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ABSTRACT 

 

Technology Characterization Models and Their Use in Designing Complex Systems. 

(May 2011) 

Robert Reed Parker, B.S., Iowa State University 

Chair of Advisory Committee: Dr. Richard J. Malak Jr. 

 

When systems designers are making decisions about which components or technologies 

to select for a design, they often use experience or intuition to select one technology over 

another.  Additionally, developers of new technologies rarely provide more information 

about their inventions than discrete data points attained in testing, usually in a 

laboratory.  This makes it difficult for system designers to select newer technologies in 

favor of proven ones. They lack the knowledge about these new technologies to consider 

them equally with existing technologies.  Prior research suggests that set-based design 

representations can be useful for facilitating collaboration among engineers in a design 

project, both within and across organizational boundaries. However, existing set-based 

methods are limited in terms of how the sets are constructed and in terms of the 

representational capability of the sets. The goal of this research is to introduce and 

demonstrate new, more general set-based design methods that are effective for 

characterizing and comparing competing technologies in a utility-based decision 

framework. To demonstrate the new methods and compare their relative strengths and 

weaknesses, different technologies for a power plant condenser are compared.  The 

capabilities of different condenser technologies are characterized in terms of sets defined 

over the space of common condenser attributes (cross sectional area, heat exchange 

effectiveness, pressure drop, etc.). It is shown that systems designers can use the 

resulting sets to explore the space of possible condenser designs quickly and effectively.  

It is expected that this technique will be a useful tool for system designers to evaluate 

new technologies and compare them to existing ones, while also encouraging the use of 
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new technologies by providing a more accurate representation of their capabilities.  I 

compare four representational methods by measuring the solution accuracy (compared to 

a more comprehensive optimization procedure’s solution), computation time, and 

scalability (how a model changes with different data sizes).  My results demonstrate that 

a support vector domain description-based method provides the best combination of 

these traits for this example.  When combined with recent research on reducing its 

computation time, this method becomes even more favorable.   
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1. INTRODUCTION 

1.1 Problem Background 

In complex engineered systems design, systems designers must select components to use 

in their systems.  These components may have different analytical models, 

manufacturers and inventors.  Further, systems designers may need to evaluate how 

these components interact with their systems in order to make decisions about which 

continuum of component technologies are best.  In making these evaluations, designers 

may require models, performance data or other information from the component 

producers or, in the case of new products, the inventor.  Therefore, the interaction 

between the systems designers and component inventors/creators is important for 

systems decision making.  However, if inventors wish to keep their models and 

information private to protect proprietary interests, systems designers will not have 

access to the information they need to select components.  Systems designers may also 

lack the domain knowledge to evaluate or derive component-level models on their own.  

This gap between systems designers and inventors makes complex systems design more 

difficult.  It leaves systems designers with no direct mathematical way to compare 

competing component technologies to each other in a meaningful way in order to 

optimize the entire system.  Closing this communication gap using abstracted technology 

models and evaluating the best way to characterize these models is the subject of this 

thesis.  Others have looked at representations of these higher-level models, but none 

have examined the relative benefits and deficiencies of different representations.  I will 

investigate four of these representations and compare their strengths and weaknesses in 

terms of accuracy, producing feasible solutions, and computational effort. 

 

____________ 

This thesis follows the style of Journal of Mechanical Design. 
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There are a variety of definitions for some of the key terms I use in this thesis, so I will 

provide my definitions for them here.  In systems design, there is typically a hierarchy to 

the design problem.  At the highest level, there is the complete system.  This system may 

be made up of one or more sub-systems.  Each sub-system is made up of components.  

These are the individual parts that make up the sub-system at the lowest level of the 

design.  Components are described by design variables.  These are characteristics of the 

component that can be directly controlled by designers during the design process.  

Attributes, on the other hand, are performance measures of components at the sub-

system level.  At the system level, the whole system’s performance is measured by 

system objectives, which are the values the system designer wishes to maximize or 

minimize to improve system performance.  By using component-level behavioral 

models, design variables are transformed into attributes.  Similarly, system-level 

behavioral models transform attributes to system objective values.  Figure 1-1 shows a 

more concrete example of these definitions in an automobile design problem. 

 

System

Sub-System Component

System Objectives

Attributes
Design Variables

• Maximize Profit
• Minimize Cost

• Power
• Torque
• Efficiency
• Cost

• Maximize Fuel Economy

• Cylinder diameter
• Stroke
• Clearance volume
• Size and number of 
valves

System-Level 
Behavioral Models

Component-level 
Behavioral Models

 

Figure 1-1 - System Design Definitions 
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In summary, the following list defines the problem I study in this thesis: 

• Inventors do not want to give up detail information 

• Systems designers lack the knowledge to create their own models of different 

component technologies 

• Designers must make decisions about which technology to use 

• Designers must be able to limit their choices in optimization (of their system 

objectives) to feasible designs 

• Designers have limited time and resources and therefore may not be able to run 

separate component-level models for each technology and may not have the 

software or other tools to use these models 

This thesis demonstrates and compares types of abstracted (attribute/sub-system level) 

models of component technologies that seek to address these issues. 

1.2 Motivation from a Systems Design Perspective 

The design of a complex engineered system involves many designers with differing 

expertise and technical background.  Some engineers may be experts in specific 

components or parts of the system, while others have expertise in systems integration 

and the system as a whole.  The design team must make decisions about the entire 

system and they must deal with these differences in knowledge and expertise.  In making 

these decisions, they may employ a variety of techniques.  In custom-built component 

problems, the component designs available to the systems designer are not quantized 

into a table in a catalog, but rather are nearly infinite, limited only by the manufacturing 

processes used to create them.  Further, these problems require decision-makers to have 

information from low-level designers to make high-level system decisions.  The fact that 

the component can be custom-tailored to suit the systems designer’s needs increases 

both the flexibility and complexity of the design problem.   
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Custom-designed component selection problems are common in the design of complex 

engineered systems.  There are at least three main categories of components in systems 

design problems that fall into this type: new inventions, mass customization products, 

and components that are large in size, complexity or both.  Inventors of new products 

may not have enough product performance data to publish significant catalog 

information for systems designers to use in decision making.  Also, inventors may not 

yet fully understand the performance limits of their inventions.  They may be in a state 

of manufacturing development where production processes are purely experimental and 

easily modified, allowing for a nearly continuous region of design possibilities.  As 

discussed in Section 1.3, the lack of a good method for describing the capabilities of new 

products mathematically may hold back the adoption of a product.  Consequently, 

inventors could benefit from using a model to describe their new product instead of a 

few data points from testing.  They may also wish to keep the proprietary information 

about their invention and only provide higher-level information about the invention. This 

leads to a complex design problem where new representational methods are needed to 

capture the real designs available to the systems designer.  Mass customization has been 

applied mainly to consumer products, but could be used to create a near-infinite array of 

complex engineered componentry [1].  There are many other examples of these 

problems in systems design, but they all share the same key trait: they involve 

customization of the component’s design by the customer or systems designer.  

However, when the systems designer must choose a component to use in his or her 

system, what information is at his or her disposal?  What form is that information in?  

What mathematical information is provided to the systems designer about each custom-

made component so he or she can rationally choose one over another?  And, how can 

component-level and system-level experts communicate component performance traits 

or metrics useful for system-level decision making?  These questions will be addressed 

using abstracted models of technologies, as introduced in Sections 1.5 and 1.6.   
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1.3 Motivation from an Innovation Perspective 

Innovation can be thought of as the process of bringing an invention from its beginnings 

to adoption by customers [2].  An important part of innovation, as it is defined here, is 

the communication of a new invention’s capabilities from the inventor to its potential 

adopters.  Additionally, Rogers, in his work on innovation, Diffusion of Innovations, 

lists communication as an important part of technology diffusion [3].  Thus, 

improvement in the methods of communicating an invention’s performance to customers 

may reduce its innovation time, or the time it takes to reach adoption in the market.  Put 

another way, by more richly communicating the possible performance of a product, 

customers may be more likely to adopt this new invention into their systems.  

Additionally, systems designers benefit from these richer descriptions of product 

performance because they allow for a potentially higher system performance by 

expanding the component-level performance options available to them and their system 

models and optimizers.   

 

The word technology will be used throughout this thesis.  Because it has a variety of 

definitions, I examined and compared several sources.  The definitions I found are 

summarized in Table 1-1 below.  Utilizing aspects of these definitions and keeping in 

mind the goal of generating a definition relating to the present research (i.e. not 

concerned with social or managerial aspects of technology), I composed the following 

definition of technology:  

 

Technology: an artifact, process, or digital entity used to accomplish a task 

using specific technical processes, methods, or knowledge.   

 

Under this definition, two different technologies are those that may accomplish the same 

task using different processes, methods or knowledge.  Unrelated technologies are 

noticeably different: televisions and defibrillators, for example, but the relevant issue for 

this present work is the comparison of two or more similar technologies that are related 
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in end use and application, but not in working principles or behavior.  For instance, 

gasoline and electric automobiles both have the same task: move people and cargo from 

place to place using energy stored on board.  They achieve this task using very different 

methods and processes: liquid fuel and internal combustion versus batteries and electric 

motors.  The engineering models needed to analyze these two technologies are very 

different and require separate design optimization loops to design.  The present research 

seeks to create a way to demonstrate the performance capabilities of two or more 

competing technologies, such as these, that share a common task but require different 

engineering models at the subsystem level due to their inherent unique processes. 

 

 
 
Table 1-1 - Definitions of Technology 

Definition Source 

A design for instrumental action that reduces 
the uncertainty in the cause-effect 
relationships involved in achieving a desired 
outcome 

Diffusion of Innovation by Everett Rogers [3] 

Material Artifacts mediating task execution in 
the workplace 

“The Duality of Technology: Rethinking the 
Concept of Technology in Organizations” 
Orlikowski, Wanda J. Organizational Science 
vol. 3 num 3 Aug 1992 pp 398-427 [4] 

The practical application of knowledge 
especially in a particular area 

Merriam Webster Online Dictionary [5] 

A capability given by the practical application 
of knowledge 

Merriam Webster Online Dictionary [5] 

A manner of accomplishing a task especially 
using technical processes, methods or 
knowledge 

Merriam Webster Online Dictionary [5] 

Changing the natural world to satisfy our 
needs 

ITEA/Gallup Poll Reveals What Americans 
Think About Technology: A Report of the 
Survey Conducted by the Gallup Organization 
for the International Technology Education 
Association. Rose, Lowell C. Dugger Jr. William 
E. ; The Technology Teacher, Vol. 61, 2002 [6]  

An ordering of the world to make it available 
as a standing reserve poised for problem 
solving and, therefore, as the means to an end 

The question of technology and other essays 
Heidegger, M. 1977 p. 19 Trans. W Lovett. 
New York Harper and Row [7] 
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Although decisions are currently made about whether to adopt new technologies or not, 

designers often use prior experience and engineering judgment with limited or discrete 

information only to make these decisions.  This can often lead to lengthy and costly 

design iteration as new designs must be generated and evaluated and then thrown out for 

another design.  Additionally, prior experience may be irrelevant or useless when 

evaluating new technologies because their operating principles may differ completely 

from existing technologies with which system designers are familiar.  This also may lead 

to qualitative decisions based on biases from past experiences, reducing the full range of 

alternatives considered.  Optimal or preferable designs may be completely missed by not 

using a formal method.  Novel technologies, in particular, may be overlooked out of 

ignorance about their capabilities/operating principles or fear of the high risk nature of 

the new technology.  This process is therefore wasteful and begs for a robust, useful 

solution.   

 

This solution should produce a high-level model of the performance achievable by a new 

technology in the form of a design space of alternatives.  This would be useful for top 

level decision makers making evaluations about low-level components that affect the 

performance of the system.  For example, a lead architect may not feel confident 

evaluating or understanding the thermal properties of a vegetative roof on a building 

(conductivity, albedo, heat capacity, etc.), but would like to know what the range of 

energy savings percentages of total building energy use are possible for a vegetative roof 

design and the associated costs (e.g. this vegetative roof could save 20-30% of the 

building’s energy compared to a standard roof design with cost tradeoffs, say 10 to 20 

thousand dollars in extra capital costs).  Additionally, this lead architect would like to be 

able to compare the performance of several different types of roof (vegetative, aluminum 

covered, asphalt, tar, etc.) against each other in the same design space.  The solution to 

this problem would need to provide a direct method for preparing the information 

needed to make this multiple-technology type of decision.  Also, inventors may not want 

to provide proprietary information to designers, so providing them with only system-
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level performance feasibility spaces would be preferable and then, no unnecessary 

additional information is given to the designers that they do not need.  This solution 

would also allow inventors to easily compare the performance range of their technology 

to existing technologies in a consistent space to determine if their technology is on the 

performance frontier and offers advantages over existing technologies.  This solution 

would be most useful during conceptual design when designers are deciding which 

broad technology category (or product line/type) to investigate further and devote 

resources to that would still meet their design criteria and would offer better 

performance possibilities. 

1.4 Illustrative Example 

The following example illustrates this process.  Suppose an inventor develops a new 

type of window.  It is a photo-chromic window (changes its optical properties to react to 

changes in light levels).  He wishes to market this window technology to architects in 

order to sell more windows.  However, because the materials and design details of his 

window are proprietary and very valuable to him, he does not want to provide models of 

the window’s behavior in terms of its design variables.  His models predict the U-value, 

transmittance, and solar heat gain factor (SHGF) based on the window thickness, 

material properties, and assumed outdoor conditions.  The predicted metrics above all 

relate to the heat transfer properties of the window and therefore, the energy lost or 

gained through the window.  The inventor’s model takes his design variables (window 

thickness, material properties, etc.) and predicts higher-level performance metrics (U-

value, transmittance, SHGF).   

 

In lieu of sending this model to an architect (to prevent divulging trade secrets or 

because the architect may not want to deal with these detailed models), the inventor 

could create a more abstracted model of the performance of his window technology.  To 

do this, he could generate a number of window designs, run his model on these designs, 

take the set of performance metrics output by the model for each design and fit some 
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other abstracted model around it.  This “meta-model” of the performance metric data 

derived from the original window designs could then be passed to an architect for 

systems design optimization.  

 

Now suppose an architect is selecting a window technology to use in a building that 

minimizes energy consumption.  He has two choices: the inventor’s photo-chromic 

window or an electro-chromic window (changes its optical properties to react to an 

applied voltage).  I will assume that both technologies are completely customizable 

(size, shape, thickness, how it changes properties, etc.).  Suppose he is interested in only 

some properties of the windows that affect the energy consumption namely, U-value, 

transmittance, and solar heat gain factor (SHGF).  He must decide which process he 

should use to choose a technology and a specific design such that it optimizes his 

building design.  He could handle this problem in at least two distinct ways:  

• Option 1: Use or create low-level models of each technology that determine U-

value, transmittance and SHGF (the window’s attributes) from design variables 

like window thickness and material properties (e.g. the inventor’s own model) 

o Use these to run energy simulations using an optimizer to find the best 

design for each technology by varying design variables 

• Option 2: Use higher level performance metric (attribute) models from the 

inventor of each technology (models from data for U-value, transmittance, and 

SHGF) 

o Use this attribute model to generate system-level variables of interest 

(those needed for energy simulation) 

o Run energy simulations using this model and optimize to find the best 

attributes and best technology 

o Return to inventor and provide him with desired attributes from 

optimization so he can use his component-to-attribute model to determine 

design variables needed to achieve desired attributes 
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Option 1 Option 2

Low-Level Design 
Variables

Attribute-to-
System Model

Energy 
Simulation

Optimizer

Once for Each Technology

Model Around 
Attribute Data

Energy 
Simulation

Optimizer

?

What Should This Model of 
Attribute Data Look Like?

Both Techs. In Same Attribute Space

?

Performance Metrics 
(Attributes)

Design Vars-to-
Attribute Model

A

B

C

D

E

Steps A-C of Option 1 
Completed By Inventors

Attribute-to-
System Model

 
Figure 1-2 - Window Selection Problem Options 

  

 
Figure 1-2 shows a summary of these two options.  It should be noted that option 1 is not 

possible if, as I mentioned, the inventor does not share his model because system-level 

designers rarely have the domain knowledge to construct such models on their own.  

There are also computational drawbacks to option 1.  Option 2 only needs to be run once 

because only one model is needed that handles both technologies.  Option 1 must be run 

two times, once for each technology because each technology has different design 

variables and models.  The attribute-to-system model is the same in both cases because 

both technologies relate to the system the same way at the attribute level.  With more 

complex systems and more technology options, this advantage of option 2 becomes more 

significant.  Also, option 1’s design variables-to-attribute model may be complex and 

computationally intensive, slowing the optimization.  The window inventor’s role in this 

process is that of information provider.  He or she would have to provide the low-level 

models (if the architect could not generate them himself) for option 1 or the attribute 

“meta-model” for option 2.  This attribute “meta-model” should be constructed in such a 
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way that the attributes represented in the model correspond to designs that could actually 

be produced (feasible designs).  Thus, it should indirectly contain feasibility information 

to constrain the optimization to attribute values (and their corresponding designs) that 

are actually attainable.  In order to use option 2, the inventor would need to characterize 

the “model around attribute data”.  This is a model of the abstracted capabilities 

(attributes) of the technologies and is the subject of the next sub-section. 

1.5 Abstracted Models of Technologies 

Prior research has shown that abstracted models have value in decision-making. 

Ferguson et al. demonstrate the use of what they call “technical feasibility models” to 

map between the performance and design spaces and determine new automobile designs 

for a given set of performance specifications [8]. The technical feasibility models are 

based on solutions on the Pareto frontier in the attribute (performance) space.  In this 

research, I utilize their ideas about using Pareto frontiers of attributes to constrain to 

feasible designs (the Pareto set is a subset of the feasible set) and their description of the 

process of taking attributes on the Pareto frontier and mapping them back into the design 

space.  They do not, however, discuss how to model the Pareto frontier mathematically.  

Gurnani et al. continue this work and show how Pareto frontier models can be used as 

constraints in feasibility assessments [9].  They also add a simple quadratic regression 

model of the Pareto frontier to make it continuous.  I use a similar regression model of 

the Pareto frontier in this thesis.  However, they do not explore other ways of modeling 

the Pareto frontier or ways to deal with attributes that the designer does not yet have a 

clear preference for (e.g. want larger or smaller values).   

 

Mattson and Messac explain how what they call “s-Pareto” frontiers can be used to 

perform concept selection in the performance space and they later add uncertainty and a 

visualization of the “goodness” of concepts to their method [10, 11].  Their s-Pareto 

frontiers are developed by finding the global Pareto frontier for multiple design concepts 

(instead of one, as in Ferguson and Gurnani above).  Design concepts not along the s-
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Pareto frontier are dominated and excluded from the decision-making process.  I also use 

Pareto frontiers (though not s-Pareto frontiers) in this thesis to compare competing 

concepts (technologies) at the attribute level.   They do not generate a model of the s-

Pareto frontier, however.   

 

Malak and Paredis show how abstracted models could be developed using a technique 

called “parameterized Pareto dominance” (an extension of Pareto dominance to include 

attributes for which a designer does not yet know his or her preference) and outline a 

general methodology for generating these abstracted, parameterized Pareto set models by 

composing representations together, including a method dealing with uncertainty [12-

14].  They use parameterized Pareto dominance to develop “tradeoff models,” which 

model the Pareto frontier in the attribute space.  Once again, the Pareto frontier is only a 

subset of the entire feasible set, so they are only modeling this portion of the feasible set.  

I use an interpolation model of the Pareto frontier (the “tradeoff model”) in this thesis 

just as they do in their research.  Further, Sobek, Ward , and Liker demonstrate the 

usefulness of set-based design methods in systems design by describing how Toyota 

passes design feasibility information in sets (in the form of intervals), instead of discrete 

points [15].  They argue that the additional flexibility of sets of performance targets as 

opposed to single points reduces design cycle time and makes it easier for Toyota to 

communicate with suppliers.  They only demonstrate feasible sets described by simple 

intervals on design variables or attributes, not more complex mathematical 

representations of the feasible domain that can be easily applied to optimization 

problems. 

 

Representations of abstracted models vary and different representations may have 

unique benefits over others. I am not aware of any study that seeks to determine which 

representational method comes closest to the ideal of providing an accurate solution to 

the design problem while being computationally (and temporally) efficient.  

Additionally, I know of no study that examines how these methods scale with the 
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amount of available attribute data.  The present work seeks to fill this gap in the research 

and determine if there is a superior method for dealing with custom-built-component 

systems design problems (at different data sizes) and assigns a name to all such methods 

for clarity and brevity.  I compare four mathematical representational methods and find 

that one method stands out for its combination of accuracy and computation time.   

1.6 Technology Characterization Models (TCMs) 

In this research I use the term Technology Characterization Model (TCM) to refer to a 

mathematical representation of the capabilities of a given technology (or product) in the 

technology’s abstracted, attribute space.  The abstraction and attribute parts of this 

definition are important because they allow the systems designer to focus only on those 

variables that relate component performance to system performance and ignore lower-

level, complex, domain-specific variables or models that may be proprietary anyway.  

Abstraction of lower-level variables to attributes also potentially allows systems 

designers to compare competing technologies that may have different component models 

and low-level design variables in the same attribute space.  Thus, the TCMs of the 

competing technologies would all be defined in the same space, allowing for easy 

comparison and analysis.  The idea behind abstraction can be seen in Figure 1-3.  Low-

level design variables such as part dimensions are passed through a component model 

that calculates component metrics like torque, power, efficiency, internal stresses, etc. 

and these metrics of the component become its attributes.  Thus, it is said that the 

component’s design variables are abstracted to the attribute level. 
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Figure 1-3 - Example of Transition of Design Vars. To Attributes 
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An example of a simple TCM is a mathematical model of a Pareto or efficient frontier 

for a set of design alternatives.  In this case, the TCM represents the trade-offs in one 

design attribute to achieve better performance in another for those design alternatives 

that lie on this frontier.  As I will show later, Pareto dominance analysis (the elimination 

of those alternatives not on the frontier and the formation of the frontier itself) plays an 

important role in two of the TCM methods I studied. 

 

Four methods to characterize a technology’s attributes (TCMs) will be discussed at 

length in this thesis: Feasible Set, Efficient Set Interpolation, Efficient Set Regression 

Model, and Feasible Set on Efficient Set (hereafter also referred to as: SVDD, 

Interpolation, Regression, and PPS+SVDD, respectively).  A visual representation and 

comparison of typical examples of each of these methods is displayed in Figure 1-4.  

SVDD is a model of the entire feasible set, of which the Pareto set is a subset, 

PPS+SVDD is a model of the Pareto frontier only that does not rely on a predictive 

model, Interpolation is a model of the Pareto frontier that passes through each point on 

the frontier and is predictive between points, and Regression is a model of the Pareto 

frontier that does not necessarily pass through the points on the frontier and is predictive. 
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Figure 1-4 - Four Methods of TCM 
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1.7 Summary of Introduction 

The preceding sub-sections show that TCMs can be useful in systems design and in 

assisting inventors in the innovation process.  They utilize the benefits of abstraction to 

reduce the problem complexity, remove proprietary information and allow for different 

technologies to be aggregated into a single model.  The remainder of this thesis is 

focused on answering some key questions related to TCMs:   

1. What is the foundation of each of the four TCM methods? 

2. How is each method used? 

3. How can they be applied to systems design problems? 

4. Are attribute solutions from optimization of a TCM feasible? (Do feasible design 

variables corresponding to these attributes exist?)   

5. Which TCM type is the most accurate when its solution is compared to a trusted, 

well-defined method’s solution?  RQ 
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6. Which TCM type requires the least computation time?  RQ 

7. How do all four types scale with the size of the attribute data?  RQ 

8. Which TCM is the best overall?  RQ 

Questions 5, 6, 7, and 8 constitute my research questions for this thesis.  The previous 

questions merely provide a background and support for answering the research 

questions.  Question 1 is answered in Section 2, where the mathematical techniques used 

to derive the TCM methods are described in detail.  Question 2 is answered in Section 3, 

where the process for producing each type of TCM is broken down to show how they 

can be practically used.  Question 3’s answer is the subject of Section 4, which details a 

systems design example problem where TCMs are used to find an optimal component 

design.  In this case, a steam power plant designer is seeking a condenser technology to 

use in a Rankine cycle and uses each of the TCM methods to select the best technology 

and condenser design.  This section also answers question 4 by displaying the results of 

the example problem in terms of design variables, showing that the optimal attribute 

values found from the TCM optimization can be feasibly achieved and there exists a set 

of design variables that can reach those attribute values within a reasonable amount of 

error.  The research questions (5-8) are answered in Section 5, which describes the 

results of a comparison study on the condenser example problem.  I run the example 

problem multiple times, varying the attribute data size (this attribute data is generated by 

low-level models and is used to construct the TCMs) to determine the scalability of the 

methods.  This section also describes the accuracy and computation time of each method 

for the condenser problem.  By combining all of the above information, I then make a 

conclusion about which TCM is best.  Section 6 then describes my conclusions about 

TCMs and future work related to TCMs in the areas of technology comparison, 

technology development, innovation, and set-based design. 
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2. BACKGROUND ON MATHEMATICAL TOOLS USED IN TCMs 

The four methods of TCM I consider involve many different modeling techniques and 

methods.  They utilize parameterized Pareto dominance, support vector domain 

description, interpolation, and linear regression.  These techniques have all been 

developed in prior work, to be detailed below.  

2.1 Parameterized Pareto Dominance 

Parameterized Pareto dominance is the elimination of designs from a set of designs such 

that the eliminated (or dominated) designs would never be preferred over the remaining 

(non-dominated) designs based on the preferences of the designer including 

considerations of design variables for which the designer does not yet know his or her 

preferences (termed “parameters”) [12, 16].  The complete set of non-dominated designs 

is called the parameterized Pareto set.  This dominance criterion is an extension of 

classical Pareto dominance.  Preference variables must have a preferred direction of 

improvement: smaller mass is preferred, smaller cost is preferred, higher efficiency is 

preferred, etc.  Parameters are those variables or attributes, for which a designer does not 

currently have enough information to determine a preference.  The inclusion of 

parameters in dominance analysis is important because systems designers often 

encounter variables related to components that they may not know enough about to have 

preferences for.  In other words, some systems design decisions cannot be made early in 

the process and preferences may be unknown.  When one’s view is at the system level, 

preferences for lower-level variables may be difficult to determine.  The mathematical 

formulation of parameterized Pareto dominance is shown in definition 1, where P  is the 

set of parameter attributes, is the set of domination attributes, is the set of design 

alternatives, is one design alternative, and  is another alternative. I will use this 

technique later to pare down the initial feasible set of designs prior to generating a model 

D Z

'z "z
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around the non-dominated designs to speed up the model-fitting process and to remove 

unnecessary undesirable designs early in the process.  

 

Definition 1: 

An alternative having attributes " is parametrically Pareto dominated by one 

with attributes ' ' " , ' " and ' " .i i i i i i

z

z if z z i P z z i D z z i D

∈

∈ = ∀ ∈ ≥ ∀ ∈ > ∃ ∈

Z

Z  
 

2.2 Support Vector Domain Description 

Support vector domain description (SVDD) is a technique for determining a continuous 

boundary around data (classifying points as either in or out of the set) using a machine 

learning algorithm.  This technique works for both convex and concave data sets.  The 

original concept of using support vector machines for creating domain descriptions 

comes from Tax and Duin [17].  They developed the mathematics behind SVDD and 

demonstrated its use.  Malak and Paredis furthered this work by demonstrating SVDD’s 

use in engineering design for model input domain definition [18].  SVDD works by 

finding the smallest radius hypersphere that contains the input data in an n-dimensional 

feature space.  The support vectors are those that form the boundary of the hypersphere.  

These support vectors are found by solving the equation below, also called the Wolfe 

dual problem, by finding the βi that maximize the equation. 
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where xi is a point from the data set, C is a user-defined variable called the “exclusion 

constant”, and N is the number of data points.  This equation is only useful when a 

hypersphere is a good model for the data (x).  Since this is rarely the case, the equation 

needs to be mapped into a higher-dimension feature space where a hypersphere is a good 
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fit for the given data.  To do this, the dot products can be replaced by the dot products of 

non-linear functions Φ(xi) which perform the desired mapping.  With this change, the 

Wolfe dual equation becomes:  

  

(2) 
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In this thesis, I replace the dot product of the non-linear transformations with a Gaussian 

kernel function, KG(xi,xj), by using a technique known as the “kernel trick” [19].  This 

allows one to perform the nonlinear transformation without an explicit description of the 

transformation or higher-dimensional space [17].  The Gaussian kernel function is:  

     
2

( , ) ,
G i j

i jq
K e− −

=
x x

x x
 (3) 

where q is the user-defined “width parameter” and affects the shape of the domain 

description by causing the domain to fit more tightly around the data at higher values.  

As q increases, the domain often forms “clusters” around smaller and smaller groups of 

data points, making the domain fit to the data more tightly, but dividing the domain into 

discrete sections.  It is often desirable to prevent this “clustering” by limiting the value 

of q to one that fits the data loosely enough to fit all the data points into one single 

cluster.  This is usually a relatively small value (0.5 – 4).  The other user-defined 

variable, C, determines the domain’s sensitivity to excluding data points from the 

domain description, but in practice has little effect on the shape of the SVDD [18].  The 

kernel function replaces the non-linear mapping from the data space to a “feature space” 

in which the data fits inside a hypersphere.  After applying this kernel trick to the 

previous Wolfe dual formulation, the final Wolfe dual equation to maximize is 

determined: 
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(4)
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Figure 2-1 shows an approximation of the SVDD generation process visually as a 

boundary is fit around a sample data set.   
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Figure 2-1 - Simplified Description of SVDD Fitting 

 
 
 
The radius of the hypersphere is used to determine whether new points fall inside or 

outside the domain by comparing the distance from the new point to the hypersphere 

center with the radius. The equation for this calculation is below, where z is the test 

point, xi are the support vectors, and R2(·) are the distances. 
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2.3 Interpolation and Kriging 

Interpolation is a curve-fitting method in which the model passes through all the data 

points.  The model uses the relative location of the data points to each other in its fitting 

process.  Interpolation assumes that the closer the input data points are to each other, the 

more positively correlated their outputs are.  Kriging (a method of interpolation) can be 

accomplished in a variety of ways by using different algorithms [20].  A common 

Kriging approach is known as Ordinary Kriging.  In this approach, the predicted value of 

a new unobserved input is a weighted linear combination of all the previously observed 

outputs.  The following equations describe the Ordinary Kriging model: 
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where xn+1 denotes the unobserved input, ෠ܻ(xn+1) denotes the predictor for the input, xi 

are the n previously observed outputs, λi are called Kriging weights and capital letters are 

random variables that are determined through the fitting process.  For a more detailed 

description of this technique and how the weights and random variables are determined 

see [20].   I use DACE Kriging, a tool developed for Matlab by Lophaven et. al  to 

generate Kriging interpolation models of data sets [21].   

2.4 Linear Regression 

Linear least-squares regression is a method for generating a mathematical model for a set 

of data that seeks to minimize the mean square error between the predicted values of the 

modeled functions (user-selected functions) and the input data points, while not 

necessarily passing through the data points like interpolation [22].  Regression fits are 
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designed to handle noisy data, resulting in the model not necessarily passing through the 

data points.  The model generated by regression analysis is a linear combination of 

functions included in the fitting process by the user.  The “goodness” of the regression 

fit depends primarily on the regression functions included in the regression model.  For 

most problems, a simple linear regression is not sufficiently accurate.  Additional terms 

such as quadratic terms, cross-terms for multi-variate problems, trigonometric functions, 

exponential functions, etc. are used to improve the fit by reducing error metrics such as 

mean-square-error or increasing correlation metrics such as r-squared.  One key 

drawback of linear regression for modeling optimal or Pareto frontiers of data is that the 

linear regression model may not pass through the points on the frontier and may over- or 

underestimate the frontier boundary.  This point is demonstrated in Figure 1-4 from 

Section 1.  The Pareto frontier is plotted with an example of a linear regression fit on the 

same graph.  The linear regression fit in the figure sometimes extends beyond the Pareto 

frontier into a region that is not possible with current technology for that particular 

product.  Other times, it falls below the boundary, indicating that no better designs are 

possible when in fact, there are better designs to the right and above the linear regression 

model fit.  This mischaracterization of the frontier could be detrimental in a systems 

design problem because it could falsely favor one design over another in an 

optimization, resulting in a sub-optimal (in the case of the regression model lying under 

the frontier) or infeasible (in the case of the model lying above the frontier) solution. 
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3. TCM DEVELOPMENT 

The tools described in Section 2 can be combined in various ways to develop different 

TCM representation methods.  Table 3-1 shows the steps I took to produce each of the 

four representation methods I study in this thesis: support vector domain description, 

parameterized Pareto dominance with interpolation modeling, parameterized Pareto 

dominance with support vector domain description, and parameterized Pareto dominance 

with linear regression modeling.  Similarly, Figure 3-1 shows a flowchart demonstrating 

the path taken to produce each type of TCM.  This flowchart emphasizes the differences 

(as noted by the decision nodes) and similarities of the four methods.  These steps will 

be described in more detail below.   

 

 

 

  
Figure 3-1 - Flowchart of TCM Generation and Optimization Process 
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Table 3-1 - Steps in Four TCM Methods 

Linear Regression 
on Efficient Set 

Interpolation 
(DACE Kriging) on 

Efficient Set 

SVDD Efficient set and SVDD 

1. Use dominance 
reasoning to 
reduce data 

2. Model efficient 
frontier using 
linear regression 

3. Centralize data 
4. Choose q and C 

values 
5. Compute SVDD 

of efficient set 
6. Run optimizer on 

efficient frontier 
to maximize 
objective function 
(constrained by 
SVDD)  

1. Use dominance 
reasoning to 
reduce data 

2. Model efficient 
frontier using 
interpolator 
(DACE Kriging) 

3. Centralize data 
4. Choose q and C 

values 
5. Compute SVDD 

of efficient set 
6. Run optimizer on 

efficient frontier 
to maximize  
objective function  
(constrained by 
SVDD)  

1. Centralize data 
2. Choose q and C 

values 
3. Compute SVDD 

of data 
4. Run optimizer on 

data to maximize 
objective function  
(constrained by 
SVDD)  

1. Use dominance 
reasoning to reduce data 

2. Centralize data 
3. Choose q and C values 
4. Compute SVDD of 

efficient set 
5. Run optimizer on 

efficient set to 
maximize objective 
function  (constrained 
by SVDD) 

 

 

   

3.1 Support Vector Domain Description (SVDD) 

As shown in Table 3-1, the first step in this TCM method is centralization.  Centralizing 

(scale all data to a -1 to 1 range) the data improves the support vector domain description 

model [18].  With the data centralized, I proceed to select the important SVDD 

parameters.  Support Vector Domain Description uses a Gaussian width parameter, q, 

and exclusion constant, C, to determine the type of fit modeled.  Previous work has 

shown that C has little effect on the SVDD, while q has a significant effect [18] .  I select 

q values for each dataset by choosing the maximum q value such that the domain 

description consists of only one continuous cluster (there are no discontinuities in the 

domain).  Increasing q beyond such a value produces a domain that is disjointed in more 

than one cluster, making searching the domain using gradient-based optimization 

methods more difficult.  Others have investigated algorithms (numerical and 

evolutionary) or heuristics to tune q, but I chose to use my own algorithm to suit my 

optimization needs (force the model into one continuous domain for a good search 
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space) [23, 24].  My algorithm utilizes support vector clustering (SVC), which involves 

determining how many “clusters”, or disjoint groups of support vectors, a given SVDD 

contains [25].  I use a bisection algorithm to find the q value where the SVDD transitions 

from 1 cluster of support vectors to two.  The algorithm fits the SVDD at an upper 

bound q value, a lower bound value, and a midpoint, then computes the number of 

clusters using SVC.  If the number of clusters is greater than 1 at the midpoint, the 

algorithm searches between the lower bound and the midpoint.  This continues until the 

midpoint and the lower or upper bound are within 0.001.   

 

After determining q, I solve the Wolfe dual problem described in section 2.2.  Solving 

this Wolfe dual problem can be computationally intensive and is highly sensitive to the 

number of data points being modeled, with computation time increasing super-linearly 

with the data size [18].  The results of the Wolfe dual computation are values for the 

support vectors (designated xSV) and support vector coefficients (bSV).  Using these 

values, I am able to constrain my gradient based optimizer (for system decision making) 

by limiting the search to values that fall within the hyperspheric SVDD domain.  I do 

this by calculating a support vector radius, rSV and hypersphere center, a, using the xSV 

and bSV values.  Any design with attribute values that lie a distance rS > rSV from the 

hypersphere center are invalid and cannot be searched by the optimizer.  The following 

set of equations describes the general form of a decision problem solution using a SVDD 

model: 
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(7) 

where z is an attribute vector, u is an objective function, rS(z) is the distance between the 

hypersphere center and the attribute vector, rSV is the support vector radius, and z* is the 

solution.  The SVDD acts as a constraint in the decision problem optimization to limit 

the optimizer to the feasible domain for the given data. 
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3.2 Interpolation on Efficient Set 

The first step in this method involves parameterized Pareto dominance analysis.  This 

technique, as described above, attempts to reduce the data set by removing designs that 

would never be rationally chosen by a designer due to the presence of a design that is 

superior.  This step reduces the size of the data for subsequent modeling steps.  This is 

especially important given the super-linear relationship between data size and support 

vector domain description fitting time mentioned earlier.  The product of this step is 

known as the parameterized Pareto frontier. 

 

The next step involves fitting a mathematical model to the efficient frontier data.  My 

interpolation model uses the DACEfit toolbox Kriging model to develop a model of the 

frontier, as described in Section 2.3.  I select the Kriging model parameters such as: the 

correlation function (Gaussian, linear, spherical, etc.), and the regression function (2nd 

order polynomial, 1st order, etc.) because initial testing showed these settings worked 

well.  I use the Gaussian correlation function and a 2nd order polynomial regression 

function for all three data sets unless the 2nd order is a poor fit, in which case I utilize a 

1st order function.  The interpolation model predicts the value of one attribute given the 

values of the others.  Thus, I have reduced the remaining non-predicted data’s 

dimensionality by one, making the data size smaller for the SVDD computation. 

 

Finally, with the interpolation model found, I centralize the non-predicted variable data, 

select SVDD parameters as before and compute the SVDD of this data on the efficient 

frontier.  Once again, I use the SVDD to bound my optimization problem, but in this 

case, I bound only the non-predicted attributes and predict the value of the other during 

each step of the optimization by using my interpolation model.  This constraint is 

necessary because certain combinations of inputs to the Kriging model will give invalid 

results.  The decision problem solution formulation is slightly different for this TCM 

representation as shown in the following set of equations: 
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where ࢠ෤ is a vector of attributes not predicted by interpolation model, fK is the Kriging 

model, ẑ is the predicted attribute, u is an objective function, rI(ࢠ෤) is the distance 

between the hypersphere center and ࢠ෤ using the support vectors and their coefficients 

found from fitting an SVDD to the non-dominated, non-predicted attribute data , rSVI is 

the support vector radius, and z* is the solution.  

3.3 Parameterized Pareto Dominance and SVDD 

This method combines the parameterized Pareto dominance of the interpolation on 

efficient set method and the simplicity of the SVDD method.  I first use parameterized 

Pareto dominance to eliminate dominated designs (especially important because 

SVDD’s computation time is so dependent on the size of the data) and then proceed with 

the previously defined steps for SVDD: centralize the remaining data (the efficient set), 

select values for q and C, and solve the Wolfe dual problem to determine the support 

vectors of the efficient set.  Finally, I run my optimization with the SVDD serving to 

constrain my optimizer to a model of the efficient set.  The decision problem solution 

formulation is very similar to that of the SVDD method, as shown by this set of 

equations:  
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(9) 

where z is an attribute vector, u is an objective function, rP(z) is the distance between the 

hypersphere center and the attribute vector, rSVP is the support vector radius of a domain 

description fit to the parameterized Pareto set, and z* is the solution.  The only difference 

is that the SVDD is fit to the efficient set and not all of the data (the “P”added to the 

subscripts indicates this change in the model).  The rest of the problem is identical.   
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3.4 Linear Regression on Efficient Set 

This method is nearly identical to the Interpolation on Efficient Set method.  I first 

perform parameterized Pareto dominance, but then rather than generating an 

interpolation model of the efficient set, I develop a least-squares regression model fit to 

the efficient set.  Because linear regression models are dependent on the suitability of the 

data model selected during fitting, I use Matlab’s stepwise fit function to select which 

terms of a full quadratic function with cross-terms have a significant effect on the 

regression model.  I then use these terms to fit the regression model.  The remaining 

steps parallel those of the Interpolation method: centralize the non-predicted attribute 

data, select q and C values, compute the SVDD of this data, and optimize using the 

SVDD of the non-predicted data as a non-linear constraint.  A formalized set of 

equations for using this TCM representation in a decision problem are shown below: 
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where ࢠ෤ is a vector of attributes not predicted by regression model, fR is the regression 

model, ẑ is the predicted attribute, u is an objective function, rLR(ࢠ෤) is the distance 

between the hypersphere center and ࢠ෤, rSVLR is the support vector radius, and z* is the 

solution.  The only difference between this problem and the interpolation problem is the 

predictive model used is a regression model instead of an interpolation model (this 

difference is indicated by the change in subscripts in Equation 10). 
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4. EXAMPLE PROBLEM 

To demonstrate and compare the above TCM methods, I conduct an example study.  

Since my goals are to show how TCMs can be used in systems design problems and also 

to quantitatively compare each of the methods to each other, I need a problem that is 

complex and quantitative.  Also, my problem needs to involve a comparison of 

competing technologies that perform the same function or task using different 

fundamental models or behaviors.  This will allow us to show how TCMs permit 

systems designers to easily compare different component technologies in the same 

search space, using the same objective function.  The problem I choose is the selection 

of a heat exchanger to be used in a steam power plant’s Rankine cycle because it is 

sufficiently complex and large to be customized, involves multiple competing 

technologies or types, has a well-defined system-component interaction and hierarchy, 

and can be easily quantified.  TCMs can help power plant designers compare different 

heat exchanger types and select the best one for their application.   

 

Heat exchangers are important devices in conventional power plant operation because 

they directly affect the overall plant efficiency and other key system characteristics.  

Some of the common types are: parallel flow concentric tube, counter-flow concentric 

tube, shell and tube, multi-shell and tube, cross-flow, and finned.  Selecting a heat 

exchanger type and its dimensions in order to improve the overall power plant 

performance can be a difficult task because there are many complex relationships 

between heat exchanger variables and system level variables.  Designing a heat 

exchanger without considering its affects on the system as a whole disregards important 

relationships and could lead to a suboptimal design.  The system-oriented nature of this 

design problem is noted by Shah and Sekulić [26]: “If the heat exchanger is one 

component of a system or a thermodynamic cycle, an optimum system design is 

necessary rather than just an optimum heat exchanger.” 

 
 



30 
 

My study uses this example problem to compare the results of a system optimization 

using an approach that starts with the lowest-level design variables (I will call this 

method the all-at-once, or AAO method) with the four methods of TCM using attributes 

instead of design variables.  I show how the four methods of TCM differ in accuracy 

(relative to the AAO solution), computation time, and scalability (to data sets of different 

size).   

4.1 System Design Problem 

The systems design scenario involves the selection of a heat exchanger technology to be 

used as a condenser in a steam power plant non-ideal Rankine cycle.  The cycle is shown 

in Figure 4-1 with assumed state values and relationships indicated.  I select the pressure 

and temperature at state one, the isentropic turbine and pump efficiencies and other 

assumed values and assumptions as shown in Table 4-1.  All of my assumptions are 

representative of typical power plant systems of this type and scale [27, 28].  

Additionally, I assume steady state, steady flow conditions, turbulent flow in all pipes, 

and negligible kinetic energy and potential energy effects.   
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 Figure 4-1 - Non-ideal Rankine Cycle 

 

 

 

Table 4-1 - Cycle Assumptions 

Variable Assumed Value 
Pressure at state 1 80 bar 
Temperature at state 1 650 ⁰C 
Isentropic Turbine Efficiency 90% 
Isentropic Pump Efficiency 60% 
∆P Across Boiler 0 bar 
Cooling Water Velocity 5 m/s 
Steam Velocity 60 m/s 
Ambient Pressure 1 bar 
Ambient Temperature 25 ⁰C 
Cooling Water Source and Sink 
Temperature 15 ⁰C 

Cooling Water Pressure 1 bar 
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My design objectives are to maximize: cycle efficiency, condenser volume, cooling 

water release temperature, and cooling water pumping power.  I select these parameters 

because all are affected by the condenser design and would be important to a power 

plant designer.  This importance is due to cycle efficiency being directly related to 

operation cost, condenser volume being related to condenser purchase cost, land use, and 

construction costs, cooling water release temperature being regulated by environmental 

laws if the water is returned to natural bodies of water, and cooling water pumping 

power being directly related to operating and installation costs.  The layout of the entire 

example problem is shown in Figure 4-2.  

Decision Problem

Cyc. Efficiency, HX Volume, 
Cooling Water Release Temp., 

CW Pump Power  to 
Overcome Press. Loss

System Level 
Variables

Condenser Pressure, Asi cross, 
Ai cross, HX eff, HX Volume, 

Friction Press. Drop, CW Pump 
Power  to Overcome Press. Loss

Component 
Attributes

Different Techs 
Split Here

Low-level 
Technology-
Specific HX 
equations

Low-level 
Technology-
Specific HX 
equations

Low-level 
Technology-
Specific HX 
equations

Heat Exchanger Equations:
Sys Vars=function(Attributes)

Maximize Multi-
Attribute Utility Of 

System Level Variables

OR ORTech 1 Tech 2 Tech 3

 

Figure 4-2 - Systems Design Problem Layout 
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The objective function I use to optimize these system-level properties is a utility 

function, with preferences characterized using multi-attribute utility analysis [29, 30].  

The objective is to maximize utility within the feasible domain.  Using my own 

preferences for each system level property’s values, I develop individual utility functions 

as shown in Figure 4-3.  These functions are used to convert each design’s parameter 

values to a value between 0 and 1 to be used in the overall utility objective function for 

each iteration of the search.   

 

I combine individual utility function output values by using this equation:  

  
(11) 

( ) ( ) ( ) ( ) ( )

[ ,]
e e e Wp Wp Wp V V V Tc Tc Tc

Wp Tce V

U X k u x k u x k u x k u x

X x x x x

= + + +

=

where X is the set of system-level values being evaluated, the xi are the respective 

elements of X, the ki are the scaling factors  (∑ ݇௜ = 1)௡௜ୀଵ , and the ui are the individual 

utility function output values for the design being evaluated.  U is the total utility for 

each design (optimization step).  This is the value that I wish to maximize.  I use equal 

scaling factors in this example. 
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Figure 4-3 - Individual Utility Functions 
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4.2 Heat Exchanger Technologies Studied and Design Variables 

I consider three main “technologies” or types of heat exchanger: parallel flow concentric 

tube, counter-flow concentric tube, and shell and tube.  Diagrams of each of these heat 

exchanger technologies are shown in Figure 4-4.  The structural differences between the 

technologies—flow direction and number of tubes—are readily apparent in the 

diagrams.  Also indicated are the five design variables used in this example: Do, Di, Dsi, 

Dso, and L. These represent, respectively, the outer and inner diameters of the inner 

tubes/pipe, the inner and outer diameters of the shell, and the length of each tube/pipe 

and the entire heat exchanger itself.  By varying the five design variables, an infinite 

number of heat exchanger designs is possible. However many of these designs are not 

feasible due to thermodynamic or physical limits and geometric constraints.  It should be 

noted here that for the shell and tube heat exchanger type, I calculate the number of 

tubes (N in the computations) by computing the maximum number of pairs of tubes that 
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would fit within the shell given the diameters of the shell and tubes.  Thus, N is not an 

independent design variable like the other five.   

 

Standard engineering design optimization using these five variables would require a 

different model for each technology because each has its own unique equations that 

relate these variables to attributes and system-level variables.  For example, the heat 

exchanger effectiveness (a measure of the efficiency of a heat exchanger’s heat transfer) 

is related to the heat capacity of the fluid passing through the device and the number of 

heat transfer units (NTU) by a unique equation for every type of heat exchanger, thus 

one engineering model cannot be used to optimize the design of all three technologies.  

Although each technology has the same design variables, they relate to different 

elements (diameter of multiple tubes in shell-and-tube versus the diameter of only the 

one inner concentric tube in the others) and use different models to arrive at attributes.  

Additionally, in the optimization method of Section 4.5 below, the shell-and-tube 

technology requires an additional constraint to ensure there is enough space between the 

shell’s inner diameter and the tube’s outer diameter to fit at least one pair of tubes inside 

the shell.  Getting from these five design variables and the earlier assumptions to 

attributes and important system level parameters requires many steps of calculation.  The 

calculation methodology is summarized in Table 4-2.   
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Figure 4-4 - Heat Exchanger Technologies 

 

 

 

This table displays the steps taken and the equations used to compute the desired system 

level values: cycle efficiency, condenser volume, cooling water release temperature, and 

cooling water pumping power.  Also, this table demonstrates two other important items:  

 

• The TCM approach involves only computing system-level values from high-level 

attributes , while the method using the design variables involves all of the 

computation steps (although the early computation steps are eventually used on 

the “winning” condenser technology to determine its design variables once the 

winner is determined from the attribute-level problem) 

• The primary computation difference between the technologies is highlighted in 

step 12 and demonstrates why optimizing with only design variables would 

require three separate models to arrive at the desired system-level objectives 
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Table 4-2 - Heat Exchanger Calculation Procedure 

Step  Computations  Used in  Level of 
Detail 

1  Compute cross-sectional and surface areas and number of tubes, N, that will fit, if 
necessary  

AAO Design Vars  

2  Lookup properties at state 1  [31]  AAO Design Vars  
3  Iteratively solve for pressure at state 2 using state 1 and isentropic efficiency of 

turbine to get enthalpy at state 2 (h2)  
AAO Design Vars  

4  Lookup properties at state 2 using P2, h2  AAO Design Vars  
5  Lookup up properties at cooling water inlet state (c1)  AAO Design Vars  
6  Using fluid velocities, densities and pipe areas, compute mass flow rates of both 

fluids  
AAO Design Vars  

7  Compute Reynolds number at states 2 and c1 [32] AAO Design Vars  
8  Compute convective heat transfer coefficients, hi and ho, inside and outside tube 

using correlations [33-35] 
AAO Design Vars  

9  Compute heat capacities of hot and cold fluids (Ch, Cc) using specific heats and 
mass flow rates  

AAO Design Vars  

10 Compute overall heat transfer coefficient , U, from fouling coefficients, tube 
conductivity, hi, ho, Ai, Ao, and L [32] 

AAO Design Vars  

11  Compute num. of transfer units, NTU, from tot. transfer area, A=pi*Do*L*N, U 
and C values [32] 

AAO Design Vars  

12  Use correlations for C and NTU by technology to compute HX effectiveness [32] AAO Design Vars  
13  Compute max. heat transfer, qmax=mass flow*(h2-hc1)  TCM, 

AAO 
Attributes  

14  Compute state c2 from HX water side energy balance  TCM, 
AAO 

Attributes  

15  Compute Tc2 (cooling water release temp.) from hc2 and Pc2  TCM, 
AAO 

Attributes/Sys. 
Objective  

16  Fix state 3 by iteratively solving for P3 and T3, given h3 from steam side HX 
energy balance  

TCM, 
AAO 

Attributes 

17  Compute average HX temperature and pressure by averaging states 2 and 3 and 
repeat steps 4 – 16 using Pavg, Tavg for steam properties  

TCM, 
AAO 

Attributes  

18  Compute friction factor, f, and equivalent length, Le, for tubes and shell [32, 36, 
37] 

AAO Design Vars 

19  Use Darcy-Weisbach equation to compute friction pressure drops in tubes and 
shell , then pump power to overcome [36] 

AAO Attribute/Sys. 
Objective  

20  Compute enthalpy at state 4 with isentropic pump efficiency  TCM, 
AAO 

Attributes  

21  Compute turbine power, boiler heat transfer  TCM, 
AAO 

Attributes  

22  Compute total cycle pump power by adding initial pump power from states 3 and 
4 to pump power to overcome press. drop in shell  

TCM, 
AAO 

Attributes  

23  Compute total cycle thermodynamic efficiency  TCM, 
AAO 

Sys. Objective  

24  Compute volume of HX  AAO Attribute/Sys. 
Objective  
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4.3 Heat Exchanger Attributes 

As mentioned in Section 1, low-level design variables and models can contain 

proprietary information about a product and/or can add domain-specific knowledge 

requirements to the systems design problem.  Therefore, I seek to use higher-level 

variables in developing the TCMs.  This process involves using the component level 

model to take the low-level design variables (Do, Di, L, Dso, and Dsi in this example) 

and abstract them to a level suitable for the given systems design scenario and that 

allows different technologies to be compared in the same variable space.  In other words, 

this process takes low-level component variables and turns them into only the variables 

that the systems designer needs to optimize his or her system and select the best 

component design while being able to compare technologies with different low-level 

models.  These higher level variables needed for the system optimization are called 

“attributes” of the component for use in a TCM.  In this problem, I use some of the steps 

in Table 4-2 to calculate the seven attributes needed for the system design optimization. 

 

I select these seven attributes (condenser inlet pressure, shell cross-sectional area, tube 

cross-sectional area, condenser effectiveness, condenser volume, friction pressure loss 

across condenser, and the pump power needed to overcome cooling water friction 

pressure loss) because they are the minimum variables necessary to complete the 

computation of the system-level variables of interest.  Two of these system-level 

variables are identical to their corresponding attributes, but the other two require 

additional calculation steps to arrive at the system-level values.  However, they require 

only steps 13-17 and 19-24 of Table 4-2’s calculations to reach the desired system 

values, resulting in less effort on the part of the system designer in his or her system 

optimization (only need 11 of the 24 calculation steps). 
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4.4 TCM Generation and Optimization 

I generate potential condenser designs (combinations of the five design variables) by 

randomly generating diameter values selected from standard ASME NPS pipe sizes for 

the design variables (within reasonable constraints shown in Table 4-3) and running 

them through a set of constraints to remove infeasible designs such as ones where the 

tube outer diameter exceeds the shell outer diameter.  From the remaining designs, 

(those that are feasible) I select 100 designs at random for each of the three technologies.  

These designs are displayed in Table A-5 in the appendix.  I then perform the necessary 

calculations to convert the design variable information to attribute data for each design.  

These 100 designs and their attributes then constitute my “catalog” of discrete potential 

condenser designs of each type.  I then use these 100 designs to develop the TCMs for 

each technology.   

 

Table 4-3 - Design Generation Limits 

Design 
Variable Bounds/Constraints  Design 

Variable Bounds/Constraints 

Do Ranging from 0.01 to 2.48 m  Dsi Maximum of 2.49 m 
Dsi-Do Ranging from 0.01 to 2.47 m  Dso Maximum of 2.5 m 

Inner and 
Outer Wall 
Thickness 

=0.0919*Do (or Dso)+0.0033 based on 
NPS data on wall thickness vs. diameter 
with minimum of 0.01 and maximum of 
0.2 m 

 L Randomly generated 
between 1 and 20 m 

Di Minimum of 0.01 m    
 

 

 

With data for all 7 attributes in numerous configurations, I proceed to develop my 

technology characterization models for each condenser type just as described in Section 

3.  However, I do add one additional physical linear constraint on the optimizer forcing 

the cross-sectional area of the shell to be greater than that of the tube inside it to prevent 

the impossible situation where the inner tube is larger than the outer shell. This is 
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necessary because some of the designs have values near or at the constraints and when a 

TCM is fit to attributes of these designs, it may extend just beyond the feasible domain 

near that point due to small inherent errors in the model.  The optimizer may search in 

this small infeasible part of the TCM and find an infeasible solution. 

 

4.4.1 SVDD on Example Problem 

Following the steps of Table 3-1, I first centralize (re-scale to a range of -1 to 1) the 

attribute data for each technology and solve for the maximum q value such that the data 

is in one cluster by fitting domain descriptions and counting the number of clusters at 

each q value attempt in an optimization scheme.  The resulting q value is then used to fit 

the SVDD around the attribute data.  Table A-3 in the appendix displays the q values I 

used for fitting each of the TCMs, technologies, and data sets.  Table 4-4 shows the 

number of support vectors found for each technology for all four TCMs.  Table A-4 in 

the appendix shows the number of support vectors for different sizes of attribute data, 

while Table A-6 in the appendix shows the actual support vectors (and their coefficients) 

used for each TCM and technology for the full dataset.  The number of support vectors is 

always less than or equal to the number of data points and often far less.  In this 

example, there are only 20-40 support vectors for 100 data points, meaning that a 

minority of points assist in defining the SVDD boundary, while the others lie inside (or 

outside if some are excluded) the domain.  These support vectors and their radii are then 

used as constraints in the optimization problem defined in Equation 7, with the utility 

function (Equation 11) as the objective function.   

 

 

Table 4-4 - Number of Support Vectors by TCM and Technology 

TCM Tech 1 Tech 2 Tech 3 
SVDD 38 41 29 
PPS SVDD 34 39 29 
Interpolation 33 34 21 
Regression 33 34 21 
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4.4.2 PPS SVDD on Example Problem 

The first step in this method is to use parameterized Pareto dominance.  I use this 

procedure to eliminate points from the condenser technology attribute data sets that are 

dominated by other points.  The results of this analysis for all three technologies are 

shown in Table 4-5.  I define the cross-sectional areas (Ai and As) as the parameters 

(attributes that I do not yet have a preference for one way or another) and the other 

attributes as dominance attributes (subjected to dominance).  I prefer to minimize the 

pressure drop, maximize the effectiveness, minimize volume, minimize pump power, 

and minimize operating pressure.  The dominance process eliminates only a few points 

from each data set in this example, making it less useful.  This is because the two 

parameters make it more difficult for a design point to be dominated (there are few 

points with equal parameter values for both parameters, a necessary condition for 

parameterized Pareto dominance as defined in Section 2.1).  From here, the process 

proceeds just as with the SVDD method.  The number of support vectors for each 

technology after dominance analysis is shown in Table 4-4.  Equation 9 in Section 3.3 

describes the optimization problem for this TCM.  The support vector radius is used as a 

constraint on the optimizer and the utility function (Equation 11) is the objective 

function. 

 
 
 
Table 4-5 - Number of Non-Dominated Points by Technology 

Tech 1 Tech 2 Tech 3 
92 94 95 

 
 
 
4.4.3 Interpolation on Example Problem 

This method begins with parameterized Pareto dominance just as the previous section 

defines.  The results for all three technologies are the same as in Table 4-5, as they are 

unchanged from the PPS SVDD method.  Step 2 of Table 3-1 is accomplished by using 

DACE Kriging to model the Pareto frontier data by predicting the value of one attribute 
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based on the values of the other six.  This reduces the dimensionality of the problem by 

one.  DACE Kriging selects the appropriate fitting parameters by running its own 

internal optimization within user-defined bounds.  This tool also requires the user to 

select what it calls “correlation functions” and “regression functions.”  I select the 

Gaussian correlation function and the “regpoly2” regression function.  Once the model is 

fit, I complete the steps of Table 3-1 by centralizing the remaining non-dominated data 

(the six attributes that are not predicted by the Kriging model), choosing appropriate 

SVDD parameters as before and computing the SVDD of this data.  The optimization 

problem then looks like Equation 8, with the objective function replaced by my utility 

function (Equation 11).  The number of support vectors for this method for the three 

technologies are also shown in Table 4-4.   In this case, the support vectors are only six-

dimensional because one attribute is predicted and is not part of the SVDD used to 

constrain the optimizer.   

 

4.4.4 Linear Regression on Example Problem 

This method starts with the same dominance analysis as the previous two and the 

number of non-dominated points remains the same as in Table 4-5.  Step 2 of Table 3-1 

for Linear Regression states that the Pareto frontier should be modeled with a linear 

regression model.  As mentioned in Section 3.4, I assume a full quadratic function with 

cross-terms as my regression function and use the stepwisefit function to eliminate 

unnecessary terms.  This function uses a statistical p-value test to determine which terms 

improve the model correlation significantly and which have little effect.  If a term’s p-

value is larger than 0.1, it is removed from the model and if it’s p-value is less than 0.05, 

it is kept in the model.  Equations 12, 13, and 14 detail the linear regression models I use 

in this problem for each technology after stepwisefit has eliminated some terms.   
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6 2

Tech 2:  = 1 0.0115 0.3481 0.0415 1.1693
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(13) 
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(14) 

where (for all three equations) V= volume, w=pump power, d=pressure drop, 

p=condenser pressure, h=heat exchanger effectiveness, Ai=tube cross-sectional area, and 

As=shell cross-sectional area.  All three achieve high correlation coefficient (R2) values.  

These values are 1, 1, and 0.9148 for technology 1, 2 and 3, respectively.  From this step 

on, the process is nearly identical to that of the Interpolation method.  The only 

difference is that the optimization formulation is in Equation 10 instead of Equation 8.  

The key difference between these two optimization problems is the Pareto frontier model 

is a regression model instead of an interpolated model.  The number of support vectors 

used as a non-linear constraint on the optimizer is shown once again in Table 4-4. 

4.5 All-at-Once Optimization (AAO) 

In order to compare the TCM optimized designs and overall utility values with an 

objective standard, I conduct an all-at-once optimization (AAO).  The AAO method 

involves optimizing the design of a system by varying the lowest-level variables of the 

components of the system.  In this case, I vary the five design variables of the condenser 

to optimize the utility of the power plant system.  This entails placing bounds on the 

design variables equal to those used to generate the attribute data above for each 

condenser type and allowing the optimizer to compute the system level variables from 

these design variable values (the AAO setup can be seen in Table 4-6).  For this AAO 

approach optimization, I use Boeing’s design explorer optimization algorithm (within 

Phoenix Integration’s ModelCenter software) because it is a surrogate-based search that 

optimizes globally, can handle non-smooth or noisy design spaces and can handle 

analysis code failures [38].  I use this algorithm along with Matlab code to compute the 

system level variables and utility to find my optimal design for each condenser type.   
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Table 4-6 - AAO Constraints 

Design Variable/Output 
Variable 

Lower 
Bound 

Upper 
Bound 

Do 0.01 m 2.48 
Di 0.01 m 2.47 

Dso 0.01 m 2.5 
Dsi 0.01 m 2.49 
L 1 m 20 

Dso-Dsi 0.01 m 0.2 
Dsi-Do 0.02 m 2.47 
Do-Di 0.01 m 0.2 

Cooling Water Release 
Temperature 15 0C None 

Cycle Efficiency 0 1 
Calculated Boiler Heat 

Transfer 0 kW None 
Increase in Cooling Water 

Pump Power 
0 kW None 

   

 

 

4.6 Results of Example Problem 

Are attribute solutions from optimization of a TCM feasible? (Do feasible design 

variables corresponding to these attributes exist?)  The optimal designs resulting from 

applying all four TCM methods and the AAO approach to the condenser technology 

selection problem are shown in Table 4-7.  The TCM design variables are derived by 

taking the best attribute vector of ten optimization runs with random starting points and 

running a separate optimization problem using the component-level model to find design 

variables that come closest to generating attributes matching the attribute values 

provided by the TCM solution.  If the TCM solution cannot be built (i.e. constraints on 

design variables are violated), the feasible design closest to the TCM solution is used.  I 

use the Design Explorer optimizer again (with the same design variable constraints as 

used in the AAO approach) to vary the design variables in order to minimize the 

Euclidean distance between the attribute targets from the TCM solutions and the 
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attribute values computed from the design variables the optimizer is testing.  The last 

column of Table 4-7 is a measure of how close the design comes to generating attribute 

values equal to those of the TCM solution.  It is a Euclidean distance from the vector of 

attributes from the TCM solution to the closest feasible design’s attributes.  The larger 

the number, the farther away the TCM’s solution is from a feasible design.  This table 

shows that the first two technologies have relatively small distances for all four TCM 

methods.  The third technology, however, shows a dramatic difference in accuracy 

between the SVDD-based methods and the regression and interpolation methods.  This is 

possibly due to the model of the Pareto frontier being jagged or fitting poorly in certain 

regions.  Interpolation may create anomalous curve-fits between data points and 

regression, as mentioned earlier, can under- or over-estimate the frontier.  Table 4-7 also 

shows that TCMs can produce attribute results that correspond to feasible designs with 

only a small amount of error.  It should also be noted that for all three technologies, the 

SVDD-based methods (SVDD, PPS SVDD) are the most consistent and never exceed a 

distance of 100 from the feasible design solution.   

 

Table 4-8 shows the best utility values found for each technology and method.  It also 

shows which technology had the highest utility and therefore, is the preferred technology 

for this problem for each method.  From these results, technology 2 (counter flow 

concentric tube) is the best technology for this application.  The AAO and SVDD-based 

TCMs both agree that technology 2 is superior based on a rank-ordering of the total 

utilities of each technology.  The other two TCM methods, regression and interpolation, 

select technology 1 as the winner.  This is likely due to the relative inaccuracies of these 

methods as mentioned above.  The deficiencies of these methods extend further and will 

be discussed in Section 5.   The fact that the SVDD-based methods are most consistent 

in terms of the distance from Table 4-7 and that they lead to the same conclusion as the 

AAO solution indicates they may be better methods of TCM than the other two.   
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Table 4-7 - Example Problem Results 

Tech 1 Do Di Dso Dsi L Eucl. Dist. 
To Solution 

SVDD 1.27877 1.15352 1.66352 1.61813 10.3516 32.7353 
PPS SVDD 1.87697 1.68684 1.94072 1.89906 15.8438 87.5904 

Interpolation 1.78049 1.70605 2.5 2.48516 20 125.024 
Regression 0.71916 0.5193 1.49816 1.48734 20 34.5875 

AAO 0.51172 0.50008 0.83189 0.75109 1.51953 N/A 

Tech 2 Do Di Dso Dsi L Eucl. Dist. 
To Solution 

SVDD 0.68057 0.46645 1.25014 1.20641 12.0586 37.4966 
PPS SVDD 0.7674 0.56734 1.26959 1.19188 9.53516 34.3449 

Interpolation 1.47656 1.27844 2.15471 1.99109 19.1094 15.3238 
Regression 0.78188 0.7307 1.41063 1.23063 3.67188 17.7023 

AAO 0.57443 0.5193 0.63736 0.61063 1 N/A 

Tech 3 Do Di Dso Dsi L Eucl. Dist. 
To Solution 

SVDD 0.2162 0.07246 0.36502 0.31516 19.7031 24.8111 
PPS SVDD 0.02447 0.01 0.67141 0.46531 11.168 95.7214 

Interpolation 0.84459 0.625 2.10607 2.08313 20 8820.12 
Regression 0.63232 0.50488 1.3085 1.29359 19.8516 954.882 

AAO 0.02447 0.01 2.5 2.49 1 N/A 
 

 

 

Table 4-8 - More Example Problem Results 

Technique Tech 1 Util. Tech 2 Util. Tech 3 Util. Max Util Rank Order Winner 
SVDD 0.831 0.892 0.871 0.892 tech2 

PPS SVDD 0.882 0.911 0.871 0.911 tech2 
Interpolation 0.935 0.930 0.921 0.935 tech1 

Linear Reg 0.931 0.931 0.911 0.931 tech1 
AAO 0.914 0.927 0.640 0.9271 tech2 

 

 

Table A-1 in the appendix shows the results of the system optimization including the 

best condenser designs (in terms of attributes)  found in each TCM and the AAO method 

for each technology and the full data set.  Table A-2 shows the utility values of each of 
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these designs.  This thesis is focused on the comparison of TCMs and not on the optimal 

condenser design, so the results of this optimization are not a definitive statement about 

heat exchanger technologies in general, or which is best.  These tables are presented to 

show the differences between the solutions of the different TCMs and the AAO 

approach visually, while the numeric differences are quantified in Section 5.1. 

4.7 Summary of Example Problem 

This example shows how TCMs can be used to make decisions in systems design.  

Using the design of a condenser for a steam power plant, I show that TCMs are readily 

applicable to engineering problems and can easily compare different technologies.  In 

examining the results of the example problem, the counter flow concentric tube 

technology stands out by having the highest utility for two of the TCM methods and the 

AAO approach.  The remaining TCMs disagree with this conclusion due to error in their 

model fits that can lead to poor representations, infeasible designs, and inaccurate 

solutions.  From heat transfer theory, it makes sense that the counter flow heat exchanger 

would be more effective at transferring heat because the temperature difference between 

the hot and cold fluids is larger at the heat exchanger entrance than in the parallel flow 

heat exchanger.  The SVDD-based methods both correctly identify this outcome 

(although because heat transfer effectiveness affects only part of the utility function, it 

alone does not determine which technology is better).  Because this example is 

sufficiently complex, produces good results, and demonstrates TCMs well, I re-use it in 

a parametric study to determine what happens when the amount of available attribute 

data to fit the models to changes.   
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5. COMPARISON STUDY RESULTS 

I now take the above example problem and change the number of attribute data points 

used to fit the TCM to see how the TCMs are affected.  This is a parametric study of the 

example problem under varying conditions.  Specifically, I seek to answer questions 5-8 

of Section 1.7 in doing this.  These questions are important to answer because they lead 

to selecting the best representation of TCM, which is the key contribution of this 

research.  With this information, one can focus on using this type of TCM over the 

others on other problems. 

5.1 Accuracy 

Which TCM is the most accurate when its solution is compared to a trusted, well-defined 

method’s solution?  To answer this question and compare the four TCM representation 

methods and objectively show how one is superior, I compute a distance metric.  This 

distance metric is a measure of the Euclidean distance (sqrt((aAAO-aTCM)2+(bAAO-

bTCM)2+…))  between the normalized (all values re-scaled to a 0 to 1 range) vectors of 

the optimized designs (attribute values) for each condenser type and TCM and the 

corresponding optimized design (in attributes) from the AAO method.  This is 

accomplished by using the optimal feasible design (based on total utility) using each 

method for each condenser type and the AAO solution.  These values are the best of 10 

optimization runs for each condenser type and method.  Figure 5-1 show the values of 

both the distance metric and the next metric, computation time, for each of the methods 

and technology for the full data sets.  These figures show that on average, the SVDD-

based methods are clearly superior to the others by having lower metric values (their 

data points are farther down and to the left of the graph).  The smaller the distance 

metric, the closer the TCM solution is to the AAO solution, and the more accurate the 

TCM solution is.   
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Figure 5-1 - Comparison Study Metrics 
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Figure 5-2 - Distance Metric for Different Sample Sizes 
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Table 5-1 - Breakdown of Computation Time 

 

Method Tech 1 Tech 2 Tech 3 Tech 1 Tech 2 Tech 3 Tech 1 Tech 2 Tech 3
SVDD 0 0 0 0 0 0 44.21 39.19 47.66
PPS SVDD 0.047 0.008 0.005 0 0 0 26.24 33.74 40.63
Interpolation 0.015 0.005 0.006 0.370 0.154 0.156 32.19 30.94 25.54
Linear Reg 0.006 0.005 0.006 0.676 0.007 0.008 30.72 33.57 26.80
AAO 0 0 0 0 0 0 0 0 0

Domination Time Model Time SVDD Time

 

Method Tech 1 Tech 2 Tech 3 Tech 1 Tech 2 Tech 3
SVDD 30.42 96.98 29.78 74.63 136.17 77.44
PPS SVDD 165.18 31.51 31.29 191.47 65.25 71.93
Interpolation 540.17 949.02 918.61 572.74 980.11 944.31
Linear Reg 1053.19 1219.33 415.99 1084.59 1252.91 442.81
AAO 807 1530 443 807 1530 443

Optimization Time Total Time
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Figure 5-3 - Computation Time for Different Sample Sizes 
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5.2 Computation Time 

Which TCM type requires the least computation time?  To answer this question I use a 

second metric, computation time, which is a measure of the total amount of time needed 

to complete the TCM fitting and optimization on a 2.93 GHz, quad-core processor using 

8GB of RAM.  This metric is also broken down into smaller segments based on 

individual tasks within the process: dominance, model fitting, SVDD, and optimization.  

Figure 5-1 shows this metric plotted against the distance metric so the values of these 

two metrics for each TCM can be easily compared for the full data set. 

 

Table 5-1 shows the breakdown of the time metric into the individual computational 

steps.  This table shows that although the SVDD method takes the longest to produce the 

TCM, its optimization time is much shorter than both Interpolation and Linear 

Regression, and slightly shorter than the PPS+SVDD method on average.  Work by 

Roach, Malak, and Parker describes a new SVDD algorithm that drastically reduces the 

SVDD model-forming time, making it even more appealing and reducing its primary 

weakness: high computation time with large datasets [39].   

5.3 Scalability 

How do all four types scale with the size of the attribute data?  To answer this question 

and test the effects of changing data size and of less information on these TCM methods, 

I conduct the same analysis as above using data sets of size: G/2, G/4 and 3G/4.  These 

data sets are randomly sampled from the original data set for each technology with 

original size, G=100 designs.  This analysis is particularly important given the data size 

dependency of the SVDD method.  However, prior work on SVDD shows that this effect 

may be most extreme on datasets larger than 100 or 200 points, so this case does not 

represent an extreme case [18].   

                             

Figure 5-2 shows an example of this analysis for the parallel flow concentric tube 

technology for the distance metric.  Figure 5-3 shows the same analysis for the time 
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metric.  Neither graph shows an identifiable trend relating sample size to accuracy or 

computation time.  However, both of these graphs show that the SVDD method often 

has the lowest computation time and the lowest distance, even compared to the 

PPS+SVDD method.  Combining this information with that of Figure 5-1, it seems the 

SVDD method provides the best combination of accuracy and computational time.   

5.4 Summary 

Which TCM is the best overall?  This can be answered by looking holistically at all of 

the metrics for all of the data sizes and drawing conclusions from them.  Figures 5-4, 5-5 

and 5-6 show the same metrics displayed in Figure 5-1 for the other data sizes.  These 

figures show that the same trends emerge at different sample sizes.  The SVDD and 

PPS+SVDD methods have, on average, the lowest values of computation time and often 

the lowest values of distance (their points lie closest to the lower left corner of the 

graph).  Figures 5-7 and 5-8 show the effects of changing sample size on the accuracy of 

the other two technologies (Technology 1 is in Figure 5-2).  Figure 5-7 furthers my 

conclusion that SVDD-based methods are superior, while Figure 5-8 shows that 

technology 3’s results are inconclusive and have little variation in accuracy between 

three of the TCMs (with Interpolation being the only one significantly less accurate than 

the others).  Figures 5-9 and 5-10 demonstrate once again that the SVDD-based methods 

consistently require less computation time (all three technologies and all four data sizes 

exhibit this same trend). 
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Figure 5-4 - Comparison Study Metrics for Sample Size 25 
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Figure 5-5 - Comparison Study Metrics for Sample Size 50 
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Figure 5-6 - Comparison Study Metrics for Sample Size 75 
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Figure 5-7 - Distance Metric for Different Sample Sizes (Tech 2) 
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Figure 5-8 - Distance Metric for Different Sample Sizes (Tech 3) 
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Figure 5-9 - Computation Time for Different Sample Sizes (Tech 2) 
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Figure 5-10 - Computation Time for Different Sample Sizes (Tech 3) 

 
 
 
 
Qualitatively, both SVDD methods are superior because they produce consistent results 

(consistently find the same solution from different starting points), have shorter 

optimization times, and produce no unfeasible solutions.  The interpolation and 

regression methods, at least in this example, occasionally provide infeasible solutions 

(negative values of the Volume attribute in this case), especially with smaller data sets.  

This is likely due to noise in the model fit that may contain sharp drops or increases 

along the fit surface.  This is most pronounced in the 50-point dataset using 

interpolation, where out of the ten optimization runs, not a single one resulted in a 

feasible solution (all had negative predicted condenser volumes).  

 

Unexpectedly, performing dominance analysis prior to fitting a SVDD model affected 

the solution quality.  This result is possibly due to the fact that limiting the SVDD to the 

Pareto frontier reduced the number of solutions available to the optimizer and restricted 

its movement and prevented it from reaching better solutions.  This example problem is 
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seven-dimensional, so trying to visually understand the domain and the Pareto frontier is 

difficult, making diagnosing the real cause of the loss of solution quality in the 

PPS+SVDD method challenging.  Whatever the cause, the PPS+SVDD method was a 

very close second to the SVDD-only method and it may be reasonable to consider the 

PPS+SVDD method equal to the SVDD method for all intents and purposes. 

 

Although this analysis and example problem point to the SVDD method of TCM being 

dominant, some of this result is problem-specific and this conclusion should not be 

viewed as definitive and general.  However, this result does show that the SVDD method 

has great potential and that TCMs in general are useful and powerful tools in systems 

design.   
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6. CONCLUSIONS AND FUTURE WORK 

In addition to the use of TCMs in systems design as technology selectors, I believe with 

further research they can be used in systems design problems for product design, 

technology development, set-based design and innovation.  These potential uses are 

shown in Figure 6-1.   

 

 

 

 
Figure 6-1 - Future Applications of TCMs 

 
 

 

The continuous, set-based nature of a TCM lends itself to use as a feasible space for set-

based design methods and a thorough study of this application is needed.  Sobek, Ward, 

and Liker show that set-based concurrent design can be useful but they focus on simpler 

bounded variables (i.e. the diameter should be between 5 and 10 mm) to represent their 

sets instead of a richer, more complex set such as those determined by a TCM [15].  This 

added richness in the feasible domain description may allow designers of different sub-

systems to better communicate their individual design capabilities and feasibilities.  
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Further study is also needed to determine the mechanics of finding TCM unions and 

intersections when two or more TCMs must be compared.  These techniques would be 

useful in set-based design where different groups (manufacturing, engineering, testing, 

etc.) each develop their own TCMs or feasible sets and need to find the union or 

intersection sets of their designs so a design optimization can be performed.   

 

Additionally, the fact that TCMs can be used to define a technology’s current range of 

performance allows technology developers to search the TCM space to find performance 

regions that have not yet been explored, perhaps leading to improved designs.  The TCM 

allows developers to drive the direction of technology development toward the untried 

designs within the feasible space for the technology.  Figure 6-2 shows this process 

visually.  
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This application requires further study in the form of an industry partnership where 

TCMs can be tested on a real-world technology development problem.   

 

I believe that TCMs are especially useful for technology comparisons as outlined earlier 

in this thesis.  By abstracting individual technologies into a single space and fitting 

models to each, it allows systems designers to readily compare the performance of each 

technology and make decisions using their preferences on which technology is best for 

their system.  An example of a simple technology comparison is shown in Figure 6-3.   
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Figure 6-3 - Lighting Technology Comparison 

 
 
 
Here, three lighting technologies are compared based on their efficacy and number of 

bulbs needed to light a certain size room.  It is clear that each technology occupies a 

different part of the space and different technologies would be selected by designers with 
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different preferences.  The TCMs allow the designers to make comparison decisions 

easily and directly among technologies with different design variables but the same 

attributes.  It should be noted here that this method of abstraction does not work for all 

possible technologies because there are cases where several technologies that perform 

the same function may be too behaviorally different to abstract to the same attributes.  

For example, the electro-chromic windows mentioned in Section 1.4 can be abstracted 

with the photo-chromic ones, but not with standard windows because standard windows 

do not have dynamic behavior (their properties do not change with time).  Though not 

uncommon, design problems like these are still in the minority.  Future research is 

needed to extend current methods of abstraction to include a method for dealing with 

these exceptional problems. 

 

I believe TCMs can be valuable tools to inventors because it may be possible to combine 

them with technology forecasting tools to project a feasible technology domain into the 

future and determine where new designs and products may lie in the design space to 

guide inventors in the innovation process.  This too, would require a partnership with a 

company that strives for innovation to test this TCM methodology on a real technology 

through an industrial innovation process.  Further, I believe that TCMs will mutually 

benefit systems designers and inventors in three ways: they allow for complete customer 

customization of products to suit their specific needs, they reduce limitations on 

customers’ models and optimizers for component selection, and they encourage early 

adoption of new technologies by providing customers with a richer, more useful and 

flexible set of performance data.  An interaction between a system designer and an 

inventor using TCMs may look like this (Figure 6-4): 
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Figure 6-4 - Hypothetical System Designer-Inventor Interaction 

 

 

 

In this figure, the practicalities of what designs can be manufactured are balanced with 

the optimal component designs needed for the system as a whole.  This give-and-take 

accounts for the fact that in reality, the space of manufacturable designs for a product 
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may not be truly continuous (when costs of re-tooling, new equipment, etc. are 

considered), but a continuous TCM is still useful as a tool for the system designer and as 

a way to communicate overall feasibility and performance capabilities to systems 

designers.  This figure shows the effects of manufacturability of designs, not to be 

confused with their design (behavioral engineering model) feasibility.  Thus, TCMs can 

be used on products that are not practically customizable at every point within the 

domain by facilitating interaction and compromise between the inventor and the system 

designer. 

 

Additional work is also needed to develop TCMs to use on design problems under 

uncertainty.  Work is also needed on problems using different design scenarios and data 

sets to see if the results of this comparison study are consistent.  I believe personal 

beliefs about the bias of a given inventor or product designer (because he or she is 

ultimately trying to sell his/her product and may distort information in his/her favor) 

may be important to study in a design problem because the TCM could be modified by 

the system designer to characterize this belief mathematically.  This may result in a more 

accurate TCM because exaggerations of product performance can be accounted for.   

 

I believe that TCMs represent an opportunity to communicate design information in a 

new and more efficient way that benefits both systems designers and inventors.  With the 

future work above completed, the full range of TCM applications will be known and we 

will better understand their limitations and benefits in engineering design.  My study will 

hopefully lay groundwork for further investigation into types of TCM, which type is the 

most useful, the future opportunities in design using TCMs, and the tools and techniques 

needed to use TCMs in real-world design situations.   
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APPENDIX 

Table A-1 - Results of Optimization of Condenser Design 

Optimization results (tech1) 
Technique Data Size delta_p hxeff Volume Wdotpwater P2 Asicross Aicross

SVDD 25 192.214 0.830 8.472 0.584 0.975 0.098 0.074 
PPS SVDD 25 308.459 0.812 24.719 1.576 0.933 0.155 0.124 

Interp 25 29.940 0.940 5.036 0.421 0.848 2.211 1.493 
Linear Reg 25 308.107 0.898 127.970 0.421 0.898 1.015 1.009 

SVDD 50 1374.281 1.000 4.630 0.974 0.733 0.042 0.044 
PPS SVDD 50 232.508 0.787 14.922 1.195 0.942 0.158 0.159 

Interp 50 528.624 0.836 -5.222 0.421 0.826 0.045 0.045 
Linear Reg 50 254.359 0.895 127.878 0.421 0.781 1.101 1.100 

SVDD 75 231.422 0.996 19.019 2.568 0.740 0.223 0.187 
PPS SVDD 75 1046.815 0.953 1.206 0.194 0.782 0.006 0.002 

Interp 75 308.665 0.938 131.007 0.194 0.745 0.912 0.912 
Linear Reg 75 341.991 0.870 128.447 0.194 0.887 0.834 0.833 

SVDD Full Set 241.240 0.957 22.212 2.432 0.819 0.195 0.163 
PPS SVDD Full Set 2714.341 0.953 10.512 1.184 0.856 0.030 0.023 

Interp Full Set 342.069 0.871 128.144 0.194 0.888 0.855 0.855 
Linear Reg Full Set 238.525 0.956 127.876 0.265 0.749 1.188 1.149 

AAO Full Set 46.749 0.997 3.971 0.574 0.668 0.237 0.196 
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Table A-1 continued 
Optimization results (tech2) 

Technique Data Size delta_p hxeff Volume Wdotpwater P2 Asicross Aicross
SVDD 25 181.736 0.954 10.114 0.841 0.822 0.131 0.093 

PPS SVDD 25 181.739 0.954 10.113 0.841 0.823 0.130 0.093 
Interp 25 46.274 0.889 0.365 0.481 0.882 0.404 0.404 

Linear Reg 25 158.908 0.955 127.890 7.325 0.746 1.994 1.330 
SVDD 50 46.193 0.999 3.611 0.481 0.667 0.186 0.175 

PPS SVDD 50 72.636 0.915 22.551 1.913 0.978 0.559 0.539 
Interp 50 141.863 0.818 127.891 0.138 0.727 1.670 1.349 

Linear Reg 50 125.734 0.828 130.333 0.138 0.810 2.747 0.066 
SVDD 75 273.633 1.000 5.235 0.505 0.667 0.038 0.029 

PPS SVDD 75 273.633 1.000 5.235 0.505 0.667 0.038 0.029 
Interp 75 164.217 0.724 128.080 0.138 0.763 1.426 0.674 

Linear Reg 75 716.014 0.946 127.898 0.138 0.686 0.472 0.472 
SVDD Full Set 181.735 0.947 10.111 0.841 0.892 0.108 0.092 

PPS SVDD Full Set 168.087 1.000 4.174 0.724 0.669 0.381 0.336 
Interp Full Set 224.507 0.856 127.891 0.138 0.940 1.121 0.757 

Linear Reg Full Set 63.862 0.899 0.536 0.138 0.939 0.009 0.009 
AAO Full Set 189.951 1.000 2.002 0.389 0.668 0.293 0.212 
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Table A-1 continued 
Optimization results (tech3) 

Technique Data Size delta_p hxeff Volume Wdotpwater P2 Asicross Aicross
SVDD 25 766.756 1.000 28.430 21.624 0.719 0.028 0.0215

PPS SVDD 25 3175.732 0.998 3.985 1.680 0.774 0.004 0.0029
Interp 25 1300.449 0.998 2.027 0.818 0.727 0.004 0.0038

Linear Reg 25 517.872 0.999 0.532 0.818 0.723 0.003 0.0029
SVDD 50 3553.234 0.995 7.910 11.747 0.915 0.002 0.0008

PPS SVDD 50 198.721 0.997 13.106 3.297 0.787 0.208 0.0950
Interp 50 25.251 0.998 3796.069 0.818 0.699 0.017 0.0172

Linear Reg 50 1501.159 0.998 1.467 0.818 0.701 0.001 0.0008
SVDD 75 3175.732 0.998 3.985 1.680 0.774 0.003 0.0036

PPS SVDD 75 3175.732 0.998 3.985 1.680 0.774 0.003 0.0036
Interp 75 6.396 0.996 944.412 0.818 0.699 0.011 0.0111

Linear Reg 75 377.702 0.996 3.748 47.979 0.699 0.001 0.0012
SVDD Full Set 3175.732 0.998 3.985 1.680 0.774 0.005 0.0024

PPS SVDD Full Set 3175.732 0.998 3.985 1.680 0.774 0.005 0.0024
Interp Full Set 97.426 0.996 8947.095 0.818 0.694 0.041 0.0408

Linear Reg Full Set 1501.158 0.996 1.415 0.818 0.693 0.001 0.0008
AAO Full Set 568.593 0.996 7.854 372.914 0.730 4.870 0.0001
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Table A-2 - Utility Values of Optimization Results 

Utility Values Tech1 Utility Values Tech2 

Technique 
Data 
Size eff util Tc util 

Vol 
util 

Wdotp 
Util 

Tot. 
Util eff util Tc util

Vol 
util 

Wdotp 
Util Tot. Util

SVDD 25 0.783 0.948 0.915 0.981 0.907 0.760 0.946 0.899 0.972 0.894
PPS SVDD 25 0.785 0.954 0.632 0.947 0.830 0.760 0.946 0.899 0.972 0.894

Interp 25 0.769 0.941 0.950 0.986 0.911 0.783 0.961 0.996 0.984 0.931
Linear Reg 25 0.780 0.960 1.000 0.986 0.931 0.773 0.947 1.000 0.756 0.869

SVDD 50 0.699 0.967 0.954 0.968 0.897 0.750 0.967 0.964 0.984 0.916
PPS SVDD 50 0.782 0.964 0.852 0.960 0.890 0.765 0.955 0.686 0.936 0.836

Interp 50 0.791 0.965 1.000 0.986 0.935 0.800 0.961 1.000 0.995 0.939
Linear Reg 50 0.788 0.964 1.000 0.986 0.934 0.793 1.000 1.000 0.995 0.947

SVDD 75 0.718 0.960 0.775 0.914 0.842 0.747 0.959 0.948 0.983 0.909
PPS SVDD 75 0.766 0.869 0.988 0.994 0.904 0.747 0.959 0.948 0.983 0.909

Interp 75 0.780 0.964 1.000 0.994 0.934 0.782 0.940 1.000 0.995 0.929
Linear Reg 75 0.785 0.962 1.000 0.994 0.935 0.782 0.966 1.000 0.995 0.936

SVDD Full 0.757 0.955 0.695 0.919 0.831 0.747 0.951 0.899 0.972 0.892
PPS SVDD Full 0.726 0.947 0.895 0.961 0.882 0.747 0.964 0.958 0.976 0.911

Interp Full 0.785 0.962 1.000 0.994 0.935 0.783 0.942 1.000 0.995 0.930
Linear Reg Full 0.772 0.963 0.999 0.991 0.931 0.776 0.958 0.995 0.995 0.931

AAO 0.914 0.927
 

Utility Values Tech3 Utility Rank Order Winner 
Technique Data Size eff util Tc util Vol util Wdotp Util Tot. Util Max Util Name 

SVDD 25 0.715 0.957 0.539 0.279 0.623 0.907 tech1
PPS SVDD 25 0.656 0.954 0.960 0.944 0.879 0.894 tech2 

Interp 25 0.706 0.964 0.980 0.973 0.906 0.931 tech2 
Linear Reg 25 0.717 0.964 0.995 0.973 0.912 0.931 tech1

SVDD 50 0.606 0.916 0.921 0.608 0.763 0.916 tech2
PPS SVDD 50 0.690 0.922 0.869 0.890 0.843 0.890 tech1 

Interp 50 0.739 0.967 1.000 0.973 0.920 0.939 tech2 
Linear Reg 50 0.719 0.956 0.985 0.973 0.908 0.947 tech2 

SVDD 75 0.656 0.969 0.960 0.944 0.882 0.909 tech2 
PPS SVDD 75 0.656 0.969 0.960 0.944 0.882 0.909 tech2

Interp 75 0.741 0.967 1.000 0.973 0.920 0.934 tech1
Linear Reg 75 0.738 0.960 0.963 0.033 0.673 0.936 tech2 

SVDD Full Set 0.656 0.924 0.960 0.944 0.871 0.892 tech2 
PPS SVDD Full Set 0.656 0.924 0.960 0.944 0.871 0.911 tech2 

Interp Full Set 0.744 0.967 1.000 0.973 0.921 0.935 tech1 
Linear Reg Full Set 0.727 0.957 0.986 0.973 0.911 0.931 tech1

AAO 0.640 0.9271 tech2
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Table A-3 - Gaussian Width Parameters (q) Used in This Research (Max value such 
that data is contained in one SV cluster) 

 Data Size 
Technology 25 50 75 100 

Tech 1 0.9359 0.7799 1.2478 1.2647 
Tech 2 0.585 0.6825 1.3842 1.4361 
Tech 3 0.5265 0.702 1.1113 1.0932 

C values are always kept at 0.99  
 

 

Table A-4 - Number of Support Vectors by TCM, Technology and Data Size 

TCM Data Size Tech 1 Tech 2 Tech 3 
SVDD 25 19 14 11 

PPS SVDD 25 18 12 11 
Interpolation 25 16 10 9 

Regression 25 16 10 9 
SVDD 50 19 19 19 

PPS SVDD 50 19 21 18 
Interpolation 50 19 18 13 

Regression 50 19 18 13 
SVDD 75 36 35 28 

PPS SVDD 75 34 35 27 
Interpolation 75 31 31 21 

Regression 75 31 31 21 
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Table A-5 - 100 Designs Used to Generate TCM Attribute Data (Units in Meters) 

                    Tech 1                     Tech 2          Tech 3 
Do Di Dso Dsi L Do Di Dso Dsi L Do Di Dso Dsi L 

0.51 0.46 0.67 0.61 19.66 1.42 1.29 1.61 1.47 8.31 0.19 0.17 2.50 2.30 19.53
1.07 0.97 1.22 1.12 19.75 0.46 0.41 1.81 1.66 9.76 0.22 0.20 0.35 0.32 13.31
0.27 0.24 0.31 0.28 2.84 0.13 0.11 0.63 0.58 11.69 0.22 0.20 1.33 1.22 7.87
1.63 1.47 2.50 2.30 12.63 1.07 0.97 1.99 1.82 16.33 0.04 0.03 0.76 0.69 9.70
0.36 0.32 0.40 0.37 3.66 0.27 0.24 0.79 0.72 11.17 0.02 0.01 0.52 0.47 17.57
1.42 1.29 1.57 1.43 4.96 1.63 1.47 1.83 1.68 7.68 0.06 0.05 1.00 0.91 14.86
0.81 0.73 1.11 1.01 16.46 0.22 0.20 0.68 0.62 8.82 0.19 0.17 1.31 1.19 16.17
1.22 1.10 1.83 1.67 2.46 0.71 0.64 2.31 2.11 8.42 0.10 0.09 1.21 1.10 4.92
1.02 0.92 1.66 1.52 18.87 0.41 0.37 0.46 0.42 12.09 0.03 0.02 0.30 0.28 5.57
0.51 0.46 1.65 1.51 4.68 1.83 1.66 2.33 2.13 3.82 0.02 0.01 0.24 0.22 17.39
0.46 0.41 0.56 0.51 13.87 0.04 0.03 0.22 0.19 2.68 0.27 0.24 1.23 1.12 14.89
0.17 0.15 1.01 0.92 7.96 1.02 0.92 2.50 2.30 11.71 0.04 0.03 0.22 0.19 11.65
0.76 0.69 1.16 1.06 5.97 1.73 1.57 2.50 2.30 19.77 0.02 0.01 1.34 1.22 10.43
0.41 0.37 1.21 1.11 14.75 0.36 0.32 1.32 1.21 16.46 0.17 0.15 0.41 0.37 13.22
0.86 0.78 2.26 2.06 4.23 0.66 0.60 0.78 0.71 2.08 0.66 0.60 2.50 2.30 14.12
1.73 1.57 2.22 2.03 11.61 2.03 1.84 2.50 2.30 12.77 0.66 0.60 1.65 1.51 17.83
2.24 2.04 2.50 2.30 15.04 0.51 0.46 1.32 1.21 5.43 0.19 0.17 0.60 0.54 8.01
0.41 0.37 0.83 0.76 19.41 0.10 0.09 0.33 0.30 5.01 0.41 0.37 1.27 1.16 14.61
1.22 1.10 1.99 1.82 5.54 0.46 0.41 1.10 1.01 1.27 0.02 0.01 0.63 0.57 1.50
0.66 0.60 2.50 2.30 12.33 0.76 0.69 1.00 0.91 2.07 0.10 0.09 1.04 0.95 11.05
0.22 0.20 1.17 1.07 19.16 1.12 1.01 1.77 1.62 17.58 0.04 0.03 1.80 1.64 16.51
0.91 0.83 1.82 1.66 9.19 1.32 1.20 2.26 2.07 12.78 0.32 0.29 2.32 2.12 2.74
1.22 1.10 2.50 2.30 16.91 0.36 0.32 0.88 0.81 10.46 0.27 0.24 2.05 1.87 1.47
0.27 0.24 0.79 0.72 4.76 2.24 2.04 2.49 2.29 3.41 0.02 0.01 0.46 0.42 4.87
0.41 0.37 0.50 0.46 14.74 1.12 1.01 2.50 2.30 4.84 0.05 0.04 0.39 0.35 1.82
0.17 0.15 0.90 0.82 16.27 2.24 2.04 2.50 2.30 1.00 0.06 0.05 1.16 1.06 15.68
1.02 0.92 1.66 1.52 14.06 0.41 0.37 1.54 1.41 7.39 0.71 0.64 1.87 1.71 19.36
0.32 0.29 1.12 1.02 6.29 0.27 0.24 1.23 1.12 11.88 0.11 0.10 1.44 1.31 18.25
1.63 1.47 2.50 2.30 12.40 1.93 1.75 2.48 2.28 5.29 0.19 0.17 1.96 1.79 5.49
0.14 0.13 0.38 0.34 15.65 0.51 0.46 0.94 0.86 16.51 0.22 0.20 2.50 2.30 10.95
0.27 0.24 0.47 0.42 8.95 1.07 0.97 2.50 2.30 11.60 0.17 0.15 2.50 2.30 5.28
1.12 1.01 2.32 2.12 17.89 2.24 2.04 2.50 2.30 2.01 0.13 0.11 1.89 1.73 19.42
1.83 1.66 2.48 2.28 12.35 0.32 0.29 0.90 0.82 6.43 0.36 0.32 2.50 2.30 4.48
1.63 1.47 1.94 1.78 15.24 0.13 0.11 0.52 0.48 5.20 0.02 0.01 0.46 0.42 3.44
1.52 1.38 2.50 2.30 3.23 1.32 1.20 2.50 2.30 7.17 0.03 0.02 0.85 0.78 6.03
0.51 0.46 0.83 0.76 7.29 0.91 0.83 1.06 0.96 12.28 0.07 0.06 0.68 0.62 7.18
1.63 1.47 2.50 2.30 8.91 1.02 0.92 2.50 2.30 4.88 0.05 0.04 0.33 0.30 13.36
1.52 1.38 2.50 2.30 12.78 0.76 0.69 0.89 0.81 19.88 0.06 0.05 1.82 1.66 10.49
1.07 0.97 1.60 1.47 2.16 1.52 1.38 2.10 1.92 14.82 0.07 0.06 0.63 0.57 2.38
1.22 1.10 2.50 2.30 6.29 0.17 0.15 0.30 0.27 10.34 0.07 0.06 0.14 0.12 9.22
0.41 0.37 0.50 0.46 11.48 1.02 0.92 1.33 1.22 6.43 0.10 0.09 0.71 0.65 17.69
1.52 1.38 1.72 1.57 15.11 1.52 1.38 2.50 2.30 18.01 0.46 0.41 2.46 2.26 3.55
1.73 1.57 2.50 2.30 11.44 0.71 0.64 1.43 1.31 1.29 0.10 0.09 2.50 2.30 19.15
1.07 0.97 1.28 1.17 6.20 1.93 1.75 2.50 2.30 8.30 0.02 0.01 1.55 1.42 13.50
1.02 0.92 1.93 1.77 5.22 0.66 0.60 1.49 1.36 1.39 0.02 0.01 0.57 0.52 3.57
2.24 2.04 2.50 2.30 15.47 0.61 0.55 0.78 0.71 7.07 0.05 0.04 0.66 0.60 18.06
0.17 0.15 0.41 0.37 18.55 1.52 1.38 2.32 2.12 12.72 0.14 0.13 1.25 1.14 10.96
0.10 0.09 0.44 0.40 4.17 0.66 0.60 1.05 0.96 16.99 0.09 0.08 0.86 0.79 1.00
0.04 0.03 0.16 0.14 19.64 0.17 0.15 0.57 0.52 5.65 0.04 0.03 0.11 0.09 6.22
0.24 0.22 0.87 0.79 12.32 0.17 0.15 0.41 0.37 15.89 0.07 0.06 0.85 0.77 15.86
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Table A-5 continued 
Do Di Dso Dsi L Do Di Dso Dsi L Do Di Dso Dsi L 

1.73 1.57 2.50 2.30 3.21 1.63 1.47 2.38 2.18 10.44 0.71 0.64 2.50 2.30 19.80
1.63 1.47 1.83 1.68 15.67 0.71 0.64 1.27 1.16 15.07 0.36 0.32 1.16 1.06 6.46
1.42 1.29 2.50 2.30 8.92 1.93 1.75 2.50 2.30 7.41 0.46 0.41 1.32 1.21 5.56
1.93 1.75 2.17 1.98 16.82 0.24 0.22 0.49 0.44 9.14 0.07 0.06 0.63 0.57 10.77
0.32 0.29 0.52 0.47 14.50 1.73 1.57 2.16 1.98 10.52 0.22 0.20 1.55 1.42 1.47
1.12 1.01 2.50 2.30 19.51 2.24 2.04 2.50 2.30 7.28 0.10 0.09 1.64 1.50 6.00
0.41 0.37 0.72 0.66 14.67 0.81 0.73 1.11 1.01 10.58 0.04 0.03 0.75 0.69 19.17
0.32 0.29 0.96 0.87 6.65 1.73 1.57 2.00 1.83 19.75 0.05 0.04 0.39 0.35 5.74
0.13 0.11 0.52 0.48 11.60 1.52 1.38 1.94 1.77 19.10 0.14 0.13 0.54 0.49 19.27
1.07 0.97 2.50 2.30 16.13 1.22 1.10 1.88 1.72 4.59 0.19 0.17 1.53 1.39 2.28
0.76 0.69 2.50 2.30 8.56 1.02 0.92 1.12 1.03 1.18 0.71 0.64 2.50 2.30 18.14
0.17 0.15 0.46 0.42 19.01 1.83 1.66 2.22 2.03 4.77 0.10 0.09 0.39 0.35 15.54
1.52 1.38 2.27 2.07 4.49 1.83 1.66 2.50 2.30 10.85 0.07 0.06 0.14 0.12 18.79
0.66 0.60 1.32 1.21 8.41 0.41 0.37 1.21 1.11 17.71 0.32 0.29 0.85 0.77 7.16
0.46 0.41 1.32 1.21 13.52 1.63 1.47 2.16 1.98 2.43 0.41 0.37 0.83 0.76 4.93
0.14 0.13 0.81 0.74 18.64 0.10 0.09 0.28 0.25 19.70 0.03 0.02 0.85 0.78 11.97
0.19 0.17 0.82 0.74 12.58 0.81 0.73 2.20 2.01 5.20 0.04 0.03 0.75 0.69 1.21
0.27 0.24 0.31 0.28 11.39 0.46 0.41 0.83 0.76 16.61 0.27 0.24 1.07 0.97 7.52
1.32 1.20 2.16 1.97 8.57 2.24 2.04 2.50 2.30 9.50 0.06 0.05 0.89 0.81 11.84
0.91 0.83 1.93 1.76 13.34 1.83 1.66 2.05 1.88 14.92 0.02 0.01 0.73 0.67 17.94
1.32 1.20 1.50 1.37 7.25 1.02 0.92 1.88 1.72 2.01 0.04 0.03 0.10 0.09 14.82
1.07 0.97 2.47 2.27 5.42 1.07 0.97 1.88 1.72 2.08 0.10 0.09 0.93 0.85 5.52
1.73 1.57 2.50 2.30 12.42 0.86 0.78 1.00 0.91 12.74 0.19 0.17 0.98 0.89 12.32
1.22 1.10 2.42 2.22 15.82 1.07 0.97 1.71 1.57 12.98 0.09 0.08 2.28 2.09 13.31
0.71 0.64 1.00 0.91 14.78 0.19 0.17 1.14 1.04 10.79 0.02 0.01 2.50 2.30 19.21
0.61 0.55 0.83 0.76 14.90 0.81 0.73 2.50 2.30 15.13 0.27 0.24 0.68 0.62 10.51
0.76 0.69 2.36 2.16 13.20 1.07 0.97 2.10 1.92 1.44 0.41 0.37 1.54 1.41 9.13
1.42 1.29 1.57 1.43 15.74 1.63 1.47 2.48 2.28 6.90 0.22 0.20 1.01 0.92 17.53
1.42 1.29 1.99 1.82 3.90 0.05 0.04 0.22 0.20 8.52 0.13 0.11 0.96 0.88 17.80
2.03 1.84 2.50 2.30 1.97 0.81 0.73 2.20 2.01 11.97 0.46 0.41 0.83 0.76 16.97
0.19 0.17 0.43 0.39 15.57 0.66 0.60 1.54 1.41 6.08 0.61 0.55 1.76 1.61 10.89
1.42 1.29 1.67 1.52 15.31 0.76 0.69 1.76 1.61 17.16 0.17 0.15 0.57 0.52 15.90
0.36 0.32 0.77 0.71 9.14 0.32 0.29 0.68 0.62 3.61 0.51 0.46 0.94 0.86 11.33
0.27 0.24 0.90 0.82 12.23 0.61 0.55 1.11 1.01 17.45 0.07 0.06 0.57 0.52 17.87
0.61 0.55 1.11 1.01 8.90 1.02 0.92 1.12 1.03 13.00 0.03 0.02 0.25 0.23 12.39
2.03 1.84 2.50 2.30 19.90 0.24 0.22 0.60 0.54 5.34 0.17 0.15 0.46 0.42 2.09
1.22 1.10 1.61 1.47 6.66 0.36 0.32 0.83 0.76 6.39 0.17 0.15 2.50 2.30 5.55
2.24 2.04 2.50 2.30 1.65 0.66 0.60 0.78 0.71 5.63 0.03 0.02 0.69 0.63 1.74
0.14 0.13 0.65 0.59 12.13 1.07 0.97 1.82 1.67 14.94 0.05 0.04 1.59 1.45 18.20
0.05 0.04 0.11 0.10 3.39 0.24 0.22 0.71 0.64 6.65 0.32 0.29 1.29 1.17 1.60
0.91 0.83 1.55 1.41 14.75 1.02 0.92 1.44 1.32 9.39 0.51 0.46 0.94 0.86 12.50
0.76 0.69 1.65 1.51 3.61 0.81 0.73 1.49 1.36 4.58 0.51 0.46 1.38 1.26 5.97
0.71 0.64 1.27 1.16 3.29 0.71 0.64 1.38 1.26 7.62 0.36 0.32 2.50 2.30 3.53
0.71 0.64 1.33 1.21 15.39 0.91 0.83 1.11 1.01 4.61 0.03 0.02 2.50 2.30 19.20
2.03 1.84 2.50 2.30 19.94 0.46 0.41 1.16 1.06 16.92 0.05 0.04 0.66 0.60 1.92
0.81 0.73 1.49 1.36 5.37 0.46 0.41 0.78 0.71 1.48 0.10 0.09 0.77 0.70 16.49
0.86 0.78 2.04 1.86 13.53 0.46 0.41 1.32 1.21 10.13 0.17 0.15 0.51 0.47 2.09
2.24 2.04 2.50 2.30 2.82 0.71 0.64 1.71 1.56 11.45 0.13 0.11 0.96 0.88 18.23
0.71 0.64 1.05 0.96 17.84 0.71 0.64 1.54 1.41 16.75 0.24 0.22 0.82 0.74 16.80
0.46 0.41 1.16 1.06 17.56 0.46 0.41 1.43 1.31 14.79 0.04 0.03 0.54 0.49 8.52
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Table A-6 - Support Vectors (and Coeff.) Used for Full Data Set by Technology and 
TCM 
 
SVDD SVDD 
Tech 1 Tech 2 
xSV bSV xSV bSV 

Elemen
t 1 2 3 4 5 6 7 Coeff. 

Element 
1 2 3 4 5 6 7 Coeff.

-0.4534 0.9988 -0.0391 0.1685 -0.6943 -0.9573 -0.5504 0.0240 -0.9741 -0.3622 -0.2993 -0.6717 -0.6854 0.0946 -0.9187 0.0245

-0.5096 0.9991 -0.9797 -0.9603 -0.8437 -1.0000 -0.9717 0.0298 -0.8070 1.0000 -0.4471 -0.2694 -0.7967 -0.9321 0.0472 0.0141

-0.7897 1.0000 -0.7009 -0.6421 0.1954 -0.9905 -0.1989 0.0195 -0.9820 -0.4908 -0.2282 -0.5948 0.3002 0.7066 -0.8012 0.0448
-0.9110 0.9811 0.2500 0.0720 -0.5416 -0.4801 -0.5924 0.0106 1.0000 1.0000 -0.7970 -0.6273 -0.7967 -1.0000 -0.9360 0.0609

-0.9948 -0.7361 -0.7033 -0.8626 -0.0133 -0.1707 -0.8993 0.0208 -0.8698 0.5246 -1.0000 -1.0000 0.8382 -0.9880 -1.0000 0.0249

-0.3516 0.9969 -0.7030 -0.5937 -1.0000 -0.9824 -0.9187 0.0163 -0.9067 1.0000 1.0000 1.0000 -0.7967 -0.0052 0.1826 0.0292
-0.9714 -1.0000 -0.6919 -0.9066 -0.5066 -0.6661 -0.9898 0.0531 -0.8936 1.0000 0.2839 0.4709 -0.7967 -0.5011 0.6381 0.0017

-1.0000 -0.5429 -0.6295 -0.8037 -0.5294 0.4467 -0.7060 0.0281 -0.8686 0.9994 -0.9555 -0.9601 -1.0000 -0.9687 -0.9968 0.0118

-0.7929 0.9994 0.5043 0.6324 -0.8168 -0.8811 1.0000 0.0402 -0.9965 -0.8031 -0.9665 -0.9704 -0.5355 -0.6550 -0.9187 0.0288
-0.9874 -0.5474 0.2311 -0.5133 -0.1091 1.0000 -0.8288 0.0450 -0.8933 1.0000 0.2505 0.2457 -0.7967 -0.4117 -0.5063 0.0039

-0.9214 0.1125 -0.1085 -0.6884 0.9227 -0.5506 -0.9821 0.0364 -0.9918 0.1529 -0.5282 -0.6679 -0.5667 0.7453 -0.5063 0.0347

-0.9581 0.9519 0.6593 0.0976 0.6052 0.3323 -0.5063 0.0318 -0.9877 1.0000 -0.9213 -0.8887 -0.7967 -0.8764 1.0000 0.0553
-0.9515 0.9919 0.2224 0.1292 -0.7358 -0.2398 0.3262 0.0060 -0.9364 0.0458 -0.4255 -0.7360 0.9425 -0.4900 -0.9717 0.0252

-0.8440 0.9975 0.1810 0.2682 -0.9997 -0.7918 0.0472 0.0216 -0.9785 0.9358 -0.2901 -0.4271 1.0000 0.5309 -0.3096 0.0429

-0.9984 0.8366 -0.6890 -0.7595 0.7878 0.2218 -0.0799 0.0413 -0.9927 -0.2788 -0.5245 -0.6911 -0.5638 0.8392 -0.5924 0.0139
-0.9922 0.6432 -0.3796 -0.5974 0.8887 0.5667 -0.4121 0.0094 -0.0962 1.0000 -0.2994 0.0334 -0.7967 -0.9695 -0.7715 0.0411

-0.9630 0.9877 0.1410 -0.0036 -0.3202 -0.0507 0.1826 0.0100 -0.9354 1.0000 0.8201 0.6437 -0.7967 0.2807 -0.0799 0.0348

-0.9417 0.2529 -0.9409 -0.9785 0.9752 -0.9400 -0.9968 0.0387 -0.9980 -0.3559 -0.9482 -0.9508 -0.5622 -0.4784 -0.8012 0.0107
0.1628 0.7653 -0.8872 -0.9229 0.4073 -0.9945 -1.0000 0.0473 -0.9981 -1.0000 -0.9388 -0.9494 -0.0634 -0.3913 -0.8288 0.0156

-0.9969 0.9857 -0.6914 -0.7339 -0.3237 -0.0507 0.1826 0.0230 -0.9148 0.9106 -0.8920 -0.9238 0.9211 -0.8996 -0.9898 0.0172

-0.9859 0.9759 -0.1138 -0.3424 -0.9090 0.3453 -0.1989 0.0391 -0.8701 1.0000 -0.2787 -0.0967 -0.7967 -0.8764 1.0000 0.0056
-0.9651 0.9439 0.9566 0.1987 -0.1050 0.6647 -0.5063 0.0483 -0.6570 1.0000 0.5925 0.9981 -0.7967 -0.8497 0.1826 0.0445

-0.9940 -0.5533 -0.1507 -0.6256 -0.4783 0.9404 -0.7715 0.0118 -0.9217 1.0000 -0.9693 -0.9365 -0.9870 -0.9947 -0.5924 0.0075

-0.9466 0.8608 -0.2932 -0.6046 0.8591 -0.4874 -0.9187 0.0005 -0.9427 1.0000 0.0870 0.1435 -0.7967 -0.1616 0.3262 0.0114
1.0000 0.9991 -0.8716 -0.7856 -0.8437 -1.0000 -0.9717 0.0631 -0.9079 0.9991 -0.1455 -0.4474 -1.0000 -0.5452 -0.9360 0.0111

-0.9971 0.1523 -0.4754 -0.6929 -0.1650 0.6479 -0.5504 0.0201 -0.9880 1.0000 -0.8083 -0.7787 -1.0000 -0.4581 0.0472 0.0218

-0.9791 0.2347 0.2450 -0.4125 1.0000 0.6864 -0.7715 0.0436 -0.2468 1.0000 -0.7995 -0.7994 -0.7967 -0.9806 -0.9968 0.0219
-0.3115 1.0000 -0.0181 0.1744 0.1954 -0.9905 -0.1989 0.0443 -0.8285 1.0000 -0.0513 0.1835 -0.7967 -0.8764 1.0000 0.0445

-0.9965 0.9960 -0.8161 -0.8186 -0.7022 -0.5234 0.6381 0.0046 -0.6551 1.0000 0.2317 0.5782 -0.7967 -0.9233 0.3262 0.0059

-0.8775 0.9962 0.9963 0.9962 -0.9956 -0.5234 0.6381 0.0194 -0.9945 0.1531 -0.8692 -0.8815 0.9507 -0.1759 -0.5924 0.0304
-0.9862 0.9994 -0.8484 -0.8367 -0.8168 -0.8811 1.0000 0.0472 -0.9482 -0.6979 -0.5186 -0.8209 -0.4831 -0.5484 -0.9862 0.0118

-0.6025 0.9356 -1.0000 -1.0000 0.0587 -0.9992 -0.9998 0.0088 -0.9755 0.9339 0.5253 -0.1746 0.9793 1.0000 -0.7398 0.0564

-0.9861 0.9551 -0.8465 -0.8755 0.8443 -0.6547 -0.8012 0.0158 -1.0000 -0.8842 -0.8998 -0.9153 -0.0469 0.0940 -0.5504 0.0263
-0.8772 0.9962 1.0000 1.0000 -0.9956 -0.5234 0.6381 0.0277 -0.9757 1.0000 -0.3246 -0.3457 -1.0000 0.0939 0.0472 0.0298

-0.9841 0.9729 -0.6917 -0.7588 -0.9436 -0.5087 -0.7398 0.0261 -0.9367 0.9999 0.2150 -0.1101 -1.0000 -0.1302 -0.7715 0.0348

-0.9685 0.9122 0.0997 -0.3319 0.6774 0.1227 -0.7060 0.0014 -0.0755 1.0000 -0.4257 -0.1519 -0.9870 -0.9947 -0.5924 0.0040
-0.9694 0.9994 -0.7308 -0.7091 -0.8168 -0.8811 1.0000 0.0131 -0.9229 0.9840 -0.8311 -0.8716 0.2639 -0.8497 -0.9775 0.0237

-0.9109 0.9225 -0.1938 -0.4810 0.2738 -0.6275 -0.9187 0.0120 -0.9831 0.9966 -0.9767 -0.9628 -1.0000 -0.8776 -0.9187 0.0254

-0.9529 0.9825 -0.2232 -0.4435 0.2159 -0.1676 -0.8012 0.0248
-0.9279 0.9275 -0.1572 -0.4947 0.8701 -0.3545 -0.9187 0.0225
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Table A-6 Continued 
 
SVDD PPS SVDD 
Tech 3 Tech 1 
xSV bSV xSV bSV 

Element 
1 2 3 4 5 6 7 Coeff.

Element 
1 2 3 4 5 6 7 Coeff.

-0.9973 0.6079 0.9715 -0.8111 -0.8954 -0.9153 -0.8562 0.0645 -0.1565 0.9991 -0.9797 -0.9603 -0.8437 -1.0000 -0.9717 0.0228

-0.9491 -1.0000 -0.6540 -0.9232 0.7609 -0.9983 -0.9998 0.0284 -0.3162 0.9356 -1.0000 -1.0000 0.0587 -0.9992 -0.9998 0.0262

-0.2024 0.9411 -0.9577 -0.9924 -0.5761 -0.9999 -0.9992 0.0481 1.0000 0.7653 -0.8870 -0.9227 0.4073 -0.9945 -1.0000 0.0665
-0.8840 -0.2373 -0.8539 -0.9824 -0.8262 -0.9991 -1.0000 0.0578 -0.6383 1.0000 -0.7003 -0.6414 0.1954 -0.9905 -0.1989 0.0281

-0.9981 0.9444 0.4182 -0.9996 0.0400 -0.8752 0.7231 0.0346 0.1152 0.9969 -0.7024 -0.5929 -1.0000 -0.9824 -0.9187 0.0334

-0.9982 0.4948 0.1793 -0.9977 -0.2903 0.1863 0.7231 0.0274 -0.0598 0.9988 -0.0373 0.1707 -0.6943 -0.9573 -0.5504 0.0431
0.5979 0.6179 -0.9890 -0.9867 0.6939 -0.9998 -1.0000 0.0407 -0.8997 0.2529 -0.9408 -0.9785 0.9752 -0.9400 -0.9968 0.0422

-0.9838 0.2703 0.1891 -0.5493 0.7422 -0.9949 -0.9946 0.0012 -0.5069 0.9994 0.4597 0.6172 -0.6586 -0.9216 0.4781 0.0326

-0.9873 0.9211 -0.9985 -0.9973 0.8067 -0.9993 -0.9925 0.0016 -0.9763 0.9994 -0.8481 -0.8364 -0.8168 -0.8811 1.0000 0.0615
-0.9985 0.2271 0.4562 -0.9989 0.0698 1.0000 1.0000 0.0724 -0.7318 0.9975 0.1832 0.2706 -0.9997 -0.7918 0.0472 0.0120

-0.9969 0.8938 0.0938 -0.9018 0.8605 -0.9769 -0.8150 0.0106 -0.9508 -1.0000 -0.6913 -0.9065 -0.5066 -0.6661 -0.9898 0.0548

-0.9949 0.6010 0.4745 -0.8231 -0.2111 -0.9673 -0.9397 0.0044 -0.9761 0.9551 -0.8463 -0.8753 0.8443 -0.6547 -0.8012 0.0162
-0.9890 -0.8076 -0.9619 -0.9867 0.7802 -0.9984 -0.9998 0.0367 -0.8468 0.9225 -0.1923 -0.4801 0.2738 -0.6275 -0.9187 0.0173

-0.9985 0.1681 -0.9658 -0.9935 0.8799 -0.9814 -0.9812 0.0125 -0.8649 0.1125 -0.1068 -0.6878 0.9227 -0.5506 -0.9821 0.0372

-0.9996 0.8214 -0.6698 -0.9989 0.8153 -0.8272 -0.1785 0.0261 -0.9939 0.9960 -0.8158 -0.8183 -0.7022 -0.5234 0.6381 0.0051
-0.9907 0.7577 0.9329 -0.5944 0.9794 -0.9893 -0.9621 0.0624 -0.7893 0.9962 1.0000 1.0000 -0.9956 -0.5234 0.6381 0.0551

-0.5083 -0.5063 -0.1682 -0.4123 0.5480 -0.9991 -1.0000 0.0495 -0.9726 0.9729 -0.6912 -0.7584 -0.9436 -0.5087 -0.7398 0.0359

-1.0000 1.0000 -0.9437 -0.9773 0.7805 -1.0000 -1.0000 0.0442 -0.9081 0.8608 -0.2919 -0.6038 0.8591 -0.4874 -0.9187 0.0003
-0.9984 0.8013 1.0000 -0.9961 0.1075 -0.4874 1.0000 0.0452 -0.8470 0.9811 0.2523 0.0740 -0.5416 -0.4801 -0.5924 0.0165

-0.9985 0.7948 0.8291 -0.9989 0.3471 -0.4874 1.0000 0.0113 -0.9165 0.9919 0.2247 0.1314 -0.7358 -0.2398 0.3262 0.0123

1.0000 0.6230 -0.4876 -0.8280 0.5885 -0.9998 -1.0000 0.0573 -0.9910 -0.7361 -0.7027 -0.8624 -0.0133 -0.1707 -0.8993 0.0215
-0.8475 0.9520 0.2179 -0.7177 -0.7964 -0.9979 -0.9714 0.0305 -0.9364 0.9877 0.1431 -0.0017 -0.3202 -0.0507 0.1826 0.0103

-0.7267 0.2633 0.9391 1.0000 0.6742 -0.9994 -0.9998 0.0565 -0.9947 0.9857 -0.6908 -0.7334 -0.3237 -0.0507 0.1826 0.0225

-0.9990 0.0986 -0.4517 -0.9916 0.4173 -0.2788 -0.3523 0.0339 -0.9459 0.9122 0.1017 -0.3306 0.6774 0.1227 -0.7060 0.0012
-0.9989 0.5814 -0.2423 -1.0000 0.0458 -0.2019 0.4667 0.0108 -0.9973 0.8366 -0.6885 -0.7590 0.7878 0.2218 -0.0799 0.0425

-0.9975 0.6770 -0.5909 -0.9987 -0.8300 -0.5137 0.0160 0.0450 -0.9279 0.9519 0.6624 0.0997 0.6052 0.3323 -0.5063 0.0335

-0.9727 0.7425 -0.9780 -0.9863 -0.8725 -0.9992 -0.9984 0.0206 -0.9757 0.9759 -0.1122 -0.3411 -0.9090 0.3453 -0.1989 0.0380
-0.8222 0.8717 0.1557 -0.6602 0.8221 -0.9988 -0.9925 0.0090 -1.0000 -0.5429 -0.6288 -0.8033 -0.5294 0.4467 -0.7060 0.0287

-0.9985 0.9436 -0.6907 -0.9997 -0.0489 -0.9245 0.0160 0.0172 -0.9866 0.6432 -0.3785 -0.5966 0.8887 0.5667 -0.4121 0.0098

-0.9658 0.8069 0.9383 0.7476 0.6998 -0.9997 -0.9992 0.0399 -0.9950 0.1523 -0.4744 -0.6923 -0.1650 0.6479 -0.5504 0.0207
-0.9400 0.9439 0.9603 0.2010 -0.1050 0.6647 -0.5063 0.0490

-0.9640 0.2347 0.2474 -0.4114 1.0000 0.6864 -0.7715 0.0448

-0.9897 -0.5533 -0.1491 -0.6249 -0.4783 0.9404 -0.7715 0.0122
-0.9782 -0.5474 0.2334 -0.5124 -0.1091 1.0000 -0.8288 0.0463
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Table A-6 Continued 
 
PPS SVDD PPS SVDD 
Tech 2  Tech 3
xSV bSV xSV bSV 

Eleme
nt 1 2 3 4 5 6 7 Coeff.

Elemen
t 1 2 3 4 5 6 7 Coeff.

1.0000 1.0000 -0.7970 -0.6273 -0.7967 -1.0000 -0.9360 0.0626 -1.0000 1.0000 -0.9437 -0.9773 0.7805 -1.0000 -1.0000 0.0460

-0.9217 1.0000 -0.9693 -0.9365 -0.9870 -0.9947 -0.5924 0.0082 -0.2024 0.9411 -0.9577 -0.9924 -0.5761 -0.9999 -0.9992 0.0481

-0.8698 0.5246 -1.0000 -1.0000 0.8382 -0.9880 -1.0000 0.0254 0.5979 0.6179 -0.9890 -0.9867 0.6939 -0.9998 -1.0000 0.0405
-0.2468 1.0000 -0.7995 -0.7994 -0.7967 -0.9806 -0.9968 0.0232 1.0000 0.6230 -0.4876 -0.8280 0.5885 -0.9998 -1.0000 0.0572

-0.0962 1.0000 -0.2994 0.0334 -0.7967 -0.9695 -0.7715 0.0450 -0.9658 0.8069 0.9383 0.7476 0.6998 -0.9997 -0.9992 0.0400

-0.8686 0.9994 -0.9555 -0.9601 -1.0000 -0.9687 -0.9968 0.0107 -0.7267 0.2633 0.9391 1.0000 0.6742 -0.9994 -0.9998 0.0567
-0.8070 1.0000 -0.4471 -0.2694 -0.7967 -0.9321 0.0472 0.0160 -0.9727 0.7425 -0.9780 -0.9863 -0.8725 -0.9992 -0.9984 0.0206

-0.6551 1.0000 0.2317 0.5782 -0.7967 -0.9233 0.3262 0.0143 -0.8840 -0.2373 -0.8539 -0.9824 -0.8262 -0.9991 -1.0000 0.0577

-0.9357 1.0000 -0.6767 -0.5847 -0.7967 -0.9057 1.0000 0.0200 -0.5083 -0.5063 -0.1682 -0.4123 0.5480 -0.9991 -1.0000 0.0494
-0.9148 0.9106 -0.8920 -0.9238 0.9211 -0.8996 -0.9898 0.0176 -0.8222 0.8717 0.1557 -0.6602 0.8221 -0.9988 -0.9925 0.0090

-0.9831 0.9966 -0.9767 -0.9628 -1.0000 -0.8776 -0.9187 0.0269 -0.9890 -0.8076 -0.9619 -0.9867 0.7802 -0.9984 -0.9998 0.0364

-0.9877 1.0000 -0.9213 -0.8887 -0.7967 -0.8764 1.0000 0.0437 -0.9491 -1.0000 -0.6540 -0.9232 0.7609 -0.9983 -0.9998 0.0288
-0.6570 1.0000 0.5925 0.9981 -0.7967 -0.8497 0.1826 0.0367 -0.8475 0.9520 0.2179 -0.7177 -0.7964 -0.9979 -0.9714 0.0306

-0.9229 0.9840 -0.8311 -0.8716 0.2639 -0.8497 -0.9775 0.0241 -0.9838 0.2703 0.1891 -0.5493 0.7422 -0.9949 -0.9946 0.0012

-0.9965 -0.8031 -0.9665 -0.9704 -0.5355 -0.6550 -0.9187 0.0295 -0.9907 0.7577 0.9329 -0.5944 0.9794 -0.9893 -0.9621 0.0625
-0.9482 -0.6979 -0.5186 -0.8209 -0.4831 -0.5484 -0.9862 0.0122 -0.9985 0.1681 -0.9658 -0.9935 0.8799 -0.9814 -0.9812 0.0127

-0.9079 0.9991 -0.1455 -0.4474 -1.0000 -0.5452 -0.9360 0.0109 -0.9969 0.8938 0.0938 -0.9018 0.8605 -0.9769 -0.8150 0.0105

-0.8936 1.0000 0.2839 0.4709 -0.7967 -0.5011 0.6381 0.0275 -0.9949 0.6010 0.4745 -0.8231 -0.2111 -0.9673 -0.9397 0.0043
-0.9364 0.0458 -0.4255 -0.7360 0.9425 -0.4900 -0.9717 0.0257 -0.9985 0.9436 -0.6907 -0.9997 -0.0489 -0.9245 0.0160 0.0172

-0.9980 -0.3559 -0.9482 -0.9508 -0.5622 -0.4784 -0.8012 0.0110 -0.9973 0.6079 0.9715 -0.8111 -0.8954 -0.9153 -0.8562 0.0644

-0.9880 1.0000 -0.8083 -0.7787 -1.0000 -0.4581 0.0472 0.0197 -0.9981 0.9444 0.4182 -0.9996 0.0400 -0.8752 0.7231 0.0346
-0.8933 1.0000 0.2505 0.2457 -0.7967 -0.4117 -0.5063 0.0023 -0.9996 0.8214 -0.6698 -0.9989 0.8153 -0.8272 -0.1785 0.0259

-0.9981 -1.0000 -0.9388 -0.9494 -0.0634 -0.3913 -0.8288 0.0159 -0.9975 0.6770 -0.5909 -0.9987 -0.8300 -0.5137 0.0160 0.0448

-0.9279 0.9275 -0.1572 -0.4947 0.8701 -0.3545 -0.9187 0.0230 -0.9984 0.8013 1.0000 -0.9961 0.1075 -0.4874 1.0000 0.0452
-0.9541 1.0000 -0.2647 -0.1877 -0.7967 -0.3269 0.4781 0.0109 -0.9985 0.7948 0.8291 -0.9989 0.3471 -0.4874 1.0000 0.0113

-0.9945 0.1531 -0.8692 -0.8815 0.9507 -0.1759 -0.5924 0.0311 -0.9990 0.0986 -0.4517 -0.9916 0.4173 -0.2788 -0.3523 0.0337

-0.9529 0.9825 -0.2232 -0.4435 0.2159 -0.1676 -0.8012 0.0253 -0.9989 0.5814 -0.2423 -1.0000 0.0458 -0.2019 0.4667 0.0110
-0.9367 0.9999 0.2150 -0.1101 -1.0000 -0.1302 -0.7715 0.0368 -0.9982 0.4948 0.1793 -0.9977 -0.2903 0.1863 0.7231 0.0274

-0.9362 1.0000 0.3052 0.1129 -1.0000 -0.0676 -0.5504 0.0004 -0.9985 0.2271 0.4562 -0.9989 0.0698 1.0000 1.0000 0.0724

-0.9067 1.0000 1.0000 1.0000 -0.7967 -0.0052 0.1826 0.0283
-0.9757 1.0000 -0.3246 -0.3457 -1.0000 0.0939 0.0472 0.0297

-1.0000 -0.8842 -0.8998 -0.9153 -0.0469 0.0940 -0.5504 0.0269

-0.9741 -0.3622 -0.2993 -0.6717 -0.6854 0.0946 -0.9187 0.0252
-0.9354 1.0000 0.8201 0.6437 -0.7967 0.2807 -0.0799 0.0363

-0.9785 0.9358 -0.2901 -0.4271 1.0000 0.5309 -0.3096 0.0438

-0.9820 -0.4908 -0.2282 -0.5948 0.3002 0.7066 -0.8012 0.0458
-0.9918 0.1529 -0.5282 -0.6679 -0.5667 0.7453 -0.5063 0.0357

-0.9927 -0.2788 -0.5245 -0.6911 -0.5638 0.8392 -0.5924 0.0141

-0.9755 0.9339 0.5253 -0.1746 0.9793 1.0000 -0.7398 0.0576
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Table A-6 Continued 
 
Interpolation Interpolation  
Tech 1 Tech 2  
xSV bSV xSV  bSV 

Elemen
t 1 2 3 4 5 6 Coeff. 

Element 
1 2 3 4 5 6 Coeff. 

-0.1565 0.9991 -0.9603 -0.8437 -1.0000 -0.9717 0.0233 1.0000 1.0000 -0.6273 -0.7967 -1.0000 -0.9360 0.0724 

-0.3162 0.9356 -1.0000 0.0587 -0.9992 -0.9998 0.0256 -0.9217 1.0000 -0.9365 -0.9870 -0.9947 -0.5924 0.0078 

1.0000 0.7653 -0.9227 0.4073 -0.9945 -1.0000 0.0793 -0.8698 0.5246 -1.0000 0.8382 -0.9880 -1.0000 0.0191 
-0.6383 1.0000 -0.6414 0.1954 -0.9905 -0.1989 0.0352 -0.2468 1.0000 -0.7994 -0.7967 -0.9806 -0.9968 0.0221 

0.1152 0.9969 -0.5929 -1.0000 -0.9824 -0.9187 0.0355 -0.0962 1.0000 0.0334 -0.7967 -0.9695 -0.7715 0.0486 

-0.0598 0.9988 0.1707 -0.6943 -0.9573 -0.5504 0.0450 -0.8686 0.9994 -0.9601 -1.0000 -0.9687 -0.9968 0.0245 
-0.4436 0.9011 -0.7511 0.5653 -0.9418 -0.9898 0.0083 -0.8070 1.0000 -0.2694 -0.7967 -0.9321 0.0472 0.0161 

-0.8997 0.2529 -0.9785 0.9752 -0.9400 -0.9968 0.0441 -0.6551 1.0000 0.5782 -0.7967 -0.9233 0.3262 0.0018 

-0.5069 0.9994 0.6172 -0.6586 -0.9216 0.4781 0.0327 -0.9357 1.0000 -0.5847 -0.7967 -0.9057 1.0000 0.0188 
-0.9763 0.9994 -0.8364 -0.8168 -0.8811 1.0000 0.0738 -0.9148 0.9106 -0.9238 0.9211 -0.8996 -0.9898 0.0299 

-0.7318 0.9975 0.2706 -0.9997 -0.7918 0.0472 0.0094 -0.9831 0.9966 -0.9628 -1.0000 -0.8776 -0.9187 0.0195 

-0.9508 -1.0000 -0.9065 -0.5066 -0.6661 -0.9898 0.0660 -0.9877 1.0000 -0.8887 -0.7967 -0.8764 1.0000 0.0537 
-0.9761 0.9551 -0.8753 0.8443 -0.6547 -0.8012 0.0226 -0.6570 1.0000 0.9981 -0.7967 -0.8497 0.1826 0.0505 

-0.8468 0.9225 -0.4801 0.2738 -0.6275 -0.9187 0.0004 -0.9229 0.9840 -0.8716 0.2639 -0.8497 -0.9775 0.0240 

-0.9575 0.0863 -0.8714 0.9465 -0.6131 -0.9598 0.0050 -0.9965 -0.8031 -0.9704 -0.5355 -0.6550 -0.9187 0.0416 
-0.8649 0.1125 -0.6878 0.9227 -0.5506 -0.9821 0.0167 -0.8936 1.0000 0.4709 -0.7967 -0.5011 0.6381 0.0289 

-0.9939 0.9960 -0.8183 -0.7022 -0.5234 0.6381 0.0027 -0.9364 0.0458 -0.7360 0.9425 -0.4900 -0.9717 0.0288 

-0.7893 0.9962 1.0000 -0.9956 -0.5234 0.6381 0.0601 -0.9980 -0.3559 -0.9508 -0.5622 -0.4784 -0.8012 0.0120 
-0.9726 0.9729 -0.7584 -0.9436 -0.5087 -0.7398 0.0417 -0.9880 1.0000 -0.7787 -1.0000 -0.4581 0.0472 0.0192 

-0.8470 0.9811 0.0740 -0.5416 -0.4801 -0.5924 0.0075 -0.9981 -1.0000 -0.9494 -0.0634 -0.3913 -0.8288 0.0250 

-0.9165 0.9919 0.1314 -0.7358 -0.2398 0.3262 0.0052 -0.9279 0.9275 -0.4947 0.8701 -0.3545 -0.9187 0.0066 
-0.9910 -0.7361 -0.8624 -0.0133 -0.1707 -0.8993 0.0285 -0.9945 0.1531 -0.8815 0.9507 -0.1759 -0.5924 0.0298 

-0.9364 0.9877 -0.0017 -0.3202 -0.0507 0.1826 0.0041 -0.9529 0.9825 -0.4435 0.2159 -0.1676 -0.8012 0.0325 

-0.9947 0.9857 -0.7334 -0.3237 -0.0507 0.1826 0.0214 -0.9367 0.9999 -0.1101 -1.0000 -0.1302 -0.7715 0.0333 
-0.9973 0.8366 -0.7590 0.7878 0.2218 -0.0799 0.0436 -0.9067 1.0000 1.0000 -0.7967 -0.0052 0.1826 0.0217 

-0.9279 0.9519 0.0997 0.6052 0.3323 -0.5063 0.0271 -0.9757 1.0000 -0.3457 -1.0000 0.0939 0.0472 0.0297 

-0.9757 0.9759 -0.3411 -0.9090 0.3453 -0.1989 0.0403 -1.0000 -0.8842 -0.9153 -0.0469 0.0940 -0.5504 0.0204 
-1.0000 -0.5429 -0.8033 -0.5294 0.4467 -0.7060 0.0158 -0.9741 -0.3622 -0.6717 -0.6854 0.0946 -0.9187 0.0205 

-0.9950 0.1523 -0.6923 -0.1650 0.6479 -0.5504 0.0135 -0.9354 1.0000 0.6437 -0.7967 0.2807 -0.0799 0.0389 

-0.9400 0.9439 0.2010 -0.1050 0.6647 -0.5063 0.0455 -0.9785 0.9358 -0.4271 1.0000 0.5309 -0.3096 0.0379 
-0.9640 0.2347 -0.4114 1.0000 0.6864 -0.7715 0.0545 -0.9820 -0.4908 -0.5948 0.3002 0.7066 -0.8012 0.0487 

-0.9897 -0.5533 -0.6249 -0.4783 0.9404 -0.7715 0.0313 -0.9918 0.1529 -0.6679 -0.5667 0.7453 -0.5063 0.0392 

-0.9782 -0.5474 -0.5124 -0.1091 1.0000 -0.8288 0.0343 -0.9927 -0.2788 -0.6911 -0.5638 0.8392 -0.5924 0.0208 
-0.9755 0.9339 -0.1746 0.9793 1.0000 -0.7398 0.0556 
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Table A-6 Continued 
 
Interpolation Regression  
Tech 3 Tech 1  
xSV bSV xSV  bSV 

Elemen
t 1 2 3 4 5 6 Coeff. 

Elemen
t 1 2 3 4 5 6 Coeff. 

-1.0000 1.0000 -0.9773 0.7805 -1.0000 -1.0000 0.0555 -0.1565 0.9991 -0.9603 -0.8437 -1.0000 -0.9717 0.0232 

-0.2024 0.9411 -0.9924 -0.5761 -0.9999 -0.9992 0.0585 -0.3162 0.9356 -1.0000 0.0587 -0.9992 -0.9998 0.0254 

0.5979 0.6179 -0.9867 0.6939 -0.9998 -1.0000 0.0341 1.0000 0.7653 -0.9227 0.4073 -0.9945 -1.0000 0.0794 
1.0000 0.6230 -0.8280 0.5885 -0.9998 -1.0000 0.0802 -0.6383 1.0000 -0.6414 0.1954 -0.9905 -0.1989 0.0350 

-0.9658 0.8069 0.7476 0.6998 -0.9997 -0.9992 0.0608 0.1152 0.9969 -0.5929 -1.0000 -0.9824 -0.9187 0.0354 

-0.7267 0.2633 1.0000 0.6742 -0.9994 -0.9998 0.0691 -0.0598 0.9988 0.1707 -0.6943 -0.9573 -0.5504 0.0450 
-0.8840 -0.2373 -0.9824 -0.8262 -0.9991 -1.0000 0.0801 -0.4436 0.9011 -0.7511 0.5653 -0.9418 -0.9898 0.0085 

-0.5083 -0.5063 -0.4123 0.5480 -0.9991 -1.0000 0.0461 -0.8997 0.2529 -0.9785 0.9752 -0.9400 -0.9968 0.0436 

-0.9417 0.9179 -0.9423 -0.7970 -0.9984 -0.9876 0.0027 -0.5069 0.9994 0.6172 -0.6586 -0.9216 0.4781 0.0328 
-0.9491 -1.0000 -0.9232 0.7609 -0.9983 -0.9998 0.0797 -0.9763 0.9994 -0.8364 -0.8168 -0.8811 1.0000 0.0742 

-0.8475 0.9520 -0.7177 -0.7964 -0.9979 -0.9714 0.0357 -0.8623 0.9809 -0.7756 -0.5395 -0.8717 -0.8993 0.0002 

-0.9907 0.7577 -0.5944 0.9794 -0.9893 -0.9621 0.0184 -0.7318 0.9975 0.2706 -0.9997 -0.7918 0.0472 0.0094 
-0.9784 0.9530 -0.9982 -0.8017 -0.9871 -0.8150 0.0044 -0.9508 -1.0000 -0.9065 -0.5066 -0.6661 -0.9898 0.0661 

-0.9981 0.9444 -0.9996 0.0400 -0.8752 0.7231 0.0416 -0.9761 0.9551 -0.8753 0.8443 -0.6547 -0.8012 0.0228 

-0.9993 0.1159 -0.9599 1.0000 -0.8535 -0.8562 0.0140 -0.8468 0.9225 -0.4801 0.2738 -0.6275 -0.9187 0.0004 
-0.9996 0.8214 -0.9989 0.8153 -0.8272 -0.1785 0.0306 -0.9575 0.0863 -0.8714 0.9465 -0.6131 -0.9598 0.0063 

-0.9975 0.6770 -0.9987 -0.8300 -0.5137 0.0160 0.0600 -0.8649 0.1125 -0.6878 0.9227 -0.5506 -0.9821 0.0155 

-0.9985 0.7948 -0.9989 0.3471 -0.4874 1.0000 0.0546 -0.9939 0.9960 -0.8183 -0.7022 -0.5234 0.6381 0.0024 
-0.9990 0.0986 -0.9916 0.4173 -0.2788 -0.3523 0.0474 -0.7893 0.9962 1.0000 -0.9956 -0.5234 0.6381 0.0601 

-0.9982 0.4948 -0.9977 -0.2903 0.1863 0.7231 0.0301 -0.9726 0.9729 -0.7584 -0.9436 -0.5087 -0.7398 0.0417 

-0.9985 0.2271 -0.9989 0.0698 1.0000 1.0000 0.0964 -0.8470 0.9811 0.0740 -0.5416 -0.4801 -0.5924 0.0075 
-0.9165 0.9919 0.1314 -0.7358 -0.2398 0.3262 0.0054 

-0.9910 -0.7361 -0.8624 -0.0133 -0.1707 -0.8993 0.0285 

-0.9364 0.9877 -0.0017 -0.3202 -0.0507 0.1826 0.0038 
-0.9947 0.9857 -0.7334 -0.3237 -0.0507 0.1826 0.0216 

-0.9973 0.8366 -0.7590 0.7878 0.2218 -0.0799 0.0436 

-0.9279 0.9519 0.0997 0.6052 0.3323 -0.5063 0.0271 
-0.9757 0.9759 -0.3411 -0.9090 0.3453 -0.1989 0.0404 

-1.0000 -0.5429 -0.8033 -0.5294 0.4467 -0.7060 0.0156 

-0.9950 0.1523 -0.6923 -0.1650 0.6479 -0.5504 0.0136 
-0.9400 0.9439 0.2010 -0.1050 0.6647 -0.5063 0.0455 

-0.9640 0.2347 -0.4114 1.0000 0.6864 -0.7715 0.0547 

-0.9897 -0.5533 -0.6249 -0.4783 0.9404 -0.7715 0.0315 
-0.9782 -0.5474 -0.5124 -0.1091 1.0000 -0.8288 0.0340 
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Table A-6 Continued 
 
Regression Regression  
Tech 2 Tech 3  
xSV bSV xSV  bSV 

Elemen
t 1 2 3 4 5 6 Coeff. 

Element 
1 2 3 4 5 6 Coeff. 

1.0000 1.0000 -0.6273 -0.7967 -1.0000 -0.9360 0.0725 -1.0000 1.0000 -0.9773 0.7805 -1.0000 -1.0000 0.0560 

-0.9217 1.0000 -0.9365 -0.9870 -0.9947 -0.5924 0.0078 -0.2024 0.9411 -0.9924 -0.5761 -0.9999 -0.9992 0.0584 

-0.8698 0.5246 -1.0000 0.8382 -0.9880 -1.0000 0.0192 0.5979 0.6179 -0.9867 0.6939 -0.9998 -1.0000 0.0341 
-0.2468 1.0000 -0.7994 -0.7967 -0.9806 -0.9968 0.0221 1.0000 0.6230 -0.8280 0.5885 -0.9998 -1.0000 0.0802 

-0.0962 1.0000 0.0334 -0.7967 -0.9695 -0.7715 0.0487 -0.9658 0.8069 0.7476 0.6998 -0.9997 -0.9992 0.0609 

-0.8686 0.9994 -0.9601 -1.0000 -0.9687 -0.9968 0.0239 -0.7267 0.2633 1.0000 0.6742 -0.9994 -0.9998 0.0691 
-0.8070 1.0000 -0.2694 -0.7967 -0.9321 0.0472 0.0161 -0.8840 -0.2373 -0.9824 -0.8262 -0.9991 -1.0000 0.0803 

-0.6551 1.0000 0.5782 -0.7967 -0.9233 0.3262 0.0020 -0.5083 -0.5063 -0.4123 0.5480 -0.9991 -1.0000 0.0463 

-0.9357 1.0000 -0.5847 -0.7967 -0.9057 1.0000 0.0188 -0.9417 0.9179 -0.9423 -0.7970 -0.9984 -0.9876 0.0035 
-0.9148 0.9106 -0.9238 0.9211 -0.8996 -0.9898 0.0298 -0.9491 -1.0000 -0.9232 0.7609 -0.9983 -0.9998 0.0796 

-0.9831 0.9966 -0.9628 -1.0000 -0.8776 -0.9187 0.0200 -0.8475 0.9520 -0.7177 -0.7964 -0.9979 -0.9714 0.0358 

-0.9877 1.0000 -0.8887 -0.7967 -0.8764 1.0000 0.0536 -0.9907 0.7577 -0.5944 0.9794 -0.9893 -0.9621 0.0180 
-0.6570 1.0000 0.9981 -0.7967 -0.8497 0.1826 0.0504 -0.9784 0.9530 -0.9982 -0.8017 -0.9871 -0.8150 0.0032 

-0.9229 0.9840 -0.8716 0.2639 -0.8497 -0.9775 0.0242 -0.9981 0.9444 -0.9996 0.0400 -0.8752 0.7231 0.0416 

-0.9965 -0.8031 -0.9704 -0.5355 -0.6550 -0.9187 0.0415 -0.9993 0.1159 -0.9599 1.0000 -0.8535 -0.8562 0.0140 
-0.8936 1.0000 0.4709 -0.7967 -0.5011 0.6381 0.0288 -0.9996 0.8214 -0.9989 0.8153 -0.8272 -0.1785 0.0306 

-0.9364 0.0458 -0.7360 0.9425 -0.4900 -0.9717 0.0287 -0.9975 0.6770 -0.9987 -0.8300 -0.5137 0.0160 0.0602 

-0.9980 -0.3559 -0.9508 -0.5622 -0.4784 -0.8012 0.0120 -0.9985 0.7948 -0.9989 0.3471 -0.4874 1.0000 0.0546 
-0.9880 1.0000 -0.7787 -1.0000 -0.4581 0.0472 0.0192 -0.9990 0.0986 -0.9916 0.4173 -0.2788 -0.3523 0.0471 

-0.9981 -1.0000 -0.9494 -0.0634 -0.3913 -0.8288 0.0249 -0.9982 0.4948 -0.9977 -0.2903 0.1863 0.7231 0.0300 

-0.9279 0.9275 -0.4947 0.8701 -0.3545 -0.9187 0.0067 -0.9985 0.2271 -0.9989 0.0698 1.0000 1.0000 0.0964 
-0.9945 0.1531 -0.8815 0.9507 -0.1759 -0.5924 0.0297 

-0.9529 0.9825 -0.4435 0.2159 -0.1676 -0.8012 0.0325 

-0.9367 0.9999 -0.1101 -1.0000 -0.1302 -0.7715 0.0333 
-0.9067 1.0000 1.0000 -0.7967 -0.0052 0.1826 0.0218 

-0.9757 1.0000 -0.3457 -1.0000 0.0939 0.0472 0.0298 

-1.0000 -0.8842 -0.9153 -0.0469 0.0940 -0.5504 0.0203 
-0.9741 -0.3622 -0.6717 -0.6854 0.0946 -0.9187 0.0206 

-0.9354 1.0000 0.6437 -0.7967 0.2807 -0.0799 0.0388 

-0.9785 0.9358 -0.4271 1.0000 0.5309 -0.3096 0.0379 
-0.9820 -0.4908 -0.5948 0.3002 0.7066 -0.8012 0.0487 

-0.9918 0.1529 -0.6679 -0.5667 0.7453 -0.5063 0.0392 

-0.9927 -0.2788 -0.6911 -0.5638 0.8392 -0.5924 0.0208 
-0.9755 0.9339 -0.1746 0.9793 1.0000 -0.7398 0.0556 
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