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ABSTRACT 

 

Probabilistic Performance Forecasting for Unconventional Reservoirs with Stretched-

Exponential Model. 

 (May 2011) 

Bunyamin Can, B.S., Istanbul Technical University 

Chair of Advisory Committee: Dr. Peter P. Valko 

 

Reserves estimation in an unconventional-reservoir setting is a daunting task because of 

geologic uncertainty and complex flow patterns evolving in a long-stimulated horizontal 

well, among other variables. To tackle this complex problem, we present a reserves-

evaluation workflow that couples the traditional decline-curve analysis with a 

probabilistic forecasting frame. The stretched-exponential production decline model 

(SEPD) underpins the production behavior. Our recovery appraisal workflow has two 

different applications: forecasting probabilistic future performance of wells that have 

production history; and forecasting production from new wells without production data. 

For the new field case, numerical model runs are made in accord with the statistical 

design of experiments for a range of design variables pertinent to the field of interest. In 

contrast, for the producing wells the early-time data often need adjustments owing to 

restimulation, installation of artificial-lift, etc. to focus on the decline trend. Thereafter, 

production data of either new or existing wells are grouped in accord with initial rates to 

obtain common SEPD parameters for similar wells. After determining the distribution of 
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model parameters using well grouping, the methodology establishes a probabilistic 

forecast for individual wells. 

 We present a probabilistic performance forecasting methodology in unconventional 

reservoirs for wells with and without production history. Unlike other probabilistic 

forecasting tools, grouping wells with similar production character allows estimation of 

self-consistent SEPD parameters and alleviates the burden of having to define 

uncertainties associated with reservoir and well-completion parameters.  
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CHAPTER I 

INTRODUCTION  

1.1 Statement of the Problem 

Since the initiation of the oil industry, reserve estimation efforts have been carried on 

continuously. Decline curve analysis (DCA) methods have been generally empirical and 

interpretations are results of the experience and objectives of the evaluator. Since the 

publication of Arps‟ decline curve relations (Arps 1956), reserve estimation has been 

primarily performed using his methods. Fetkovich‟s works (1980, 1987) brought a better 

understanding and tried to add an analytical meaning to the problem. These approaches 

seemed to satisfy the industry until unconventional reservoir systems became a 

significant potential of reserves growth and future production. Tight gas sands, shale gas, 

tight/shale oil and coalbed methane reservoirs are currently being pursued for new 

development in the US. These reservoirs are difficult to characterize and produce 

because of their ultra-low permeability. Special well stimulation operations (e.g., single 

or multi-stage hydraulic fracturing, etc.) are required to produce these reservoirs. Most 

of the production data from ultra-low permeability reservoirs do not reach late-time flow 

regimes (e.g., pseudosteady-state, etc.) even after several years of production.  

 
 
 
 
 
 
 
 
____________ 
This thesis follows the style of SPE Journal 
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Despite of the common belief in the oil industry that Arps‟ rate-time relations 

(specifically hyperbolic relation) do not work for ultra-low permeability reservoirs 

where fracture flow is dominant, this reality does not retain engineers to use Arps‟ 

relations to estimate future performance of wells producing from unconventional 

reservoirs. This is due to the straightforward nature of the methodology, the few required 

elements (i.e., past production data), and lack of alternative solutions to the problem.  

Traditionally, DCA methods were considered as deterministic tools without offering an 

understanding to uncertainty. Often, however, outcome is far from representing the 

actual trend and leads to significant errors in reserve estimation. Probabilistic 

approaches, on the other hand, offer a measure of uncertainty and attempt to bracket the 

true value within a range of estimates. Recently, a lot of effort has been put to create a 

consistent probabilistic approach evaluating uncertainty in reserve estimates based on 

DCA.  

 

Valko (2009) developed a decline model called Stretched-Exponential Decline Model, 

(SEDM), which addresses the problem of handling unconventional reservoir behavior. 

The two most significant advantages of the new approach are the bounded nature of 

estimated ultimate recovery (EUR) without limits on time or rate, and the straight-line 

behavior of a recovery potential expression (Valko and Lee 2010). Our experiences 

showed that in tight formations where transient flow period is extremely long, SEDM 

has been successful in modeling the rate-time behavior and provides more realistic 

reserve estimates compared to Arps‟ decline relations.  
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Valko and Lee (2010) developed a new methodology called “group-data controlled 

forecast.” This methodology suggests taking advantage of enormous quantity of data 

which is publicly available. This approach provides opportunity to run algorithms on 

huge samples and evaluate statistics. Combining SEDM and so called „data-intensive 

discovery‟, the authors provide a controlled production forecast for wells which belong 

to a large group of wells. Study also provides a probabilistic reserve estimate concept.  

In this study we present a probabilistic performance forecasting method for 

unconventional reservoirs using SEDM as a reliable approach to reserve estimation. This 

method provides a diagnostic tool to predict probabilistic future performance and reserve 

estimates. 

 
1.2 Objectives 

The objectives of this work are to: 

 Analyze applicability and accuracy of SEDM when dealing with large datasets; 

 Develop a consistent methodology for probabilistic quantification of reserve 

estimate using SEDM and large datasets; 

 Validate the proposed methodology using synthetic data and perform verification 

by incorporating sufficient data from unconventional oil and gas wells.  
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CHAPTER II 

LITERATURE REVIEW 

Examining well behavior and predicting future performance is a common practice since 

the beginning of the industry. The scope of this section is to provide a general overview 

of existing production decline curve analysis methods. 

 

2.1 Existing Production Decline Curve Methods 

This section briefly describes various decline curve methods in a digest form.  

 

Table 2.1 – Decline curve methods in the literature. 
Authors Contribution 

 
Lewis and Beal 
(1918) 

o Decline curve used first time as a systematic production 
forecasting tool.  

o Power-law behavior of production decline identified. 
o Introduce the law of equal expectations. 

 
Johnson and Bollens 
(1927) 

o Adapted the power-law curve-fitting to a table form in 
order to get rid of the burden of graphical approach.  

o Introduced the loss ratio relation; 

 ……………………………….. (2.1) 

o Assumed a constant loss ratio which yields the 
exponential decline. 

Gross (1939) o Investigated two types of decline curve; 
 Semi-log decline curve  
 Percentage of oil in the fluid versus cumulative 

production (Cartesian) 
o Concluded that second method produces more accurate 

results. 
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Table 2.1 – continued 
Arps (1956) o Suggested that loss-ratio is not a constant, but rather, has 

a constant derivative. 

 ……………………….….. (2.2) 

 
This approach yields the „hyperbolic‟ relation; 

 …………………………. (2.3) 

o Special cases 
 Exponential (b=0)         …… (2.4) 

 Harmonic (b=1)             ………. (2.5) 

 
Matthews and 
Lefkovits (1956) 

o Incorporate the reciprocal rate, reciprocal time and 
reciprocal rate-time relations into production decline 
analysis; 
 
Reciprocal rate  ..…….... (2.6) 

Reciprocal time ..……….. (2.7) 

Reciprocal rate-time .…….….. (2.8) 

  
 

Matthews and 
Lefkovits (1956) 

o Physical basis for a special case of the hyperbolic 
relation ( ) is derived.  

o Condition: Depletion-type reservoirs in which gravity is 
the sole driving force. 

…………………..……….…. (2.9) 

 
Stright and Gordon 
(1983) 

o Proved that at constant terminal pressure cases, rate 
versus time plot with a slope of -1/2 indicates the 
existence of linear flow in the reservoir which yields a 
decline curve model; 

 …………………………….………… (2.10) 
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Table 2.1 – continued 
Chen (1991) o Derived a new decline curve method; 

…... (2.11) 

 
o Discussed that in Russia a decline curve model – and its 

modified form – generated by Kopatov, is widely used; 

……………………………………. (2.12) 

 

………………………………….…. (2.13) 

 
Blasingame and 
Rushing (2005) 

o Derived a new decline curve model from the basis of the 
gas material balance equation for a volumetric dry gas 
well producing at a constant bottomhole pressure; 
 

…………….……. (2.14) 

where 

…………………….……. (2.15) 

 
Ilk et al (2008) o Introduced a new decline model for tight gas sands what 

is called power law exponential rate decline. 

…………….…. (2.16) 

where 
Rate intercept 
Decline constant intercept at 1 time unit 
Decline constant at infinite time 

 Time exponent 
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Table 2.1 – continued 
Shirman (1999) o Suggested a loss-ratio model which is approximated by a 

power function; 

…………………………. (2.17) 

 
which yields a linear rate-time relation in log-log 
coordinates.  

…………. (2.18) 

 

 

As it is seen from Table 2.1, a lot of effort spent on loss-ratio analysis. Aside from plain 

relations (e.g. semi-log straight-line decline, reciprocal rate decline), there is an 

agreement in the literature on the value of loss-ratio concept. While the definition of 

loss-ratio has remained essentially same, scholars have extended the use of the concept.  

 

2.2 Modifications to Arps’ Hyperbolic Relation 

This section outlines the efforts to modify and improve Arps‟ hyperbolic relation. 

 

Table 1.2 – Various modifications to Arps' hyperbolic relation. 
Authors Contribution 

Mead (1956) o Modified Arps‟ loss-ratio concept. Developed a finite 
difference equation of production for equal time intervals 
instead of a continuous function of production rate with 
time as Arps suggested. 

o Presented various b values for various types of reservoir 
drive mechanisms.  

 
Shea and Higgins 
(1964) 

o Compared linear, semi-log, log-log and hyperbolic 
relations and claimed that hyperbolic relation delivers the 
best results. 
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Table 2.2 – continued 
Slider (1968) o Proposed a method for analyzing hyperbolic decline 

curve constants using transparent overlays.  
 

Higgins and 
Lechtenberg (1969) 

o Proposed a new method modified from the hyperbolic 
relation which is called „extreme-C‟; 

……………………………... (2.19) 

where; 
 depending on the production data 

are determined from regression.  
 

Stewart (1970) o Proved that for wells flowing at constant terminal 
pressure final production decline is exponential. 

Gentry (1972) o Generated dimensionless semi-log rate-time/rate-
cumulative production decline type curves. 

Fetkovich (1980) o Generated dimensionless log-log type curves for 
exponential and hyperbolic relations.  

o Attempted to derive connections between decline 
constants and reservoir and fluid characteristics using 
material balance equation, rate equation, etc.  

Gentry and McCray 
(1978) 

o Investigate the situations which result a b exponent 
greater than unity. Numerical simulation study showed 
that reservoir heterogeneity can cause this type of 
production decline. 

McNulty and Knapp 
(1981) 

o Used computer-aided non-linear regression methods first 
time to find the best values of hyperbolic relation 
parameters.  

Luther (1985) o Developed the linear relationship of hyperbolic decline 
model; 

 ……………...……. (2.20) 
where; 

………………………...……. (2.21) 
 ……………...……. (2.22) 
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Table 2.2 – continued 
Maley (1985) o Through examining field examples, showed that b 

exponent often exceeds unity in the case of tight gas 
wells and other wells which exhibit linear flow in the 
reservoir.  

 
Agbi and Ng (1987) o Modified the hyperbolic relation and reduced the 

parameter number from 3 to 2 by solving the relation for 
; 

 ………………………………. (2.23) 

 
Then rate-cumulative relation becomes; 

 ……. (2.24) 
where; 

 …………………………………. (2.25) 

 …………………………….……. (2.26) 

 
Robertson (1988) o Suggested a method to overcome the unrealistically high 

reserve estimates by changing the decline model from 
hyperbolic to constant percentage decline after a 
predetermined decline value. 
 

Long and Davis 
(1988) 

o Generated dimensionless semi-log type curves similar to 
Fetkovich (1973) with a broader range of b exponent; 0.3 
> b > 1.7.  

o Claimed that a b exponent of 1.7 is the highest that 
commonly occurs based on experience and observation. 

o For b values exceed unity, the method suggested by 
Robertson (1988) is used. 
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Table 2.2 shows that most of the past effort was spent on parameter determination work 

(e.g. logarithm tables, type curves and computer-aided regression methods). Also, 

possible connections between decline parameters and reservoir and fluid characteristics 

have investigated in great detail. On the other hand, some scholars pointed out the 

unrealistically optimistic nature of hyperbolic decline relation. 

 
2.3 Probabilistic Reserve Estimation Efforts Using DCA 

The historic analysis of production has usually used a deterministic approach in the form 

of DCA (Idrobo, Jimenez, and Bernal 2001), however estimation of probabilistic 

distribution of reserves are gaining more and more acceptance in the oil industry.  This 

section describes the notable attempts at probabilistic estimation of reserve using decline 

curve analysis methods. 

 
Table 2.2 – Various probabilistic reserve estimation methods using DCA. 

Hefner and 
Thompson (1996) 

o Published a multiple evaluator comparisons of both 
deterministic and probabilistic reserve estimates.  

o Estimates of evaluators were subjective rather than 
statistical approaches.  

o All evaluators used hyperbolic relations. 

Huffman and 
Thompson (1994) 

o Proposed a computational probable reserve estimates 
method rather than subjective approaches.  

o Method incorporates Student‟s t distribution to predict 

the interval. 
Jochen and Spivey 
(1996) 

o Used statistical bootstrap method of Monte Carlo 
analysis to obtain probabilistic distribution of reserve 
estimates.  

o Method estimates distributions of hyperbolic relation 
parameters. 
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Table 2.3 – continued 
Cheng et al (2005) o Modified Jochen and Spivey‟s (1996) work by 

incorporating a method called backwards analysis 
scheme which uses most recent data for regression 
instead of taking all available data into account.  

 

 

2.4 Statistical Approaches   

With the emergence of problems involving many particles, classical mechanics study, 

which means the study of systems of ordinary differential equations, became 

insufficient. For this kind of systems, the method of statistical mechanics was used. 

Instead of concentrating on the individual particles, statistical approach studies the 

properties of sets of particles (Metropolis and Ulam 1949). It is obvious that modeling 

reservoir performance involves many independent parameters with great uncertainties. 

Necessity of decision and risk integration into the engineering and economic 

applications in the oil and gas industry requires bringing statistical design techniques in 

the reservoir studies as an optimization methodology.  

 

In a risk methodology, it is possible to combine the geological uncertainties by using the 

Monte Carlo technique to estimate the range of uncertainty of some objective functions 

(Risso and Schiozer 2007). The Monte Carlo method is generally defined as representing 

the solution of a problem as a parameter of a hypothetical population, and using a 

random sequence of numbers to construct a sample of the population, from which 

statistical estimates of the parameter can be obtained (Halton 1970). Practically, The 



 12 

method provides the distribution of the dependent variable based on the distributions of 

independent variables (i.e., parameters used in the model).  

 

After computers were used widely, Monte Carlo simulation methods gained acceptance 

by engineers, geoscientists, and other professionals who want to evaluate prospects or to 

otherwise analyze problems that involve uncertainty (Murtha 1994). Nowadays, among 

the common applications of Monte Carlo simulation are performance prediction, 

uncertainty modeling, sensitivity studies, upscaling, history matching, and development 

optimization.  

 

In the light of the innovations described in Table 2.3, a plethora of publications (e.g., 

Behrenbruch, Turner, and Backhouse 1985; Patricelli and McMichael 1994) proposed 

probabilistic methodologies to calculate reserves. In our case we use the sets of reservoir 

and well parameters information provided by analogs to estimate the production decline 

behavior of wells without history by performing a Monte Carlo simulation.   

 
 
 
 
 
 
 
 
 
 
 
 
 

 



 13 

CHAPTER III 

DEVELOPMENT OF THE PROBABILSTIC RESERVES ESTIMATE METHOD

3.1 The Stretched-Exponential Production Decline Model 

Stretched-exponential production decline model (Valko 2009) is a performance 

prediction tool with an intuitive physical basis. Johnston (2006) defines stretched-

exponential decay – which was first described by Kohlrausch in 1847 – as a quantity 

which is generated by a sum of pure exponential decays with a “fat-tailed” probability 

distribution of the time constant. Valko and Lee (2010) point out that this characteristic 

of the model can be interpreted as the acknowledgement of the heterogeneity. In 

particular, the actual production decline is determined by a great number of contributing 

volumes individually in exponential decay (i.e., in some kind of pseudosteady state), but 

with a specific distribution of characteristic time constants. The distribution is 

determined by a parameter pair, (n, τ) (Valko and Lee, 2010). Table 3.1 shows the SEPD 

and Arps‟ hyperbolic family of relations. Note that parameter n in the SEPD model plays 

somewhat similar role to the b parameter in Arps relations. 
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Table 3.1 – SEPD model and Arps' hyperbolic family of relations. 

 Stretched-Exponential Decline Model Relations 

Rate Relation  …………………………….. (3.1) 
Rate-Cumulative 
Relation  ……………...…. (3.2) 

  ……………………………….... (3.3) 
Recovery Potential 
 rp =  

 ……………………....…. (3.4) 

  
 Arps‟ Hyperbolic Decline Relations 
Rate Relation  ………………………………..…. (3.5) 

Rate-Cumulative 
Relation 

 ………. (3.6) 

  ……………….... (3.7) 

Recovery Potential 
 rp =   …….……………. (3.8) 

 

 

Compared to the Arps formulation, the SEPD offers numerous advantages, which 

include the bounded nature of estimated ultimate recovery (EUR) from any individual 

well and the straight-line behavior of recovery potential, or rp expression, versus 

cumulative production (Valko and Lee 2010). Exponential decline implies the steepest 

depletion rate of a well in a volumetric system, and is based in analytical roots. As 

mentioned in the literature review section, Stewart (1970) proved that, for wells flowing 

at constant terminal pressure, final production decline is exponential. In the Arps 

formulation, exponential decline is represented by setting b equal to zero. With 

increasingly large fractional values of b, the rate of depletion becomes slower. However, 
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when b assumes a value greater than one, nonphysical solutions may result. In other 

words, the EUR becomes infinitely large, as shown in Table 3.1. This inconvenience is 

overcome with the bounded nature of SEPD. For instance, the n parameter assumes a 

value between zero and one for all possible depletion rates. In contrast to the Arps 

formulation, the exponential decline is represented by setting n equal to one in the 

SEPD. As depletion gets slower, n assumes smaller values. This phonemenon is 

explained in Fig. 3.1. As shown in the figure, the exponential decline curves are 

identical; however, when the depletion rate is slower the Arps‟ formulation generates a 

curve with an infinite cumulative production. Conversely, although SEPD yields a 

decline behavior similar to hyperbolic relation at early times, its behavior at late times 

reveals its bounded nature.  

 

 
 

Figure 3.1 – Comparison of SEPD and Arps decline relations. 
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The other advantage of SEPD is its ability to construct a straight-line plot of percentage 

of hydrocarbon recovery potential (rp) versus cumulative production. Fig. 3.2 illustrates 

the rp plot for the above example. Note that the RF plot cannot be generated with the 

Arps formulation when b is larger than one because the area under the curve is infinitely 

large, as indicated in Fig. 3.1. 

 

 
 

Figure 3.2 – Estimating recovery potential with SEPD model. 

 

3.2 Guidelines for Production Data Gathering and Editing 

The proposed methodology has two different applications: forecasting future 

performance of wells that have production history and new wells with no production 

data.  
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3.2.1 Data Generation for New Wells 

For the new field case, the first step involves data generation. The key parameters with 

the highest impact on the production history are identified before running essential flow 

simulations. For this purpose we use the well-known „Pareto chart‟ analysis which is a 

statistical tool used to highlight the most important components among a set of factors. 

We consider a horizontal well with multiple transverse fractures in a tight reservoir as a 

base model in order to do initial runs for generating the Pareto chart. Resulting Pareto 

Chart, which is shown in Fig. 3.3, indicates that production history is sensitive to only 

four variables; reservoir-flow capacity or kh, lateral well length or Lw, number of stages 

of transverse fractures, NFS, and fracture half-length, xf. Fig. 3.3 illustrates the five 

significant variables and their impact on the Pareto chart. Obviously, the fracture 

conductivity, Fc, does not play as big a role as expected, unlike others. 

 

 
 

Figure 3.3 – Pareto chart of standardized effects of variables on 30-year cumulative 

production. 
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Proper sets of reservoir and well parameters with realistic ranges are introduced at this 

stage of the process. The preferred approach for range selection involves investigating 

seismic data, log, core and well-test data from exploration and appraisal wells and 

geological knowledge of the region or from analogs. For our study, we selected a 

nominal well length of 10,560 ft with variable fracture half-length to accommodate 

changing formation thickness, formation conductivity, and the number of transverse 

fractures. Table 3.2 summarizes the range of variables selected for a possible new oil 

field. After that we generate multiple synthetic datasets with a full-factorial design of 

experiments.  

 

Table 3.2 – Range of parameter values that have significant impact on production. 

Properties Low Med. High 

kh, md-ft 0.1 0.6 3 

Frac. Half-Length, ft 250 350 450 

Number of Fracture Stages 3 7 10 

 
 
 
3.2.2 Data Editing for Existing Wells 

For the existing well case, production data of individual wells is monitored. As 

mentioned earlier, novel restimulation technology of multiple hydraulic fracturing in 

tight gas and oil reservoirs, dramatically changes the decline trend of the existed wells. 

This technology was utilized widely in Barnett Shale and resulted in an inconsistent 

production decline behavior as shown in Fig. 3.4. In this study, only the dominant 
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decline trend is used for curve-fitting purposes for mentioned irregular decline 

behaviors. In such cases early production data are added to the EUR as a constant.  

 
Figure 3.4 – Fitting the dominant production-decline behavior to obtain SEPD 

parameters. 

 

While investigating wells with production history, we assumed that only one-third of the 

production history is known and used in the analysis. The remaining half is assumed 

unknown and used for validation of the predictions. This approach instilled confidence 

in the solutions obtained. 
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3.3 Determining Model Parameters 

The crucial problem with any curve-fitting analysis procedure is that the selection 

between the type curve families is ambiguous. Certainly, one may also use nonlinear 

regression to determine the unknown parameters simultaneously, but the problem of 

nonuniqueness or ill-conditioning is not easily solved (Valko 2009). Valko suggested a 

new procedure for SEPD model, in which parameters can be obtained by solving two 

nonlinear equations. Instead of performing plain nonlinear regression on monthly 

production data, one-third, two-third, and the last point of cumulative production are 

calculated. For example, if three years of production history will be used to predict the 

future performance, cumulative production is calculated at the end of each year. 

Thereafter, the ratios of two-third to one-third and last point to one-third are calculated 

in accord with the following equation: 

 
 

…………………………… (3.9) 

 
By solving two nonlinear equations, represented by the following expressions, n and τ 

parameter pairs are obtained:  

 

 ……………………………………………….. (3.10) 

 

……………………………………………….. (3.11) 
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This procedure is followed when we calculate the n and τ parameter pairs in order to 

obtain parameter distribution which is explained in the next section. 

 

3.4 Production Data Grouping – A Parameter Distribution Apparatus 

The pragmatic approach is to group existing wells according to the initial rates. The 

underlying objective of well grouping is to obtain common SEPD model parameters for 

similar wells in terms of productivity index. Instead of calculating one global set of 

model parameters, assigning individual parameter sets to groups provides the 

opportunity to reduce uncertainty of model parameters and also the prediction interval, 

leading to consistency in forecasting.  

Following the evaluation of n and τ parameter pair, common parameter sets of groups 

are calculated using the well-known probabilistic criteria of P Index (P10-P50-P90). By 

constructing the cumulative distribution function or CDF, we obtained high, medium, 

and low n parameter values for the group. To obtain the τ parameter for each case (P10-

P50-P90), we used the following steps: 

1.  Solve the nonlinear equation for τ using the high n parameter value or nP10 as the 

n parameter. There will be resulting τ parameters for each well. The median of 

that series will be τP10. These steps are followed for both the low- and medium-τ 

parameters. Fig. 3.5 depicts the procedure used. 
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Figure 3.5 - Procedure for obtaining model parameters, n and τ. 

 

 
2. The third model parameter in SEPD model is q0. Several methods may be used 

for obtaining this parameter in SEPD. For our purposes, we follow the method 

proposed by Valko and Lee (2010), which obtains q0 with incorporating the most 

recent cumulative production data. As n and τ parameter pairs are known for groups, q0 

parameters for individual wells can be obtained using the wells total cumulative 

production as shown in Eq. 3.12.  

 …………………………………….. (3.12) 

 
At this stage, we generate individual wells‟ forecast as the n and τ parameters of the 

group and also the q0 parameter of the wells are all available. Fig. 3.6 shows cumulative 

production of a well in the Barnett field and its probabilistic forecast. Spread of the 
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prediction is a result of P10 and P90 values of n and τ model parameters. When the well 

count in a group is large, a wider spread is expected. The exterior lines show a forecast 

with a group of 500 wells and interior lines are results of a group of 100 wells. 

Whenever appropriate, the use of a small group of wells reduces the uncertainty.  

 

 

Figure 3.6 – Fitting the dominant production-decline behavior to obtain SEPD 

parameters. 

 

 
 
 
 
 
 
 
 
 



 24 

CHAPTER IV 

APPLICATION OF THE METHOD TO SYNTHETIC AND FIELD EXAMPLES 

4.1 Synthetic Case Demonstration Examples 

In this section we provide the validation of the methodology by analyzing synthetic oil 

and gas cases simulated as mentioned in previous chapter. We simulate a group of 27 

gas wells using Marcellus Shale reservoir and well properties, and a group of 27 oil 

wells using Elm Coulee oil wells of Bakken reservoir and well properties. In regard of 

grouping, pragmatic approach would be grouping wells based on their similar 

productivity indices, however since there are few simulated production data, we treat all 

27 wells as a single group for both cases. Our goal is to design a forecast using common 

n and τ parameters for all generated production data in each case. During analysis we 

presumed that only seven years of history is known, and the remaining production is 

forecasted and compared to the simulated data.  

 

4.1.1 Synthetic Example 1: Elm Coulee Oil Field 

Our first example is synthetic oil field case where we attempt to design 40 years of 

production history of 27 wells. Fig. 4.1 presents the results for one of the wells. Note 

that the suggested approach tends to produce a narrow confidence interval for long-time 

forecasting, bracketing the actual recovery. Fig. 4.1 shows that the incremental 

production between P10 and P50 is larger than the one between P90 and P50, which is a 

direct consequence of distribution of reservoir parameters. 
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Figure 4.1 – Synthetic oil case – Production forecast up to 40 years of one of the 

wells. 

 

Table 4.1 shows the n and τ parameter distribution for this example. Although we treat 

all wells as a single group, there is no significant difference between P10-P90 trends 

which yields a narrower confidence interval.  

 

Table 4.1 Common n and τ parameters for synthetic Elm Coulee oil field. 

 

 

 

 

 

The overall statistics of the analysis results for the set of 27 synthetic production 

histories for oil case is shown in Fig. 4.2. Green bars represent the P10-P90 interval and 

red arrows are the actual recovery for 40 years. The model is able to capture the actual 
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recovery within the P10-P90 interval for this example, except for the 23rd simulation 

run. Note that oil example yields to pessimistic results.  

 

Figure 4.2 – Estimates and actual recovery of 27 wells after 40 years of history in 

synthetic oil field. 

 

4.1.2 Synthetic Example 2: Marcellus Gas Field 

Another synthetic example is a Marcellus gas field case where we generate 30 years of 

production history of 27 wells. Table 4.2 shows the n and τ parameter distribution for 

this example. Results suggest a narrower parameter range than oil case. Also in this 

example, the parameter difference between P10 and P50 is smaller than the one between 

P90 and P50, in contrary to oil example. 
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Table 4.2 Common n and τ parameters for synthetic Marcellus gas field. 

  

 

 

 

The overall statistics of the analysis results for the set of 27 synthetic production 

histories for gas case is shown in Fig. 4.3. Green bars represent the P10-P90 interval and 

red arrows are the actual recovery for 30 years. Although gas case analysis results 

suggests a narrower confidence interval than oil case, methodology is able to bracket the 

actual recovery within the interval in all cases.   

 

 

Figure 4.3 – Estimates and actual recovery of 27 wells after 30 years of history in 

synthetic gas field. 
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4.2 Field Case Demonstration Examples 

In this section we demonstrate three field examples where monthly production data of 

wells were taken from publicly open HPDI database. These fields include Barnett Shale 

in Texas (500 wells), and Marcellus Shale in Pennsylvania and West Virginia (224 

wells) involving gas production and Montana's Elm Coulee field producing from the 

Bakken oil shale (400 wells). This section aims to present the utility of proposed 

methodology for assessing reserves in tight gas and oil reservoirs. The overall results are 

presented in Table 4.3 at the end of this section. 

 
4.2.1 Field Example 1: Barnett Gas Field 

The first field example is a group of 500 wells in Barnett Shale gas reservoir in Texas. 

Selected wells started production within in the year 2004 and have been on surveillance 

(monthly measurement of gas production) up to the present day. Underlying motive of 

selecting 2004 wells is because our interest in novel wells in Barnett Shale. As Valko 

and Lee (2010) pointed out, the novel horizontal wells in the Barnett Shale, which were 

completed with multiple intersecting fractures, gained acceptance in 2004 and has 

become almost exclusive since then. Another reason of using young wells is to avoid the 

production interruptions (e.g., restimulation, shut-in periods, etc.). As 500 wells are 

examined in this field, we expect to see a scattered distribution of maximum monthly 

productions. In Fig. 4.4 we observe that inspected wells can be assembled in four 

groups.  
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Figure 4.4 – Grouping of Barnett Shale wells based on their peak production. 

 

Fig. 4.5 demonstrates the distribution of n and τ parameters for four groups. It is difficult 

to make a generalization on behaviors of the parameter pairs from this figure as τ 

parameter distribution behaves chaotic, however  nP90 and nP50 values are quite stable 

whereas nP10 values tend to increase exponentially. It is tempting to say from this figure 

that n exponent can be considered as a common parameter for all wells while τ 

parameters dictate different P10-P90 intervals for different groups. 
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Figure 4.5 – Distribution of n and τ parameter pairs of Barnett Shale gas field 

example. 

 
In Fig. 4.6 we present the monthly production data of a gas well in Barnett Shale. We 

note that production data follows a smooth trend which should yield a stable forecast. 

 

 

Figure 4.6 – Monthly production history plot for first field example of Barnett 

Shale.  



 31 

Fig. 4.7 shows the actual decline behavior and its probabilistic forecast up to five years 

for one of the wells in Barnett Shale. This well is a member of the second group based 

on its maximum monthly production. The computed P50 trend clearly exhibits the actual 

production decline also P10-P90 interval covers the actual behavior with a thin gap 

within. 

 

Figure 4.7 – Actual and estimated production decline of first field example in 

Barnett Shale. 

 

Fig. 4.8 demonstrates the recovery potential plot of this well. As mentioned earlier 

recovery potential plot gives an understanding of estimated recoverable reserves. Fig. 

4.8 suggests that this gas well already delivered the half of its capacity.  
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Figure 4.8 – Recovery potential plot of first field example in Barnett Shale. 

 

Fig. 4.9 shows data from a well that started production in 1999 and continues to produce 

to this day. When the model parameters were estimated for the Barnett well group, we 

did not include this specific well because we wanted to see if the groups that we 

generated for Barnett could represent the entire field.  
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Figure 4.9 – Monthly production history plot for second field example of Barnett 

Shale. 

 
 
After generating four groups for the Barnett field, we observe that this specific well falls 

into the second group based on its peak production. Using the second group‟s n and τ 

parameter pair for this well gives the production forecast presented in Fig. 4.10.  
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Figure 4.10 – Production forecast of the second field example in Barnett Shale. 

 
After groups are determined using a sufficient number of wells, other wells‟ future 

performance can be predicted by monitoring the new well‟s peak production and placing 

it into the appropriate group. This attribute of the methodology is very useful when 

dealing with wells whose parameters are difficult to obtain because of deviations in trend 

owing to restimulation, artificial-lift installation, etc..  

 

Fig. 4.11 illustrates randomly selected wells forecast in the Barnett Shale gas play. Red 

arrows are the actual recovery up to the last available date and green bars are the 

P10/P90 index generated using half of the production history for each well.   
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Figure 4.11 – Estimates and actual recovery of 40 wells in Barnett Shale gas play. 

 
The coverage of the actual data by obtained P10-P90 intervals of all wells seem 

consistent. It was expected to obtain an accurate and consistent forecast interval for this 

group of wells considering the good quality of the data and relatively short lengths of 

production in Barnett Shale wells.    

 

4.2.2 Field Example 2: Marcellus Gas Field 

Although Marcellus Shale is considered as a shale gas play which is currently in the 

early stages of development, it has the potential to be one of the largest natural gas plays 

in the United States (Arthur, Bohm, and Coughlin 2008). Marcellus Shale play is a 

highly organic black shale which extends New York, Pennsylvania, Ohio, and West 

Virginia. Eastern side of the basin also covers minor portions of Maryland and Virginia. 
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As mentioned earlier we randomly select 224 wells which started producing in 2004 as 

our purpose is to examine the wells in which new hydraulic fracture technology is used. 

Fig. 4.12 demonstrates the three groups of wells based on their maximum monthly 

production. Since the number of wells are relatively small and there is no extensive 

sparse in the data, dividing the wells into three group seems appropriate. 

 

 

Figure 4.12 – Grouping of Marcellus Shale wells based on their peak production. 

 

Fig. 4.13 illustrates the distribution of n and τ parameters. Similar to Barnett Shale 

example nP90 values of the groups are very similar. Distribution of other trends remains 

chaotic. 
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Figure 4.13 – Distribution of n and τ parameter pairs of Marcellus Shale gas field.  

After calculating the parameter distributions of each group, we go into individual wells 

in order to examine the success of the proposed methodology. We select a well which 

has a production data more than five years in Fig. 4.14.  

 

Figure 4.14 – Monthly production history plot for first field example of Marcellus 

Shale. 
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As seen in Fig. 4.15, analysis of the well shows that method successfully represents the 

decline behavior and presents a reasonable P10-P90 interval.  

 

 

Figure 4.15 – Production forecast of the first field example in Marcellus Shale. 

 

We apply the recovery potential analysis to the same well using P50 parameters as we 

see that the decline trend follows the P50 line. Analysis shows that the well has 46.2 

MMscf total recoverable gas and delivered 67% percent of its potential as seen in Fig. 

4.16.  
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Figure 4.16 – Recovery potential plot of the second field example in Marcellus 

Shale. 

 

We examine a second well in Marcellus Shale. This well has a production data spans 

less than five years as seen in Fig. 4.17. Visual examination of the Fig. 4.17 yields to a 

smooth decline. 
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Figure 4.17 – Monthly production history plot for second field example of 

Marcellus Shale. 

 

Applying our analysis shows that decline of the production data follows P50 trend until 

25 months and then changes to P10 trend. Although method captures the decline 

behavior within the P10-P90 interval, it is not immediately obvious from the Fig. 4.18 

that why the decline behavior changes from P50 to P10 trend.  
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Figure 4.18 – Production forecast of the second field example in Marcellus Shale. 

 

We construct the recovery potential analysis plot in order to further analysis the reason 

of the change in decline. Fig. 4.19 shows very clearly that there was an interference to 

the well after 25 months. This operation did not change the behavior of the decline but it 

can be said that it added additional reserves to the well. Extrapolating the new decline 

behavior gives the same straight-line but shifted to the right. This event results in an 

EUR 80.1 MMscf which is close enough to P10 estimate of 79.8 MMscf.  
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Figure 4.19 – Recovery potential plot of the second field example in Marcellus 

Shale. 

 

In order to provide a general view of the analysis of 224 Marcellus Shale wells, we 

demonstrate actual recoveries and P10-P90 ranges of randomly selected 40 wells in the 

field in Fig. 4.20. Differences of the P10-P90 intervals are the outcome of different 

groups. It is fair to say that our methodology is able to capture the actual recovery within 

the interval most of the cases.  
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Figure 4.20 – Estimates and actual cumulative production of 40 wells in Marcellus 

Shale gas play. 

 

4.2.3 Field Example 3: Elm Coulee Oil Field 

Although the production in Bakken Field of Montana and western North Dakota began 

in the 1950‟s, the field is experiencing significant development during the last years due 

to its tremendous oil accumulation (Tabatabaei, Mack, and Daniels 2009). Horizontal 

wells with hydraulic fracture treatments are proven effective in this reservoir. Our third 

field example consists of 400 wells in Elm Coulee field in Bakken reservoir. This 

example has a specific importance because it will show the performance of the proposed 

methodology on oil wells. 
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Although we examine 400 wells in Elm Coulee field, we did not see a sparse histogram 

of maximum monthly productions as seen in Fig. 4.21. Similar to Marcellus Shale 

example, we divide the wells into three groups.  

   

Figure 4.21 – Grouping of Elm Coulee oil field wells based on their peak 

production. 

 

Fig. 4.22 illustrates the parameter distributions of the groups. Contrary to other field 

examples, parameters show an ordered behavior. Although nP90 values still remain 

similar, nP50 and nP10 values of both parameters increases exponentially as peak 

production increases. This behavior is encouraging for further investigation the nature of 

the parameters based on groups.  
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Figure 4.22 – Distribution of n and τ parameter pairs of Elm Coulee oil field 

example. 

 

The following example contains production data from a young oil well from the Elm 

Coulee field. This well has been on production for five years with minimum water 

production. Visual examination shows that after 40 months of production the well 

experienced an operation as seen in Fig. 4.23.  
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Figure 4.23 – Monthly production history plot for field example of Elm Coulee oil 

field. 

 

We analyze the well presuming that the first one and a half year‟s history is known, as 

indicated in Fig. 4.24. Production decline follows the P90 trend until the operation takes 

place which changes the behavior entirely for some time. However after five years 

decline stabilizes to P10 trend again.  
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Figure 4.24 – Production forecast of the field example in Elm Coulee oil field. 

 

Recovery potential analysis plot also advises the same suggestion with additional 

information. From Fig. 4.25, it is revealing that why operator decided to restimulate the 

well as it is seen that after 90 MSTB production, well entered an unusual decline 

behavior. Although operation achieved to deliver additional reserves, it did not 

completely change the decline behavior.  
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Figure 4.25 – Recovery potential plot of the field example in Elm Coulee oil field. 

 

We examine 400 oil wells in Elm Coulee field of Bakken play and Fig. 4.26 

demonstrates the actual recoveries up to most recent time and thier P10-P90 intervals of 

randomly selected 40 wells. It is worth mentioning that proposed methodology delivers a 

larger P10-P90 interval in oil wells as we see in synthetic examples. This is due to 

relatively bigger difference between the parameters within the same group. Another 

significant result of tight oil field example is that proposed methodology tends to 

produce pessimistic results for oil wells.  
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Figure 4.26 – Estimates and actual cumulative production of 40 wells in Elm Coulee 

oil field. 

 

4.2.4 Overall Results 

The overall results of the three field cases are shown in Table 4.3. On the average, at 

least three-fourths of the wells‟ performance falls within the expected P10/P90 range. 

Also Table 4.3 confirms the fact that a significant portion of wells falls below P90 trend 

in oil field cases. Given the uncertainty inherent in raw field data within any database 

and lack of specific information about a well‟s condition with time, we consider these  

results encouraging. 
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Table 4.3 – Percentage of wells fall within and outside the P10 – P90 range. 

 Within 
P10 – P90 (%) 

Above P10 
(%) 

Below P90 
(%) 

Barnett Shale 
(500 wells) 

79.7 9.5 9.8 

Marcellus Shale 
(224 wells) 

74.5 12.1 13.4 

Elm Coulee, Bakken 
Shale (400 wells) 

74.4 8.5 17.1 
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CHAPTER V 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

5.1 Summary 

In this study, we initially examined the various advantages of the stretched-exponential 

decline model over the Arps‟ hyperbolic relation when reserves estimation of 

unconventional reservoirs is attempted. Several studies (e.g., Ilk et al 2008, 2010) have 

pointed out that the Arps method provides optimistic solutions for unconventional 

reservoirs because the classical reservoir boundaries are not reached. However, its 

simplicity, with regard to data fitting, is appealing. In contrast, the SEPD provides a 

more rational and consistent way of estimating reserves, particularly in a probabilistic 

frame.  

Second, we developed a systematic methodology for analysis and interpretation of 

production data obtained from individual wells in an unconventional reservoir. This 

methodology provides a probabilistic reserves estimation framework for any large 

production dataset. The proposed methodology yields consistent solutions with the 

simulated results for both the gas and oil wells. Similarly, three independent field data 

sets verified that the approach is reliable as the P10/P90 index tool.  

Any simple predictive tool presupposes that intrinsic well condition does not change in a 

well‟s producing life. However, in practice this ideal condition is often violated. 

Restimulation of fractures and installation of artificial-lift systems in oil wells are cases 

in point. In gas wells, periodic wellbore dewatering changes the boundary condition. 

Although not stated explicitly, all decline-curve methods presume constant-pressure 
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production. If such conditions are not met, changes in pressures and rate need 

monitoring to do conventional rate-transient and transient-PI analyses.  

 
5.2 Conclusions 

 The stretched-exponential decline model (SEPD) is superior to Arps‟ hyperbolic 

relation with regard to estimation of reserves in unconventional reservoirs. The 

SEPD‟s advantage owes largely to its bounded nature and the linear behavior of 

the recovery potential analysis. Bounded nature of the model prevents a potential 

overestimation of reserves which is very likely in Arps‟ hyperbolic relation when 

longer time frames are used. Recovery potential analysis of the model offers a 

better understanding on EUR, also acts like a secondary diagnosis analysis plot 

which improves the examination of the changes in decline trends. 

 The results of 54 synthetic and 1124 field data sets from three different shale 

types show that the suggested methodology gives reliable production forecasts, 

as well as EUR estimations for both the gas and oil wells in an unconventional 

setting. This method attains the desired results 75% of the time. Although oil 

field examples yield to more pessimistic results than gas field cases, the results 

are still in acceptable ranges. 

 The ability to treat large databases by well grouping gives realistic statistical 

distributions of SEPD parameters. It is worth mentioning that well grouping does 

not offer the desired objective to group wells based on their similar behavior. 

Although grouping wells should be based on their similar decline trends, peak 

production histogram approach is far from representing this circumstance. In our 
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methodology, grouping wells based on their peak productions allows us to offer 

smaller P10-P90 interval. 

  Overall, the mathematical insights into the SEPD provide an opportunity to 

understand the decline behavior in unconventional reservoirs.  

 

5.3 Recommendations 

We recommend the following for future research. 

 To analyze the SEPD model parameters in terms of identifying a characteristic 

behavior for the wells producing from the same field. Our results indicate that n 

exponent does not change dramatically in the same field. Future efforts can focus 

on the behavior of n exponent in large datasets.  

 To develop new techniques for grouping wells in terms of similar decline 

behaviors. For example, instead of peak production, steepness of the decline may 

offer a better approach to well grouping.   

 To investigate the probabilistic future performance interval (P10/P90) of 

numerical flow simulations and compare to the proposed methodology.  
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NOMENCLATURE 

Variables: 
 

 =    Flow rate ratio (Eq. 2.26), dimensionless 

 =    Model parameter (Eqs. 2.12, 2.13, 2.17, 2.18), dimensionless 

 =    Arps‟ decline exponent, dimensionless 

 =    Model parameter (Eq. 2.25),  

 =    Extreme-C constant, dimensionless 

 =    Model parameter (Eqs. 2.6, 2.7, 2.8, 2.10, 2.13), dimensionless 

 =    Reciprocal of loss ratio,  

 =    Model parameter (Eq. 2.16),  

 =    Initial decline constant for exponential and hyperbolic rate relation,  

 =    Model parameter (Eq. 2.16),  

 =    Estimated ultimate recovery, SCF or STB 

 =    Fracture conductivity, md-ft 

 =    Original (contacted) gas-in-place, SCF  

 =    Cumulative gas production, SCF 

 =    Formation thickness, ft 

 =    Model parameter (Eqs. 2.19), dimensionless 

 =    Formation permeability, md 

 =    Horizontal well length, ft 

 =    Model parameter (Eqs. 2.6, 2.7, 2.8), dimensionless 

 =   Number of fractures, dimensionless 
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 =    Cumulative oil production, STB 

 =    Cumulative oil production at infinite time, STB 

 =    Exponent parameter of SEPD model, dimensionless 

 =    Pressure, psi 

 =    Initial reservoir pressure, psi 

 =    Flowing bottomhole pressure, psi 

 =    Production rate, SCF/D or STB/D 

 =    Initial production rate, SCF/D or STB/D 

 =    Parameter of production decline models, SCF/month or STB/month 

 =    Recovery potential, dimensionless 

 =    Production time, days 

 =    Production time, days 

 =    Fracture half-length, ft 

 =    Gas compressibility factor, dimensionless 

Greek Symbols: 
 

 =    Model parameter (Eqs. 2.9), dimensionless 

 =    Characteristic time parameter for SEPD model, month 

 =    Euler Gamma function 
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