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ABSTRACT

Digitally-Assisted Mixed-Signal Wideband Compressive Sensing. (May 2011)

Zhuizhuan Yu, B.S.; M.S., Beijing University of Posts and Telecommunications

Chair of Advisory Committee: Dr. Sebastian Hoyos

Digitizing wideband signals requires very demanding analog-to-digital conversion

(ADC) speed and resolution specifications. In this dissertation, a mixed-signal parallel

compressive sensing system is proposed to realize the sensing of wideband sparse signals

at sub-Nqyuist rate by exploiting the signal sparsity. The mixed-signal compressive sens-

ing is realized with a parallel segmented compressive sensing (PSCS) front-end, which

not only can filter out the harmonic spurs that leak from the local random generator, but

also provides a tradeoff between the sampling rate and the system complexity such that a

practical hardware implementation is possible. Moreover, the signal randomization in the

system is able to spread the spurious energy due to ADC nonlinearity along the signal band-

width rather than concentrate on a few frequencies as it is the case for a conventional ADC.

This important new property relaxes the ADC SFDR requirement when sensing frequency-

domain sparse signals.

The mixed-signal compressive sensing system performance is greatly impacted by the

accuracy of analog circuit components, especially with the scaling of CMOS technology.

In this dissertation, the effect of the circuit imperfection in the mixed-signal compressive

sensing system based on the PSCS front-end is investigated in detail, such as the finite set-

tling time, the timing uncertainty and so on. An iterative background calibration algorithm
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based on LMS (Least Mean Square) is proposed, which is shown to be able to effectively

calibrate the error due to the circuit nonideal factors.

A low-speed prototype built with off-the-shelf components is presented. The proto-

type is able to sense sparse analog signals with up to 4% sparsity at 32% of the Nqyuist rate.

Many practical constraints that arose during building the prototype such as circuit nonide-

alities are addressed in detail, which provides good insights for a future high-frequency in-

tegrated circuit implementation. Based on that, a high-frequency sub-Nyquist rate receiver

exploiting the parallel compressive sensing is designed and fabricated with IBM90nm

CMOS technology, and measurement results are presented to show the capability of wide-

band compressive sensing at sub-Nyquist rate. To the best of our knowledge, this prototype

is the first reported integrated chip for wideband mixed-signal compressive sensing. The

proposed prototype achieves 7 bits ENOB and 3 GS/s equivalent sampling rate in simula-

tion assuming a 0.5 ps state-of-art jitter variance, whose FOM beats the FOM of the high

speed state-of-the-art Nyquist ADCs by 2-3 times.

The proposed mixed-signal compressive sensing system can be applied in various

fields. In particular, its applications for wideband spectrum sensing for cognitive radios

and spectrum analysis in RF tests are discussed in this work.
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CHAPTER I

INTRODUCTION

A. Motivation

In order to accommodate consumers’ increasing demand on high speed wireless ser-

vices, the bandwidth of wireless systems continues growing from KHz to hundreds of MHz

and beyond (see Fig. 1). For example, IEEE 802.11n standard, an amendment to the IEEE

802.11-2007 release, aims to provide a maximum data rate of 540Mbps for Wireless Local

Access Network (WLAN) by adding MIMO (Multiple Input Multiple Output) and 40MHz

Channel Bonding to the physical layer [1]. The UWB systems under the IEEE 802.15.3a

task group propose to have a data rate up to 1.32Gbps with a bandwidth of 528MHz for

short-range Wireless Personal Access Network (WPAN) [2]. Although the miniaturization

of CMOS technology allows increasing circuit speeds and provides excellent timing ac-

curacy for high frequency digital circuits, the limited signal swing due to the low-voltage

supply makes it difficult to obtain the required resolution in analog circuits [3]. This mo-

tivates early digitization of the analog signal, and carrying out complicated filtering and

signal processing in the digital domain. Digital processing flexibility has naturally led to

programmable software-defined radio (SDR) [4], as well as dynamic spectrum access and

cognitive radio (CR) ideas [5]. The receiver side of these radios typically relies on digi-

tal signal processing to provide the desired sensing and processing flexibility over a wide

The journal model is IEEE Transactions on Automatic Control.
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bandwidth, for which the ideal architecture places the analog to digital converter (ADC)

right after the antenna.
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Fig. 1. Bandwidth growth trend of wireless systems.

Traditionally, the analog signal is sampled in the time-domain at Nyquist rate [6], [7].

The increasing demand for systems with both higher bandwidth and lower power consump-

tion motivates the search of innovative ADCs, for example, the time-interleaving struc-

ture [8–12] and the multi-channel filter-bank approach [13–20]. However, with sensing

and communication bandwidths expanding from hundreds of MHz to several GHz, the

ADC power consumption can become very large, especially given the sensing goal to de-

tect signals over a large dynamic range. Fig. 2 summarizes the energy consumption of

state-of-the-art ADCs working at Nyquist rate [21], from which we can see that the energy

consumption per conversion of most state-of-the-art ADCs is above 100 fJ. Based on that,
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we can do a quick calculation. Suppose a receiver should detect a weak signal of 1μV

in the presence of a 100mV interferer. These observed signal levels are not uncommon

in a typical fading wireless environment, and result in the need for 16-bit ADC resolution.

Achieving this over a large bandwidth of 5GHz say, the required power consumption of this

ADC would be 100W with the rather optimistic assumption on the energy consumption at

100 fJ per conversion [21], [22], [23].
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FOM=100fJ/conv-step
FOM=10fJ/conv-step

Fig. 2. Energy consumption of state-of-the-art ADCs.

Fortunately, in some practical cases, there may be unoccupied regions in some transform-

domain of the signal (i.e., the signal is sparse in some domain and therefore compressible

at the receiver front-end). For example, it we take several snapshots of the impulse ra-

dio UWB signal using an oscilloscope, we may find that active UWB pulses exists only



4

for a small piece of time in each snapshot. In other words, the UWB signal shows some

sparisty in the time domain [24], [25], [26]. Studies done by the FCC’s Spectrum Policy

Task Force [27] reported that the temporal and geographic utilization of allocated spectrum

varies from 15% − 85% in most major US metropolitan areas [27]. In other words, the

current frequency usage shows some sparsity in both frequency domain and space domain.

(In fact, it is just this sparsity in frequency usage that leads to the concept of dynamic

spectrum sharing, which is one of the main functions of CRs.) In addition, images are

sparse in the wavelet-domain [28]. The sparsity means that the inherent information rate of

those signals is actually less than the rate defined by the signal bandwidth, and makes them

compressible.

For sparse signals, the definition of which is given in Chapter II, recent work in Com-

pressed Sensing (CS) [29–31] provides a new framework to process them efficiently. Ac-

cording to CS theories, the characteristics of sparse signals can be completely captured by

a number of projections over a random basis and reconstructed perfectly from these random

projections. The number of random projections is on the order of the signal’s information

rate rather than the Nyquist rate. When this research was first started in 2007, most work

in the field of CS was in the digital domain, where full-rate sampling is generally required

and the issue is then to reduce the complexity of subsequent signal processing. Several

questions naturally came to the author’s mind and they are: (i) The random projections

(measurements) in CS are done over a discrete-time signal that is obtained by sampling the

continuous-time signal at Nyquist rate, which is paradoxical because sub-Nyquist sensing

is achieved by first discretizing the analog signal at Nyquist rate. Can we avoid the dis-
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cretization at Nyquist rate by applying CS to the analog signal directly? (ii) How are the

random measurements implemented in practice? Are they practically affordable? (iii) How

will the practical imperfections impact the performance and how do we analyze and ad-

dress those imperfections? (iv) What might be interesting applications of this idea? Trying

to answer these questions finally brings the work presented in this dissertation.

B. Research Contribution

The objective of this research is to propose a scheme to realize the mixed-signal com-

pressive sensing of wideband sparse signals at sub-Nyquist rate and build prototypes for it,

and the principle guiding this research conducted in this paper is the feasibility of imple-

mentation. The highlights of this research are summarized as follows:

1. A mixed-signal compressive sensing architecture based on Parallel Segmented Com-

pressive Sensing (PSCS) is proposed, where the CS is applied to analog signals di-

rectly and the input sparse signal is sensed at sub-Nyquist rate.

2. The tradeoff between the hardware complexity and the sampling rate of the proposed

PSCS architecture is exploited.

3. A flexible spurious frequency rejection scheme is proposed.

4. The robustness against ADC nonlinearity of mixed-signal compressive sensing ar-

chitectures is analyzed and compared with conventional Nyquist rate sampling ar-

chitectures.
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5. The effect of circuit imperfections in the PSCS architecture is addressed and back-

ground calibration schemes are proposed to compensate for the circuit nonidealities.

6. A low-frequency off-the-shelf component prototype of the PSCS architecture is built.

7. A high-frequency integrated prototype of the PSCS architecture using IBM 90nm

technology is built. 1

C. Dissertation Organization

The remainder of this dissertation is organized as follows:

Chapter II provides the background of compressive sensing and summarizes the re-

lated work.

Chapter III introduces the proposed PSCS architecture, including the signal model-

ing, random projection and signal reconstruction, and discusses the characteristics of the

proposed PSCS architecture.

Chapter IV investigates the robustness of mixed-signal compressive sensing archi-

tecture against ADC nonlinearity in comparison with conventional Nyquist rate sampling

architectures when sampling frequency-domain sparse signals .

Chapter V addresses the effect of circuit nonidealities in the PSCS architecture and

shows how the background calibration compensates for the circuit imperfections.

Chapter VI introduces the low-frequency prototype of the PSCS architecture built us-

ing off-the-shelf components.

1Joint work with Xi Chen.
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Chapter VII introduces the high-frequency integrated prototype of the PSCS architec-

ture implemented with the IBM 90nm CMOS technology, with a system level view.

Chapter VIII gives application examples of the proposed PSCS architecture on the

spectrum sensing for cognitive radios and the usage on spectrum analyzer.

Chapter IX summaries this research.
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CHAPTER II

BACKGROUND OF COMPRESSIVE SENSING AND RELATED WORK

A. Compressed Sensing

In 1949, Shannon published his famous paper ”Communication in the presence of

noise” [6], which set the foundation of information theory. At the beginning of his paper,

he presented the sampling theory which has been guiding the signal sampling and recon-

struction for over 50 years. According to Shannon’s sampling theory, the sampling rate

for perfect signal reconstruction needs to be at least twice the signal’s highest frequency.

Compressive Sensing (CS), starting with the work of [29], [30], provides a novel approach

for signal sampling and reconstruction, which states that perfect signal reconstruction from

incomplete measurements is possible for certain types of signals, called sparse signals or

compressive signals.

1. Sparse and Compressible Signals

Sparse signals or compressive signals can be well-approximated by a sparse expansion

over some basis, that is, by only a small number of non-zero coefficients. Mathematically

speaking, a vector x ∈ C
S is K-sparse over some basis Ψ, if it can be written as x = Ψa

and the support size of a = [a1, a2, . . . , aS]
T is equal to K with K << S. Where, the

support of a is denoted as

supp(a) = {j : aj �= 0}, (2.1)
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and the support size of a is defined as

‖a‖0 = |supp(a)|, (2.2)

where, ‖ · ‖0 is the l0-norm which counts the non-zero items. Furthermore, a vector a is

called compressible if the lp approximation error σk(a)p by its best K-term approximation

aK decays exponentially as K increases, where

σk(a)p = arg min
ā∈Σk

‖a− ā‖p = ‖a− aK‖p, (2.3)

and the lp norm of the vector a is defined as ‖a‖p =
(∑S

i=1 |ai|p
)1/p

for 0 < p < ∞.

2. Compressive Measurements and Signal Recovery

With traditional sampling techniques, sparse signals are acquired at full Nyquist rate at

first, and afterwards only the useful information is kept at the compression stage. Instead,

compressive sensing aims at obtaining those non-zero coefficients (large coefficients for

compressible signals) more directly by taking only a small number of linear and nonadap-

tive measurements of the signal. Without having a prior knowledge of the location of those

non-zero (large) coefficients, how can the original signal be isolated from the infinitely

many solutions of the undetermined linear system? Under the framework of compressive

sensing, perfect signal reconstruction from incomplete measurements is achieved by us-

ing specially designed measurements and locating the sparsest solution out of the multiple

solutions which satisfy the constraints.
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a. Compressive Measurements and Restricted Isometry Property

The measurement is done by projecting x over another random basis Φ that is inco-

herent with Ψ, i.e.,

y = ΦΨa, (2.4)

where, Φ is called the measurement matrix and V = ΦΨ is called the reconstruction

matrix in this dissertation. For robust signal recovery, it is essential that the measurement

matrix satisfies the Restricted Isometry Property (RIP) [29], [30], [32].

Definition The restricted isometry constant δk of a matrix Φ ∈ C
L×S is the smallest num-

ber such that

(1− δk)‖z‖22 ≤ ‖Φz‖22 ≤ (1 + δk)‖z‖22 (2.5)

for all z ∈ Σk, where Σk := {a ∈ C
S : ‖a‖0 ≤ k}.

The matrix Φ is said to satisfy the restricted isometry property of order k (alternatively

speaking, k-RIP) with constant δk if δk ∈ (0, 1), which means all column submatrix of Φ

with at most k columns are required to be well-conditioned. While the design of a mea-

surement matrix Φ satisfy the k-RIP is an NP-Complete problem in general [31], a large

number of random matrices have the k-RIP with high probably. For example, the random

matrices whose entries are i.i.d. Gaussian, Bernoulli (±1), or more generally subGaussian

2 satisfy the k-RIP with high probability provided L = O(Klog(S/K)). These random

2A random variable X is called subGaussian if there exists c > 0 such that EXt ≤ ec
2t2/2

for all t ∈ R. Examples include the Gaussian and Bernoulli random variables, as well as
any bounded random variable [33].
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matrices also have a so-called universality property in that, for any choice of orthonormal

basis matrix Ψ, V = ΦΨ also has the k-RIP with high probability.

b. Signal Reconstruction

To recover the original K-sparse signal from L incomplete measurements, a natural

approach is to find the sparsest solution from the infinitely many solutions that satisfy

the constrains y = Va. Mathematically, this is to resolve the following l0 optimization

problem,

â = arg min‖a‖0 s.t. y = ΦΨa (2.6)

Although this optimization can recover a K-sparse signal from just L = 2K compres-

sive measurements, unfortunately, it is a combinatorial, NP-Complete problem and com-

putationally intractable [34], [35]. Moreover, the recovery is not stable in the presence of

noise [36].

In practice, there are two categories of computationally tractable approaches to recon-

struction the K-sparse signal from L incomplete measurements. The first approach is to

resolve the following l1 optimization through convex relaxation.

• noiseless case

â = arg min‖a‖1 s.t. y = Va, (2.7)

• noisy case

â = arg min‖a‖1 s.t. ||y −Va||2 ≤ εn, (2.8)

where εn is the error due to the noise.
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There are many mature algorithms to resolve the above convex optimization problems

in polynomial time [37]. Variations include basis pursuit with denoising [38], complexity

based regularization [39], the Dantzig Selector [40] and so on.

The second approach is to find the solution iteratively using greedy algorithms, exam-

ples of which include the matching pursuit, orthogonal matching pursuit [41], StOMP [42],

iterative hard thresholding (IHT) [43], CoSaMP [44], normalized IHT [45], Subspace Pur-

suit (SP) [46] and among others.

c. Performance Bounds on Signal Reconstruction

The performance bounds for the reconstructed signals are closely related to the follow-

ing two theorems [47]. Variations of the theorems are presented in many other publications,

including [29].

Theorem II.1 [47] Assume V ∈ C
L×S satisfies the RIP of order 3k with δ3k < 1/3. For

a ∈ C
S , let y = Va and a∗ be the solution of the l1 optimization problem (2.7). Then,

‖x− x∗‖2 ≤ C
σk(a)1√

k

with C = 2
1−γ

(
γ+1√

2
+ γ

)
, γ =

√
1+δ3k

2(1−δ3k)

Theorem II.2 [47] Assume that the restricted isometry constant δ2k of the matrix V ∈

C
L×S satisfies

δ2k ≤ 2

3 +
√
7/4

≈ 0.4627

For a ∈ C
S , let y = Va+ εn and a∗ be the solution of the l1 optimization problem (2.8).
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Then,

‖x− x∗‖2 ≤ C1εn + C2
σk(a)1√

(k)

for some constants C1, C2 that depends on δ2k.

Based on the above theorems, we have the following performance bounds on the re-

constructed signals [36].

• For a noise-free K-sparse signals a, the signal can be exactly recovered from the

compressive measurements y = Va.

• For a K-sparse signal that is corrupted by noise n with a bounded norm of εn, that is,

y = Va+ n, the Mean Square Error (MSE) of the reconstructed signal is bounded

by

‖a− â‖2 ≤ Cεn (2.9)

with C a small constant [29], [43], [44], [48].

• For a compressible signal that is corrupted by noise n with a bounded norm of εn,

that is, y = Va+ n, the Mean Square Error (MSE) of the reconstructed signal is

bounded by

‖a− â‖2 ≤ C1‖a− aK‖2 + C2
1√
K

‖a− aK‖1 + C3εn (2.10)

with C1, C2 and C3 some constants.
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B. Compressed Sensing of Analog Signals

CS provides a novel framework to process sparse and compressible signals. However,

the majority of the CS literature focus on the compressive measurement in the digital do-

main. Alternatively speaking, they studied the problem of sparse signal recovery in an un-

determined linear system, where the sparse signals are sampled at Nyquist rate at first, and

then CS is applied to obtain the large coefficients of the signal expansion over some basis,

see Fig. 3 (a). Compared with conventional Nyquist sampling systems where all coeffi-

cients are acquired after the signals are sampled at Nyquist rate and only large coefficients

are kept at the compression stage, the utilization of CS in digital domain is able to save

the effort spent on acquiring those small coefficients that will be thrown away during the

compression stage. However, it still necessitates the Nyquist rate Analog-to-Digital Con-

version (ADC) which is in fact the bottleneck for the sensing of (ultra-)wideband signals

today, as mentioned in Chapter I. This is somewhat paradoxical because the sub-Nyquist

sensing is achieved by first discretizing the analog signal at Nyquist rate and then applying

CS. Naturally, researchers look for approaches to avoid the high-speed ADCs by applying

CS to the analog signal directly, as shown in Fig. 3 (b).

In [49], [50], an approach of compressive sensing of analog signals through nonuni-

form sampling was proposed. Basically, the input wideband sparse signal is sampled at a

nonuniform rate, and the average sampling rate is below the Nyquist rate, as shown in Fig.

4. However, this approach has two main drawbacks. First, it is difficult to maintain the

accuracy of the random timing shift while sampling in high-speed systems [51]. Second,

the sampling clock still needs to run at Nyquist rate, since the minimum spacing between
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Fig. 3. (a) CS of digital signals (b) CS of analog signals.

Fig. 4. Compressive sensing of analog signals based on nonuniform sampling.
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Fig. 5. Compressive sensing of analog signals based on random demodulation.
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two consecutive samples needs to be the Nyquist period, as required for the CS signal re-

construction. Although using time-interleaved ADCs can relax the conversion rate of the

ADCs, all ADCs still share the same analog front-end which must tolerate the whole input

signal bandwith. Multicoset sampling is a special case of interleaved ADCs, so that the

same limitations apply [52], [53]. The algorithm proposed in [54] can be used to recover

the signal from spectrum-blind nonuniform sampling, however, it requires interpolating the

samples to full Nyquist rate before reconstruction, which is also difficult in high-speed sys-

tems. Other related work on the nonuniform sampling include [55] and [56]. Considering

the difficulty in implementing the accurate time shifts and the ideal samplers in wideband

systems, the nonuniform sampling approach is more appropriate for intermediate frequency

regime.

Another approach of compressive sensing for analog signals is based on random de-

modulation, which was first described in [57] and [58]. In this approach, the analog signal

is first demodulated with a pseudo-random chipping sequence p(t), then passed through

an analog filter h(t), and the measurements are obtained in serial by sampling the filtered

signal at sub-Nyquist rate, which is shown in Fig. 5. The serial sampling structure is appro-

priate for real-time processing. However, the sampling rate may still be high for wideband

applications. In addition, the architecture lacks the flexibility in addressing some practical

constraints, such as spurious frequency rejection. In [59], we proposed a Parallel Seg-

mented Compressed Sensing (PSCS) structure to sense the analog signal at sub-Nyquist

rate. This architecture provides a design tradeoff between the system complexity and the

sampling rate, and also a flexible scheme for spurious frequency rejection. This architec-
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ture is one of the main contributions of this research and will be explained in more details

in the rest of this disseartion.

The modulated wideband converter (MWC) proposed in [60] and [61] is also a method

of compressive sensing of analog signals. The MWC consists of an analog front-end with

multiple parallel channels. At each channel, the input signal is multiplied by a periodic

waveform pi(t), lowpass filtered and then sampled. In the MWC, the key is the periodicity

of the waveforms pi(t), because the periodicity in the time domain implies the existence of

harmonic frequencies in the frequency domain, which can be deliberately utilized to shift

various frequency regions to baseband simultaneously. After being filtered, the resulting

baseband signal can be sampled at sub-Nyquist rate. The most challenge for the MWC

is that the number of parallel channels is usually too many to be affordable in terms of

practical implementation. In the example in [61], the number of channels is 35 which is

barely possible in practice. Moreover, the generation of those periodic waveforms is also

a big chanllenge in the MWC. In [60], an MWC system with pi(t) consisting of differ-

ent sign alternations was analyzed and simulated. In [61], a theoretical framework for the

required properties of the sensing matrix in sub-Nyquist systems was proposed. An inter-

esting observation is the connection of the MWC to the idea of ultra-wideband analog to

digital conversion via signal expansion presented in the work of [62] and [63], where the

wideband signal is also sent to an analog front-end with multiple parallel channels, and at

each channel the signal is mixed with some basis functions, for example, the sinusoidal

functions which are square waveforms in practice, so that the whole signal bandwidth is

channelized and shifted to sbaseband. Since the signal considered in [62] and [63] is not
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limited to sparse signals, general Least Square or Minimum Mean Square Error (MMSE)

rules were used for signal reconstruction.

Besides the above approaches for compressive sampling of analog signals, there are

some other approaches to achieve sub-Nyquist sampling of analog signals, for example,

the Nyquist-folding system in [64] and the early work on the nonuniform sampling with

known carrier frequencies in [65], [66]. Since they do not incorporate CS ideas such as

sparse representations, they will not be discussed here.
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CHAPTER III

MIXED-SIGNAL PARALLEL SEGMENTED COMPRESSIVE SENSING AND

RECONSTRUCTION OF WIDEBAND ANALOG SIGNALS

A. Overview

Input sparse 
signal

PSCS 
front-end

Low-speed 
ADC

Signal 
reconstruction Following DSP

Fig. 6. Overview of the mixed-signal PSCS (Parallel Segmented Compressive Sensing) sys-
tem.

Fig. 6 gives an overview of the system where the mixed-signal parallel segmented

compressive sensing (PSCS) is applied to sense wideband analog signals at sub-Nyquist

rate. Since the sub-Nquist rate sampling and signal reconstruction is under the frame-

work of CS, the input signal of interest in this dissertation must be sparse or compressible.

For simplicity, sparse signals are used in general to refer to both sparse signals and com-

pressible signals in this dissertation unless stated explicitly. In the system shown in Fig.

6, the input sparse signal is sampled at sub-Nyquist rate by the PSCS architecture, and

then converted to digital samples by low-rate ADCs, from which the original signal can

be recovered. Depending on the specific application needs, further baseband digital sig-

nal processing may be necessary, which may occur after or during the procedure of signal

reconstruction.
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B. Signal Modeling

When extending the CS formulation in digital domain to analog singals, the first diffi-

culty encountered is in the signal model, because the sparsity defined in CS is the number

of nonzero elements in the vector x, while the sparsity of analog signal involves an un-

countable number of zeros and nonzeros. In this dissertation, a signal model based on finite

dimensional approximation is used.

For example, assume that the input sparse signal r(t) to the mixed-signal PSCS system

is a multi-band analog signal with a frequency span from fl to fh, whose spectrum is

illustrated in Fig. 7. Specifically, the frequency spectrum of r(t) consists of W disjoint

subbands, each of which has a bandwidth of Bi (i = 1, 2, . . . ,W ); there exist W − 1

frequency gaps associated with these W subbands and these frequency gaps are always

unoccupied; each subband consists of a certain number of channels, and only some of these

channels are occupied at any time. In Fig. 7, each line with an upward arrow represents

a channel, the lines in red are always inactive, since they are in the range of unoccupied

frequency gaps; the solid lines in black stand for the currently active channels, the dashed

lines in black stand for the currently inactive channels, and the active status of those lines

in black varies with time.

Without loss of generality, we assume that r(t) is bandlimited to [0, fh], so r(t) can be

written as

r(t) =

∫ ∞

−∞
R(f)ej2πftdf =

∫ fh

0

R(f)ej2πftdf, (3.1)

where, R(f) is the Fourier transform of r(t). Note that r(t) is a continuous-time analog
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Fig. 7. Illustration of the multi-band analog signal to the sensing radio.

signal, which is essentially infinite-dimensional according to traditional sampling theory.

In [67], [68] the authors show that with a set of operations grouped under a block named

continuous-to-finite (CTF), the continuous nature of the problem can be transformed to a

finite dimensional equivalent, and the resulting problem fits the framework of compressive

sensing which has focused on sensing of finite-dimensional vectors. Moreover, in many

application scenarios, it is not necessary to capture the continuous spectrum of the signal.

For example, in the application of spectrum sensing for cognitive radios [69], [70], [71],

[72], [73], the multi-band model shown in Fig. 7 can be used to model the frequency usage

status, where the W subbands may represent W disjoint frequency bands complying with

different wireless standards and each subband consists of multiple channels that can be

allocated to users. Since the purpose in this application is to detect those spectrum holes

that are unoccupied by primary users, the resolution grid of spectrum estimation can be

not that fine. Therefore, it is possible and sufficient, at least for some applications, for us

to approximate the continuous-time analog signal r(t) with a model of finite dimension as
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follows.

r(t) ≈
S−1∑
s=0

R(sΔf)ej2πsΔftΔf, t ∈ [0, Ts] (3.2)

where Δf = 1/Ts is the resolution on the frequency axis and (S − 1)Δf = fh. In

other words, r(t) is approximated as a finite dimensional multi-carrier signal bandlimited

to [0, fh] and with a carrier spacing of Δf . The frequency resolution grid Δf can always

be tuned according to specific application requirements. The sparse frequency occupancy

means that statistically speaking, only K out of the S carriers are active at any time, where

K 	 S. The multi-carrier model is convenient for representing user occupancy with

spectral sparsity. Comparing equation (3.1) and equation (3.2), we notice that this model

is based on a finite dimensional approximation of the signal spectrum. Since there are

S unknowns where R(sΔf) in equation (3.2) and R(sΔf) change every Ts seconds, the

model in equation (3.2) is a case of a Finite Rate of Innovation (FRI) model in which the

innovation locations lie on the Nyquist grid [74]. For clarity, we rewrite equation (3.2) as:

r(t) =
S−1∑
s=0

asΨs(t) + n(t), (3.3)

where n(t) is additive white Gaussian noise (AWGN), Ψ = [Ψ0(t),Ψ1(t), . . . ,ΨS−1(t)],

Ψs(t) = ej2πsΔft, a = [a0(t), a1(t), . . . , aS−1(t)] ∈ C
S , as = ΔfR(sΔf) and a has only

K 	 S non-zero elements. Since Δf is a scalar, for simplicity, we discard it in the rest of

the dissertation. The spectrum sensing and reconstruction of wideband analog signals are

usually based on the observed signal spectrum R(sΔf) , or equivalently, the estimation of

the coefficients as.
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C. Mixed-signal Parallel Segmented Compressive Sensing and Reconstruction

In the system shown in Fig. 6, the input sparse signal is sampled at sub-Nyquist rate

by the PSCS architecture, and then converted to digital samples by low-rate ADCs, from

which the original signal can be recovered and sent for further processing.

1. Mixed-signal Parallel Segmented Compressive Sensing Architecture

The Parallel Segmented Compressive Sensing (PSCS) architecture is shown in Fig.

8, which we first proposed in [59]. In the PSCS architecture, the input signal r(t) for

t ∈ (0, Ts], which is the K-sparse signal as given in equation (3.3), is sent to N parallel

paths. Measurements of r(t) are obtained in parallel by calculating the inner product of

the segments of the received signal r(t) and the random basis funtions during a period of

T . Specifically, at the nth path, r(t) is mixed with a random basis function Φn(t). The

output of the mixer is then sent to a sliding window with a width of Tc and integrated.

Two adjacent windows have an overlapping time Tc − Tm, which defines an overlapping

percentage OV R = Tc−Tm

Tc
, as shown in Fig. 9. The output of the integrators are sampled

and M samples are collected at each path. The mth sample of the nth branch is given by

ymN+n =

∫ mTm+Tc

mTm

r(t)Φ∗
n(t)dt. (3.4)

where, ΦmN+n(t) is chosen randomly for all m and n. At the end of each integration time

Tc, the outputs of the integrators are fed to a set of ADCs and the quantized digital words

are sent to the DSP blocks for further processing. There are a total of L = MN samples
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collected every Ts seconds and these samples are organized into a vector as follows.

y = [ỹT
0 , ỹ

T
1 , . . . , ỹ

T
M−1]

T , (3.5)

where, ỹm = [ymN , ymN+1, . . . , ymN+N−1]
T is the vector consisting of the mth samples

from all N branches.
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Fig. 8. Block diagram of the PSCS architecture.
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Fig. 9. Illustration of overlapping windows.

The windowed integrator with overlapping acts as a spurious frequency rejection
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mechanism in the PSCS architecture, which will be discussed in Section D.3. For the

random basis Φl(t) there are several choices, such as Gaussian, Bernoulli and so on, as

mentioned in Chapter II. Here, the Bernoulli random basis has particular merit because the

desired binary waveforms can be generated with digital sequential circuits.

Recall that in the formulation of CS in digital domain, the random measurements yL×1

is obtained by multiplying the input signal vector xS×1 with the random projection matrix

Φ, i.e., y = Φx, where Φ has a size of L × S. Here, we can introduce a similar random

projection “matrix” to help understand the PSCS architecture, which is shown in Fig. 10,

where each shadowed box corresponds to one piece of the random basis functions. The

reason why “matrix” is quoted is because this “matrix” has a size of L×∞ and the infinity

diemension is due to the fact that the input signal to the mixer is the analog signal and there

are ∞ samples during the processing period T . This is also the reason why the architecture

is called mixed-signal since the CS block has analog input and digital output. Note that

the “matrix” is a stack of N block-diagonal sub-matrices with a size of M × ∞, each of

which corresponds to the output M samples of one path. The diagonal structure is due to

the segmentation. The overlapping of the shadowed pieces of two adjacent rows reflects

the overlapping of the sliding window.

2. Signal Reconstruction from Compressive Samples

Recall that the CS signal reconstruction from the compressive samples is to resolve

the optimization problem given in equation (2.8). For convenience, it is repeated below,

â = arg min‖a‖1 s.t. ||y −ΦΨa||2 ≤ εn,
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Fig. 10. Measurement “matrix” of the PSCS architecture.
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where εn is the error due to the noise.

The first step for signal recovery is to calculate the reconstruction matrix V = ΦΨ =

{vi,j}L×S , which can be done in a similar way as obtaining the measurements. Specifically,

the element at the mN + n row and the s column is given by:

VmN+n,s =

∫ mTm+Tc

mTm

Ψs(t)Φ
∗
n(t)dt. (3.6)

Once we get V, we can estimate a by solving the problem in (2.8) and reconstruct the

original signal using r = Ψâ.

As mentioned in Chapter II, there are abundant algorithms available to resolve the

above convex optimization problems. These algorithms vary in terms of the computational

complexity, the minimum number of measurements required for signal recovery and ro-

bustness to noise. Below is a pseudo code of the Orthogonal Matching Pursuit (OMP)

algorithm, which is one type of greedy algorithm.

D. Characteristics of the Mixed-signal Parallel Segmented Compressive Sensing System

1. Sub-Nyquist Rate Sampling and Reconstruction

A series of simulations are done to show the PSCS architecture’s capability of sens-

ing and reconstructing analog sparse signals at sub-Nqyuist rate. In the simulations, the

input signal is a frequency-domain K-sparse multi-carrier signal with a finite dimension

of S = 128, as modeled in Equation (3.3), and the signal sparsity is denoted as K/S.

The subcarrier spacing Δf = 1GHz/128 = 7.8125MHz and the symbol duration time

Ts = 1/Δf = 128ns. The locations of the K active subcarriers are chosen randomly and
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Algorithm 1 Orthogonal Matching Pursuit (OMP)
1: initialization: z0 = y;

2: for k = 1 : K do

3: Calculate the projection of the residue zk−1 over the direction of Vj for all j

bk,j = 〈zk−1,Vj〉,
where, Vj is the jth column of V;

4: Find the column Vik such that

ik = arg max
j∈1,2,...,S

bk,j;

5: Compute the new residue zk

âk =
〈y,Vik

〉
〈Vik

,Vik
〉

zk = zk−1 − âkVik ;

6: end for

7: Output the reconstructed signal: x̂(t) =
∑K

k=1 âkΨik(t);

changed every Ts seconds. For simplicity, the channel is assumed to be noise-free.

Fig. 11 gives the normalized MSE (Mean Square Error) of the reconstructed signal

versus the NSR (Normalized Sampling Rate) for signals with different sparsity, where the

signal sparsity is measured by K/S, MSE is equal to ||a−â||2
||a||2 and used to evaluate the signal

reconstruction quality, and NSR = MN
S

. As shown in the figure, with compressive sens-

ing, the signal can not be sampled and reconstructed correctly when the sampling rate is

below a threshold. However, when the sampling rate goes beyond the threshold, the signal

reconstruction quality improves significantly. These thresholds are the minimal sampling

rates required for ideal sensing and reconstruction of sparse signals. Taking into account

the numerical resolution limit of the simulation tool, we consider that the signal is recon-

structed perfectly when the MSE approaches -200dB. Therefore, for signals with a sparsity
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of [4%, 10%, 15%, 20%, 25%, 30%], the corresponding sampling rate is [0.26, 0.44, 0.56,

0.62, 0.72, 0.81] of the Nyquist rate respectively. The signal sparsity actually implies the

information rate the signal carries and the sampling rate with compressive sensing is deter-

mined by the signal’s information rate rather than its bandwidth. For signals that are very

sparse, the sampling rate reduction can be huge, which implies a great potential saving on

the power consumption for signal digitization. Note that since NSR = MN
S

, the sampling

rate reduction at each parallel path which is equal to M
S

is more significant.

Based on the results in Fig. 11, we get the relationship between the minimum re-

quired NSR for perfect signal reconstruction with different sparsity under a noise-free

environment, which is plotted in Fig. 12. Also plotted is a theoretical prediction curve

(the red curve with triangle marks) on the minimum NSR, which is based on the results

that the minimum number of measurements needed for perfect signal reconstruction of

a K-sparse vector with a dimensionality of S with convex optimization is on the order of

K log(1+S/K) [29], [30], [75]. Comparing both curves, we can see a good match between

the simulation results and the theoretical prediction.

2. Tradeoff between the System Complexity and the Sampling Rate Reduction

Recall that for robust signal reconstruction, the measurement matrix must satisfy the

RIP [30]. Also recall the measurement “matrix” of the PSCS front-end shown in Fig. 10,

with which we can roughly inspect how good the architecture is in terms of “RIP”. For

example, when M = 1, that is, no segmentation, it is usually out of the question that the

“matrix” has good “RIP” with Gaussian or Bernoulli as the basis functions. When N = 1,
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32

those zeros introduced by segmentation may disturb the “RIP” of the “matrix”. In this

section, we investigate through simulations how the system performance changes as the

parameters N , M change.

In our simulations, the input signal is a frequency-domain 10-sparse OFDM signal

with a finite dimension of S = 256, as modeled in Equation (3.3). The coefficients a are

QPSK modulated, the window has an overlapping ratio of 10%, second order Butterworth

filter is used to filter the out of band noise, and the joint OMP described in section C.2 is

used to reconstruct the signal. We also assume perfect CSI and SNR=10dB, and define the

Success Reconstruction Rate as one minus the Block Error Rate of OFDM symbols and the

Symbol Error Rate as the error rate of QPSK-modulated coefficients.

Fig. 13 and Fig. 14 show the Success Reconstruction Rate and Symbol Error Rate

under different M respectively, with S = 256 and K = 10. As shown, given the same

number of samples per branch, the signal reconstruction quality improves with more par-

allel branches. On the other hand, given the same reconstruction quality, the number of

parallel branches can be reduced by decreasing Tc and and thereby increasing the sample

rate for each branch.

In Fig. 15, the number of parallel branches N is plotted against the number of samples

per branch M with S = 256 and K = 10, given the target Success Reconstruction Rate of

95% which approximately corresponds to a Symbol Error Rate of 10−4 . For comparison,

we also plot the curve of N = 140
M

in the same figure. Comparing the simulation curve with

the curve of N = 140
M

, we can make two important observations. First, the system works at

sub-Nyquist rate. If sampled according to the Nyquist rate, there will be S = 256 samples
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needed for one OFDM symbol period T ; whereas in our PSCS structure, each ADC needs

to generate no more than 20 samples during each T and even the total number of samples

L = MN is approximately equal to 140 which is still less than 256. This significant reduc-

tion on the sensing rate is the benefit of parallelization and compressed sensing. Second,

the number of parallel branches N is approximately inversely proportional to the number

of samples per branch M , which presents a tradeoff between the system complexity and the

sensing rate. For example, without segmentation, the sensing rate per branch is only 1/256

of the Nyquist rate, but more than 100 parallel branches are required to have a satisfactory

reconstruction quality; with 20 segments, only 8-10 parallel branches are needed, which is

affordable for practical implementation, but the sensing rate is increased by 20 times. This

design flexibility between the system complexity and the sampling rate makes it possible

to tune the system parameters according to the specific application environment and needs.

3. Flexible Spurious Frequency Rejection

The overlapping windowed integration of the PSCS front-end provides a flexible scheme

to reject the spurious frequency components.. Since one critical type of spur in the PSCS

architecture is the leakage of the clocks for the PN generators to the integrator, as illus-

trated in Fig. 16, we will focus on this particular type of spur in this section, although the

rejection scheme applies more generally.

Recall that in Fig. 8, the output after the mixer is sent to a sliding window with a width

of Tc and integrated over Tc seconds, and there is an overlap time of Tc×OV R between two

adjacent windows as illustrated in 9. The integrator, with a reset every Tc seconds, provides
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Fig. 16. Clock leakage into the integrators from the clock of the PN generators.

a simple realization of a sinc type low-pass filter with nulls at frequencies of f0 × k, where

f0 = 1/Tc. By setting the random generator clock frequency equal to a harmonic of the

reset frequency, the sinc nulls coincide with spur frequencies from the random generator

clock and so filters them, where the overlapping scheme provides the flexibility on setting

the locations of the nulls. In some cases, without the overlapping scheme, the objective of

setting the clock frequency on the nulls of the sinc type lowpass filter may conflict with the

sampling rate requirement which is determined by the signal’s sparsity. In order to show

this, consider the following example.

Let the input signal to the PSCS architecture be a 19-sparse frequency-domain multi-

carrier signal with 128 subcarriers, i.e., S = 128 and K = 19, which corresponds to a

sparsity of 15%. The subcarrier spacing Δf = 1GHz/128 = 7.8125MHz and the symbol

duration time Ts = 1/Δf = 128ns. The locations of the K active subcarriers are chosen
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randomly and changed every Ts seconds. According to simulation results, the minimum

NSR is 0.5625 = 72/128 for this parameter setup. Equivalently speaking, 72 samples are

needed per 128ns to reconstruct the signal perfectly. Using two parallel paths, 36 samples

are collected every 128ns at each path, i.e., M = 36 and N = 2. With this parameter

setup and without the overlapping scheme, Tc = T/M = 128/36 = 3.56ns, f0 = 1/Tc =

281.25MHz and the nulls of the sinc type lowpass filter occur at k × 281.25MHz.

There may exist some leakage into the integrators from the clock signal, as illustrated

in Fig. 16. According to the CS theory, the clock frequency is usually at the Nyquist

frequency fNq where fNq = 1GHz in this example. Because fNq/f0 ≈ 3.56, the spurs

due to the clock leakages will fall near the 3rd sidelobe’s peak of the sinc type lowpass

filter and bring distortion to the reconstructed signal. With the overlapping scheme, we can

choose Tc = 4ns and f0 = 250MHz by introducing an overlapping ratio of 11.43%3, then

fNq/f0 = 4 and the spurs due to the clock leakage can be filtered. Based on Fig. 9, this

can be mathematically expressed as:

T = Tc(M − (M − 1)OV R), (3.7)

fNq = S/T, (3.8)

f0 = 1/Tc, (3.9)

⇒ fNq

f0
=

S

M − (M − 1)OV R
. (3.10)

According to equation (3.10), given a desired sampling rate, or equivalently speaking, a

3Considering the clock resolution requirement, an overlapping ratio of 11.25% is sug-
gested in practice.
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specific M , varying OV R will change the relative location of the leakage frequency to the

filter nulls, as illustrated in Fig. 17.

Note that if we do not want to introduce any overlapping but still wish to null out

the clock leakage, the only option in the above example is to increase the sampling rate

and make fNq/f0 an integer no less than 3.56�. By introducing a nonzero OV R, we can

conveniently make fNq/f0 an integer without increasing the sampling rate.
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Fig. 17. The location of the spurious leakage frequency relative to the filter nulls with dif-
ferent overlapping ratio. With OV R = 0, the strongest clock leakage is close to the
peak of the filter’s 3rd sidelobe; with OV R = 0.1125, the strongest clock leakage
is on the 4th null of the filter.
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Fig. 18 shows the MSE of the reconstructed signal versus the overlapping ratio when

there is some clock leakage into the integrators. Note that in the simulation the amplitude

of each subcarrier is set to 1. Since K = 19, the signal’s peak amplitude is 19. Allowing a

10dB margin to account for the multi-carrier signal’s large peak-to-average ratio, the clock

leakage with an amplitude of 0.1 (0.4) is roughly 35dB (23dB) below the signal’s average

power. As shown in Fig. 18, the flexibility of setting the null frequencies by the overlapping

scheme can bring about 20dB gain after filtering the spurs due to the clock leakage.

Note also that the overlap in the integration windows provides wider filter nulls than

the sinc filter. Because of the existence of the phase noise on the clock signal in practice,

even if we can set the clock on the null frequency, it is inevitable there remains some

leakage due to the widening of the spurs spectrum. The wider nulls provides the possibility

of further improving the harmonic rejection when the phase noise is significant.

E. Summary

In this chapter, the proposed mixed-signal compressive sensing system based on the

PSCS front-end is introduced, from the signal modeling, to the PSCS front-end architec-

ture, to the signal reconstruction. This system is shown to possess attractive features that

are critical for the implementation. First, applying the CS framework to the analog sig-

nal directly avoids the ADC bottleneck while sensing wideband signals and relaxes the

requirements in wideband RF receiver front-ends, and the parallelization further reduces

the sampling rate at each parallel path. Second, the parallel structure provides a design

flexibility and scalability on the sensing rate and system complexity so that we can tune
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the system parameters according to different application environment and needs. Third,

the overlapping windowed integration of the PSCS front-end provides a flexible scheme

to reject the spurious frequency components, for example, the clock leakage from the PN

generators to the integrators.



43

CHAPTER IV

ROBUSTNESS OF MIXED-SIGNAL COMPRESSIVE SENSING SYSTEM AGAINST

ADC NONLINEARITY

Mixed-signal compressive sensing holds new promise for the digitization of wideband

frequency-domain sparse signals at sub-Nyquist rate sampling without compromising the

reconstruction quality and therefore avoids the ADC bottleneck while digitizing wideband

signals. Different from the conventional time-domain Nyquist-rate sampling, in compres-

sive sensing systems the sparse signal is projected into a transform-domain over which the

sampling occurs and this procedure is referred as random projection or random measure-

ment, as introduced in Chapter II. The ideal signal reconstruction from the sub-Nyquist

rate samples is to resolve the optimization problem as given in (2.7) and (2.8) rather than

the traditional interpolation for Nyquist rate sampling reconstruction [76]. There are many

mature algorithms to resolve the optimization problem, as summarized in Chapter II.

Recall that in the PSCS system given in Fig. 6, the samples obtained at sub-Nyquist

rate needs to be digitized by low-rate ADCs. Generally speaking, in a multi-stage RF

front-end, the linearity of the last stage is very critical to the overall linearity of the whole

front-end, [77], [78]). It is important to study how the mixed-signal CS front-end reacts to

the ADC nonlinearity. In a conventional receiver (direct conversion or superheterodyne ar-

chitecture [77], [78]), the signal is sampled at Nyquist rate and the time-domain samples are

sent to ADCs directly; however, in a CS receiver architecture, since the signal is random-

ized before sampling and the samples sent to ADCs are no longer the original time-domain
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samples, the random projection in a CS receiver implies that the ADCs nonlinearity has

a different impact on the reconstructed signal quality. In this chapter, we investigate how

the ADC nonlinearity influences the signal reconstruction quality during the mixed-signal

compressive sensing of frequency-domain sparse signals and show the potential benefit

brought by the random projection quantified in terms of the ADC SFDR (Spurious Free

Dynamic Range).

A. Impact of Randomization

As mentioned before, the main difference between the CS receiver front-end and a

conventional receiver front-end is that the signal sent to the ADC in the former is not the

original input signal but the input signal after some randomization. Therefore, the ADC

nonlinearity impacts the reconstructed signal quality in a different way. To the best of the

authors’ knowledge, this important phenomenon has not been reported in the literature. As

an illustration, Fig. 19 shows the signal spectrum at various building blocks in the sampling

architectures during a two-tone nonlinearity test. Note that an ADC with nonlinear distor-

tion is represented by a nonlinear block followed by an ideal ADC. For simplicity, only the

third order distortion is considered. In the conventional receiver, the input two-tone test sig-

nal directly undergoes the effect of the ADC nonlinear distortion resulting in the third order

harmonics and inter-modulation components in the spectrum of the reconstructed signal.

The spurious energy is concentrated on the harmonics and inter-modulation components.

On the other hand, in the CS receiver, the input signal is mixed with the PN sequence

whose spectrum looks like white noise spectrum shaped by the sinc function with the first
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null frequency at fclk (the clocking frequency for the PN generator, which is the Nyquist

rate). The randomized signal is sent to a low-pass filter with a cutoff frequency of fcutoff .

Usually fcutoff is much lower than fclk because of the sub-Nyquist sampling capability

of CS receivers. For example, in the testbed in [79], fclk = 1MHz and fcutoff is about

30KHz. Consequently, the spectrum of the signal sent to the ADC is relatively flat within

the filter passband. As a result, the harmonics and inter-modulation components caused by

the ADC nonlinear distortion occur everywhere. In other words, the spurious energy due

to the ADC nonlinearity is spread along the signal bandwidth rather than concentrated on

a few tones, which can lead to a better SFDR after reconstruction.
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Fig. 19. Sketch of the signal spectrum at different stages of a receiver front-end in the two–
tone test. (a) conventional receiver front-end. (b) compressive sensing receiver
front-end.
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B. Simulations

1. Simulation Setup

A series of Monte Carlo simulations were performed to validate the above conjecture.

Specifically, we did a two-tone test for both the conventional Nyquist sampling architecture

and the CS receiver and compare the SFDR of both architectures, the main setup of which

is summarized as follows:

• The input test signal is a 2-sparse frequency domain sparse signal, where the signal

basis is the frequency set {i × 10MHz}(i = 1, 2, . . . , 128) , and the signal sparsity

is 2%. Mathematically, the input test signal r(t) = a1e
j2πf1t + a2e

j2πf2t , where

a1 = a2 = 1 without the loss of generality , f1, f2 ∈ {i × 10MHz}, a1, a2 and f1,

f2 are unknown.

• Because the maximum frequency span of the two test tones can be as large as 1.28

GHz, the sampling rate in the conventional receiver is 2.56 GHz, that is, the fNyquist =

2.56GHz. The sampling rate in the CS receiver is denoted by its Normalized Sam-

pling Rate (NSR), which is defined as the ratio of the CS receiver sampling rate over

the Nyquist sampling rate.

• Since the third order nonlinear distortion is usually the most critical distortion, the

ADC nonlinearity is modeled as z = y + c3y
3 , where y is the input, z is the cor-

responding output and c3 is the coefficient of the third-order nonlinear distortion.

For a fair comparison, the input signals to the ADC in both receivers were scaled

appropriately to be full-scale.
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• In the conventional Nyquist sampling architecture, the input test signal r(t) is sam-

pled in the time-domain at fNyquist , the resulting samples yNyquist = r(nΔt) (n =

1, 2, . . . , ) , where Δt = 1/fNyqusit . yNyquist are first normalized to the ADC full-

scale through ȳNyquist = yNyquist/max(abs(yNyquist)) , where ȳNyquist is the nor-

malized samples sent to the ADC. The ADC introduces some nonlinearity to those

time-domain samples through zNyquist = ȳNyquist + c3ȳ
3
Nyquist . The input signal

spectrum is estimated from these time-domain samples with nonlinear distortion via

DFT.

• In the CS receiver, the input testing signal r(t) goes through random projection, filter-

ing and sampling, the resulting transform-domain samples ycs = ΦΨa . Similarly,

ycs is first normalized to ADC full-scale through ȳcs = ycs/max(abs(ycs)) , where

ȳcs is the normalized samples sent to the ADC. The ADC introduces some nonlin-

earity to those time-domain samples through zcs = ȳcs + c3ȳ
3
cs . The input signal

spectrum is estimated from these time-domain samples with nonlinear distortion via

solving the following optimization problem.

â = arg min‖a‖1 s.t. ||y −ΦΨa||2 ≤ εn + εd, (4.1)

where εn is the error due to the noise, εd is the error due to the nonlinear distortion.
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2. Simulation Results

a. Noise-free Environment

First, we compare the SFDR of the Nyquist sampling architecture and the CS front-end

in a noise-free environment.

Fig. 20 gives snapshots of the two-tone test reconstructed signal spectrum for both

sampling architectures. The sampling rate of the CS receiver is 240MHz and the third-

order distortion coefficient is c3 = 0.2. As we can see, in the conventional receiver, the

spurious energy due to the ADC nonlinearity concentrates on the two third-order harmonics

and two third-order inter-modulation components, leading to a SFDR of 16.5 dB, whereas

in the CS receiver, the spurious energy is spread along the whole signal bandwidth leading

to a SFDR of 29.7 dB. This is more than a 13 dB improvement. The observation from this

simulation was intuitively illustrated in Fig. 19.

Fig. 21 compares the SFDR distribution of the reconstructed signal during 10000

times two-tone test realizations, where the sampling rate of the CS receiver is 240MHz,

c3 = 0.2 and the frequencies of the two tones are randomly selected from the frequency set

{i × 10MHz}(i = 1, 2, . . . , 128) . The result given in Fig. 20 is one of these 10000 real-

izations. In Fig. 21, the scatter of the SFDR results is shown at left and the corresponding

histograms at right. As shown, the randomization in CS receivers leads to a better SFDR.

Another interesting observation is that the distribution of SFDR using CS receiver

forms two clusters, one cluster is close to the SFDR distribution of a conventional Nyquist

receiver, the other cluster is about 300dB. Taking into account the numeric accuracy of the

simulation tool, we can consider achieving a SFDR of 300dB as perfect reconstruction,
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Fig. 20. Snapshot of the signal spectrum under noise-free environment, where the signal
has a sparsity of 2%, the third order distortion coefficient c3 = 0.2. From top to
bottom: input two-tone test signal, the reconstructed signal using the conventional
receiver where the time-domain samples undergoes the ADC nonlinear distortion,
the reconstructed signal using the compressive sensing receiver where the samples
of the randomized signal undergoes the ADC nonlinear distortion.
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Table I. Relationship of the SFDR and the frequency span of two-tone test signals, where
the signal has a sparsity of 2%, the third order distortion coefficient c3 = 0.2.

Frequencies (f1, f2) (MHz) (10,1200) (10,400) (10,60)

Median SFDRNyquist (dB) 16.48 16.48 16.48

Median SFDRcs (dB) 31.57 40.1 309

which is possible for CS receivers in a noise-free environment. This is because the mini-

mum sampling rate needed for perfect signal reconstruction with CS depends on the signal

information rate, which is related to the frequency span of the two test tones in our simula-

tions. Given the fixed CS sampling rate, as the two test tones get closer, the reconstructed

signal quality improves. Therefore, the SFDR varies with the frequency span of the test

tones when using the CS receiver. In some cases when the two test tones get really close,

the CS reconstruction algorithm can perfectly recover the original signal (SFDR of near

300 dB in Fig. 21) despite the existence of nonlinear distortion. Table I gives an example

of this phenomenon, where the CS sampling rate is fixed to be 240MHz and the frequency

span of the input two-tone test signal varies. As shown, when the two test tones get closer,

the SFDR of the CS receiver improves, the SFDR of the conventional Nyquist sampling

architecture remains the same.

Fig. 22 shows the SFDR of both receivers versus the ADC nonlinear distortion coeffi-

cient in the two-tone test. As we can see, the SFDR improvement from the randomization

in CS receivers is relatively constant given different ADC nonlinear distortion. For a sparse

signal with a sparsity of 2%, the SFDR improvement is about 14dB.

Although the randomization in CS receivers changes the distribution of the error power
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Fig. 21. SFDR comparison between the conventional receiver and the CS receiver in the
two-tone test under noise-free environment, where the signal has a sparsity of 2%,
the third order distortion coefficient c3 = 0.2.
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from ADC nonlinear distortion, our simulation shows that it does not change the overall

SDR (Signal-to-Distortion Ratio). Fig. 23 compares the median SDR (Signal-to-Distortion

Ratio) of both receivers in the two-tone test. Note that in our simulations the signals sent to

ADCs in both systems are normalized so that their peak amplitude is set to be the full-scale

of the ADCs, which means both signals sent to ADCs have the same peak power Ppeak.

However, the signals sent to ADCs in both receivers obviously have different frequency

structure, specifically, the signals sent to ADCs in the conventional Nyquist sampling ar-

chitecture are two-tone signals, whereas those in the CS system have richer spectrum as

shown in Fig. 19. With the same peak amplitude, the amplitude of individual frequency

component in the conventional sampling architecture is higher than that in the CS archi-

tecture and the average power Pin in the former is also higher than in the latter. In our

simulations, the Pin to the CS ADC is about 2.5 dB lower than the Pin to the Nyquist ADC,

which means a 5 dB inherent gain in terms of the SDR at the ADC output according to

the relationship SDR = 2(IIP3ADC − Pin) [77], [78]. While comparing the SNRs at

the output of ADCs of both systems, we need to take this inherent gain in the CS system

into account and deduct this extra 5dB gain from the output SDR in the CS system. With

this power adjustment, we can see that both receivers have similar SDRs, as shown in Fig.

23. In other words, by spreading the spurious energy along the signal bandwidth, the CS

randomization relaxes the requirement on the ADC SFDR specification without sacrificing

the overall SDR performance of the receiver.



54

0 0.05 0.1 0.15 0.2 0.25 0.3
5

10

15

20

25

30

35

40

45

50

Third-order distortion coefficient

SD
R

 (d
B)

conventional receiver
CS receiver
CS receiver with power adjustment

Fig. 23. SDR comparison between the conventional receiver and the CS receiver in the two–
tone test versus different nonlinear distortion, where the signal has a sparsity of 2%.
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b. Noisy Environment

Next, we compare the SFDR of the Nyquist sampling architecture and the CS front-

end in noisy environment (SNR=25dB). Similarly, Fig. 24 gives the snapshots of the re-

constructed signal spectrum in both sampling architectures. Fig. 25 compares the SFDR

distribution of both sampling architectures. Again, we can see that effect of the nonlinear

distortion in the CS receiver is spread out because of the randomization, and the SFDR

of the ADC is improved. Fig. 26 shows the SFDR performance of both CS and conven-

tional Nyquist sampling architecture with different nonlinear distortion. Different from the

noise-free environment, the SFDR improvement brought by the CS front-end decreases as

the nonlinear distortion becomes small. This is because with small nonlinear distortion, the

SFDR is limited by the noise rather than the nonlinear distortion.

3. Performance as a Function of Sparsity Variation

So far, our simulation is based on two-tone tests, where the signal has a sparsity of 2%.

For such a low-sparsity signal, the signal energy concentrates only on two tones, the change

on the energy distribution over the bandwidth after the randomization is very significant,

therefore, the SFDR improvement from the spurious energy spreading is also significant.

As the signal get less sparse, it is expected that the SFDR improvement from randomization

also becomes less significant. Table II lists the SFDR performance as a function of sparsity

variation. Note that, for signals with different sparsity, different CS sampling rate is used.

As shown in the table, as the signal sparsity changes from 2% to 4% to 10%, for the

conventional receiver, given the same power, with more tones, the power of a single tone
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Fig. 24. Snapshot of the signal spectrum under noisy environment, where the signal has a
sparsity of 2%, the third order distortion coefficient c3 = 0.2. From top to bottom:
input two-tone test signal, the reconstructed signal using the conventional receiver
where the time-domain samples undergoes the ADC nonlinear distortion, the re-
constructed signal using the compressive sensing receiver where the samples of the
randomized signal undergoes the ADC nonlinear distortion.
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Fig. 25. SFDR comparison between the conventional receiver and the CS receiver in the
two-tone test under noisy environment, where the signal has a sparsity of 2%, the
third order distortion coefficient c3 = 0.2.
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Fig. 26. SFDR comparison between the conventional receiver and the CS receiver in the
two-tone test versus different nonlinear distortion under noisy environment, where
the signal has a sparsity of 2%.
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Table II. Changing of SFDR as a function of sparsity variation, where the third order distor-
tion coefficient c3 = 0.01.

Sparsity level 2% 4% 10%

CS sampling rate (MHz) 240 480 1200

Median SFDRNyquist (dB) 42.50 48.13 51.47

Median SFDRcs (dB) 56.80 55.58 53.60

SFDR improvement(dB) 14.30 7.45 2.13

is less, which results higher SFDR values; however, for the CS receiver, with more tones,

the benefit from the energy spreading becomes less. Therefore, the SFDR improvement of

the CS receiver over the conventional Nyquist sampling architecture reduces from 14dB to

7dB to 2dB. At the same time, because the signal gets less sparse, the required sampling

rate in the CS receiver increases from 240MHz to 480MHz to 1200MHz and the benefit of

sampling rate reduction in the CS receiver becomes less significant. Considering all these

changes, we can see that in the regime where the benefit of sampling rate reduction from

compressive sensing is significant, the SFDR improvement from randomization of the CS

receivers is also attractive.

C. Summary

In this chapter, the impact of ADC nonlinearity in a mixed-signal compressive sensing

system for frequency-domain sparse signals is investigated. The signal spectrum at each

building block in the CS receiver is analyzed and compared with conventional Nyquist

sampling architecture. In the mixed-signal compressive sensing system, the input signal
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is randomized before going through sampling and reconstruction. Therefore, the ADC

nonlinearity does not affect directly the original signal but the randomized signal. As a

result, when processing frequency-domain sparse signals, the spurious energy due to the

ADC nonlinearity spreads along the signal bandwidth rather than get concentrated on a

few frequencies, which provides improvement on the ADC SFDR. Simulation results show

that for sparsity signals with a sparsity of 2%, the CS receiver ADC SFDR improvement

compared to a conventional Nyquist sampling architecture can be up to 14 dB.
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CHAPTER V

EFFECT OF CIRCUIT NONIDEALITIES AND BACKGROUND CALIBRATION

A. Effect of Circuit Nonidealities

The PSCS front-end is based on the mixed-signal processing where the accuracy of

the analog circuit components becomes critical to the overall performance, especially when

the technology scaling makes it more challenging to design analog circuit components with

high accuracy. There are many factors that contribute to the imperfection of the system and

some of them are listed below:

• the thermal noise and flicker noise

• the finite settling time

• the timing uncertainty

• the frequency offsets

• the gain and phase mismatches among paths

• the quantization noise

Considering all the nonideal factors, the actual relationship between the collected sam-

ples y and the coefficients a becomes

y = Ṽa = (V + δV)a, (5.1)
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where the Ṽ’s element at the mN + n row and the s column is given by

ṼmN+n,s =

∫ mTm+Tc+δt2

mTm+δt1

αej2π(sΔf+δf)t+θ(Φn(t) + δΦn(t))
∗dt, (5.2)

where, the δt1 and δt2 reflects the timing error on the slicing window, δf reflects the fre-

quency offset, α and θ reflects the gain and phase mismatches, and the δΦn(t) reflects the

error of the random basis which could be attributed to the jitter and non-zero response time.

Because the actual relationship between y and a is given by (5.1), we need to replace

V with Ṽ in (2.7) when estimating a, otherwise, some extra error will be introduced. In

the left part of this section, we will show the effect of different kinds of nonideal factors

through a series of simulations. In the simulation, the input signal to the PSCS architecture

is a 16-sparse frequency-domain multi-carrier signal with 128 subcarriers, i.e., S = 128

and K = 16. The subcarrier-spacing Δf = 1GHz/128 = 7.8125MHz and the symbol

duration time T = 1/Δf = 128ns. The location of the 16 active subcarriers are chosen

randomly and changed every T seconds. The effect of thermal noise is not considered here

since its effect can be addressed as in the optimization problem in (2.8) accordingly [29,30].

Fig. 27 gives the MSE (Mean Square Error) of the reconstructed signal versus the NSR

(Normalized Sampling Rate) when there is no circuit imperfections, where MSE = ||a−â||2
||a||2

and NSR = MN
S

. As shown, the MSE is around -200dB when the NSR is increased up

to around 0.5, which means that the signal can be viewed as reconstructed perfectly when

the sampling rate goes beyond half of the Nyquist rate. Note that since NSR = MN
S

, the

sampling rate reduction at each parallel path which is equal to M
S

is more significant.
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Fig. 27. MSE of the reconstructed signal versus the normalized sampling rate when there
are no imperfections.
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Fig. 28 shows the MSE of the reconstructed signal when the PN sequences have fi-

nite settling time. Fig. 29 shows the MSE of the reconstructed signal when the sliding

window has a timing uncertainty on its edges and the amount of uncertainty is denoted by

the standard deviation of the introduced jitter. From these figures, we can see the system

performance degrades if the circuit nonideal factors are not treated properly. For exam-

ple, with a finite settling time of 30ps, the best achieved MSE is only -20dB and with a

windowing timing uncertainty of 5ps, the best achieved MSE is about -40dB.
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Fig. 28. MSE of the reconstructed signal versus the normalized sampling rate when the
random PN sequences have finite settling time.
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Fig. 29. MSE of the reconstructed signal versus the normalized sampling rate when there
exists timing uncertainty on the edges of the sliding window.
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B. Background Calibration of Circuit Nonidealities

As shown in section A, the quality of the reconstructed signal during the compressive

AIC procedure is greatly impacted by the accuracy of analog circuit components, because

the circuit imperfections causes an offset on the reconstruction matrix as in equation (5.1).

Among those nonideal factors, some can not be calibrated because of the random nature,

such as the jitter and thermal noise. Fortunately, many other nonideal factors including

the finite settling time, the gain and phase mismatches and so on can be calibrated. In this

section, we propose an iterative background calibration algorithm based on LMS to com-

pensate the offset of the reconstruction matrix, that is, to adjust V such that it approximates

Ṽ.

The block diagram of the proposed calibration scheme is illustrated in Fig. 30. Specif-

ically, the multi-carrier signal is modulated by a known training data a, i.e., r = Ψa, then

r is sent to the PSCS AIC system where the samples at the transform domain y = Ṽa

are collected. At the same time, yest, an estimation of y is calculated based on the cur-

rent reconstruction matrix. The error between the estimated sampling values and the actual

sampling values is determined and fed back to update the reconstruction matrix. For con-

venience and clarity, this calibration scheme is called Forward Calibration. The pseudo

code for the proposed calibration algorithm is given below, where μ is the step size for the

updating [80].

Fig. 31 plots the MSE of the reconstructed signal with a NSR of 0.625 and a finite

settling time of 30ps when the background calibration is active. The rest of the simulation

setup is the same as Fig. 28. As shown in the figure, the MSE starts from -20dB and
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Algorithm 2 Background Calibration
1: initialization: V0 = V;

2: for q = 0 : Q− 1 do

3: yest = Vqa;

4: e = y − yest;

5: Vq+1 = Vq + μ · e · aH ;

6: end for

7: Output: V = VQ;

1��$���(�&�
��#�(#�����

y a a
�2!2�.����

aV~ Va esty
e

Fig. 30. Illustration of the LMS based background forward calibration.

gradually decrease until below -200dB and then remain stable, which means that the sig-

nal can be reconstructed perfectly even with some circuit imperfection once the calibration

algorithm converges. Therefore, the proposed background calibration algorithm success-

fully compensates for the offset of the reconstruction matrix. Note that when the training

signal is K-sparse, the algorithm converges relatively slowly. This is because only K out

S columns of the reconstruction matrix are effectively updated at each iteration. Instead,

if we intentionally make the input signal less sparse during the training stage, the conver-

gence procedure can be accelerated. However, in practice, using a particular training signal
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is not only determined by the type of the available training signals, but also constrained by

the input dynamic range of the practical AIC systems.
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Fig. 31. MSE of the reconstructed signal versus the normalized sampling rate when the
random PN sequences have finite settling time and the background calibration is
active.
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CHAPTER VI

LOW-SPEED OFF-THE-SHELF COMPONENT PROTOTYPE∗

A. System Specification

As a proof of concept, we built a low-speed prototype using off-the-shelf components,

where the input signal is a real BPSK modulated multi-carrier signal with 4 active subcar-

riers and the active subcarriers hop over the frequencies (i ∗ 2 − 1)KHz (i = 1, 2, , 100)

every 500μs. Considering the system complexity, we employed 4 parallel paths for the pro-

totype. Simulation shows that the signal can be reconstructed perfectly when each parallel

path produces 16 samples every 500μs, which corresponds to 32% of the Nyquist sampling

rate. The main system parameters are summarized in Table III.

Table III. Testing results of the prototype

BW Δf T = 1
Δf

M N Δt = T
M

fs =
1
Δt

Tc TOV R OV R

200kHz 2kHz 500μs 16 4 31.25μs 32kHz 36.5μs 5.6μs 15.43%

B. Overall Configuration

The overall configuration of the prototype is shown in Fig. 32, where the digital part is

responsible for generating the input sparse signal, the triggering signal, the pseudo-random

∗Part of this chapter is reprinted with permission from ”Mixed-signal parallel compres-
sive spectrum sensing for cognitive radios” by Z. Yu, X. Chen, S. Hoyos, B. M. Sadler, J.
Gong and C. Qian, International Journal of Digital Multimedia Broadcasting, vol. 2010,
article ID 730509, 10 pages, Mar. 2010. doi:10.1155/2010/730509. c©Zhuizhuan Yu.
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basis and the clock. The analog part is used to realize the random basis projection that

is essential for the signal reconstruction. The built-in ADC in the oscilloscope is used

to collect the sampled data. Then, the collected data is sent to a PC and processed via

Matlab code to reconstruct the signal. In the following sections, each building block will

be introduced in detail.
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Fig. 32. Overall configuration of the prototype using off-the-shelf components.

C. Multi-carrier Signal Generator

An Agilent 33120A arbitrary waveform generator is used to generate the input multi-

tone sparse signal. Specifically, the multi-tone signal is programmed in the PC first and

then downloaded into the wave generator. The output port of the generator is triggered by

the mico-controller in order to synchronize with the integrator clock that is also generated

by the micro controller.
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D. Mixers and Integrators

Fig. 33 depicts the macro model of one path in the prototype. As shown, the input

signal is first translated into current by the OTA and then mixed with the pseudo random

signal. After mixing, the signal is integrated in the sampling capacitor with a timing win-

dow. In the sampling circuit the interleaving capacitor is employed. Finally the ADC yields

digital output data. The OTA we employed is a TIOPA861 with Gm of 116mS and all the

switches are implemented with transmission gate CD4066BCN.

The pseudo random number (PN) is -1 or 1, whose spectrum is a sinc function. The

main lobe is from 0 to 1/Tclk, where Tclk is the clock period of the PN generator. In our

test bed Tclk is 1μs. After the mixing, the signal is shaped by the embedded low pass filter

provided by the integration window. The frequency response of the LPF is a sinc function.

The main lobe spans 0 to 1/Tc, where Tc is the integration time. In our test bed 1/Tc is

roughly 30 KHz.

The random projection of the input analog signals is realized with mixers and integra-

tors. Fig. 34 gives the circuit implementation of one parallel path and Fig. 35 gives the

corresponding pin connection relationship for the integrator. The transconductance ampli-

fier (Gm stage) translates the signal voltage into current, which can be easily mixed with

the pseudo-random numbers (1/-1) by the following passive switch mixer. After mixing,

the signal is integrated with an overlapping window and then sampled by the ADC in each

path. The circuit is built up differentially so that the system is more robust to supply noise,

clock jitter and even-order harmonics. The double balanced passive mixer does not intro-

duce significant noise and distortions.
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Fig. 35. Pin connection of the integrator in one parallel path.

At each path, the mixer consists of transmission-gate switches controlled by PN se-

quences. The PN sequence is implemented with a linear feedback shift register (LFSR). In

our prototype, the clock frequency is chosen to be 1MHz, which is higher than the Nyquist

sampling rate. Because the PN sequences are repeated every 500μs and there are 4 parallel

paths, we need 4 independent PN sequences with a length of 500. An 11-bit LFSR is used

to generate a PN sequence with a length of 2047 and then divided into 4 segments. As a

check, the autocorrelation function of the PN sequences are calculated to make sure that the

four PN sequences are incoherent. The generation of PN sequences and the system clocks

is controlled by the micro-controller. Fig. 36 gives an example of generated clocks, where

An overlapped time-interleaving charge-domain sampling integrator is chosen for the

analog path. The integrator schematic is shown in Fig. 37. φ1 and φ̄1 are two integration

switches for the left and right branches, respectively. φo1 and φo2 are readout switches;

φr1 and φr2 are reset switches. By utilizing these six switches combined with the two

integration capacitors C1 and C2, according to the clock diagram shown in Fig. 38, we

can realize a conventional time-interleaving charge-domain integrator without overlapping.

Time interleaving means when the left branch is integrating while the right is reading out,

and vice versa. By doing this, a complete sampling of the signal is achieved. In addition
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Fig. 36. Example of clock signals.



75

to time interleaving, a small overlapping time is introduced by one more capacitor Cov and

two control switches φ2 and φ̄2.

1φ 1φ
2φ 2φ

r1φ r2φ

1oφ

ovC1C 2C

2oφ
oV

i

Fig. 37. Schematic of the integrator with overlapping.

As shown in Fig. 38, phase 1 and phase 3 are to realize the overlapping through charge

redistribution and sharing, and phase 2 and phase 4 are the readout times for the right and

the left branches, respectively. During phase 1, the input current charges both C1 and Cov

while C2 is idle. Since all capacitors have the same value, the current splits equally by half

into both capacitors. In the succeeding phase, Cov is switch-connected to C2 and readout

together, so that Cov is integrating for the right branch during phase 1. Equivalently, as

shown in the timing window diagram, the window splits by half during the overlapping

time. The key point here is that both branches are integrating and no data is readout during

window overlapping times.

Note that the overlapping windowing realized using the circuit in Fig. 37 is somewhat
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Fig. 38. Operation of the interleaved overlapping windowed integration and the related
clocks.
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Fig. 39. Illustration of the overlapping windowing in the prototype.
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different from the overlapping windowing in Fig. 9, as shown in Fig. 39. In Fig. 9, the

charges accumulated during the current window period includes 100% of the charges from

the last Tov seconds of the previous windowing period but no charges from the next win-

dowing period. In Fig. 37, the charges accumulated during the current windowing period

includes 50% of the charges from both the last Tov seconds of the previous windowing pe-

riod and the first Tov seconds of the next windowing period, which is more realistic from

the implementation perspective.

E. Data Collection and Signal Reconstruction

For simplicity, we use the inherent ADC of the oscilloscope (Tectronix TDS 3054

500MHz, 5Gs/s) to sample the output of the integrators. The sampled data is transferred to

the PC via the GBIP port. With the collected samples, the signal is reconstructed using the

OMP as described in Chapter III.

F. Dealing with Circuit Nonidealities

While implementing the prototype, it is inevitable that the system has some non-

idealities such as the delay caused by each component, the gain variation, the mismatch

among parallel paths and so on.

In Chapter V, we discussed the impact of some circuit imperfections, such as the finite

settling time of the PN sequences, and the timing uncertainty, and a background calibration

algorithm based on LMS was proposed to compensate for the error due to these circuit

nonideal factors. Because of the complexity of the background calibration, here we use a
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more simple approach based on direct training to deal with the circuit nonidealities. The

direct training approach is illustrated in Fig. 40. During the training stage, we inject a

single-tone signal one at a time to the prototype and collect the samples from the 4 parallel

paths, so that these samples will fill one column of the reconstruction matrix Ṽ. After

sending 100 single-tone signals, we obtain a complete matrix which will be used for signal

reconstruction.

�

Fig. 40. Illustration of the direct training approach to deal with the circuit imperfections.

This pilot-based method is based on the assumption that the system is linear and time-
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invariant. Fortunately, our circuit level design ensures that the input signal swing is within

the linear range of the system, and the microcontroller ensures that the system has the same

initial condition for every run. Therefore, the linear time-variant assumption is reasonable.

Implementing the background calibration for circuit imperfection compensation is part of

our future work.

G. Testing Results

The testing setup for the prototype is shown in Fig. 41. A photo of the analog and

the control parts is shown in Fig. 42. An example of the integrator output waveform is

shown in Fig. 43. A series of experiments are done to test the functionality of the system.

Table IV summarizes the testing results, where + and − stands for the polarity of the BPSK

modulation. Note that we scale the amplitude of each sub-carrier according to the number

of tones such that the amplitude of the multi-carrier signal is within the dynamic range of

the system. From the testing results, the prototype achieves the design specification.
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Fig. 41. Testing setup of the prototype.
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Fig. 42. Photo of the analog and the control part of the prototype.

Fig. 43. Example of the integrator output waveform.
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Table IV. Testing results of the prototype.

Subcarrier’s

amplitude (mV)

Subcarrier frequencies of

the input testing signal

(kHz)

Subcarrier frequencies of

the reconstructed signal

(kHz)

0.3 [+61, +121] [+61, +121]

0.3 [+41, +131] [+41, +131]

0.3 [+61, -131] [+61, -131]

0.3 [-51, +63, +111] [-51, +63, +111]

0.2 [+71, -85, +91, -101] [+71, -85, +91, -101]
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CHAPTER VII

HIGH-FREQUENCY INTEGRATED PROTOTYPE†

A. Overview

As a further step from building the low-speed prototype with off-the-shelf compo-

nents, a high frequency prototype of the PSCS system was taped out with the IBM90nm

CMOS technology. Recall that in Fig. 11, we showed that for a signal with a sparisty of

4%, the minimum compressive sampling rate for perfect signal reconstruction is about 26%

of the Nyquist rate. The designed PSCS prototype system is targeted to sample wideband

signals of a sparsity of 4% over 10 MHz ∼ 1.5 GHz bandwidth with an overall sub-Nyquist

sampling rate of 880MHz, although the actual built system is adaptable to varying levels

of sparsity. The whole PSCS front-end consists of 8 parallel paths (equivalently 4 com-

plex I-Q paths) and each path works at a sampling rate of 110MHz. The input signal is a

frequency-domain sparse multi-carrier signal as modeled in equation (3.3) and the signal

power is assumed to be -20 dBm referred to 50 ohm. The SNDR of the reconstructed signal

in our proposed system is targeted at 44 dB (7 bits). The error energy individually induced

† Part of this chapter is reprinted with permission from ”A Sub-Nyquist Rate Sampling
Receiver Exploiting Compressive Sensing” by X. Chen, Z. Yu, S. Hoyos, B. M. Sadler and
J. Silva-Martinez, IEEE Trans. on Circuits and Systems I: Regular Papers, vol. 58, Issue
3, pp 507-520, Mar. 2010. c©[2010] IEEE. This material is posted here with permission
of the IEEE. Such permission of the IEEE does not in any way imply IEEE endorsement
of any of Texas A&M University’s products or services. Internal or personal use of this
material is permitted. However, permission to reprint/republish this material for advertising
or promotional purposes or for creating new collective works for resale or redistribution
must be obtained from the IEEE by writing to pubs-permissions@ieee.org. By choosing to
view this material, you agree to all provisions of the copyright laws protecting it.
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Fig. 44. Circuit implementation of the PSCS front-end.

by jitter, circuit noise, distortion and the quantization noise is designed to be less than -50

dB as referred to the signal power in order to achieve an overall SNDR of 44 dB.

B. Circuit Level Implementation Approach

1. PSCS Front-end Circuit Architecture

The circuit block diagram of the current mode parallel-path front-end is shown in

Fig. 44. The current mode architecture has the benefit of allowing convenient design

of mixers and reconfigurable integrators. It is assumed that an out-of-chip high-order anti-

aliasing filter is present at the input of the receiver and selects the signal bandwidth 10

MHz 1.5 GHz. The input wideband signal feeds the low noise amplifier followed by 4

identical I-Q paths, as shown in Fig. 45. The low noise amplifier should be able to provide

excellent input impedance matching over the entire signal bandwidth so that the signal

integrity is not degraded. The circuit is built up differentially so that the system is more
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Fig. 45. Detailed circuitry of one complex (I-Q) path.

robust to supply noise, clock jitter and even-order harmonics. The double balanced passive

mixer does not introduce too much noise and distortions. In each path the transconductance

amplifier translates the signal voltage into current, which can be easily mixed with the

Pseudo-random Numbers (1/-1) by the following passive switch mixer. The mixer output

current is integrated over segmented integration windows. The integrators’ outputs are then

digitized and post-processed digitally. The Pseudo-random Numbers (PN) are generated

and controlled by the digital logic circuit, and an applicable PN generator can be found

in [81]. The PN generator operates at the Nyquist rate. A screen shot of the PN sequence

obtained through Cadence is shown in Fig. 46.

The integrator consists of two time-interleaved branches that provide successive in-

tegration windows. A simplified schematic of the integrator is shown in Fig. 47. The

capacitors are first reset, and then the mixer output current is injected into one of the capac-

itors CS during the integration time Tc. After that the charge is transfer to the ADC. The
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Fig. 46. An example of PN sequences.

integrator also serves as the sample and hold (S&H) circuit before the ADC. The sampling

rate is reconfigurable, depending on the frequency of the controlling clocking scheme and

is set according to the signal sparsity. It can also operate up to Nyquist rate if the signal

does not exhibit enough sparsity to be processed using the CS theory. The sinc type fre-

quency response of the windowed integrator is shown in Fig. 48, where Tc is the duration of

a single segmented integration time window. The -3 dB bandwidth of the transfer function

is 1/2Tc, which is also controlled by the clock frequency.

2. Parallel Path ADCs

Each path employs a low speed ADC that samples the randomized signal at the output

of the integrator. The sampling rate is around 110MS/s and the effective number of bits

(ENOB) of the ADC needs to be 8 bits to achieve 50dB SNR. Pipeline ADCs or SAR

ADCs can meet this specification with low power consumption. In [82], a pipeline ADC

achieves 7.9 ENOB and 50MS/s with power consumption of 1.44mW. In [83], a SAR

ADC achieves 8.53 ENOB and 100MS/s sampling rate with power consumption of 1.46
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mW. Performance, non-idealities, and the design procedure of traditional Nyquist ADCs

have been extensively discussed in existing literature. Rather than designing an ADC,

we estimate the power consumption of the system with ADCs incorporated based on the

published state-of-the-art ADCs. According to the technology trend [21], [84], a 110MHz/8

ENOB ADC consumes approximately 3.5mW power. It is then expected that the 8 ADCs

should consume an overall power around 28 mW.

C. Design Specification

The PSCS front-end circuit was designed in the IBM 90nm CMOS technology. Per-

formance of key circuit blocks and the power consumption were estimated by post-layout

simulations. Parasitic extractions and simulations were done with Calibre and Cadence

Spectre. The outputs of the front-end are connected to buffers that drive the external ADCs’

loading capacitance. The external ADCs’ may be implemented on the PCB. In the simula-

tions, a capacitor is inserted at the output of the integrator to emulate the ADCs’ loading.

The power consumption of the testing-purpose buffers is not included. System level design

specs are listed in Table V.

For 50 ohms input impedance matching, the input noise power V 2
N,input is equivalent

to −174dBm/Hz × BW , which corresponds to -82.24 dBm when integrated over a BW

of 1.5 GHz. In the proposed prototype, the input signal power V 2
sig,input is expected to be

-20 dBm and the SNR at the input is around 62 dB. The noise figure of the front-end is

12 dB to achieve 50 dB output SNR. The front-end is around 20 dB to amplify the input

signal up to the range of 0 dBm. Detailed analysis on the front-end signal gain, front-end
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bandwidth, noise, distortion, and clock jitter can be found in [85].

Table V. Design specifications of the CS front-end.

Input Signal Bandwidth 10 MHz ∼ 1.5 GHz

Number of Parallel Paths 8

Single Path sampling rate (4% sparsity) 110 Ms/s

Overall System Sampling rate 880 MS/s

SNDR with 0.5 ps jitter 44 dB

Max. signal gain at the front-end around 20 dB

Fullscale input / output

-20 dBm / -2 dBm

(referred to 50 ohms)

0.06 / 0.5Vpp

D. Power Consumption and Area

The power consumption of the proposed PSCS front-end is summarized in Table VI,

with power of ADCs included, as estimated in Section B.2. The layout of a single path is

shown in Fig. 49. The overall chip area for 8 paths is estimated to be 1000μm × 1400μm.

E. Figure of Merit

The proposed receiver can be compared to a stand alone 3 GS/s and 44 dB SNDR

ADC. Such a high speed and medium resolution ADC can be implemented employing a

time-interleaved ADC architecture. Some recently published high speed time-interleaved

ADCs are listed in Table VII. A flash ADC [86] is also included in the table. The Figure
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Fig. 49. Layout of a single path of the PSCS front-end in IBM 90 nm CMOS.
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Table VI. Summary of the power consumption.

Power

consumption

@800MS/s

Gm stages 16mW

Integrators 19.2mW

Clocks
57.6mW

PN sequences

ADCs 28mW

Overall 120.8mW

of Merit (FOM) is defined as the consumed energy per conversion step. When the signal is

sparse, the FOM of the proposed receiver is significantly better due to the power reduction.

Table VII. Performance overview of comparable stand alone ADCs.

Design [8] [10] [9]a [9]b [86] This work

Sampling rate (GS/s) 1 0.8 1.35 1.8 3.5 3

ENOB 8.85 9 7.7 7.9 4.9 7

(SNDR in dB) (55) (56) (48.2) (49.4) (31.18) (44)

Power consumption (mW) 250 350 180 420 98 120.8

Process (nm) 130 90 130 130 90 90

FOM (pJ/conversion step) 0.56 0.85 0.64 0.98 0.94 0.31

Signal sparsity Arbitrary 4%

FOM= P
2ENOBSR

, where P is the power and SR is the ADC sampling rate.



92

F. Reconfigurability

The sampling rate of the integrator and the sampler only depend on the clocking

scheme, leading to a flexible reconfigurability that enables the system to accommodate

input signals with different sparsity levels. Although the system designed in section VI tar-

gets a signal sparsity of around 4%, by over-designing the OTAs and ADCs, the sampling

rate of the system can be increased up to the Nyquist rate to sample non-sparse signals.

When an input signal exhibits a high degree of sparsity, the required system sampling rate

is low and signals are readily reconstructed with a CS algorithm. When the signal sparsity

is 25% or larger, the required sampling rate approximates the Nyquist rate and the Least

Square (LS) algorithm may be used to reconstruct the signal [63]. The LS algorithm is able

to reconstruct signals with arbitrary sparsity when the system works at Nyquist rate. The

OTA needs a GBW of 600MHz to settle within 7 bits resolution. Furthermore, the sampling

rate of the following ADCs needs to be tunable up to 380Ms/s.

G. Test Results

The evaluation board for the fabricated front-end is shown in Fig. 50. The on chip

system contains one single path including the Gm stage, the differential mixer, the active

integrator, the sampling clock generator and the PN generators. Some auxiliary circuit

blocks such as the biasing current generator, the clock buffers and the output testing buffers

are also included. The complete 8 paths CS system may be implemented on a single print

circuit board incorporated with 8 individual fabricated chips. On the PCB, RF transformers

cx2156 with bandwidth 2.3MHz 2700MHz turn the single-ended arbitrary input signal as
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well as the clock signals into differential signals that enters the single path chip. Common

mode noises and the mismatches between the board GND and the chip GND are rejected.

Biasing voltages and currents are controlled by potentiometers.

Fig. 50. Evaluation board of the high-frequency PSCS front-end prototype test.

The diagram of the test bench is given in Fig. 51 and a photo of the test bench is

shown in Fig. 52. In the test setup, the Agilent N8241A Arbitrary Waveform Generator

is responsible for generating the wideband multi-carrier signal and providing the clocks
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for the PN generators and the sampling circuits. The differential output of the chip is

monitored by the Agilent DSA91304A Oscilloscope with the 1169A differential probe. The

inherent ADCs of the oscilloscope is also used to digitize the sampled data, which are post-

processed at the host PC to reconstruct the signal. In order to synchronizing the sampling,

PN generators and the data capturing at the oscilloscope, a trigger signal is provided by the

arbitrary waveform generator and used to synchronize and phase lock the clocks at the chip

and the data capture at the oscilloscope.

Note that based on the design specification in Section C, the system is originally de-

signed for accommodating wide band input signal from 10MHz ∼ 1.5GHz and the PN

clock needs to run at 3GHz. However, the best waveform generator in the lab is only able

to generate signals up to 1.25 GHz, so in the actual testing the signal bandwidth can only

be 0 625 MHz. In reality, the arbitrary wave generator, which employs a DAC, needs to

apply a low pass filter at its output in order to remove energy at frequencies higher than

625 MHz. This low pas filter has finite roll-offs so can not clip the edge of the bandwidth

sharply at 625 MHz, which further limits the available generated bandwidth. Therefore, we

adjust the system parameters for the testing accordingly, as shown in Table VIII.

Fig. 53 gives an example of the differential output of the front-end. As mentioned in

Section B, the integrator consists of two time-interleaved branches that provide successive

integration windows. When one branch is integrating, the other branch is reading and then

resetting after the data is read out, as illustrated in Fig. 54.

The approach of Direct Training, as introduced in Chapter VI, is used to get an initial

estimation of the reconstruction matrix. A series of tests were done to measure the per-
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Fig. 51. Diagram of the test bench.
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Fig. 52. Photo of the test bench.

formance of the system, where multi-carrier signals with a sparsity no more than 4% were

generated by the Agilent N8241A Arbitrary Waveform Generator and sent to the evaluation

board, the resulted compressed samples were collected and digitized at the DSA91304A

Oscilloscope and sent to the host PC for reconstruction. The SNR of the reconstructed

signal were calculated. Table IX summarizes the test results and the spectrum of the recon-

structed signals are shown in Fig. 55 - Fig. 60.

Note that for test cases where the carriers have different initial phases, we can observe

strong DC component in the reconstructed signal spectrum, this is due to the DC offset and

can easily be canceled out. Also note that in the reconstructed signal spectrum, higher fre-

quency carriers are with higher amplitude. This is because of the pre-distortion operation

(applying an internal equalizer) inside the arbitrary waveform generator N8241A, which
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Fig. 53. Example output of the tested chip.

Fig. 54. Illustration of the reading and resetting phase.
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Table VIII. System parameters for the test.

Input Signal Bandwidth (4% sparsity) 5 MHz ∼ 500 MHz

Number of Parallel Paths 8

Single Path sampling rate 45 Ms/s

Overall System Sampling rate 360 MS/s

Fullscale input / output
-20 dBm / -2 dBm

(referred to 50 ohms)

Table IX. Summary of the test results.

Input carrier frequencies (MHz) Measured SNR (dB)

[+50, +150, +250, +490]∗ 29.42

[+20, +70, +450] 30.04

[+20, +70, +250, +450] 27.74

[+50, +250, -490] 24.35

[-20, -70, +250, +450] 24.53

[+50, -150, +250, -490] 23.58

provides higher gain on the higher frequency components. We get a rough estimation of

the pre-distortion transfer function by observing the spectrum of the waveform generator

N8241A output with a 10-tone signal, which is analyzed by the FFT function of the oscil-

loscope DSA91304A and shown in Fig. 61.
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Fig. 55. Spectrum of the reconstructed signal ([+50, +150, +250, +490]MHz).
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Fig. 56. Spectrum of the reconstructed signal ([+20, +70, +450]MHz).
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Fig. 57. Spectrum of the reconstructed signal ([+20, +70, +250, +450]MHz).
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Fig. 58. Spectrum of the reconstructed signal ([+50, +250, -490]MHz).
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Fig. 59. Spectrum of the reconstructed signal ([-20, -70, +250, +450]MHz).
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Fig. 60. Spectrum of the reconstructed signal ([+50, -150, +250, -490]MHz).
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Fig. 61. Transfer function of the pre-distortion filter in the arbitrary waveform generator the
N8241A.
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CHAPTER VIII

APPLICATIONS ON SPECTRUM SENSING

The capability of sampling and reconstructing sparse signal at sub-Nyquist rate of

mixed-signal compressive sensing motivates different applications in various fields, such

as imaging [87], [88], [89], medical imaging [90], [91], communications [92], [93], [94],

statistical signal processing [95], machine learning [96], geophysics [97], [98], error correc-

tion and decoding [99], [100], among which an important application is spectrum sensing

or estimation of wideband frequency-domain sparse signals. In this chapter, we show how

the mixed-signal PSCS system is applied on the spectrum sensing for cognitive radios and

the spectrum analysis in RF tests.

A. Cognitive Radio

Cognitive radio holds the promise of relieving the scarcity of frequency resources by

allowing dynamic spectrum sharing. In Cognitive Radios, spectrum holes that are unoccu-

pied by primary users can be assigned to appropriate secondary users so that the spectrum

is dynamically shared and the spectrum efficiency is enhanced [70], [73], [101], [102].

However, due to the wide frequency bandwidth, potentially up to several giga-hertz, spec-

trum sensing in CR can be a very challenging task. Fortunately, much of today’s spectrum

usage is such that only a small portion of frequency bands are heavily loaded while others

are partially or rarely occupied [27]. This sparsity on spectrum usage makes it possible to

apply CS to do the wideband spectrum sensing at sub-Nyquist rate. This idea of apply-



104

ing compressive sensing on the spectrum sensing of cognitive radios was first introduced

in [69], however, that’s a digital approach. Digital approaches generally require full-rate

sampling before spectrum estimation, and the issue is then to reduce the complexity of the

spectrum estimation. In [59], we first proposed the idea of using the mixed-signal PSCS

front-end to do the spectrum sensing of cognitive radios. With this mixed-signal approach,

the needs on the high-speed Nyquist-rate ADCs can be avoided.

The detection of the spectrum holes consists of several crucial steps: first, spectrum

estimation; second, calculate the sufficient statistics, during which digital signal processing

is needed to improve the front-end sensitivity by processing gain and identification of the

primary users based on knowledge of the signal characteristics [70]; last, to decide whether

there exist primary users based on the sufficient statistics. Among these steps, the first step

is very challenging, since it involves the analog-to-digital conversion of wideband signals.

The sub-Nyquist rate sampling capablity of our mixed-signal PSCS front-end naturally fits

this scenario. While doing spectrum sensing in cognitive radios, the wideband spectrum

to be sensed can be represented with the multi-band model as shown in Fig. 7 and ex-

pressed mathematically with equation (3.3). Then, the mixed-signal PSCS front-end can

be used to obtain compressed information about the sensed spectrum at sub-Nyquist rate,

from which we can do spectrum estimation. Because of the nonuniform distribution of

the signal power over the frequency band, two types of SNR can be defined: SNRoverall

and SNRcarrier, where SNRoverall is the total signal power over the whole signal band-

width divided by the total noise power over the whole signal bandwidth, and SNRcarrier

defined as the average SNR for one carrier. Because the noise is distributed uniformly
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over the whole signal bandwidth but the active carriers only occupy a portion of the whole

signal bandwidth, the relationship between SNRoverall and SNRcarrier is approximately

SNRoverall = SNRcarrier ∗ K
S

.

We carried out a simulation to show the effectiveness of the mixed-signal PSCS front-

end on the wideband spectrum sensing for cognitive radios, where the input signal is ap-

proximated as a frequency-domain sparse multi-carrier signals with S = 128, K = 17,

and SNRoverall = −10dB. Note how noisy the received signal is in this example, Fig. 62.

There are 5 primary bands with a band expansion up to 528MHz. Using Δf = 4.125MHz,

the primary user’s frequencies are [17, 18, 43, 44, 45, 63, 64, 65, 66, 67, 76, 77, 118,

119, 120, 121, 122]×4.125 MHz. The input power dynamic range of the primary users is

15dB, and no prior knowledge is assumed available at the sensing radio. In Fig. 62 and

Fig. 63, from top to bottom, the four plots represent the transmitted signal by the primary

users, the received primary users’ signal at the sensing radio, the reconstructed signal from

the time-domain samples via the Nyquist rate ADC, and the reconstructed signal from the

transform-domain samples via mixed-CS at a NSR of 0.32. The measured MSE for the

two reconstructed signals is -5 dB and -14dB, respectively. Note that even with a lower

sampling rate, the sensing radio based on mixed-signal PSCS is more robust against noise

than the traditional digital approach based on the DFT, because CS takes advantage of the

knowledge of the signal structure and its sparsity.
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Fig. 62. Time-domain signals of a simulated multi-band signal. From top to bottom, the four
plots represent the transmitted signal by primary users, the received primary users’
signal at the sensing radio, the reconstructed signal from the time-domain samples
via the Nyquist rate ADC and the reconstructed signal from the transform-domain
samples via mixed-CS at a NSR of 0.32.
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transform-domain samples via mixed-CS at a NSR of 0.32.
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B. Spectrum Analysis and Circuit Testing

Spectrum analyzers are widely used in industry, research and education, including dig-

ital and analog technologies. Analog spectrum analyzers, also called swept spectrum ana-

lyzers, are typically based on the superheterodyne architecture, where the LO frequency is

tuned by the VCO such that the desired frequency falls in the passband of the IF filter. In

a digital spectrum analyzer the input analog signal is first sampled at Nyquist rate and then

analyzed via a DFT. As a measurement instrument, the ADC in a spectrum analyzer needs

to have a high resolution, which limits the maximum achievable sampling rate. The idea

of parallel compressive sensing proposed in this paper can be useful to provide both high

sampling rate and high resolution simultaneously when the input signal to the spectrum

analyzer is sparse. For example, circuit linearity measurements are often carried out with

a one or two-tone test (excite the RF component with one or two sinusoidal signals and

observe the generated harmonics and intermodulation products). The resulting frequency

span may be quite large, but the test signal and response are generally very sparse. Define

NBW as the whole signal bandwidth to be analyzed, with the multi-tone model as given

in equation (3.3), the whole signal bandwidth can be approximated with S = NBW/Δf

discrete tones, where Δf is the frequency resolution. Assuming that there are K << S

possible harmonic and intermodulation components within the NBW , obviously, this is a

problem of wideband sensing of sparse signals, for which our proposed PSCS front-end

can be utilized to achieve sub-Nyquist rate sensing. Recall that the minimum number of

measurements needed for perfect signal reconstruction of a K-sparse vector with a dimen-

sionality of S with convex optimization is on the order of K log(1 + S/K) [29], [30] and
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define the Normalized Sparsity NSP = K/S, [75], we have

NSR =
FCS

FNq

= c · KΔf log(1 + NBW
KΔf

)

2NBW
=

c

2
·NSP log(1 + 1/NSP ), (8.1)

where, c is a scalar.

To provide a numerical example, suppose we would like to test the THD (Total Har-

monic Distortion) of a digital TV (DTV) receiver. A single tone at 400MHz is applied and

the output is sent to the spectrum analyzer. Consider observing the harmonic distortion

up to the 5th order. Assuming that the mixed-signal PSCS front-end consists of 4 parallel

paths each of which employs a sampling rate of 100MHz, the CS spectrum analyzer can

function as follows:

Step 1: fl = 400MHz, fh = 2000MHz. Assuming that the signal is downconverted to

baseband before Nyquist sampling, we find that NBW = fh − fl = 1600MHz and

FNq = 3200MHz.

Step 2: Because the designed mixed-signal PSCS front-end consists of 4 parallel paths at

a sampling rate of 100MHz per path, the overall compressive sampling rate FCS =

400MHz. Therefore, NSR = FCS

FNq
= 0.125.

Step 3: Assuming c/2 = 2 in the equation (3.3), which is conservative based on previous

simulation results such as in Fig. 12, we can infer the required NSP = 0.02 from

equation (8.1) since NSR = 0.125.

Step 4: With K = 5, NSP = K
S

= 0.025, we get S = 200, which corresponds to a
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frequency resolution of Δf = NBW
S

= 10MHz.

Step 5: The DSP provides a spectral estimate by solving the CS reconstruction problem,

where the signal is modeled as a frequency-domain sparse multi-carrier signal as

given by equation (3.3), with fl = 400MHz, and Δf = 10MHz. If direct modeling

is used, S = 200; if compact modeling is used, S can be further reduced.

Fig. 64 shows the required NSR when we use the CS spectrum analyzer to do the

above harmonic testing, where Δf is the frequency resolution in the signal modeling. With

direct modeling, the signal basis includes carrier frequencies at [400 : Δf : 2000]MHz.

Referring to the figure, we make two observations. First, with Δf = 10MHz, then

NSR < 0.125, which meets the design specifications and means that the designed CS

spectrum analyzer working at a compressive sampling rate of 400MHz can achieve har-

monic spectrum analysis up to the 5th order which is located at 2 GHz. Second, because

the testing tones are narrowband signal, the smaller the Δf , the lower the NSR. However,

this requires a longer processing time T = 1/Δf and high digital complexity because S

gets larger.
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CHAPTER IX

CONCLUSIONS

Conventional radio architectures are severely stressed as bandwidths progress from

hundreds of MHz to several GHz. However, there are many applications where the input

signal shows some sparsity, and the proposed mixed-signal parallel compressive sensing

architecture can then be used to reduce the sampling rate by exploiting the signal sparsity.

The sub-Nquist rate sampling is achieved through compressive sensing and paralleliza-

tion. The mixed-signal CS avoids the necessity of a high-speed, high-resolution Nqyuist

rate ADC. The parallel structure brings flexibility and scalability in design, and practi-

cal wideband spectrum sensing can be realized by carefully balancing the complexity and

the sampling rate. The overlapping windowed integration in the PSCS front-end provides

a spurious frequency rejection scheme by setting the lowpass filter nulls on the spurious

frequencies without sacrificing the sampling rate requirement.

In CS receivers, the input signal is randomized before going through sampling and

reconstruction. Therefore, the ADC nonlinearity does not affect directly the original sig-

nal but the randomized signal. As a result, when processing frequency-domain sparse

signals, the spurious energy due to the ADC nonlinearity spreads along the signal band-

width rather than get concentrated on a few frequencies, which provides improvement on

the ADC SFDR. Simulation results show that for sparsity signals with a sparsity of 2%,

the CS receiver ADC SFDR improvement compared to a conventional Nyquist sampling

architecture can be up to 14 dB.
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The accuracy of analog circuit components is critical to the overall performance of

the compressive systems, because the circuit imperfection such as the finite settling time,

jitter, frequency offsets, gain and phase mismatches, will introduces an error on the recon-

struction matrix if not treated properly. The proposed background calibration algorithms

based on LMS are shown to be able to correct the error due to circuit nonidealities for the

PSCS system effectively, which can be conveniently extended to other compressive sensing

systems.

A low-speed prototype was built with off-theshelf components, A high-speed inte-

grated prototype was designed and fabricated with the IBM90nm CMOS technology. Both

prototypes are able to sense sparse analog signals at sub-Nyquist rate and significantly

reduce the power consumption. The high-frequency prototype also has a reconfigurable

structure and can operate up to Nyquist rate and sample non-sparse signals as well.

The proposed RF frontend can be used for wideband spectrum sensing in cognitive

radio thanks to the widely observed sparsity in frequency usage. Analysis and simulation

show that the proposed architecture can process the analog signal with only 10%-40% of the

Nyquist sampling rate depending on the sparsity of the input analog signal. The proposed

scheme can also be used to expand the frequency range of digital spectrum analyzers while

doing RF tests.
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