocessing

step is modified so that the specific items in the must-linked constraints are adjusted

in feature space to be very close in distance and, the items in cannot-linked constraints

are adjusted to be far apart in distance. These modifications to the proximity matrix

cause the must-Linked pairs to be merged first and the cannot-Linked pairs to be

merged in the dendrogram after all other mergings have occurred.
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3. Unconstrained Single-Link Agglomerative Hierarchical Clustering Algorithm

In Single-link (SL) AHC algorithm, the similarity between two clusters is the similar-

ity of their most similar members, so in each step the two clusters whose two closest

members have the smallest distance are merged. No constraints are considered in this

algorithm and, starting with the proximity matrix from the preprocessing step, the

dendrogram is constructed using the SL approach at each step.

4. Constrained Single-Link Agglomerative Hierarchical Clustering Algorithm

This constrained version of the above discussed Single-Link AHC algorithm uses the

must-Linked and cannot-Linked constraints as an input and modifies the proximity

matrix from the preprocessing step so that the specific items in the must-linked

constraints are adjusted in feature space to be very close in distance and, the items

in cannot-linked constraints are adjusted to be far apart in distance.

5. Unconstrained UPGMA Agglomerative Hierarchical Clustering Algorithm

In the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) AHC algo-

rithm [37], the similarity between two clusters A and B is the average of all distances

between pairs of objects points ’x’ in A and ’y’ in B. No constraints are considered

in this algorithm and starting with the proximity matrix from the preprocessing step

the dendrogram is constructed using the UPGMA approach at each step.

6. Constrained UPGMA Agglomerative Hierarchical Clustering Algorithm

Similar to the earlier discussed constrained versions, this version of the above dis-

cussed UPGMA AHC algorithm uses the must-Linked and cannot-Linked constraints

as an input and modifies the proximity matrix from the preprocessing step so that
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the specific items in the must-linked constraints are adjusted in feature space to be

very close in distance and the items in cannot-linked constraints are adjusted to be

far apart in distance.

In addition to exploring alternative clustering algorithms, the current work ex-

plores different approaches to generating the proximity matrix. The proximity matrix

D in the preprocessing step is populated with the similarity scores between different

data points (indicating interest instances). Three different factors that influence the

similarity between two interest instances have been studied: (1) Content Similarity,

(2) Temporal Similarity, and (3) Visual Similarity.

Content Similarity Content similarity is a measure of how much the textual con-

tent of the two interest instances overlap. There are many methods for mea-

suring overlap varying from overlap in sentences, phrases, words, and concepts.

In the current work, the content similarity is calculated by applying cosine

similarity to the term vectors corresponding to two nodes.

Temporal Similarity Temporal similarity is a measure of how close different actions

by the user are in time. As already discussed, if two actions are separated by

very small time period it is more probable that the user is consistent with

his/her actions during this period.

Visual Similarity Visual similarity is a measure of the visual distance between user

actions.

The following experiments explored each of the six different clustering algorithms

with different permutations of the three similarity components for computing the

proximity matrix.
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CHAPTER VI

SYSTEM DESCRIPTION

Fig. 11 shows the high level block diagram of the modified IPM architecture pre-

sented in the current work. Two new modules, Constraint Builder and Constrained

Clustering, are developed to support the clustering of similar interest instances based

on their visual, temporal and content characteristics. IPM clients for MS Word and

PowerPoint have been developed in addition to the existing IPM clients for VKB3

and Firefox.

 

Fig. 11. Modified IPM Architecture for Clustering
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A. Constraint Builder

The Constraint Builder module is a preprocessing step that analyzes user actions from

the profile data supplied by User Profile Handler module and identifies themust-linked

and cannot-linked constraints between the interest instances. These are used as input

for the Clustering algorithm to satisfy. As discussed in the Approach section, the

constraints are derived from the sequences of actions for which the user’s actions

can be expected to be consistent. Heuristics are used to identify these sequences of

actions.

 

Fig. 12. Pseudo Code for Constraint Builder

Fig. 12 shows the pseudo code of howMust-Link and Cannot-Link constraints are

identified. The timeline of user’s triage activity is divided into fixed time intervals

of length ∆T. ∆T is chosen small enough so that the users are more likely to be

consistent in their interpretive actions during this interval. Must-Link constraints are

identified by finding the instances from same application with same color and in the

same time interval. Cannot-Link constraints are identified by finding the instances
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which are from same application in the same time interval but with different color.

B. Constrained Clustering

The Constrained Clustering module takes interest instances and the constraints gen-

erated by Constraint-Builder module as input and generate clusters by grouping the

similar interest instances based on the content, temporal and visual characteristics of

the user’s activity. Six versions of the Agglomerative Hierarchical Clustering (AHC)

are used for clustering the interest instances. Each of these algorithms have a com-

mon preprocessing step that computes the proximity matrix containing the similarity

scores between each pair of data points (representing interest instances) considered

for clustering.

Fig. 13 shows the pseudo code for three functions that are preprocessing steps

before clustering. buildProximityMatrix functionality is used for building the prox-

imity matrix S given the interest instances. The similarity scores reflect the distances

between data points in the virtual n-Dimensional feature space. Different features

considered and approaches followed for calculating the similarity score between inter-

est instances is discussed in detail in the latter sections.

Fig. 13 also has the pseudo code for imposeMustLinkConstraints and imposeCan-

notLinkConstraints functionalities which are used only by the constrained versions of

AHC algorithms. Must-Link constraints are imposed differently from Cannot-Link

constraints. In the imposeMustLinkConstraints all the pairs of interest instances in-

volved in a Must-Link constraint are merged prior to calling the clustering algorithm

while the imposeCannotLinkConstraints imposes the Cannot-Link constraints on the

proximity matrix by increasing the distance (i.e, by decreasing the similarity score)

between two cannot-link points. The V isCannotLinkFactori,j is less than 1 and
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is computed based on how visually close the instances i and j are. While the two

instances must involve distinct visual characteristics to be identified as Cannotlink

constraints, in practice the two visual assignments might be similar. For very distinct

visual characteristics of instances i and j V isCannotLinkFactori,j is zero making

the similarity score zero and for very visually similar characteristics it is closer to 1

decreasing the similarity score only by a small. The VisCannotLinkFactor is intro-

duced to adjust the similarity scores in the feature space depending on the likelihood

of Cannot-Link constraint being due to user’s real intent (visually very different) or

it being due to user’s color assignment signifying similarity (visually close).

 

Fig. 13. Preprocessing Steps Before Clustering

Six versions of the AHC algorithm are developed in the current work: (1) Uncon-

strained Complete-Link Agglomerative Hierarchical Clustering Algorithm, (2) Con-

strained Complete-Link Agglomerative Hierarchical Clustering Algorithm, (3) Un-

constrained Single-Link Agglomerative Hierarchical Clustering Algorithm, (4) Con-

strained Single-Link Agglomerative Hierarchical Clustering Algorithm, (5) Uncon-
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strained UPGMA Agglomerative Hierarchical Clustering Algorithm, and (6) Con-

strained UPGMA Agglomerative Hierarchical Clustering Algorithm.

1. Unconstrained Complete-Link Agglomerative Hierarchical Clustering Algorithm

Fig. 14 shows the pseudo code for the Unconstrained Complete-Link Agglomerative

Hierarchical Clustering. It takes Interest Instances II from User Profile Handler as

the only input and does not run the Constraint Builder module. It executes build-

ProximityMatrix functionality as a preprocessing step to build the proximity matrix

with similarity scores for all pairs of data points and then implements the standard

Complete-Link (CL) AHC algorithm. CL algorithm merges clusters in order of prox-

imity; the closest clusters will be merged first and the farthest clusters will be merged

last. At each merge, CL creates a reduced proximity matrix, with one less row and

column, and updates the similarity of other clusters with the newly merged cluster by

their similarity with the most dissimilar member of the merged cluster. No constraints

are considered in this algorithm.

2. Constrained Complete-Link Agglomerative Hierarchical Clustering Algorithm

Fig. 15 shows the pseudo code for the Constrained Compete-Link Agglomerative

Hierarchical Clustering. The underlying CL algorithm is similar to the unconstrained

version except that there are preprocessing steps involving constraints in this version.

This algorithm uses an additional input Constraints C (containing Must-Link and

Cannot-Link constraints) supplied by the Constraint Builder module. Preprocessing

steps: imposing Must-Link constraints, building proximity matrix with similarity

scores between each pair of (modified) interest instances, and imposing Cannot-Link

constraints on the proximity matrix are executed in sequence. The iterative part of

the CL algorithm is the same as in the unconstrained version.
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Fig. 14. Pseudo Code for Unconstrained Complete-Link Agglomerative Hierarchical

Clustering

 

Fig. 15. Pseudo Code for Constrained Complete-Link Agglomerative Hierarchical

Clustering
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3. Unconstrained Single-Link Agglomerative Hierarchical Clustering Algorithm

Fig. 16 shows the pseudo code for the Unconstrained Single-Link Agglomerative

Hierarchical Clustering. Similar to the unconstrained version of Complete-Link AHC

it takes Interest Instances II from User Profile Handler as the only input and does not

run Constraint Builder module. It executes buildProximityMatrix functionality as a

preprocessing step to build the proximity matrix with similarity scores for all pairs

of data points and then implements the standard Single-Link (SL) AHC algorithm.

The SL algorithm merges clusters in order of proximity; the closest clusters will be

merged first and the farthest clusters will be merged last. At each merge, SL creates

a reduced proximity matrix, with one less row and column. It updates the similarity

of other clusters with the newly merged cluster by their similarity with the most

similar member of the merged cluster. In other words, in each step the two clusters

whose two closest members have the smallest distance are merged. No constraints

are considered in this algorithm.

4. Constrained Single-Link Agglomerative Hierarchical Clustering Algorithm

Fig. 17 shows the pseudo code for the Constrained Single-Link Agglomerative Hi-

erarchical Clustering. The underlying SL algorithm is similar to the unconstrained

version above except that it executes preprocessing steps involving constraints. This

algorithm uses an additional input, Constraints C (containing Must-Link and Cannot-

Link constraints) supplied by the Constraint Builder module. Preprocessing steps:

imposing Must-Link constraints, building proximity matrix with similarity scores be-

tween each pair of (modified) interest instances, and imposing Cannot-Link con-

straints on the proximity matrix are executed in sequence. The iterative part of the

SL algorithm is the same as in unconstrained version.
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Fig. 16. Pseudo Code for Unconstrained Single-Link Agglomerative Hierarchical Clus-

tering

 

Fig. 17. Pseudo Code for Constrained Single-Link Agglomerative Hierarchical Clus-

tering
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5. Unconstrained UPGMA Agglomerative Hierarchical Clustering Algorithm

Fig. 18 shows the pseudo code for the Unconstrained UPGMA Agglomerative Hier-

archical Clustering. It takes Interest Instances II from User Profile Handler as the

only input and does not run the Constraint Builder module. It executes buildProx-

imityMatrix functionality as a preprocessing step to build the proximity matrix with

similarity scores for all pairs of data points and then implements the standard UP-

GMA AHC algorithm [37]. UPGMA algorithm merges clusters in order of proximity;

the closest clusters will be merged first and the farthest clusters will be merged last.

At each merge, UPGMA creates a reduced proximity matrix, with one less row and

column. It updates the similarity of other clusters with the newly merged cluster to

be the mean distance between elements of each cluster. No constraints are considered

in this algorithm.

6. Constrained UPGMA Agglomerative Hierarchical Clustering Algorithm

Fig. 19 shows the pseudo code for the Constrained UPGMA Agglomerative Hierar-

chical Clustering. The underlying UPGMA algorithm is similar to the unconstrained

version except that there are preprocessing steps involving constraints in this version.

This algorithm uses an additional input, Constraints C (containing Must-Link and

Cannot-Link constraints) supplied by the Constraint Builder module. Preprocess-

ing steps: imposing Must-Link constraints, building proximity matrix with similarity

scores between each pair of (modified) interest instances, and imposing Cannot-Link

constraints on the proximity matrix are executed in sequence. The iterative part of

the UPGMA algorithm is the same as in the unconstrained version.

The proximity matrix S is populated with the similarity scores between each pair

of data points in the preprocessing step buildProximityMatrix (in Fig. 13). getSim-
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Fig. 18. Pseudo Code for Unconstrained UPGMA Agglomerative Hierarchical Clus-

tering

 

Fig. 19. Pseudo code for Constrained UPGMA Agglomerative Hierarchical Clustering
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ilarityScore functionality is used to get the similarity score between any two given

instances. The similarity scores between interest instances dictate the distribution of

data points representing these instances in the feature space. The higher the simi-

larity score the more closely the instances are located in the feature space and the

lower the similarity score indicates that the instances are separated by a larger dis-

tance. The methods used to calculate this similarity score play vital role in deciding

the final distribution of instances in clusters and thereby the clustering effectiveness.

The following discussion talks in detail about the factors considered and approaches

investigated in calculating the similarity score between the interest instances.

There are a variety of factors that could influence the similarity between two

interest instances but in the current work studied the contributions of three specific

factors collected during the user’s triage activity: (1) Content Similarity, (2) Temporal

Similarity, and (3) Visual Similarity.

Content Similarity Content Similarity is a measure of how much the textual con-

tent of the two interest instances overlap. In the current work, content similarity

is computed by applying cosine similarity to the two term vectors corresponding

to two instances.

Each document d is represented in the vector-space model, in which d is con-

sidered to be a vector in the term-space. The magnitude of the vector in each

dimension is the term-frequency (TF) in the document multiplied by the term’s

inverse document frequency (IDF) in the document collection. The motiva-

tion behind using IDF is that terms appearing frequently in many documents

have limited discrimination power, and for this reason they need to be de-

emphasized. This is done by multiplying the frequency of each term i by

log(N/dfi), where N is the total number of documents in the collection, and
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dfi is the document frequency. So a document is represented in its tf-idf vec-

tor form as dtf−idf = (tf1 ∗ log(N/df1), tf2 ∗ log(N/df2), ...., tfm ∗ log(N/dfm)).

The content similarity between two documents di and dj is given by the cosine

product on the two tf-idf vectors for the documents.

cos(di, dj) =
di.dj
|di||dj|

Temporal Similarity Temporal Similarity is a measure of how close different ac-

tions by the user are in time. If two actions are separated by a very small time

interval it is more probable that the user is consistent with his/her actions dur-

ing this period. The likelihood of user’s consistency decreases drastically over

time. So, we chose a time decaying function as the temporal similarity between

two interest instances.

TemporalSimilarity(
−→
v1,

−→
v2) =

1

eλ∆t

where,∆t = |TimeStamp(
−→
v1)− TimeStamp(

−→
v2)|

λ is appropriately chosen for the decaying function to have the right gradient.

Visual Similarity Visual similarity is a measure of the visual distance between user

actions. In the current work, color is the only visual characteristic that is mod-

ified by the user in an interest instance. Color can be represented in the three-

dimensional visual space with Red, Green and Blue being the three dimensions.

The visual similarity between two interest instances is calculated based on how

the color vectors corresponding to these instances are distributed in the visual

space. In our current work, visual similarity is non-zero only if color vectors are

very closely placed in the visual space otherwise it is zero.



46

We investigated four versions of similarity score calculation with each of the six AHC

algorithms to study the contributions of each of these similarity factors while clus-

tering user interest instances. The first three versions include using only Content

Similarity, only Temporal Similarity and only Visual Similarity as the final similarity

score between interest instances. The fourth version takes all the three factors into

consideration and uses the below formula as the final similarity score between two

instance vectors:

SimilarityScore(
−→
v1,

−→
v2) =α ∗ ContentSimilarity(

−→
v1,

−→
v2)+

β ∗ TemporalSimilarity(
−→
v1,

−→
v2) ∗ V isualSimilarity(

−→
v1,

−→
v2)

(6.1)

Visual and Temporal similarity factors are interrelated and contribute together

rather than independently. Table I discusses the relationship between these two fac-

tors and how they together influence the system’s ability to infer the user’s intent.

The consistency of visual characteristics assigned by the user decreases with

the increasing time difference and to reflect this, the Visual Similarity component is

multiplied with the Temporal Similarity which is a decaying function.
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Table I. Relationship Between Visual and Temporal Factors in Inferring User’s Intent

Time

High Difference Low Difference

High Dif-

ference

Due to the high time

difference, it cannot

be inferred that the in-

stances belong to dif-

ferent interest class.

It is most likely that

the user’s intent is

to assign interest in-

stances to different in-

terest classes.

Visual Characteristics Low Dif-

ference

Due to the high Time

difference, it cannot

be inferred if the in-

stances belong to the

same interest class.

It is most likely that

the user’s intent is to

assign the interest in-

stances to same inter-

est class.
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CHAPTER VII

EVALUATION

A study was performed to evaluate the effectiveness of the clustering techniques pre-

sented in the prior chapter and the contribution of the different factors in computing

the similarity for grouping the triage interest instances of a user. The evaluation

focuses on the clustering algorithms’ performance in predicting groups of similar in-

terest instances, and the contributions of content similarity, temporal similarity and

visual similarity on the overall similarity of interest instances.

A. Experimental Design

The study was conducted on seven participants, 5 graduate students and 2 working

professionals ranging in age from 23 to 31. They use computers regularly and are

familiar with internet searching and browsing. The participants were asked to perform

the evaluation task on their local machines for their convenience as it required them

to work in multiple sessions over an extended time period. The evaluation study

contained two tasks, the User Triage task and the Manual Grouping task and each

user had to complete both to finish the evaluation.

In the User Triage activity task, each participant is provided with an installer

to setup the IPM environment on their local machine. The environment included

the central IPM system, VKB3, the WebAnnotate extension for the Firefox, and the

Add-ins for Microsoft Word and PowerPoint. Each participant was asked to pick a

topic of their choice and do research on using VKB3, Mozilla, Word and PowerPoint

applications. To successfully complete the first task, a participant had to complete

more than 250 IPM events across least 4 different sessions (on different days) and

generating minimum of 10 events in each of the four IPM client applications. They
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were instructed to browse through at least 10 different interest classes and were given

2 weeks time to complete this task. For this evaluation, the interpretive actions by

the user considered IPM events were the assigning of a color to WebDocument in

VKB3, highlighting of a segment or a writing note in Mozilla Firefox, composing or

editing text in Word or PowerPoint.

In the Manual Grouping task, all the interest instances created during the first

task are shown together without the participant-assigned visual characteristics. The

participants were then asked to manually cluster them. This cluster distribution

indicates how the user would ideally group his/her interest instances and is used as

the ground truth against which the results from different algorithms are compared.

We have developed a simple UI tool to facilitate the user in performing this manual

clustering task. The snapshot of the application is shown in Fig. 20. The left JList

has all the unassigned interest instances, the middle JList has the clusters and the

right JList has the assigned instances corresponding to the highlighted cluster. In

the second task, the user had to assign all the instances to one of the clusters by

emptying the left list. ’Add’ button is used to assign (move) an instance to a cluster

(right list). The text area below displays the full content of the selected instance to

help the user decide in which cluster it belongs.

While the users are performing the Document Triage task, , all the actions estab-

lishing an interest instance were logged along with the characteristics of the document

or segment involved, the action’s temporal data and the visual characteristics assigned

for that instance. In the Manual Grouping task, the final state of the manual distribu-

tion of instances to various clusters is saved. Each participant was asked to send the

two XML files corresponding to each task, IPM Profile.xml and Cluster Profile.xml,

containing their activity during the evaluation. The clustering algorithms discussed

use these XML files as input and construct the interest instances.
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Fig. 20. Snapshot of Manual Cluster UI Tool

The participants in the study went about the triage task in significantly different

ways. The topics they selected widely varied from movies to technology-related topics

like HCI and C++ox, to Texas A&M University and even to pets. On average, it

took each participant between three and half and four hours of aggregated time over

2 weeks to complete the first task and forty five minutes to one hour to complete the

second task. The number and distinct type of visual characteristics (color) used, the

number of documents that had to be accessed to create 250+ IPM events, and the

number of IPM events generated with each application varied between participants.
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B. Analysis

The data analysis focused on evaluating three different aspects of grouping interest

instances: (1) whether the user’s intentions during the triage activity can be derived

from his/her actions to improve the overall clustering i.e., by comparing Constrained

vs. Unconstrained algorithms, (2) the performance of Complete Link, Single Link,

and UPGMA clustering algorithms to group instances, and (3) the contributions of

content similarity, temporal similarity and visual similarity on the overall similarity

of interest instances. We use the above three evaluation goals to organize our results.

We computed the standard quality measures Precision, Recall and F-measure to

compare the clustering results with ground truth. These measures view clustering

as a series of decisions, one for each of the N*(N-1)/2 pairs of documents in the

collection. A true positive (TP) decision assigns two similar documents to the same

cluster; a true negative (TN) decision assigns two dissimilar documents to different

clusters. Two types of errors can happen. A False Positive (FP) decision assigns two

dissimilar documents to the same cluster. A False Negative (FN) decision assigns two

similar documents to different clusters. The precision P, Recall R and F-measure Fβ

are calculated as shown below:

P =
TP

TP + FP
R =

TP

TP + FN
Fβ =

(β2 + 1)PR

β2P +R

We have used the F2 measure for all the comparisons during our evaluation as it

penalizes false negatives more strongly than false positives.

The next subsection compares the results of the constrained and unconstrained

versions of the clustering algorithms. This is followed by a comparison of the three

approaches to clustering. Both of these sections assume a similarity metric that com-

bines content similarity, temporal similarity, and visual similarity. The last section
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examines how similarity metrics including only one of these components compare to

the similarity metric combining all three.

1. Constrained vs Unconstrained Clustering

One aim of this research was to identify sequences of actions that provide strong

evidence of user’s intent during the triage process and use those sequences as a feed-

back in generating the user models. In particular, these sequences were used to

form constraints to enhance clustering. Constrained and Unconstrained versions of

three AHC algorithms are studied where the constrained version uses Must-Link and

Cannot-Link constraints derived from user actions while the unconstrained version

does not consider them.

 

Fig. 21. Constrained vs UnConstrained Single-Link AHC



53

 

Fig. 22. Constrained vs UnConstrained Complete-Link AHC

 

Fig. 23. Constrained vs UnConstrained UPGMA AHC
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Fig. 21, 22 and 23 show the performance of Constrained vs Unconstrained al-

gorithms for the Single-Link, Complete-Link and UPGMA AHC algorithms respec-

tively. The X-axis shows the results from each of the seven participants and the

average across the seven participants. Each individual is presented because personal

work practices tend to be idiosyncratic and an average alone would hide the variance

resulting from this. The F2 measure of the results for each algorithm is plotted on

the Y-axis. The constrained algorithm performs as well or better than the equivalent

unconstrained algorithm in 18 of 21 cases (all except one dataset in Complete-Link

and two datasets in the UPGMA case). This shows that considering constraints im-

proves the performance in majority of the cases. Exceptions are due to the algorithm

being ineffective (depending on the data) in propagating the constraints to adjust the

proximities of other data points and due to the user’s use of color being ambiguous

even in short time intervals resulting in the creation of wrong constraints. But, these

are rare instances and the results support the argument that including constraints

helps improve the performance of a clustering algorithm. Fig. 24 also shows that on

average the constrained version performs better than the unconstrained version in all

three algorithms.

Table II. Paired T-test on Constrained vs Unconstrained Algorithms

FeaturesCompared P-Value

Constrained vs Unconstrained 0.003603

These results show that some of the user’s intentions during the triage activity

can be effectively captured and represented as constraints by analyzing the sequences

of his/her actions. These constraints prove to be a valuable asset in building the
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clusters of similar interest instances. Table II shows the P-Value from the paired

T-tests on the results suggesting their statistical significance.

 

Fig. 24. Mean and Standard Error of Constrained and Unconstrained AHC Algorithms

2. Comparison of Clustering Algorithms

The prior section shows the value of including constraints when clustering interest

instances. This section examines the performance of the three alternative clustering

algorithms when including constraints. Fig. 25 shows the performance of the three

algorithms with constraints. The blue bars show the F2 measure from the results of

Single-Link AHC algorithm on each dataset, the red bars correspond to Complete-

Link AHC algorithm and the green bars correspond to UPGMA AHC algorithm. The

Single-Link AHC algorithm outperforms the other two algorithms except in the case of
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Fig. 25. Comparison of Agglomerative Hierarchical Clustering Algorithms

dataset from participant7 in which its performance is very close to the top performing

UPGMA. Fig. 26 also shows that on average the Single-Link AHC performs better

than the Complete-Link and UPGMA AHC algorithms. Table III shows the P-Value

from the paired T-tests on the results suggesting their statistical significance.

The better performance by the Single-Link algorithm can be attributed to the

characteristics of the triage instances and the fact that similarity between instances

is often related to the context during which they are created by the user. We use

temporal and visual characteristics to infer contextual relations. The differences cre-

ated by these characteristics are valuable when comparing instances that are near

to one another and to identify instances that are not near one another. Not much

can be inferred about the relative contextual relations between instances when they
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Fig. 26. Mean and Standard Error of Three AHC Algorithms

are separated by a large time interval. Each step of Single-Link AHC acts based on

the distance between their two closest members, which is where the discriminatory

power of the similarity metric is strongest. While the points in each cluster may be

directly or indirectly related both in context and content, not much could be inferred

many times about their similarity with multiple points in other clusters except by

comparing their content. So, ignoring such comparisons and considering only the two

closest members while deciding the similarity between clusters proves to be effective.

In comparison, the Complete-Link algorithm, which bases its decision on the most

distant members within the two clusters, and UPGMA, which takes the average of

all pairwise distances, are less effective than Single-Link.
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Table III. Paired T-test on Different AHC Algorithms

FeaturesCompared P-Value

Single-Link vs Complete-Link 0.001619302

Single-Link vs UPGMA 0.049476008

3. Evaluation of Factors Contributing to the Similarity of Instances

The third goal of this research was to examine the potential factors contributing to

the similarity estimation of interest instances during triage activity. In particular, we

studied the contributions of three main factors: (1) Content Similarity, (2) Temporal

Similarity, and (3) Visual Similarity. The performance of each was considered in

isolation, by comparing only-Content, only-Visual, only-Temporal metrics with the

combination of all three as similarity measures.

Fig. 27 shows the performance of four different versions of SLAHC algorithm with

constraints. The only thing that varied in these four versions is the similarity measure

calculation between any two given instances used during all steps of clustering. The

first version, shown in red in the graph, uses only content similarity as the complete

similarity measure between the interest instances. The second variation, shown in

green, uses only the temporal similarity while the third variation, shown in violet,

uses only the visual similarity. The fourth variation, shown in blue, uses a weighted

aggregation of all these three similarities as shown below.

SimilarityScore(
−→
v1,

−→
v2) =α ∗ ContentSimilarity(

−→
v1,

−→
v2)+

β ∗ TemporalSimilarity(
−→
v1,

−→
v2) ∗ V isualSimilarity(

−→
v1,

−→
v2)

(7.1)
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Fig. 27. Comparison of Similarity Contribution from Different Factors

Fig. 26 shows the mean and standard deviation of the four versions of these

algorithms on the 7 datasets.

As expected, Fig. 27 shows that the participants in the studies went about the

triage task in significantly different ways. A closer look helps understand each user’s

instance creating patterns, the kind of data selected for creating an instance, and

their consistency in applying visual characteristics to instances. The graph indicates

that participant7 to a greater extent and participant2 and participant5 to a lesser

extent were consistent in using the visual characteristics as their only-Visual version

of the algorithm performed better than it did for other participants. The good per-

formance of only-Temporal version for Participant2 and Participant3 suggests that

his/their browsing patterns and instance creation patterns were temporally concen-
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trated which means all documents and segments corresponding to same interest class

were generally accessed during the same time. The good performance of only-Content

versions and bad performance of only-Temporal and only-Visual versions for Partic-

ipant1 and Participant6 suggests that they were not consistent in their use of visual

characteristics and did not temporally segment their access of documents based on in-

terest class. In these cases, the text selected during the creation of instances provides

the strongest evidence of the interest classes that they belong to.

 

Fig. 28. Mean and Standard Error of SLAHC with Four Similarity Measures

None of the first three versions of algorithms using single factor could perform
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consistently better across all seven datasets. These results have asserted our claim

that a single similarity measure cannot completely define the relationship between

the instances. People have idiosyncratic work practices and a single measure will not

work across these various practices. The results also show that the fourth metric,

which is an aggregation of the three single-component similarity measures, performs

consistently better in all the seven datasets. It performs best for the first five datasets

and, in the cases of Participant6 and Participant7 where content and visual factors

dominate, it stands second best.

Fig. 28 also shows that on average the combined-feature metric performs better

than the other three algorithms. This indicates that across a population of users, this

similarity measure can better define the relationship between the triage interest in-

stances. Table IV shows the P-Value from the paired T-tests on the results suggesting

their statistical significance.

Table IV. Paired T-test on Algorithms with Different Similarity Features

FeaturesCompared P-Value

All Features vs Only-Content 0.011265902

All Features vs Only-Temporal 0.020553995

All Features vs Only-Visual 0.037797025
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CHAPTER VIII

CONCLUSION AND FUTURE WORK

This thesis presents an approach to address issues faced by triage supporting systems

trying to recognize distinct user interests based on user activity that arise due to

the inconsistencies in user’s interpretive actions. These inconsistencies if not taken

care, affect the interest model inferring capability of the systems. A modified IR

clustering technique customized to suit the needs of document triage was developed

to group similar interest instances. Three factors were considered in calculating the

similarity between the instances: (1) Content Similarity, (2) Temporal Similarity, and

(3) Visual Similarity. We have also developed an approach that derives constraints on

interest instance clustering from user behavior. The IPM infrastructure has also been

extended with the development of IPM clients for MS Word and PowerPoint. IPM

now can aggregate actions recorded from four client applications: VKB3, Mozilla and

the newly added Word and PowerPoint.

We have evaluated the effectiveness of alternative clustering algorithms and found

that the Single-Link AHC algorithm generally performs better than the Complete-

Link and UPGMA algorithms in the context of clustering interest instances and the

similarity measure combining all three similarity factors. Combining the three simi-

larity factors defined well the relationship between interest instances even across the

diverse work practices found among our evaluation participants. We also found that

the use of constraints derived from user’s intent improved the overall effectiveness of

the clustering algorithms.

In the current work we used temporal, visual and content characteristics to es-

timate the similarity between two interest instances. This work can be extended to

include more implicit indicators like the time spent on a document or segment while
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reading or editing; how much of the document they examine (e.g. how far into a

document they scroll); the scrolling speed; how they categorize the document (e.g.,

stacking it with other interesting documents); and through other behaviors that in

part rely on the tools they are using. Considering these indicators can give more in-

formation about the user behavior and his/her interests. Though, they are less likely

to be useful on their own, combining them with the other existing factors may re-

sult in a more accurate prediction of the similarity between interest instances. These

implicit indicators may also help better understand a user’s intent from his/her brows-

ing patterns which can be used to derive new constraints to satisfy by the clustering

algorithm.

Implementing more clustering algorithms, both hierarchical and Partitional and

analyzing their results will also help better understand the characteristics of the

similarity relation between two triage interest instances in the feature space. The

extension of IPM infrastructure to support more applications like Adobe Acrobat

Reader, Chrome and Windows Explorer browsers as clients will also help IPM collect

more user activity and build better interest models for the user.
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