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ABSTRACT

Light Scattering by Ice Crystals and Mineral Dust Aerosols in the Atmosphere.

(May 2011)

Lei Bi, B. S., Anhui Normal University;

M. S., Beijing Normal University

Co–Chairs of Advisory Committee: Dr. George W. Kattawar
Dr. Ping Yang

Modeling the single-scattering properties of nonspherical particles in the atmo-

sphere (in particular, ice crystals and dust aerosols) has important applications to

climate and remote sensing studies. The first part of the dissertation (Chapters II-

V) reports a combination of exact numerical methods, including the finite-difference

time-domain (FDTD), the discrete-dipole-approximation (DDA), and the T-matrix

methods, and an approximate method-the physical-geometric optics hybrid (PGOH)

method- in the computation of the optical properties of the non-spherical particles

in a complete range of size parameters. The major advancements are made on the

modeling capabilities of the PGOH method, and the knowledge of the electromag-

netic tunneling effect – a semi-classical scattering effect. This research is important

to obtain reliable optical properties of nonspherical particles in a complete range of

size parameters with satisfactory accuracy and computational efficiency.

The second part (Chapters VI-VII) of the dissertation is to investigate the de-

pendence of the optical properties of ice crystals and mineral dust aerosols in the

atmosphere on the spectrum, the particle size and the morphology based on compu-

tational models. Ice crystals in the atmosphere can be classified to be simple regular

faceted particles (such as hexagon columns, plates, etc.) and imperfect ice crystals.

Modeling of the scattering by regular ice crystals is straightforward, as their mor-
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phologies can be easily defined. For imperfect ice crystals, the morphology is quite

diverse, which complicates the modeling process. We present an effective approach

of using irregular faceted particle to characterize the imperfectness of ice crystals. As

an example of application, less-than-unity backscattering color ratio of cirrus clouds

is demonstrated and explained theoretically, which provides guidance in the calibra-

tion algorithm for 1.064-µm channel on the Calipso lidar. Dust aerosols have no

particular morphology. To develop an approach to modeling the optical properties

of realistic dust particles, the principle of using simple shapes (triaxial ellipsoids and

nonsymmetric hexahedra) to represent irregular dust particles is explored. Simulated

results have been compared with those measured in laboratory for several realistic

aerosol samples. Agreement between simulated results and measurement suggests

the potential applicability of the two aforementioned aerosol models. We also show

the potential impact of the present study to passive and active atmospheric remote

sensing and future research works.
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CHAPTER I

INTRODUCTION AND BACKGROUND

The major objective of this dissertation is to enhance the existing modeling capa-

bilities, and develop new techniques in the simulation of the scattering and the ab-

sorption of light by nonspherical particles in the atmosphere. For simplicity, model

particles are assumed to be homogenous, dielectric, and isotropic, although some

realistic atmospheric particles, such as ice crystals, and mineral dust aerosols, may

be inhomogeneous and anisotropic. We focus on investigating the effects associated

with the nonsphericity and the orientation of nonspherical particles on their optical

properties. In Section A of this chapter, we provide the background information,

summarize the current modeling capabilities, and propose specific research subjects.

Section B is a brief introduction of basic concepts and quantities of the scattering and

the absorption of light by an individual particle. The organization of this dissertation

is described in Section C.

A. Light Scattering in the Atmosphere

Atmosphere is a large scale physical system consisting of various types of gases

(e.g.,N2, O2, CO2, H2O, etc.), and small suspended particles, such as water droplets,

ice crystals, and aerosols. These air molecules and particulate matters play an im-

portant role in regulating the radiation field in the atmosphere by interacting with

the solar radiation and the thermal emissions from the earth. The theory of light

scattering, which quantifies the radiation interaction involved in such a complex sys-

tem, is fundamental to understanding atmospherical optical phenomena and climate

This dissertation follows the style of Applied Optics.
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change, and to atmospheric remote sensing applications [1]. Table I shows the major

types of light scattering in the atmosphere and associated theoretical treatments. The

scattering of light by molecules is well descried by Rayleigh-Brillouin and rotational

Raman scattering. The scattering of light by water droplets can be quantified with

high accuracy within the context of Lorenz-Mie theory based on electronic comput-

ers. However, the modeling of the absorption and scattering by ice crystals and dust

aerosols is still a quite challenging research problem, although diverse treatments of

their “nonsphericity” are proposed in quantifying their radiative impacts. The major

difficulties are associated with the computational capability in solving macroscopic

Maxwell equations for nonspherical particles of large size parameter (a ratio between

the characteristic size of the particle and the wavelength) and an effective character-

ization of diverse particle shapes.

One short cut to avoid the aforementioned difficulties in modeling the optical

properties of nonspherical particles is “spherical approximation”. In “spherical ap-

proximation”, a nonspherical particle is represented by a spherical particle of equiv-

alent volume, surface area, or effective size (the ratio of volume over area). More

and more evidences show that the method based on “spherical approximation” for

nonspherical particles is questionable and leads to large errors for most concerned

cases in climate and remote sensing studies. More reliable modeling of the optical

properties of nonsphercial particle is required to be developed.

Optical properties of nonspherical particles are more difficult to obtain than

those of spheres. It is not easy to identify the earliest efforts to investigate the

single-scattering properties of nonspherical particles, but significant advancements

were made in the second half of the last century stimulated by an increasing devel-

opment of electronic computers. Existing scattering methods including exact and

approximate techniques were reviewed in several published books [2–5] and jour-
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Table I. Types of light scattering in the atmosphere

Particle Type Dimension (µm) Method of Solution Optical Phenomenon

Rayleigh-Brillouin, Blue Sky,

Air Molecules 1.0−4, 1.0−3
Rotational Raman Filling-in

Water Droplets 10 - 100 Lorenz-Mie theory Rainbow

Ice Crystals 1-several thousands Nonsphericity Various Halos

Dust Aerosols 1-several hundreds Nonsphericity Brownish smog

nal articles [6–8]. Three robust exact methods are the finite-difference time-domain

(FDTD) method [9–11] , the discrete-dipole-approximation∗(DDA) method [12–15],

and the T-matrix method (the extended-boundary-condition method (EBCM) or null

field method [16–18], in particular). The FDTD method is to solve Maxwell equa-

tions in time domain, while the DDA method is to solve an electromagnetic integral

equation in frequency domain. In both methods of DDA and FDTD, it is required to

discretize the scattering particle into sub volumes. Due to the limitation of computer

memory and CPU time, the two numerical methods (i.e., the FDTD and DDA) are

restricted to small or moderate size-parameters. The T-matrix method based on the

extended-boundary-condition technique is of a semi-analytical nature, however, this

method lends itself more easily to axially symmetric particles and moderate aspect

ratios. Furthermore, the upper-limit of the size parameter of this method is sensitive

to the morphology of the particle and computer precision. As a result, the methods

intending to exactly solve equations in the context of Maxwell theory for scatter-

∗The “approximation” in the DDA indicates the existing numerical errors. We say
the DDA to be a rigorous method as it solves Maxwell equations in full electrody-
namics and the numerical errors can be reduced in a manner so that the true solution
is approached.
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ing by nonspherical particles are limited to small (or moderate) size parameters. At

present, there is still no single method, which can be employed to calculate the single-

scattering properties of non-spherical particles in a complete range of size parameters

from Raleigh∗ to geometric optics regimes. It seems that this situation is unlikely or

not easily to change in the near future. As a matter of fact, nonspherical particles

in the atmosphere always have a large range of sizes from submicron to thousands

of microns (see Table 1) and the wavelength of involved radiation is from UV to mi-

crowave spectral regions. The range of size parameter is so broad that various efforts

are devoted to developing approximate methods for large size parameters, such as

anomalous diffraction theory [2, 19–22] and geometric optics method [23–31]. In this

dissertation, our final aim is to obtain reliable data set of the single-scattering prop-

erties of ice crystals and mineral dust aerosols of arbitrary size parameters, which will

be used in the forward radiative transfer simulation and remote sensing applications.

The most practical approach may be the unification of rigorous methods and meth-

ods of approximate solution. For particles with large size parameters, an approximate

method usually employed is based on geometric optics. The major impetus of the

present research is associated with increasing development of Earth observing system

(A-train satellites). A wealth of data from observations using optical instruments in

conjunction with micro-physical modeling will provide unprecedented human ability

to understand the earth atmosphere.

The methodology based on the unification of rigorous methods and method

of geometric-optics approximation avoids the difficulty in developing a single exact

method for a defined nonspherical particle. However, it is found to be not straight-

∗“Rayleigh regime” here indicates the elastic scattering of light by particles much
smaller than the incident wavelength (the size parameter is very small). It does not
necessarily mean that the scatterer is an atom or a molecule.
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forward. The essential problems are the efficiency and validity of geometric optics

approximation and incorporation of semi-classical scattering effects [32–34], which

are the main issues we shall investigate in this dissertation. To be more specific, we

devote our efforts to studying the following three research topics: (1) mutual verifi-

cation of existing numerical methods; (2) develop a more accurate and yet efficient

geometric optics method; (3) justify and quantify electromagnetic tunneling effect.

(a) (b)

Fig. 1. (a) Morphology of ice crystals at different temperature indicated along the

ordinate. (From Heymsfield and Iaquinta [35]). (b) Feldspar aerosols (From

Volten et al. [36])

Besides the computational difficulties, the modeling of the scattering by non-

spherical particles meets additional issues arising from the diversity of nonsphericity,

as shown in Fig. 1. The characterization of the nonsphericity of realistic irregular

particles is quite challenging. For ice crystals, the basic shape is hexagonal column or

plate. Due to complex atmospheric environment during the growth of ice crystals, ice

crystals may be hollow, rough, or quite irregular and even tend to aggregate. For dust
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aerosols, there is no particular morphology. Therefore, the parameterization of the

nonsphericity of ice crystals and aerosols proposes new research issues for the theory

of scattering by nonspherical particles. The effective treatment of this issue would be

the use of simple nonspherical shapes to represent realistic irregular particles under

the guidance of observed optical phenomenon in the atmosphere, data from airborn

instruments and measurements from experiments in the laboratories. We report the

present efforts to develop optical models for ice crystals and mineral dust aerosols in

the atmosphere.

Before we study the two classes of aforementioned issues, in Section B in this

chapter, we introduce the basic concepts of the scattering of light by an individual

particle, and commonly defined single-scattering quantities.

B. Basic Concepts and Quantities

In three dimensional free space (or homogenous non-absorbing medium), the basic

solution to the macroscopic Maxwell equations is a plane wave without change of its

direction of propagation, its magnitude and its polorization. When particles exist in

the space (hence, inhomogeneity is introduced ), the solution to Maxwell equations is

no longer the original plane wave field, and usually termed as the total field. The dif-

ference between the total field and the original plane wave (incident field) is called the

scattered field. Physically, a radiation condition (the scattered field at infinity should

behave like outgoing spherical waves) should be imposed to guarantee the unique-

ness of the solutions. From an experimental perspective, the angular information of

electromagnetic waves can be detected beyond the direction of original propagating

wave. This phenomenon is termed as “electromagnetic wave/light scattering”.

In general, electromagnetic wave scattering can be classified into two types; elas-
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tic and inelastic. In “elastic scattering”, the frequency of scattered field is the same

as that of incident field. From a micro-physical perspective, the electromagnetic scat-

tering is due to electric dipoles that oscillat with the same frequency as the incident

field. In “inelastic scattering”∗, frequency shift happens in the scattering process,

such as Raman and Brillouin scattering, in which the incident radiation field will also

interact with phonons, magons as well as electronic excitation. The present disserta-

tion is to study “elastic scattering of electromagnetic plane wave by small particles

in the atmosphere”.

€ 

θ s

€ 

φ s

Incident Beam

Scattered Beam

€ 

x

€ 

y

€ 

z
  

€ 

v r 

€ 

ˆ α s

€ 

ˆ β s

€ 

ˆ β i

€ 

ˆ α i

€ 

oParticle

Fig. 2. Definition of scattering geometry by an arbitrary particle

In most situations, the detector/observer is far away from the particles. The

observed scattered field in this region also contains the information of micro-physical

properties of the particles such as size, morphology and composition. The unique

∗This definition has nothing to do with the absorption of light.
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behavior of the far scattered field is that the radial components of the electric and

magnetic fields are zero. Hence, locally, it is a transverse plane wave. To describe the

scattering process, for convenience, a scattering plane is defined as the plane composed

of the direction of incident plane wave and the scattering direction, as shown in Fig.

2. With respect to each scattering plane, an amplitude scattering matrix transforms

the incident parallel and perpendicular electric field components to their counterparts

in the scattered field as follows [3], Es
α

Es
β

 =
exp [ik(r − z)]

−ikr

 S2 S3

S4 S1


 Ei

α

Ei
β

 , (1.1)

where four elements of the amplitude scattering matrix Si(i = 1, 4) are complex

numbers and contain the information of how the particle scatters and absorbs the

incident light. As measured quantities have a dimension of “energy”, the intensity

and polarization characteristics are usually described through Stokes parameters (I,

Q, U, V), which are defined in terms of scattering plane as follows [3]

I = EαE
∗
α + EβE

∗
β, (1.2)

Q = EαE
∗
α − EβE∗β, (1.3)

U = EαE
∗
β + EβE

∗
α, (1.4)

V = i(EαE
∗
β − EβE∗α). (1.5)

The phase matrix P is to transform the Stokes vectors of incident light to those of

scattered light, and can be derived from the four elements of amplitude scattering

matrix. Let’s start with four defined quantities:

a = EαEα
∗, b = EβEβ

∗, (1.6)

c = EαEβ
∗, d = Eα

∗Eβ. (1.7)
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Then [I,Q, U, V ] and [a, b, c, d] are related by a linear transformation,

I

Q

U

V



inc/sca

= L



a

b

c

d



inc/sca

, (1.8)

where the superscripts inc and sca denote that the quantities are associated with

incident field and scattered field, respectively, and L is a 4 × 4 matrix given by

L =



1 1 0 0

1 −1 0 0

0 0 1 1

0 0 i −i


. (1.9)

Starting from the amplitude scattering matrix, after some algebraic malipulations,

we get 

a

b

c

d



sca

= T



a

b

c

d



inc

, (1.10)

where T is

T =



S2S2
∗ S3S3

∗ S2S3
∗ S3S2

∗

S4S4
∗ S1S1

∗ S4S1
∗ S1S4

∗

S2S4
∗ S3S1

∗ S2S1
∗ S3S4

∗

S4S2
∗ S1S3

∗ S4S3
∗ S1S2

∗


. (1.11)
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Combining Eq. (1.8) and Eq. (1.10) yields the scattering phase matrix

P = LTL−1, (1.12)

which can be further written in an explicit form of

P =



P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34

P41 P42 P43 P44


(1.13)

with elements given by [3]

P11 =
1

2
(S2S2

∗ + S4S4
∗ + S3S3

∗ + S1S1
∗), (1.14)

P12 =
1

2
(S2S2

∗ + S4S4
∗ − S3S3

∗ − S1S1
∗), (1.15)

P13 =
1

2
(S2S3

∗ + S4S1
∗ + S3S2

∗ + S1S4
∗), (1.16)

P14 =
1

2i
(S2S3

∗ + S4S1
∗ − S3S2

∗ − S1S4
∗), (1.17)

P21 =
1

2
(S2S2

∗ − S4S4
∗ + S3S3

∗ − S1S1
∗), (1.18)

P22 =
1

2
(S2S2

∗ − S4S4
∗ − S3S3

∗ + S1S1
∗), (1.19)

P23 =
1

2
(S2S3

∗ − S4S1
∗ + S3S2

∗ − S1S4
∗), (1.20)

P24 =
1

2i
(S2S3

∗ + S4S1
∗ − S3S2

∗ − S1S4
∗), (1.21)

P31 =
1

2
(S2S4

∗ + S4S2
∗ + S3S1

∗ + S1S3
∗), (1.22)

P32 =
1

2
(S2S4

∗ + S4S2
∗ − S3S1

∗ − S1S3
∗), (1.23)

P33 =
1

2
(S2S1

∗ + S4S3
∗ + S3S4

∗ + S1S2
∗), (1.24)

P34 =
1

2i
(S2S1

∗ + S4S3
∗ − S3S4

∗ − S1S2
∗), (1.25)
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P41 =
i

2
(S2S4

∗ − S4S2
∗ + S3S1

∗ − S1S3
∗), (1.26)

P42 =
i

2
(S2S4

∗ − S4S2
∗ − S3S1

∗ + S1S3
∗), (1.27)

P43 =
i

2
(S2S1

∗ − S4S3
∗ + S3S4

∗ − S1S2
∗), (1.28)

P44 =
1

2
(S2S1

∗ − S4S3
∗ − S3S4

∗ + S1S2
∗). (1.29)

In addition to the description of the angular distribution of scattered light, the in-

tegrated scattering properties associated with the extinction, the scattering, and the

absorption of light are essentially required in understanding radiative transfer. Ac-

cording to the optical theorem, the total extinction cross section of incident light is

given by

Cext =
2π

k2
{[S1(0

0) + S2(0
0)] + [S2(0

0)− S1(0
0)](Qinc/Iinc)

+[S3(0
0) + S4(0

0)](Uinc/Iinc) + i[S3(0
0)− S4(0

0)](Vinc/Iinc)}. (1.30)

Cext depends on the particle orientation and polarization state of incident light.

Straightforwardly, the scattering cross section is the integration of intensity of outgo-

ing scattered waves

Csca =
1

k2

∫ π

0

∫ 2π

0

(P11 + P12Qinc/Iinc

+P13Uinc/Iinc + P14Vinc/Iinc) sin θdθdφ. (1.31)

Note that two components of Stokes vector (Qinc and Uinc) in Eq. (1.31) is a function

of azimuthal angle φ for a specific incident light. According to the conservation of

energy, the absorption cross section is given by

Cabs = Cext − Csca. (1.32)



12

Single-scattering albedo is a quantity defined as

ω =
Csca
Cext

= 1− Cabs
Cext

. (1.33)

A complete set of the single-scattering properties includes the phase matrix, the ex-

tinction efficiency (Cext divided by the projected area of particle), and the absorption

efficiency (Cabs divided by the projected area of particle), which contain microphys-

ical information of particles, such as size, morphology and composition. Asymmetry

factor to characterize the angular distribution of scattered intensity is usually defined

as

g =< cos θ >=
1

k2Csca

∫ π

0

∫ 2π

0

(P11 + P12Qinc/Iinc

+P13Uinc/Iinc + P14Vinc/Iinc) cos θ sin θdθdφ (1.34)

The extinction efficiency, the single-scattering albedo and the asymmetry factor are

important optical parameters in many climate models.

C. Organization of the Dissertation

The remainder of the dissertation is organized as follows. The first part (Chapters

II-V) is on the methods for the solution of light scattering by nonspherical particles.

The second part (Chapters VI-VII) presents the approach of optical modeling of ice

crystals and mineral dust aerosols. Specifically, in Chapter II, we outline the basic

mathematical relations to formulate the solution of light scattering. In Chapter III,

the general theoretical framework of three rigorous methods (i.e., the FDTD, the

DDA and the EBCM) are summarized. We carry out some comparison study for

mutual verification. Chapter IV begins with some general physical consideration of

geometric optics method, and then presents essential components of a new physical-



13

geometric optics hybrid (PGOH) method. In Chapter V, we present some studies

on electromagnetic edge effect involved in light scattering by nonspherical particles.

In Chapter VI, the optical modeling approach for ice crystals is discussed. Numeri-

cal results are demonstrated for randomly oriented ice crystals, oriented ice crystals,

and imperfect ice crystals. Particular attention is paid to the color ratio (ratio of

backscattering coefficients of ice particles at different wavelengths) study. In Chapter

VII, we discuss the new exploration of the use of simple geometries to model realistic

mineral dust aerosols. We investigate two model shapes: triaxial ellipsoids and non-

symmetric hexahedra. Comparisons of simulated results and measurement data are

given. Finally, in Chapter VIII, we conclude the present research and suggest some

future studies in this field.
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CHAPTER II

FORMAL SOLUTION OF SCATTERING

The scattered field in radiation region can be related to the near-field exactly through

the dyadic Green’s function. The basic idea is to transform differential Maxwell

equations to integral equations. The near-field can be either the internal field within

the particle or the field on the surface enclosing the particle. Once the near-field

is obtained, the extinction, the scattering and the absorption cross sections can be

obtained based on Poyting’s theorem. These relationships are fundamental to the

methods of FDTD, DDA, and PGOH.

Different from the FDTD, DDA, and PGOH, whose solution of scattering of light

are based on the near-field, the T-matrix formulation of the solution of scattering is

to relate the expansion coefficients of scattered field and those of incident field in a

functional space through a matrix as called T-matrix. Once the T-matrix is obtained,

the basic quantities of light scattering can be calculated.

In this Chapter, we summarize the near- to far-field transformation, and the

definition of T-matrix. The basic quantities of light scattering are represented based

on the near-field, and the T-matrix. As near-field and T-matrix are still unknown, the

solution of scattering of light is called formal solution. Three rigorous techniques (the

FDTD, DDA, and EBCM) are introduced in Chapter III to calculate the near-field

and the T-matrix. An approximate method based on geometric optics is developed

to calculate the near-field in Chapter IV.

In principle, the T-matrix can be computed from the FDTD or the DDA; how-

ever, it is not necessary to do this to obtain optical quantities of concern. Therefore,

the EBCM is called the T-matrix method in most literature. To be more rigorous,

T-matrix is not a method but a formulation of the solution of light scattering.
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A. Maxwell Equations

Maxwell equations in Gaussian unit system are written as [37]

~∇ · ~D(~r, t) = 4πρ(~r, t), ~∇× ~H(~r, t)− 1

c

∂ ~D(~r, t)

∂t
=

4π

c
~J(~r, t), (2.1)

~∇ · ~B(~r, t) = 0, ~∇× ~E(~r, t) +
1

c

∂ ~B(~r, t)

∂t
= 0, (2.2)

where ~D is the electric displacement, ~B is the magnetic flux density, ~H is the magnetic

field, ~E is electric field, ρ is free electric charge density, c is the speed of light in

vacuum, and ~J is electric current density. ~D is related to ~E through ~D = ε(~r) ~E,

where ε is the permittivity and ~B is related to ~H through ~B = µ(~r) ~H, where µ is the

permeability. Here we consider the scattering of a polarized plane wave with the time

dependence of exp(−iωt), or exp(−ikct) by a particle. The active sources of incident

plane wave is at infinity, and will not be affected by particles as the sources of passive

radiation. The electric charge density and electric current density in the finite regime

are zero. Therefore, the two curl equations in (2.1) and (2.2) are written as

~∇× ~H(~r) + ikε(~r) ~E(~r) = 0, (2.3)

~∇× ~E(~r)− ikµ(~r) ~H(~r) = 0, (2.4)

where, for convenience without of loss of clarity, we use the same symbols of quantities

in both the time and frequency domain. The solution to Eqs. (2.3) and (2.4) can be

determined by giving the following particle boundary conditions,

n̂× ( ~H1 − ~H2) = 0, n̂× ( ~E1 − ~E2) = 0 (2.5)

and radiation conditions,

~H = k̂ × ~E,Eθ/φ→
exp(ikr)

kr
. (2.6)
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In Eq. (2.5), ~H1 and ~E1 are the fields on the internal surface of the particle and ~H2

and ~E2 are the fields on the external surface of the particle, and n̂ is the local outward

normal direction.

B. Dyadic Green’s Function

For convenience, we rewrite Eqs.(2.3) and (2.4) in the following form,

~∇× ~H(~r) + ik ~E(~r) =
4π

c
~J(~r), (2.7)

~∇× ~E(~r)− ik ~H(~r) = −4π

c
~M(~r), (2.8)

where ~J and ~M are called equivalent volume sources in free space, given by

~J(~r) = −i kc
4π

[ε(~r)− 1] ~E(~r), ~M(~r) = −i kc
4π

[µ(~r)− 1] ~H(~r). (2.9)

Taking cross product ~∇× at both sides of Eqs. (2.7) and (2.8) yields,

~∇× ~∇× ~E(~r)− k2 ~E(~r) = ik
4π

c
~J(~r)− 4π

c
~∇× ~M(~r), (2.10)

~∇× ~∇× ~H(~r)− k2 ~H(~r) = ik
4π

c
~M(~r) +

4π

c
~∇× ~J(~r). (2.11)

To solve Eqs.(2.10) and (2.11), dyadic Green’s function
←→
G (~r − ~r′) is defined to be

the solution of [38]

~∇× ~∇×
←→
G (~r − ~r′) −k2←→G (~r − ~r′) =

←→
I δ(~r − ~r′). (2.12)

where
←→
I is a unit dyadic, and δ is Dirac delta function.

Once dyadic Green’s function is obtained, then solution to Eqs. (2.10) and (2.11)
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can be represented as,

~E(~r) = ~Einc(~r) + ik
4π

c

∫ ←→
G (~r − ~r′) · ~J(~r′)d3~r′

− 4π

c

∫ ←→
G (~r − ~r′) · ~∇× ~M(~r′)d3~r′, (2.13)

~H(~r) = ~H inc(~r) + ik
4π

c

∫ ←→
G (~r − ~r′) · ~M(~r′)d3~r′

+
4π

c

∫ ←→
G (~r − ~r′) · ~∇× ~J(~r′)d3~r′, (2.14)

where ~Einc and ~H inc are incident electric and magnetic field in the absence of particles.

If µ = 1 (i.e., the particle is dielectric and nonmagnetic), Eqs.(2.13) and (2.14) are

written in a simpler form of,

~E(~r) = ~Einc(~r) + k2

∫
(ε− 1)

←→
G (~r − ~r′) · ~E(~r′)d3~r′, (2.15)

~H(~r) = ~H inc(~r)− ik
∫

(ε− 1)~∇G(~r − ~r′)× ~E(~r′)d3~r′. (2.16)

At this point, we turn to solve the dyadic equation (2.12). Taking dot product ~∇· on

both sides of Eq. (2.12), we obtain

~∇ ·
←→
G (~r − ~r′) = − 1

k2
~∇ ·
←→
I δ(~r − ~r′) = − 1

k2
~∇δ(~r − ~r′) (2.17)

By using ~∇× ~∇× = ~∇~∇ · −~∇2, we write Eq. (2.12) as follows,

(~∇2 + k2)
←→
G (~r − ~r′) = ~∇~∇ ·

←→
G (~r − ~r′)−

←→
I δ(~r − ~r′). (2.18)

Substituting Eq.(2.17) into Eq.(2.18) yields

(~∇2 + k2)
←→
G (~r − ~r′) = −

[
←→
I +

~∇~∇
k2

]
δ(~r − ~r′). (2.19)
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One can find that the solution to Eq.(2.19) can be

←→
G (~r − ~r′) =

[
←→
I +

~∇~∇
k2

]
G(~r − ~r′) (2.20)

where G is the free space Green’s function defined by

(~∇2 + k2)G(~r − ~r′) = −δ(~r − ~r′), (2.21)

of which one of the solutions that satisfy the radiation condition,

lim
r→∞

r

[
ikG(~r − ~r′) +

∂G(~r − ~r′)
∂r

]
= 0 (2.22)

is

G(~r, ~r′) =
eik|~r−

~r′|

4π|~r − ~r′|
. (2.23)

To derive the explicit expression of dyadic Green’s function (2.20), we let R = |~r−~r′|,

use the following operations,

~∇G(~r − ~r′) = (ik − 1

R
)G(~r − ~r′)R̂, (2.24)

~∇~∇G(~r − ~r′) = ~∇
[
(ik − 1

R
)G(~r − ~r′)

]
R̂ + (ik − 1

R
)G(~r − ~r′)~∇R̂, (2.25)

~∇R̂ =
~∇~r
R
−
~RR̂

R2
, (2.26)

~∇~r =
←→
I , (2.27)

and then obtain

←→
G (~r − ~r′) = G(~r − ~r′)

[
(
←→
I −

~R~R

R2
)− 1− ikR

(kR)2
(
←→
I − 3~R~R

(kR)2
)

]
. (2.28)



19

For later usage, we list other useful properties of dyadic Green’s function as follows,

~∇×
←→
G (~r − ~r′) = ~∇× (

←→
I G) = ~∇G×

←→
I = (ik − 1

R
)G(R)R̂×

←→
I , (2.29)

G(~r − ~r′)|R→∞ =
eikr

4πr
e−ik~r

′·r̂, (2.30)

~∇G(~r − ~r′)|R→∞ = ik
eikr

4πr
e−ik~r

′·r̂r̂, (2.31)

←→
G |R→∞ = [

←→
I − r̂r̂] e

ikr

4πr
e−ik~r

′·r̂, (2.32)

~∇×
←→
G |R→∞ = ik

eikr

4πr
e−ik~r

′·r̂r̂ ×
←→
I . (2.33)

C. Near-to-far-field Transformation

Based on Eq. (2.15) and Eq. (2.32), the scattered field in the radiation zone [39] is

~Es(~r) =
k2 exp(ikr)

4πr
(ε− 1)

∫ {
~E(~r′)− r̂

[
r̂ · ~E(~r′)

]
exp

(
−i~k · ~r′

)}
d3r′, (2.34)

where ~E(~r′) is the total field inside of the particle. One can also express the electric

field in the radiation zone through surface integral equation. To do this, the starting

point is Greens’ theorem: ∫
~∇ · ~Adv =

∫
~A · n̂sds (2.35)

where n̂s is a unit vector pointing outward the volume and ~A is an arbitrary vector

field. Let ~A be in the form of

~A = ~b× (~∇× ~a)− ~a× (~∇×~b). (2.36)

Here ~a and ~b are given by

~a = ~E(~r′), ~b =
←→
G (~r − ~r′) · ~c. (2.37)
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By using the following identity

~∇ · ~A = ~a · ~∇× (~∇×~b)−~b · ~∇× (~∇× ~a), (2.38)

one find

~∇ · ~A = k2 ~E · [
←→
G · ~c] + ~E · ~cδ(~r − ~r′)− k2 ~E · [

←→
G · ~c] = ~E · ~cδ(~r − ~r′), (2.39)

~A = [
←→
G (~r − ~r′) · ~c]× ~∇× ~E − ~E × [~∇×

←→
G (~r − ~r′) · ~c]. (2.40)

Substituting Eqs. (2.39) and (2.40) into Eq. (2.35) yields

~E(~r) =

[
−
∫
s∞

+

∫
s

]
dsn̂ ·

{
ik ~H(~r′)×

←→
G (~r − ~r′) + ~E(~r′)×

[
~∇×
←→
G (~r − ~r′)

]}
.(2.41)

Take into account the radiation condition [40],

lim
r→∞

r
[
ikr̂ ×

←→
G (~r − ~r′) + ~∇×

←→
G (~r − ~r′)

]
= 0, (2.42)

the integral over the surface at infinity in Eq.(2.41) vanishes. Therefore, one obtain

~E =

∫
s

dsn̂s ·
{
ik ~H ×

←→
G (~r − ~r′) + ~E × [~∇×

←→
G (~r − ~r′)]

}
. (2.43)

In the radiation zone, by using Eqs. (2.30) − (2.33), we further obtain,

~Es(~r)=
exp(ikr)

−ikr
k2

4π

∫∫{
r̂×
[
n̂s× ~E(~r′)

]
−r̂×r̂×

[
n̂s× ~H(~r′)

]}
exp(−ikr̂ · ~r′)d2~r′.(2.44)

If starting from Green’s theorem,∫
(φ~∇2ψ − ψ~∇2φ)dv =

∫
s

[
φ
∂ψ

∂n
− ψ∂φ

∂n

]
(2.45)

and letting

φ = Ei, ψ = G(~r − ~r′), (2.46)
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we have,

~E =

∫
s

[
~E
∂G

∂n
−G∂

~E

∂n

]
d2~r′. (2.47)

In the radiation zone, Eq. (2.47) is in the form of [28]

~Es =
exp(ikr)

−ikr
−k2

4π

∫ [
n̂s · r̂ ~E(~r′) +

1

ik

∂ ~E(~r′)

∂ns

]
exp(−ikr̂ · ~r′)d2~r′. (2.48)

At this point, there are three equations (2.34),(2.44), and(2.48) that establish the

relationship between the near-field and the far-field.

D. Equivalence Principle

In a space with active sources, the solution to Maxwell equations can be represented in

terms of Hertz potentials. Equivalent principle states that the scattered field outside

the particle is the same as the activated field of “equivalent sources” [41]. Therefore,

the solution of scattering problem can be written in terms of Hertz potentials associ-

ated with “equivalent sources”. For example, let the permittivity and permeability of

the equivalent system are unity, and equivalent currents in the volume of the particle

are,

~J(~r) = −ik [ε(~r)− 1] ~E(~r), ~M(~r) = −ik [µ(~r)− 1] ~H(~r) (2.49)

For dielectric particles, ~M = 0, so the electrical and magnetic Hertz potentials are

given by

A(~r) =

∫∫
G(~r, ~r′) ~J(~r′)d2~r′, F (~r′) = 0 (2.50)

Therefore [42]

~Es(~r) =
i

k
~∇× ~∇× ~A(~r) (2.51)



22

It can be found that the solution from Eq. (2.51) is equal to Eq. (2.15) obtained

from dyadic Green’s function.

According to boundary conditions, equivalent surface currents can be given in

the form of [4, 41],

~M = ~E × n̂s, ~J = n̂s × ~H. (2.52)

Hertz potentials are given by

~A(~r) =

∫
s

G(~r − ~r′)(n̂s × ~H(~r′))dS, (2.53)

~F (~r) =

∫
s

G(~r − ~r′)( ~E(~r′)× n̂s)dS. (2.54)

Therefore, the scattered field outside of the volume enclosing the particle is given

by [42]

~Es(~r) =
i

k
~∇× ~∇× ~A(~r)− ~∇× ~F (~r). (2.55)

Note that,

~∇
{
~∇ ·
[
G(~r − ~r′)[n̂s × ~H(~r′)]

]}
=

[
n̂s × ~H(~r′)

]
· ~∇~∇G(~r − ~r′)

= n̂s · ~H(~r′)× ~∇~∇G(~r − ~r′), (2.56)

~∇2
[
G(~r − ~r′)n̂s × ~H(~r′)

]
= −k2G(~r − ~r′)n̂s × ~H(~r′)

= −k2n̂s · ~H(~r′)×
[←→
I G(~r − ~r′)

]
, (2.57)

~∇×
[
G(~r − ~r′) ~E(~r′)× n̂s

]
= ~∇×

[
G(~r − ~r′)

←→
I · ( ~E(~r′)× n̂s)

]
= ~∇×

←→
G (~r − ~r′) ·

[
~E(~r′)× n̂s

]
= −n̂s · ~E(~r′)× ~∇×

←→
G (~r − ~r′), (2.58)
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and

~∇×
←→
G = ~∇× (

←→
I G). (2.59)

We can obtain,

~Es(~r) =

∫
s

n̂s ·
{
ik ~H(~r′)×

←→
G (~r − ~r′) + ~E(~r′)× (~∇×

←→
G (~r − ~r′))

}
, (2.60)

which is the same as Eq. (2.43) derived from vector identity using dyadic Green’s

function.

E. T-matrix Formulation

The T-matrix is to relate the scattered field and the incident field. Specifically, the

incident field and the scattered field are expanded in terms of basis in a functional

space. Commonly, vector spheric functions are employed as basis of expansion. Math-

ematically [5],

~Einc =
∞∑
n=1

n∑
m=−n

[
amnRg ~Mmn(k~r) + bmnRg ~Nmn(k~r)

]
, (2.61)

~Esca =
∞∑
n=1

n∑
m=−n

[
pmn ~Mmn(k~r) + qmn ~Nmn(k~r)

]
, (2.62)

where Rg ~Mmn, Rg ~Nmn, ~Mmn, and ~Nmn are vector spherical functions as defined in

Appendix A, and amn, bmn, pmn, and qmn are corresponding expansion coefficients.

The so-called T-matrix is defined as follows, ~p

~q

 =

 T11 T12

T21 T22


 ~a

~b

 , (2.63)

where ~p (or ~a/~b/~q) is a vector whose components are pmn (or amn/bmn/qmn) listed

sequentially according to n(n + 1) + m. For a polarized plane wave propogating in
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a direction specified through polar angles(θ′, φ′), the expansion coefficients amn and

bmn are readily known [5], given by,

amn = 4πinγmn ~E0 · ~C∗mn(θ′, φ′) (2.64)

bmn = 4πin−1γmn ~E0 · ~B∗mn(θ′, φ′). (2.65)

where ~E0 is the vector amplitude. Constants γmn and vector spherical harmonics

~Cmn and ~Bmn are given in Appendix A. Therefore, once T-matrix is obtained, ~Esca

is determined by Eqs. (2.62) and (2.63). As we take interest in the far scattered

field, ~Esca|r→∞ can be obtained by using the asymptotic formula of ~Mmn and ~Nmn or

through Kirhoff surface integral equations (Appendix B), given by

~Esca(rn̂sca) =
1

k

∞∑
n=1

n∑
m=−n

i−nγmn

[
−ipmn ~Cmn(θs, φs) + qmn ~Bmn(θs, φs)

]
, (2.66)

The solution of scattered electric field can be written in terms of T-matrix as follows,

~Esca(rn̂sca) =
1

k

∞∑
n=1

n∑
m=−n

∞∑
n′=1

n′∑
m′=−n′

i−nγmn

×
[
−i
(
T 11
mnm′n′am′n′ + T 12

mnm′n′bm′n′
)
~Cmn(θs, φs)

+
(
T 21
mnm′n′am′n′ + T 22

mnm′n′bm′n′
)
~Bmn(θs, φs)

]
. (2.67)
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Substituting Eqs (2.64) and (2.65) into Eq. ( 2.67) yields

~Esca(rn̂sca) =
exp(ikr)

kr

∞∑
n=1

n∑
m=−n

∞∑
n′=1

n′∑
m′=−n′

i−nγmn

×
[(
−iT 11

mnm′n′
~Cmn(θs, φs) + T 21

mnm′n′
~Bmn(θs, φs)

)
am′n′

+
(
−iT 12

mnm′n′
~Cmn(θs, φs) + T 22

mnm′n′
~Bmn(θs, φs)

)
bm′n′

]
=

exp(ikr)

kr

∞∑
n=1

n∑
m=−n

∞∑
n′=1

n′∑
m′=−n′

i−nγmn4πin
′
γm′n′

×
[(
−iT 11

mnm′n′
~Cmn(θs, φs) + T 21

mnm′n′
~Bmn(θs, φs)

)
~C∗mn(θi, φi) · ~E0

+
(
−T 12

mnm′n′
~Cmn(θs, φs)− iT 22

mnm′n′
~Bmn(θs, φs)

)
~B∗mn(θi, φi) · ~E0

]
.(2.68)

The scattering dyad is defined through [5],

~Esca(rn̂sca) =
eikr

−ikr
←→
A (n̂sca, n̂inc) · ~E0. (2.69)

Comparison of Eq. (2.68) and (2.69) yields

←→
A (n̂sca, n̂inc) =

∞∑
n=1

n∑
m=−n

∞∑
n′=1

n′∑
m′=−n′

4πin
′−n−1γmnγm′n′

×
[(
−iT 11

mnm′n′
~Cmn(θs, φs) + T 21

mnm′n′
~Bmn(θs, φs)

)
~C∗mn(θi, φi)

+
(
−T 12

mnm′n′
~Cmn(θs, φs)− iT 22

mnm′n′ .
~Bmn(θs, φs)

)
~B∗mn(θi, φi)

]
(2.70)

The amplitude scattering matrix elements can be obtained straightforwardly, given

by

S11 = θ̂s ·
←→
A · θ̂i, (2.71)

S12 = −θ̂s ·
←→
A · φ̂i, (2.72)

S21 = −φ̂s ·
←→
A · θ̂i, (2.73)

S22 = φ̂s ·
←→
A · φ̂i. (2.74)
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For example [5],

S11 =
∞∑
n=1

n∑
m=−n

∞∑
n′=1

n′∑
m′=−n′

4πin
′−n−1γmnγm′n′

×
[(
−iT 11

mnm′n′ θ̂
s · ~Cmn(θs, φs) + T 21

mnm′n′ θ̂
s · ~Bmn(θs, φs)

)
~C∗mn(θ′, φ′) · θ̂i

+
(
−T 12

mnm′n′ θ̂
s · ~Cmn(θs, φs)− iT 22

mnm′n′ θ̂
s · ~Bmn(θs, φs)

)
~B∗mn(θ′, φ′) · θ̂i

]
.(2.75)

Note that θ̂i = φ̂s × ẑ, and φi = φs.

F. Extinction, Scattering, and Absorption

The cross sections associated with the extinction, the scattering and the absorption

of light, as discussed in Chapter I, can be obtained starting from the amplitude

scattering matrix. Meanwhile, the amplitude scattering matrix is related to near-

field or T-matrix, as already known. This section presents the formulation of the

defined three cross sections in terms of the near-field or the T-matrix. Let’s start

from the complex poynting vector, which is defined as [37]

~S =
c

4π
~E × ~H∗. (2.76)

Here, c is the speed of light, and ~E and ~H are total fields. By cosidering the total

field as the superposition of the scattered field and the incident field, the complex

poynting vector can be written as the summation of three parts [3]

~S = ~Se + ~Ss + ~Si, (2.77)
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where each part is given by

~Se =
c

4π
( ~Einc × ~H∗ + ~E × ~H inc∗), (2.78)

~Ss =
c

4π
~Esca × ~Hsca, (2.79)

~Si =
c

4π
~Einc × ~H inc∗. (2.80)

The extinction, scattering, and absorption cross sections can be defined as

Cext = − 1

F0

Re

[∫∫
~Se · n̂d2~ξ

]
, (2.81)

Csca = − 1

F0

Re

[∫∫
~Ss · n̂d2~ξ

]
, (2.82)

Cabs = − 1

F0

Re

[∫∫
~S · n̂d2~ξ

]
, (2.83)

where ~F0 is the flux density of the incident plane wave, given by

~F0 =
c

4π
~Einc · ~Einc ∗. (2.84)

Based on Gaussian theorm, the above mentioned surface integral equation can be

transformed to volume integral equations,

Cext =
k

|Einc|2
Im

[∫
v

(ε− 1) ~E · ~E∗d3~ξ

]
, (2.85)

Csca = Cext − Cabs, (2.86)

Cabs =
k

|Einc|2

∫
v

εi ~E ~E∗d3~ξ. (2.87)

These equations are valid for arbitrary sources. For an incident plane wave, the

extinction cross section can be related to the amplitude scattering matrix at the

direct forward direction, as called the optical theorem.

In the T-matrix formulation, one is not required to calculate the internal field.

The extinction cross section can be obtained from optical theorem, and the scattering
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cross section can be obtained by integrating the scattered intensities in the whole solid

angle:

Cext =
4π

k|Einc|2
Im[ ~Esca(n̂inc) · ~Einc ∗], (2.88)

Csca =
1

| ~Einc|2

∫
4π

dr̂| ~Es|2. (2.89)

After some mathematical manipulations [5], we have

Cext = − 1

k2| ~Einc|2
Re

∞∑
n=1

n∑
m=−n

[amn(pmn)∗ + bmn(qmn)∗] , (2.90)

Csca =
1

k2| ~Einc|2

∞∑
n=1

n∑
m=−n

[
|pmn|2 + |qmn|2

]
. (2.91)

where pmn and qmn can be computed from the T-matrix.
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CHAPTER III

RIGOROUS NUMERICAL METHODS

As discussed by van de Hulst as a strategy for studies of light scattering by nonspher-

ical particles in the foreword to the monograph “Light Scattering by Nonspherical

Particles: Theory, Measurements, and Applications” [4], mutual verification of the

results obtained by different persons and particularly by different methods remains

strongly advisable. In this chapter, several popular numerical methods mentioned in

Chapter I are reviewed at a methodology level. A comparison study between exact

methods (the FDTD, DDA, and T-matrix) is carried out to ensure the reliability of

simulated results, as numerical errors cannot be avoided in the FDTD and DDA meth-

ods, and pre-assumed computational parameter are required. Typical comparison of

the single-scattering properties of ice model particles are presented. Applicability

of each method in terms of efficiency and accuracy is addressed. We will show the

necessity of aforementioned studies and summarize useful standards to ensure the

correctness of simulated optical properties.

A. Finite-Difference Time-Domain (FDTD) Method

The FDTD method is an efficient time domain method for the solution of light scat-

tering. The major steps of the FDTD method to solve light scattering problem by

nonspherical particles involve the simulation of the Maxwell equations to get the

near-field in time domain, the transformation of the near-field from time domain to

frequency domain, and obtaining the single-scattering properties through electromag-

netic integral equations.

To obtain the near-field, FDTD simulates the propagation of the source by solving
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Maxwell curl equations as follows,

~∇× ~H(~r, t) =
ε(~r)

c

∂ ~E(~r, t)

∂t
, (3.1)

~∇× ~E(~r, t) = −µ(~r)

c

∂ ~H(~r, t)

∂t
, (3.2)

where ε(~r) is the permittivity of the dielectric particle and c is the speed of light in the

vacuum; µ(~r) is the permeability and always assumed to be unit for nonferromagnetic

cloud and aerosol particles. To take the consideration the absorption of the particle,

ε is complex. Following the Ref. [43], Eq. (3.1) can also be expressed equivalently as

follows to avoid complex refractive index in calculation

~∇× ~H(~r, t) =
εr(~r)

c

∂ ~E(~r, t)

∂t
+ kεi(~r) ~E(~r, t). (3.3)

The two equations (3.1) and (3.3) are mathematically equivalent in frequency domain.

For numerical calculation, either the total field algorithm or the pure scattered field

algorithm can be employed to simulate the propagating of electromagnetic wave in

the computational domain. For pure scattering field algorithm, we need to decompose

the total field as the superposition of incident field (with superindex i) and scattering

field (with superindex s). We get

~∇× ~Esca(~r, t) = −1

c

∂ ~Hsca(~r, t)

∂t
, (3.4)

~∇× ~Hsca(~r, t) =
εr(~r)

c

∂ ~Esca(~r, t)

∂t
+ kεi(~r) ~E

sca(~r, t) + ~M inc(~r, t), (3.5)

where the source term of the scattered field ~M inc(~r, t) is given by

~M inc(~r, t) = [1− εr(~r)]
∂ ~Einc(~r, t)

∂(ct)
− kεi(~r) ~Einc(~r, t). (3.6)

One can see that M inc properly equals to zero in vacuum space. From Eqs. (3.4) and

(3.5), we get the time-marching equations using the central difference approximation
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in terms of time derivative

~Hsca(~r, tn+ 1
2
) = ~Hsca(~r, tn− 1

2
)− cδt~∇× ~Esca(~r, tn), (3.7)

~Esca(~r, tn+1) = exp(−τδt) ~Esca(~r, tn)

+
cδt exp(−τδt/2)

εr(~r)

[
~∇× ~Hsca(~r, tn+ 1

2
) + ~M inc(~r, tn+ 1

2
)
]
, (3.8)

where τ = kcεi/εr. The next step is calculate the derivative of ~Esca and ~Hsca in space

associated with nabla (~∇) operator. According to Yee grids as shown in Fig. 3, for

an example, we calculate the x component of ~∇× ~Esca and of ~∇× ~Hsca at grid points

~ri+ 1
2
,j,k at time tn and ~ri,j+ 1

2
,k+ 1

2
at time tn+ 1

2
, respectively. By using the method of

central difference approximation, we have

[
~∇× ~Esca(~ri+ 1

2
,j,k, tn)

]
x

=
∂Esca

y (~r, tn)

∂z
− ∂Esca

z (~r, tn)

∂y

=
1

4z

[
Esca
y (~ri+ 1

2
,j,k+ 1

2
, tn)− Esca

y (~ri+ 1
2
,j,k− 1

2
, tn)

]
+

1

4y

[
Esca
z (~ri+ 1

2
,j+ 1

2
,k, tn)− Esca

z (~ri+ 1
2
,j− 1

2
,k, tn)

]
, (3.9)[

~∇× ~Hsca(~ri,j+ 1
2
,k+ 1

2
, tn+ 1

2
)
]
x

=
∂Hsca

y (~r, tn+ 1
2
)

∂z
−
∂Hsca

z (~r, tn+ 1
2
)

∂y

=
1

4z

[
Hsca
y (~ri,j+ 1

2
,k+1, tn+ 1

2
)−Hsca

y (~ri,j+ 1
2
,k, tn+ 1

2
)
]

+
1

4y

[
Hsca
z (~ri,j+1,k+ 1

2
, tn+ 1

2
)−Hsca

z (~ri,j,k+ 1
2
, tn+ 1

2
)
]
.(3.10)

The pseudo-spectral time-domain (PSTD) [44, 45] technique embodies its feature in

performing the spatial derivative of ~E field and ~H field in the above equation with
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Fig. 3. Three dimensional Yee grid.

spectral methods in the following way,

[
~∇×~Esca(~r, tn)

]
x

=
∂Esca

y (~r, tn)

∂z
− ∂Esca

z (~r, tn)

∂y

= F−1{−ikzF [Esca
y (~r, tn)]} − F−1{−ikyF [Esca

z (~r, tn)]}, (3.11)[
~∇×~Hsca(~r, tn+ 1

2
)
]
x

=
∂Hsca

y (~r, tn+ 1
2
)

∂z
−
∂Hsca

z (~r, tn+ 1
2
)

∂y

= F−1{−ikzF [Hsca
y (~r, tn+ 1

2
)]}−F−1{−ikyF [Hsca

z (~r, tn+ 1
2
)]},(3.12)

where F and F−1 stand for the forward and inverse Fourier transformation. Note

that the source term ~M inc needs to be specified in advance at every grid point within

the particle, which is different from the total field algorithm which introduce the

source at the Huygens surface. Either a sinusoidal source or a pulsed source can be

employed for simulation. The second method is more popular for its wide frequency

range. For pulsed source, the time-stepping process is terminated when the incident

and scattered fields are significantly small. The absorbing boundary condition is

essential in a time domain method for the light scattering problem. Various versions
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of absorbing boundary condition are reviewed in [43] and can be found references

therein. In the PSTD method, its importance is not only to truncate the open

space, but also eliminate the “wraparound effect” due to the inner periodicity of

the discrete Fourier transformation. The uniaxial perfectly matched layer (UPML)

boundary condition, due to its simplicity to be numerically implemented, is widely

employed currently. The governing equations, given as follows, in the UPML region

are different from that in particle and the “white” space between the boundary and

the particle surface:

(~∇× ~Hsca)x =
exp[−τ2(y)t]

c

∂

∂t
{exp[τ2(y)t]Dx}, (3.13)

(~∇× ~Hsca)y =
exp[−τ3(z)t]

c

∂

∂t
{exp[τ3(z)t]Dy}, (3.14)

(~∇× ~Hsca)z =
exp[−τ1(x)t]

c

∂

∂t
{exp[τ1(x)t]Dz}, (3.15)

(~∇× ~Esca)x =
exp[−τ2(y)t]

c

∂

∂t
{exp[τ2(y)t]Bx}, (3.16)

(~∇× ~Esca)y =
exp[−τ3(z)t]

c

∂

∂t
{exp[τ3(z)t]By}, (3.17)

(~∇× ~Esca)z =
exp[−τ1(x)t]

c

∂

∂t
{exp[τ1(x)t]Bz}, (3.18)

exp[−τ1(x)t]
∂

∂t
{exp[τ1(x)t]Dx} = exp[−τ3(z)t]

∂

∂t
{exp[τ3(z)t]Esca

x }, (3.19)

exp[−τ2(y)t]
∂

∂t
{exp[τ2(y)t]Dy} = exp[−τ1(x)t]

∂

∂t
{exp[τ1(x)t]Esca

y }, (3.20)

exp[−τ3(z)t]
∂

∂t
{exp[τ3(z)t]Dz} = exp[−τ2(y)t]

∂

∂t
{exp[τ2(y)t]Esca

z }, (3.21)

exp[−τ1(x)t]
∂

∂t
{exp[τ1(x)t]Bx} = exp[−τ3(z)t]

∂

∂t
{exp[τ3(z)t]Hsca

x }, (3.22)

exp[−τ2(y)t]
∂

∂t
{exp[τ2(y)t]By} = exp[−τ1(x)t]

∂

∂t
{exp[τ1(x)t]Hsca

y }, (3.23)

exp[−τ3(z)t]
∂

∂t
{exp[τ3(z)t]Bz} = exp[−τ2(y)t]

∂

∂t
{exp[τ2(y)t]Hsca

z }, (3.24)

where ~D and ~B are transition variables for ~E and ~H, and τ1(x), τ2(y) and τ3(z) are

zero except in boundary layer perpendicular to the x, y and z axes. In practical
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calculation, we need to specify τ1(x), τ2(y) and τ3(z) in a manner to guarantee that

the field varies slowly in space. For example,

τ(x) = − p+ 1

2Lp+1
ln[R(0)]c(Nx −Nx0)

p (3.25)

where L is the total number of UPML layers perpendicular to x direction; Nx and

Nx0 is layer index of position x and the interface between boundary and the free

space along the x direction, respectively; R(0) is boundary reflection factor; p is a

numerical factor and usually selected between 3 and 4. It is easy to get their time-

stepping expressions. Take Eqs. (3.13) and (3.19) as example

Dx(~r, tn+1) = exp[−τ2(y)δt]Dx(~r, tn)

+ cδt exp

[
−τ2(y)

δt

2

]
(~∇× ~Hsca)x(~r, tn+ 1

2
), (3.26)

Ex(~r, tn+1) = exp[−τ3(z)δt]Ex(~r, tn)

+ exp

[
−(τ1(x) + τ3(z))

δt

2

]
× {Dx(~r, tn+1) exp[τ1(x)δt]−Dx(~r, tn)} . (3.27)

The discretization of other equations can be carried out in a similar way.

B. Discrete-Dipole-Approximation (DDA) Method

The DDA is one of several popular numerical methods for computing the scattering

properties of an arbitrarily shaped particle with a small/moderate size parameter [6].

In the DDA, an particle is discretized into an array of small volumes. Each small

volume is approximated as an electric dipole [12]. Figure 4 shows an example of

representing a cube through dipoles. When an electromagnetic wave is incident on

the particle, each dipole oscillates in response to the incident field and the induced

field associated with all other dipoles. Mathematically, the basic DDA equation is in
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Fig. 4. Schematic geometry of a cube for the DDA method.

the form of

~Einc
i = α−1

i
~Pi −

∑
j 6=i

Gij
~Pj, (3.28)

where ~Einc
i is the incident electric field, ~Pi is the polarizaton of each dipole, αi is

the polarizability, and Gij is the discretized Green’s function. When a self-consistent

solution to the DDA equation is obtained, it is straightforward to calculate the scat-

tering properties of the particle on the basis of a volume-integral electromagnetic

relation that maps the near-field to the far-field [13]. The formulation of the DDA

equation as derived from the basic volume integral equation can also be found in [14].

Various numerical aspects of this method such as iterative methods and convergence

analysis have been recently reviewed by Yurkin and Hoekstra [15]. Note that the

DDA method has been extensively employed by other researchers (e.g., [46, 47]) to

investigate the optical properties of dust particles. In the conventional DDA method,

the magnetic permeability is assumed to be unity and the near-field around the par-

ticle is not computed. As the near-field inside of the particle can be readily obtained,

the field outside of the particle can be computed based on volume integral equations.
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Fig. 5. 2-D view of an arbitrarily shaped object bounded by a closed surface S

C. Extended Boundary Condition Method (EBCM)

The EBCM is first proposed by Waterman [16] to calculate the T-matrix. The basic

equations of the EBCM are

~Esca(~r)=

∫∫
ik(n̂s× ~H+) ·

←→
G (~r − ~r′) + (n̂s × ~E+) · (~∇×

←→
G (~r − ~r′))ds

=

∫∫
n̂s ·

{
ik ~H−×

←→
G (~r − ~r′) + ~E−×[~∇×

←→
G (~r − ~r′)]ds

}
, ~r ∈ Vout,(3.29)

and

− ~Einc(~r)=

∫∫
ik(n̂s × ~H+) ·

←→
G (~r − ~r′) + (n̂s × ~E+) · [~∇×

←→
G (~r − ~r′)]ds

=

∫∫
n̂s ·

{
ik ~H−×

←→
G (~r − ~r′) + ~E−×[~∇×

←→
G (~r − ~r′)]ds

}
. ~r ∈ Vin(3.30)

and boundary conditions,

n̂s × ~H+ = n̂s × ~H−, (3.31)

n̂s × ~E+ = n̂s × ~E−. (3.32)
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where vector fields with subscript + are fields on the external surface, while those

with subscript − are fields on the internal surface, and Vin and Vout are indicated in

Fig. 5. It is necessary to point it out that an infinite number of solutions to the two

equations (3.29 and 3.30 ) exist. The solution is pinned down through the boundary

conditions, where the refractive index comes in.

Eq. (3.30) and the boundary conditions (3.31 and 3.32) will determine the sur-

face field. By substituting the obtained surface field into the Eq. (3.29), we obtain

the scattering solution. Let’s start from Eq. (3.30). The internal electrical field is

expanded in terms of regular vector spherical functions as follows

~E−(~r′) =
∞∑
n′=1

n′∑
m′=−n′

[
cm′n′Rg ~Mm′n′(k2r

′) + dm′n′Rg ~Nm′n′(k2r
′)
]
, (3.33)

where k2 is the wavenumber within the particle. Recalling

~H(~r′) =
1

ik
~∇× ~E(~r′) =

k2

ik

1

k2

~∇× ~E(~r′), (3.34)

we obtain magnetic field, given by

~H−(~r′) =
k2

ik

∞∑
n′=1

n′∑
m′=−n′

[
dm′n′Rg ~Mm′n′(k2r

′) + cm′n′Rg ~Nm′n′(k2r
′)
]
. (3.35)

By using Eqs. (3.33), (3.35), (3.31) and (3.32), and expanding dyadic Green’s function
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in Eq. (3.30) in terms of vector spherical functions, Eq. (3.30) is in the form of

− ~Einc(~r) =
∑

n,m,n′,m′

ik(−1)m
∫
n̂s ·

{
k2Rg ~Mmn(kr)

×
[
dm′n′Rg ~Mm′n′(k2r

′) + cm′n′Rg ~Nm′n′(k2r
′)
]
× ~M−mn(kr′)

+ k2Rg ~Nmn(kr)

×
[
dm′n′Rg ~Mm′n′(k2r

′) + cm′n′Rg ~Nm′n′(k2r
′)
]
× ~N−mn(kr′)

+ kRg ~Nmn(kr)

×
[
cm′n′Rg ~Mm′n′(k2r

′) + dm′n′Rg ~Nm′n′(k2r
′)
]
× ~M−mn(kr′)

+ kRg ~Mmn(kr)

×
[
cm′n′Rg ~Mm′n′(k2r

′) + dm′n′Rg ~Nm′n′(k2r
′)
]
× ~N−mn(kr′)

}
ds.(3.36)

Recall Eq. (2.61), we can establish the relationship between the coefficients (cmn, dmn)

of the internal field and the coefficients (amn, bmn) of the incident field. The mathe-

matical relations are given by

amn =
∑
n′m′

(−1)m
∫
n̂s · {−ikcm′n′[

k2Rg ~Nm′n′(k2r
′)× ~M−mn(kr′) + kRg ~Mm′n′(k2r

′)× ~N−mn(kr′)
]

−ikdm′n′[
k2Rg ~Mm′n′(k2r

′)× ~M−mn(kr′) + kRg ~Nm′n′(k2r
′)× ~N−mn(kr′)

]
ds,(3.37)

and

bmn =
∑
n′m′

(−1)m
∫
n̂s · {−ikcm′n′[

k2Rg ~Nm′n′(k2r
′)× ~N−mn(kr′) + kRg ~Mm′n′(k2r

′)× ~M−mn(kr′)
]

−ikdm′n′[
k2Rg ~Mm′n′(k2r

′)× ~N−mn(kr′) + kRg ~Nm′n′(k2r
′)× ~M−mn(kr′)

]
ds.(3.38)



39

One usually write Eqs. (3.37) and (3.38) in a matrix form as follows, ~a

~b

 =

 Q11 Q12

Q21 Q22


 ~c

~d

 (3.39)

where [5].

Q11
mnm′n′ = −ikk2J

21
mnm′n′ − ik2J12

mnm′n′ , (3.40)

Q12
mnm′n′ = −ikk2J

11
mnm′n′ − ik2J22

mnm′n′ , (3.41)

Q21
mnm′n′ = −ikk2J

22
mnm′n′ − ik2J11

mnm′n′ , (3.42)

Q22
mnm′n′ = −ikk2J

12
mnm′n′ − ik2J21

mnm′n′ . (3.43)

and 

J11
mnm′n′

J12
mnm′n′

J21
mnm′n′

J22
mnm′n′


= (−1)m

∫
dSn̂ ·



Rg ~Mm′n′(k2~r)× ~M−mn(k~r)

Rg ~Mm′n′(k2~r)× ~N−mn(k~r)

Rg ~Nm′n′(k2~r)× ~M−mn(k~r)

Rg ~Nm′n′(k2~r)× ~N−mn(k~r)


. (3.44)

Similarly, starting from Eq. (3.29), one can obtain [5], ~p

~q

 = −

 RgQ11 RgQ12

RgQ21 RgQ22


 ~c

~d

 (3.45)

where

RgQ11
mnm′n′ = −ikk2RgJ21

mnm′n′ − ik2RgJ12
mnm′n′ , (3.46)

RgQ12
mnm′n′ = −ikk2RgJ11

mnm′n′ − ik2RgJ22
mnm′n′ , (3.47)

RgQ21
mnm′n′ = −ikk2RgJ22

mnm′n′ − ik2RgJ11
mnm′n′ , (3.48)

RgQ22
mnm′n′ = −ikk2RgJ12

mnm′n′ − ik2RgJ21
mnm′n′ . (3.49)
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and 

RgJ11
mnm′n′

RgJ12
mnm′n′

RgJ21
mnm′n′

RgJ22
mnm′n′


= (−1)m

∫
dSn̂ ·



Rg ~Mm′n′(k2~r)× Rg ~M−mn(k~r)

Rg ~Mm′n′(k2~r)× Rg ~N−mn(k~r)

Rg ~Nm′n′(k2~r)× Rg ~M−mn(k~r)

Rg ~Nm′n′(k2~r)× Rg ~N−mn(k~r)


. (3.50)

Finally, the T-matrix defined in Eq. (2.63) is given by

~T = −Rg ~Q~Q−1. (3.51)

Further technical details associated with T-matrix can be found in [5].

D. Mutual Verification and Comparison Study

Mutual verification of different numerical methods for the solution of light scattering

and the comparison study in terms of the accuracy and the computational efficiency

for each method are important to obtain reliable data in relevant research work, and,

in particular, to develop optical property database of various nonspherical particles.

Some previous studies such as [48–51] are carried out to compare the FDTD, the DDA

and the EBCM for spheres and some nonspherical particles (such as cube, spheroid,

cylinder, etc.).

In general, the EBCM is preferably selected in the simulation of axially symmetric

particles (e.g., cylinders and spheroids) with moderate aspect ratios (i.e., the ratio of

the dimension along the symmetric axis over that along the horizontal axis ), because

the EBCM is most fast and accurate in these cases. For axially symmetric particles

with extreme aspect rations, and other nonspherical particles, the FDTD and DDA

methods come to play an important role.

The FDTD and DDA methods have comparable computational efficiency and
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accuracy. The speed difference of the two methods depends on the the shape of

the particle, the orientation and refractive index. Some criteria are helpful to select

a preferable method for the simulation. First, the computational domain for the

FDTD method is larger than that of the DDA method, as the former requires layers

of absorbing boundary condition, and a white space. In practical calculations, the

difference between the computational domain does not bring large difference of com-

putational efficiency for compact particles (e.g., spheres, cubes, droxtals, etc.), but

does for sparse particles, such as bullet rosette. For compact particles, the advan-

tage of larger computational domain for the FDTD method is that the FDTD can

employ a surface integral to transform the near-field to the far-field. The mapping

algorithm based on a surface-integral is faster than that based on a volume-integral.

The efficiency difference of different mapping algorithms is obvious for randomly ori-

ented particles. Second, the applicable range of refractive index of the DDA method

is |m − 1| < 2; however, the FDTD method is applicable to much larger refractive

indices. In Yurkin’s study [50], the FDTD method is generally faster than the DDA

method when the refractive index is larger than 1.4 for spheres.

We are concerned with randomly oriented nonspherical particles in most cases.

To obtain the optical properties of randomly oriented nonspherical particles, the

FDTD or the DDA method computes the optical properties for each single orienta-

tion and then performs the numerical integral in terms of results for all the orien-

tations. The EBCM based T-matrix formulation is of analytical nature and obtains

the averaged optical properties analytically. An important question involved is that

how many orientations of the particle is sufficient to obtain converged results of the

averaged optical properties. The number of orientations in general depends on the

size parameter, the refractive index, and the particle shape. In this section, we study

this issue to obtain a general picture of the number of orientations of spheroidal,
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Table II. Error of scattering solution calculated by the DDA in the case of spheroid.

The size parameter is 30 and the aspect ratio is 0.7.

m|k|d Nβ P11(%) P22/P11 P33/P11 P44/P11 P12/P11 P34/P11

0.4904 9 0.71420 0.021604 0.010595 0.016547 0.0093813 0.011544

0.4904 12 0.70711 0.017606 0.011916 0.017893 0.0078377 0.011551

0.4904 15 0.61589 0.016576 0.010918 0.016294 0.0078807 0.011346

0.4904 21 0.61118 0.016772 0.010801 0.016277 0.0077997 0.011397

cylindrical, and hexagonal particles.

We first study the optical properties of randomly oriented spheroids and circu-

lar cylinders. Spheroid and circular cylinder are of axial-rotational symmetry. The

angle β between the direction of incident light and the symmetric axis specifies the

orientation of the particle. Due to the mirror symmetry of the spheroid, the range

of β is assumed to be from 0o to 90o. We use the PSTD code instead of FDTD code

as the former is faster and requires smaller resolution of space grids. The refractive

index is assumed to be 1.3078 + i1.66× 10−8. The size parameter is defined in terms

of the longer axis of spheroid, and the height of the cylinder.

Table II shows the differences of phase matrix elements of spheroids simulated

from the DDA results and the T-matrix results by changing the number of β. m|k|d is

a computational parameter to control the accuracy of the DDA method, and usually

should be less than 0.5. To quantify the difference between the DDA results and the

T-matrix counterparts. The following formulae are employed:

error =
|P11,dda − P11,T−matrix|
|P11,T−matrix|

× 100%, (3.52)

error = |Pij,dda/P11,dda − Pij,T−matrix/P11,T−matrix|, ij 6= 11. (3.53)

We compute Eqs. (3.52) and (3.53) for each scattering angle and then take the
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averaged value. When Nβ is larger than 15, the differences do not change significantly.

Table III is for the PSTD method. The number of ratio indicates the number of grid

points per wavelength. When the ratio is set as 15, the difference do not change much

when Nβ is larger than 15. But, when the ratio is set to be 20, the differences will be

reduced as expected. Similar to Tables II and III, Tables IV and V are for circular

cylinders.

Table III. Error of scattering solution calculated by the PSTD in the case of spheroid.

The size parameter is 30 and the aspect ratio is 0.7

Ratio Nβ P11(%) P22/P11 P33/P11 P44/P11 P12/P11 P34/P11

15 7 1.4364 0.036527 0.024500 0.035815 0.014349 0.024424

15 9 1.0013 0.039544 0.026484 0.038881 0.013013 0.022559

15 11 0.9075 0.037130 0.027760 0.040292 0.012789 0.022353

15 13 0.8878 0.035805 0.027716 0.040030 0.012992 0.022318

15 15 0.8684 0.035347 0.027649 0.039873 0.013112 0.022367

15 17 0.8681 0.035471 0.027614 0.039833 0.013189 0.022361

20 11 0.5679 0.027556 0.021311 0.030580 0.011397 0.016556

Table IV. Error of scattering solution calculated by the DDA in the case of cylinder.

The size parameter is 30 and the aspect ratio is 0.7

m|k|d Nβ P11(%) P22/P11 P33/P11 P44/P11 P12/P11 P34/P11

0.4898 9 3.56770 0.0180570 0.0141370 0.019194 0.0137200 0.019131

0.4898 12 1.27330 0.0059055 0.0065773 0.008898 0.0083951 0.0113000

0.4898 15 0.91270 0.0072213 0.0078248 0.012404 0.0094639 0.0847210

0.4898 17 0.71122 0.0070595 0.0073248 0.011643 0.0089888 0.0096355

0.4898 21 0.85163 0.0064063 0.0067273 0.010728 0.0087018 0.0101100
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Table V. Error of the scattering solution calculated by the PSTD in the case of cylin-

der. The size parameter is 30 and the aspect ratio is 0.7.

Ratio Nβ P11(%) P22/P11 P33/P11 P44/P11 P12/P11 P34/P11

15 9 3.5926 0.023821 0.020411 0.03103 0.013322 0.027035

15 11 2.4431 0.016484 0.015649 0.022164 0.011017 0.027654

15 15 1.8403 0.014947 0.014337 0.021549 0.010211 0.026388

15 17 1.8352 0.015239 0.014432 0.021917 0.0095719 0.027049

15 21 1.8368 0.016048 0.015478 0.023311 0.0091813 0.026759

17 13 1.5181 0.013524 0.012026 0.017403 0.0096900 0.018033

17 15 1.1059 0.010785 0.009828 0.014528 0.0090706 0.017906

17 17 1.0002 0.010538 0.009318 0.013967 0.0085153 0.018603

17 21 1.0844 0.011533 0.010132 0.015510 0.0078135 0.018265

20 21 1.0005 0.010689 0.009265 0.014228 0.0078477 0.017474

Figure 6 shows the comparison of six phase matrix elements for randomly oriented

spheroids simulated from the DDA, PSTD and T-matrix methods. 15 zenith angles

between 0o and 90o are set up for the DDA and PSTD simulations. The results from

the three methods agree very well, although some differences are still observable for

the P44 element. Figure 7 is similar to Fig. 6, but for randomly oriented cylinders.

Based on the aforementioned numerical study, we simulated the optical properties

of randomly oriented hexagonal ice crystals. Consider the symmetry of the geometry

of hexagonal ice crystals, we select 15 values of β from 0 to 90 degrees and 3 values

of φ from 0 to 30 degrees. The T-matrix method is not efficient for this geometry.

Figure 8 shows the comparison of six non-zero elements of the phase matrix simulated

from the DDA, the PSTD, and the FDTD method. The computational parameters

are indicated in the figure. Generaly, the results simulated from different numerical

methods agree well.
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Fig. 6. Comparison of six elements of the phase matrix of randomly oriented spheroids

computed from the DDA, PSTD, and T-matrix methods.
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Fig. 7. Comparison of six elements of the phase matrix of randomly oriented cylinders

computed from the DDA, PSTD, and T-matrix methods.
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CHAPTER IV

GEOMETRIC OPTICS APPROXIMATION ∗

A. Introduction

According to the characteristics of light scattering with respect to particle size pa-

rameter, a complete region of size parameter is usually divided into three regions:

classical region, semiclassical region, and Rayleigh region. Characteristics of light

scattering in the classical region (wavelength λ tends to 0 by comparing it with the

size) is the subject of geometric optics or ray optics. The theory of light scattering

in the geometric optics domain is quite often called “short-wavelength scattering” or

“high frequency scattering” in the literature. Similar divisions are common in the

scattering theory of elementary particles (e.g., electrons) by potential. The theory of

quantum scattering transits to that of classical scattering as Plank parameter h tends

to zero as compared with the classical action S.

The motivation to develop the method based on geometric optics are in several

aspects. When the size of particle is about 20 times more than the wavelength of

incident light, the method based on geometric optics provides estimation of optical

properties of particles before refined calculations in full electrodynamics. In addition

and most importantly, in the region of very large size parameters beyond the current

capabilities of exact techniques discussed in Chapter II, the geometric optics method

is a very valuable method, which provides approximate numbers and curves. Further-

∗Part of this chapter is reprinted with permission from “Diffraction and external
reflection by dielectric faceted particles” by L. Bi, P. Yang, G. W. Kattawar, Y.
Hu and B. A. Baum, J. Quant. Spectrosc. Radiat. Transfer, 112, 163-173 (2011),
and “Scattering and absorption of light by ice particles: solution by a new physical-
geometric optics hybrid method” L. Bi, P. Yang, G. W. Kattawar, Y. Hu, and B. A.
Baum J. Quant. Spectrosc. Radiat. Transfer, 112, 1492-1508 (2011)
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Fig. 9. Schematic geometry of reflection and refraction.

more, the methods based on geometric optics provides some insights in the physical

process which determines the behavior of optical properties of particles.

In this chapter, we first outline basic components of geometric optics method,

and then introduce the PGOH method. Several versions of the PGOH algorithms

are developed and some important improvements made on the PGOH method are

specifically discussed. Generally, it is believed that the method based on geometric

optics is more accurate when the particle size becomes larger; however, the accuracy

and reliability of the method still remain to be examined in details. Some comparison

studies of geometric-optics approximation method and exact methods are carried out

to understand the accuracy and reliability of the PGOH.
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B. General Considerations

1. Snell’s Law and Fresnel Formulas

The basic and central concept of geometric optics is a ray of light, which is associated

with the intensity of field and the variation of phase, and the state of polarization.

When a ray is impinging on an interface between two medium, events of reflection

and refraction take place. A conceptual geometry of reflection and refraction is shown

in Fig. 9. The electric fields associated with the reflected ray and the refracted ray

is determined through the reflection and refraction matrices, given as follows [37,52], Er
‖

Er
⊥

 =

 Ra 0

0 Rb


 Ei

‖

Ei
⊥

 , (4.1)

 Et
‖

Et
⊥

 =

 Ta 0

0 Tb


 Ei

‖

Ei
⊥

 , (4.2)

where the four diagonal elements are given through Fresnel formulas,

Ra =
m cos θi − cos θt

m cos θi + cos θt
, Rb =

cos θi −m cos θt

cos θi +m cos θt
. (4.3)

Ta =
2 cos θi

m cos θi + cos θt
, Tb =

2 cos θi
cos θi +m cos θt

. (4.4)

Here θi is the incident angle, θt is the angle of refraction and m is relative refractive

index, which can be complex. θt is related to θi through Snell’s law,

sin θi = m sin θt. (4.5)

Snell’s law and Fresnel formulae are derived from Maxwell boundary conditions in the

case of infinite planar surface [37,52]. These formula are still valid approximately for

curved surfaces provided that the radius of curvature is much larger than the incident

wavelength.
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2. Fraunhofer Diffraction

Geometric optics is invalid in the range of small scattering angles. A straightforward

example is Fraunhofer diffraction of a plane wave by an aperture. When the distance is

close to the aperture, geometric optics is valid (more or less). As the distance between

the aperture and observer is increasing, a pattern of oscillating intensity of field is

observed and geometric optics is no longer valid. In this case, the forward direction

in the far-field is caustic, where the radius of curvature of wavefront is infinite. This

feature termed as Fraunhofer differaction can only be explained through wave optics.

The diffraction is induced due to an incomplete wavefront. The fundamental theory

is Huygens-Fresnel principle, and Kirchhoff theory in electrodynamics.

In the scattering of light by a solid particle, in the radiation zone, the geometric

optics is also invalid for small scattering angles. The reason is that an incomplete

wave front due to the existence of the particle will contribute to the scattering near

forward directions, which is the same as that of Fraunhofer diffraction, based on Babi-

net’s principle [2]. Therefore, as a rough estimation, a geometric optics ray-tracing

technique combined with Fraunhofer diffraction provides an approach to calculating

the optical properties of large particles. This is indeed the picture of a conventional

geometric optics method (CGOM). The advantages of CGOM are simplicity, fast-

ness, and successful explanation of natural optics phenomena such as glory, rainbow,

halo, parhelion, sun pillars, and etc. The flaws of CGOM are associated with caustics

which leads to singular points, and neglecting of semi-classical scattering effects.

The method of combining geometric optics and Fraunhofer diffraction to de-

scribe the scattering of light is mostly based physical considerations. A more rigorous

approach is based on Kirchhoff theory, i.e., the hybrid of geometric-optics and elec-

tromagnetic integral equations.
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3. Physical-geometric Optics Hybrid

The basic principle of the PGOH is to calculate the electromagnetic field on the surface

or inside of the particle by using a ray-tracing technique. The corresponding far-field

is obtained by mapping the near-field to its counterpart in the radiation (or, far-field)

zone either through a volume integral equation (2.34) or a surface integral equation

(2.44). The magnitude and phase of each ray is calculated based on the localized-

plane-wave approximation by using the Fresnel formulas. The directions of external

reflection, internal reflection and refraction are determined by Snell’s law. In the

context of this method, the inaccuracy of solutions is due to the approximation of near

optical field, especially field near the boundary (vertex, edge, and surface) of particle,

focus and caustics, where the law of geometric optics breaks down. Furthermore, the

interaction between tunneling rays and particle is inherently neglected.

The introduction of near- to far-field mapping concept into the geometric optics

method essentially brings out two new outcomes in comparison with CGOM: a new

diffraction formula [30] and ray-spreading effect [27, 28] of outgoing rays. For ran-

domly oriented particles, the interference among outgoing rays are usually omitted.

This is a not proper assumption for oriented particles. In this chapter, we intend to

refine various aspects of the PGOH both theoretically and numerically so that the

PGOH produces an efficient and satisfied estimation of the solution to light scattering

by arbitrarily shaped nonspherical particles.

C. Beam-tracing Technique

When a plane wave of light is incident on a faceted particle, the portion of the wave-

front of the incident electromagnetic wave, intercepted by the projected geometric

cross section of the particle, splits into several parts according to the facets on the
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illuminated side of the particle. Each part of the wave front (or localized wave) im-

pinges on a single facet, and, after electromagnetic interaction with the facet, leads

to outgoing reflected and inwardly propagating refracted beams. Subsequently, the

refracted beams undergo multiple internal reflections within the particle, leading to

various higher-order outgoing refracted beams. The first-order refracted beams and

higher order internally reflected beams may split during their propagation within

the particle. In this study a beam-splitting algorithm is developed to describe how

the internal beams split and is aimed at specifying the geometries of internal ray

tubes. Because the geometry of the scattering particle is assumed to be convex, any

externally reflected beams and higher-order refracted beams cannot be blocked by

the particle itself. Therefore, the beam-splitting algorithm is irrelevant to beams

propagating outside the particle.

An internal beam is specified by its propagating direction and initial cross sec-

tion. Let the subscript index p(= 1, 2, 3...) indicate the pth order reflection/refraction

event. The direction of one internal beam leaving some interface of the pth order

reflection/refraction is specified by êp , and the vertices of the beam cross section

on the interface of electromagnetic interaction are denoted as ~rp,i(i = 1, Nv), where

Nv is the number of vertices. When p = 1 (i.e., external reflection and refraction),

~r1,i(i = 1, Nv) are the straightforward coordinates of the vertices of the corresponding

facet where external reflection takes place.

To describe the splitting of an internal beam (specified by êp and ~rp,i ), the first

step is to determine the intercepting particle facets. We assume Nv to be the number

of straight-line rays (with no cross section) starting from the positions of Nv vertices

and propagating in the direction êp. The facets of the particle surface are convex

shapes, and if, for example, the Nv number of rays strike Mv number of different

facets, the beam cross-section is divided into Mv parts at least. We first separate
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Fig. 10. (a) The first order refracted beam is divided into three sub-beams with each

impinging on a single facet. (b) An example of splitting a rectangular beam

cross section into two parts.

the beam into Mv parts. The process goes on for each sub beam cross-section so

that each part of the original cross section impinges on a single facet of the particle.

τ̂i(i = 1,Mv) are assigned to denote the normal directions of the facets. Figure 10(a)

shows an example of a first-order refracted beam split into three sub-beams (four

vertices incident on three different facets) leading to three first-order ray tubes.

We must mathematically separate the initial beam cross section of the internal

beam into Mv parts. To this end, we let an arbitrary position within the initial cross

section be written as,

~r = cu~u+ cv~v, (4.6)
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where cu and cv are two arbitrary coefficients. Vectors ~u and ~v are defined by

~u = ~rp,2 − ~rp,1, ~v = ~rp,N − ~rp,1. (4.7)

The coordinates (cu, cv) of those points on the initial beam cross section are along

the common edge of two facets (outward normal directions are ~τ1 and ~τ2 ) and satisfy

the following condition,

cu
wu

d1 − d2

+ cv
wv

d1 − d2

= 1, (4.8)

where d1 and d2 represent the distances from ~rp,1 to the planes of two aforementioned

facets, respectively, and wu and wv are given by

wu =

(
~u · ~τ1
~ep · ~τ1

− ~u · ~τ2
~ep · ~τ2

)
, wv =

(
~v · ~τ1
~ep · ~τ1

− ~v · ~τ2
~ep · ~τ2

)
. (4.9)

Eq. (4.8) defines a straight line which splits the original beam cross section into two

sub-beams. After mathematical manipulation, the intersection points between the

straight line given by Eq. (4.8) and the polygon-shaped boundary can be written in

the form of

~r = ~rp,j + (~rp,j+1 − ~rp,j)lj, if lj ∈ [0, 1], (4.10)

where lj(j = 1, Nv) are defined as follows:

l1 =
d1 − d2

wu
, lN = 1− d1 − d2

wv
, (4.11)

lj =


n̂p·[(~rp,1+l1~u−~rp,j)×~q]
n̂p·[(~rp,j+1−~rp,j)×~q] , |wv| ≤ |wu|
n̂p·[(~rp,1+(1−lN )~v−~rp,j)×~q]

n̂p·[(~rp,j+1−~rp,j)×~q] , |wv| > |wu|.
, j = 2, Nv − 1 (4.12)
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where

~q =

 ~v − wv

wu
~u, |wv| ≤ |wu|

wu

wv
~v − ~u, |wv| > |wu|.

(4.13)

In Eq. (4.12), n̂p is the normal direction of the initial beam cross section. As the

beam cross section is convex, there are only two lj in the 0 to 1 range, for example see

the case shown in Fig. 10 (b). At this point, it is straightforward to split the original

beam into two sub-beams by regrouping the vertices of the original beam cross section

and two intersection points. When Mv > 2 , each sub-beam may impinge on multiple

facets, and, thus, the process is repeated for each sub-beam until each next-order

sub-beam impinges on a single facet. After the initial beam cross section is divided,

the vertex coordinates of the end cross section of each sub-beam can be obtained

in a straightforward manner. All sub-beams undergo internal reflections at different

facets, corresponding to the emergence of the next order reflected beams.

Similar to a data family tree, all the internal beams are revealed in a recursive

data structure. For the pth order refraction/reflection, there are a number of the

pth order internal beams, fundamentally determined by the particle orientation and

refractive index. Each pth order internal beam would generate several next order

internal beams. As the computer program allows for tracing a single beam at each

step, a recursive subroutine is most appropriate to implement the beam-splitting

algorithm. The recursive subroutine contains the algorithm of splitting the input

beam and a loop defined in terms of calling the recursive subroutine itself with each

next-order reflected beam as the input. The programming feature based on recursive

subroutines requires more computer memory and is unnecessary in the traditional ray-

tracing algorithm, where, for one incident ray, only one internal ray emerges at each

subsequent reflection and refraction event. To terminate the beam-tracing process, a
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necessary condition is required in the recursive subroutine and is addressed in Section

C.

D. Geometric-optics Near-field
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Fig. 11. Coordinate systems defined in the ray-tracing process. (a) external reflection

(p=1); (b) internal reflection (p>1).

To calculate the electric field within the particle through a beam-tracing process,

we define (β̂i, α̂i, êi), (β̂p, α̂p, êp) and (β̂sp, α̂
s
p, ê

s
p), as shown in Fig. 11, to specify three

local coordinate systems associated with the incident light, the pth order inwardly

propagating beam, and the pth order outwardly propagating beam. Based on defined

local coordinated systems, Snell’s law, and Fresnel formulas, the geometric-optics

near-field within the particle can be expressed as the superposition of electromagnetic

fields in conjunction with various internal ray tubes.

We find that for each ray tube, after the electric field at a specific point (e.g., the
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first vertex) in the initial beam cross section is known, the electric field at an arbitrary

position in the ray tube can be obtained by taking into account the variation of the

phase and the amplitude. For one of the pth order ray tubes, the two components of

the electric field associated with the first vertex of the initial cross section is given by, Ep,α(~rp,1)

Ep,β(~rp,1)

 = Up

 Ei
p,α

Ei
p,β

 exp (ikδp,1) exp (−kNidp,1) , (4.14)

where Ei
α and Ei

β are two components of the incident field along two polarization

vectors α̂i and β̂i ; Up is a matrix associated with Snell’s law, Fresnel formulas, and

necessary coordinate transformations; k is the wave number; Ni is the imaginary part

of the effective refractive index [53]; and δp,1 and dp,1 account for the phase delay and

the decrease in the amplitude of the electric field due to absorption. When p = 1, it

can be verified that

δ1,1 = ~ei · ~r1,1, d1,1 = 0. (4.15)

At the position denoted by ~rp,1 + ~wp, where ~wp indicates the position in the beam

cross section, the two components of the electric field ~Ep are given byEp,α(~rp,1 + ~wp)

Ep,β(~rp,1 + ~wp)

=Up
Ei

p,α

Ei
p,β

exp[ik(Nrêp · ~wp + δp,1)] exp
[
−kNi( ~Ap · ~wp + dp,1)

]
,(4.16)

where Nrêp · ~wp is associated with the variation of the phase, and ~Ap is a vector defined

to account for the variation of the amplitude in the beam cross section. ~Ap is found

to be determined by an iterative formula:

~A1 = 0, ~Ap = ~Ap−1 + (1− êp−1 · ~Ap−1)
n̂p−1

êp−1 · n̂p−1

. (4.17)

~A1 = 0 if the field has a phase variance but no amplitude variance on the external
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reflection interface. ~Ap(p > 1) is obtained by considering the differences in total path

lengths associated with the first vertex and any other beam cross section position.

At an arbitrary position ~r′ in the ray tube, we have

~r′ = ~rp,1 + ~wp + l~ep, (4.18)

where l is a variable associated with the propagating distance from the position

~rp,1 + ~wp. Therefore, after considering the phase variation and the decrease of the

amplitude along the propagation direction ~ep, the electric field at any position within

the ray tube can be written asEp,α(~r′)

Ep,β(~r′)

=
Ep,α(~rp,1 + ~wp)

Ep,β(~rp,1 + ~wp)

 exp(ikNl), (4.19)

and at the specific position of ~rp+1,1, is given byEp,α(~rp+1,1)

Ep,β(~rp+1,1

 = Up

Ei
p,α

Ei
p,β

 exp (ikδp+1,1) exp (−kNidp+1,1) (4.20)

where

δp+1,1 = δp,1 +Nr|~rp+1,1 − ~rp,|, (4.21)

dp+1,1 = dp,1 + |~rp+1,1 − ~rp,|. (4.22)

Thus far, the information of the electric field in the considered ray tube is completely

specified.

After the reflection of the pth order ray tube, depending upon the beam splitting,

several next-order ray tubes may exist. We let the position vectors of one of the sub-

beam cross sections be ~r′p+1,i(i = 1, 2, ...) to be distinguished with the notations of the

original beam cross section. Obtaining the electric field in the corresponding next-
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order ray tube requires the information of the electric field associated with ~r′p+1,1 ,

which is represented in a similar form to Eq. (4.14) and given byEp,α(~r′p+1,1)

Ep,β(~r′p+1,1

 = Up+1

Ei
p,α

Ei
p,β

 exp
(
ikδ′p+1,1

)
exp

(
−kNid

′
p+1,1

)
, (4.23)

where Up+1 is calculated from Up and the Fresnel reflection matrix, and δ′p+1,1 and

d′p+1,1 are given by

δ′p+1,1 = δp+1,1 +Nr~ep+1 · (~r′p+1,1 − ~rp+1,1), (4.24)

d′p+1,1 = dp+1,1 + ~Ap+1 · (~r′p+1,1 − ~rp+1,1). (4.25)

Up to this point, the electric field information in the next-order ray tube can be

obtained by applying a similar procedure described for the pth order ray tube. The

internal electric field in all the ray tubes can be determined with the help of the

beam-tracing technique.

In principle, each beam propagating within the particle undergoes an infinite

number of internal reflections, and the electric field beams amplitude decreases during

the interactions with a particle. Therefore, the ray tubes contribution, after a number

of internal reflections to the total radiation scattering and absorption by a particle,

can be neglected. In the numerical algorithm, the beam-tracing process is terminated

when the energy associated with the internal reflected beam is smaller than a user-

defined number (e.g., less than 10−5 ). The energy of the pth order internal reflected

beam is given by

F =
1

2

(
|U11

p |2 + |U12
p |2 + |U21

p |2 + |U22
p |2
)

exp (−2kNidp) D̃p|êp · n̂p|, (4.26)
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where D̃p is an integral over the beam cross section and given as follows:

D̃p =

∫
exp(−2kNi ~wp · ~Ap)d2 ~wp

=
1

2kNi

N∑
j=1

(~rp,j+1 − ~rp,j) · ( ~Ap × n̂p)
| ~Ap|2 − ( ~Ap · n̂p)2

sin[ikNi
~Ap · (~rp,j+1 − ~rp,j)]

ikNi
~Ap · (~rp,j+1 − ~rp,j)

× exp[−kNi
~Ap · (~rp,j+1 + ~rp,j − 2~rp,1)]. (4.27)

The calculation of the integral in Eq. (4.27) is based on the Stokes theorem.

The present algorithm of the near-field calculation based on the beam-splitting

technique can be applied to arbitrary convex faceted particles. For non-absorbing

particles, the efficiency of the algorithm depends on the orientation and shape of the

particle and is essentially independent of the particle size. For absorptive particles,

large size parameters make the algorithm faster because the higher order beams can

be neglected within the limits of acceptable accuracy. Thus, this algorithm can be

applied to very large size parameters. The computational time necessary is found to

be on the order of seconds for a simulation involving a single particle orientation.

E. Scattering Phase Matrix

Once the electric field within the particle is known, the single-scattering properties of

the dielectric particle can be obtained based on fundamental electromagnetic theory.

The procedure is similar to those in the DDA and FDTD methods, but the PGOH

allows the amplitude scattering matrix to be in analytical form with respect to each

reflection/refraction event.

1. Surface Integral Method

On the basis of the electromagnetic equivalence theorem, the electric scattered field

~Es(~r) in the radiation zone can be formulated as a surface integral (2.44) over the
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near electromagnetic field. In a simpler form, the relationship between asymptotic

far scattered electric field and near electromagnetic field can be represented through

a defined operator as follows,

~Es(~r)|kr→∞ = O( ~E, ~H). (4.28)

Note that the operator O is linear since

O( ~E1 + ~E2, ~H1 + ~H2) = O( ~E1, ~H1) +O( ~E2, ~H2). (4.29)

Due to the nature of linear operator O, ( ~E, ~H) in Eq. (2.44) can be replaced with the

scattered field ( ~Es, ~Hs) on the surface as O( ~Ei, ~H i) = 0. In the PGOH, the near-field

is approximately calculated in successive order by using the ray optics,

~E = ~Ei + ~Er +
∞∑
p=1

~Et
p,

~H = ~H i + ~Hr +
∞∑
p=1

~H t
p, (4.30)

where ~Ei is the incident electric field, ~Er is the electric field associated with reflected

ray, and ~Et
p is the electric field of pth order outgoing refracted rays. Therefore, the

contribution of diffraction and external reflection to the far-field can be calculated

separately by mapping the incident field and reflected field on the illuminated side of

the particle through Eq. (2.44). Contribution from various refracted waves can be

obtained through mapping outgoing refracted waves at various local surface elements.

Let’s start to derive the amplitude scattering matrix associated with diffraction,

reflection, and outgoing refracted rays. In a vector form, the electric field in the

radiation zone is given by Es
α

Es
β

 =
eikr

−ikr
k2

4π

∫∫ α̂s · ~Z
β̂s · ~Z

 e−ikr̂·~r′d2~r′, (4.31)
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where

~Z =
{
r̂ × [n̂s × ~E(~r′)]− r̂ × r̂ × [n̂s × ~H(~r′)]

}
, (4.32)

and

α̂s · ~Z =
[
β̂s · (n̂s × ~E) + α̂s · (n̂s × ~H)

]
= n̂s · ( ~E × β̂s + ~H × α̂s), (4.33)

β̂s · ~Z =
[
−α̂s · (n̂s × ~E) + β̂s · (n̂s × ~H)

]
= n̂s · (− ~E × α̂s + ~H × β̂s). (4.34)

Let’s first consider diffraction. Electric and magnetic field associated with incident

plane waves are represented as follows,

~Ei = (Ei
αα̂

i + Ei
ββ̂

i) exp
(
ikêi · ~r′

)
, (4.35)

~H i = (Ei
βα̂

i − Ei
αβ̂

i) exp
(
ikêi · ~r′

)
. (4.36)

On the local planar surface, the incident field has only phase variation with equal

amplitude. Therefore, we have Es
d,l

Es
d,r

 =
eikr

−ikr
Dn̂ ·

 α̂i × β̂s − β̂i × α̂s β̂i × β̂s + α̂i × α̂s

−(β̂i × β̂s + α̂i × α̂s) α̂i × β̂s − β̂i × α̂s


 Ei

α

Ei
β

(4.37)

where D is an integral over the local surface and reads,

D =
k2

4π

∫
s

exp{ik(êi − r̂) · ~r′}d2~r′. (4.38)
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The expression of four elements of Sd can be further explicitly written as follows

Sd11 = −D
[
(1 + cos θ)êi · n̂+ sin θ sinφα̂i · n̂+ sin θ cosφβ̂i · n̂

]
, (4.39)

Sd12 = D
[
sin θ cosφα̂i · n̂− sin θ sinφβ̂i · n̂

]
, (4.40)

Sd21 = −Sd12, (4.41)

Sd22 = Sd11. (4.42)

As of the external reflection, we have

~Er = (Er
αα̂

r + Er
ββ̂

r) exp
(
ikêi · ~r′

)
, (4.43)

~Hr = (Er
βα̂

r − Er
αβ̂

r) exp
(
ikêi · ~r′

)
, (4.44)

and Es
r,l

Es
r,r

 =
eikr

−ikr
Dn̂ ·

 α̂r × β̂s − β̂r × α̂s β̂r × β̂s + α̂r × α̂s

−(β̂r × β̂s + α̂r × α̂s) α̂r × β̂s − β̂r × α̂s


 Er

α

Er
β

 .(4.45)

The amplitude scattering matrix associated with external reflection is Sr11 Sr12

Sr21 Sr22

 = D

 n̂ · (α̂r × β̂s − β̂r × α̂s) n̂ · (β̂r × β̂s + α̂r × α̂s)

−n̂ · (β̂r × β̂s + α̂r × α̂s) n̂ · (α̂r × β̂s − β̂r × α̂s)


×

 Rα 0

0 Rβ


 sinφ0 − cosφ0

cosφ0 sinφ0

 . (4.46)

Using

α̂r = −α̂i cos(2θi)− êi sin(2θi), β̂r = β̂i, (4.47)
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Fig. 12. Illustration of coordinate systems associated with reflection. (a) the local

coordinate system (β̂i, α̂i, êi) of the incident ray is rotated to (β̂1, α̂1, êi) in

order that the Fresnel coefficients can be employed to calculate the reflected

electric-magnetic field vectors parallel and perpendicular to the incident plane.

(b) θ is the scattering angle, φ is the azimuthal angle of scattering plane, and

φ0 is the angle between ~β1 and the scattering plane.

and

n̂ · (α̂r × β̂s − β̂r × α̂s) = −(1− cos θ) cos θi sinφ0 − sin θ sin θi, (4.48)

n̂ · (β̂r × β̂s + α̂r × α̂s) = (1− cos θ) cos θi cosφ0, (4.49)

we obtain explicit expressions of four elements,

Sr11 =D
[
(1− cos θ) cos θi(Rβ cos2 φ0 −Rα sin2 φ0)−Rα sin θ sin θi sinφ0

]
,(4.50)

Sr12 =D [(1− cos θ) cos θi(Rα +Rβ) sinφ0 cosφ0 +Rα sin θ sin θi cosφ0] , (4.51)

Sr21 =D [−(1− cos θ) cos θi(Rα +Rβ) sinφ0 cosφ0 −Rβ sin θ sin θi cosφ0] , (4.52)

Sr22 =D
[
(1− cos θ) cos θi(Rα cos2 φ0 −Rβ sin2 φ0)−Rβ sin θ sin θi sinφ0

]
,(4.53)
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where θi is the incident angle, θ is the scattering angle, φ0 is the angle between the

scattering plane and ~β1 as shown in Fig.12. Rα and Rβ are two components of Fresnel

reflection coefficient corresponding to parallel and perpendicular components in the

incident plane. It is required to be pointed out that D in Eq. (4.38) tends to the

largest when the observational direction is along the reflected ray or the incident

direction, which will explain peaks associated with reflection and diffraction in the

phase function. For a three dimensional particle, the illuminated side of which is

composed of N local planar surfaces, the amplitude scattering matrix is represented

as the summation in terms of N local surfaces as follows,

S =
N∑
i=1

(Sdi + Sri ). (4.54)

It should be pointed out that although the amplitude scattering matrix associated

with diffraction and external reflection are semi-analytically derived, the formula are

not exact due to the approximation of reflected field near the edges of planar surfaces.

It is expected that the inaccuracy of reflected field near the edge tends to be very

small when the size of the particle is very large, as the ray-optics is exact when the

plane of surface is infinity.

For transparent or semi-transparent particles, each outgoing refracted ray con-

tribute to the total amplitude scattering matrix. For each impinging ray, fields asso-

ciated with outgoing refracted rays of different orders are given by

~Et
p = (Et

p,αα̂
t
p + Et

p,ββ̂
t
p) exp (ikδp) ,

~H t
p = (Et

p,βα̂
t
p − Et

p,αβ̂
t
p) exp (ikδp) .
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Counterparts in the radiation zone are Es
t,l

Es
t,r

 =
eikr

−ikr
Dpn̂·

 α̂tp × β̂s − β̂tp × α̂s β̂tp × β̂s + α̂tp × α̂s

−(β̂tp × β̂s + α̂tp × α̂s) α̂tp × β̂s − β̂tp × α̂s


 Et

p,α

Et
p,β

, (4.55)

where (also see 4.71)

Dp =
k2

4π

∫
eikδpdσp. (4.56)

Let  Et
p,α

Et
p,β

 =

 M11 M12

M21 M22


 Ei

l

Ei
r

 . (4.57)

Then St11 St12

St21 St22

=Dp

 n̂ · (α̂tp × β̂s − β̂tp × α̂s) n̂ · (β̂tp × β̂s + α̂tp × α̂s)

−n̂ · (β̂tp × β̂s + α̂tp × α̂s) n̂ · (α̂tp × β̂s − β̂tp × α̂s)


×

 M11 M12

M21 M22

 . (4.58)

Four elements of the matrix M are computed based on a ray-tracing technique.

2. Volume Integral Method

The far-field can be formulated as a volume integral (2.34) over the internal field

within the particle [39]. The scattered field ~Es(~r) in the radiation region is transverse

with respect to the scattering direction r̂ and can be decomposed into two components

in the form of

~Es(~r) = Es
α(~r)α̂s + Es

β(~r)β̂s, (4.59)



67

Fig. 13. (a) Scattering coordinate systems; (b) volume associated with a ray tube.

where α̂s and β̂s are unit vectors parallel and perpendicular to the scattering plane,

respectively, as shown in Fig. 13 (a). Taking dot products on both sides of Eq. (2.34)

with respect to vectors α̂s and β̂s yields Es
α

Es
β


kr→∞

=
k2 exp(ikr)

4πr

∫∫∫
v

(m2 − 1)

 α̂s · ~E(~r′)

β̂s · ~E(~r′)

 exp (−ikr̂ · ~r′) d3~r′. (4.60)

In the geometric optics based PGOH, the internal field in Eq. (4.60) can be for-

mally written as a summation with each term arising from different orders of reflec-

tion/refraction events

~E(~r′) =
∞∑
p=1

Ep,α(~r′)α̂p + Ep,β(~r′)β̂p. (4.61)
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Substituting Eq. (4.61) into Eq. (4.60), we obtain Es
α

Es
β


kr→∞

=
k2 exp(ikr)

4πr

∞∑
p=1

∫∫∫
vp

(m2 − 1)Kp

Ep,α(~r′)

Ep,β(~r′)

 exp (−ikr̂ · ~r′) d3~r′(4.62)

where vp is the volume associated with the pth order internal ray tube as shown in

Fig. 13 (b), and Kp is a matrix given by

Kp =

 α̂s · α̂p α̂s · β̂p

β̂s · α̂p β̂s · β̂p

 . (4.63)

Substituting the geometric-optics near-field given by Eq. (4.19) into Eq. (4.62), we

obtain the following equation, Es
α

Es
β


kr→∞

=
k2 exp(ikr)

4πr

∞∑
p=1

(m2 − 1)KpUp exp(ikδp,1 −Nikdp,1)Ip

 Ei
α

Ei
β

 , (4.64)

where Ip is an integral defined by

Ip =

∫∫∫
vp

exp
[
ik(Nr~ep + iNi

~Ap) · ~wp
]

exp(ikNl) exp(−ikr̂ · ~r′)d3~r′. (4.65)

Eq. (4.65) must be analytically solved before additional numerical computations are

considered. Recalling Eq. (4.18), we transform Eq. (4.65) into the following form,

Ip =

∫∫
s

d2 ~wp|êp · n̂p| exp
[
ik(Nr~ep + iNi

~Ap) · ~wp
]

exp [−ikr̂ · (~rp,1 + ~wp)] d
3~r′

×
∫ |~rp+1−~rp|+

~wp+1·n̂p

êp·n̂p

0

exp [ik(N − r̂ · êp)] . (4.66)
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After solving the integration in Eq. (4.66) in terms of l and employing the following

identities:

~wp+1 = ~wp +
~wp+1 · n̂p
êp · n̂p

êp, (4.67)

~Ap+1 · ~wp+1 = ~Ap · ~wp +
~wp+1 · n̂p
êp · n̂p

, (4.68)

êsp+1 · ~wp+1 = êsp · ~wp +Nr
~wp+1 · n̂p
êp · n̂p

, (4.69)

we obtain an explicit expression for Ip , given as follows,

Ip =
4π

k2

1

ik(N − r̂ · êp)
[|êp · n̂p+1|Dp+1 exp (ikN |~rp+1 − ~rp|)− |êp · n̂p|Dp] , (4.70)

where

Dp =
k2

4π
exp (−ikr̂ · ~rp,1)

∫
exp

{
ik(êsp − r̂ + iNi

~Ap) · ~wp
}
d2 ~wp

=
ik

4π

N∑
j=1

(~rp,j+1 − ~rp,j) · [(êsp − r̂ + iNi
~Ap)× n̂p]

(êsp − r̂ + iNi
~Ap) · (êsp − r̂ + iNi

~Ap)− [(êsp − r̂ + iNi
~Ap) · n̂p]2

×
sin[k(êsp − r̂ + iNi

~Ap) · (~rp,j+1 − ~rp,j)/2]

k(êsp − r̂ + iNi
~Ap) · (~rp,j+1 − ~rp,j)/2

exp [−ikr̂ · (~rp,j+1 + ~rp,j)/2]

× exp
[
ik(êsp + iNi

~Ap) · (~rp,j+1 + ~rp,j − 2~rp,1)/2
]
. (4.71)

The scattered far-field can be written in an analytical form of Es
α

Es
β


kr→∞

=
exp(ikr)

−ikr
(1−m2)

∞∑
p=1

KpUp
N − r̂ · êp

 Ei
α

Ei
β

 [|êp+1 · n̂p+1|

× Dp+1 exp (ikδp+1 −Nikdp+1)− |êp · n̂p|Dp exp (ikδp −Nikdp)] . (4.72)
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The amplitude scattering matrix associated with the scattered field in Eq. (4.72) is

given by  S2 S3

S4 S1

= (1−m2)
∞∑
p=1

KpUpΓ

N − r̂ · êp
[|êp+1 · n̂p+1

× |Dp+1 exp (ikδp+1 −Nikdp+1)−|êp · n̂p|Dp exp (ikδp−Nikdp)] (4.73)

or  S2 S3

S4 S1

 = (m2 − 1)
K1U1Γ

N − r̂ · ê1
|ê1 · n̂1|D1 exp(iδ1,1)

+ (1−m2)
∞∑
p=2

[
Kp−1Up−1

N − r̂ · êp−1

− KpUp
N − r̂ · êp

]
Γ

× |êp−1 · n̂p|Dp exp (ikδp,1) exp (−Nikdp,1) . (4.74)

Γ is a rotational matrix that transforms the two components of the incident field to

their counterparts parallel and perpendicular to the scattering plane and given by

Γ =

 β̂i · β̂s α̂i · β̂s

−α̂i · β̂s β̂i · β̂s

 . (4.75)

Note, a number of beams associated with the pth order reflection/refraction are not

explicitly indicated in Eq. (4.74), but are actually in the numerical algorithm sum-

mation. Once the amplitude scattering matrix is obtained, the phase matrix elements

are straightforward to compute [3].

The physical meaning implied in Eq. (4.74) is clearer than in Eq. (4.73). The first

term in Eq. (4.74) accounts for the diffraction and external reflection contributions,

and the second term arises from higher order outgoing refracted beams. Note the

shape factor D is largest when the observation position vector is aligned with the

direction of the relevant outgoing beam. This feature partially explains why the
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angular scattering pattern is dominant around the scattered beam direction when the

size parameter tends to be large. The explicit elements of the amplitude scattering

matrix are obtained as follows S2 S3

S4 S1

 =
N∑
i=1

Di
(m2 − 1) cos θt
Nr + iNi − r̂ · êt

 S̃2 S̃3

S̃4 S̃1

 , (4.76)

where Nr+iNi is the effective complex refractive index [53], θt is the angle of refraction

(different for each local planar surface), and êt is the propagation direction of the first-

order refracted wave. Four elements of the matrix S̃ are in the form of

S̃2 =
[
Tα cos(θi − θt) sin2 φ0 + Tβ cos2 φ0 − Tγ sin(θi − θt) sin2 φ0

]
cos θ

− [Tα sin(θi − θt) + Tγ cos(θi − θt)] sin θ sinφ0, (4.77)

S̃3 = [−Tα cos(θi − θt) + Tβ + Tγ sin(θi − θt)] cos θ cosφ0 sinφ0

− [Tα sin(θi − θt) + Tγ cos(θi − θt)] sin θ cosφ0, (4.78)

S̃4 = [−Tα cos(θi − θt) + Tβ + Tγ sin(θi − θt)] cosφ0 sinφ0, (4.79)

S̃1 = Tα cos(θi − θt) cos2 φ0 + Tβ sin2 φ0 − Tγ sin(θi − θt) cos2 φ0. (4.80)

where θi is the angle of incidence; Tα , Tβ, and Tγ are three transmission coefficients

[53], given by

Tα =
2(Nr + iNi) cos θi

m2 cos θi + [Nr cos θt + iNi/ cos θt]
, (4.81)

Tβ =
2 cos θi

cos θi + [Nr cos θt + iNi/ cos θt]
, (4.82)

Tγ =
i2Ni tan θt cos θi

m2 cos θi + [Nr cos θt + iNi/ cos θt]
. (4.83)

The formulation of the three transmission coefficients, taking into account the effect of

inhomogeneous waves for absorptive particles, has been reported by Yang et al. [53].

Eqs. (2.44) and (2.34) are equivalent when the near-field is exactly known. However,
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Fig. 14. Rotation of the scattering plane by an angle φt due to ray spreading.

the amplitude scattering matrices associated with the diffraction and the external

reflection derived are not exactly equivalent. Of interest is that the diffraction and

the external reflection are inherently combined in Eq. (4.76).

3. Simplified PGOH Algorithm

In the context of CGOM, the direction ês of a outgoing ray and the forward direction

êi define a plane (labeled with symbol A as shown in Fig. 14). The amplitude

scattering matrix associated with this outgoing ray is defined through Es
ξ

Es
η

 =
exp(ikr)

−ikr

 S̃2 S̃3

S̃4 S̃1


 Ei

ξ

Ei
η

 , (4.84)

where ξ̂ and η̂ are unit vectors, which are perpendicular and parallel to the plane A.

In the context of the PGOH, this plane may not be scattering plane when considering
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the ray spreading effect. Assume that the scattering plane (labeled with symbol B)

makes an angel φ with the plane A. Therefore, amplitude scattering matrix in the

PGOH is defined in a different way as follows, Es
β

Es
α

 =
exp(ikr)

−ikr

 S2 S3

S4 S1


 Ei

β

Ei
α

 , (4.85)

where β̂ and α̂ are unit vectors, which are perpendicular and parallel to the scattering

plane, i.e. the plane B , as shown in Fig. 14, respectively. The relation between

amplitude scattering matrix S̃ and S is derived through Eq. (2.48) and is given by

S2

S3

S4

S1


= − k

2

4π
exp(ikζ)



f2 −g2 f3 −g3

g2 f2 g3 f3

f4 −g4 f1 −g1

g4 f4 g1 f1





S̃2

S̃3

S̃4

S̃1


. (4.86)

In Eq. (4.86), ζ is the phase of the ray, and fi and gi are:

fi = cosφtΞi, (4.87)

gi = sinφtΞi, (i = 1, 4). (4.88)

The four elements Ξi (i=1, 4) are given by,

Ξ1 = h cosφt, (4.89)

Ξ2 = h cos θ cos θt cosφt + h sin θ sin θt, (4.90)

Ξ3 = −h cos θ sinφt, (4.91)

Ξ4 = h cos θt sinφt, (4.92)

where h is the same as Eq. (46b) in Yang and Liou [28]. Note that the matrix Ξ is

different from Eq. (A8) in Yang and Liou [28] by a factor h. By using Eqs. (D.3)



74

and (D.4), we obtain a very simple and symmetric relation:

S11 S12 S13 S14

S21 S22 S23 S24

S31 S32 S33 S34

S41 S42 S43 S44


∝



Ξ11 Ξ12 Ξ13 0

Ξ21 Ξ22 Ξ23 0

Ξ31 Ξ32 Ξ33 0

0 0 0 Ξ44


×



S̃11 S̃12 S̃13 S̃14

S̃21 S̃22 S̃23 S̃24

S̃31 S̃32 S̃33 S̃34

S̃41 S̃42 S̃43 S̃44



×



1 0 0 0

0 cos(2φt) sin(2φt) 0

0 − sin(2φt) cos(2φt) 0

0 0 0 1


(4.93)

where the elements of a ray spreading matrix Ξij are given in Appendix D. The matrix

at right in Eq. (4.93) is associated with rotation of scattering plane A to B. It is

required to point out that Eq. (4.93) is only for one outgoing ray. To consider the

contribution of all outgoing rays to the scattering direction r̂, the final phase matrix

in the PGOH is an integral over all scattering directions in the PGOH:

S(θ, φ) =

∫ ∫
Ξ(θ, θt, φ, φ0)S̃(θt, φ0)L(φt = φ− φ0) sin θtdθtdφ0 (4.94)

where S, Ξ, S̃, and L are matrices, and φ0 is the azimuthal angle of scattering planes

in the PGOH.

For the diffraction part and the forward scattering, we consider it separately.

Forward scattering pattern in the conventional geometric optics is delta functions,

but in the context of the PGOH it is angular distributions around the forward direc-

tions when the ray spreading effect is considered. For randomly oriented particles,

we expect that the interference among forward scattering rays could be properly ne-

glected. In this case, explicit amplitude scattering matrix or phase matrix in terms

at forward scattering could be explicitly derived and similar to diffraction pattern.
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We notice that the traditional method of using the shadow diffraction theory

and the ray-tracing technique to calculate the diffraction and reflection by randomly

oriented particles can be improved. van de Hulst [2] suggests that the normalized

reflection pattern for randomly oriented convex particles should be the same as that

for spheres with the same surface conditions. Therefore, the reflection pattern for

a sphere can be used to replace that calculated for general convex particles. This

treatment will remove the difficulty in determining the scattered energy within the

solid angle elements near the forward and backward directions.

The diffraction plus reflection (DPR) method is only applicable to randomly ori-

ented particles due to singular points existing in the phase function. In the DPR

method, the amplitude scattering matrix associated with diffraction is represented in

terms of an integral over either the projection or the illuminated side of the parti-

cle. The reflection is calculated through geometric optics based on the ray-tracing

technique. The energy associated with diffraction is assumed to be one half of the

extinction cross section. The final phase matrix is given by

P = wdP
d + wrP

r, (4.95)

where P d and P r are normalized phase matrices associated with diffraction and ex-

ternal reflection, respectively. wd and wr in Eq. (4.95) are relative weights, given

by

wd =
σe

σe + 2σr
, (4.96)

wr =
2σr

σe + 2σr
(4.97)

where σr and σe are the cross sections associated with the reflection and extinction

calculated from the ray-tracing technique. P d is calculated from the Fraunhofer
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diffraction theory as follows:

P d =



|Sd11|2 + |Sd22|2 |Sd22|2 − |Sd11|2 0 0

|Sd22|2 − |Sd11|2 |Sd11|2 + |Sd22|2 0 0

0 0 2Re(Sd11
∗
Sd22) 2Im(Sd11S

d
22
∗
)

0 0 −2Im(Sd11S
d
22
∗
) 2Re(Sd11

∗
Sd22)


(4.98)

where the two diagonal elements of the amplitude scattering matrix are given by [30]

dd11 = D(1 + cos θ) cos θ, (4.99)

Sd22 = D(1 + cos θ). (4.100)

P r is related to the Fresnel reflection coefficients, given by

P r =



RαR
∗
α +RβR

∗
β RαR

∗
α −RβR

∗
β 0 0

RαR
∗
α −RβR

∗
β RαR

∗
α +RβR

∗
β 0 0

0 0 2Re(RαR
∗
β) 2Im(RαR

∗
β)

0 0 −2Im(RαR
∗
β) 2Re(RαR

∗
β)



×



1 0 0 0

0 cos(φ0 − φ) sin(φ0 − φ) 0

0 − sin(φ0 − φ) cos(φ0 − φ) 0

0 0 0 1


. (4.101)

Note that for large randomly oriented convex particles, the reflection pattern is the

same as that for spheres with the same surface area and refractive index, as articulated

by van de Hulst [2]. Therefore, it is not necessary to compute the reflection pattern

by using the ray-tracing technique, but the reflection pattern can be computed with
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the analytical solution for spheres [53], given by

P r
11(θ) = c

[∣∣∣∣Rα

(
π − θ

2

)∣∣∣∣2 +

∣∣∣∣Rβ

(
π − θ

2

)∣∣∣∣2
]

(4.102)

where c is normalization constant, and || indicates the modulus of a complex quantity.

The simplified PGOH algorithm neglect the phase interference between various

outgoing rays for the computation of the phase matrix. In the previous publication,

the simplified PGOH algorithm associated with PGOH method in computations of

efficiency factors is called improved geometric optics method (IGOM). The applica-

bility of the IGOM is restricted to randomly oriented ice crystals.

F. PGOH Cross Sections

Applying a similar procedure to derive the amplitude scattering matrix based on the

beam-splitting algorithm, the extinction cross section obtained from Eq. (41) can be

proven to be the same as that derived from an optical theorem given by

Cext =
2π

k2
Re
[
S11(ê

i) + S22(ê
i)
]

(4.103)

and the absorption cross section is in the form of

Cabs =
1

2

∞∑
p=1

Nr exp (−2Nikdp)
(
|U11

p |2 + |U12
p |2 + |U21

p |2 + |U22
p |2
)

×
(
|êp · n̂p|D̃p − exp(−2Nik|~rp+1 − ~rp|)||êp+1 · n̂p+1||D̃p+1

)
. (4.104)

The physical process implied in Eq. (4.104) is evident, because each term in the

summation represents the energy difference between the energy entering the ray tube

and that leaving the ray tube from the absorption of light. The energy entering the

ray tube is given by Eq. (4.26). The real part of the effective refractive index in Eq.

(4.104) accounts for the difference between the speed of light in the particle and its
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surrounding medium.

G. Accuracy of PGOH Simulations

In principle, the PGOH is an approximate method. The accuracy of the PGOH

simulations should be estimated by comparing the results with their counterparts

simulated from other exact methods. In this study, we select the DDA method as

a reference and use the Amsterdam DDA (ADDA) code developed by Yurkin and

Hoekstra [15] for benchmark simulations. The DDA method discretizes the volume

of the particle into various sub-volumes, termed dipoles, to solve an exact electro-

magnetic volume integral equation. The numerical accuracy of the DDA method

depends on the number of dipoles used to represent the geometry of the particle.

The DDA method is essentially an exact method as it directly solves the equations

in the context of electrodynamics, and can be employed as a reference to test the

accuracy of results computed from the PGOH method. The accuracy of the DDA

method has been reported in the literature [50, 51]. When an ice particle is strongly

absorptive, the contribution to the scattering matrices from outgoing refracted rays

can be neglected. The amplitude scattering matrices associated with the diffraction

and external reflection can be semi-analytically derived in the PGOH. Therefore, we

can first examine the accuracy of the computation of the PGOH for diffraction and

external reflection. There are three versions of PGOH: surface integral method (SIM),

volume integral method (VIM), and IGOM.

The SIM and the VIM are applicable to particles with fixed orientations. Figures

15-17 compare the phase functions of compact hexagonal particles (i.e., the aspect

ratio is unity) simulated from the SIM, the VIM and the DDA for three represen-

tative orientations. For each orientation, simulations were carried out at three size
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Fig. 15. Phase functions for hexagonal particles. The direction of the incident light is

aligned with the axis of six-fold symmetry. The refractive index is 1.3+i1.0.

The lower panel shows the relative differences between the results from the

SIM and the VIM and that from the ADDA.

parameters: 20, 50 and 100 (i.e., small, moderate, and large values of the size pa-

rameter). In Fig. 15, the direction of the incident light is aligned with the axis of

six-fold symmetry. A continuous pattern is obtained from the SIM and the VIM. As

seen from the figure, the overall pattern of the phase functions from the SIM and

the VIM agree with those from the ADDA. Large differences are found at scattering

angles less than 90o. For backscattering angles, the agreement between the methods

is better.
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Fig. 16. Same as Fig. 15, except that the incident angle is 30o. The 120o peak is from

the top reflection. The 51.3o peak is due to the contributions from two sides.

In Fig. 16, the direction of the incident light makes an angle of 30o with the

axis of the particle and is parallel to one of the mirror planes. Two sharp peaks are

found when the size parameter is 100. The 120o peak is associated with the reflection

from the top surface while the 51.3o peak is from the reflections from two side faces.

When the size parameter decreases, the peaks broaden. At a size parameter of 20, the

51.3o peak is essentially not noticeable. This feature stems from the ray-spreading

effect [27, 28]. When the incident light is parallel to the top surface, as seen in Fig.

17, the peak arising from the top reflection disappears and the peak location due to

the reflection from two side surfaces is at 120o. From the comparison of the phase
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Fig. 17. Same as Fig. 15, except that the incident angle is 90o. The illuminated side

is composed of two local planar surfaces. The two scattering angles predicted

from ray optics are the same and equal to 120o.

functions, the difference between the results from the SIM/VIM and the DDA is

pronounced when the incident angle of the incoming light is zero. The phase function

values at scattering angles larger than 90o are more accurate than those between 0o

and 90o. The SIM and the VIM have comparable accuracy, although the formulae

are not exactly equivalent.

The difference between the results calculated from the SIM/VIM and the DDA

is due to the inaccuracy of the reflected field near the edges. For simplicity, we

demonstrate the intensity of the electric field at the top face when the incident angle
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Fig. 18. Intensity of the total field of the first layer of dipoles near the hexagonal top.

The direction of incident light is aligned with the axis. The two rows are

for different polarization directions of the incident electric field. The three

columns correspond to different size parameters.

is 0o, as shown in Fig. 18. The upper and lower panels correspond to two polarizations

of the incident light. In principle, the applicability of ray optics breaks down near the

particle edge - the field near the edge is quite different from that within the polygon.

At size parameters of 20 and 50, some structures in the intensity pattern may be

observed, but these structures become less apparent as the size parameter increases.

The comparison shown in Fig. 15 suggests that the edge effect may influence the

forward scattering phase function.
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Fig. 19. (a) Comparison of normalized distributions of intensity associated with the

external reflection from randomly oriented hexagonal particles calculated from

the ray-tracing technique and the analytical solution for spheres with the same

refractive index as that of hexagonal particles. (b) Reflection by randomly

oriented hexagonal particles calculated from the SIM at three size parameters

of 20, 50, and 100.

As discussed in Section D in this chapter, the diffraction and external reflection

are separable in the SIM. Figure 19 shows the comparison of the normalized reflection

pattern of randomly oriented hexagonal particles from the SIM and the DPR for a

sphere with the same refractive index. In the SIM, the reflection pattern depends

on the size parameter and is exactly zero in the forward scattering direction. A

huge difference between results from the SIM and the DPR method is found near

the forward scattering direction. The physical reason for a missing reflection pattern

near the forward scattering angle is likely to be associated with the inaccuracy of
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Fig. 20. Comparison of the phase function from the SIM, the ADDA and the DPR for

randomly oriented particles. The random orientations in (a) for the ADDA

and SIM are set through 17 zenith angles and 17 azimuthal angles. Random

orientations in (b) for the SIM are specified through 170 zenith angles and 30

azimuthal angles to produce flat backscattering.

the reflected field near the boundary of the particle. When the size of the particle

is large, the results from the SIM tend to match that of a sphere, as the edge effect

is negligible. Note that a zero reflection in the forward scattering seems to be an

artifact. The general pattern of the external reflection pattern from the ray-tracing

technique agrees with that for spheres. However, the ray tracing technique is found to

be inaccurate near the forward and the backward directions. From this figure we can

see that for randomly oriented hexagonal particles, the DPR method can be employed

as an efficient method to calculate the external reflection since it does not require the

procedure to perform the average of reflection patterns over orientations.
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For the comparison of the phase function of randomly oriented hexagonal parti-

cles from the SIM and the ADDA, shown in Fig. 20 (a), the number of orientations

was set as 17x17 for the ADDA and SIM simulations. While a close agreement be-

tween the SIM and the ADDA is demonstrated, a structure in the backscattering

phase function is observed. From the properties of the reflection pattern for ran-

domly oriented particles, the phase function should be flat as illustrated by the DPR

method. This is because the number of orientations is insufficient for representing the

random orientation condition. Since the ADDA requires more computational time

to perform numerical averages over a large number of orientations, we increased the

number of orientations for the SIM due to its efficiency. As a result, a flat backscat-

tering feature appears, as shown in Fig. 20 (b). Results from the SIM tended to

match that of the DPR method, suggesting that the assumptions in the DPR method

are reasonable. Therefore, for randomly oriented particles, the DPR method can be

used as an efficient method for the first-order scattering simulation without losing

accuracy. Note that the DPR is restricted to randomly oriented particles. For par-

ticles with preferred orientations, the SIM/VIM should be chosen. This comparison

also indicates that the peak in the phase function around 16, observed in the ADDA

calculation, is related to diffraction. For randomly oriented particles with complex

shapes, the normalized reflection pattern is not the same as that of a sphere, and

then the ray-tracing technique can be used.

In view of the above, the PGOH results from both of the SIM and VIM generally

agree with their hexagonal ice particle counterparts computed from the DDA method.

In the following part of this section, we present some results for transparent and semi-

transparent particles.

Figure 21 shows the phase functions simulated from both the ADDA and PGOH.

The aspect ratio of a hexagonal particle is L/D=1.0, where L and D are the length
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Fig. 21. Comparison of the phase functions computed from the DDA method and

the PGOH method for three selected refractive indices. The size parameter

defined in terms of the length is 50. The aspect ratio is 1.0.

and width of the particle, and the size parameter, defined in terms of particle length,

is 50. The three rows correspond to refractive indices of 1.3, 1.3 + i 0.01, and 1.3

+ i 0.1. The first and second columns are for the two fixed orientations indicated

in the figure. The third column is the average phase function for 10 orientations

with an interval of 10o between 0o and 90o. As illustrated in the figure, the PGOH

results and those computed from the ADDA compare well. The agreement is better

for the strong absorption case where diffraction and external reflection are dominant.

The general agreement between the results computed from the PGOH and the ADDA

counterparts suggest that the PGOH provides a reasonably accurate estimation of the
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Fig. 22. Comparison of 2-D phase functions computed from the DDA method and

the PGOH method for three selected refractive indices. The size parameter

defined in terms of the length is 50. The aspect ratio is 1.0.

optical properties of ice particles including moderate sized ones. From the comparison,

the averaging process seems to improve the accuracy of the phase function near the

backward scattering directions. Note the peak of the phase function due to external

reflection is evident for oriented particles.

Figure 22 shows the 2-D phase functions with respect to scattering and azimuthal

angles simulated from the ADDA and PGOH. The computational parameters includ-

ing the shape, the size, and the orientation of the hexagonal particle are the same

as those in the first column of Fig. 21. The general angular patterns of PGOH

simulated scattering are similar to those for the ADDA for all the selected refractive
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Fig. 23. Comparison of P12/P11 computed from the DDA method and the PGOH

method for three selected refractive indices. The size parameter defined in

terms of the length is 50. The aspect ratio is 1.0.

indices. For stronger absorption cases, the PGOH results are much closer to their

ADDA counterparts. Two elements of the phase matrix, P12 and P22, are simulated

from the ADDA and PGOH with results shown in Fig. 23 and Fig. 24, respectively.

Note the similarity between the PGOH and ADDA results for both the P12 and P22

components.

Figure 25 shows the phase function of ice particles with large size parameters.

Figure 25(a) compares the phase functions computed from the ADDA and PGOH.

For this case, the DDA code is computationally expensive. Four orientations of an

ice particle with respect to the symmetry axis are assumed. The PGOH results have
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Fig. 24. Comparison of P22/P11 computed from the DDA method and the PGOH

method for three selected refractive indices. The size parameter defined in

terms of the length is 50. The aspect ratio is 1.0.

similar oscillations to those from the ADDA, but there are some differences noted

in the scattering angle range from 90o to 150o. The size parameter for a hexagonal

particle in Fig. 25((b) is very large, making it beyond the computational capability

of the DDA method. As expected, two halos are observed in the phase function

computed from the PGOH method. The results are calculated for 1000 different ice

particle orientations with respect to the symmetry axis and subsequently averaged. In

this simulation, we find that increasing the number of orientations does not diminish

the oscillations in the PGOH simulated phase functions. One possible explanation for

the oscillation is that it may be caused by interference between the various scattered
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Fig. 25. (a) Comparison of the scattering phase function computed from the ADDA

and the PGOH for a size parameter of 200. (b) Phase function computed

from the PGOH for hexagonal ice particles randomly oriented with respect to

the 6-fold symmetry axis.

beams.

Figure 26 shows the extinction efficiency factor and the absorption efficiency

factor simulated from the ADDA and PGOH for three typical refractive indices. The

particle orientation has a 20o incident angle between the 6-fold symmetry axis and

the incident direction. The figure shows the extinction efficiency factors computed

from the PGOH can be larger than those computed from the ADDA when the size

parameter is small. In this size parameter region, the geometric-optics approximation

method is expected to fail as the ray is not a proper conceptualization of the process

when the particle size is small or comparable with the wavelength of incident light.

When the size parameter is larger than 10, the extinction efficiency factors simulated

from the PGOH demonstrate similar behavior to their ADDA counterparts; however,

the ADDA results are larger than the PGOH results. The physical reason for the
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Fig. 26. The extinction and absorption efficiency factors simulated from the ADDA

and the PGOH for oriented hexagonal ice particles. These results exclude

consideration of the particle edge effect. Three typical refractive indices are

selected.

difference is that the edge effect has not been considered. The existence of the edge

effect contribution to the extinction of light for particles with no profile curvature are

investigated by using the localization principle in Chapter V.

To bridge the gap between the ADDA results and their PGOH counterparts, two

semi-empirical formulae to incorporate the edge effect contribution to the extinction

and absorption efficiency factors are used in the present study and given by

Qext,edge =
fe

(kL)2/3
, (4.105)

Qabs,edge =
fa

(kL)2/3
, (4.106)

where the two factors fe and fa are determined by the difference between the values of
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Fig. 27. Similar to Fig. 26, but with the edge effect incorporated in the PGOH method.

Note how smoothly the ADDA results transition to those from the PGOH

method.

the efficiency factor computed from the ADDA and the PGOH at the size parameter

where the two methods are unified.

Figure 27 shows the results of the extinction efficiency factor and the absorp-

tion efficiency factor after the incorporation of edge effect contribution given by Eqs.

(4.105) and (4.106). As evident from Fig. 27 , the curves of the extinction and

absorption efficiency factor are now continuous over the range of size parameters.

As a rigorous treatment of the edge effects for ice particles using Maxwells equa-

tions is not available at present, the semi-empirical method is essential to obtain the

efficiency factors over a complete range of size parameters. The oscillation of the ex-

tinction efficiency factors results from interference between the forward transmission

and diffraction. For non-absorptive particles, the oscillations do not diminish with
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large size parameters. The oscillation phenomenon is not observed for either spheres

or randomly oriented nonspherical particles. The non-convergent asymptotic value

of the oriented ice particle extinction efficiency factor is demonstrated in the PGOH

method results, but to the best of our knowledge, is neither justified through exact

methods nor by measurements. Further investigation of this issue is warranted.
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CHAPTER V

ELECTROMAGNETIC EDGE EFFECT ∗

The technical difficulty of the present unified method (i. e., combination of exact

method and geometric-optics approximation method) is that the interaction between

electromagnetic waves and lateral sides in the penumbra region, separating the illu-

minated sides and shadow region, cannot be accounted for in the context of geometric

optics. Neglecting the contribution of the associated edge effects leads to discontinu-

ities in the extinction efficiency and single-scattering albedo with respect to particle

size parameter. A proper incorporation of edge effects is essential to obtain reli-

able and continuous curves of the extinction efficiency and the absorption efficiency

factors.

A. Localization Principle

To introduce the localization principle, we consider the scattering of light by particle

of axially rotational symmetry (sphere as a special case). The direction of light is

aligned with the symmetry axis. Within the framework of the T-matrix formulation

of light scattering, we found that the two off-diagonal elements of the scattering

amplitude matrix are zero whereas the two diagonal elements can be written as

S2 =
∞∑
n=1

2n+ 1

n(n+ 1)
[anτn(cos(θs)) + bnπn(cos(θs))] , (5.1)

S1 =
∞∑
n=1

2n+ 1

n(n+ 1)
[anπn(cos(θs)) + bnτn(cos(θs))] , (5.2)

∗Part of this chapter is reprinted with permission from “Edge-effect contribution
to the extinction of light by dielectric disks and cylindrical particles” by L. Bi, P.
Yang, and G. W. Kattawar, Appl. Opt. 49, 4641-4616(2010)
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where θs is the scattering angle, πn(cos(θs)) = P 1
n/ sin(θs) and τn(cos(θs)) = dP 1

n/dθ
s.

P 1
n is the associated Legendre function of the first kind of degree n and order 1, and

the two coefficients an and bn can be expressed in terms of the T-matrix elements:

an = −
∞∑
n′=1

√
2n′ + 1

2n+ 1
in
′−n [T 21

1n1n′ + T 22
1n1n′

]
, (5.3)

bn = −
∞∑
n′=1

√
2n′ + 1

2n+ 1
in
′−n [T 11

1n1n′ + T 12
1n1n′

]
. (5.4)

For a spherical particle, the two coefficients simplify as follows:

an = −T 22
1n1n, (5.5)

bn = −T 11
1n1n. (5.6)

It has been proven that the two coefficients an and bn for spherical particles given

by Eqs. (5.5) and (5.6) in the EBCM are the same as those formulated in the clas-

sical Lorenz-Mie theory [5]. By the “localization principle”, the term for each n′ in

Eqs. (5.3) and (5.4) corresponds to a ray that passes the origin at a distance of

(n′+1/2)λ/2/π [2]. In quantum mechanics, this relationship implies that the angular

momentum of a classical electron is associated with an eigenvalue of the angular mo-

mentum operator. Based on the localization principle, van de Hulst [2] derived the

optical properties of large spheres from the exact Lorenz-Mie theory, and the results

agree with the geometric-optics results. By using the complex angular momentum

theory, Nussenzveig [32] investigated the edge effects implied in the Lorenz-Mie for-

mula with improved accuracy.

To understand the “localization principle”, let’s start from the interpretation of

the angular momentum of a classical particle and a quantum particle. In classical
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mechanics, the angular momentum of a free particle is given by

L = pd, (5.7)

where p is the momentum and d is the distance from the reference point to the

trajectory. In quantum mechanics, the momentum is given by

p = h̄k, (5.8)

where h̄ is Plank constant, and k is the wavenumber associated with de Broglie wave.

Substituting Eq. (5.8) to (5.7), we obtain

L = h̄kd. (5.9)

In the quantum scattering of free particles by a potential, particles is described by

a scaler plane wave, which is a solution to Schrödinger equation. The wave function

of free particles can be expanded in terms of the eigenstates |n > of the operator of

angular momentum L̂2. The relation between L̂2 and |n > is given by

L̂2|n >= h̄2n(n+ 1)|n > . (5.10)

Therefore, the angular momentum of the particle described by each term in the

summation is

L = h̄
√
n(n+ 1) ≈ h̄(n+ 1/2). (5.11)

Comparing Eq.(5.9) and Eq. (5.11), one get the picture to link the description of a

classical particle and a quantum particle through

d = (n+ 1/2)λ/2π. (5.12)

Based on the similarity between quantum mechanics and optics, the above formula
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(5.12) named “localization principle” is employed to understand the scattering of elec-

tromagnetic waves and geometric rays of light by particles. In semi-classical quantum

mechanics, 1/2 in Eq. (5.12) is called Langer modification [54].

B. Separation of Edge Effect from Total Extinction

We are concerned with disks and cylinders of various aspect ratios. In the T-matrix

formulation, both the incident and scattered fields are expanded in terms of vector

spherical functions. According to the theoretical basis, the T-matrix approach may

be the most straightforward approach to separate the edge-effect contribution in the

total extinction cross section out. However, because the T-matrix method lends itself

easier to moderate aspect ratios and moderate sizes in numerical computation, we use

the DDA method to separate the extinction of light associated with the edge-effect

contribution in calculating the total extinction. Additionally, by unitizing supercom-

puter, results for particles of much larger size parameters can be obtained. The edge

effect is automatically incorporated into the DDA equation, as the source electric field

(not including the field induced by the dipoles) inside the particle is a plane wave.

In the expansion of the incident plane wave in terms of multipole fields associated

with the index n, the upper limit of n should be sufficiently large to allow the differ-

ence between the summation and the value of a plane wave on a spherical surface to

be neglected within satisfactory accuracy limits. A mulitipole field with the index n

larger than the size parameter of the sphere is required [2], and the number of addi-

tional terms is proportional to (ka)1/3 where a is the sphere radius. These additional

terms are what we associate with the “edge effect” or the “tunneling effect”. We

consider an incident plane wave propagating along the z-axis with the polarization
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vector aligned with the x-axis:

~Einc = ~ex exp(ikz), (5.13)

where ~ex is the unit vector along the positive x-axis. By using the multipole expansion,

the three components of an electric field in the spherical coordinate system (r, θ, φ)

can be written as [2, 3]

Einc
r = − 1

k2r2
cosφ

∞∑
n=1

(2n+ 1)ini sin θπn(cos θ)ψn(kr), (5.14)

Einc
θ =

1

kr
cosφ

∞∑
n=1

2n+ 1

n(n+ 1)
in [−iτn(cos θ)ψ′n(kr) + πn(cos θ)ψn(kr)] , (5.15)

Einc
φ = − 1

kr
sinφ

∞∑
n=1

2n+ 1

n(n+ 1)
in [−iπn(cos θ)ψ′n(kr) + τn(cos θ)ψn(kr)] , (5.16)

where ψn is the Riccati-Bessel function associated with the spherical Bessel function

of the first kind jn [2]. Figure 28 shows the differences between the real part of a

plane wave and the values obtained by taking some finite terms in the summation

involved in Eqs.(5.14)-(5.16). In Fig. 28, the upper limit of the index n is selected

to be 24. It is evident from Fig. 28 that the differences are pronounced near the

boundary of a sphere with a size parameter of 25.

To separate out the edge effects inherent in the DDA equations, Eq.(3.28) is

decomposed into the two independent sets of equations as follows:

~Einc
i,n<[ka−1/2] = α−1

i
~Pi −

∑
j 6=i

Gij
~Pj, (5.17)

~Einc
i − ~Einc

i,n<[ka−1/2] = α−1
i
~Pi −

∑
j 6=i

Gij
~Pj. (5.18)

Here, ~Einc
i,n<[ka−1/2] is a pseudo plane wave equal to a summation of multipole fields

with index n < [ka − 1/2], and the operator [·] indicates the integer part of the

argument. The extinction efficiency factor can be straightforwardly calculated from
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Fig. 28. The difference between the real part of x component of a plane wave and the

summation of the multipole fields truncated at n=24.

the solution to Eq.(5.17) and corresponds to the extinction efficiency factor computed

from the PGOH method. The extinction efficiency factor calculated from the solution

to Eq. (5.18) is the aforementioned edge-effect contribution.

C. Circular Cylinders or Disks

In the case of the scattering of light by a cylinder as shown in Fig. 29, the extinction

efficiency factor can be analytically derived by the PGOH method on the basis of the

volume integral equation (2.85). Substituting ~E computed from the geometric optics

method into Eq. (2.85), we obtain:

Qext = 2Re

{
1− 4m exp [i(m− 1)kL]

(m+ 1)2 − (m− 1)2 exp(i2mkL)

}
, (5.19)

where L is the length of the cylinder. Equation (5.19) can also be obtained from the

optical theorem by considering the extinction caused by the interference between the

transmitted and incident waves. Note there are two features inherent to Eq. (5.19):
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Fig. 29. A plane wave impinging on the basal face of a cylinder. λ is the wavelength.

first, the extinction efficiency factor computed from the PGOH is independent of the

shape and size of the geometric cross section; second, when the refractive index is

real, i.e., no absorption, Qext is an oscillating function of L and does not converge to

2 regardless of the size of the scattering particle.

As shown in Figs. 30 and 31, the extinction efficiency factors simulated from the

DDA method, excluding the above edge-effect contribution, agree with their counter-

parts calculated from the PGOH. The saw-like oscillations in the results are evident

in Fig. 31. The saw-like curve occurs because the index n is a discrete integer vari-

able, but the diameter of the cylinders is a continuous variable. The relationship

associated with the angular momentum implied in the localization principle is only

exact provided that the diameter of the cylinder is equal to 2n+ 1 . At these values,

the extinction efficiency factors excluding the edge effect are very close to those com-

puted from the PGOH. The fact that the extinction efficiency factors excluding the

edge-effect contribution agree with their PGOH counterparts suggests that the edge

effect is reasonably justified and quantified.

The pronounced edge effect may not be observed for spheres and randomly ori-
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Fig. 30. Extinction efficiency factor of cylinders simulated from the ADDA with the

edge effect, the ADDA without the edge effect, and the PGOH. The size

parameter defined in terms of the diameter is 50.

ented nonspherical particles when the size parameter is very large. In these cases,

the edge effect increases more slowly than the average projected area when the size

parameter is increasing. Therefore, the contribution of the edge effect to the ex-

tinction efficiency factor can be reasonably neglected when the particle size is very

large. But for a particle with fixed orientation, the speed of increase of the edge-effect

contribution may be faster than the geometric cross section. As a result, the edge

effect is pronounced and cannot be neglected even for quite large particles. For a

randomly oriented particle, the phenomenon of oscillation without convergence due

to the interference between diffracted light and transmitted light, shown in Fig. 30,

is not observed primarily due to reduced interference in the averaging process.
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Fig. 31. Extinction efficiency factor of disks simulated with the ADDA with the edge

effect, the ADDA without the edge effect, and the PGOH. The size parameter

defined in terms of the length is 10.

D. Global Effect or Local Curvature Effect ?

Previous studies of the edge effect on light scattering by spheres and rounded particles

suggest that the edge effect is associated with the radius of curvature of the “profile”.

According to Jones [33, 34], the edge-effect contribution to the extinction efficiency

factor is given by

Qedge =
c

S

∫
p

R1/3ds, (5.20)

where c is a universal constant, S is the projected area of the particle on a plane

perpendicular to the direction of the incident light, ds is the arc length along the

projection of the illuminated area boundary, and R is the curvature radius of the

“profile” along the edge. The theory behind Joness treatment is that the effect due
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to the presence of a particle on the extinction process is essentially the same as that

of a cylinder with its axis perpendicular to the normal direction at the glancing point

and to the direction of the incident wave. For a specifically oriented cylinder, Qext

was derived from Eq. (5.20) by Fournier and Evans [55] and is given by

Qedge =
c

(x sin θ)2/3
(5.21)

where x is the radius of the circular cross section, and θ is the angle between the

direction of the incident light and the symmetry axis. For the present case where

θ = 0, Eqs. (5.20) and (5.21) cannot be used to quantify the edge effect, because the

curvature radius is infinite and would lead to an infinitely large edge-effect contribu-

tion to the extinction efficiency factor. Therefore, the edge-effect contribution to the

extinction may be a global effect.
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CHAPTER VI

OPTICAL MODELING OF ICE CRYSTALS ∗

A. Introduction

Solar radiation occurs over a wide range of wavelengths. The main range of solar

radiation includes ultraviolet radiation (UV, 0.001-0.4 µm), visible radiation (light,

0.4-0.7 µm), and infrared radiation (IR, 0.7-100 µm). The energy of solar radiation

is not divided evenly over all wavelengths but is rather sharply centered on the wave-

length band of 0.2-2 µm. The infrared radiation in the atmosphere is mainly from

thermal emissions from the earth. The wavelength coverage of interest in this disser-

tation is chosen as (0.2-15.25 µm). Channels of MODISE and CALIPSO lidar are

within the selected range.

B. Randomly Oriented Ice Crystals

We use the updated indices of refraction of ice crystals [56], employ a more accurate

version of IGOM code (or called simplified PGOH algorithm), and include three new

ice habits (hollow bullet rosette, aggregate of 5 plates, and aggregate of 10 plates).

In this study, some new criteria are used to select the wavelengths and size bins

in the scattering computation. The database will cover the size range from 2 to

10000 µm and a spectral range from the 0.199 to 15.25 µm. 189 size bins are used

∗Part of this chapter is reprinted with permission from “Simulation of the color
ratio associated with the backscattering of radiation by ice crystals at 0.532 and
1.064-µm wavelengths” by L. Bi, P. Yang, G. W. Kattawar, B. A. Baum, Y. X.
Hu, D. M. Winker, R. S. Brock, and J. Q. Lu, J. Geophys. Res. 114, D00H08,
doi:10.1029/2009JD011759, and “Scattering and absorption of light by ice particles:
solution by a new physical-geometric optics hybrid method” L. Bi, P. Yang, G. W.
Kattawar, Y. Hu, and B. A. Baum, J. Quant. Spectrosc. Radiat. Transfer, 112,
1492-1508 (2011)
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Fig. 32. Extinction efficiency factor, single-scattering albedo and asymmetry factor of

ice crystals (hexagonal column, hexagonal plate, hollow hexagonal column,

and droxtal) of maximum dimension 10 µm.

instead of 49 size bins in the old database. 101 spectral points are carefully chosen so

those sharp gradients of refractive indices with respect to the wavelength are properly

taken into account. Data for other unselected wavelengths are obtained through linear

interpolation of simulated data in terms of wavelength.

Figure 32 shows the extinction efficiency, the single-scattering albedo and the

asymmetry factor of 4 ice habits (hexagonal column, hexagonal plate, hollow hexag-

onal column, and droxtal ice crystal.). Ice crystals are assumed to be randomly

oriented in space. The size defined in terms of maximum dimension is 10 µm. The

general trend of curves with respect to the wavelength ranging from 0.199 to 15.25

µm is similar for different habits. The values for column and plate are quite close for

the chosen size. At a particular wavelength, the extinction efficiency for droxtal is
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Fig. 33. Similar to Fig. 32, but for complex ice crystals

largest, whereas the counterpart for hollow column is smallest. Figure 33 is similar

to Fig. 32, but for 5 complex ice crystals.

C. Oriented Ice Crystals

Large ice particles in the atmosphere may not be randomly oriented in space, but re-

veal some preferable orientations and flutter relative to a horizontal plane. Straight-

forward evidence to support the existence of preferably oriented ice particles in the at-

mosphere is various optical phenomena such as parhelia, sub sun, and sun pillars [57].

Their existence is confirmed based on observations from satellite instruments and

groundbased lidar [58–65]. Aerodynamic microphysical processes to determine ice

particle orientation and fall characteristics have been investigated [61].

The optical properties of oriented ice particles are quite different from those of
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randomly oriented particles, and cause a different radiative impact on the atmosphere.

An accurate modeling of the single-scattering properties of oriented ice particles has

important implications to climate study and remote sensing applications. As previ-

ously stated, the CGOM has inherent flaws, and is thus inappropriate for studying the

optical properties of particles with fixed orientations. For example, the phase func-

tion of oriented ice particles is not a continuous curve, but a set of singular points.

Some attempts to study the optical properties of oriented ice particles based on the

PGOH method can be found in [66,67].
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Fig. 34. Display of the phase function as a function of scattering angle and azimuthal

angles. The direction of incident light makes a 0o (left) and 5o (right) angle

with the six-fold symmetry axis.

In the formulation of CGOM, the backscattering radiation is associated with

scattered beams propagating in the backscattering direction. Therefore, for a specific

orientation with unidentified backscattered beams, the backscattering cross section is

zero. However, in the PGOH, the backscattered radiation can still be considered. The
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Fig. 35. Backscattering efficiency for diffraction and external reflection.

physical reason is the spreading effect of beams propagating near the backscattered

angle. However, backscattered beams in the CGOM could also spread some energy

into other directions. In the following discussion, beam spreading and interference

are crucial concepts in understanding the properties of backscattered radiation for

oriented particles. Two effects associated with the beam spreading and interference

can be understood based on Eq. (4.74). For non-absorptive particles with different

size parameters, Dp exp(ikδp,1) accounts for the beam spreading and phase variance.

To understand the beam spreading effect on the backscattering radiation, we now

investigate the diffraction and external reflection by a hexagonal plate. The higher

order refraction scattering contribution is separated to avoid interference among scat-

tered beams. Two orientations of a plate are considered, the incident light normal to

the top facet and the incident light at a 5o angle from the symmetry axis. Figure 34

illustrates the 2-D phase functions for the two cases, and the spreading of externally
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Fig. 36. Backscattering efficiency for all scattered beams.

reflected beams can be observed. Figure 35 shows the backscattering efficiency with

respect to the particle size. The reflected beam directly contributes the backscat-

tering when the incident light direction is normal to the basal face. As the size

parameter increases, the degree of ray spreading decreases and increased backscatter

results. When the incident direction makes a 5o angle with the six-fold symmetry

axis, the scattering angle associated with the reflected beam in the CGOM is 170o.

In this case, the observed backscattering physically begins from the spreading of the

reflected beam, as shown in Fig. 34. As the size parameter increases, less energy is

spread into the backscattering direction. Similar to the case of Fraunhofer diffraction,

the backscattering efficiency generally decreases but oscillates locally. As can be seen

in Fig. 35, the backscattering efficiency dependence on the size parameter differs for

various plate particle orientations. The results in Fig. 36 are similar to those in Fig.

35 but include consideration of all higher order scattered beams. The interference be-
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tween scattered beams depends on the phase delay associated with total path length.

As a result, the backscatter cross section oscillates significantly with respect to the

particle size. However, the physics of the ray spreading effect determines the behavior

of backscatter in terms of the size parameter.

D. Imperfect Ice Crystals

The optical properties of imperfect hexagonal ice particles are investigated to explain

why halos are rarely observed. Observed ice particle habits generally reveal various

geometric characteristics due to complex temperature and humidity conditions during

their growth. Because of complex atmospheric conditions encountered during particle

growth, the top or bottom facets of ice particles are not generally regular hexagons [4]

and often reveal surface texture. The complexity of ice particle imperfections pose

challenges for realistic numerical simulations of optical properties. To simplify the

modeling procedure, Macke et al. [26] and Hess et al. [68] developed a method to

model ice particle imperfections through statistical ray path deviations in a regular

hexagonal particle with the CGOM. To modify the PGOH method to model ice

particle imperfections, we distort regular hexagonal ice particles instead of using either

the complex polycrystal method [26] or by changing the ray path in the beam-tracing

process [68]. The advantages of the present method are simplicity and efficiency,

which allow calculating consistent single-scattering properties over a wide range of

size parameters.

Figure 37 shows a set of ice particle habits including the basic hexagonal column

or plate. To model imperfect ice particles, we distort the regular hexagonal shape

using two different procedures. Ice particles are given irregular top and bottom faces

but the right angle is kept between the top and six side facets. Specifically, the
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Fig. 37. Model particles chosen to represent both regular and irregular hexagonal ice

particles.

shape of the top face is obtained by randomly choosing two points on each side of a

right triangle to be vertices of a hexagon. To model ice particles with more complex

characteristics such as roughness, we randomly tilt the normal directions of each face

of a regular hexagonal prism. Considering the top face as an example, the normal

direction could be defined through two random numbers ξ1 and ξ2 between 0 and 1

given by,

(
ξ1ξ2, ξ1

√
1− (ξ2)2,

√
1− (ξ1)2

)
. (6.1)

By using the aforementioned procedure, an ensemble of imperfect ice particles can

be generated. The average scattering properties of an ensemble of irregular ice par-

ticles might be expected to represent the realistic optical properties of imperfect ice

particles, although the morphology of model particles is quite different from that of

realistic ice particles. The optical properties of the imperfect model particles can

be easily computed using the present PGOH algorithm. As shown in the following
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Fig. 38. Phase functions computed from the PGOH method for hexagonal particles

with irregular bases.

results, the adoption of irregular habit choices effectively diminishes halo phenomena.

Figure 38 shows the phase functions for hexagonal particles with irregular bases

computed from the PGOH method. For convenience, each side is parallel to its facing

side and the ratio of its longer side to its shorter side is assumed to 1, 2 or 3. When the

ratio is 1, the particle is a regular hexagonal ice particle, the size parameter defined

in terms of the length is 500, and the aspect ratio is 0.5 (diameter divided by length).

Other assumptions are that the surface area of two particles with irregular bases is

the same as for a regular ice particle, the direction of the incident light is normal

to the side faces, and the particle is randomly oriented with respect to a symmetric

axis. We observe some differences in the phase functions simulated from the PGOH

method for the three particles. The irregular base has three 60o vertex angles, and
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Fig. 39. Phase functions computed from the PGOH method for hexagonal particles

with tilted facets.

the 22o halo can be observed. The 154o scattering maximum is reduced for the two

irregular hexagonal columns. The 154o scattering maximum for a regular hexagonal

particle is due to the refracted beams undergoing several internal reflections [24].

Due to less symmetry associated with the irregular ice particles, the 154o scattering

maximum for an irregular hexagonal particle is not observed. Figure 39 shows the

scattering phase function computed from the PGOH for randomly oriented hexagonal

particles with tilted facets. As evident in the figure, the halo peaks observed from

the regular hexagonal particles are diminished. The present method of tilting the

facets of hexagonal ice particles can be employed to simulate the presence of surface

roughness.
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E. Backscattering Color Ratio

In an application to lidar calibration algorithm, we investigate the cirrus clouds

backscattering color ratio, a quantity of the ratio between backscattering cross sec-

tions at the two-lidar wavelengths of 1.064 and 0.532 µm. As a rough approximation,

the color ratio is assumed to be unity. A more accurate value of color ratio can

only be obtained; once more accurate single-scattering properties are provided. A

theoretical simulation was carried out, and the simulated results were compared with

measurements obtained from ground-based instruments. It is found that the color

ratio should be less than unity, and peaks around 0.88. A theoretical explanation in

the principle of ray-spreading effects (or, diffraction of localized waves) was explicitly

demonstrated to reveal the inherent physical processes leading to less-unity color ratio

value.

The CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Obser-

vation) space-based platform includes three co-aligned nadir-viewing instruments.

One is the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), a dual-

wavelength (0.532 and 1.064 µm) lidar. The primary goal of CALIPSO is to improve

the understanding of the role of clouds and aerosols in weather, climate and air quality

processes by providing global altitude-resolved optical properties [69]. For CALIOP

lidar algorithms [70, 71], the backscatter color ratio χ, a ratio of total backscatter

coefficients at 1.064-µm and 0.532-µm channels under ice cloud conditions, is defined

as follows:

χ =
β1.064

β0.532

=

∫ Dmax

Dmin
σsca,1.064(D)P11,1.064(θs = 180o, D)n(D)dD∫ Dmax

Dmin
σsca,0.532(D)P11,0.532(θs = 180o, D)n(D)dD

, (6.2)

where D is the characteristic length of an ice particle that is usually specified in terms

of its maximum dimension [72]. In Eq. (6.2), n(D) is the particle number density,
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σsca is the scattering cross section and P11 is the normalized phase function. The

color ratio describes the spectral variations in the optical properties of a scattering

medium of interest; the optical properties are based on the microphysical properties

of the medium. In the scene classification algorithm [71], the backscatter color ratio

is one of the quantities required in the discrimination of aerosols from cloud particles

and in the inference of cloud thermodynamic phase.

In the lidar calibration algorithm [70], the 0.532 µm channel is calibrated using

the molecular backscattering signal. This method is not applicable to the 1.064 m

channel due to quite weak molecular backscattering at this wavelength. In practice,

however, when cirrus clouds are selected as calibration targets, the 0.532 µm calibra-

tion coefficient can be transferred to the 1.064 µm channel. A prerequisite for this

calibration technique is a priori knowledge of the color ratio values associated with ice

clouds. Traditionally, it has been assumed that ice clouds are spectrally independent,

i.e., χ = 1. Since the color ratio of ice clouds is a critical quantity in the CALIOP

calibration algorithm, recent efforts [73,74] have been made to develop more realistic

χ values. Ground-based lidar measurements of χ at Hampton University in Hampton,

Virginia, were recorded from June 2006 through July 2007 [74], and provided color

ratio values of χ = 0.88± 0.12.

We will focus on direct numerical calculations of χ, and will discuss the physical

mechanisms having an influence on χ. We will also provide estimates of χ based on

assumed ice particle geometries, including both hexagonal and spherical shapes. The

present numerical simulations involve two stages: (1) calculation of ice particle single-

scattering properties, and (2) derivation of ice cloud bulk-scattering properties. The

bulk-scattering properties are obtained by integrating individual ice particle scatter-

ing properties over a particle size distribution.

The single and bulk-scattering properties of ice clouds are calculated for various
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aspect ratios and size parameters at 0.532 and 1.064 µm wavelengths. One basic

feature of hexagonal ice particles is that they have locally planar surfaces that lead

to the enhancement of backscattering. In this study, we are concerned with the ratio

of the spectral sensitivity in the direct backscattering direction. The particle sizes

in cirrus clouds range from several to thousands of micrometers (µm). Therefore,

for the single-scattering calculations, ice particles are assumed to have maximum

dimensions that range from 2 to 10000 µm (the maximum dimension for a column, a

plate or a sphere is its length, width or diameter, respectively). The value of the size

parameter (a quantity proportional to the ratio of the particle maximum dimension

to the incident wavelength) for the two wavelengths is quite different. The refractive

indices for ice at the two wavelengths are m0.532 = 1.3116 + i1.48243 × 10−9, and

m1.064 = 1.3004 + i1.89839× 10−6 [56]. Note that the imaginary part of the refractive

index at 1.064 µm is larger than that at 0.532 µm by three orders of magnitude, which

means that the absorption for large particles is stronger at 1.064 µm than at 0.532

µm. The single-scattering property computations for the nonspherical ice particles are

based on a combination of the finite-difference time-domain (FDTD) method [9, 10]

and an improved geometric optics method (IGOM) [28, 72]. For comparison, the

single-scattering properties of ice spheres are calculated from the Lorenz-Mie theory.

In previous calculations of the bulk-scattering properties [75], the single-scattering

properties were calculated for 45 discrete sizes (called size bins). The single-scattering

property database included a variety of ice habits including hexagonal plates, solid and

hollow columns, 3D bullet rosettes, droxtals, and aggregates. In the intervening years

since the formation of the database, a number of improvements have become available

for light scattering calculations. For example, following Mishchenko and Macke [76],

a new treatment of polarized ray spreading has been incorporated for forward scatter-

ing that now makes obsolete the delta-transmission term for rays that pass through
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two opposing (flat) facets of a hexagonal ice particle. The IGOM has been improved,

especially for the efficiency factors and the phase function at backscattering angles.

The present simulations based on the new IGOM code are limited to hexagonal plates

and columns. The discretization of the particle size has been enhanced with the new

simulations.

Given the individual particle single-scattering properties, the next step is to

calculate bulk-scattering properties that are more representative of ice clouds, from

which the color ratio values are derived. Bulk-scattering properties, and in partic-

ular the backscattering cross section per unit volume, are calculated by integrating

individual particle scattering properties over a given set of particle size and habit

distributions. For this study, ice habits are assumed to be hexagonal columns, plates

or spheres, and a mixture of habits is not considered because a full set of scattering

properties is unavailable for a more extensive set of habits. Future work will explore

similar color ratio calculations for mixtures of habits.

Integration of ice particle single-scattering properties is based on a set of 1117

particle size distributions (PSDs) from the various field campaigns described in Baum

et al. [77]. These campaigns include the First International Satellite Cloud Clima-

tology Project Regional Experiment (FIRE-I), held in 1986 and (FIRE-II), held in

1991; the Atmospheric Radiation Measurement (ARM) Intensive Operation Period

(IOP), held in 2000 near Lamont, Oklahoma; the Tropical Rainfall Measuring Mission

(TRMM) validation campaign in the Kwajelein Islands, the Kwajalein Experiment

(KWAJEX), held in 1999; and the Cirrus Regional Study of Tropical Anvils and

Cirrus Layers (CRYSTAL) Florida Area Cirrus Experiment (FACE), held in 2002.

The data from the FIRE and ARM IOP campaigns were obtained from mid-latitude,

primarily synoptic, cirrus, while the other data were obtained from tropical anvil

(TRMM) or tropical tropopause cirrus (CRYSTAL-FACE). The ice water contents
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Fig. 40. (a) Color ratio as a function of effective diameter for spheres, columns and

plates. (b) Comparison of simulated probability distributions of color ratio

with ground-based lidar measurements from Hampton University [74].

for this set of PSDs range from approximately 10−3 to 1 g m-3, and the median mass

diameters range from 50 to 2000 µm.

Fig. 40 (a) shows the color ratio as a function of effective particle size. The values

of the color ratio for spheres can be larger than 1 and may be as large as 2 for smaller

effective diameters. The values are smaller than unity when the effective diameter is

larger than 400 µm. For plates, the values increase with effective size and approach

unity. As noted previously, color ratio values are smaller for columns than those

for plates. Fig. 40 (b) shows simulated probability distributions of the color ratio

in comparison with that based on ground-based lidar measurements [74]. For both

columns and plates, the entire range of color ratio values is consistent with ground-

based lidar measurements. As mentioned previously, the color ratio for ice spheres
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has a broad range of values ranging from 0.4 to 2. Note that numerical investigations

presented here are based on a simple simulation model that captures the main physics

of ice particles. In fact, realistic ice particles tend to have more complex shapes and

include hollow cavities as well as surface roughening. Furthermore, depending on

the updraft velocity in the environment where the ice particles are located, the ice

particles may not randomly oriented in the atmosphere.
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CHAPTER VII

OPTICAL MODELING OF MINERAL DUST AEROSOLS ∗

To study the optical properties of aerosol particles, we propose two scattering models

based on two different shapes: triaxial ellipsoids and nonsymmetric hexahedra. The

former is round and smooth with sphere as its special case. The latter embodies its

feature of corners and edges, obtained by titling regular hexahedra/cube. As spheres

and cubes fail to reproduce the nonzero elements of phase functions measured in

laboratories, the essential idea of the present modeling approach is to explore the

applicability of the use of simple nonspherical/nonsymmetric geometries to represent

highly irregular aerosol particles in modeling simulation. The reason of doing this

is that measured phase matrix for different aerosol samples demonstrates similar

behaviors with respect to scattering angles, although morphologies of these samples

are quite different. Meanwhile, the essential symmetry of model particles should be

reduced so that the angular scattering pattern is featureless.

There are several criteria to judge the appropriateness or merit of the two pro-

posed scattering models. First, is the proposed model able to reproduce the measured

scattering phase matrix for some sampled aerosols? Second, how many shapes of

model particles are required to reproduce the measured data? Third, how sensitive of

the model to shape distributions in mimicking the measurements for the same aerosol

sample but at different wavelengths? As significant efforts are required at the present

stage to obtain optical property databases of defined nonspherical geometries for var-

∗Part of this chapter is reprinted with permission from “Single-scattering proper-
ties of tri-axial ellipsoidal particles for a size parameter range from the Rayleigh to
geometric-optics regimes” by L. Bi, P. Yang, G. W. Kattawar, and R. Kahn, Appl.
Opt. 48, 114-126, and “Modeling optical properties of mineral aerosol particles by
using Nonsymmetric hexahedra” by L. Bi, P. Yang, G. W. Kattawar, and R. Khan,
Appl. Opt. 49, 334-342.
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ious morphology parameters and refractive indices, it is still difficult to conduct a

systematic comparison study of nonspherical geometries published in literature. We

report some typical numerical studies and comparisons for the two aforementioned

representative nonspherical/nonsymmetric model geometries.

A. Introduction

Mineral dust is a major component of atmospheric aerosols over large areas of the

globe, especially near source regions, such as the Sahara and Gobi deserts [78]. These

particles exert a significant influence on the terrestrial climate, radiative forcing, and

energy budget through direct scattering and absorbing of solar radiation and terres-

trial thermal emission and indirect effects through interactions with clouds [79–83]. To

quantify the radiative impact of aerosol particles, there has been significant research,

both experimentally and theoretically, on the optical properties of realistic dust parti-

cles and their consequent effect on the transfer of radiation in the atmosphere [84–91].

The nonsphericity of airborne dust-like particles has been widely recognized as an im-

portant factor in remote sensing of the optical and microphysical properties of these

particles. Especially, it has been shown that neglecting the nonsphericity of aerosol

particles may lead to large errors in aerosol property retrieval [87, 88, 92, 93]. The

scanning electron microscope (SEM) images of some sampled aerosol particles [36]

show that the morphologies of these irregular particles are very complicated. Specifi-

cally, these particles have small-scale structures, but lack well-defined overall shapes.

In numerical modeling of the optical properties of dust particles, it is unrealistic to

account for the morphological details of these particles. The application of simple ge-

ometries to complex particle optical property simulation has been discussed by Macke

and Mishchenko [94] and Kahnert et al. [95]. To account for the nonsphericity in many
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previous studies reported in the literature, rounded dust particles (for example, Sa-

haran dust) are usually assumed to be spheroids (i.e., ellipsoids of revolution) as a

first-order approximation for the overall shapes of these particles [96–99] although

some more complicated particle geometries have also been considered (e.g., [46,100]).

Realistic dust aerosols are almost exclusively irregular particles without any particular

symmetry. It is shown that retrieving mineral aerosol particle complex refractive index

based on the spheroidal model from measured scattering matrices [36] always overesti-

mates the imaginary part. To match theoretical simulations with measurements, one

has to use unphysical complex refractive indices and shape distributions [101]. Most

recently, Nousiainen [102] summarized the current status of the optical modeling of

mineral dust particles.

B. Model Simulations: Triaxial Ellipsoids

It requires one degree of freedom (i.e.,particle size) to specify the geometry of a

spherical particle, whereas two degrees of freedom (the particle maximum dimension

and aspect ratio) are needed to specify the geometry of a spheroidal particle. The

dimensions of an ellipsoid along three orthogonal axes may be different. Thus, el-

lipsoid geometry has one more degree of freedom than the commonly used spheroid

geometry, and the former is a better approximation to the shapes of realistic dust

particles. Chobrial and Sharief [103] estimated that the aspect ratios of the three

axes (hereafter, indicated by a, b, and c) of sandstorm particles are approximately

c:b=1:0.71 and b:a=0.71:0.53. For simplicity, in the following discussions the two

aspect ratios, c:b=1:0.71 and b:a=0.71:0.53, are indicated in a concise form given by

c:b:a=1:0.71:0.53.

We investigate the single-scattering properties of dielectric and homogeneous
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ellipsoidal particles for a complete size parameter spectrum. The analytical solution to

the scattering of light by an ellipsoid has been partially solved [104–106]. However, the

analytical solution is computationally stable only in the case of quite small particles.

To compute the single-scattering properties of ellipsoids with size parameters required

for practical remote sensing applications, numerical methods, such as the T-matrix

[107–109], DDA [13,15], FDTD [10,110], and PSTD methods [44,45] can be used for

small to moderate size parameters.

For large particles, approximate approaches such as the anomalous diffraction

theory [19] and the so-called physical optics approximation method [111] have been

applied to arbitrarily oriented ellipsoids. However, in both the approximate methods,

only the angular patterns of the scattered light associated with oriented ellipsoids

have been studied. For many practical applications involved in atmospheric radiative

transfer simulation and remote sensing, it is necessary to compute the full scattering

matrix, extinction efficiency and single-scattering albedo of randomly oriented parti-

cles. In this study, we employ the IGOM algorithm developed by Yang and Liou [28]

and a DDA code ( ADDA 0.77) developed by Yurkin and Hoekstra [15] to compute a

complete set of optical properties for large and small ellipsoidal particles, respectively.

1. Geometry of Ellipsoid

Fig. 41 shows the geometry of an ellipsoid and the configurations of two coordinate

systems. The geometry of an ellipsoid centered at the origin can be completely

described by its surface equation in the Cartesian coordinate system oxyz as follows:

x2

a2
+
y2

b2
+
z2

c2
= 1, (7.1)

where a, b and c are principal radii (or semi axes) along three orthogonal directions.

When any two of them, say a and b, are the same, the ellipsoid reduces to a spheroid.
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Fig. 41. Geometry of a non-axially-symmetric ellipsoid in oxyz and ox′y′z′ coordinate

systems.

The oxyz coordinate system is usually called the particle coordinate system, distin-

guished from the incident ray coordinate system ox′y′z′ used for specifying scattering

angle and the scattering plane. In this study, the direction of the incident ray is

along oz′, and the directions of parallel and perpendicular polarizations are specified

along the x′− and y′−axes, respectively. The coordinate transformation from ox′y′z′

to oxyz is given by
x

y

z

 =


sin β − cos β 0

cos β sin β 0

0 0 1




1 0 0

0 cos θ sin θ

0 − sin θ cos θ




x′

y′

z′



=


sin β − cos θ cos β − sin θ cos β

cos β cos θ sin β sin θ sin β

0 − sin θ cos θ




x′

y′

z′

 , (7.2)
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where θ and β are two angles that specify the direction of incident ray in the particle

coordinate system. In the incident ray coordinate system, the surface equation of the

ellipsoid is given by

Dz′ = −E ± abc
√
D − (Ax′2 +By′2 + Cx′y′), (7.3)

where

A = (a2 − b2) cos2 θ cos2 β + b2 cos2 θ + c2 sin2 θ,

B = a2 sin2 β + b2 cos2 β,

C = (a2 − b2) sin(2β) cos θ,

D = c2 sin2 θ(a2 sin2 β + b2 cos2 β) + a2b2 cos2 θ,

E = (a2 − b2)c2 sin β cos β sin θx′ + [a2(c2 − b2) + c2(b2 − a2) cos2 β] sin θ cos θy′.

The plus and minus signs in equation (7.3) describe the illuminated and non-illuminated

sides, respectively. The edge (or shadow boundary) that connects the illuminated and

non-illuminated sides is determined by the following equation:

Ax′2 +By′2 + Cx′y′ = D; z′ = −E/D. (7.4)

It can be shown that the interface of the illuminated and non-illuminated sides is an

ellipse. If A = B, the semi axes of the ellipse is given by

ā =

√
D

A− C/2
, (7.5)

b̄ =

√
D

B + C/2
, (7.6)
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otherwise (A 6= B),

ā =

√
D(1− tan2 ω)

A−B tan2 ω
, (7.7)

b̄ =

√
D(1− tan2 ω)

B − A tan2 ω
, (7.8)

where ω is given by

ω =
1

2
arctan

C

B − A
. (7.9)

Note that the plane containing the ellipse is not perpendicular to the direction of the

incident light, and ω is zero for spheroids, i.e. when a is equal to b. It can be proved

that the projected area is

S = πāb̄ = π
√
D. (7.10)

Employing the following transformation

x′ = cosωx̄′ + sinωȳ′, (7.11)

y′ = − sinωx̄′ + cosωȳ′, (7.12)

which means the rotation from o− x′y′ to o− x̄ȳ by an angle ω, we obtain a similar

ellipse equation for the projection of the particle onto the ox′y′ plane, given by

x̄′
2

ā2
+
ȳ′

2

b̄2
= 1. (7.13)

The preceding ellipsoid geometry description in both the particle coordinate system

and the incident coordinate system is quite useful in the ray-tracing, diffraction and

edge-effect calculations. Similar results can be found in [19], where the differences

in formula are due to different coordinate conventions and definitions of the Euler

angles.
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2. Ray Tracing

Fig. 42. Schematic geometry for the ray-tracing calculations involving a triaxial ellip-

soids.

The basic principle of the IGOM is to calculate the electromagnetic field on the

surface of the ellipsoid by using the ray-tracing technique, as illustrated in Fig. 42.

The corresponding far-field is obtained by mapping the near-field to its counterpart in

the radiation (or, far-field) zone. The magnitude and phase of each ray is calculated

based on the localized-plane-wave approximation by using the Fresnel formulas. The

directions of external reflection, internal reflection and refraction are determined by

Snell’s law. The first step for the ray-tracing calculation is to initialize the incident

rays and determine the intersection points. The intersection points of the incident

rays with the particle are determined by the Monte Carlo method in the incident
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coordinate system as follows:

x′ = ā
√
ξ cosω cos(2πχ) + b̄

√
ξ sinω sin(2πχ), (7.14)

y′ = −ā
√
ξ sinω cos(2πχ) + b̄

√
ξ cosω sin(2πχ), (7.15)

z′ = [−E − abc
√
D − (Ax′2 +By′2 + Cx′y′)]/D, (7.16)

where ξ and χ are two random numbers with a uniform probability distribution

between 0 and 1. The ray tracing process is carried out in the particle system, in which

the incident point coordinates are obtained by the coordinate transformation given

by Eq.(7.2). According to Snell’s law, the surface normal direction n̂ at the incident

point (x1, y1, z1) is needed to determine the reflection and refraction directions. Given

the surface equation (7.1), we have

n̂ = (x1/a
2, y1/b

2, z1/c
2)/
√
x2

1/a
4 + y2

1/b
4 + z2

1/c
4. (7.17)

Given the initial point (x1, y1, z1) on the surface and direction of the ray within

the particle, the ray tracing process requires the next intersection point (x2, y2, z2),

which can be determined by

(x2, y2, z2) = (x1, y1, z1) + d(v1, v2, v3), (7.18)

d = −2x1v1/a
2 + 2y1v2/b

2 + 2z1v3/c
2

v2
1/a

2 + v2
2/b

2 + v2
3/c

2
, (7.19)

where d is the length of the internal ray and (v1, v2, v3) is the unit vector of its

direction. Using Eqs. (7.17)-(7.19), Snell’s law, and the Fresnel formulas, the ray-

tracing calculation can be carried out until the energy associated with the ray of

interest is effectively negligible (say, 10−5). The technical details associated with the

electromagnetic field computation in the ray-tracing technique can be found in Yang

and Liou [28].
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3. Diffraction

Fig. 43. Diffraction of an ellipsoid with an elliptic projection. Semi axes ā and b̄ and

rotation angle ω are defined in Eqs.(7.7)-(7.9).

In addition to the contributions from the reflected and refracted rays involved in

the ray-tracing calculation, the diffraction of the incident wave also contributes to the

scattered energy. Using the surface mapping technique, Yang and Liou [30] showed

that the amplitude scattering matrix for diffraction is given as follows

Adif =
k2

2π
Is

 (cos θs + cos2 θs)/2 0

0 (1 + cos θs)/2

 , (7.20)

and

Is =

∫ ∫
s

exp(−ikr̂ · ~ξ)d2ξ, (7.21)

where θs is the scattering angle, s is the projected area, k is the wave number and r̂

is a unit vector pointing along the observational direction, as illustrated in Fig. 43.
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The explicit form of the integral in Eq. (7.21) for an ellipse can be given in the form

of

Is = πāb̄
2J1(k sin θs

√
ā2 cos2 φ+ b̄2 sin2 φ)

k sin θs
√
ā2 cos2 φ+ b̄2 sin2 φ

, (7.22)

where J1 is the first-order Bessel function, and φ is the azimuthal angle, which specifies

the scattering plane.

4. Integrated Scattering Properties

Fig. 44(a) shows the extinction efficiency, absorption efficiency, single-scattering

albedo and asymmetry factor of randomly oriented ellipsoids at 0.66µm wavelength.

The refractive index is 1.53 + i0.008 based on Levoni et al. [112]. The axis ratios are

assumed to be a : b : c = 0.53 : 0.71 : 1. The size parameter is defined in terms of the

radius of equivalent volume spheres. The ADDA code is employed for size parameters

ranging from 0.5 to 30. The IGOM code with the inclusion of the edge effect is applied

to a size parameter region from 15 to 1000. Agreement is shown for size parameters

between 15 and 30, which means that the IGOM method is successfully extended to

the small size parameter region (∼ 15) by adding the missing physics (i.e. the edge

effect contributions). Additionally, the absorption efficiency for size parameters from

the Rayleigh to geometric optics regimes can also be effectively computed in the con-

text of a combination of the DDA, IGOM and edge effect contributions. Fig. 44(b) is

similar to Fig. 44(a), except that the aspect ratios for Fig. 44(b) are 0.30 : 0.70 : 1.0.

Again, a smooth transition from the DDA solutions to the IGOM results is noticed.

Fig. 45 showes the integrated single-scattering properties at 12.0µm wavelength

for two aspect ratios. The refractive index at this wavelength is 1.5502+i0.0916, which

means that ellipsoids are quite absorptive. Similar to the cases shown in Fig.44, the

results from the DDA converge to those from IGOM but more smoothly. The results
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Fig. 44. Integrated single-scattering properties (extinction efficiency, absorption ef-

ficiency, single scattering albedo, and asymmetry factor) of randomly ori-

ented ellipsoids. The wavelength is 0.66 µm, the complex refractive index is

1.53 + 0.008i, and the aspect ratios are a : b : c = 0.53 : 0.71 : 1.00, and

a : b : c = 0.30 : 0.70 : 1.00 for left and right panels, respectively.

from IGOM are more accurate in those cases having stronger absorption. Note that

we did not consider the edge effect contribution in the asymmetry factor computation,

but the asymmetry factor calculated from the DDA also converges to that from IGOM.

This is due to the fact that diffraction dominates the scattered intensity pattern. The

edge effect correction to the phase function should slightly influence the asymmetry

factor.
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Fig. 45. Same as Fig. 44 except that the wavelength is 12µm. The complex refractive

index is 1.5502 + 0.0916i. The aspect ratio: a : b : c = 0.53 : 0.71 : 1.00 (a),

and a : b : c = 0.30 : 0.70 : 1.00 (b).

5. Phase Matrix

In this section we compare the nonzero phase matrix elements computed by the

DDA and IGOM. We consider two wavelengths corresponding to weak and strong

absorption and two axis ratios (0.53 : 0.71 : 1 and 0.30 : 0.70 : 1.0). The size

parameter is defined in terms of volume-equivalent sphere and is assumed to be 30

for all the cases.

In Fig. 46, the wavelength we considered is 0.66 µm, and the axis ratios are

0.53 : 0.71 : 1 and 0.30 : 0.70 : 1.0 for the left and right panels, respectively. The

excellent agreement between the phase functions (P11) from the two methods is found.

For other phase matrix elements, differences are noticeable. Fig. 46(a) and Fig.
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Fig. 46. Comparison of the phase matrix of an ellipsoid computed from the IGOM

and DDA method at a size parameter of 30. The aspect ratio: 0.53 : 0.71 : 1.0

(a), and 0.30 : 0.70 : 1.0 (b).

46(b) are quite different for each nonzero element. This means that the phase matrix

elements are sensitive to the axis ratios of ellipsoids. For the P11 element, the phase

function in (b) is quite featureless, whereas the phase function in (a) has some features.

Fig. 47 shows nonzero phase matrix elements at 12µm wavelength. The axis

ratios are also assumed to be 0.53 : 0.71 : 1 and 0.30 : 0.70 : 1.0 for the left and right

panels, respectively. In Fig. 47, the agreement of the phase function (P11) from the

two methods is also observed. The differences for other elements are still noticeable;

however, the IGOM results turn out to be better for the case with strong absorption.

The fact that the accuracy of the IGOM is related to the absorption has also been

reported in a previous study [99]. The curves for P12 from the DDA and IGOM

agree with each other when θ is larger than 90o. In comparison with weak absorption
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Fig. 47. Same as Fig. 46 except the wavelength is 12µm. The aspect ratio:

0.53 : 0.71 : 1.0 (a), and 0.30 : 0.70 : 1.0 (b).

cases, the phase matrix elements for 12 µm are quite smooth without pronounced

oscillations. Unlike Fig. 46, Fig. 47(a) and (b) are quite similar. The reason is

that, in the strong absorption case, external reflection and diffraction dominate the

scattering process, and internal reflection and refraction are quite weak. Therefore,

the single-scattering quantities are not sensitive to the axis ratios, especially, under

random orientation conditions.

6. Simulation and Measurement

To examine the applicability of an ellipsoidal model to realistic dust particle bulk

scattering property simulation, we compare the simulated phase function with that

from laboratory measurement for feldspar aerosol particles. The full scattering phase

matrix was measured by Volten et al [84] at wavelengths 0.442 and 0.633 µm. We
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choose the 0.633-µm case for the comparison of the simulations of the phase matrix

elements against their experimental counterparts. The measured data of the bulk

phase matrix elements are for scattering angle 5o ∼ 173o, and the phase function

(i.e., P11) is normalized to 1 at 30o. Measurements near forward and backward scat-

tering were not carried out due to technical difficulties. The size distributions of

feldspar samples were provided by Volten et al [84] along with the effective radii. The

effective variance was assumed to be 1.0. Nousiainen and Vermeulen [113] employed

a lognormal size distribution

n(r) =
Ntot√

2π ln(10) log(σ)r
exp{− [log(r)− log(R)]2

2[log(σ)]2
}, (7.23)

where R is the mean radius and σ is the geometric standard deviation, which is

specified by fitting the formula to the measured size distribution. With R = 0.167µm

and σ = 2.32 in Eq. (7.23), the effective radius and variance for the fitted size

distribution are 0.98µm and 1.02, respectively, when r ∈ [0.08, 100]µm.

The measured phase matrix of feldspar particles was compared with theoretical

simulation based on spheroidal shapes [113]. It demonstrates that using spheroids was

far superior to using spheres for approximating nonspherical feldspar particle shapes

in scattering computation. Ellipsoid has one more degree of freedom and lower sym-

metry than spheroid. Thus, it is expected that ellipsoids offer a better approximation

of realistic irregular particles. To test this speculation, we first compute the bulk scat-

tering properties of spheroids from a combination of the T-matrix simulations [107]

and the present IGOM for the lognormal size distribution in Eq. (7.23). To match

the experimental data, four sets of aspect ratios (0.4583:1, 0.6481:1, 0.5477:1, and

0.4472:1) are assumed for spheroids in the bulk scattering phase matrix computation

via the following formula:
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< Pij >=

∑4
k=1Wk

∫
P k
ij(r)σ

k
sca(r)n(r)dr∑4

k=1Wk

∫
σksca(r)n(r)dr

, (7.24)

where P k
ij is the normalized Pij element for kth axis ratio, σk is corresponding scatter-

ing cross section, and Wk is corresponding weight. The best agreement between the

theoretical and experimental results is achieved when the weights for the four aspect

ratios are 0.4444, 0.0525, 0.1676, and 0.3357.
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Fig. 48. Comparison of the bulk phase function from laboratory measurement [84] with

the present simulations based on spherical, spheroidal, and ellipsoidal models.

Furthermore, we define volume-equivalent ellipsoids, and define the c-axis of an

ellipsoid to be the same as that of its volume-equivalent spheroid. However, the

lengths of the other two axes of the ellipsoid are different, so a tri-axial ellipsoid
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is formed. We select four sets of aspect ratios, which are given by a:b:c= 0.3:0.7:1,

0.6:0.7:1, 0.5:0.6:1, and 0.4:0.5:1. The best agreement between the measurements and

theoretical simulations is observed when the weights are selected as 0.3168, 0.0683,

0.1730, and 0.4420 for aspect ratios a:b:c= 0.3:0.7:1, 0.6:0.7:1, 0.5:0.6:1, and 0.4:0.5:1,

respectively. Fig. 48 shows the comparison between the measured phase matrix and

the theoretical simulations based on spherical, spheroidal, and ellipsoidal shapes. The

simulated P11 values are normalized to 1 at scattering angle θs = 30o. It is evident

that the phase matrix elements simulated on the basis of the ellipsoid model (red

lines) agree better with the measured data than those based on the spheroid model

(blue lines), whereas the sphere model (dashed black lines) leads to much larger

discrepancies, particularly, in backward directions (> 90o). The phase functions (P11)

simulated from the spheroid and ellipsoid models are quite similar. However, in terms

of agreement with the measurements, the ellipsoid model are more accurate than

the spheroid model for simulating the other phase matrix elements associated with

polarization, particularly, in the cases of −P12/P11 , P22/P11, P33/P11, and P44/P11

for scattering angles larger than 90o.

Note that we used only four aspect ratios for spheroids and ellipsoids. This

case study demonstrates that the ellipsoid model is better than spheroid model for

simulating the polarization characteristics of nonspherical feldspar particles. Selecting

an optimized shape (i.e., aspect ratio) distribution of ellipsoids in the optical property

computation for realistic dust particles deserves further investigations.

C. Model Simulations: Nonsymmetric Hexahedra

Under the assumption of independent scattering, the optical properties of an en-

semble of particles depend on the particle shape mixture, refractive index and size
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distribution. Laboratory measurements [84] demonstrate that the scattering matrices

of several dust samples have similar patterns over a wide range of scattering angles,

although the particle geometries, shown by scanning electron microscope (SEM) im-

ages, of these samples are quite different. Quantitative differences of the scattering

matrices are mainly attributed to the differences in the complex refractive index and

the particle size distribution [84] . Guided by the measurements, a straightforward

approach to modeling the single-scattering properties of dust aerosols is to use an

ensemble of relatively regular nonspherical geometries to represent realistic dust par-

ticles that have complicated morphologies [94–96] by employing estimated refractive

indices and measured size distributions.

In some previous studies [96–99], spheroids were assumed to be the first-order

approximation to the overall shapes of irregular dust aerosols. A recent study [114]

explored the use of tri-axial ellipsoids to improve the spheroid model by adding the

degree of freedom in the particle morphology. Gaussian spheres and other much more

complicated geometries have also been suggested in several recent studies [46, 115].

Other simplified approaches were investigated to model the scalar optical properties

of randomly oriented irregular particles [116–119]. Although the spheroid model is

quite successful in modeling the optical properties of mineral particles, it suffers from

some shortcomings. For example, the scattering properties of an ensemble of single-

shaped (i.e., with a specific aspect ratio) spheroids or even tri-axial ellipsoids have

angular features inherent to the specific geometries of these particles. To match the

theoretical simulations to laboratory measurements, an artificial shape distribution

and a relatively large imaginary part of the refractive index are necessary [101].

Although relatively regular geometries such as cylinders, hexagonal columns/plates,

droxtals, platonic particles, and polyhedral prisms have been extensively exploited in

optical modeling of particulate matter in the atmosphere [26,100,120–124], this study
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is intended to explore the use of nonsymmetric geometries to simulate dust optical

properties. To mimic realistic dust particles, the present geometries are defined to

have sharp edges and corners without symmetry, aimed at producing a featureless

scattering pattern even if a single geometry rather than a mixture of various ge-

ometries is used. Guided by the fact that ellipsoids can be regarded as deformed

spheres, a straightforward approach to obtaining nonsymmetric geometries possess-

ing sharp edges/corners and planar faces is to deform regular hexahedra. Fig. 49

shows the nonsymmetrical hexahedra produced by deforming a regular hexahedron.

The mathematical parameters to define the geometry of a nonsymmetric hexahedron

will be given in Subsection 1. The present study is directed toward understanding

the characteristics of the optical properties of nonsymmetrical hexahedra, and the ap-

plicability of the nonsymmetrical hexahedron model to the simulation of laboratory

measurements of the optical properties of realistic dust particles.

We compare theoretical simulations with laboratory measurements of the optical

properties of quartz and the dust particles from the Pinatubo eruption. The geome-

tries of these samples are quite different, but they have similar complex refractive

indices whose real parts are in the range 1.5 − 1.7. In the present simulation, the

refractive index is assumed to be 1.5 + i0.001. The experimental data show that the

scattering matrix elements for different aerosols have similar patterns over a wide

range of scattering angles [84].

1. Nonsymmetric Hexahedron Generator

A hexahedron is a 3D solid with six faces. Topologically, there are seven types of

convex hexahedra, corresponding to different arrangements of faces and vertices [125].

For simplicity, we confine this study to irregular hexahedra with topologies similar to

that of a cubic particle (i.e. quadrilateral faces, eight vertices and twelve edges). One
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Fig. 49. Symmetric and nonsymmetric hexahedra

degree of morphological freedom (i.e. particle size) is required to specify the geometry

of a cube, whereas three parameters are needed to define a regular hexahedron having

different side lengths: the particle maximum dimension (c) and two aspect ratios (a/c

and b/c), as shown in Fig. 49. To obtain irregular hexahedra, one practical way is to

randomly tilt the faces of the corresponding regular hexahedra, whereas the centers

of all the faces are fixed. Mathematically, the six faces of a hexahedron can be defined

via

~ni · (~p− ~pci) = 0, (i = 1, 6), (7.25)

where ~p is the position vector, n̂i denotes the normal direction of a face, and ~pci

denotes the corresponding position vector of the center of the face. The solution to

Eq. (7.25) gives the coordinates of the eight vertices. Therefore, one hexahedron can

be generated by specifying normal directions of six faces. To obtain nonsymmetric

hexahedra, the Monte Carlo method can be employed. As an example, the normal

direction of the top face can be determined by:

n̂1 = (sin θ cosφ, sin θ sinφ, cos θ). (7.26)

In the preceding expression, θ and φ are the zenith and azimuthal angles, respec-

tively, and can be determined in terms of two random numbers, ξ1 and ξ2 , uniformly
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distributed between 0 and 1, as follows:

θ = θmaxξ1, φ = 2πξ2 (7.27)

where θmax is a parameter introduced to restrict the range of the value of θ. The

normal directions of the remaining five faces can be determined in a similar way. To

maintain the topology, it is necessary to preserve the relative position of the eight

vertices. To this end, we introduced a restriction condition: the smallest z/y/x coor-

dinates of top/left/front vertices should be larger than the largest z/y/x coordinates

of the bottom/right/back vertices. If this condition is not satisfied, another set of

random numbers will be generated. Once a new nonsymmetric hexahedron is gener-

ated, the surface area is normalized to that of a unit sphere by scaling the position

of all the vertices ~Pi(i = 1− 8) as follows:

~p′i = ~pi
√

4π/S (7.28)

where ~p′i denotes the coordinates of the corresponding irregular hexahedra with the

same surface areas as that of the unit sphere. In this way, the shapes of irregular

hexahedra have been completely determined and the size parameter can be quantified

in terms of the radii of surface-area equivalent spheres. In the simulation, if the size

is defined in terms of the radius (r) of a surface-area equivalent sphere, the vertices of

the irregular hexahedron need to be scaled to r~p′i . One class of irregular hexahedra

with the same inscribed sphere is of particular interest, and it can be proven that the

effective radius is a constant. Here the definition of the effective radius [119, 126] is

given by

reff =
3V

4A
(7.29)
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where V is the volume and A is the average projected area. Consider a sphere with

a radius r; we randomly select six points on the surface. An irregular hexahedron

can be constructed by taking the normal directions on the sphere at the six selected

points as those of the six faces of an irregular hexahedron. Therefore, we have,

V =
r

3

6∑
i=1

Si (7.30)

where Si is the area of the ith face. Evidently, the effective radius is equal to r. This

result can also be obtained for an arbitrary shape with the same inscribed sphere [127].

2. Typical Numerical Results
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Fig. 50. Phase function of randomly oriented cubes and nonsymmetric hexahedra cal-

culated from the IGOM.

In this section, we present the single-scattering properties of nonsymmetric hexa-

hedra. We also present a comparison between the present simulations and laboratory
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measurements. An ensemble of hexahedra with various shapes is generated. The

characteristic morphology of this ensemble is specified by two aspect ratios (a/c, and

b/c) of the regular hexahedron and the maximum tilting angle θmax. For simplicity,

θmax is assumed to be 0.4π, and two aspect ratios are selected to be the same. The

single-scattering properties of selected nonsymmetric hexahedra from this ensemble

are presented in this section.

Fig. 50(a) shows the phase function computed from IGOM for randomly oriented

cubes at a refractive index of m=1.5+i0.001 for three size parameters. It is found

that the phase functions have quite large values near the backscattering direction.

The phase function of a cube from the conventional geometric optics method has also

been investigated in [128]. However, from aerosol measurements, the phase functions

for dust analogs are flat near the backscattering direction. Therefore, a regular hex-

ahedron is not a proper shape model for dust aerosols. Fig. 50(b) is similar to Fig.

50(a), except for nonsymmetric hexahedra. It is evident that the magnitude of the

backscattering phase function substantially decreases after the particle symmetry is

eliminated. As seen in this figure, eliminating the symmetry of a regular hexahedron

may be an effective method to more realistically model the phase function of dust.

In the geometric optics method, the contributions to the phase function are from the

diffraction, external reflection and transmission. The angular distribution of the ex-

ternal reflection feature does not depend on shape for randomly oriented distributions

of particles. The diffraction feature associated with the phase function oscillations

may be smoothed out through averaging over orientations and sizes. To obtain a fea-

tureless phase function, a straightforward method is to make the transmission part

featureless. To this end, tilting the normal direction of a regular hexahedron is a

simple yet effective approach.

Fig. 51 shows the integrated single-scattering properties (extinction efficiency
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Fig. 51. Integrated scattering properties computed from the DDA method and IGOM

for randomly oriented nonsymmetric hexahedra

Qe, single-scattering albedo ω, and asymmetry factor g ) for randomly oriented non-

symmetric hexahedra. We employ the DDA method when the size parameter defined

in terms of an equivalent-surface sphere is less than 10. The optical properties from

the larger size parameter objects are computed from the IGOM. It is evident from Fig.

51 that a combination of the DDA and IGOM can provide reliable single-scattering

properties for a wide range of size parameters, similar to the cases of spheroids and

tri-axial ellipsoids [99, 114]. Small inconsistency of efficiency factors from the DDA

and the IGOM is removed by adjusting the coefficients of edge effects [99,114].

To validate the calculation of the IGOM, we compare the phase function of a

randomly oriented nonsymmetric hexahedron simulated from the ADDA and IGOM

at the size parameter of 10. To examine the diffraction and external calculation, Fig.

52 shows the phase function at the refractive index of 1.55 + i1.0 (i.e. the particle is

strongly absorptive). The contribution of outgoing refracted wave to the scattering
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Fig. 52. Comparison of six elements of the phase matrix of a nonsymmetric hexahedron

simulated from the IGOM and ADDA. The particle is strongly absorptive.

The agreement of results from the IGOM and ADDA indicates the validity

of the calculation of the diffraction and external reflection in the IGOM at a

size parameter of 10.

pattern can be properly neglected. An excellent agreement of the results from the

ADDA and IGOM indicates that the calculation of diffraction and external reflection

from the IGOM is properly accounted with a very good accuracy. Fig. 53 is the same

as Fig. 52 except that the refractive index is 1.55 + i 0.001. In this case, the accuracy

of the IGOM is not as good as that in Fig. 52; however, the IGOM can provide a

general profile of six elements of the phase matrix as function of scattering angle. As

the ADDA method is extremely time-consuming for randomly oriented nonsymmetric

hexahedra, a combination of the ADDA and IGOM is employed to cover a complete

range of size parameters with a transitional point of 10.
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Fig. 53. Same as Fig. 52, except that the nonsymmetric hexahedron is semi-transpar-

ent.

3. Simulation and Measurement

We compare theoretical simulations with laboratory measurements of the optical

properties of quartz and the dust particles from the Pinatubo eruption. The ge-

ometries of these samples are quite different, but they have similar complex refractive

indices whose real parts are in the range 1.5 1.7. In the present simulation, the re-

fractive index is assumed to be 1.55+i0.001. The experimental data show that the

scattering matrix elements for different aerosols have similar patterns over a wide

range of scattering angles [84].

Fig. 54 shows the comparison of six elements of the phase matrix for sampled

quartz particles [84]. For the present computation, three nonsymmetric hexahedral

shapes are employed. The effective radius is 2.3 µm and the variance is 1.5. Close
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Fig. 54. Comparison of simulated results of hexahedra with measurements for quartz

particles at the wavelength of 0.633 µm.

agreement between the simulated results and measurement data is observed. For

comparison, the simulated results from the Lorentz-Mie theory are also presented.

As expected, the results associated with nonsymmetric hexahedra are significantly

better than their spherical counterparts in comparison with the measurements. It

should be pointed out that the agreement of the elements obtained with the present

model cannot be reproduced by using prisms (i.e., polyhedra with symmetry). The

range of variation in the curve produced using the regular prism model is narrow, and

the curve of the experimental data is out of the range [129]. Therefore, it is difficult

to match the experimental data with simulations based on the prism model, even

though an aspect-ratio distribution is employed for the regular prism model.

Fig. 55 shows the characteristics of the single-scattering properties simulated for
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Fig. 55. Simulated bulk-scattering properties from single shape. The left panel is for

three nonsymmetric hexahedra. The right panel is for three tri-axial ellipsoids.

The size distribution is the same as that employed in Fig. 54.

several shapes. The left panel is for three nonsymmetric hexahedra generated from

the Monte Carlo method. The right panel is for three tri-axial ellipsoids. It is demon-

strated that the phase functions of the ellipsoids possess features at scattering angles

between 60o and 180o except in the case of an extreme aspect ratio. This explains

the fact that the ellipsoids with extreme aspect ratios usually have a larger weight in

the particle aspect ratio distribution to match theoretical results with measurement

counterparts. For nonsymmetric hexahedra, the backscattering phase function has

no oscillating features. Therefore, it is more appropriate to use nonsymmetric hex-

ahedra to mimic the laboratory measurements. The P22/P11 curves for hexahedra

and ellipsoids show the similar behavior.

Similar to Fig. 54, Fig. 56 shows the comparison of the six elements of the phase

matrix for sampled Pinatubo particles [84]. The effective radius of the Pinatubo
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Fig. 56. Same as Fig. 54, but for the pinatubo aerosol sample

sample is 3 µm and the variance of the size distribution is 12.3. We used the same

nonsymmetric hexahedra as those for quartz particles. The final results are not

sensitive to the weights of the different shapes. Reasonably good agreement is again

obtained when the theoretical results are compared with the measurements. It should

be pointed out that the geometries of quartz and Pinatubo aerosol samples are quite

different and also have different size distributions. However, the same nonsymmetric

hexahedron model for particle shape (but with different effective size and variance)

can be used to simulate of the phase matrix of these two different aerosol samples,

demonstrating that a relatively simple geometry can be used to represent complicated

nonspherical aerosols in scattering computation.

This sensitivity study is directed toward answering the question of whether the

present model captures the main effects of the nonsphericity and irregularity of real-
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istic mineral aerosols in computing their optical properties. In reality, the properties

of dust particles are very complicated. For example, dust particles may be inhomo-

geneous, and the refractive index and shape may be size-dependent. For moderate or

even larger particles, the effect of surface texture and roughness may be important.

Although the laboratory measurements also have some uncertainties, the comparison

between the present simulation and laboratory data suggests that the nonsymmetric

hexahedron model is a quite promising for studying dust aerosol optical properties.

To further develop this model for application to aerosol study, a systematic and ac-

curate database of the optical properties of individual nonsymmetric hexahedra is

required. This database may provide a relatively realistic aerosol model that could

be applied to aerosol retrieval studies [130–132].
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CHAPTER VIII

SUMMARY AND CONCLUSIONS

In this dissertation, we have systematically developed the current numerical tech-

niques for the solution of light scattering by nonspherical particles in a complete

range of size parameters, and have studied the optical properties of ice crystals and

mineral dust aerosols in the atmosphere. We have developed a new PGOH method,

which is applicable to arbitrary oriented ice crystals with complex refractive indices.

With this mew PGOH algorithm, the accuracy of PGOH simulations is much better

understood. In addition, the knowledge of electromagnetic tunneling effect involved

in scattering is advanced through proposed numerical study, and semi-emprical for-

mulae. The consideration of edge effect is essential to obtain smooth transition from

Rayleigh regime to geometric optics regimes.

We have modeled the optical properties of randomly oriented ice crystals, ori-

ented ice crystals and imperfect ice crystals by using the newly developed numerical

methods. Particular attention is paid to the computation of the value of color ratio

of ice crystals. The value of color ratio is an important parameter in the calibration

algorithm of Calipso lidar.

We have proposed two new nonspherical models (i.e., triaxial ellipsoidal model,

and nonsymmetric hexahedral model) to model the single-scattering properties of

mineral dust aerosols. The two newly defined geometries are employed to explore the

use of simple geometries to reproduce the laboratory measurements. The agreement

of simulated results with some measurements suggests the reliability/feasibility of this

methodology that avoids the definition of the details of rather irregular and complex

geometries, but capture the effect arising from the nonsphericity and the lack of

symmetry on the basis of model particles.
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In a summary, the developed numerical techniques and models of ice crystals

and mineral dust aerosols allow the computation of the single-scattering properties of

nonspherical ice and mineral dust aerosol particles in the atmosphere with reasonable

accuracy and time. In the perspective of applications, the single-scattering properties

are fundamentally required to interpret the observations from space-based satellites

and ground-based instruments, to assess the radiative impact of cirrus clouds and

aerosols in climate study, and to develop a calibration algorithm for space-based lidar.

A single-scattering database based on current numerical techniques and models can

be employed to link the theory and observations. Furthermore, the developed single-

scattering model also includes the polarization characteristics of model particles. The

aerosol polarimetry sensor (APS) on the Glory platform will provide an unprecedented

opportunity to study the polarization characteristics of realistic dust particles in the

atmosphere. Therefore, the developed model will benefit the APS in terms of dust

retrieval.

The developed techniques can also find applications in other disciplines, such as

astronomy, biophysics, and oceanography, to name a few.
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APPENDIX A

VECTOR SPHERICAL FUNCTIONS

This appendix presents a brief and consistent summary of vector spherical functions

which satisfy the vector Helmholtz equation in the spherical coordinate system.

Scalar Helmholtz Equation

It has been demonstrated (e.g. [133]) that vector spherical functions can be con-

structed from the solution of the scalar Helmholtz equation in spherical coordinate

system (the scalar Helmholtz equation can be solved by using the method of sep-

aration of variables in 11 coordinate systems). Let ψ be the solution of the scalar

Helmholtz equation,

(~∇2 + k2)ψ = 0. (A.1)

In the spherical coordinate system, Eq. (A.1) is [133][
1

r2

∂

∂r
(r2 ∂

∂r
) +

1

r2 sin θ

∂

∂θ
(sin θ

∂

∂θ
) +

1

r2 sin2 θ

∂2

∂φ2
+ k2

]
ψ(~r) = 0. (A.2)

The general solution to Eq. (A.2) is in the form of

ψmn(kr, θ, φ) = fn(kr)Pm
n (cos θ)eimφ, (A.3)

n = 0, 1, 2...; m = −n,−n+ 1, ...n− 1, n (A.4)

Pm
n (cos θ) in Eq. (A.3) are the associated Legendre functions, given by

Pm
n (x) =

(−1)m

2nn!
(1− x2)m/2

dn+m

dxn+m
(x2 − 1)n. (A.5)
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Note that (A.5) hods for both positive and negative values of m. The relation between

P−mn and Pm
n is given by

P−mn (x) = (−1)m
(n−m)!

(n+m)!
Pm
n (x). (A.6)

In some books (e.g. [3]), the definition of associated Legendre function is defined by

a difference of a factor (−1)m.

fn(kr) in Eq. (A.3) is the solution to the following spherical Bessel equation,

x2 d
2y

dx2
+ 2x

dy

dx
+ [x2 − n(n+ 1))]y = 0. (A.7)

If fn(kr) is the spherical Bessel functions jn(kr), ψmn is regular at origin and written

as Rgψmn. Since a scalar plane wave is also a solution of Helmholz equation and

finite at origin, therefore, a relation between a scalar plane wave and Rgψmn can be

established, written as follows,

Rgψmn =
(−i)n

4π

∫
dΩei

~k·~rPm
n (θ′)eimφ

′
. (A.8)

To obtain Eq. (A.8), the following two equations are used:

ei
~k·~r = 4π

∞∑
n=0

n∑
m=−n

injn(kr)Y ∗mn(θ′, φ′)Ymn(θ, φ), (A.9)

jn(kr)Ymn(θ, φ) =
(−i)n

4π

∫
dΩ′ei

~k·~rYmn(θ′, φ′). (A.10)

Eq. (A.8) is an integral representation of regular solution to Eq. (A.1). It is required

to be pointed out that in the literature or books, there are two different definitions

of spherical harmonics:

Ymn(θ, φ) = Pm
n (θ, φ)eimφ, (A.11)

Ymn(θ, φ) =

√
2n+ 1

4π

(n−m)!

(n+m)!
Pm
n (θ, φ)eimφ. (A.12)
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The definition of spherical harmonics in (A.9) is consistent with (A.12) in [37], but Eq.

(A.10) is valid for both definitons. The definition of associated Legendre functions

is also consistent with that in [37], but different from that in [3] by a facotr (−1)m.

Note Y ∗mn(θ, φ) = (−1)mY−mn(θ, φ).

Hansen Vectors

As seen from the Eq. (A.1), one method to find solutions of vector Helmherz equation

is to find a vector operator Ô, which commutes with Laplacian operator ~∇2. A vector

operator indicates that the result of Ôψmn is a vector field. Such operators can be

easily found. For example, a constant vector field ~c, the momentum operator ( i~∇),

and the angular momentum operator (L̂ = i~r × ~∇), etc. Also, note that ~∇ × ~F

satisfies vector Helmholtz equation if ~F does. In the problem of light scattering, the

electric and magnetic fields are divergence free. Therefore, we take most interest in

those divergence free bases. Two selectable operators are L̂ and ~∇ × L̂. Note that

~∇× ~∇× L̂ cannot obtain a new solution, because

~∇× ~∇× ~L = ~∇(~∇ · ~L)− ~∇2~L = ~∇(~∇ · ~L)− k2~L = −k2~L. (A.13)

Therefore, two bases of divergence free bases can be obtained [5],

~Mmn = γmn(iL̂)ψmn(kr, θ, φ) = γmnfn(kr)(iL̂)[Pm
n (cos θ)eimφ] (A.14)

~Nmn = γmn
1

k
~∇× (iL̂)ψmn(kr, θ, φ) =

1

k
~∇× ~Mmn (A.15)

~Mmn =
1

k
~∇× ~Nmn (A.16)

γmn =

[
(2n+ 1)(n−m)

4πn(n+ 1)(n+m)

]1/2

(A.17)
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The longitudinal vector is given by [5]

~Lmn =
γ′mn
k
~∇ψmn, γ′mn =

√
n(n+ 1)γ. (A.18)

Now, let’s start to derive explicit expressions of ~Lmn, ~Mmn and ~Nmn. To obtain

explicit expressions of (A.15), we first recall two identities:

~∇ = r̂
∂

∂r
− i

r
r̂ × L̂, (A.19)

~∇× i~L = ~r~∇2 − ~∇(1 + r
∂

∂r
). (A.20)

By using Eq. (A.19), we have

~∇ψmn = r̂f ′n(kr)Ynm −
1

r
(r̂ × iL̂Ymn)fn(kr) (A.21)

~∇
[
(r
∂fn(kr)

∂r
)Ynm

]
= r̂

∂

∂r
(r
∂fn(kr)

∂r
)Ynm −

1

r
(r̂ × iL̂Ymn)(r

∂fn(kr)

∂r
)(A.22)

~∇(1 + r
∂

∂r
)ψmn = r̂

[
f ′n(kr) +

∂

∂r
(r
∂fn(kr)

∂r
)

]
Ynm

− 1

r
(r̂ × iL̂Ymn)

[
fn(kr) + r

∂fn(kr)

∂r

]
= k

[
∂

∂(kr)
fn(kr) +

∂

∂(kr)
(kr

∂fn(kr)

∂(kr)
)

]
r̂Ynm

− 1

r
(r̂ × iL̂Ymn)

[
fn(kr) + (kr)

∂fn(kr)

∂(kr)

]
= k

[
2
∂fn(kr)

∂(kr)
+ kr

∂2fn(kr)

∂(kr)2

]
r̂Ynm

− 1

r
(r̂ × iL̂Ymn)

[
fn(kr) + (kr)

∂fn(kr)

∂(kr)

]
. (A.23)

By using Eqs. (A.20) and (A.23), and

~∇2ψmn = −k2ψmn (A.24)
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we obtain

(~∇× i~L)ψmn = −k
[
kfn(kr) + 2

∂fn(kr)

∂(kr)
+ kr

∂2fn(kr)

∂(kr)2

]
r̂Ynm (A.25)

− 1

r
(r̂ × iL̂Ymn)

[
fn(kr) + (kr)

∂fn(kr)

∂(kr)

]
(A.26)

= −k
[
−n(n+ 1)

fn(kr)

kr

]
r̂Ynm (A.27)

+ k(r̂ × iL̂Ymn)

[
fn(kr)

kr
+
∂fn(kr)

∂(kr)

]
(A.28)

Define the angular part [5],

~Pmn(θ, φ) = r̂Pm
n (cos θ)eimφ, (A.29)

~Bmn(θ, φ) = r̂ × L̂Pm
n (cos θ)eimφ = r̂ × ~Cmn(θ, φ), (A.30)

~Cmn(θ, φ) = iL̂Pm
n (cos θ)eimφ = ~∇(~rPm

n (cos θ)eimφ) = ~Bmn(θ, φ)× r̂.(A.31)

Here, B and C are called vector spheric harmonics. Then, we have

~Lmn(kr, θ, φ) = γ′mn

[
d

dkr
fn(kr)~Pmn(θ, φ) +

1

kr
fn(kr) ~Bmn(θ, φ)

]
, (A.32)

~Mmn(kr, θ, φ) = γmnfn(kr)~Cmn(θ, φ), (A.33)

~Nmn(kr, θ, φ) = γmn

{
n(n+ 1)

ρ
fn(kr)~Pmn(θ, φ)

+
1

kr

d

dkr
[krfn(kr)] ~Bmn(θ, φ)

}
. (A.34)

Explicit expression of vector spherical harmonics are given in the next section.

For regular vector spherical functions, their integral representations can also be

constructed. When vector operators act on the scalar solution (A.8) rather than
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(A.3), the following relations are obtained,

Rg~Lmn(kr, θ, φ) =
(−i)n−1

4π
γ′mn

∫
dΩ′eikrr̂·r̂

′ ~Pmn(θ′, φ′), (A.35)

Rg ~Mmn(kr, θ, φ) =
(−i)n

4π
γmn

∫
dΩ′eikrr̂·r̂

′ ~Cmn(θ′, φ′), (A.36)

Rg ~Nmn(kr, θ, φ) =
(−i)n−1

4π
γmn

∫
dΩ′eikrr̂·r̂

′ ~Bmn(θ′, φ′). (A.37)

From (A.36) and (A.37) and note jn(−kr) = (−1)njn(kr), we find

~Cmn(θ, φ) =
(−i)n

4πjn(kr)

∫
dΩ′eikrr̂·r̂

′ ~Cmn(θ′, φ′), (A.38)

~e · ~Bmn(θ, φ) =
(−i)n−1

4π 1
kr

d
d(kr)

[krjn(kr)]

∫
dΩ′eikrr̂·r̂

′
~e · ~Bmn(θ′, φ′), (A.39)

or

~C∗mn(θ, φ) =
(−i)n

4πjn(kr)

∫
dΩ′eikrr̂·r̂

′ ~C∗mn(θ′, φ′), (A.40)

~e · ~B∗mn(θ, φ) =
(−i)n−1

4π 1
kr

d
d(kr)

[krjn(kr)]

∫
dΩ′eikrr̂·r̂

′
~e · ~B∗mn(θ′, φ′), (A.41)

or

~C∗mn(θ, φ) =
(i)n

4πjn(kr)

∫
dΩ′e−ikrr̂·r̂

′ ~C∗mn(θ′, φ′), (A.42)

~e · ~B∗mn(θ, φ) =
(i)n−1

4π 1
kr

d
d(kr)

[krjn(kr)]

∫
dΩ′e−ikrr̂·r̂

′
~e · ~B∗mn(θ′, φ′), (A.43)

or

~Cmn(θ, φ) =
(i)n

4πjn(kr)

∫
dΩ′e−ikrr̂·r̂

′ ~Cmn(θ′, φ′), (A.44)

~e · ~Bmn(θ, φ) =
(i)n−1

4π 1
kr

d
d(kr)

[krjn(kr)]

∫
dΩ′e−ikrr̂·r̂

′
~e · ~Bmn(θ′, φ′), (A.45)

where ~e is a constant vector perpendicular to ~r. The vector field space constructed by

~Lmn, ~Mmn and ~Nmn is complete. The mathematical proof is referred to the book [18].
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Any divergence free field can be expanded in the following way,

~E(ρ, θ, φ) =
∞∑
n=0

n∑
m=−n

[amn ~Mmn(ρ, θ, φ) + bmn ~Nmn(ρ, θ, φ)]. (A.46)

For incident field and internal field (finite at origion), the vector spherical functions

is generated by using spherical bessel function. For scattered field (radiation condi-

tion), the Hankel function is utilized. Expansion coefficients can be solved usually by

employing orthogonality relations as follows [5],∫
dΩ ~Bmn · ~C∗m′n′ = 0, (A.47)∫
dΩ ~Bmn · ~P ∗m′n′ = 0, (A.48)∫
dΩ~Cmn · ~P ∗m′n′ = 0, (A.49)∫
dΩ ~Bmn · ~B∗m′n′ =

1

(γmn)2
δmm′δnn′ , (A.50)∫

dΩ~Cmn · ~C∗m′n′ =
1

(γmn)2
δmm′δnn′ , (A.51)∫

dΩ~Pmn · ~P ∗m′n′ =
1

(γ′mn)2
δmm′δnn′ . (A.52)

At this point, bases of vector fields which satisfy vector Helmholtz equation are ob-

tained. Actually, there are other methods to find the bases (e.g, [134]). The bases

described in this section is much more convenient due to separate longitudinal and

transverse parts.
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Vector Spherical Harmonics

Vector spherical harmonics are related to spherical harmonics. They are defined as [5]

~Pmn(θ, φ) = (−1)m

√
(n+m)!

(n−m)!
~Pmn(θ)eimφ (A.53)

~Bmn(θ, φ) = (−1)m

√
(n+m)!

(n−m)!
~Bmn(θ)eimφ (A.54)

~Cmn(θ, φ) = (−1)m

√
(n+m)!

(n−m)!
~Cmn(θ)eimφ (A.55)

where

~Pmn(θ) = r̂dn0m(θ) (A.56)

~Bmn(θ) = θ̂τmn(θ) + φ̂iπmn(θ) (A.57)

~Cmn(θ) = θ̂iπmn(θ)− φ̂τmn(θ) (A.58)

where

πmn(θ) =
m

sin θ
dn0m(θ) (A.59)

τmn(θ) =
d

dθ
dn0m(θ) (A.60)

where dn0m is Wigner-D function [5], given by,

dn0m = (−1)m

√
(n−m)!

(n+m)!
Pm
n (cos θ) (A.61)

When m = 1, then

π1n(θ) =
1

sin θ
(−1)

1√
n(n+ 1)

P 1
n(cos θ) =

1√
n(n+ 1)

πn(θ), (A.62)

τ1n(θ) = (−1)
1√

n(n+ 1)

d

dθ
P 1
n(cos θ) =

1√
n(n+ 1)

τn(θ). (A.63)
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when θ = 0,

π1n(0) = τ1n(0) =
1

2

√
n(n+ 1). (A.64)
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APPENDIX B

FAR-FIELD ASYMPTOTIC: KIRCHHOFF SURFACE INTEGRAL∗

The Lorenz-Mie theory [3] and the T-matrix [16] formulation provide exact so-

lutions for the scattering of electromagnetic waves by small particles. It has been

demonstrated that the Lorenz-Mie theory is a special case of the T-matrix method

when the latter is applied to spheres [5]. In the two methods, the incident, scat-

tered and internal fields are expanded in terms of vector spherical wave functions.

A recent paper by Mischenko [135] discussed the fundamental concepts of electro-

magnetic scattering. The expansion coefficients in the Lorenz-Mie theory and the

T-matrix formulation are determined from the boundary condition and extended

boundary condition (EBC), respectively. Two aspects associated with the T-matrix

should be addressed. First, the method to calculate the T-matrix is not restricted

to EBC as other methods can be employed [136–138]. In principle, the T-matrix is

another formulation of the scattering solution and contains much more information

than the amplitude scattering matrix (e.g., the orientation of the scattering particle).

Second, other expansion bases (e.g., vector spheroidal/ellipsoidal wave functions) can

be employed to expand the electromagnetic fields [139,140].

The scattered field is written in the form of

~Es =
∞∑
n=1

n∑
m=−n

[
pmn ~Mmn(k~r) + qmn ~Nmn(k~r)

]
(B.1)

where ~Mmn and ~Nmn are the so-called vector spherical wave functions, which are

transverse at infinity [5,133], k is the wave number, and pmn and qmn are the expan-

∗This appendix is reprinted with permission from “On the far field in the Lorenz-
Mie theory and T-matrix formulation” by L. Bi, P. Yang, and G. W. Kattawar, J.
Quant. Spectrosc. Radiat Transfer, 111, 515-518(2009)
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sion coefficients. The vector spherical wave functions are related to vector spherical

harmonics [5] given by

~Mmn(kr, θ, φ) = γmnh
(1)
n (kr)~Cmn(θ, φ) (B.2)

~Nmn(kr, θ, φ) = γmn

{
n(n+ 1)

kr
h(1)
n (kr)~Pmn(θ, φ) +

1

kr

d

d(kr)
(krh(1)

n (kr))

+ ~Bmn(θ, φ)
}

(B.3)

where h
(1)
n (kr) is the Hankel function of the first kind, ~Cmn, ~Bmn , and ~Pmn are vector

spherical harmonics and γmn is a defined constant, given by

γmn =
√

(2n− 1)(n−m)/4π(n+ 1)(n+m) (B.4)

The solution in the radiation zone can be expressed via the asymptotic forms of ~Mmn

and ~Nmn [5] as follows:

~Mmn(kr, θ, φ) =
(−i)n+1eikr

kr
γmn ~Cmn(θ, φ) (B.5)

~Nmn(kr, θ, φ) =
(−i)neikr

kr
γmn ~Bmn(θ, φ) (B.6)

Note that the expansion of the scattered field in terms of ~Mmn and ~Nmn in Eq.

(B.1) is due to the above asymptotic behaviors, and has taken into account the

radiation condition. The preceding asymptotic properties are obtained by analyzing

the differential equation satisfied by the Hankel function. Specifically, the scattered

far-field is given by

~Es(~r) =
eikr

−ikr

∞∑
n=1

n∑
m=−n

i−(n+1)γmn

[
−ipmn ~Cmn(θs, φs) + qmn ~Bmn(θs, φs)

]
(B.7)

where θs and φs are the polar zenith angle and azimuthal angle of the scattering

direction, respectively.
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The far field can also be formulated in terms of the so-called Kirchhoff surface

integral (2.44). When the refractive index of the particle is equal to one, ~E and ~H are

equal to the incident electromagnetic fields and ~Es in Eq. (2.44) is zero. Therefore,

~E and ~H in Eq. (2.44) can be either the scattered field or the total field. In this

method, the radiation condition has been incorporated into the integral (2.44), when

it is derived from the Maxwell equations. The Huygens principle is explicit in this

formulation.

Fundamentally, the scattered field expressed in formula (B.1) should satisfy the

integral (2.44). In appearance, the near field and far field are radially correlated.

If we substitute Eq. (B.1) and the associated magnetic field into Eq. (2.44), the

same solution given by Eq. (B.7) can be obtained. This process has been performed

numerically for the scattering by spheres [141] to validate the implementation of near-

to-far field transformation in the Finite-Difference Time-Domain (FDTD) method. In

the following discussion, we will show that the same asymptotic formulation can be

analytically obtained from Eq. (2.44). To the best of our knowledge, although this

relation is implied, it is not explicitly proven in the literature. For convenience, we

rewrite Eq. (2.44) as two equations:

α̂s · ~Es(~r) =
eikr

−ikr
k2

4π

∫ {
β̂s · [n̂s × ~E(~r′)] + α̂s · [n̂s × ~H(~r′)]

}
e−ikr̂·~r

′
ds, (B.8)

β̂s · ~Es(~r) =
eikr

−ikr
k2

4π

∫ {
−α̂s · [n̂s × ~E(~r′)] + β̂s · [n̂s × ~H(~r′)]

}
e−ikr̂·~r

′
ds,(B.9)

where α̂s and β̂s are two unit vectors parallel and perpendicular to the plane defined

by the z axis and the scattering direction, as illustrated in Fig. 57. In a spherical

coordinate system, we have

α̂s = θ̂s, β̂s = −φ̂s (B.10)
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If the incident field is along the z axis, this plane is called the scattering plane and

θ̂s is the scattering angle.

Expansion of Polarized Plane Wave

To analytically integrate the integrals in Eqs. (B.8) and (B.9), it is important to

expand the polarized plane waves β̂se−ikr̂·~r
′

and α̂se−ikr̂·~r
′

in terms of vector spherical

wave functions as follows:

β̂se−ikr̂·~r
′
=
∞∑
n=1

n∑
m=−n

[
aβ,mnRg

∗ ~Mmn(kr, θ, φ) + bβ,mnRg
∗ ~Nmn(kr, θ, φ)

]
, (B.11)

α̂se−ikr̂·~r
′
=
∞∑
n=1

n∑
m=−n

[
aα,mnRg

∗ ~Mmn(kr, θ, φ) + bα,mnRg
∗ ~Nmn(kr, θ, φ)

]
, (B.12)

where Rg∗ ~Mmn and Rg∗ ~Nmn are the conjugates of the regular vector spherical func-

tions, which are defined by replacing the Hankel function in Eqs. (B.5) and (B.6) by

the spherical Bessel function. To determine the coefficients, we consider aβ,mn as an

example, given by

aβ,mn =
γmn
jn(kr)

∫
β̂se−ikr̂·~r

′ · ~Cmn(θ, φ) sin θdθdφ

= 4π(−i)nγmnβ̂s · ~Cmn(θs, φs)

= 4π(−i)nγmnτmn(θs)(−1)m

√
(n+m)!

(n−m)!
eimφ

s

(B.13)

The other coefficients can be determined in the same way, given by

bβ,mn = 4π(−i)nγmnπmn(θs)(−1)m

√
(n+m)!

(n−m)!
eimφ

s

(B.14)

aα,mn = 4π(−i)n−1γmnπmn(θs)(−1)m

√
(n+m)!

(n−m)!
eimφ

s

(B.15)

bα,mn = 4π(−i)n−1γmnτmn(θs)(−1)m

√
(n+m)!

(n−m)!
eimφ

s

(B.16)
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where jn(kr) is the spherical Bessel function, and τmn(θs) and πmn(θs) are angular

distribution functions [5]. It is evident that aβ,mn = −ibα,mn and bβ,mn = −iaα,mn.

Fig. 57. Illustration of the incident direction k̂i , scattered direction r̂ and associated

unit vectors. Θ is the scattering angle. When the incident plane wave is along

the z axis, θs is equal to the scattering angle

Evaluation of Integral

We evaluate the integral in Eq. (B.8) based on an assumption. As the surface

enclosing the particle in the integral can be an arbitrary, for simplicity, it is assumed

to be a spherical surface with a radius of a. Then, the integral in Eq. (B.8) is written

as follows:

α̂s · ~Es =
eikr

−ikr
ρ2

4π
[I1 + I2] , (B.17)
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where ρ = ka and

I1 =

∫ (
β̂se−ikr̂·~r

′
)
·
(
r̂′ × ~Es(~r′)

)
sin θ′dθ′dφ′, (B.18)

I2 =

∫ (
α̂se−ikr̂·~r

′
)
·
(
r̂′ × ~Hs(~r′)

)
sin θ′dθ′dφ′. (B.19)

The electric scattered field ~Es and magnetic field ~Hs on the sphere are given as follows

~Es(a, θ′, φ′) =
∞∑
n=1

n∑
m=−n

[
pmn ~Mmn(ρ, θ′, φ′) + qmn ~Nmn(ρ, θ′, φ′)

]
, (B.20)

~Hs(a, θ′, φ′) =
∞∑
n=1

n∑
m=−n

[
pmn ~Nmn(ρ, θ′, φ′) + qmn ~Mmn(ρ, θ′, φ′)

]
. (B.21)

Note that

r̂ × ~Cmn = ~Bmn, r̂ × ~Bmn = −~Cmn, r̂ × ~Pmn = 0. (B.22)

Then, we have

r̂′× ~Es(~r) =
∞∑
n=1

n∑
m=−n

γmn

[
pmnh

(1)
n (ρ) ~Bmn(θ′, φ′)

− qmn
1

ρ

d

dρ
[ρh(1)

n (ρ)]~Cmn(θ′, φ′)

]
, (B.23)

r̂′× ~Hs(~r) = (−i)
∞∑
n=1

n∑
m=−n

γmn

[
−pmnh(1)

n (ρ)~Cmn(θ′, φ′)

+qmn
1

ρ

d

dρ
[ρh(1)

n (ρ)] ~Bmn(θ′, φ′)

]
. (B.24)

By employing the following identities [5]

~Bm′n′ · ~Cmn = ~Bm′n′ · ~Pmn = ~Pm′n′ · ~Cmn = 0, (B.25)
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and ∫
~Bmn(θ, φ) · ~B∗mn(θ, φ) sin θdθdφ = (γmn)−2δmm′δnn′ , (B.26)∫
~Cmn(θ, φ) · ~C∗mn(θ, φ) sin θdθdφ = (γmn)−2δmm′δnn′ , (B.27)

it is straightforward to show that

I1 =−aβ,mnqmnjn(ρ)
1

ρ

d

dρ

(
ρh(1)

n (ρ)
)

+ bβ,mnpmnh
(1)
n (ρ)

1

ρ

d

dρ
(ρjn(ρ)) , (B.28)

I2 = (−i)
[
−aα,mnpmnjn(ρ)

1

ρ

d

dρ

(
ρh(1)

n (ρ)
)

+ bα,mnqmnh
(1)
n (ρ)

1

ρ

d

dρ
(ρjn(ρ))

]
.(B.29)

Therefore, we have

I1 + I2 = i

[
jn(ρ)

1

ρ

d

dρ
(ρh(1)

n (ρ))− h(1)
n (ρ)

1

ρ

d

dρ
(ρjn(ρ))

]
(bα,mnqmn + aαmnpmn)

= i

[
jn(ρ)

d

dρ
h(1)
n (ρ)− h(1)

n (ρ)
d

dρ
jn(ρ)

]
(bα,mnqmn + aα,mnpmn)

=
1

ρ2
(bα,mnqmn + aα,mnpmn) . (B.30)

Furthermore, we obtain

~αs · ~Es =
eikr

−ikr
1

4π
(bα,mnqmn + aα,mnpmn)

=
eikr

−ikr

∞∑
n=1

n∑
m=−n

i−(n+1)γmn

×
[
−ipmnα̂s · ~Cmn(θs, φs) + qmnα̂

s · ~Bmn(θs, φs)
]
. (B.31)

Eq. (B.9) can be integrated in a similar way and given by

~βs · ~Es =
eikr

−ikr
1

4π
(bβ,mnqmn + aβ,mnpmn)

=
eikr

−ikr

∞∑
n=1

n∑
m=−n

i−(n+1)γmn

×
[
−ipmnβ̂s · ~Cmn(θs, φs) + qmnβ̂

s · ~Bmn(θs, φs)
]
. (B.32)
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Note that ~Es = (α̂s · ~Es)α̂s + β̂s · ~Es)β̂s. Therefore, the same result as Eq. (B.7) is

obtained
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APPENDIX C

DIFFRACTION-TYPE INTEGRAL AND LINE-INTEGRAL METHOD

A repeated encounter of the integral in the PGOH is of the type:

Is =

∫ ∫
s

exp
(
ik ~w · ~r′

)
d2~s, (C.1)

where ~r′ is the position vector within a planar surface area s, ~w is an arbitrary vector,

and k is a constant, which can be complex. The shape of the surface area of concern

depends on the geometry of the particle. For example, an ellipse for light scattering

by an ellipsoid, and a polygon for light scattering by faceted ice crystals. Figure 58

(a) shows a 4-polygon shaped facet in 3-D space. In this appendix, we develop a

systematic algorithm to calculate the above integral for an arbitrary shaped area of

the integration.
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Fig. 58. A facet in 3-D space.
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Let’s first consider a general polygon shaped boundary. For simplicity, as shown

in Fig. 58, a local coordinate system (û, v̂, n̂) is defined, where n̂ is the outward normal

direction of the facet, and û and v̂ are two unit vectors tangent to the surface. In

x-y-z coordinate system, the vertices of the N-polygon is denoted as ~rj, (j = 1, N + 1,

and ~rN+1 = ~rN). The sequence of vertices is arranged in anti-clock wise direction

with respect to n̂. By choosing a position of reference in the plane of the facet (e.g.,

~r1), the coordinates of vertices of the polygon can be written in the form of

~rj = ~r1 + ~aj. (C.2)

Similarly, an arbitrary position vector ~r′ in the plane of the facet can be written as

~r′ = ~r1 + ~ξ = ~r1 + uû+ vv̂. (C.3)

Now, Eq. (C.1) can be transformed to be the integration over u and v as follows,

Is = exp (ik ~w · ~r1)
∫ ∫

s

exp [ik(wuu+ wvv)] dudv. (C.4)

To evaluate Eq. (C.4), we define a vector field ~F [142], whose components along û

and v̂ are given by

~F · û = Fu = − wv
ik(|~w|2 − |~w · n̂|2)

exp (ik(wuu+ wvv)) , (C.5)

~F · v̂ = Fv =
wu

ik(|~w|2 − |~w · n̂|2)
exp (ikik(wuu+ wvv)) . (C.6)

Based on the Stokes formula,∫ ∫
s

[
∂Fv
∂u
− ∂Fu

∂v

]
dudv =

∫
∂S

Fudu+ Fvdv, (C.7)

we have ∫ ∫
s

exp [ik(wuu+ wvv)] =

∫
∂S

Fudu+ Fvdv. (C.8)
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Therefore,∫ ∫
s

exp(ik ~w · ~ξ)d2ξ =
i

k(|~w|2 − |~w · n̂|2)

∫
∂S

exp[ik ~w · ~ξ](wvdu− wudv) (C.9)

For each side of the polygon, on which the position vector can be parameterized in

terms of t as follows,

~ξ(t) = ~an + t(~an+1 − ~an). (C.10)

By using

wvdu− wudv = [(~an+1 − ~an)× ~w] · n̂dt, (C.11)

we have [142]∫
∂S

exp[ik ~w · ~ξ](wvdu− wudv) =
N∑
n=1

exp (ik ~w · ~an) [(~an+1 − ~an)× ~w] · n̂

×
∫ 1

0

exp (ik ~w · (~an+1 − ~an)t) dt

=
N∑
n=1

[(~an+1 − ~an)× ~w] · n̂

× exp (ik ~w · ~an+1)− exp (ik ~w · ~an)

ik ~w · (~an+1 − ~an)

=
N∑
n=1

[(~an+1 − ~an)× ~w] · n̂sin (k ~w · (~an+1 − ~an)/2)

k ~w · (~an+1 − ~an)/2

× exp {ik ~w · (~an+1 + ~an)/2} (C.12)

Substituting Eq. (C.12) into Eq. (C.4), we obtain

Is =
N∑
n=1

i [(~rn+1 − ~rn)× ~w] · n̂
k(|w|2 − |~w · n̂|2)

sin (k ~w · (~rn+1 − ~rn)/2)

k ~w · (~rn+1 − ~rn)/2

× exp {ik ~w · (~rn+1 + ~rn)/2} (C.13)
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From Eq. (C.13), the final value of the integral can be represented in terms of

the position vectors of all the vertices. In principle, an arbitrary boundary can be

approximated by a N-polygon. Therefore, the above formula can be employed to

calculate the integral for any shaped boundary. In addition, two aspects are required

to be pointed out in numerical calculation of Eq. (C.13):

• When ~w is aligned with n̂ or −n̂ (is normal to the planar surface), the de-

nominators in Eq. (C.13) are zero. In this case, Is is equal to the area of the

facet:

Is =
1

2

N−2∑
j=1

[(~rj+1 − ~r1)× (~rj+2 − ~r1)] · n̂. (C.14)

• When k ~w · (~rn+1 − ~rn)/2 = 0,

sin (k ~w · (~rn+1 − ~rn)/2)

k ~w · (~rn+1 − ~rn)/2
= 1. (C.15)

For an ellipse (circle as a special case), Eq. (C.1) has analytical formula. Let the

equation of ellipse in u− v − n coordinate system be

u2

a2
+
v2

b2
= 1 (C.16)

An arbitrary point within the ellipse is given by,

u = aρ cosφ, v = bρ sinφ, where ρ ∈ [0, 1] and φ ∈ (0, 2π]. (C.17)
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Then, we have

Is = exp(ik ~w · ~r0)
∫ 1

0

∫ 2π

0

exp [ik(awuρ cosφ+ bwvρ sinφ)] ρdρdφ

= exp(ik ~w · ~r0)
∫ 1

0

∫ 2π

0

exp
[
ik
√
a2w2

u + b2w2
vρ cos(φ− φ0)

]
ρdρdφ

= πab
2J1

(
k
√
a2w2

u + b2w2
v

)
k
√
a2w2

u + b2w2
v

exp (ik ~w · ~r0) (C.18)

where ~r0 is the position vector of the ellipse center, and J1 is the first order Bessel

function.

• A computational example: an arbitrarily oriented ellipse

The relation between the coordinates (x,y,z) and (u,v,n) of the same position in the

{O, êx, êy, êz} and {~ro, êu, êv, ên} systems is given by
x

y

z

 =


ro,x

ro,y

ro,z

+


êx · êu êx · êv êx · ên

êy · êu êy · êv êy · ên

êz · êu êz · êv êz · ên




u

v

n

 (C.19)

In the z-y-z convention of Euler rotation, the above matrix can be witten in terms of

Euler angles (α,β,γ) as follows,
c1c2c3 − s1s3 −c2s3c1 − c3s1 c1s2

c1s3 + c3c2s1 c1c3 − c2s1s3 s2s1

−c3s2 s3s2 c2

 (C.20)

where c1 means cosα, c2 means cos β, and c3 means cos γ. The relative position of

the two coordinate systems is determined by ~ro and (α,β,γ). The equation of ellipse
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can be paramterized in terms of t,
x(t)

y(t)

z(t)

=


ro,x

ro,y

ro,z

+


c1c2c3 − s1s3 −c2s3c1 − c3s1 c1s2

c1s3 + c3c2s1 c1c3 − c2s1s3 s2s1

−c3s2 s3s2 c2




a cos t

b sin t

0

(C.21)

where the range of t is (0, 2π].

We apply both Eq. (C.13) and Eq. (C.18) to the same problem. In computation,

k = 1 and ~w = (sin θ, 0, cos θ), a = 1, b = 2, ~r0 = (5, 5, 10), (α, β, γ) = (30o, 30o, 30o).

Figure 59 shows the value of the integral as a function of θ computed from the method

of analytical solution and the method of ling integral.
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Fig. 59. The value of the integration Is as a function of the scattering angle θ computed

from the method of analytical solution and line integral.
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APPENDIX D

RAY-SPREADING MATRIX

For randomly oriented particles, it is assumed that the interference among waves

associated with various outgoing rays can be properly neglected. Based on this as-

sumption, the phase matrix can be obtained by incorporating the ray-spreading effect

into the phase matrix computed from the CGOM through a ray-spreading matrix. In

this appendix, we derive this matrix. For simplicity, we let S2 S3

S4 S1

 = − k
2

4π
exp(ikζ)

 M2 M3

M4 M1

 . (D.1)

Then, Eq. (4.86) can be rewritten as M2 M3

M4 M1

 =

 Ξ2 Ξ3

Ξ4 Ξ1

×
 S̃2 S̃3

S̃4 S̃1

×
 cosφt sinφt

− sinφt cosφt

 . (D.2)

The matrix on the right of S̃ is associated with the rotation of scattering plane. The

corresponding matrix that has effect on Stokes vector is

1 0 0 0

0 cos(2φt) sin(2φt) 0

0 − sin(2φt) cos(2φt) 0

0 0 0 1


. (D.3)
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The matrix on the left of S̃ is associated with the ray-spreading of light. The corre-

sponding ray-spreading matrix that has effect on Stokes vector is

Ξ11 Ξ12 Ξ13 0

Ξ21 Ξ22 Ξ23 0

Ξ31 Ξ32 Ξ33 0

0 0 0 Ξ44


. (D.4)

The first three elements of the fourth column and the fourth row are zero because fi

and gi (i.e., Ξi, i=1,4) are real, and the other elements are given by

Ξ11 =
1

2
(Ξ1

2 + Ξ2
2 + Ξ3

2 + Ξ4
2), (D.5)

Ξ12 =
1

2
(Ξ2

2 − Ξ1
2 + Ξ4

2 − Ξ3
2), (D.6)

Ξ21 =
1

2
(Ξ2

2 − Ξ1
2 − Ξ4

2 + Ξ3
2), (D.7)

Ξ22 =
1

2
(Ξ2

2 + Ξ1
2 − Ξ4

2 − Ξ3
2), (D.8)

Ξ13 = Ξ2Ξ3 + Ξ1Ξ4, (D.9)

Ξ23 = Ξ2Ξ3 − Ξ1Ξ4, (D.10)

Ξ31 = Ξ2Ξ4 + Ξ1Ξ3, (D.11)

Ξ32 = Ξ2Ξ4 − Ξ1Ξ3, (D.12)

Ξ33 = Ξ1Ξ2 + Ξ3Ξ4, (D.13)

Ξ44 = Ξ1Ξ2 − Ξ3Ξ4, (D.14)

The process in deriving the ray-spreading matrix is quite similar to that in deriving

the phase matrix from amplitude scattering matrix presented in Chapter I.
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