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ABSTRACT 

 

Structural Studies of Bacteriophage Lysins and Their Implication in Human Diseases. 

 (May 2011) 

Qingan Sun, B.S., Fudan University; M.S., Fudan University 

Chair of Advisory Committee: Dr. James C. Sacchettini 

 

 Structural biology lays the molecular foundation for the modern field of life 

sciences. In this thesis, X-ray crystallography is the primary resource for atomic detail 

structural information and is the major technology employed in our research.  Three 

examples show how structural biology addresses the basic processes of life. Firstly, two 

crystal structures of R21, corresponding to two biological states, reveal a new activation 

mechanism of SAR(Signal-Anchor-Release)-endolysin, which not only complements the 

previous model, but is also more generally applicable to the endolysin family. It turned 

out that the SAR domain in R21 not only modulates the topology of the protein but also 

becomes an integral part of the active enzyme. This role is brand-new to the current 

knowledge on the SAR domain. The structural information was further corroborated by 

NMR(Nuclear Magnetic Resonance) data in solution. The second example is the crystal 

structure of mycobacteriophage lysin B. Combined with further biochemistry and 

genetics study, it identified the function of the Lysin B in phage D29 as a novel 

mycolylarabinogalactan esterase. This finding tackles the long-standing question of how 

mycobacteriophage circumvent the mycolic acid-rich outer membrane of mycobacterium 
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to release the phage progeny, and provides potential treatment to mycobactaria-related 

diseases, like tuberculosis. The last example is the homology modeling of the 

Plasmodium ribosomal L4 protein. In the modeled structure, azithromycin binds to the 

L4 protein, thus will block protein systhesis of the apicoplast ribosome. However, the 

model of the mutant L4 from azithromycin-reisistant strain is in conflict with the bound 

azithromycin. The action mode for the drug in Plasmodium was proposed based on that, 

which accounts for the anti-malaria effect of azithromycin. 
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CHAPTER I 

INTRODUCTION: STRUCTURAL BIOLOGY LAYS THE FOUNDATION  

FOR LIFE SCIENCES 

 

 What is life? This question is often asked by humanity in both a philosophical 

and scientific context. We are living in a biosphere, in balance with various animals, 

fungi, and plant life, baffled and sometimes killed by pathogens.  It is not only scientific 

curiosity but also mundane imperative to understand the nature of life and how it 

interacts and evolves. 

 However, it is impractical, if not impossible, to provide a short, final, 

comprehensive definition of life although we inherently perceive the distinct features 

that qualify living beings. One key quality of life is its evasion of the second law of 

thermodynamics, which dictates that the entropy of a closed system constantly 

maximizes (Landau and Lifshits, 1969) . In contrast, the biological world seems capable 

of the opposite, increasing its organization over generations. In his book What is Life, 

Schrödinger ascribed this to the living organisms’s consumption of so-called ―negative 

entropy‖ (Schrödinger, 1992).  By using information as a form of negative-entropy, life 

is able to transform, accumulate, propagate, and eventually perpetuate itself by 

managing the flow of matter and energy through living forms.  

   
 
____________ 
This dissertation follows the style of Cell. 
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The key to the mystery of the life lies in the biomolecules, or ―aperiodic crystals‖ 

as Schrödinger dubbed them (Schrödinger, 1992), which are made largely of the 

common elements: carbon, nitrogen, oxygen, phosphorous, and hydrogen. The unique 

features of biomolecules do not arise from a uniqueness in their atomic composition, but 

from their distinct 3-D structures, i.e., the spatial distribution of the atoms and the inter-

atomic connectivity and interactions. This falls in the field of structural biology, which 

lays the foundation for understanding the science of life.  

 

X-ray crystallography is the primary resource of structural biology 

There are three common techniques in structure biology used to visualize 

macromolecules at the atomic level, these are X-ray crystallography, Nuclear Magnetic 

Resonance (NMR), and Electron Microscopy (EM). X-ray crystallography is by far the 

most common of the three methods. The latter two methods are limited by the 

macromolecule’s size, lower resolution, or both. X-ray crystallography has been used to 

solve the eukaryotic ribosome complex which is more than 3 MDa, and can reach a 

resolution of better than 1 Å. As of January 2011, there were 61266 searchable structures 

in the RCSB protein data bank (PDB) solved by X-ray, while NMR and EM contributed 

8739 and 340 structures, respectively (http://www.rcsb.org). EM and NMR have their 

unique power of course, e.g., NMR can reveal the valuable information about structure 

and dynamics in solution as a supplementary to x-ray crystallography, which will be 

briefly demonstrated in Chapter II. Below, I will focus on how X-ray crystallography 

works. 
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X-ray diffraction is the magnifier of molecular electron structure  

X-rays cannot be magnified through a lens system as in optical microscopy or 

EM. However, atomic spatial information can still be detected at the macroscopic level 

through the interference of the scattered coherent X-rays by the electrons in the 

molecule. This phenomenon is called diffraction, as demonstrated in Figure 1-1 

(Feynman et al., 2010). In X-ray diffraction experiments, most X-rays pass through the 

empty space within the atom, but when a single X-ray photon encounters an electron, the 

waves are scattered. X-ray waves scattered by two identical electrons have the same 

amplitude while their phases are determined by the positions of the electrons, they form 

an interference pattern on the detector screen. Since the distances to the light source and 

the detector ( ) are infinitively large compared to the spread of the scatters ( ) in the 

molecule, the distance between the peaks of the diffraction pattern ( ) can be 

approximately given by  

 

 
 

 

 
                                                 (1.1) 

As illustrated in Fig. 1-1B, the X-ray wavelength ( ) is comparable to  , and the 

distance between the diffraction peaks ( ) is a on the same scale of the detector-sample 

distance ( ). The diffraction pattern is a macroscopic observation, from which the 

electron distribution in the molecule can be deduced at the atomic level. 
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Figure 1-1. Scheme of X-ray diffraction in 2D. A. The analogous experiment in wave interference. 

The waves arrive at x starting from source (lightening symbol) and scattered by two electrons (represented 
by the stars). At some points x, the wavelets from 1 and 2 interfere destructively (e.g., a crest from 
electron 1 arrives at the same time as a trough from electron 2); and others, constructively. This produces 
the complicated minima and maxima of the intensity curve I(x). B. Peak position on the distant detector 

screen. Two beams of light, starting in phase at electrons 1 and 2, will interfere constructively when they 
reach the screen B if they take the same time to travel from C to B. This means that a maximum in the 
interference pattern for light beams passing through two holes will occur at the center of the screen. As we 
move down the screen, the next maximum will occur at a distance D, which is far enough from the center 
that, in traveling to this point, the beam from electron 1 will have traveled exactly one wavelength λ 

farther than the beam from electron 2.  This figure was modified based upon Feynman’s Quantum 
Mechanics and Path Integral. Although in his book Feynman discussed the electron wave going through 
the holes, the scheme of wave interference holds for x-ray in our case (Feynman et al., 2010).   
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The qualitative description of the diffraction pattern in a plane by the simple 

equation 1.1 is based on the approximation that D L, which does not always hold true. 

Generalizing this scenario to 3-dimensions and assuming the scattering power of the 

electrons are equal, the path-length the X-ray travels through different electrons is what 

matters. Since the light-source and the detector are both far away from the sample 

compared to the molecule size, the X-ray beams, both the incident and the scattered, can 

be viewed as plane-waves (Fig.1-2). Electron 2 is located at r relative to electron 1. k0 

and k are the unit vectors indicating the propagation directions of the incident and 

scattered beams, respectively. The angle between k and k0 is defined as 2θ by 

convention. The difference between the path-length of X-ray scattered by electrons 1 and 

2 is: 

                                                           (1.2) 

The major elements of biomolecules are carbon, nitrogen, oxygen, phosphorous, and 

hydrogen, whose energy levels are far below the photon energy (hν, h is Planck’s 

constant, ν is the frequency of the photon) of the X-rays employed in the experiment. 

Thus the electrons in the molecules can be treated as free charged particles that scatter 

the X-rays in the Thomson way, i.e., the wavelength (λ) remains unchanged during the 

scattering process. Here the wave vector, s, is introduced, according to its typical usage 

in crystallography: its magnitude is equal to 1/λ, and its direction is the direction of wave 

propagation.  The phase difference between different electron scattering events will be 

  
     

 
                                                        (1.3) 

Define       , then equation 1.3 will be simplified as  



 6 

                                                                    (1.4) 

where S is the change of the wave vector during the scattering, its magnitude is  

                                                                      (1.5) 

 

 

Figure 1-2. The geometry of plane-wave scattered by two electrons. Electron 1 is placed at the origin, 
while electron 2 is at position r; the incident beam’s direction is indicated by unit vector k0, which is 
scattered to direction k, the deflected angle is 2 θ. 

 

The intensity of the scattered beam, I, for the scattered beam s will be 

            
 
 

I will reach a maximum when            , where n is an integer.  
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Take d as the projection of r on S, and recall that                     . Then it 

can be deduced that 

                                                                    (1.6) 

Equation 1.6 shares the same mathematical form and physical insight with the famous 

Bragg’s law, although d in the latter defines the translational symmetry in the crystal 

lattice. 

When there are N electrons in the biomolecule, the intensity will be 

            
    

 
            

    
 

                                                 (1.7) 

Here the origin is moved away from electron 1, since the origin is arbitrary without any 

symmetrical restriction. Also the structure factor F(S) is introduced, which is the 

alternative of I(S) to describe diffraction. It should be noted that since F(S) is the 

summation of a series of complex numbers, it will generally be complex. 

In reality, the electrons are continuously distributed in the molecule, which is 

described by the electron density function ρ(r). The scattering power at a certain position 

r is therefore proportional to ρ(r) at this point. Thus, the summation in equation 1.7 is 

transformed into the integral: 

                                                                 (1.8) 

This is in the form of a Fourier transformation, the inverse Fourier transform will 

retrieve the electron density ρ(r) from the structure factor F(S): 

                                                             (1.9) 

So far we have derived the relationship between the electron density function ρ(r) 

and the structure factor F(S). Note that the momentum of the X-ray photon     , ρ(r) 
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and F(S) are actually the position and momentum representations of the photon 

respectively. It is well known in quantum mechanics that the position and momentum 

operators do not commute and cannot be measured simultaneously. Thus F(S) at a 

certain diffraction direction S cannot be deduced from ρ(r) at a certain position r, and 

vice versa. We need to measure the full set of F(S) in momentum space to get the 

quantum state implicitly, and then expand it into the position space to get ρ(r). In the 

opposite direction, it also requires integration of ρ(r) over all space (in reality, just the 

molecules involved in scattering) to get F(S). 

 

The crystalline structure serves as the amplifier and sampler 

We have a macroscopic observation - X-ray diffraction - carrying the spatial 

information of the target molecule at the atomic level. However, the diffraction from a 

single biomolecule (or complex) is too faint to measure with current X-ray source 

technology due to the weak interaction between the X-ray photons and atoms. On the 

other hand, stronger radiation would destroy the structural information well before it 

could be collected (Neutze et al., 2000).1 Crystallographers overcome this dilemma by 

amplifying the signal with X- ray diffraction from a crystal composed of billions of 

biomolecules.  

 

 

____________ 
1 The development of the X-ray free-electron laser may some day solve atomic structures 
from the diffraction of a single biomolecule.  However, it is still a concept under 
investigation (Gaffney and Chapman, 2007; Neutze et al., 2000). 
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Figure 1-3. Assembly of a primitive triclinic 3-D crystal from unit cells. The unit lattice is filled with a 
motif, and the crystal is built from translationally stacked unit cells. The basis vectors form a right-handed 
system [O, a, b, c].  © 2010 From Biomolecular Crystallography by Bernhard Rupp. Reproduced by 
permission of Garland Science/Taylor & Francis LLC. (Rupp, 2010) 
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Crystals are a periodic assembly of identical objects such as atoms or molecules 

as shown in Figure 1-3 (Rupp, 2010). The basis vectors a, b, and c define the unit cell, 

as well as the translational symmetry of the crystal, which means in the crystal 

                                        , where  ,  , and   are 

integers. A single unit cell usually contains one to several biomolecules, usually with a 

scale of 10 nm. The size of a protein crystal is typically in the sub-millimeter scale.  ,  , 

and   can be as large as thousands. 

If we know the electron density distribution ρ(r’) in one unit cell (eq. 1.8), the 

diffraction pattern from this unit cell will be the Fourier transformation 

      = FT (ρ(r’)) 

Assume the dimensions of the crystal are           the diffraction from the whole 

crystal will be 

                                             

                                     
   

 
   

 
                 (1.10) 

Let’s examine the first summation term,           
   . Here           is a series of unit 

vectors on the complex plane as shown in Figure 1-4 (Drenth and Mesters, 2007). Since 

t is the integer covering a wide range from 0 to more than thousands,          will 

distributed evenly around the circle (Fig. 1-4), and the expected value 

             0, 

unless      , where   is an integer.  
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Figure 1-4. Contribution to the diffraction by a series of unit cells in the crystal.  Each arrow 
represents the scattering by one unit cell in the crystal. Because of the huge number of unit cells and 
because their scattering vectors are pointing in different directions, the scattering by a crystal is, in 
general, zero. However, in the special case that     is an integer h, all vectors point to the right and the 
scattering by the crystal can be of appreciable intensity. This figure was reproduced with kind permission 
of Springer Science and Business Media  (Drenth and Mesters, 2007). 

 

The same conclusion can be drawn from the next two summations. Now      is 

no longer continuously distributed over the S space, but has non-zero values at S 

satisfying what is called the Laue conditions, 

      

                                                           (1.11) 

      

where                          , and   is the total number of unit cells 

in the crystal, which is at the order of 108. Recall that the intensity, I, is the square of the 

structure factor F (Eq. 1.7), the signal is astronomically amplified.  

Define a new set of basis vectors,   ,   , and    in the S space (reciprocal space 

in the terminology of crystallography). 
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where V is the volume of unit cell in the position space (real space), and can be 

calculated as        . 

     is a discrete function at evenly distributed points:                      

Equation 1.9 for the electron density will be reduced to the summation 

                
            

     

         
                   

     

                  

Thus, the crystal serves as a sampler of      in the reciprocal space without the loss of 

structural information.  

 

Crystallography is the compiler of structural information 

In the previous section we demonstrated that X-ray diffraction carries structural 

information from the crystal (and the molecules inside) (Eq. 1.8, 1.9, and 1.12). 

Equation 1.8 shows that the structure factor      is a complex number in general, which 

can be written             (        is the amplitude; φ is the phase). Both the amplitude 

and the phase in the structure factor are required to reconstruct the electron density 

distribution in equations 1.9 and 1.12. However, in a normal X-ray diffraction 

experiment, only the intensity of the diffraction can be measured, which is the square of 

       . The phase information in the entire set of diffraction data has been lost. This 
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poses the so-called phase problem to the crystallographer, which is the major theoretical 

difficulty when translating from diffraction to structure. 

A little bit of calculation can clarify the severity of the problem. Since φ is 

completely unknown, it can take any value from 0 to 2π, and the probability density 

function p(φ) will be just 1/2π. Integrating out the unknown phase φ in     , we get the 

expected structure factor 

        
 

  
             d   

  

 

                                       

And the expected electron density will be  

                                                                  

This means that the measurements of diffraction intensity (amplitudes) alone do not 

contribute any structural information without phase.  

We can also examine the phase problem in terms of sampling, and get a clue of 

how to solve it.  In equations 1.9 and 1.12, there is a continuous electron density      on 

one side, and the discrete structure factor           on the other side. However, we can 

only measure the diffraction to a certain resolution d in the real experiments, i.e.,     has 

a maximum of 1/d. In the following paragraph, we will turn to an artificial 1-D crystal 

with periodicity A to simplify the question without loss of generality.  

 According to the Shannon sampling theorem, we can sample      with the 

interval d/2 without loss of information contained in      (Jerri, 1977). Now we can 

sample       at a series of discrete positions,        , in the unit cell,   i=1, 2, …, n 

(      ). On the other side, we have       at      ,               . 
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Without considering the complication of anomalous scattering, electron density is real, 

which leads to the relation             from equation 1.9. Thus         is equal to 

       (Friedel’s law). This leads to a set of n/2 equations 

                
        

 

   

             
 

 
                                   

Here, the total number of unknown variables,      , is n.  Solving these equations will 

determine the crystal structure, as well as solve the phase problem. However, the 

equation set is underdetermined by a factor of 2. This conclusion also holds in 2D or 3D 

crystals with or without considering anomalous scattering. In this view, the loss of 

phases in crystallography is the price paid for amplification of the structural information 

at the atomic level through the sampling effect on the diffraction from the periodic 

crystal. 

 

Phase information from a priori knowledge 

Since the phase problem can be viewed as the underdetermination of 

equation set 1.15, the solution is clear: either decrease the number of unknown 

variables or feed in new equations, so that the number of equations exceeds the 

number of variables to determine.  Both require more information through 

additional experiments or prior knowledge, i.e. knowledge about the molecule, or 

more accurately, about the unit cell. 

The first input is the atomicity in the crystal. The unit cell of the crystal is 

made up of known atoms and the electron density in each unit cell is the 
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summation of the electron density of the atoms in it, i.e.,               . Each 

ato ’  co tr but o  to the d ffract o  ca  be de cr bed by   x para eter : the 

atomic scattering factor,  ; the three coordinates, x, y, and z; the occupancy, o; and 

the temperature factor, B. Thus, equation set 1.15 can be re-parameterized as 

                                    

       
 

 
  

 

                              

where N is the total number of scattering atoms in each unit cell. Normally the 

abundant hydrogen atoms are not considered since their contribution to diffraction 

is negligible. The term    is the scattering factor of the  th atom in the unit cell, 

which is determined by the scattering power of this type of atom. The coordinates, 

  ,   , and   , define the average position of the  th atom in each unit cell. Of course, 

the position of each atom is not exactly the same in different unit cells, due to 

slightly different configurations or thermal vibration. Therefore, there is some 

uncertainty related to the position, which can be depicted as a Gaussian 

distribution around the average coordinates with variance   .     is a reflection of 

the positional uncertainty in the reciprocal space. B is equal to      . 

Now we have 6N unknown variables, while the equation number increases 

cubically with the improvement of the diffraction resolution, d, i.e., it is proportional to 

 
 

 
 
 

. At a certain point, the number of equations will exceed the number of variables to 

determine, equation 1.16 will be overdetermined, and the phase problem can be solved.  
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The other benefit of reformalizing equation 1.15 into 1.16 with atomic 

parameters is to introduce stereochemical knowledge, i.e., new equations about the 

bond-lengths, bond-angles, or other information between the atoms. This information 

will dramatically increase the overdeterminacy. Furthermore, stereochemical knowledge 

is derived a priori from the experiments, like small-molecule crystallography, with much 

higher accuracy. This is why the accuracy of the protein crystal structure can be much 

higher than the diffraction limit.  

When we look at the statistics of the crystal structures in Chapters II and III, all 

of them have been solved with a diffraction resolution of around 2 Å. All have larger 

reflection numbers, i.e., numbers of         measured, than six times the atom number. 

For example for the iR21 crystal in Chapter II, there are 35715 reflections at a resolution 

of 1.7 Å for 2483 atoms, corresponding to 14898 parameters to determine. The ratio is 

2.4. Based upon this, we can estimate that equation 1.16 may be solved in theory when 

the resolution of diffraction data is beyond 2.3 Å.  

In reality, diffraction data beyond 1.2 Å, the namely ―atomic resolution‖ in 

literatures, is required to determine the crystal structure ab initio (the so called direct 

method) (Dauter, 2003; Uson and Sheldrick, 1999). There are two routes. The first is 

through the Patterson function, i.e., the inverse Fourier transformation of the intensity 

(Patterson, 1934), 

                                                               

Equation 1.17 is also termed the self-correlation function of the electron density     . 

Combined with the atomicity assumption, the peaks in the Patterson function correspond 
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to the interatomic vectors, from which the position of the atoms can be deduced. The 

other route is to exploit the probabilistic relationship between the phases of different 

reflections, which is the results of the atomicity and positivity in reciprocal space (Karle, 

1986). Although the direct method is a powerful tool in small molecule crystallography 

or in finding substructure in the macromolecule crystal, there are few successful 

examples of using the direct method to solve a whole protein structure with thousands of 

atoms (Mooers and Mattews, 2006). In the practice of protein crystallography, there are 

two major methods to get the initial phases, molecular replacement and experimental 

phasing. 

 

A brief view of molecular replacement 

Molecular replacement is based on the assumption that proteins (or protein 

motifs) with similar sequences share similar 3D structures. We call the proteins in the 

crystal under investigation the target, and choose putatively similar proteins with known 

structures as the probes. If the probes are put into the same orientations and positions as 

the targets in the real crystal, the mock crystal can diffract X-rays in a similar way which 

can be simulated by equation 1.16.  Then the calculated      can be compared with     , 

the observation from the target protein crystal. If the measurements are consistent, the 

calculated phase can substitute for the unknown real phase, and combined with     , can 

yield the initial structure of the target protein which can be further refined. 

The key is to assemble the probes in the crystal correctly (the right molecular 

replacement solution). Given each probe with six freedoms, three angles for orientation 
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and three coordinates for position, there will be 6N parameters total for N probes to 

search (N is just 1 to several). This is a small number compared to the thousands of 

reflections. However, for each degree of freedom there are dozens to hundreds of 

choices, making a tremendous number of possibilities to search by multiplying them 

together. Although it is feasible to search the six parameters of each probe 

simultaneously, the more conventional way is to divide the procedure into orientation 

search and position search, then conquer the two problems separately. This can be done 

in either Patterson space or reciprocal space (Drenth and Mesters, 2007).  

To search in Patterson space, the Patterson peaks from each probe can be 

calculated, which correspond to the intramolecular interatomic vectors. When the probe 

is put in the target crystal and turned around, the calculated Patterson peaks will rotate 

correspondingly. The intramolecular vectors are shorter than the intermolecular ones in 

general, and restricted in the sphere with the radius around the probe’s diameter.  So, we 

can focus on the Patterson map from the diffraction of the real crystal, particularly in 

that sphere, and rotate the probe for the best match between the two sets of Patterson 

peaks where the orientation of the probe is in the correct solution. Once the orientations 

of the probes have been determined, they can be translated around in the crystal. The 

calculated Patterson map from this mock crystal includes the intermolecular vectors 

among these peaks and their symmetry-related pairs, in addition to the intramolecular 

vector. The intermolecular vector will change with the translation of the probes in the 

unit cell until the best match is found compared with the Patterson map from the 

diffraction of the real crystal. Now both the orientations and the positions of the probes 
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are set in the unit cell. Of course, the probe’s structure is not identical to that of the 

target protein, otherwise there would be no need for structure determination. The 

difference between the structures is most pronounced in the details, leading to more 

errors in the higher resolution data. This is why reflections beyond 3 Å are often 

excluded when applying this method (Drenth and Mesters, 2007; Rupp, 2010). 

The two-step procedure can also be implemented in reciprocal space with the 

maximum likelihood method. The primary question in this method: what is the 

likelihood of a certain structural model, given the diffraction data? The best model 

should have the maximum-likelihood. However, this likelihood is difficult to quantify. 

According to Bayes’ theorem, it is equal to the likelihood of the experimental 

observation given the certain model multiplied by the likelihood of the model itself. The 

likelihood of the model is evaluated by the consistency with the a priori knowledge, e.g. 

stereochemistry. In molecular replacement, the structures have similar stereochemistry, 

since they are generated by moving the same probes in the crystal. Hence the likelihood 

of the model is constant. The only variable term left is the likelihood of the data given 

the model. It can be derived from the Gaussian distribution of the structure factor,      , 

which is an application of the central limit theorem. The mean    is equal to    

calculated from the model; missing parts from the incomplete model contributes to the 

variance together with the errors from the model and the measurement. However, only 

the amplitude of the structure factor,     , is experimentally observed. To get the 

likelihood of observing a certain     , the phase-dependent probability,     , needs be 

integrated out.  
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Figure 1-5. Schematic illustration of translation likelihood function for acentric structure 

factors. As a molecule is translated, the molecular-transform contributions from the symmetry-
related copies (four in this example) will change in phase but not in amplitude. For the correct 
translation, the true structure factor will be found within a two-dimensional Gaussian 
distribution (shown in grey shading) centered on the total calculated structure factor, scaled by 
the factor D to obtain the centroid of the distribution. The contribution of a single structure 
factor to the likelihood function is obtained by integrating around a circle with a radius given by 
the observed amplitude, FO, so the likelihood will be high when this circle intersects regions of 
high probability in the two-dimensional Gaussian. For a combined rotation/translation search, 
both the amplitudes and phases of the molecular-transform contributions will vary. Courtesy 
from ICUr (Read, 2001). 
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If there is no other source of phase information,      is treated as a constant as shown in 

equation 1.18. This scenario is demonstrated in the likelihood function for the translation 

or six-dimensional search (Fig. 1-5) (Read, 2001). 

In the rotation search, the probe positions are not specified. Only the amplitude 

contribution from each probe can be calculated. The expected      will be zero as in 

equation 1.13 (or the calculated structure factor from a partial solution if there is one).  

Based on this, the rotation likelihood function can also be derived from equation 1.18. In 

the rotational and translational searches, the probes are rotated and translated in the unit 

cell, respectively. The     changes accordingly, as the likelihood function does, until the 

likelihood reaches a maximum when the probes are in the best orientation and position 

given the diffraction data. 

The advantage of the maximum likelihood approach is three-fold. First, the 

errors, both in the experimental measurements and in model building, are estimated and 

treated explicitly. Unlike in the Patterson method, it is not necessary to artificially 

truncate the reflection data to medium resolution because the errors have already been 

taken into account. Second, it is natural to incorporate a priori knowledge as part of the 

likelihood of the model. If new restrictions on the model are independent of the existing 

ones, they can be introduced into the likelihood function by multiplication as a new 

probability term. Third, it is easy to combine the phase information from another source. 

For example, if some phase distribution is derived from the experimental phasing as 

described below, the information can contribute to a new likelihood function in equation 

1.18 as the      term. 



 22 

Experimental phasing with additional information from the substructure 

The phases can also be derived from multiple measurements, either on the 

derivative crystals in the same lattice form (isomorphous replacement), or on the same 

crystal but at different wavelength for the dispersive effect of the anomalous scattering; 

or even from a single measurement which discerns the nuanced broken symmetry 

between the Friedel’s pair due to the anomalous scatters in the crystal (Feil, 2002). In 

this way, since the phase problem appears solved solely from experiments, it is called 

experimental phasing. 

Usually, there are only a handful of special atoms that can serve as major 

contributors to the differences in the measurements. For example, in isomorphous 

replacement, heavy atoms, like Hg, can be introduced into the crystal without changing 

the lattice too much. Then, the difference between the diffractions from the heavy atom 

derivative crystal and those from the native protein crystals is mainly ascribed to the 

substructure composed of heavy atoms only. If there is anomalous scattering (e.g. the 

selenium in the selenomethionine preparation) in the crystal, there will be measurable 

differences between the Friedel’s pairs at certain wavelengths. In both cases, the 

substructure of the special atoms, i.e. the calculated   , accounts for the differences in 

the measurements,    .  For isomorphous replacement, 

                                                                  (1.19) 

Or in the case of anomalous scattering, 

      
    

                                                           (1.20)                              
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where   
  and   

  are the Friedel’s pairs.    is the anomalous contribution from the 

substructure, its amplitude is proportional to     , its phase is 90º more than that of    . 

Further, it can be proved that the differences between the measured   , is statistically 

equivalent to the amplitudes  of    (Drenth and Mesters, 2007). 

               
                                                                          

where c is a constant in equation 1.19, e.g. it equals ½ in the isomorphous replacement. 

The crystallographer can divide-and-conquer. The substructure can be solved 

with a measured difference       first, using the direct method described earlier.  The 

phased    can be calculated from the solved substructure. The relation between    and    

in isomorphous replacement is illustrated by the Harker diagram as shown in Figure 1-6. 

In the complex plane, draw two circles with the radius of        and      , centered at the 

origin and the end of vector   , respectively. The two intersections of these circles will 

be the common end points of the vectors     and    . Thus, they stand for two possible 

solutions, and both satisfy the relation of equation 1.19. In the case of the anomalous 

scattering, the    is replaced by   , the anomalous contribution in   , which is a small 

part of the substructure diffraction with an additional 90º in the phases. The ambiguity of 

the phase solution in the Harker diagram can be resolved by either multiple 

measurements on different derivative crystals or at multiple X-ray wavelengths in the 

case of anomalous scattering. Otherwise, a priori knowledge about the crystal 

composition, like solvent content, can be exploited to resolve this ambiguity later at the 

density modification and model building stage.  
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Figure 1-6. Harker diagram for phase determination in isomorphous replacement.  

  

Succinctly, the phase information originates from prior knowledge of the 

composition of the crystal, including atomicity, solvent content, and stereochemistry. 

This structural information is compiled together during phasing, combined with the 

diffraction observations (the diffraction intensities measured), and eventually 

transformed into the electron density distribution in the biomolecules in the crystal, 

based upon which a 3D model can be built. 
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Bacteriophage and phage lysis 

It has been estimated that there are 1031 bacteriophages on this planet, 

astronomically more than the number of humans on the planet. Actually, phages are the 

most abundant life forms on earth, and play critical roles in the global carbon cycle 

(Breitbart and Rohwer, 2005). Phage lysis events occur >1029 times a day, which 

accounts for approximately 20% of  the total biomass (Suttle, 2007).  

Bateriophage literally means eaters of bacteria. They infect bacteria, reproduce 

themselves inside the host cell, and at the end of the infection cycle, most of them break 

down the cell envelope to release their progenies. Then, the released, multiplied phages 

search for new prey and start new life cycles. The information carried by the phages is 

thus propagating, and, from the perspective of the phage, hopefully perpetuated. How do 

they break the host’s envelope, which includes two membranes and one layer of tough 

peptidoglycan in gram-negative bacteria, like E. coli? Also the timing of the lysis is 

critical for the phages competing with each others over billions of years of evolution. 

The robustness of the host cell should not be disrupted before lysis, yet once the lysis has 

been started, the process should be done as fast as possible. How are these principles 

fulfilled? The lysis cassette in phage λ is a representative model of the dsDNA phages to 

answer these questions (Young et al., 2000). 

 

Holin, endolysin, and Rz/Rz1 lysis cassettes 

In phage λ, there is a lysis cassette composed of holin S, endolysin R, and the 

overlapping Rz/Rz1 genes under the control of the late promoter P’R (Fig. 1-7). These 
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genes are expressed at the end of the lytic cycle to break down the host cell envelope, 

i.e., the inner membrane, the peptidoglycan layer of the cell wall, and the outer 

membrane, as depicted in Figure 1-7B.   

 

 

Figure 1-7. Lambdoid lysis strategy. A. Lambdoid lysis cassettes. These cassettes consist of the holin 
gene S, the endolysin gene R, and the Rz/Rz1 gene, from phage λ, P22, and 21, immediately downstream 
of the sole late promoter, P’R. B. The fate of the Gram-negative envelope during λ holin-endolysin 

lysis. The endolysins are produced and accumulate in the cytoplasm until the holins form holes in the inner 
membrane. The released endolysins  hydrolyse the peptidoglycan. The outer membrane is further 
disrupted by the Rz/Rz1 complex. The figure was modified based on the model from Dr. Ry Young 
(Young et al., 2000) . 

 

The continuous meshwork of peptidoglycan (an indispensible infrastructure for 

bacteria facing internal osmotic pressure) is the principal barrier to the phage progeny. 



 27 

The endolysin, R, is a muralytic enzyme that degrades this barrier. However, for a 

successful infection, endolysin activity must be blocked throughout the latent period, 

typically 30 - 60 min, until, at lysis, there is a short period of acute enzymatic catalysis 

on the time scale of seconds (Gründling et al., 2001). Phage λ and some other canonical 

phages, like T4 and T7, meet these requirements passively, in that their endolysins are 

synthesized as fully active enzymes but are restricted to the cytoplasm, where they have 

no substrate, until the instant when the phage-encoded holins trigger and open holes in 

the membrane (Imada and Tsugita, 1971; Young, 1992). The λ holin makes a hole in the 

inner membrane so large that even a beta-galactosidase fusion protein greater than 480 

kDa can pass through (Wang et al., 2003). However phages like 21 make smaller lesions 

in the membrane, so-called pinholes, that do not allow the proteins, including λ 

endolysin, to cross the membrane (Park et al., 2007). There must be a different 

mechanism. The answer is the SAR endolysins, such as those of phage 21 and P1, which 

have an intriguing dual-topology conferred by the unique SAR domain at their N-termini 

(Xu et al., 2004).  

 

SAR endolysins 

A SAR (Signal Anchor-Release) domain is an N-terminal transmembrane 

domain (TMD) that has the unique ability to exit the lipid bilayer completely (Xu et al., 

2004). The first SAR domain was identified in LyzP1, the lysozyme of bacteriophage P1.  

During the latent period, LyzP1 is expressed and secreted to the periplasm, where it 

accumulates tethered to the membrane by the SAR domain. Premature destruction of the 
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cell wall is avoided because in the membrane-tethered form, LyzP1 is catalytically 

inactive, both conformationally and covalently.  In the inactive form (iLyzP1), the N-

terminal domain is in a radically different fold from the active enzyme (aLyzP1) and 

completely lacks its catalytic cleft.  In addition, a catalytic Cys residue is occupied in a 

disulfide bond. Activation occurs via two dramatic transitions concomitant with the 

escape of the SAR domain from the bilayer (Xu et al., 2005).  Covalent activation is 

achieved when a free thiol in the SAR domain causes a disulfide bond isomerization, 

releasing the catalytic cysteine.  In addition, the entire catalytic domain undergoes a 

large conformational reorganization, unwinding 3 α-helices to form 3 β-strands in the 

active site. The extracted SAR domain itself contributes only the liberating thiol, 

remains largely helical, and makes no intimate contacts with the body of the enzyme. 

         This elegant regulation, with its conformational and covalent levels, ensures that 

the phage morphogenesis period is not shortened by premature lysis.  However, many 

SAR endolysins do not have cysteine residues either in the transmembrane domain or the 

active site, and thus, must be regulated in a different way (Xu et al., 2004).  One of those 

is R21, which was identified as a SAR endolyisin together with LyzP1, and will be further 

characterized in Chapter II. 
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CHAPTER II 

R21: THE GENERAL REPRESENTATIVE OF SAR ENDOLYSINS* 

 

 Prior to the discovery of the SAR endolysins, all phage lysozymes that had been 

characterized, like T4 E, lambda R, and T7 gp3.5, were found to be soluble enzymes that 

accumulate fully folded and enzymatically active in the cytoplasm (Imada and Tsugita, 

1971; Young, 1992). Thus, degradation of the cell wall, and subsequent lysis, could be 

controlled by maintaining the integrity of the membrane until it was permeabilized at the 

appropriate time by the phage-encoded holin.  However, a survey of 196 sequenced 

phage genomes showed 58 endolysin genes with the Glu-8aa-Asp/Cys-5aa-Thr catalytic 

triad which characterizes the canonical T4 E lysozyme, a true glycosylase (Sun et al., 

2009) (Fig. 2-1).  Unexpectedly, most (43/58) have N-terminal hydrophobic domains 

with SAR domain characteristics, i.e., predicted N-terminal transmembrane α-helices 

which have a higher representation of  small hydrophobic residues, like Gly and Ala, and 

uncharged polar residues, like Ser and Thr, compared to typical transmembrane domains 

(TMDs) (Table 2-1)(Sun et al., 2009). This special N-terminal domain make the 

endolysin first be produced as a membrane protein, and released into the periplasmic 

space later when the N-terminal domain escapes from the lipid bilayer. Thus, it plays the 

role of Signal-Arrest-Release, as described in Chapter I.  

____________ 
*This Chapter was rewritten based on the Nature Structural & Molecular Biology paper 
(Sun et al., 2009).  The collaborators contribution was published in the paper. Additional 
NMR data were obtained by Qingan Sun under the instruction of Dr. Andy LiWang and 
Dr. Xiangming Kong. 
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Table 2-1 Glycosylase endolysins encoded by genomes of phages with Gram-negative hosts 

Endolysin subtype # phage genomes Characterized enzymes 

Cytoplasmic 15 T4E, P22 gp19 

SAR with Cys 9 Lyz
P1

 

SAR without Cys 34 R
21

 

Total 58  

 
 
 
 
 

 

Thus, SAR-type endolysin regulation is the rule rather than the exception, at least 

among sequenced phage genomes. Moreover, among these 43 SAR endolysins, only 

nine have a Cys residue within the SAR domain and a catalytic cysteine, as observed in 

LyzP1. This suggests that, at least among the sequenced genomes of phages known to be 

Figure 2-1 Structures of T4 E and the active (
a
Lyz

P1
) and inactive (

i
Lyz

P1
) forms of Lyz

P1
. The protein 

folds are represented in cartoon format: α-helix in cyan, β-strand in magenta, coil in brown. The stabilizing 
α-helices of both proteins and the SAR helix of P1 are shown in blue and orange respectively. The active 
triads are displayed in stick-and-ball representation. The disulfide bonds are shown as yellow stick 
structures. Polar interactions and residues involved in hydrophobic interactions between the stabilizing 
helix and the C-terminal helix bundle domain are indicated by dashed lines and light gray coloring, 
respectively. 
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viable, the disulfide bond-dependent regulation of LyzP1 is not the standard, and that the 

remaining 34 SAR enzymes must be regulated differently. One of these enzymes, R21 

(the lysozyme of the lambdoid phage 21), has already been confirmed as an SAR 

endolysin (Xu et al., 2004), and was chosen as a general representative of the missed 

majority for detailed study. 

 

The SAR domain of R
21

 is essential for its muralytic activity  

The SAR domain of LyzP1 is not an essential component of the structure or the 

enzymatic activity of the protein.  The SAR domain is used only to tether the protein to 

the membrane and, after release from the bilayer, to supply a cysteine for activation of 

the enzyme (Xu et al., 2005). To determine whether this was also true for R21, the N-

terminal 26 residues of R21 was replaced with the cleavable secretory signal sequence 

PelBss (Lei et al., 1987). When the pelBssR21
27-165 chimera was expressed in 

Escherichia coli, no significant cell lysis was observed even though large amounts of the 

processed R21
27-165 protein accumulated in the periplasm. Moreover, an assay of the 

purified protein did not detect lysozyme activity (Fig. 2-2; Table 2-2). The lack of in 

vivo and in vitro activity of the truncated R21 indicated that the SAR domain of R21 is 

necessary for its enzymatic function. Besides controlling the topology of the protein, the 

SAR domain in R21 plays a specific and more integral role in the catalytic activity of 

enzyme, compared to that in LyzP1.  
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Figure 2-2. Muralytic activity of purified R
21

 and Lyz
P1

. Lysozyme activity was assayed on purified 
protein in vitro. The relative fluorescence was read every 2 minutes for aR21 (in red), iR21 (in black), LyzP1 
(in green) at various concentrations: (○) 2.5 μM, (Δ) 1.25 μM, (◊) 0.63 μM, (□) 0.31 μM. Lysozyme from 
chicken egg white (EWL from Invitrogen) was used as the standard (in blue) which was diluted into final 
concentrations from 250U/ml to 31U/ml. The progress curves were fitted with first order kinetics, which 
indicated that aR21 has similar activity to LyzP1 at about 800 U/ml/μM, while no lysozyme activity was 

detected for iR21. 
 
 
 

Table 2-2. Muralytic reaction rates of 
i
R

21
 and 

a
R

21
 

Rate (min-1) 1 Dilution2 
1:1 1:2 1:3 1:4 

enzym
e 

iR21 -4.6 -7.0 -7.2 -11.0 
aR21 500 375 260 110 

LyzP1 550 422 269 123 
EWL 160 62 17 10 

1 The reaction rates for aR21, LyzP1, EWL and were obtained by fitting the first-order reaction curve in Fig. 

2-2. The reaction rate for iR21 was the linear slope of fitting curve. 
2 The serial dilutions were started from 2.5 μM for aR21, iR21, and LyzP1; from 250 U/ml for chicken EWL. 
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The structural basis of R
21

 regulation  

 To explore the structural basis for this novel regulation, we determined the 

crystal structures of the active, full-length enzyme, aR21, and the inactive enzyme, iR21, 

which is missing the entire SAR domain, both to high resolution (Table 2-3). aR21 shares 

the characteristic dumbbell structure of the canonical T4 lysozyme, with the 42 residues 

distal to the SAR sequence forming a relatively independent catalytic domain, 

containing a catalytic triad (Glu35, Asp44 and Thr50) connected by a long α-helix 

(Lys68 to Tyr89) to the cluster of C-terminal α-helices (helix α4 to α8) (Fig. 2-3a).  

Despite marginal sequence identities (33.9% of R21 with LyzP1, 30.3% with P22 gp19, 

18.8% with T4 E), these 3D structural elements are conserved in all of the known 

structures of T4 E-like lysozymes (R21, LyzP1, P22 gp19, and T4 E) and the geometry of 

the catalytic triad in aR21 (Glu35, Asp44, and Thr50) is nearly identical to those of the 

other three (Fig. 2-3b) (Bell et al., 1991; Mooers and Matthews, 2006; Xu et al., 2005).   

In the structures of T4 E and LyzP1 (Fig. 2-1), an α-helix from the N-terminal of 

the protein (Ile3 - Glu11 in E; Asn31 – Gly43 in LyzP1) interacts extensively with the C-

terminal lobe (see gray-highlighted residues in Fig. 2-1) and serves to position the 

essential glutamate in the active site as part of the catalytic triad. In LyzP1, this 

stabilizing helix is 12 residues in length and separated from the SAR domain by a turn 

(NVRT) (Xu et al., 2005). Residues 14-26 of the SAR helix in aLyzP1 assume an α-

helical conformation that packs lateral to the stabilizing α-helix. However, in aR21, the 

SAR domain is folded into two anti-parallel α-helices, α1 (residues Pro3 to Gly15) and  



 34 

Table 2-3.  Data collection and refinement statistics of R
21

 crystals 
 
 full-length 

a
R

21
  truncated 

i
R

21
27-165 

Data collection
1
   

Space group P 21 21 21 P 21 21 2 

Cell dimensions 

a, b, c (Å) 
78.2, 94.8, 97.7 64.2, 109.7, 45.0 

Wavelength (Å) 0.9795  0.9796  

Resolution (Å) 1.95 (2.05-1.95)  1.70 (1.79-1.70) 

I/sigI 19.3 (3.8) 23.9 (4.9) 

Completeness (%) 99.6 (99.2) 100 (99.8) 

Rsym 0.031 (0.268) 0.023 (0.213) 

Redundancy 7.2 (5.7) 6.1 (6.1) 

 

Refinement
2 

  

# reflections 50721 35715 

Rwork/Rfree 0.2116/0.2485 0.1991/0.2311 

# atoms 5282 2483 

RMSD bonds 0.005 0.004 

RMSD angles 0.700 0.647 

1The R21 datasets were collected at APS 23ID and processed with HKL2000.  
2Refinement was done with Phenix. 
Accession codes: The atomic coordinates and structure factors have been deposited in the PDB with the 
accession codes 3HDE and 3HDF for aR21 and iR21, respectively.  
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Figure 2-3. Crystal structure of 
a
R

21
. a. Overall structure of 

a
R

21
. The cartoon is colored according to 

secondary structure (helix in cyan, sheet in magenta, coil in brown), while the SAR helices (α1 and α2) are 

in orange. The catalytic triad and the two pairs of disulfide bonds (S-S) are shown as stick structures. b. 

The catalytic triad (Glu35, Asp44, and Thr50). The catalytic loop regions of T4 E (Glu11-Thr59, grey 
C- trace), LyzP1 (Glu42-Lys72, green C- trace) and P22 gp19 (Glu16-Ile50, yellow C- trace) were 
superimposed on aR21 (Glu35 - Thr67); the RMSs are 0.66 Å, 1.03 Å and 0.40 Å, respectively. The 
catalytic triads of T4E, LyzP1, and P22 gp19 are shown in stick. The 2Fo-Fc electron density map of aR21 

around the triad is shown at the 1.0 σ level. c. Hydrogen bond network around Glu35. The atoms are 
shown in line (C, brown; O, red; N, blue; S, yellow). The polar contacts are indicated by dashed lines.  
 

α2 (residues Ala17 to Thr26), connected by a sharp turn at Gly16. These two helices 

pack against the C-terminal helical bundle (α4 – α8) at an angle of about 45º. In this 

orientation, the second α-helix actually aligns close to the first two turns of the 

stabilizing helix when aR21 is superimposed to LyzP1. The critical Glu of aR21 (Glu35) is 

located not on the helix itself, but on a loop directly downstream of the SAR helix. This 
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loop is stabilized by a network of hydrogen bonds which includes residues of the SAR 

domain (Fig. 2-3c). The catalytic Glu35 appears to be further stabilized by the salt 

bridge between its Oε and the side chain of Arg152 from helix α8 of the C-terminal 

helical bundle, a feature well-known for T4 E (Strynadka and James, 1996) and also 

shared by the P22 and P1 enzymes (Fig. 2-4).  Sequence alignment of R21-like 

endolysins indicates that this Glu-Arg salt bridge is conserved in this family (Fig. 2-5).  

 

 

Figure 2-4. The salt bridge between Glu35 and Arg152 in 
a
R

21
. Glu35 and Arg152 in aR21 are shown in 

ball-and-stick. The distance between Oε of Glu35 and Nε of Arg152 is 3 Å, indicated by the dashed line. 
The corresponding Glu and Arg in LyzP1 and P22 gp19 are shown in green and yellow stick, respectively. 
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Figure 2-5. The Glu-Arg salt bridge is fully conserved in the R
21

-like endolysin family. Salt bridge 
residues are highlighted in green. Only the salt bridge region is shown. The catalytic glutamate residue 
forms a salt bridge (blue bracket, top) with an Arg in helix 8. Catalytic (arrow), fully conserved (*), and 
nearly completely conserved residues (dot) are indicated. The labels of the aligned sequences correspond 
to the following Genbank records: LKD16: gi|158345072, LUZ19: gi|167600491, phiKMV: gi|33300856, 
phi1026b: gi|38707914, phi644-2: gi|134288680, Bcep176: gi|77864683, BcepB1A: gi|48697551, RTP: 
gi|81343992, T1: gi|45686348, TLS: gi|148734541, JK06: gi|71834140, PY54: gi|33770570, R21: 
gi|215468, Phagectd I: gi|148609440, phiEco32: gi|167583572, ST104: gi|46358689, 933W: gi|9632511, 
Stx2-convI: gi|20065952, Stx2-conv86: gi|116221999, N15: gi|3192716, BP-4795: gi|157166033, Mu: 
gi|6010396. 
 

Sequestration of the SAR domain induces a conformational change 

Additional differences were observed in the structure of the R21 inactive form 

compared to the active enzyme (Fig. 2-6a). Although overall the iR21 crystal diffracted 

to a higher resolution than that of aR21 (Table 2-3), the five N-terminal residues 

preceding Asn31 were not visible in the electron density map. The catalytic Glu35 can 

be only built to Cβ, presumably due to the flexibility of this region in the inactive form.   
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Figure 2-6. Crystal Structure of 
i
R

21
. a. Overall structure of 

i
R

21
. See Fig. 2-4 for cartoon features. The 

dashed boxes enclose the N-terminal and C-terminal regions, further analyzed in Fig. 2-7B and 2-7C, 
respectively. b. Alignment of the catalytic loop regions of 

i
R

21 
and 

a
R

21
. Except for Glu35, which shows 

a 10 Å Cα displacement (dashed line), most of the catalytic loop (Ser38 to Thr67) of 
aR21 (grey, SAR 

domain in orange) can be superimposed on the same region of iR21 (RMS = 0.36 Å for 209 atoms). The 
position of Glu35 in aR21 is now occupied by Lys147 (shown in stick-and-ball) from the C-terminal loop 
between α7 and α8 in 

iR21
. The 2Fo-Fc electron density map of iR21 

around the triad is shown at the 1.0 σ 

level.c. Alignment of the C-terminal domains of 
i
R

21 
and 

a
R

21
. 

iR21 helices and loops are cyan and 
brown, respectively.  aR21 is in grey and SAR helices are orange. Beginning at Glu96, the backbone RMS 
between the two structures is 4.70 Å (499 atoms). The displacement of the loop between α7 and α8 is 

indicated by the dashed line, which is defined by the movement of the Leu149 Cα. The 90º rotation of 

helix α8, which is defined by the turn of Cys160, is indicated by the yellow arrow. 
 

Whereas in LyzP1, the active and inactive forms have radically different 

structures (Fig. 2-1), the overall fold of iR21 is nearly identical to that of aR21, with every 

major secondary structural element preserved, except the changes to the active site, 
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described below. Like LyzP1, R21 has two disulfide bonds that provide structural 

stability, but unlike LyzP1, there is no difference in the disulfide bonding pattern between 

the active and inactive forms.  In the catalytic domain, the loop region between Ser38 

and Thr67, which includes two of the residues of the catalytic triad, Asp44 and Thr50, 

are superimposable (rmsd ~0.36 Å) in aR21 and iR21
. However, the absence of the two α-

helices of the SAR domain and the adjacent H-bond network has a dramatic effect on the 

position of the Glu35, which is displaced about 10 Å (Fig. 2-6b).  Its position in the 

active enzyme is occupied by Lys147 in iR21, in the loop connecting two of the C-

terminal helices, α7 and α8.  Lys147 forms a hydrogen bond through its Nδ to a water 

molecule 3.0 Å away. This water further interacts with Tyr42, Cys52, and Gly54 in the 

catalytic region. Lys147 is likely to further ensure that the active site in iR21 would not 

be capable of binding substrate and concomitantly fold into active geometry.  Given the 

indispensable role of the catalytic Glu demonstrated in T4 E (Rennell et al., 1991), the 

displacement and disorder of Glu35 account for the lack of enzymatic activity in iR21.  
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Figure 2-7. Interaction between SAR and the C-terminal domain in R
21

. A. Ligplot of these 

interactions in 
a
R

21
. Hydrogen bonds are indicated by dashed lines between the atoms involved, while 

hydrophobic contacts are represented by an arc with spokes radiating towards the atoms they contact.  The 
contacted atoms are shown with spokes radiating back.  Residues belonging to the SAR domain and the C-
terminal helix bundle are shown as the blue side chains on the left-hand side and orange side-chains on the 
right, respectively (Wallace and Mao, 1984).  B. Polarity switching at the interface for the SAR 

domain. The imaginary electrostatic surface (positive = blue; negative = red) contacting the helices of the 
extracted SAR domain is shown for aR21 (right). The corresponding surface is shown for iR21

 at left, with 
the SAR helices super-imposed as an orange backbone ribbon trace. 



 41 

 

 



 42 

The active and inactive forms of R21 also differ significantly in the C-terminal 

domain (Glu96-Gln164; backbone rmsd ~ 3.96 Å) with helix α8, which contacts the 

SAR domain in the full-length structure, tilted ~30° toward the catalytic loop, rotated 

one-quarter turn clockwise and shorter by one turn in the inactive form (Fig. 2-6c). The 

adjacent helix, α7, is longer by one turn and is rotated counter-clockwise. Displacement 

of this dynamic helical turn is as large as 23.3 Å and intrudes into the space occupied by 

the SAR domain and the adjacent loop in aR21 (see Leu149 in Fig. 2-6c), in effect 

forming a steric barrier that prevents Glu35 from participating in the catalytic triad. In 

addition, the rotation of helix α8 turns Arg152 towards the inner surface of the helix α4-

α8 bundle and prevents the salt bridge with Glu35.  Importantly, inspection of the 

predicted electrostatic surfaces reveals that the interface between the SAR domain and 

the body of the enzyme is dominated by hydrophobic contacts (Fig. 2-7a).  In iR21, the 

same surface is anionic and solvent-exposed, mainly due to rotation of helix α8 (Fig. 2-

7b).  

 

NMR provides structural information in solution 

When we pursued the structure of R21, we tried NMR and X-ray crystallography 

in parallel.  Although the crystallography method eventually won out, the NMR 

experiment still provided irreplaceable information of R21 in solution.  

First of all, both aR21 and iR21 yielded well-dispersed NMR spectra, especially for 

iR21. We have assigned the backbone resonances of 1HN, 15N, 13Cα, and 13Cβ for 135 out 

of 139 residues in iR21 based upon the information from the heteronuclear experiments 
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(Fig. 2-8; Table A-1) (Grzesiek and Bax, 1993). This demonstrates that these proteins 

are stable and homogeneous in solution at the high concentrations necessary for NMR 

experiments (mM range), and provided us confidence for the crystallization trials.  

 
 

Figure 2-8. 2D 
1
H-

15
N HSQC spectrum of 

15
N-labeled 

i
R

21
. The NMR sample was in 150 mM NaCl, 10 

mM sodium phosphate, pH 5.5. The residue numbers labeled on the resonances started from Ser4 in iR21, 
which corresponds to Ser29 in the full-length aR21.   
 

Since the two forms of R21 crystallized at dramatically different pH (pH 4.6 for 

aR21, and pH 7 for iR21), we measured the 2D 1H-15N HSQC spectra from pH 4.5 to the 

physiological pH 7.4.  There was no obvious shift of the resonances in these spectra. The 

spectra were also similar for the sample with various ionic strengths, i.e., various 

concentrations of NaCl in buffer from 50 mM to 150 mM. These data indicate that pH 

and ionic strength do not affect the conformation of R21 in solution, and therefore not 
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likely in the crystal as well. Thus, the different structures observed via crystallography 

are not crystallographic artifacts.  

When we overlaid the spectra of aR21 and iR21, most of the resonances were 

superimposed (Fig. 2-9A). This was not surprising since the crystal structures revealed 

that the overall folds are nearly identical and every major secondary structural element is 

preserved. According to the x-ray structures, the chemical environment of the backbone 

amide group should be similar between aR21 and iR21, which is reflected in the 1H-15N 

HSQC spectra by similar chemical shifts. However, there are many more peaks in the 

1H-15N HSQC spectrum of aR21 than in that of iR21, more than the increased number of 

residues in the aR21 peptide. The additional well-dispersed signals suggested that some 

alternative conformations under slow exchange regime exist for aR21. To test this idea, 

we resorted to the zz-exchange experiment, which reveals conformational inter-

conversions with exchange rate, kex, in the range 0.1 to 1000 s-1 (Cavanagh, 2007). 

Figures 2-9 B and C are the spectra from this experiment, and indicate that indeed a 

two-state conformational equilibrium exists. Conformational inter-conversion occurs on 

the time scale of seconds. This dynamic feature may be closely related to the activation 

from iR21 to aR21, and is worth further investigation. 

 

Dynamic membrane topology of the SAR domain 

 Compared to canonical transmembrane domains, SAR domains are enriched in 

Gly and Ala residues, a feature that is critical for dynamic membrane topology. In R21, 

there is a cluster of Gly residues (Gly14-Gly16). Replacing two of them with Leu 
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eliminates the ability of the SAR endolysin to escape from the membrane (Sun et al., 

2009).  Nevertheless, SAR domains still have numerous hydrophobic residues which, 

after extraction from the lipidic milieu, are a liability in the aqueous environment of the  

 

 

Figure 2-9.  Comparison of NMR spectra between 
a
R

21
 and 

i
R

21. A. Overlay of 
1
H-

15
N HSQC 

spectrum of 
a
R

21 
(blue) on that of 

i
R

21
(red). The backbone assignment was from iR21, the residue number 

is the same as the full-length aR21 sequence. The dashed boxes indicate the signature region of tryptophan 
1H-15Nε1 and Gly100 that are further examined in the zz-exchange experiment. B. ZZ-exchange spectrum 

in the signature region for tryptophan indole group. C. ZZ-exchange spectrum for Gly100.  The 
exchange peaks are linked to HSQC resonances corresponding to two alternative conformations by the 
dashed lines. The ZZ-exchange spectrum was acquired with a 0.8 s mixing period.  
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periplasm. In R21, the cluster of Gly residues in the SAR domain provides a second 

structural function, serving as the hinge that allows the extracted SAR domain to fold 

into two shorter helices. Besides creating a new helix-helix interface to accommodate 

hydrophobic residues, this also compacts the SAR domain sufficiently so that it can fit 

into a hydrophobic pocket on the surface of the main body of the enzyme. Consequently, 

nearly all the hydrophobic residues of the SAR domain are buried in the active structure, 

and the most solvent-exposed surface is populated by hydrophilic residues. 

 

A new mechanism for the regulation of SAR endolysins  

 Mechanistic insight for the regulation of secretory endolysins became available 

only recently, for the SAR endolysin of coliphage P1(Xu et al., 2005; Xu et al., 2004). 

After Sec-mediated export, LyzP1 is tethered to the membrane by its N-terminal SAR 

domain and maintained in an inactive state by virtue of a disulfide bond between the 

catalytic Cys51 and a second Cys residue (Cys44) in the catalytic domain, as well as by 

the complete disorganization of its N-terminal catalytic domain.  The SAR domain 

escapes from the membrane, at a low constitutive rate or quantitatively when the holin 

triggers to disrupt the membrane.  In the active, soluble form of LyzP1, a Cys residue in 

the SAR domain replaces the catalytic Cys in the disulfide bond, and the N-terminal 

catalytic domain is completely refolded, yielding a properly-arranged catalytic triad 

straddling the substrate-binding cleft (Xu et al., 2005). In this active structure, the SAR 

domain makes no significant contacts with the body of the enzyme other than the 

disulfide linkage.  In fact, except for the disulfide linkage, the SAR domain of LyzP1 is 
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not essential for the function of the endolysin. Even the position of the Cys residue 

within the SAR domain is very flexible, suggesting that the SAR domain can be 

arranged in a variety of orientations with respect to the catalytic domain (Xu et al., 

2005).   

The studies presented here describe an entirely different mode of regulation for 

the SAR endolysin of phage 21, the prototype of a class of SAR endolysins much more 

frequently represented in annotated phage genomes than the LyzP1 class (Table 2-1). 

Although aR21 shares both its overall structure and the geometry of its catalytic triad and 

substrate-binding cleft with LyzP1 and with T4 E (Fig. 2-3b), there is a fundamental 

difference. In aR21, the SAR domain, when removed from the membrane where it is 

presumably entirely helical, "jack-knifes" into an α-helix-turn-α-helix structure that 

makes many intimate contacts with the N-terminal catalytic domain and the C-terminal 

helical bundle and is essential to the activity of the enzyme (Fig. 2-10).  Moreover, the 

overall structure of the N-terminal catalytic domain is much more preserved between the 

iR21 and aR21 structures, in comparison to the dramatically different folds of iLyzP1 and 

aLyzP1. Only a loop segment of the catalytic domain adjacent to the SAR sequence is 

differently arranged, with the Glu residue of the catalytic triad everted from the 

enzymatic cleft in iR21 (Figs. 2-6B, 5).  Another striking contrast is that activation of R21 

involves significant reorientation and restructuring of the C-terminal helical bundle, 

resulting in the formation of a hydrophobic binding site for the helix-turn-helix structure 

of the released SAR domain (Figs. 2-6C, 2-10).  In iLyzP1 and aLyzP1, the C-terminal 

domains are very similar (Xu et al., 2005). Overall, the structural transitions are much 
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less dramatic in R21 activation than for LyzP1. Thus, paradoxically, after extraction from 

the membrane the SAR domain of R21 enters the structure of the enzyme intimately 

without causing fundamental restructuring. In contrast, the extracted SAR domain of 

LyzP1 provides only its thiol group for covalent activation of the catalytic triad and can 

do so in a number of orientations, yet activation of LyzP1 is associated with a complete 

refolding of the entire N-terminal catalytic domain and de novo creation of the substrate-

binding cleft. The simplest notion is that the periplasmic domain of iLyzP1 is much less 

stable. Upon insertion into the membrane, LyzP1 is remodeled by the host DsbA (Xu et 

al., 2004), and may be conformationally remodeled by host chaperones after release. For 

R21, the small but distinct differences between the conformations of the bundled C-

terminal helices, especially helices α4 and α8, suggest a possible induced fit mechanism 

for its activation, which arises the alternative conformations in the C-terminal sites, like 

Gly100, that we observed in the NMR experiments. Once the SAR domain has escaped 

from the membrane, the simplest way to minimize the exposure of its most hydrophobic 

residues is to pack against the non-polar face of helix α4, which could lead to 

dislodgement of helix α8 and further conformational adjustments. This results in the 

alternative minima in the energy landscape, and the protein conformation likely 

resonates dynamically between these minima, and the alternative conformation may be 

further selected by the binding of substrate.  In this perspective, the newly released SAR 

domain activates R21 through the spatially adjacent C-terminal helical bundle, rather than 

the sequence-close N-terminal domain. 
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Comparison of the two strategies 

 The regulatory strategies adopted by LyzP1 and R21 have significant differences. 

iLyzP1 has two levels of negative control: covalent inactivation of its active site Cys and 

a N-terminal catalytic domain with radical conformational disability. In contrast, iR21 

appears to lack only the correct placement of its catalytic Glu, which is sterically 

blocked from attaining its position by a hydrogen-bonded lysine side-chain.  These 

striking differences suggest evolutionary trade-offs exacted to meet the conflicting dual 

responsibilities of the SAR endolysin: maintenance of an inactive state throughout the 

infection cycle and also the ability to effect degradation of the murein as rapidly as 

Figure 2-10. Topological and conformational dynamics of R
21

 activation. Color scheme as in Fig. 2-

1.  On the left, the SAR domain is shown as a membrane-spanning helix in the inactive, membrane-
tethered form; the rest of the protein is from the x-ray structure of iR21.On the right is the crystal 
structure of  aR21. 
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possible, once the holin has triggered and depolarized the membrane.  Moreover, in 

contrast to canonical endolysins, which are completely blocked from premature 

muralytic function by sequestration in the cytoplasmic compartment, SAR endolysins 

are inherently leaky, in the sense that even without holin function, enzyme is 

constitutively released from the membrane, and thus becoming active, during the latent 

period (Park et al., 2006).  LyzP1 appears to be better suited for negative control, in view 

of the Cys substitution for Asp in the catalytic triad, which has been shown to reduce 

enzyme activity in the T4 E context (Hardy and Poteete, 1991), and the fact that the 

inactive form is both covalently and conformationally crippled. R21 seems to be more 

poised for muralytic function, with its canonical catalytic triad and the minimally 

dysfunctional conformation of the inactive enzyme.  The particular evolutionary path 

taken by these two SAR endolysins presumably reflect the selective pressures exerted on 

the lysis process.  In particular, analyses based on the Minimum Value Theorem for 

predator-prey relationships have indicated that conditions of sparse host availability 

and/or poor growth conditions favor extended infection cycles, thus favoring an 

endolysin less prone to premature activation (Wang et al., 1996). In contrast, target-rich 

and/or rapid growth environments favor shorter infection cycles and more rapid release 

of the progeny virions, which would favor the more efficient and muralytic endolysin.  

 Is R21 representative of the Cys-less SAR endolysins, in terms of the structure 

and role of the SAR domain in the active enzyme?  A compilation of the N-terminal 

sequences including the SAR domains and the catalytic triads of 22 Cys-less SAR 

endolysins suggests that there may be several different modes (Fig. 2-11), since the SAR 
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domain varies significantly in its proximity to the active site Glu.  R21 shares similar 

SAR domain arrangements with endolysins from phages encoding potent human toxins, 

including the cytolethal distending toxin (Asakura et al., 2007), CDT, and the Shiga 

toxin (Plunkett et al., 1999); moreover, in the latter case, the acute dispersal of the toxin 

in the mammalian gut is dependent on the muralytic action of the SAR endolysin 

(O'Brien et al., 1989; Ochoa et al., 2007).  In no case does the hydrophobic core of the 

SAR domain extend farther than 3 - 4 helical turns without encountering a Gly or Pro 

residue.  These residues are tolerated in helices in the membrane but are helix-breakers 

in aqueous solvent (Li et al., 1996), suggesting that in most or all of these proteins, the 

SAR domain uses some version of the R21 strategy of converting the SAR sequence into 

a helix-turn-helix packed against the main body of the enzyme to solve the problem of 

what to do with a transmembrane domain out of its native lipidic environment. In some 

homologs, the SAR domain immediately abuts the catalytic Glu residue; in these 

enzymes, most of the SAR domain must constitute the stabilizing helix.  Taken together 

with the structures described here, it seems clear that SAR domains represent structural 

elements of unparalleled evolutionary flexibility, both in terms of membrane topology 

and the capacity for integration as a regulatory component.  
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Figure 2-11. Alignments of unique SAR endolysins lacking Cys residues in the membrane domains.  
The N-terminal SAR and catalytic domains of R21-like SAR endolysins are shown aligned by the catalytic 
triad (yellow).  These sequences were selected from the 34 sequences identified in Table 2-1 by the 
criterion of having at least one amino acid residue difference in the complete sequence. Completely 
conserved (asterisk) and nearly completely conserved (dot) residues are indicated.  SAR domains are 
indicated in green, along with helix-breaking residues Gly (blue) and Pro (purple).  The labels of the 
aligned sequences correspond to the following Genbank records: LKD16: gi|158345072, LUZ19: 
gi|167600491, phiKMV: gi|33300856, phi1026b: gi|38707914, phi644-2: gi|134288680, Bcep176: 
gi|77864683, BcepB1A: gi|48697551, RTP: gi|81343992, T1: gi|45686348, TLS: gi|148734541, JK06: 
gi|71834140, PY54: gi|33770570, R21: gi|215468, Phagectd I: gi|148609440, phiEco32: gi|167583572, 
ST104: gi|46358689, 933W: gi|9632511, Stx2-convI: gi|20065952, Stx2-conv86: gi|116221999, N15: 
gi|3192716, BP-4795: gi|157166033, Mu: gi|6010396. 

 

Materials and methods 

Expression and protein purification 

         The full-length R21 gene was cloned into the pET11a vector between the NdeI and 

BamHI sites with C-terminal His-tag introduced with PCR primers. The fragment R21
27-

165 without a stop codon was cloned into the pET22b vector between the NcoI and XhoI 

sites. These two plasmids were dubbed as pETR21 and pETpelB R21
27-165, respectively. 
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         For production of aR21, the plasmid pETR21 was transformed into Rosetta λ(DE3) 

pLysS (Novagen, Madison, WI).  Tranformants were grown in Terrific Broth (BD, 

Franklin Lake, NJ) to A600 ≈ 1 - 1.5 and induced with 0.5 mM IPTG. The culture was 

arrested between 60 to 90 minutes after induction, depending on the extent of lysis. The 

partially lysed culture was spun at 4000 rpm for 30 minutes at 4°C. Harvested cell 

pellets were stored at -20°C. The cells were resuspended in buffer (25 mM Tris-HCl (pH 

8.0), 500 mM NaCl, 3 mM β-Mercaptoethanol, 1% Triton X-100, and 1% EDTA-free 

protease inhibitor cocktail (Roche Molecular)), and were disrupted by 2 passages 

through a French pressure cell at ~16,000 psi. After the lysate was centrifuged at 40,000 

rpm (Beckman Ti50.2) for 60 - 90 min, the supernatant was collected and applied to a 5 

ml HiTrap-chelating Sepharose column (Amersham Pharmacia) equilibrated with buffer 

A (25 mM Tris-HCl, pH 8.0, 500 mM NaCl, 2 mM β-mercaptoethanol and 10 mM 

imidazole). The column was washed with buffer A followed by an increased 

concentration of imidazole (25 mM). Bound protein was eluted with a 25-500 mM 

imidazole gradient and the aR21 enriched fractions were pooled, concentrated, and 

dialyzed against a buffer containing 25 mM sodium acetate pH 5.0, 25 mM NaCl and 1 

mM DTT. Supernatant containing aR21 was concentrated and 50 µl aliquots were flash 

frozen in liquid nitrogen and stored at -80 °C for further use. 

For production of  iR21, BL21λ(DE3) cells were transformed with pETpelB 

R21
27-165 and grown at 37 °C in LB medium containing 100 g/ml of carbenicillin until 

A600 ≈ 0.8. The culture was induced with 0.5 mM IPTG and incubated for 18 h at 25 °C. 
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iR21 protein was purified through a Ni-affinity column and size-exclusion 

chromatography as described above. 

A similar procedure was used for the isotopic-labeled R21 in NMR experiments. 

The BL21 λ(DE3) cells were grown at 37 ºC in minimal media (1.3% KH2PO4, 1% 

K2HPO4, 0.9% Na2HPO4, 0.24% K2SO4, pH 7.2~7.4) which contains 15NH4Cl as the 

only nitrogen source, and with either 13C6-dextrose or unlabeled dextrose as the carbon 

source.  The proteins were purified in the same ways as described above, except for the 

iR21 protein used in the resonance-assignment experiments, which was treated with C-

terminal carboxypeptidase A (Sigma-Aldrich, St. Louis MO) for 1 week after 

purification at 4 ºC, then further polished by S-75 size-exclusion chromatography. 

 

Lysozyme assay      

         Lysozyme activity was assayed with the EnzChek® Lysozyme Assay Kit 

(Invitrogen, Carlsbad CA) which measures lysozyme activity on fluorescently-labeled 

Micrococcus lysodeikticus cell walls. When the cell wall is hydrolyzed, the fluorescein is 

released from the cell wall resulting in an increase in fluorescence.  LyzP1, aR21 and iR21 

were prepared as 0.1 mM stock solutions in reaction buffer (0.1 M sodium phosphate, 

0.1 M NaCl, pH 7.5, 2 mM sodium azide), and then serially diluted in a microplate to  

0.3 - 2.5 μM. For standards, the chicken egg white lysozyme (EWL) from the kit was 

diluted from a 1000 U/ml stock with the same reaction buffer. The fluorescently-labeled 

M. lysodeikticus cell wall suspension was added as the substrate to start the reaction. The 
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fluorescence was measured in a POLARStar Optima plate reader (BMG LabTech) every 

2 min using excitation/emission at 485/520 nm.  

 

Crystallization and structure determination  

         Purified aR21 at 20~30 mg/ml concentration was used to screen a large number of 

commercially available crystallization conditions by the vapor diffusion method.  

Diffraction quality crystals of aR21 were obtained with 150 mM sodium acetate pH 4.6 

and 2 M sodium formate. iR21 was crystallized in 100 mM Bis-Tris propane pH 7, 2.5 M 

sodium nitrate. The best crystals grew in 2 weeks and were flash frozen in mother liquor 

with 20% glycerol, and then stored in liquid nitrogen. Data sets were collected in the lab 

(Rigaku MM007HF generator with Bruker Smart 6000 CCD detector) and synchrotron 

beamlines at the Advanced Photon Source (APS 23-ID and 19-ID), Argonne National 

Laboratory, Chicago. 

         The initial structure was solved by single-wavelength dispersion using an iodine 

derivative obtained by quick soaking the crystal in the cryo with 0.5 M NaI for 30~90s. 

The model was refined against the native dataset iteratively until the R/Rfree reached 

0.212/0.249 at 1.95 Å for aR21 and 0.199/0.231 at 1.7 Å for iR21. The phasing and 

refinement were carried out with the Phenix package (Adams et al., 2002). The models 

were built in Coot (Emsley and Cowtan, 2004). PyMol (Delano Scientific; San Carlos 

CA) was used for structure analysis and rendering. 

          aR21 crystallized in space group P212121 with unit cell dimensions of a = 78.2 Å, b 

= 94.8 Å, c = 97.7 Å, α = β = γ = 90° (Table 2-3) and four aR21 molecules in the 
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asymmetric unit (ASU). All the residues can be traced in the electron density map. The 

first three molecules are nearly identical (backbone RMS = 0.4~0.5 Å). The fourth 

molecule in the ASU is the same as the other three except for two loops, Gly27-Ser38 

and Thr137-Gly146. iR21 crystallizes in space group P21212 with unit cell dimensions of 

a = 64.2 Å, b = 109.7 Å, c = 45.0 Å, α = β = γ = 90° and two 
iR21 molecules in the ASU 

(backbone RMS =0.2 Ǻ). The first seven and last four residues are invisible in the 

structure. For both aR21 and iR21, the first molecule (chain A) in the asymmetric unit is 

used as the representative structure. The atomic coordinates and structure factors have 

been deposited in the PDB with the accession codes 3HDE and 3HDF for aR21 and iR21, 

respectively. 

 

NMR measurements 

Samples for NMR measurements included around 1 mM R21, 50~150 mM NaCl, 

10 mM sodium phosphate (pH 4.5~7.4 at 25 ºC), 50 μM NaN3, 0.5 mM DSS and 8% 

D2O. The ionic strength and pH was varied in the samples to address the corresponding 

effects on protein conformation. NMR spectra were collected on a Varian 600 MHz 

spectrometer. Backbone assignments of 1HN, 15N, 13Cα, and 13Cβ in iR21 were obtained by 

using CBCANH and CBCA(CO)NH experiments (Grzesiek and Bax, 1993). Slow 

conformational interconversion was investigated by the zz-exchange experiments for 

aR21 (Tuinstra et al., 2008). The data were processed with NMRPipe and analyzed 

with Sparky (Delaglio et al., 1995).  
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CHAPTER III 

D29B: A NOVEL MYCOLYLARABINOGALCATAN ESTERASE IN THE 

MYCOBACTERIUM CELL ENVELOPE* 

 

Summary 

Mycobacteriophages encounter a unique problem among phages of Gram-

positive bacteria, in that lysis must not only degrade the peptidoglycan layer but also 

circumvent a mycolic acid-rich outer membrane covalently attached to the 

arabinogalactan–peptidoglycan complex. Mycobacteriophages accomplish this by 

producing two lysis enzymes, Lysin A (LysA) that hydrolyses peptidoglycan, and Lysin 

B (LysB), a novel mycolylarabinogalactan esterase, that cleaves the 

mycolylarabinogalactan bond to release free mycolic acids. The structure of LysB from 

mycobacteriophage D29 shows an α/β hydrolase organization with a catalytic triad 

common to cutinases, but which contains an additional four-helix domain implicated in 

the binding of lipid substrates. Whereas LysA is essential for mycobacterial lysis, a Giles 

ΔlysB mutant mycobacteriophage is viable, but defective in the normal timing, 

progression and completion of host cell lysis. We propose that LysB facilitates lysis by 

compromising the integrity of the mycobacterial outer membrane linkage to the 

arabinogalactan–peptidoglycan layer. 

____________ 
*Reprinted with permission from ―Mycobacteriophage Lysin B is a novel mycolylarabino-
galactan esterase‖ by Payne, K., Sun, Q., Sacchettini, J. C., Hatfull, G. F., 2009. Molecular 
Microbiology, 73, 367-381, Copyright [2000-2011] by John Wiley & Sons, Inc. Payne, K. in 
Hatfull’s Lab did the genetics studies and performed the enzyme assay. Sun, Q. did the structural 
biology studies. 
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Introduction 

Upon completion of lytic bacteriophage growth the integrity of the host cell wall 

must be compromised to release progeny phage particles (Wang et al., 2000; Young et 

al., 2000).  Double-stranded DNA (dsDNA) tailed phages typically encode an endolysin 

that degrades the peptidoglycan mesh, together with a means of allowing this enzyme 

access to its substrate, either via a membrane-localized holin, or through the action of 

holin-independent SAR (signal-anchor-release) endolysins (Wang et al., 2000; Xu et al., 

2005; Young et al., 2000).  For phages infecting Gram-positive hosts, not only are these 

two requirements sufficient for cell lysis (Loessner et al., 1998), but exogenously added 

endolysin can efficiently kill host cells, with considerable therapeutic potential 

(Fischetti, 2008; Loeffler et al., 2001; Schuch et al., 2002).  In Gram-negative hosts, the 

outer membrane presents a further barrier to lysis, and phages typically encode an 

additional set of lysis proteins (Rz/Rz1 proteins or spanin equivalents) that are proposed 

to complete lysis by fusing the inner and outer membranes (Berry et al., 2008; Summer 

et al., 2007). 

Although the mycobacteria are members of the Gram-positive Actinomycetales, 

they are unusual in that they possess a mycolic acid-rich outer membrane, which is 

covalently attached to the arabinogalactan-peptidoglycan complex (Hoffmann et al., 

2008; Zuber et al., 2008).  Mycolic acids are -alkyl, -hydroxy C60-90 fatty acids with a 

relatively short (C20-25) saturated  and a longer (C60) meromycolate chain (the -

hydroxy branch) containing double bonds, cyclopropane rings, and oxygenated groups, 

depending on the Mycobacterium species (Hamid et al., 1993; Watanabe et al., 2001).  
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The outer membrane mycolic acids are linked to the cell wall via an ester linkage to the 

terminal pentaarabinofuranosyl components of arabinogalactan (Brennan and Nikaido, 

1995; Hoffmann et al., 2008; McNeil et al., 1991; Niederweis, 2008), which in turn is 

covalently anchored to peptidoglycan (Brennan and Nikaido, 1995; McNeil et al., 1990).  

In addition to being part of the mycobacterial outer membrane, mycolic acids are 

constituents of trehalose dimycolate (TDM, also known as cord factor), a secreted 

molecule important for mycobacterial pathogenesis (Brennan, 2003).  Mycolic acid 

synthesis is essential for viability and is the target of the major anti-tuberculosis drug 

isoniazid (Vilcheze and Jacobs, 2007).  The mycobacterial outer membrane also plays 

roles in nutrient acquisition (Niederweis, 2008) and as an immune target (Karakousis et 

al., 2004).  Furthermore, it presents a potential barrier to phage-mediated lysis.   

A total of 60 mycobacteriophage genomes have been sequenced (Hatfull et al., 

2006; Morris et al., 2008; Pedulla et al., 2003; Pham et al., 2007) , all of which encode a 

putative endolysin, Lysin A (LysA) (Garcia et al., 2002; Hatfull et al., 2006).  The LysA 

proteins are highly diverse in sequence and modular in nature (Hatfull et al., 2006), 

containing combinations of amidase, glycosidase and peptidase motifs.   The  LysA of 

phage Ms6 has been  shown to have mureinolytic activity in Escherichia coli (Garcia et 

al., 2002) and the LysA of mycobacteriophage Giles is essential for lytic growth 

(Marinelli et al., 2008).  Many of these genomes have a putative holin gene, which is 

closely linked to lysA, whereas in others there is no closely linked and easily 

recognizable holin gene.  Holin function may be encoded from elsewhere as in phage T7 

(Hausmann, 1988) or from within another open reading frame as proposed for phage 187 
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(Loessner et al., 1999).  Mycobacteriophage endolysins could contain SAR (signal-

anchor-release) domains that allow secretion of the endolysin into the periplasmic space 

thus rendering them holin-independent (Xu et al., 2005), but none have yet been 

described.  Some mycobacteriophages also encode a second proposed lysis protein, 

Lysin B (LysB) (Garcia et al., 2002), which does not resemble endolysins and has no 

identifiable homologs in bacteriophages other than those that infect mycobacterial hosts.  

The LysB of Ms6 has been shown to be a lipolytic enzyme (Gil et al., 2008) and contains 

a G-X-S-X-G motif characteristic of serine esterases (Carvalho et al., 1999; Gil et al., 

2008; Gupta et al., 2004; Longhi and Cambillau, 1999; Ollis et al., 1992) although its 

specific substrate is unknown. 

We show here that LysB of mycobacteriophage D29 is a novel mycolylarabino-

galactan esterase that cleaves the ester linkage joining the mycolic acid-rich outer 

membrane to arabinogalactan, releasing free mycolic acids. We propose that LysB acts 

at a late stage in lysis, severing the connection of the mycobacterial outer membrane to 

the cell wall and completing lysis of the host. 

 

Results 

Organization, conservation and location of mycobacteriophage lysis cassettes 

Comparative analysis of mycobacteriophage genomes reveals them to be highly 

diverse with mosaic architectures (Hatfull et al., 2006; Pedulla et al., 2003).  The 6858 

predicted protein products can be assorted into 1523 phamilies (Phams) of related 

sequences and their distributions among the mycobacteriophages analyzed (Hatfull et 
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al., 2006) (our unpublished observations).  While there are few Phams represented in all 

60 completely sequenced genomes, one of these is the lysA phamily (Pham 66), and the 

LysA proteins are predicted from sequence comparisons to have peptidoglycan 

hydrolyzing activity (Garcia et al., 2002; Hatfull et al., 2006; Marinelli et al., 2008). We 

have confirmed this for three LysA proteins (Corndog gp69, Bxz1 gp236, Che8 gp32) all 

of which catalyze peptidoglycan hydrolysis in zymograms (Fig. 3-1A). The lysB gene is 

also implicated in lysis, primarily because of its linkage to lysA (Fig. 3-1B) and the 

demonstration of lipolytic activity by Ms6 LysB (Gil et al., 2008).  LysB homologs are 

present in 56 of the 60 completely sequenced mycobacteriophage genomes and are 

located downstream of lysA and separated from it by no more than four intervening 

genes (Fig. 3-1B).  Some of the intervening genes encode putative holins and exhibit 

holin-like function (e.g., D29 gene 11, data not shown), whereas others (e.g., Omega 

gene 51) code for putative homing endonucleases HNH motifs (Fig. 3-1B), or have 

homologs elsewhere in other mycobacteriophage genomes (e.g., Troll4 gene 37).  
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Figure 3-1. Organization, location and conservation of mycobacteriophage lysis cassettes. A. 
Peptidoglycan hydrolysis by three LysA proteins. LysA proteins of Che8 (gp32), Bxz1 (gp236) and 
Corndog (gp69) were expressed, purified to near homogeneity, separated by SDS-PAGE and stained 
with Coomassie blue (top panel). In the lower panel, the proteins were separated through a gel matrix 
containing Micrococcus luteus, renatured, and the zymogram developed by staining with methylene 
blue. Peptidoglycan hydrolysis by renatured proteins within the gel produces clear areas that no longer 
stain with methylene blue. Lysozyme (Lys) and ovalbumin (Ova) represent positive and negative 
controls. B. Each of the 60 completely sequenced mycobacteriophages together with Ms6 and a 
putative M. avium prophage encode LysA proteins predicted to hydrolyse peptidoglycan, although they 
have highly modular structures (Hatfull et al., 2006). When present, the second putative lysis gene lysB 
is located downstream and is closely linked to lysA, with no more than four intervening genes. The 60 
sequenced genomes can be grouped into clusters and subclusters according to their similarities (our 
unpublished observations) and the organization in each cluster (with the number of genomes 
represented in parentheses) is shown. All of the mycobacteriophage genes have been assorted into 
phamilies according to their sequence similarities, and the pham number (and number of gene 
members in that pham in parentheses) shown above each gene. C. Mycobacteriophage lysis cassettes 
may be positioned either to the left of the virion structure and assembly genes, as in the 13 cluster A 
genomes, or to their right as in other genomes, but in either case the lysA and lysB genes are closely 
linked.  
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Although lysA and lysB are closely linked, this linkage is not a simple 

consequence of synteny in the context of the broader genome organizations, because 

these presumptive lysis cassettes are situated in different chromosomal locations (Fig. 3-

1C).  Of the 53 phages with a siphoviral morphotype, the thirteen genomes constituting 

Cluster A [including L5, D29, Bxb1 (Ford et al., 1998; Hatfull and Sarkis, 1993; 

Mediavilla et al., 2000) and Che12 (Hatfull et al., 2006)] have the lysis cassette situated 

to the left of the virion structural and assembly genes, whereas all of the other genomes 

have the lysis cassette positioned to the right of the structural genes (Fig. 3-1C).  The 

invariable linkage of lysA and lysB regardless of genome location further supports a role 

for LysB in lysis. 

Sequence alignment of the phamily of LysB proteins shows that they are highly 

diverse, and only three residues are completely conserved (Fig. B-1).  Although the 

proteins vary in length [from 254 (D29 gpl2) to 451 (PG1 gp50) residues] and there are 

many gaps throughout the alignment, these proteins do not have modular constructions 

as seen in the LysA proteins (Hatfull et al., 2006).  However, the sequence divergence is 

sufficiently high that some members of the phamily have little identifiable sequence 

similarity (<20% identity) to each other (Figs B-1 and B-2).  In a search for conserved 

domains, 14 LysB proteins (including D29 gp12) are predicted to contain a cutinase 

domain (pfam01083), and Wildcat gp52 has a predicted esterase domain (COG0400).  

Eight proteins have a predicted peptidoglycan-binding domain (pfam01471) at their N-

terminus, although this is not present in D29 LysB (Fig. B-1). 
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The three absolutely conserved residues include the putative active site serine 

(position 82 in D29 LysB) and a GXP motif located ~40 residues downstream (residues 

117-119 in D29 LysB; Fig. B-1).  The cutinase- and lipase-like conserved domains 

suggests that these enzymes are serine esterases, which typically have a Ser-Asp-His 

catalytic triad.  Of three aspartic acids and a histidine residue previously implicated in 

catalysis (Gil et al., 2008) through their conservation, only the aspartic acid 

corresponding to position 166 in D29 LysB is highly conserved among the larger group 

of proteins, with the single departure being the LysB protein encoded by a putative 

Mycobacterium avium prophage that has a glutamic acid residue at that position (Fig. B-

1).  The alignment does not reveal a well-conserved candidate for the histidine 

component of the catalytic triad (Fig. B-1).  The GXP motif is not absolutely conserved 

in all serine esterases and its role in LysB functions is not clear.  

 

D29 LysB has lipolytic activity 

To further characterize the structure and function of mycobacteriophage LysB 

proteins, several Pham73 members were cloned and expressed. Although expression and 

solubility varies among these, we found that the 254-residue D29 gp12 (LysB) expressed 

well and was readily purified to near homogeneity and high solubility (> 10 mg ml−1) 

(Fig. 3-2A). D29 LysB shares only 40% amino acid sequence identity with the 

previously characterized Ms6 LysB protein (Gil et al., 2008), and lacks 90 N-terminal 

residues present in Ms6 LysB (Fig. B-1). We also constructed, expressed and purified a 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2009.06775.x/full#f2
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mutant version of the protein with a substitution of alanine for the putative catalytic 

serine at position 82 (S82A). 

To test for lipolytic activity of D29 LysB we measured hydrolysis of p-

nitrophenyl butyrate (pNPB) to release p-nitrophenol (Gilham and Lehner, 2005) 

(Fig. 3-2B). We observed a specific activity of 0.72 U mg−1 (Fig. 3-2B), somewhat 

higher than the 0.12 U mg−1 reported for Ms6 LysB protein (Gil et al., 2008), or for any 

of the seven cutinase-like proteins found in Mycobacterium tuberculosis (West et al., 

2009). The S82A mutant is inactive, consistent with this residue being part of the 

catalytic triad (Fig. 3-2B). We also tested D29 LysB, as well as the purified lipase from 

Pseudomonas fluorescens for activity on p-nitrophenyl substrates with different carbon 

chain lengths. While D29 LysB was more active than the lipase on pNPB, we also 

observed decreasing activity of D29 LysB with longer substrates (Fig. 3-2B), as was 

reported for Ms6 LysB(Gil et al., 2008). D29 LysB thus shares lipolytic activity with 

Ms6 LysB (Gil et al., 2008), with serine-82 providing critical catalytic functions. 

  

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2009.06775.x/full#f2
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2009.06775.x/full#f2
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2009.06775.x/full#f2
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2009.06775.x/full#f2
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Figure 3-2. Purification and lipolytic activity of D29 LysB. 

A. Phage D29 LysB was expressed from plasmid pLAM3, a derivative of vector pET21a, in E. coli 
BL21(DE3) and purified to near-homogeneity. SDS-PAGE of un-induced cells (U), whole cell lysates of 
induced strains (W) separated into insoluble (I) and soluble (S) fractions, and a clarified soluble lysate (L) 
are shown. The 30 kDa His-tagged D29 LysB was bound to a cobalt-affinity matrix, and flow-through (F), 
a 20 mM imidazole wash (W20) sample, and fractions collected at 120 mM imidazole elutions (E120) are 
shown. 
B. Lipolytic activity of D29 LysB (filled bars; left axis scale) is shown using p-nitrophenyl substrates 
containing different lipid chain lengths (C4, C8, C12 and C16); lipase activities on the same substrate are 
also shown (open bars; right axis scale). Specific activities are shown as Units/mg protein, with 1 Unit 
corresponding to the release of 1 μmol p-nitrophenol min−1. An active site mutant (S82A), boiled sample, 
and a mock-purified sample show little or no activity. 
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Table 3-1. Data collection and refinement statistics of D29 LysB crystal 
 

Data collection
a
  

Space group P 43 21 2 

Cell dimensions 

a, b, c (Å) 
92.5, 92.5, 69.6 

Wavelength (Å) 0.9795  

Resolution (Å) 2.0 (2.07-2.00)  

I/sigI 28.0 (3.2) 

Completeness (%) 99.8 (99.5) 

Rsym 8.3 (31.2) 

Redundancy 14.1 (12.8) 

  

Refinement
b  

No. reflections 19777 

Rwork/Rfree 0.205/0.250 

No. atoms 2094 

RMSD bonds 0.004 

RMSD angles 0.635 

a. The native D29 LysB dataset was collected at APS 23ID and processed with HKL2000.  
b. Refinement was done with Phenix. 
Accession code: The atomic coordinate and structure factor have been 
deposited in the PDB with the accession code 3HC7 for D29 LysB.  

 
 

 



 70 

Crystal structure of D29 LysB   

The structure of D29 LysB was determined at 2.0-Å resolution in crystals of the 

P 43 21 2 space group containing a single molecule in the asymmetric unit (Table 3-1).  

Structural alignment with known protein structures using Dali server showed that D29 

LysB is similar to members of the α/β hydrolase family, which includes cutinases, acetyl 

xylan esterases and lipases (Holm et al., 2008; Masaki et al., 2005).  The five closest 

structural relatives of D29 LysB are all members of the cutinase family (Table 3-2), 

although they share no more than 21% amino acid sequence identity with D29 LysB. 

 

Table 3-2. Top 5 results of structural alignment of D29 LysB in Dali database
a
 

pdb Z-score rmsd #aligned position #residue %identity Description 

2czq 20.3 2.2 169 205 21 Cutinase-like protein 

1qoz 19.2 2.6 170 207 21 Acetyl xylan esterase 

1bs9 18.9 2.3 164 207 21 Acetyl xylan esterase 

3dd5 16.5 2.7 160 193 19 Cutinase 

1ffb 16.4 2.7 157 197 20 Cutinase 

a. The redundant hits of the same protein have been removed. 

 

Of the 253 determined residues in D29 LysB, 170 residues (Ser2-Tyr161, 

Arg244-Gln253) are distributed in a doubly wound α/β sandwich, having a central 

parallel β-sheet flanked by two parallel α-helices on each side (Fig. 3-3A).  This fold is 

typical of the α/β hydrolase family and the structure of Lysin B is remarkably similar to 

that of a Cryptococcus cutinase-like protein (Fig. 3-3A).  Despite their low sequence 
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similarity, the rms differences in Cα positions are 2.45 Å and a search using the Dali 

server gave a high Z-score (20.3) when LysB was submitted as the query.  The 

remainder of the protein (Ala162-Asn243) forms an 81-residue linker domain composed 

of four α-helices connecting the C-terminal α-helix (Arg244-Gln253) back to the side of 

the central β-sheet.  It occupies the general location where the acyl chain is positioned in 

co-crystals of the Fusarium solani cutinase with a covalently-linked n-undecanyl-

phosphonate methyl ester inhibitor (Longhi et al., 1996).   Given the high B-factor and 

poor electron-density of the Arg231-Lys237 loop connecting the helical-linker and the 

C-terminal helix, it is reasonable to propose that movement of the helical-linker helps to 

modulate the active site to accommodate bulky and hydrophobic acyl chains. We note 

that the unusual glycine-rich segment corresponding to a 55-amino acid segment of PG1 

LysB (and related proteins) inserted between D29 LysB residues 199 and 200, of which 

19 are glycine residues, is located within this linker between the second and third helices 

(Fig. 3-3A; Fig. B-1). 
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Figure 3-3. Crystal structure of D29 LysB. 

A. The D29 LysB structure is shown in alignment with the Cryptococcus sp cutinase-like protein (pdb: 
2czq).  D29 LysB is colored according to secondary structure (red: α-helix, yellow: β-strand, green: loops).  
2czq is shown in cyan.  
B. The catalytic triad of D29 LysB catalytic triad is composed of Ser82, Asp166 and His420 (ball-and-
stick representations).  Electron density map (2Fo-Fc) around the triad is shown in blue mesh at 1σ level. 

The triad of 2czq is in stick.  
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The catalytic triad Ser82-Asp166-His240 is located at the edge of the central β-

sheet between the α/β sandwich and the linker domain.  The position of the D29 LysB 

catalytic triad is very similar to those in other members of the α/β hydrolase family as 

can be seen in the superimposition of D29 LysB on the Cryptococcus cutinase-like 

protein (Fig. 3-3B).  Although Ser82 is invariant and Asp166 is very strongly conserved 

in the alignment of LysB proteins (Fig. B-1), the sequence alignment around His-240 

varies among the LysB members, reflecting poor conservation of the flanking residues 

and positioning of the catalytic histidine within a loop region (Fig. B-1).  In contrast, the 

GXP motif – of which the glycine and proline residues are invariant – lies immediately 

adjacent to the catalytic triad.  In D29 LysB, the Gly117-Asn118-Pro119 segment 

defines the end of β4 strand and makes a 180 degree turn just beneath Asp166. Besides 

the turn-makers Gly117 and Pro119, Asn118 forms hydrogen bonds with Met120, 

Arg121 and Asp160, which may be energetically favorable to the scaffold. 

 

D29 LysB is a mycolylarabinogalactan esterase 

The D29 LysB structure confirms its enzymatic function as a serine esterase, and 

while it clearly has lipolytic activity, the unusual linker positioned adjacent to the active 

site – together with the inclusion of lysB genes within lysis cassettes – suggests that its 

substrate could be a cell wall component containing ester-linked lipids.  We reasoned 

that an excellent candidate substrate is mycolyl-arabinogalactan–peptidoglycan (mAGP), 

such that LysB hydrolysis would release free mycolic acids and separate the outer 

membrane from the arabinogalactan-peptidoglycan layer.  To test this we isolated a cell 
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wall fraction from Mycobacterium smegmatis that is highly enriched in mAGP (Besra, 

1998) and determined whether it is a substrate for D29 LysB hydrolysis (Fig. 3-4A, B).  

We observed both time- and enzyme concentration-dependent release of lipids that 

migrate similarly to mycolic acids released from the same mAGP preparation by alkaline 

hydrolysis of mAGP with tetrabutylammonium (TBAH) (Besra, 1998; Hamid et al., 

1993; Watanabe et al., 2001).  To further characterize the lipid products we methyl-

esterified them with iodomethane, which yielded methyl esters of ’ and epoxy 

mycolates similar to those from TBAH treatment and specific to M. smegmatis (Fig. 3-

4C).  Preliminary analysis of the released lipids by mass spectrometry and NMR was 

consistent with them being free mycolic acids (data not shown).  To our knowledge, this 

is the first mycolylarabinogalactan esterase to be described.  As expected, hydrolysis of 

mAGP by D29 LysB is dependent on the catalytic serine residue at position 82 and the 

S82A mutant enzyme exhibits no observable activity (Fig. 3-4D).  Moreover, mAGP 

was not a substrate for a Pseudomonas-derived lipase (Arpigny and Jaeger, 1999; Gupta 

et al., 2004) as no release of free mycolic acids was observed (Fig. 3-4D).  
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Figure 3-4. D29 LysB is a mycolylarabinogalactan esterase. 

A and B. Time- and enzyme-concentration-dependence of D29 LysB-mediated hydrolysis of mycolyl-
arabinogalactan-peptidoglycan (mAGP).  mAGP was purified from M. smegmatis, incubated with D29 
LysB, and the lipid products separated by thin layer chromatography.  The reaction was monitored as a 
function of time (panel A; incubation times as shown, in minutes) or amount of protein (panel B; 0.1, 0.25, 
0.5, 1, 5, 10 g D29 LysB).  D29 LysB catalyzes production of a species migrating in the same position as 
the free mycolic acids released by tetrabutylammonium (TBAH) treatment.   
C. Methylesterification of the products generated by D29 LysB cleavage of mAGP generates epoxy,  and 
’ mycolates.  
D. Neither a D29 LysB catalytic mutant (S82A), lipase purified from Pseudomonas fluorescens, a mock 
purified sample, nor buffer release free mycolic acids from mAGP.   
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Giles lysB facilitates completion of host cell lysis 

To explore the role of LysB in mycobacteriophage lytic growth, we first asked 

whether it is an essential function for plaque formation, using a recently described 

recombineering strategy to delete lysB (gene 32) from the mycobacteriophage Giles 

genome (Marinelli et al., 2008). We targeted Giles because it is a demonstrated substrate 

for recombineering (Marinelli et al., 2008), we know that Giles lysA is essential 

(Marinelli et al., 2008), and we anticipated needing to complement with a lysB gene that 

is sufficiently different genetically as to avoid recombination (e.g., D29 gene 12). It 

should be noted, however, that Giles LysB – cloned and purified in the same manner as 

D29 LysB – was also able to hydrolyse mAGP (data not shown). A 200 bp substrate 

containing 100 bp sequences flanking lysB was designed to introduce a 1146 bp internal 

deletion in Giles lysB, fusing 15 codons at the 5′ and 3′ ends of the gene to minimize 

effects on expression of adjacent genes as well as avoiding genetic polarity (Fig. 3-5A). 

Following co-electroporation of the 200 bp deletion substrate and Giles genomic DNA 

into an M. smegmatis recombineering strain, plaques were recovered on a lawn of 

M. smegmatis mc2155 pKMC2 cells expressing D29 LysB. Of 22 primary plaques 

screened by deletion amplification detection assay (DADA)-PCR (Marinelli et al., 

2008), two contained mixtures of wild-type and mutant phages (Fig. 3-5B). 

 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2009.06775.x/full#f5
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2958.2009.06775.x/full#f5
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Figure 3-5. Construction of a Giles lysB deletion mutant. A. A 200 bp dsDNA substrate was designed 
that has 100 bp homology flanking a 1146 deletion in Giles gene 32. The locations of primers F1, F2 and 
D1, used for PCR screening are shown. B. Following co-electroporation of the 200 bp substrate and Giles 
genomic DNA, primary plaques were recovered and screened by PCR using primers D1 and F2, designed 
to preferentially amplify the deletion mutant. A mixed plaque containing wild-type and mutant DNA is 
shown. C. A mixed primary plaque was diluted and plated, and isolated secondary plaques screened using 
primers F1 and F2. One homogenous wild-type Giles plaque (left) and one homogenous lysB deletion 
mutant plaque are shown (right). 
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To test for viability of the Giles ΔlysB mutant, a mixed plaque was picked, 

resuspended in buffer, and plated to recover ~600 isolated plaques on both a putative 

complementing strain (M. smegmatis mc2155pMKC2) or a non-complementing control 

strain. Secondary lysates representing all of the recovered particles were harvested and 

tested by PCR for the presence of the deletion mutant (data not shown). The mutant 

genotype was present in approximately equivalent proportions in both the 

complementing and non-complementing strains, suggesting that the mutant is viable. 

Thirty individual plaques from a secondary plating were then screened by PCR and a 

homogenous mutant plaque identified (Fig. 3-5C). The Giles ΔlysB mutant was plaque 

purified, and the structure of the deletion confirmed by DNA sequencing (data not 

shown). 

The Giles ΔlysB mutant forms plaques at equivalent efficiencies on 

complementing and non-complementing strains, and titers of wild-type and mutant 

lysates prepared on a wild-type M. smegmatis host under standard conditions are similar; 

Giles lysB thus is not essential for lytic growth (Fig. 3-6A). However, we observed that 

the mutant forms somewhat smaller plaques on lawns of wild-type M. smegmatis 

compared to the parental Giles, a phenotype that is exaggerated when higher densities of 

plating cells are used (conditions that favor fewer bacterial doublings and fewer rounds 

of phage infection) (Fig. 3-6A). This difference is directly attributable to the loss of lysB 

since complementation with a plasmid expressing D29 lysB restores plaque size to near 

that of the wild-type parent (Fig. 3-6A). To eliminate the possibility that plaque size 

restoration results from acquisition of lysB by recombination with the complementing 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774421/figure/F5/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774421/figure/F6/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774421/figure/F6/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774421/figure/F6/
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plasmid, several plaques were picked and shown to reproduce the mutant phenotype, and 

by PCR contain only the mutant genotype (data not shown). Furthermore, at a relatively 

high cell plating density (2 × 108 cfu/plate) the average number of particles in each 

plaque is ~100-fold reduced in ΔlysB mutant relative to wild-type Giles plaques (5 × 105 

and 4 × 107 pfu/ml respectively), consistent with a lysis defect. Therefore, unlike lysA, 

lysB is not essential for plaque formation but is required for efficient phage release. 

To test whether the small plaque phenotype specifically results from changes in 

the pattern or timing of lysis, we monitored optical densities (OD) of infected M. 

smegmatis cultures (Fig. 3-6B). After infection with wild-type Giles the OD increases 

for approximately 3 hours, after which it steadily declines as the cells lyse, up to a period 

approximately 5 hours after infection. When infected with the ΔlysB mutant, the OD 

does not begin to decline until 3.5 hours and is incomplete even 5.5 hours after infection 

(Fig. 3-6B). In contrast, cells infected with a ΔlysA mutant — which does not form 

visible plaques on a non-complementing M. smegmatis strain (Marinelli et al., 2008) — 

cease to grow after 3-3.5 hours, with only a modest reduction in OD thereafter (Fig. 3-

6B). 

 

 

  

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774421/figure/F6/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774421/figure/F6/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774421/figure/F6/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774421/figure/F6/
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Figure 3-6. LysB is required for efficient host cell lysis. A. M. smegmatis mc2155 containing either 
plasmid vector pNIT-1 or plasmid pKMC9 carrying the D29 lysB gene was infected with wild-type or 
Giles ΔlysB phages, as indicated. The ΔlysB mutant forms smaller plaques than its wild-type parent, but 
restored to larger plaques by complementation with D29 lysB. Scale bar indicates 1 cm. B. Lysis of phage-
infected M. smegmatis mc2155 was monitored by measuring OD600 of cultures infected with wild-type 
Giles (red), a ΔlysA mutant (green) or a ΔlysB mutant (yellow) at different times after phage addition; 
uninfected cells are shown in blue. Thicker lines correspond to trendlines. C. M. smegmatis mc2155 cells 
were infected with Giles (red), a ΔlysA mutant (green) or a ΔlysB mutant (yellow) and ATP release 
measured at different times after infection; uninfected cells are shown in blue. ATP was measured in a 
luciferase assay and reported as relative light units (RLU). D. M. smegmatis mc2155 cells were infected 
with wild-type Giles, the ΔlysA mutant, or the ΔlysB mutant and the total number of phage particles 
(pfu ml−1) determined. Wild-type Giles is shown in red, ΔlysA in green, and the ΔlysB mutant in yellow. E. 
For each of the time points in D, the distribution (as percentage of total) of phage particles in the 
supernatant and cell pellet was determined. For wild-type Giles the supernatant is shown in dark grey and 
the cell pellet in red; the ΔlysB mutant supernatant is grey and the pellet is yellow; the ΔlysA mutant 
supernatant is shown in light grey and the pellet in green. 
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We also monitored the progression of phage infections by measuring ATP 

release (Fig. 3-6C), which we anticipated to reflect either lysis or permeabilization of the 

cell wall. In a wild-type Giles infection, little or no ATP release is seen until three hours 

after infection, followed by a steady increase to 4.5-5 hours after infection (Fig. 3-6C), 

closely mirroring the changes in OD shown in Fig. 3-6B. The ΔlysB mutant is delayed in 

the onset of ATP release by about 30 minutes, and fails to achieve the wild-type level 

even 5.5 hours after infection, which taken together with the OD changes is consistent 

with a lysis defect. The phenotype is reminiscent of the conditional lysis defect of phage 

lambda Rz or Rz1 mutants, where the Rz/Rz1 proteins are implicated in the final lysis 

step in which the E. coli outer membrane is compromised by fusion with the cytoplasmic 

membrane (Berry et al., 2008; Summer et al., 2007). Interestingly, the ΔlysA mutant 

shows no defect in ATP release at all, and may even release more ATP than cells 

infected with wild-type Giles (Fig. 3-6C). 

Finally, we tested whether the lysB mutant produces the same yield of total phage 

particles as wild-type Giles in a lytic infection, and determined how the particles 

distribute between those that are released and those that remain trapped in unlysed cells 

(Fig. 3-6D, E). As shown in Fig. 3-6D, both the ΔlysA and ΔlysB mutants show no major 

defect in the production of phage particles. However, by 4 hours after infection, although 

>90% of wild-type particles are present in the culture supernatant, about 45% of the 

ΔlysB particles remain associated with unlysed cells. In contrast, <10% of ΔlysA 

particles are released into the supernatant even 5 hours after infection (Fig. 3-6E). These 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774421/figure/F6/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774421/figure/F6/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774421/figure/F6/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774421/figure/F6/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774421/figure/F6/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774421/figure/F6/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774421/figure/F6/
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observations are consistent with a strong defect in cell lysis in the ΔlysA mutant, and a 

milder defect in the lysB mutant. 

 

Discussion 

We have shown here that the mycobacteriophage D29 LysB protein is a 

novel mycolylarabinaogalactan esterase required for completion of lysis of host 

mycobacterial cells, and a model for the role of the LysA and LysB proteins as well 

as the reaction catalyzed by LysB is presented in Figure 3-7.  The mycolic acid-rich 

mycobacterial outer membrane presents an unusual problem for phages of Gram-

positive bacteria, which typically complete lysis through simple endolysin-mediated 

degradation of the peptidoglycan layer.  The mycolylarabinoglactan linkage is not 

common among bacteria, since mycolic acids are found primarily in the 

Corynebacterineae suborder of the Actinomycetales, which includes 

Corynebacteria, Gordonia, Nocardia, Rhodoccocci and Mycobacteria.  Few phages 

infecting non-mycobacterial members of the Corynebacterineae have been 

characterized, although these would be good candidates for also encoding 

mycolylarabinogalactan esterases.  We note that neither phage P2101 of 

Corynebacterium glutamicum (Chen et al., 2008) nor BFK20 of Brevibacterium 

flavum (Bukovska et al., 2006) encodes a LysB relative, although unlike the 

Mycobacteria, mycolic acids are dispensable for growth of C. glutamicum (Portevin 

et al., 2004) and therefore may not pose a barrier to efficient lysis.   
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Figure 3-7.  A model for mycobacteriophage lysis of mycobacteria. A.  Mycobacterial cell walls are 
unusual in that the cytoplasmic membrane (CM) is surrounded by a peptidoglycan layer (PG) to which a 
network of arabinogalactan (AG) is covalently attached.  A mycobacterial outer membrane consisting of 
mycolic acids (MA) and free lipids (FL) is covalently attached via an ester linkage of mycolic acids to 
arabinogalactan.  We propose that LysA – assisted by holins encoded by at least some of 
mycobacteriophages – perform an essential step in lysis involving degradation of the peptidoglycan layer, 
and the lysis is completed through LysB-mediated cleavage of the outer membrane from arabinogalactan. 
B.  Diagram illustrating LysB cleavage of the ester bond linking mycolic acids and arabinogalactan. 
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While removal of LysB function in mycobacterial Giles results in an apparently 

mild plaque phenotype that can be rescued by expression of D29 LysB, the problems in 

lysis are made more apparent by measuring changes in optical density of the culture, 

ATP release, and phage particle release. The ATP release by the Giles ΔlysA mutant is in 

contrast to its lysis defect as reflected in topical density measurements. A simple 

explanation for this observation is that the peptidoglycan layer — which most probably 

remains intact in the ΔlysA mutant infection — provides no barrier to ATP release at all, 

whereas both the cytoplasmic membrane and the mycobacterial outer membrane must be 

compromised for complete ATP release. Presumably, the cytoplasmic membrane is 

permeabilized through the action of a Giles holin (which has yet to be identified), and 

the differences observed between the ΔlysA and ΔlysB mutants are consistent with an 

attached mycobacterial outer membrane providing a significant barrier to ATP release. 

While it is difficult to eliminate the possibility of secondary effects of the deletion 

mutation in the ΔlysB mutant on expression of other phage genes (including a putative 

holin), the complementation studies (Fig. 3-6A) are consistent with loss of LysB 

function as the primary cause of the phenotypes observed. 

At this time it is unknown how LysB is localized to its substrate, and no signal 

peptide motifs have been identified (Gil et al., 2008).  It would be interesting to see if 

LysB activity is dependent on a mycobacteriophage holin, similar to endolysins of other 

bacteriophage and presumably the LysA proteins of mycobacteriophage.  However, few 

mycobacteriophage holins have been predicted bioinformatically, and even fewer 

functional studies have been conducted; Ms6 gp4, a predicted holin, was lethal when 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774421/figure/F6/
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over-expressed in E. coli (Garcia et al., 2002); and experiments in our lab indicate s a 

potential holin function for D29 gp11 (L. Marinelli and G. F. Hatfull, unpublished 

observations).   

The question arises as to whether phages Che12, Rosebush, Qyrzula and Myrna 

that lack lysB encode alternative enzymes performing analogous functions. These phages 

do not form a closely related group (Fig. B-2), although comparison of each with their 

closer phage relatives is informative.  For example, in Che12 the surrounding genes are 

syntenic with those in phages L5, D29, Pukovnik and Bxz2 and it appears as though 

Che12 has simply lost lysB (Fig. B-3A). The organizations in Rosebush and Qyrzula 

depart from their close relatives in the inclusion of a gene immediately downstream of 

lysA that is lacking in other Cluster B phages, all of which do encode LysB (Fig. B-3B).  

This predicted protein is small (178 aa) and is a distant relative of the D29 putative holin 

(gp11).  In Myrna, neither of the two orfs (244, 245) immediately downstream of lysA 

are related to any other mycobacteriophage proteins (Fig. B-3C).  Myrna gp244 does 

have similarity to the N-terminal segment of the Rhodococcus protein (RHA1_ro08121) 

that contains both peptidase and muramidase motifs in its C-terminus, and Myrna gp244 

may play a yet undefined role in lysis.  We also note that although Proprionobacterium 

acnes phage PA6 (Farrar et al., 2007) and Streptomyces phage R4 (our unpublished data) 

encode proteins with sequences similar to mycobacteriophage LysA proteins, neither 

encodes a LysB relative.  LysB thus appears to be restricted to those phages infecting 

hosts with mycolic acid outer membranes.    
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 The release of free mycolic acids from LysB-treated cell walls strongly suggests 

that mAGP is the substrate for the enzyme.  The cell wall preparations may contain 

additional lipid components, but other predominant mycolic acid-containing constituents 

– such as trehalaose dimycolate (TDM; cord factor) and trehalaose monomycolate 

(TMM) – are not cell wall linked and are not major components of the mAGP 

preparations (Besra, 1998; Brennan and Nikaido, 1995).  Preliminary data suggest that 

D29 LysB can also hydrolyze TDM (A. Ojha, K. Payne and G. F. Hatfull, unpublished 

observations), but it seems unlikely that this has physiological relevance for lysis 

because TDM is not covalently attached to mycobacterial cells.  We propose that 

cleavage of the mycobacterial outer membrane from the peptidoglycan-arabinogalactan 

layer is the primary role of LysB.  

The only known physiological circumstances in which free mycolic acids are 

released from mycobacterial cells is during maturation of M. tuberculosis biofilms (Ojha 

et al., 2008), although the source of biofilm mycolic acids is more likely to be TDM than 

mAGP (A. Ojha and G. F. Hatfull, unpublished observations).  While seven cutinase-like 

proteins (culps) encoded by M. tuberculosis have been expressed and characterized 

(West et al., 2009), they are not evidently related to LysB and have not yet been tested 

for mAGP hydrolysis.  Culp1 and Culp4 have optimal enzyme activity on short 

(butyrate) p-nitrophenyl substrates, and only Culp6 has significant activity on longer 

carbon chain substrates (West et al., 2009).  Also, the Culp4 homolog in M. smegmatis 

has been shown to have phospholipase A activity, which is not found in cutinases 
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(Parker et al., 2007).  It remains to be seen whether there are any host-encoded enzymes 

that share mycolylarabinogalactan esterase activity with LysB. 

The D29 LysB structure shows it is a member of the α/β hydrolase family with 

an α/β sandwich and an active site containing Ser, Asp and His.  The five closest related 

structures are all cutinases, although there is no greater than 21% amino acid sequence 

identity with any of them.  The LysB catalytic mechanism is expected to be similar to 

that for other serine-esterases, although the strong conservation of the GXP motif and its 

juxtaposition to the active site may play a critical role in its stabilization.  However, the 

D29 LysB also contains an unusual four-helix domain that projects from close to the 

active site and is lacking in other cutinase-like protein structures.  While the specific role 

of the large linker is not known, its absence in all other cutinase-like proteins and lipases 

and its proximity to the active site would suggest a role in binding of the D29 LysB 

substrate. This linker contributes to the generally larger size of LysB proteins (254-451 

residues) compared with other cutinases (~225 residues) (Carvalho et al., 1999; Longhi 

and Cambillau, 1999).  

Acquisition of lysB by mycobacteriophages throughout their evolution likely 

confers a substantial selective advantage over those without it by providing faster and 

more complete lysis. While considered more similar to Gram-positive bacteria, the 

existence of the mycobacterial outer membrane composed of mycolic acids and free 

lipids (Fig. 3-7A) presents a second barrier analogous to the outer membrane of Gram-

negative bacteria (Hoffmann et al., 2008; Zuber et al., 2008).  Phages that infect Gram-

negative bacteria have the help of spanin proteins and their Rz/Rz1counterparts (Berry et 
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al., 2008; Krupovic et al., 2008; Summer et al., 2007) to span the periplasmic space and 

link the inner and outer membrane, enhancing the completion of lysis.  We propose that 

mycobacteriophage have developed an alternative solution to compromise the 

mycobacterial outer membrane, by severing its linkage to the underlying 

arabinogalactan-peptidoglycan layer.   

Exogenously applied phage-encoded endolysins have been shown to have 

effective antimicrobial activity against Gram-positive bacterium pathogens including 

Streptococcus pneumoniae and Bacillus anthracis (Fischetti, 2008).  They are, however, 

ineffective against Gram-negative bacteria since the outer membrane blocks access to 

the peptidoglycan targets.  The mycobacteria are likely to be similarly intractable to 

exogenously added endolysins because of their mycolic acid-rich outer membrane.  

While we do not yet know whether mycobacteriophage LysB proteins can reach their 

mycolylarabinogalactan targets from the outside, this possibility raises the intriguing 

idea that mycobacterial pathogens such as M. tuberculosis may be rendered susceptible 

to endolysin treatment through co-treatment with LysA and LysB proteins.     

 

Experimental procedures 

Bacterial strains and growth 

M. smegmatis mc2155 and the recombineering strain containing pJV53 

expressing the Che9c genes 60 and 61 under an acetamide-inducible promoter have been 

described previously (Parish et al., 1997; Snapper et al., 1990; van Kessel and Hatfull, 

2007). All M. smegmatis strains were cultured in Middlebrook 7H9 medium or grown on 
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Middlebrook 7H10 agar supplemented with 10% Albumin Dextrose Complex (ADC), 

0.2% succinate, 0.05% Tween-80, 1 mM Ca2Cl, carbenicillin (50 μg/ml), cyclohexamide 

(10 μg/ml), and kanamycin (20 μg/ml) as required. E. coli was grown in LB 

supplemented with carbenicillin (50 μg/ml) and kanamycin (20 μg/ml) as needed, with 

E. coli GC5 cells (Stratagene) used for cloning and E. coli BL21(DE3) cells (Stratagene) 

for protein overexpression. 

 

Plasmid constructions 

Plasmids pET21a (Novagen), pLAM12, pJV53, and pNIT-1 have been 

previously described (Pandey et al., 2009; van Kessel and Hatfull, 2007). Plasmid 

pLAM3 was constructed by amplifying the D29 gene 12 (lysB) with primers bearing 

NdeI and HindIII restriction sites and cloning into pET21a to add a C-terminal His tag. 

To create the inducible D29B active site mutant (pKC20), the pLAM3 plasmid was 

subjected to site-directed mutagenesis using the QuikChange XL Site-Directed 

Mutagenesis Kit (Stratagene) to change Ser82 to Alanine. Plasmid pKMC2 was made by 

amplifying D29 lysB from pLAM3 with primers containing NdeI and NheI restriction 

sites and cloning this into pLAM12. Plasmid pKMC9 was constructed by amplifying 

D29 lysB with primers containing NdeI and HindIII restriction sites and cloning this into 

pNIT-1. Plasmids were purified using QIAprep Spin Miniprep Kit (QIAGEN). 

Oligonucleotides were supplied by Integrated DNA Technologies, Inc. and are listed in 

Table B-1. 
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Expression and purification 

E. coli BL21 λ(DE3) carrying plasmids pLAM3 or pKC20 (or vector pET21a) 

were grown to OD600 between 0.4-0.6 in L-Broth (LB) containing carbenicillin (50 

μg/ml) and induced with 1 mM IPTG for 4 hours. Cells were resuspended in TWEB (50 

mM Tris-HCl pH 8.0, 300 mM NaCl), sonicated, centrifuged, and the clarified lysates 

passed over TALON Co2+ resin (Clonetech). The resin was washed sequentially with 

TWEB containing 10 mM and 20 mM imidazole, and bound protein eluted with five 

volumes of 120 mM imidazole. Eluted fractions were concentrated using Vivaspin 

concentration columns (molecular weight cutoff 10 kDa; Sartorius Inc.) followed by 

dialysis against storage buffer (50 mM Tris pH 8.0, 50 mM NaCl, 50% glycerol) and 

stored at −20°C. 

D29 LysB was purified for crystallization similarly. E. coli BL21 λ(DE3)pLAM3 

cells were induced for 18 hours at 25°C, pelleted, resuspended in Buffer A (50 mM Tris, 

500 mM NaCl, 5 mM imidazole, pH 8) and disrupted in a French pressure cell three 

times at 10,000 psi for 3 passages. The cell lysate was cleared by centrifugation at 

15,000 rpm for 30 min and applied to a 5 ml HisTrap FF column (GE Healthcare, 

Piscataway, NJ), and eluted with a linear gradient to 100% Buffer B (50 mM Tris, 500 

mM NaCl, 500 mM imidazole, pH 8). Fractions were pooled and dialyzed against buffer 

containing 20 mM Tris, 50 mM NaCl, pH 8. D29 LysB was concentrated to at least 10 

mg/ml. 

 

Zymogram assays
 
             Zymograms were performed as described previously (Piuri and Hatfull, 2006) by 
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incorporation of 0.2% lyophilized Micrococcus luteus cells as a source of peptidoglycan 

into the gel matrix. Zymograms were developed by renaturation overnight at 37°C in 25 

mM Tris (pH 7.5), 1% Triton X-100, and 0.1 mM ZnSO4, stained with 0.5% methylene 

blue with 0.01% KOH before destaining with water. 

 

Lipolytic enzyme assays 

Enzymatic assays for lipolytic activity were adapted from those described 

previously (Gilham and Lehner, 2005). One milliliter of p-nitrophenyl substrates (50 

μM) (Sigma Inc.) were incubated with 1 μg of D29 LysB, D29 LysB S82A, lipase 

(Pseudomonas fluorescens, Sigma), or 5 μl of a mock purified sample (derived from 

pET21a containing cells) in buffer (20 mM Tris-HCl pH 8.0, 100 mM NaCl, 0.1% 

Triton X-100) at room temperature for 30 minutes. Release of p-nitrophenol was 

determined by measuring absorbance at 420 nm (A420). 

 

Assays for hydrolysis of M. smegmatis mAGP 

Mycolyl-arabinogalactan-peptidoglycan was isolated from M. smegmatis as 

described previously (Besra, 1998). M. smegmatis cells were grown, collected, and 

washed three times in phosphate buffered saline (PBS; pH 7.4), and resuspended in 

PBS+2% Triton X-100 (PBSX). Cells were disrupted by extensive sonication, 

centrifuged to collect the insoluble cell wall fraction, resuspended in PBSX and agitated 

overnight at 4°C. After centrifugation the pellet was resuspended in PBS+2% SDS and 
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incubated at 100°C for 60 minutes; this was done three times. After three rounds of 

extraction, the pellet was washed once each with H2O, 80% acetone in H2O, and 

acetone. Following evaporation of the acetone, the mAGP-enriched cell wall material 

(mAGP) was resuspended in PBS+0.1% Triton X-100 (final concentration 10 mg/ml) 

and frozen aliquots stored at −80°C. 

The mAGP material was chemically hydrolyzed by addition of an equal volume 

of 15% tetrabutylammonium (TBAH) to 1 mg mAGP resuspended in PBS+0.1% Triton 

X-100 and incubated at 100°C overnight. Enzymatic assays were performed by 

incubation of 1 mg mAGP in 100 μl with varying concentrations of protein at 37°C. 

TBAH- and enzyme-treated samples were prepared for analysis by thin layer 

chromatography by addition of an equal volume of dichloromethane and incubation for 

15 minutes at room temperature. The lipid-rich lower dichloromethane layer was 

removed, extracted once with 0.25 M HCl and once with water, and lipids collected by 

evaporation. Samples were resuspended in dichloromethane, spotted onto silica-

aluminum TLC plates, and separated by chromatography in chloroform/methanol (97:3); 

lipids were identified by spraying with 5% molybdophosphoric acid (in ethanol) and 

charring for 15 minutes at 110°C. 

Methyl-esterification of lipids was performed by resuspension of enzyme 

reaction products in 15% TBAH, addition of an equal volume of dicholoromethane and 

1/10 volume iodomethane. Reactions were incubated with shaking at room temperature 

for 15 minutes and the lower dichloromethane layer recovered and extracted with HCl 
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and water as described above. Lipids were separated by TLC in 95:5 petroleum 

ether/ethyl ether and recognized by charring as above. 

 

Bacteriophage recombineering of electroporated DNA 

A lysB deletion mutant of phage Giles was constructed as described previously 

(Marinelli et al., 2008). The targeting substrate was generated using a 100 bp 

oligonucleotide with 50 bp of homology upstream and downstream of the deletion site, 

which was then expanded to a 200 bp dsDNA by PCR. The deletion was deigned to 

remove 1,146 bp between Giles genome coordinates 28,384 and 29,529. Phage Giles 

DNA (350 ng) was co-electroporated with 200 ng of the 200 bp substrate into induced 

electrocompetent M. smegmatis mc2155 pJV53 cells, recovered at 37°C for 2 hours and 

plated on top agar lawns with M. smegmatis mc2155 pKMC2 cells in the presence of 

0.2% acetamide; approximately 100 plaques were recovered. Individual plaques were 

picked into 100 μl phage buffer (10 mM Tris-HCl, pH 7.5; 10 mM MgSO4, 68.5 mM 

NaCl; 1mM CaCl2) and analyzed by Deletion Amplification Detection Assay (DADA)-

PCR (Marinelli et al., 2008)  using 1 μl sample and primers GilesB-DiagR3 and GilesB-

DADAPCR3 (Table B-1). Primary plaques containing both wild-type and mutant alleles 

were diluted and plated with 300 μl of M. smegmatis cells containing pLAM12 or 

pKMC2, either with or without acetamide inducer. To test for viability of the mutant, 

lysates from plates containing approximately 600 plaques were harvested and tested by 

PCR with primers GilesB-DiagR3 and GilesB-DiagF. Individual plaques from the 

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2774421/?tool=pubmed#SD1
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secondary plating were picked and tested using the same two primers. A mutant 

derivative was plaque purified and the sequence confirmed by DNA sequencing. 

To test for complementation of the Giles ΔlysB small plaque phenotype, mc2155 

cells containing pKMC9 or pNIT-1 vector control were grown to OD600 0.6 and 10 μl of 

dilutions of either wild-type Giles or GilesΔlysB phage containing ~102 pfu were added 

to 500 μl of cells, adsorbed for 30 minutes at room temperature, and plated as top agar 

lawns in 0.35% MBTA with 1 mM CaCl2 on 7H10 plates with 0 to 0.4% ε-caprolactam. 

 

Lysis assays 

M. smegmatis cells grown in 7H9 supplemented with ADC, carbenicillin, 

cyclohexamide, and calcium were grown to OD600 0.3-1.0. For the ATP release assay, 

cells were diluted to OD600 = 0.03, and infected with phage particles at an m.o.i. of 10. 

After adsorption for 30 min, cultures were shaken at 37°C, and 100 μl samples removed 

at different times. ATP release was measured by addition of 100 μl of ENLITEN 

rLuciferase/Luciferin reagent (Promega), and luminescence recorded for a 10 second 

interval in a Monolight 2010 luminometer. For the OD assay, cells were diluted to an 

OD600 of 0.25 and infected with phage particles at an m.o.i. of 10. After adsorption for 

30 min, cultures were shaken at 37°C and 1 ml samples removed at different times. OD 

was measured at 600 nm using a Beckman Coulter DU 530 Spectrophotometer. 

To determine the number of phage released into the supernatant or retained in 

unlysed cells, M. smegmatis cells were grown as above and diluted to an OD600 of 0.25. 

These were infected at an m.o.i. of 0.1 with adsorption for 30 min followed by 
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incubation with shaking at 37°C. One milliliter samples were removed at different times 

and separated by centrifugation into supernatant and pellet fractions. The pellet was 

resuspended in 1 ml phage buffer and sonicated. Both pellet and supernatant were 

serially diluted and 5 ul samples were spotted onto top agar lawns containing M. 

smegmatis in 0.35% MBTA with 1 mM CaCl2 on 7H10 plates. 

 

Crystallization and structure determination 

Purified D29 LysB at 10 mg/ml concentration was used to screen a large number 

of commercially available crystallization conditions by vapor diffusion method. After 

optimization upon the hit condition in the initial screen, diffraction quality crystals were 

obtained with 2 mg/ml protein in 50 mM Tris pH 8, 20% PEG1000, 100 mM Ca(OAc)2. 

The best crystals grew in 4 days and were flash frozen in mother liquor with 25% 

glycerol, and then stored in liquid nitrogen. Data sets were collected with a Rigaku 

MM007HF generator with a Bruker Smart 6000 CCD detector, and with synchrotron 

beamlines at the Advanced Photon Source (APS 23-ID), Argonne National Laboratory, 

Chicago. The data were processed with HKL2000 and the anisotropic scaling was 

further performed on the diffraction anisotropy server (Strong et al., 2006). 

The initial structure was solved by SIRAS combining the native crystal with an 

iodine derivative obtained by quick soaking of the crystal in the cryo with 0.5 M NaI for 

2 min. The model was refined against the native dataset iteratively until the R/Rfree 

reached 0.205/0.252 at 2.0 Å. The iodine sites were found with Shelxd/e program. The 

phasing and refinement of the protein structure were carried out with the Phenix 
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package. The model was built in Coot. 20.3 PyMol was used for structure analysis and 

rendering. 

 

Research history and future direction 

When we began this collaboration with the Hatfull lab on mycobateriophage 

lysine, very little was known about Lysin B. There were no reference papers on it, and 

Mrs. Kimberly Payne was still Miss Kim Clemens. In fact, D29B was just one of several 

clones with a collection of Lysin A genes from the Hatfull lab including D29A, Che8A, 

CorndogA, and Bxz1A. In contrast to the lysine A genes, lysin B is unique to the 

mycobacteriophage. Bioinformatics studies were intriguing, but confusing. Initial hits in 

the crystallization screens gave us a good starting point. Although there was no 

homologous structure to use as a template for molecular replacement, and the 

selenomethione protein did not result in diffractable crystals, the phase problem was 

overcome by the iodide derivative data.  

Of the known structures the most structurally similar proteins belonged to the 

cutinases (Table 3-2). However, the additional helix bundle in the linker domain 

(Glu178-Arg231) constrains the active site into a small cavity instead of an open surface, 

though the position of the active triad (Ser82-Asp166-His240) is well conserved.  When 

the D29 LysB structure is aligned to the Fusarium solani cutinase structure, which 

includes a covalently-linked n-undecanylphosphonate methyl ester inhibitor, the linker 

domain occupies the general position where the acyl chain of the substrate resides (Fig. 

3-8) (Longhi et al., 1996).  The loop (Arg231-Lys237) connecting the linker domain 



 100 

back to the α/β sandwich has poorly defined electron density, which indicates the high 

flexibility of this region. We speculate that it serves as a hinge, and the linker domain 

may move like a lid (Derewenda et al., 1992). 

 

 

 

Figure 3-8. Conflict between the linker domain and the putative substrate acyl chain. 

The D29 LysB is in blue ribbon, and the Fusarium solani cutinase is in magenta (pdb: 1XZM). The 
surface of the D29 LysB linker domain is shown in mesh. This image was made with Chimera (Pettersen 
et al., 2004). 
 

To catch D29 LysB in action, we tried soaking the protein crystals with various 

substrates, such as the artificial p-nitrophenyl substrates of the lipolytic assay and the 

mAGP extracted from the mycobacterium. These efforts resulted in either cracked 

crystals or no substrate electron density. This may corroborate our speculation of the 

large movement of the linker domain involved in substrate recognition and binding, 
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although further experiments are required to prove this. Our attempts at co-

crystallization have not yet yielded suitable crystals. 

It may be possible to analyze D29 LysB by NMR as the size of the protein falls 

in the practical range for NMR. Future structural research on D29 LysB may be 

accomplished using this technique.  
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CHAPTER IV 

PREDICTION OF PLASMODIUM L4 STRUCTURE REVEALS 

ANTIMALARIAL DRUG MECHANISM*  

 

Summary 

Azithromycin (AZ), a broad-spectrum antibacterial macrolide that inhibits 

protein synthesis, also manifests reasonable efficacy as an antimalarial. Its mode of 

action against malarial parasites, however, has remained undefined. Our in vitro 

investigations with the human malarial parasite Plasmodium falciparum document a 

remarkable increase in AZ potency when exposure is prolonged from one to two 

generations of intraerythrocytic growth, with AZ producing 50% inhibition of parasite 

growth at concentrations in the mid to low nanomolar range. In our culture-adapted 

lines, AZ displayed no synergy with chloroquine (CQ), amodiaquine, or artesunate. AZ 

activity was also unaffected by mutations in the pfcrt (P. falciparum chloroquine 

resistance transporter) or pfmdr1 (P. falciparum multidrug resistance-1) drug resistance 

loci, as determined using transgenic lines. We have selected mutant, AZ-resistant 7G8 

and Dd2 parasite lines. In the AZ-resistant 7G8 line, the bacterial-like apicoplast large 

subunit ribosomal RNA harbored a U438C mutation in domain I. Both AZ-resistant lines  

____________ 
*Reprinted with permission from ―In vitro efficacy, resistance selection, and structural 
modeling studies implicate the malarial parasite apicoplast as the target of azithromycin‖ 
by Sidhu, A. B., Sun, Q., Nkrumah, L. J., Dunne, M. W., Sacchettini, J. C., Fidock, D. 
A., 2007. J. Biol. Chem, 282, 2494-2504, Copyright [2011] by American Society for 
Biochemistry and Molecular Biology. David Fidock’s lab performed the genetics and 
pharmacology experiments. Sun, Q. did the structural biology studies. 
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revealed a G76V mutation in a conserved region of the apicoplast-encoded P. falciparum 

ribosomal protein L4 (PfRpl4). This protein is predicted to associate with the nuclear 

genome-encoded P. falciparum ribosomal protein L22 (PfRpl22) and the large subunit 

rRNA to form the 50 S ribosome polypeptide exit tunnel that can be occupied by AZ. 

The PfRpl22 sequence remained unchanged. Molecular modeling of mutant PfRpl4 with 

AZ suggests an altered orientation of the L75 side chain that could preclude AZ binding. 

These data imply that AZ acts on the apicoplast bacterial-like translation machinery and 

identify Pfrpl4 as a potential marker of resistance.  

 

Introduction 

Licensed antibiotics with antimalarial activity offer considerable promise as 

suitable partners for novel combination therapies directed against drug-resistant 

Plasmodium falciparum infections. Clinical studies have demonstrated good clinical 

cure rates with treatments that use tetracycline, its more potent derivative doxycyline, or 

clindamycin (CLD), in combination with fast-acting antimalarials such as quinine 

(Baird, 2005; Lell and Kremsner, 2002; White, 1996). Whereas the mode of action of 

these antibiotics has until recently remained elusive for Plasmodium, against bacteria 

they act by binding to the 70S ribosome (comprised of the 50S and 30S subunits), 

thereby inhibiting protein synthesis. Tetracycline and doxycycline bind to the 30S 

subunit (comprising the 16S rRNA and ribosomal proteins), whereas clindamycin binds 

to the 50S subunit (comprising the 23S rRNA, the 5S rRNA, and ribosomal proteins 

including L4 and L22) (Poehlsgaard and Douthwaite, 2005). The World Health 
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Organization recommends doxycycline as malaria prophylaxis for travelers to endemic 

areas.  Tetracycline and doxycycline, however, manifest toxicity in children below the 

age of eight and in pregnant women, effectively precluding their use in the most 

important malaria patient populations (Kain et al., 2001).  

Another antibiotic that appears particularly promising for antimalarial 

combination therapy is azithromycin (AZ), a 15-membered azalide that has been broadly 

used for the treatment of streptococcal, staphylococcal, chlamydial, and gonorrheal 

infections. Notably, AZ displays a good safety profile for young children and pregnant 

women (Girard et al., 1987). This semisynthetic, second-generation antibiotic was 

derived from its parent compound erythromycin by introducing a methyl-substituted 

nitrogen group at position C9 of the lactone ring, resulting in several improved features. 

These include a broader spectrum of activity, more favorable pharmacodynamics, and a 

longer elimination half-life. This extended half-life has been attributed to AZ 

concentrating inside lysosomes in phagocytic cells, as a result of protonation of its two 

basic amine groups (Retsema et al., 1987), followed by AZ leaching out into the 

bloodstream over a period of several days to a week. This provides effective therapeutic 

coverage with AZ for several days post completion of treatment.  

Against bacteria, AZ acts by binding reversibly to the 50S ribosomal subunit, in 

the vicinity of the peptidyltransferase center in domain V and the entrance of the 

polypeptide tunnel (Poehlsgaard and Douthwaite, 2005). This binding site is formed by 

the association of domains II and V of the bacterial 23S rRNA and includes the 

ribosomal proteins L4 and L22 that line the protein exit tunnel (Ban et al., 1999; 
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Douthwaite et al., 2000; Gabashvili et al., 2001). AZ binding interferes with 

transpeptidation/translocation of nascent polypeptides exiting the polypeptide tunnel, 

leading to premature detachment of incomplete peptide chains and subsequent cell death 

(Hansen et al., 2002; Retsema and Fu, 2001). 

AZ activity against malarial parasites was initially discovered by in vitro testing 

of chloroquine (CQ)-sensitive and CQ-resistant P. falciparum lines (Gingras and Jensen, 

1992, 1993). Further studies revealed a slow onset of parasite killing, similar to 

tetracycline, doxycycline, and clindamycin (Yeo and Rieckmann, 1995). In vitro 

screening for potential drug combinations was suggestive of additive to synergistic 

interactions with AZ-CQ as well as AZ-quinine combinations in some CQ-resistant P. 

falciparum strains (Ohrt et al., 2002). Against CQ-sensitive strains, the effect was 

additive. In vivo studies, initially conducted in mice infected with blood stage P. berghei 

parasites, also showed good treatment efficacy with AZ monotherapy. This efficacy was 

enhanced by combining AZ with the fast-acting blood schizonticidal agents CQ, quinine, 

artemisinin or halofantrine (Andersen et al., 1995; Gingras and Jensen, 1993). AZ 

curative blood schizonticidal efficacy was also confirmed in Aotus monkeys infected 

with CQ-resistant P. falciparum (Andersen et al., 1995). Evidence that AZ was clinically 

effective in treating P. falciparum malaria in humans came from pilot studies showing 

that AZ monotherapy was an effective prophylactic agent (Anderson et al., 1995; 

Kuschner et al., 1994). A more recent treatment trial in India reported close to 100% 

cure rates in patients treated with AZ plus CQ, with this combination proving to be far 

more effective than monotherapy with the individual agents (Dunne et al., 2005a). High 
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levels of treatment efficacy were also observed in a recent trial from Thailand that 

studied regimes of combing AZ with quinine or artesunate (Noedl et al., 2006). A 

monotherapy trial in India also found AZ to be  well tolerated and highly effective in 

treating Plasmodium vivax malaria (Dunne et al., 2005b).  

The proven antimalarial efficacy observed with AZ has made it important to 

define its mode of action against malarial parasites. One pressing question is whether 

AZ, a weak base, acts inside the parasite digestive vacuole (DV), a lysosomal-like acidic 

compartment (pH 5.0 – 5.4) where CQ and other weak base 4-aminoquinolines 

concentrate and act by interfering with heme detoxification (Banerjee and Goldberg, 

2001; Foley and Tilley, 1998; O'Neill et al., 1998). Such an activity might account for 

earlier reports of AZ-CQ in vitro synergy (Ohrt et al., 2002). Another possibility is that 

AZ acts by inhibiting the bacterial-like protein synthesis machinery present in the 

Plasmodium apicoplast, an organelle of cyanobacterial origin that has been shown in the 

related Apicomplexan parasite Toxoplasma gondii to be indispensable for parasite 

growth (Fichera and Roos, 1997; Pfefferkorn and Borotz, 1994; Ralph et al., 2004). To 

address these questions, we have investigated the efficacy of AZ alone or in combination 

with fast-acting antimalarials, the effect on AZ susceptibility of point mutations in DV 

transmembrane transporters, the selection of AZ-resistant parasite lines, and the 

molecular mechanisms that can casuse AZ resistance. Our results directly implicate the 

apicoplast 50S ribosomal subunit as the target of AZ in P. falciparum.  
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Experimental procedures 

Parasite culture and in vitro antimalarial drug assays 

P. falciparum parasites were cultured in vitro in human red blood cells as 

described (Fidock et al., 1998). Antimalarial susceptibilities were measured in 96-well 

plates over 48 or 96 h of exposure with an initial parasitemia of 0.5 or 0.2% 

synchronized ring stage parasites, respectively. Drug IC50 values (producing 50% 

inhibition of [3H]hypoxanthine uptake) were derived by linear regression from the dose-

response curves (Desjardins et al., 1979; Fidock et al., 1998). In the 48 h drug assays, 

parasites were exposed to drug for 30 h, and 0.5 μCi of radiolabeled [
3H]hypoxanthine 

was added to each well for the last 18 h. In the 96 h drug assays, media was replaced 

after 48 and 72 h, and [3H]hypoxanthine was added at the 72 h time point (0.5 μCi/well). 

Media replacements contained appropriate amounts of drug to ensure that drug 

concentrations remained constant in each well throughout the duration of the assay. To 

test the interaction of AZ with other drugs, each drug was tested alone and in 

combination at fixed ratios of its IC50 value, as calculated separately for each assay (AZ, 

test drug ratios of 0:1, 1:3, 1:5, 1:1, 3:1, 5:1 and 1:0). Fractional IC50 (FIC50) values from 

96 h assays were calculated as previously described (Ohrt et al., 1997) and used to plot 

isobolograms. Two-tailed unpaired Student's t tests were performed for statistical 

comparisons. AZ dihydrate (CP-62,993-03) was obtained from Pfizer. Thiostrepton, 

tetracycline, doxycycline, and erythromycin were purchased from Calbiochem, whereas 

triclosan and CQ were purchased from Sigma.  

http://www.jbc.org/cgi/redirect-inline?ad=Calbiochem
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Selection of AZ-resistant P. falciparum lines 

P. falciparum lines were selected for resistance to AZ using the following 

regime. First, we exposed Dd2 and 7G8 parasites (5 × 1010 each) to 38 and 115 nM AZ, 

respectively (i.e., 30 and 90 ng/ml of AZ dihydrate), for 3 days with twice daily feeding. 

We then increased the drug concentration to 380 nM for both lines and maintained this 

level for 4 days. For the following 15 days, Dd2 and 7G8 parasite lines were again 

maintained at 38 and 115 nM AZ, respectively. Giemsa-stained thin blood films were 

examined every 2 to 3 days to check for viable asexual-stage parasites. Once a week, 

30–40% of the culture was replaced with freshly drawn red blood cells. For both lines, 

AZ-resistant ring stage parasites were observed by day 21. Once the parasitemias 

reached 2–3%, parasites were phenotypically characterized for their drug response 

profiles using [3H]hypoxanthine incorporation assays. Dd2 and 7G8 AZ-resistant 

parasite lines (termed AZ-RDd2 and AZ-R7G8, respectively) were subsequently cloned by 

limiting dilution (Goodyer and Taraschi, 1997) and cultured in the presence of 640 and 

1280 nM AZ, respectively.  

 

DNA constructs and sequencing 

A 1.0 kb DNA fragment encompassing the open reading frame of the P. 

falciparum apicoplast-encoded ortholog of the rpl4 ribosomal protein gene (denoted 

Pfrpl4; GenBank™ accession number X95276) was PCR amplified from the wild-type 

and AZ-resistant parasite lines using primers p1083 (5′-

AATGGTAACATATCTATTTTGGGAATAGA) and p1084 (5′-



 109 

AATTTCCACCTCCTTTATTTAATAGTA). This fragment was used in nested PCR 

with internal primers p1112 (5′-TTatcgatAATATTATTATTTTAAATAATAATACA; 

ClaI site in lowercase) and p1111 (5′-

AcgtacgAATTAAAAATATTAAATAATTATACATAAT (BsiWI site in lowercase) to 

amplify a full-length 0.6 kb coding sequence fragment lacking only the ATG start and 

TAA stop codons. Amplified products were cloned into pCR2.1-TOPO vector 

(Invitrogen) and sequenced using T7 and M13 reverse primers (Invitrogen).  

For the transfection studies, sequence-verified Pfrpl4 inserts were subcloned into 

the ClaI and BsiWI restriction sites of the expression plasmid pLN-ACP-V5. This 

plasmid, based on pLN (Nkrumah et al., 2006), contains a 180 bp sequence encoding the 

N-terminal bipartite leader sequence of the fatty acid synthase acyl-carrier protein 

(ACP), used to target proteins to the apicoplast (Waller et al., 2000), as well as a 3′ 

sequence encoding a C-terminal V5 epitope tag (GKPIPNPLLGLDST). The final 

construct, termed pLN-ACP-Pfrpl4-V5 (Fig. C-1), contained mutant or wild-type Pfrpl4 

fused at its 5′ end to the ACP leader sequence and at its 3′ end to the V5 tag. This fusion 

gene is regulated by a 1.0 kb calmodulin 5′-untranslated region and a 0.8 kb hsp86 3′-

untranslated region. Related constructs were made that replaced the 3′ V5 tag with a 

GFP-Mut2 (green fluorescent protein) sequence, creating the pLN-ACP-Pfrpl4-GFP 

plasmid. From these plasmids, we derived pLN-SP-Pfrpl4-V5 and pLN-SP-Pfrpl4-GFP 

by replacing the full-length ACP apicoplast targeting sequence with a 57 bp signal 

peptide (SP) sequence from the ACP gene. All of these constructs were also made with a 

0.9 kb hsp86 5′-untranslated region fragment in place of the calmodulin 5′-untranslated 

http://www.jbc.org/cgi/redirect-inline?ad=Invitrogen
http://www.jbc.org/cgi/redirect-inline?ad=Invitrogen


 110 

region. This resulted in 16 constructs, which were all transfected into Dd2 parasites. The 

calmodulin promoter series of constructs were also transfected into 3D7 and GC03 

parasites. Transfections were carried out as previously described (Fidock and Wellems, 

1997) and recombinant lines were selected using 2.5 μg/ml blasticidin hydrochloride.  

The 0.9 kb full-length P. falciparum nuclear genome-encoded ortholog of the 

rpl22 ribosomal protein gene (Pfrpl22; PlasmoDB ID number PF14_0642) was PCR 

amplified using p1429 (5′-TAATGATATTGCGCAAGTGTTGATTTGT) and p1432 

(5′-GTACATAAATATATACACATTTAATTTTTAACAAACGGA). The apicoplast 

large subunit (LSU) rRNA gene (GenBank accession number X95275) was PCR 

amplified as a 2.9 kb fragment with primers p986 (5′-

GCGAAATAGAGCATAAGGAAAGTTCG) and p800 (5′-

AGCTAATGGTGAGATTTGAACT). PCR fragments were gel purified and fully 

sequenced on both strands using internal primers.  

 

Structural modeling 

Sequences and structures of ribosomal L4 proteins were retrieved from the RCSB 

Protein Data Bank. Multiple sequence alignments were carried out at the SDSC 

workbench using CLUSTAL W (Thompson et al., 1994). The model of the PfRpl4 

conserved loop from Lys57 to Pro97 was built with MODELLER (Sali and Blundell, 

1993). As templates, we used the Escherichia coli and Deinococcus radiodurans L4 

proteins, which share 39 and 32% sequence identity with PfRpl4 in this loop region. The 

AZ molecule in the D. radiodurans ribosome structure (Schlunzen et al., 2003) also 
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served as a ligand for modeling. The loop of the PfRpl4 G76V mutant was also built 

using MODELLER with all three wild-type protein structures as templates. The quality 

of these models was evaluated with DOPE potential (Melo et al., 2002), and their 

superimposition and rendering were carried out with PyMol.  

 

Results 

AZ displays extraordinary increases in potency against P. falciparum strains exposed for 

a second generation of growth as compared with thiostrepton, triclosan, and CQ  

A previous study with two P. falciparum lines observed an 80- to 220-fold 

increased potency when the duration of AZ exposure was prolonged from 48 h to 96 h 

(Yeo and Rieckmann, 1995). We extended this observation to other multidrug resistant 

and drug sensitive lines and compared the effect to that of other antimalarial agents that 

share similar modes of action or are in clinical use. The lines chosen were Dd2 

(Indochina; resistant to CQ, QN, pyrimethamine and sulfadoxine), 7G8 (Brazil; resistant 

to CQ), and GC03 (a CQ-sensitive progeny of the HB3  Dd2 genetic cross (Wellems et 

al., 1990)). Comparative antimalarial agents included thiostrepton (which targets the 

GTPase site of the apicoplast LSU rRNA (McConkey et al., 1997; Rogers et al., 1997)); 

triclosan (a topical antimicrobial that inhibits enoyl ACP reductase, a component of the 

fatty acid type II biosynthesis pathway in the Plasmodium apicoplast (Perozzo et al., 

2002; Waller et al., 1998)), and CQ (which binds to heme moieties in the parasite DV 

and prevents their detoxification (Uhlemann et al., 2005)). A comparative profile of 

responses to each compound for these parasite lines is presented as IC50 values in Figure 
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4-1. After 48 h, Dd2, 7G8, and GCO3 displayed AZ IC50 values of 3.5, 15.7 and 18.1 

µM, respectively, whereas after 96 h these values decreased to 103, 190 and 77 nM, 

respectively (Table C-1). This translated into a substantial 34-, 83-, and 234-fold 

increase in AZ potency resulting from a second generation of parasite exposure. In 

comparison, these lines had thiostrepton IC50 values of 377, 521, and 917 nM, 

respectively, after 96 h, corresponding to more modest 4.5-, 1.3-, and 2.5-fold increases 

in susceptibility. In 96 h assays with these same lines, the triclosan IC50 values were 

4186, 424 and 1526 nM, and CQ IC50 values were 134, 113, and 24 nM, respectively.  

This corresponded to 1.0-2.0 fold increases in triclosan or CQ susceptibility. These 

results indicate that AZ becomes a highly active antimalarial that manifests its potency 

after a second generation of parasite intraerythrocytic growth. This increase in potency 

far exceeds other agents that also presumably target apicoplast pathways, including in 

the case of thiostrepton presumably the same ribosomal subunit involved in protein 

synthesis.  
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Figure 4-1. Antimalarial activity of AZ, thiostrepton (TS), triclosan (TCN), and CQ 

 against P. falciparum Dd2, 7G8 and GCO3 lines. 

The data represent the mean+SEM IC50 values calculated from at least five independent [3H]-hypoxanthine 
drug assays involving drug exposure for either 48 h or 96 h (corresponding to one or two generations of 
the parasite’s asexual blood stage cycle). The fold increases in parasite sensitivity to these compounds 

from 48 h to 96 h are indicated. Note that a 2-segment Y-axis is represented for the AZ data to adequately 
present the wide range of values.   

 

AZ is not synergistic with CQ, amodiaquine, or artesunate 

To investigate the antimalarial activity of AZ in combination with CQ, 96 h 

combination drug assays were performed using the CQ-resistant P. falciparum lines 

Dd2, 7G8, and 3BA6 (the latter is a CQ-resistant progeny of the HB3 × Dd2 cross). 

From these, FIC50 values were determined and isobolograms were derived and plotted. 

As illustrated in Figure 4-2, this combination appeared essentially additive for Dd2 

(mean FIC50 value: 1.39, 95% confidence interval (CI), 1.10–1.69) and 3BA6 (mean 
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FIC50 value: 1.38, 95% CI, 1.22–1.55) and was also additive for 7G8 (mean FIC50 value: 

1.05, 95% CI, 1.02–1.08).  

 

 

Figure 4-2. Isobologram plots of AZ plus CQ tested against P. falciparum culture-adapted 

lines. FIC50 values were determined for AZ and CQ tested at different concentration ratios (0:1, 
1:3, 1:5, 1:1, 3:1, 5:1, and 1:0). Values for the Dd2, 7G8, and 3BA6 lines were calculated from 96 
h assays, whereas for the TM90C6A and TM90C6B lines these were calculated from 72 h assays. 
For each line, isobolograms were performed at least 5–7 times for each drug combination. 

 

We also assayed the TM90C6A and TM90C6B Thai isolates that have been more 

recently adapted to in vitro culture (Looareesuwan et al., 1996). AZ-CQ combination 

assays performed with these lines also found no evidence for synergy (TM90C6A mean 
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FIC50 value, 1.35, 95% CI, 1.25–1.45; TM90C6B mean FIC50 value, 1.15, 95% CI, 

1.04–1.25; Fig. 4-2).  

In view of the decline of CQ as a first-line antimalarial and the increasing interest 

in the use of amodiaquine or artesunate as alternative antimalarials (notably for 

combination therapy), we also assayed AZ-amodiaquine and AZ-artesunate 

combinations with the drug-resistant Dd2 and 7G8 lines. In 96 h combination assays, 

mean FIC50 values for AZ-amodiaquine were 1.28 (95% CI, 1.01–1.56) and 1.23 (95% 

CI, 0.87–1.58), whereas mean FIC50 values for AZ-artesunate were 1.62 (95% CI, 1.02–

2.22) and 1.34 (95% CI, 1.14–1.54) against Dd2 and 7G8 parasite lines, respectively 

(data not shown). Thus, these assays found no evidence of in vitro synergy between AZ 

and either of these drugs.  

 

Parasite susceptibility to AZ is not influenced by mutations in the DV transmembrane 

proteins PfCRT and PfMDR1  

We assessed whether P. falciparum susceptibility to AZ in vitro could be 

influenced by point mutations in the DV transmembrane proteins PfCRT or PfMDR1 

(the latter is also known as Pgh1). This was for several reasons. First, genetic studies 

have demonstrated that mutant forms of these proteins can affect parasite in vitro 

susceptibility to a wide range of antimalarials, including CQ, quinine, mefloquine, 

halofantrine, and the anti-influenzal agent amantadine (Cooper et al., 2002; Fidock et al., 

2000; Johnson et al., 2004; Reed et al., 2000; Sidhu et al., 2005; Sidhu et al., 2002; 

Sidhu et al., 2006). Second, there is a published report of AZ-CQ synergism that raised 
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the possibility of their sharing a related mode of action (Ohrt et al., 2002). Third, AZ, 

like CQ, is a weak base that could be predicted to accumulate in the acidic P. falciparum 

DV (where CQ also accumulates and exerts its antimalarial property (Saliba et al., 

1998)). We thus took advantage of existing recombinant lines that had been genetically 

modified to express mutant forms of either protein (Lakshmanan et al., 2005; Sidhu et 

al., 2005; Sidhu et al., 2002) and tested these in 96 h assays with AZ. Results showed 

AZ IC50 values in the range of 48-194 nM for pfcrt or pfmdr1 genetically modified lines, 

with no significant changes observed between these lines and their parental or 

recombinant control lines (Figure 4-3; haplotypes and IC50 values are reported in Table 

C-2). These results demonstrate that mutations in these DV transporter proteins do not 

noticeably modulate parasite susceptibility to AZ.  

 

AZ-resistant P. falciparum lines can be selected in vitro 

To assess whether AZ resistance could be selected in vitro, we subjected Dd2 

and 7G8 parasites to moderate levels of AZ (see ―Experimental Procedures‖) and 

selected resistant lines. These lines, termed AZ-RDd2 and AZ-R7G8, were assayed for 

their degree of AZ resistance in 96 h assays, in parallel with their parental lines Dd2 and 

7G8. This produced AZ IC50 values of 1.9 and 4.0 µM, respectively, as compared with 

IC50 values of 124 and 228 nM, respectively, for the parental Dd2 and 7G8 lines, 

respectively, corresponding to highly significant (p < 0.001) 16- and 17-fold decreases in 

AZ susceptibility in the selected lines (Figure 4-4; values reported in Table C-3). The 
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fact that resistant lines could be rapidly selected highlights the need to survey for 

resistance in AZ-containing anti-malarial combination therapies. 

 

 

 

Figure 4-3. Response of pfcrt- and pfmdr1- genetically modified parasite lines to AZ 

The data represent the mean+SEM IC50 values from 96 h drug assays performed on six separate occasions 
in duplicate. The PfCRT and PfMDR1 haplotypes of these genetically modified parasite lines are shown in 
Supplemental Table C-2. The AZ IC50 values for Dd2, 7G8 and GCO3 lines were taken from assays 
performed and represented in Figure 4-1.  
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Figure 4-4. Phenotypic response profile of the AZ-selected parasite lines AZ-R
Dd2

 and AZ-R
7G8 

 Mean+SD IC50 values of AZ, erythromycin (ERY), tetracycline (TET), doxycycline (DOXY), 
thiostrepton (TS) and CQ were determined from 96 h drug assays on AZ-selected mutant lines and 
parental controls. Values were calculated from five independent assays performed in duplicate. IC50 
values were compared between AZ-RDd2 and AZ-R7G8 and their respective parental lines and Mann-
Whitney U-tests were used to assess for statistical significance (* p < 0.05; ** p < 0.01; *** p < 
0.001). Note that the AZ bar chart is represented using a 2-segment Y-axis to cover the data range.  

 



 119 

As noted earlier, AZ and its progenitor erythromycin are chemically very closely 

related, and cross-resistance between the two antibiotics has been reported in several 

bacterial species including Streptococcus pneumoniae, Haemophilus influenza, and 

Neisseria gonorrhoeae (Canu et al., 2002; Clark et al., 2002; Ng et al., 2002; Tait-

Kamradt et al., 2000a). Accordingly, we performed 96 h assays to investigate whether 

our P. falciparum AZ-resistant mutant lines would also be resistant to erythromycin. 

Indeed, this was observed but to a smaller extent, with significant (p < 0.01) 4- and 2-

fold increases in erythromycin IC50 values in AZ-RDd2 and AZ-R7G8, respectively  

(Figure 4-4).   

We also screened for possible changes in the parasite’s susceptibility to 

tetracycline, doxycycline, thiostrepton, and CQ. Tetracycline and doxycycline were 

chosen because of their clinical use in combination with quinine, primarily for the 

treatment of uncomplicated, CQ-resistant P. falciparum malaria. As compared with its 

parental line 7G8, the mutant AZ-R7G8 line displayed significant (p < 0.05) decreases in 

tetracycline, doxycycline, and thiostrepton IC50 values, indicating that AZ-R7G8 had 

become hypersensitive to these antimalarial drugs. No such change in susceptibility to 

these drugs was observed in the AZ-RDd2 line compared with Dd2. The CQ response was 

unchanged in both mutant AZ-resistant lines (Figure 4-4).  

To assess the stability of the AZ-resistant phenotype, both AZ-selected lines 

were maintained in the absence of drug pressure for 1 month and the AZ responses then 

retested. This revealed no alteration in IC50 values as compared with parasites 
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continuously cultured in the presence of AZ (IC50 values for AZ-RDd2 and AZ-R7G8 

were 2.1 and 4.2 µM in the absence of drug pressure versus 1.9 and 4.0 µM in the 

presence of sustained drug pressure, respectively, in 96 h assays). These findings 

indicated that the selected AZ-resistance phenotype was stable over time.  

 

Identification of mutations in the apicoplast LSU rRNA and Pfrpl4 genes in AZ-resistant 

P. falciparum 

To examine the molecular basis of AZ resistance, we PCR amplified and 

sequenced the apicoplast LSU rRNA (the P. falciparum ortholog of bacterial 23S rRNA) 

and Pfrpl4 genes as well as the nuclear Pfrpl22 gene (all are present as a single copy). 

We selected these potential targets based on their similarity with bacterial genes and 

published reports that mutations in these sequences can confer resistance to AZ and 

related macrolides in pathogenic bacteria (Gardner et al., 1993; Leclercq, 2002; Vester 

and Douthwaite, 2001; Wilson et al., 1996).  

In examining the P. falciparum LSU rRNA (which bears 70% identity to the E. 

coli 23S rRNA (Gardner et al., 1993)), we first focused on A1875, which corresponds to 

the E. coli A2058 nucleotide in the peptidyltransferase center of domain V, and A706, 

which is equivalent to E. coli A754 in domain II. Mutations in these positions can confer 

macrolide resistance in bacterial species including E. coli, Helicobacter pylori, S. 

pneumoniae, and Mycobacterium (Vester and Douthwaite, 2001). We also examined 

G1878 (which corresponds to E. coli G2061) as a mutation at this position can confer 

resistance to clindamycin and moderately decrease the susceptibility to AZ in T. gondii 
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(Camps et al., 2002). These nucleotides remained unchanged in our AZ-resistant P. 

falciparum lines, as did the entire domains II (hairpin loop 35) and V that in bacteria 

form a binding pocket for macrolides including AZ and that can also harbor other 

mutations conferring macrolide resistance (Ban et al., 1999; Hansen et al., 2002; 

Schlunzen et al., 2003; Tu et al., 2005; Yonath, 2005).  

Upon sequencing the full-length 2.7 kb apicoplast LSU rRNA gene, we identified 

a T to C mutation at nucleotide position 438 in the AZ-R7G8 line. No mutation was 

observed in this gene in AZ-RDd2. Sequence analysis confirmed that both the Dd2 and 

7G8 parental lines carried the same T438 nucleotide, indicating that the AZ-R7G8 line had 

acquired this novel LSU rRNA U438C mutation during the period of AZ selection. 

Intriguingly, this mutation was found in region I, away from domains II and V that 

contains the majority of the mutations associated with AZ resistance (Ban et al., 2000).  

During this study, we also identified a ribosomal rpl22 ortholog in P. falciparum 

(Pfrpl22; corresponding to PF14_0642 and originally annotated as encoding a 

hypothetical protein) based on the similarity of its encoded product with bacterial L22 

proteins and an apicolast-directed Rpl22 protein in T. gondii (see sequence alignment in 

Fig. C-2). Sequence analysis of the full-length Pfrpl22 gene from the AZ-RDd2, AZ-R7G8, 

Dd2, and 7G8 parasite lines showed no sequence change.  

Analysis of the Pfrpl4 gene, however, identified a single point mutation, 

resulting in a glycine (Gly, codon GGA) to valine (Val, codon GTA) substitution at 

codon 76 in both the AZ-RDd2 and AZ-R7G8 lines that was not present in either of the 

parental Dd2 or 7G8 lines. This G76V mutation is present in the conserved P. 
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falciparum motif 71VQKGLGKAR79, which bears close similarity to the bacterial motif 

61RQKGTGRAR69 (conserved residues underlined) present in the E. coli L4 protein 

(Table 4-1) (Chittum and Champney, 1994; Farrell et al., 2004; Nagai et al., 2002; 

Pihlajamaki et al., 2002; Tait-Kamradt et al., 2000a). The fact that both the Dd2 and 7G8 

parasite lines were independently selected for AZ resistance and underwent the same 

mutation in their Pfrpl4 gene provides compelling evidence that this G76V mutation can 

contribute to P. falciparum resistance to AZ. For both the Pfrpl4 and LSU rRNA genes, 

the sequences were determined from PCR-amplified products and the electropherograms 

were unambiguous, implying that the mutant lines had a homogeneous population of 

mutant apicoplast genomes with no evidence of the wild-type equences. At this time, we 

cannot exclude the possibility that undetected mutations occurred elsewhere in the 

apicoplast or nuclear genomes in our AZ-pressured lines.  
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Table 4-1. Alignment of the ribosomal protein L4 conserved motif from P. falciparum and other 

selected species* 

* P: Plasmodium; T: Toxoplasma; D: Deinococcus; S: Streptococcus; E: Escherichia. L4 

mutations in AZ-resistant; organisms are indicated as bold and boxed residues.    

 

Apicoplast-encoded PfRpl4 cannot be redirected to this organelle from episomally 

replicating transgene plasmids 

 As an initial approach to assess whether the Pfrpl4 G76V mutation was 

sufficient for AZ resistance, we transfected mutant and wild-type Pfrpl4 alleles into 

several AZ-sensitive P. falciparum lines (3D7, Dd2, and GCO3). The native Pfrpl4 gene 

is located on the apicoplast genome, yet our transfection strategies were based on 

expression of this gene from plasmid DNA that was replicated in the nucleus. In an 

Organism Phenotype Residues

P. falciparum Sensitive V Q K G L G K A R 71-79

T. gondii Sensitive Q Q K G S G K A R 78-86

D. radiodurans Sensitive G Q K G T G N A R 60-68

S. pneumoniae Sensitive R Q K G T G R A  R 66-74

E. coli Sensitive R  Q  K G T G R A  R 61-69

P. falciparum  AZI-RDd2
Resistant V Q K G L V K A R 71-79

P. falciparum AZI-R 7G8
Resistant V Q K G L V K A R 71-79

S. pneumoniae Resistant R Q K C T G R A  R 66-74

S. pneumoniae Resistant R Q K T P S R A  R 66-74

S. pneumoniae Resistant R Q K V P G R A  R 66-74

S. pneumoniae Resistant R Q Q G T G R A  R 66-74

S. pneumoniae Resistant R Q K G T R R A  R 66-74

E. coli Resistant R Q N G T G R A  R 61-69

Amino acid sequence
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attempt to target recombinant PfRpl4 to its host apicoplast organelle, these alleles were 

ligated to a DNA fragment encoding the complete apicoplast targeting sequence of ACP 

as this sequence was previously shown to direct trafficking of nuclear-encoded gene 

products to the apicoplast (Waller et al., 2000). This bipartite targeting sequence is 

composed of a SP and a transit peptide, and the apicoplast targeting sequence algorithm 

PlasmoAP (Foth et al., 2003) predicted the presence of a putative transit peptide 

sequence in PfRpl4. Accordingly, we also generated constructs that fused just the SP 

sequence from the ACP gene to mutant or wild-type Pfrpl4. The recombinant ACP-

Pfrpl4 and SP-Pfrpl4 mutant or wild-type gene fusions (with a V5 epitope tag or GFP at 

the 3′ end) were cloned into expression plasmids under the control of calmodulin or 

hsp86 promoters, making a total of 16 constructs (Crabb et al., 1997). Parasite lines 

transfected with sequence-verified plasmids expressing ACP-Pfrpl4-GFP or ACP-

Pfrpl4-V5 revealed no detectable protein expression (data not shown). Lines transfected 

with plasmids expressing SP-Pfrpl4-GFP fusions yielded cultures that expressed 

recombinant PfRpl4-GFP fusions. However, fluorescence microscopy revealed cytosolic 

localization of these fusions proteins (Fig. C-1), indicating that the combined SP and 

Pfrpl4 putative transit peptide sequence were insufficient for apicoplast targeting. These 

experiments were repeated on several occasions with the same outcomes, independent of 

which promoter (calmodulin or hsp86) was used to drive the transgene or whether the 

Pfrpl4 sequence was mutant or wild-type. We speculate that the inability to traffic 

PfRpl4 to the apicoplast might reflect tight regulation of the apicoplast ribosomal 
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translation machinery that is incompatible with PfRpl4 overexpression in transfected 

parasites. 

 

Modeling of mutant PfRPL4 supports a role for G76V in AZ resistance 

Recent elucidation of the crystal structure of the large ribosomal subunit (50S) of 

D. radiodurans has provided evidence favoring simultaneous binding of two AZ 

molecules in the peptide exit tunnel of the 50S ribosomal subunit (Schlunzen et al., 

2003). One AZ molecule (AZ-1) interacted exclusively with domains IV and V of the 

23S rRNA, whereas a second molecule (AZ-2) interacted with the ribosomal proteins L4 

and L22 and the 23S rRNA domain II. To date, AZ is the only macrolide reported to 

interact directly with these ribosomal proteins. The major source of interactions with 

AZ-2 involved the formation of hydrogen bonds with residues Gly60 and Thr64 in the 

D. radiodurans L4 loop (corresponding to residues Val71 and Leu75 in PfRPL4; Table 

4-1). This loop (Arg46-Pro86) shares 32% sequence identity between D. radiodurans 

and the corresponding loop (K57-P97) in PfRPL4. Using the D. radiodurans structural 

data, we modeled the mutant and wild-type PfRPL4 loops as a complex with AZ (Figure 

4-5). The wild-type PfRPL4:AZ molecular model is supportive of AZ interactions with 

PfRPL4 residues Val71 and Leu75 (Figure 4-5A).  
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Figure 4-5.  Structural models of (A) wild-type and (B) the G76V mutant Pfrpl4 with AZ 

These models, derived using the D. radiodurans crystal structure of protein L4 as a template, reveal steric 
clash between the side chain of 76V in the G76V mutant and AZ, consistent with this mutation conferring 
AZ resistance.  
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Superimposition of the mutant PfRPL4 loop structure predicted that the proximal 

G76V mutation causes a conformational shift in the side chain of Leu75, which would 

be expected to sterically interfere with the AZ-2 binding pocket (Figure 4-5B). Of all 

the possible rotamer positions of the Val76 side chain, none were predicted to allow the 

L75 residue to stay in the wild-type conformation. Thus, these structural models suggest 

that the G76V mutation causes a conformational change in the neighboring Leu75 

residue that creates spatial conflict with AZ binding to this molecule.  

 

Discussion 

Our investigations into the antimalarial properties of AZ reveal this to be a slow-

acting drug that becomes highly potent when extending parasite exposure from one to 

two generations, attaining IC50 values as low as 50 nM (Table C-2). AZ activity was not 

synergistic with CQ, amodiaquine, or artesunate. Furthermore, AZ potency was 

unaffected by point mutations in the DV transmembrane proteins PfCRT or PfMDR1 

that can reduce susceptibility to several antimalarials that act inside the DV, suggesting 

that this is not the primary site of action of AZ. Drug pressure studies resulted in the 

selection of AZ-resistant parasite lines that were found to harbor point mutations in the 

apicoplast-encoded Pfrpl4 and LSU rRNA genes involved in apicoplast protein 

synthesis. These AZ-resistant parasites also displayed cross-resistance to erythromycin, a 

known inhibitor of the bacterial 50S ribosomal subunit (Canu et al., 2002; Chittum and 

Champney, 1994; Farrell et al., 2004; Nagai et al., 2002; Pihlajamaki et al., 2002; Tait-

Kamradt et al., 2000a). Collectively, these data provide compelling evidence that the 
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antimalarial properties of AZ are a result of its binding to the apicoplast 50S ribosomal 

subunit and inhibiting protein synthesis in this organelle. These data complement 

separate studies directly implicating the apicoplast as the target of tetracycline and 

doxycycline in P. falciparum and clindamycin in T. gondii (Camps et al., 2002; Dahl et 

al., 2006). 

In our study, AZ potency increased 30–230-fold upon prolonged exposure (from 

48 to 96 h). These data are consistent with an earlier study (Yeo and Rieckmann, 1995) 

and provide a marked contrast to the comparator drugs thiostrepton and triclosan (that 

are both also thought to act in the apicoplast (McConkey et al., 1997; McLeod et al., 

2001; Perozzo et al., 2002; Rogers et al., 1997)) and CQ (that acts in the DV (Saliba et 

al., 1998)), which showed only minor gains in potency (Fig. 4-1). This ―delayed death‖ 

phenotype was first described with T. gondii tachyzoites exposed to clindamycin and AZ 

(Fichera et al., 1995). These antibiotics were found to not affect replication in the first 

generation of exposure, yet drastically reduced tachyzoite division in the second 

generation (Camps et al., 2002; Fichera et al., 1995). One proposed explanation for this 

phenotype was that these antibiotics render the parasites unable to establish a 

parasitophorous vacuole upon host cell reinvasion (Fichera et al., 1995; Fichera and 

Roos, 1997). Alternatively, their effect on apicoplast protein synthesis might lead to 

insufficient levels of an as yet unidentified, apicoplast-encoded parasite factor required 

for the successful development of the progeny of drug-treated parasites (Dahl et al., 

2006; Fichera et al., 1995; Ralph et al., 2004).  
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Our in vitro studies reveal essentially additive effects between AZ and CQ, 

which is in contrast to earlier reports of in vitro synergy between these drugs with some 

P. falciparum lines (Ohrt et al., 2002). This discrepancy may be attributable to 

differences in methodology or analysis, or differences between the lines employed and 

for how long they had been adapted to in vitro culture. Our lack of synergy, reported 

with five lines tested on five separate occasions, provides evidence that these drugs have 

separate modes of action. AZ and CQ may nevertheless manifest some synergistic 

effects when used clinically. This is evidenced by a recent clinical trial in India in an 

area with a high prevalence of CQ-resistant malaria, which found that AZ-CQ 

combination therapy was significantly more efficacious in treating falciparum malaria 

than monotherapy with either agent (97% cure rates with AZ-CQ versus 33 and 27% 

with these individual agents, respectively (Dunne et al., 2005a)).  

Direct evidence that AZ resistance in P. falciparum is mediated by changes in the 

bacterial-like apicoplast ribosome comes from our resistanct mutant in vitro selection 

studies, which identified mutations in the apicoplast-encoded Pfrpl4 and LSU rRNA 

genes. A key role for Pfrpl4 is suggested by our finding that both the drug-pressured 

7G8 and Dd2 lines underwent a G76V mutation in this gene. Similarly placed mutations 

in genes encoding L4 have been strongly implicated in macrolide resistance in several 

bacterial species (Table 4-1). For example, two studies observed G69C or G71R 

mutations in this gene in S. pneumoniae strains selected for AZ resistance (Canu et al., 

2002; Tait-Kamradt et al., 2000a). These mutations correspond to residue Gly74 and 

Gly76 in PfRPL4 (Table 4-1). Other AZ-resistant S. pneumoniae strains also show 
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insertions, deletions, or multiple mutations in this L4 conserved site (Farrell et al., 2004). 

Similar L4 mutations have also been identified in macrolide-resistant strains of 

Streptococcus pyogenes, H. influenzae, Staphylococcus aureus and E. coli (Chittum and 

Champney, 1994; Franceschi et al., 2004; Prunier et al., 2003). Whereas many of those 

studies only reported an association, genetic complementation studies have provided 

convincing evidence that L4 mutations can confer AZ resistance. For example, genetic 

transformation of the AZ-sensitive S. pneumoniae R6 strain with the mutant rpl4 alleles 

G69C, 67QKG69 to QSQKG, 69GTG71 to TPS, 67QKGT70 to QT, and 64PWRQ67 to PQ 

produced 8-, 15-, 60-, 16-, and 16-fold decreases, respectively, in the susceptibility of 

these transformed strains to AZ (Tait-Kamradt et al., 2000a; Tait-Kamradt et al., 2000b; 

Wolter et al., 2005). In the converse approach, complementation of erythromycin-

resistant E. coli mutants with plasmids expressing wild-type rpl4 or rpl22 genes resulted 

in decreased resistance to erythromycin (Chittum and Champney, 1994). Our study also 

adopted a complementation approach by trying to express the apicoplast-encoded Pfrpl4 

gene (both wild and mutant types) in different AZ-sensitive parasite strains. However, 

despite multiple and varied attempts, we could not obtain recombinant parasite lines that 

targeted recombinant PfRpl4 to the apicoplast. An alternative and more definitive 

approach would be to perform allelic exchange of the endogenous Pfrpl4 gene with a 

mutant Pfrpl4 sequence that is being replicated inside the apicoplast. This experiment 

can only be undertaken once there is a suitable selectable marker for transfection of the 

P. falciparum apicoplast.  
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We note that one of the AZ-resistant lines, AZ-R7G8, also harbored a LSU rRNA 

mutation (U438C) in domain I. This is away from domains II and V that form part of the 

macrolide binding pocket in the bacterial 50S ribosomal subunit and that house the 

majority of the 23S rRNA mutations associated with AZ resistance (Ban et al., 2000). 

Nonetheless, recent reports document the presence of 23S rRNA domain I mutations 

(A138G, A260G, A373T, T389C, or A449C) in macrolide-resistant clinical isolates of S. 

pneumonia (Reinert et al., 2005; Reinert et al., 2003). This might contribute to the fact 

that our AZ-R7G8 mutant had a higher AZ IC50 than AZ-RDd2. The AZ-R7G8 line also 

displayed significantly increased in vitro sensitivity to thiostrepton, tetracycline, and 

doxycycline. Thiostrepton, a peptide antibiotic, inhibits protein translation by blocking  

GTPase activity in the 23S rRNA domain II (Egebjerg et al., 1989) and studies have 

shown that an A1067 mutation (E. coli numbering) can confer thiostrepton resistance in 

E. coli and P. falciparum (Rogers et al., 1997; Rosendahl and Douthwaite, 1994). 

Tetracycline and doxycycline block protein synthesis by binding to the 30S subunit that 

inhibits attachment of tRNA to the A-site of ribosome (Oehler et al., 1997; Rasmussen et 

al., 1991). Photolysis experiments performed with radiolabeled tetracycline and E. coli 

ribosomes, however, provide evidence that this antibiotic can also interact with 

nucleotides in the central loop of the 23S rRNA domain V(Steiner et al., 1988). Domain 

II and V, however, were invariant in AZ-R7G8, suggesting that the LSU rRNA domain I   

mutation we observed in this line was responsible for the observed hypersensitivity to 

thiostrepton, tetracycline, and doxycycline. A possible explanation is provided by 

structural studies. Analysis of the structure of the large ribosomal subunit from 
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Haloarcula marismortui complexed with its repertoire of ribosomal proteins showed that 

the three-dimensional catalytic structure of the 23 S rRNA is maintained by interactions 

of all six domain subunits with each other through extensive hydrogen bonding and other 

non-covalent interactions (Ban et al., 2000).  Cryo-electron microscopy studies have also 

shown that mutant L4 proteins can exert long-range structural effects on the 30S subunit 

in erythromycin–resistant E.  coli ribosomes (Gabashvili et al., 2001). We posit that the 

hypersensitivity of AZ-R7G8 to thiostrepton, tetracycline, and doxycycline might be due 

to the LSU rRNA domain I U438C mutation causing structural changes that are 

transmitted to the antibiotic binding sites on the 50S and 30S rRNA subunits. We also 

note that this increased antibiotic sensitivity, if found to occur frequently in AZ-resistant 

parasites, would promote the potential use of these antibiotics as partner drugs for 

combination therapy. Our findings of mutations in pfrpl4 and the LSU rRNA are 

consistent with published data from pathogenic bacteria (including S. pneumoniae and 

H. influenzae) that directly implicate mutations in the 23 S rRNA or the genes encoding 

ribosomal proteins L4 and L22 as causal determinants of macrolide resistance 

(Edelstein, 2004; Franceschi et al., 2004; Vester and Douthwaite, 2001). Furthermore, 

our finding that resistance to AZ could be rapidly selected in vitro is an important 

consideration in the testing of future AZ-containing antimalarial combination therapies.  

Other reported mechanisms of macrolide resistance in bacteria are methylation of 

the A2058 nucleotide in the 23 S rRNA domain V by a methyltransferase encoded by the 

erm (erythromycin ribosome methylation) genes, and drug efflux mediated by an efflux 

pump encoded by the mef (macrolide efflux) genes (Vester and Douthwaite, 2001; 
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Weisblum, 1995). Methylation of this critical nucleotide acts to reduce macrolide 

binding to the ribosome, and tends to predominate over point mutations as the major 

mechanism of macrolide resistance in bacterial species such as Streptococcus and 

Staphylococcus that harbor multiple rRNA operons. Our analysis of the recently released 

P. falciparum (HB3 strain) apicoplast genome (GenBank accession number DQ642846, 

sequenced by the Broad Institute, Cambridge, MA) reveals that this 29-kb genome has 

only one functional copy of the LSU and small subunit rRNA genes. This resolves 

earlier questions about the possible presence of a second LSU gene in the apicoplast 

(Wilson et al., 1996). Our analysis also shows the absence of any putative apicoplast 

gene coding for an adenosine methyltransferase or an active drug efflux pump. Thus, at 

this time it would appear less likely that rRNA methylation or drug efflux mechanisms 

could operate to confer AZ resistance in P. falciparum. 

L4 and L22 are the early assembly proteins of the 50 S ribosomal subunit and 

play a pivotal role in scaffolding the ribosomal domains (Gabashvili et al., 2001). The 

crystal structure of L4 from Thermotoga maritima defines a loop of 55 residues that 

displays the highest degree of phylogenetic conservation across the L4 sequences 

(corresponding in PfRpl4 to residues 47–101) and that represents the main rRNA 

binding site (Worbs et al., 2000). RNA-protein cross-linking studies in E. coli have 

shown that this conserved L4 loop interacts with 23 S rRNA nucleotides 284–350 and 

580–670 in domains I and II, respectively (Gulle et al., 1988). Cryo-electron microscopy 

of erythromycin-resistant E. coli ribosomes indicates that sequence changes in L4 or L22 

can alter the spatial organization of nucleotides in 23 S rRNA domains II, III, and V, and 
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the conformation of the C-terminal ends of these proteins that form a segment of the 

polypeptide exit tunnel. These structural rearrangements can significantly change the 

diameter of the peptide tunnel, affecting macrolide accessibility to the peptidyl-

transferase center in domain V and preventing the macrolide from inhibiting protein 

synthesis and egress from the peptide tunnel (Gabashvili et al., 2001; Gregory and 

Dahlberg, 1999). Structural analysis of the entire 50 S ribosomal subunit of H. 

marismortui containing L4 and L22 has localized binding of AZ and its progenitor 

erythromycin to a hydrophobic drug-binding pocket formed by critical 23 S nucleotides 

A2058, A2059, and C2611 (E. coli numbering). One key interaction is the formation of a 

hydrogen bond between the desosamine sugar at position C-5 of the macrolide lactone 

ring and A2058 (Tu et al., 2005). A similar pattern of interactions between AZ and these 

rRNA nucleotides was also identified in crystallography studies of the D. radiodurans 

large subunit ribosome. This work also identified an additional binding site for AZ, 

formed by ribosomal proteins L4 and L22 and domain II of the 23 S rRNA (Schlunzen et 

al., 2003). AZ was observed to directly interact with ribosomal proteins L4 (notably with 

the Tyr59, Gly60, Gly63, and Thr64 residues) and L22 (the Arg111 residue) through 

hydrogen bonding and hydrophobic interactions, respectively (Schlunzen et al., 2003). 

Our modeling of wild-type and mutant PfRpl4 , based on structural data from D. 

radiodurans that identified AZ binding to L4 (Schlunzen et al., 2003), predicts a 

dramatic impact of the G76V mutation on the neighboring Leu75 residue as a result of 

its reorientation in the mutant protein. This leads us to propose that the reoriented L75 

residue can create a steric clash with AZ, resulting in reduced binding. An alternative 
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explanation is that this G76V mutation prevents AZ from binding to the nascent 

polypeptide exit tunnel in the 50S ribosome by constricting the macrolide-binding site. 

In either event, this study provides compelling evidence that AZ acts upon the P. 

falciparum apicoplast and highlights the importance of screening for possible mutations 

in the LSU rRNA, Pfrpl4 and Pfrpl22 genes in ongoing clinical trials designed to assess 

the efficacy of AZ-containing antimalarial combination therapies. 

 

Thinking outside the crystallography box 

To address the molecular mechanism of  AZ resistance from the G76V mutation, 

we first resorted to crystallography. However, the pfrpl4 cannot be expressed 

exogenously. Various vectors and E. coli strains were tried. None of these yielded a 

sufficient quantity of soluble pfrpl4 for crystallization trials. Table 4-2 shows the status 

statistics of the target proteins for structure determination from the worldwide structure 

genomics center. Only 7.7% of 184512 cloned targets can be crystallized, 3.7% have 

yielded diffraction, and eventually 4592 targets (2.5%) have their structures determined 

by crystallography. Given these statistics, our difficulties are unsurprising.   
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Table 4-2. TargetDB Status Statistics* 

Status Total 

Number 

of 

Targets 

(%) 

Relative 

to 

"Cloned" 

Targets 

(%) 

Relative to 

"Expressed" 

Targets 

(%) 

Relative 

to 

"Purified" 

Targets 

(%) Relative 

to 

"Crystallized" 

Targets 

Cloned 184512 100.0 - - - 

Expressed 115773 62.7 100.0 - - 

Soluble 34734 18.8 30.0 - - 

Purified 44826 24.3 38.7 100.0 - 

Crystallized 14122 7.7 12.2 31.5 100.0 

Diffraction-

quality 

Crystals 

6862 3.7 5.9 15.3 48.6 

Crystal 

Structure 
4592 2.5 4.0 10.2 32.5 

*The data was from http://targetdb.pdb.org, last updated on Jan 21, 2011. 
 

 

Is it possible to get useful structural information without a crystal? We examined 

the pfrpl4 gene more closely. A multiple sequence alignment (Fig. 4-6) shows a 

relatively conserved region of PfRpl4 between Lys57 and Pro97, which contains the 

motif in which we are interested, 71VQKGLGKAR79. Thus we turned to homology 

modeling for the solution.    The structures of L4 from E. coli (pdb: 2AWB) and D. 

radioduran (pdb:1NWY) were chosen as multiple templates to model that loop in 

Modeller. The sequence identity between PfRpL4 and E. coli L4 is the highest in that 

region (39%). The resolution of 2AWB is 3.5Å. The sequence identity between D. 

radioduran L4 and PfRpl4 is 32%. 1NWY has two azithromycin molecules in the 

structure. The resolution is 3.3 Å, but only the Cα information was deposited in the pdb. 

The model of the mutant L4 loop G76V was built in the same way but without 

azithromycin in the homologous templates.  

 

http://targetdb.pdb.org/
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2AWB          ----MELVLKDAQSALTVS---ETTFGRDFNEALVHQVVVAYAAGARQGTRAQ-----KT 

1DMG          AQVDLLNVKGEKVGTLEIS---DFVFNIDPNYDVMWRYVDMQLSNRRAGTAST-----KT 

1NWY          ----MAQINVIGQNGGRTI---ELPLP-EVNSGVLHEVVTWQLASRRRGTAST-----RT 

1K9M          MQATIYDLDGNTDGEVDLP---D-VFETPVRSDLIGKAVRAAQANRKQDYGSDEYAGLRT 

pfL4          --MNIIILNNNTLNNIIFKYKYNFFIKLYFNNYIKICKLIIYIIKYLYIYNIYMYKHTKN 
                  :  :     .        :  :    .  :    :                   :. 

 

2AWB          RAEVTGSGKKPWRQKGTGRARSGSIKSPIWRSGGVTFAARP-QDHSQKVNKKMYRGALKS 

1DMG          RGEVSGGGRKPWPQKHTGRARHGSIRSPIWRHGGVVHGPKP-RDWSKKLNKKMKKLALRS 

1NWY          RAQVSKTGRKMYGQKGTGNARHGDRSVPTFVGGGVAFGPKP-RSYDYTLPRQVRQLGLAM 

1K9M          PAESFGSGR---GQAHVPKLDGRARRVPQAVKGRSAHPPKTEKDRSLDLNDKERQLAVRS 

pfL4          KSKVYFSNKKIRVQKGLGKARLKNFKSPVCKQGACNFGP------FYKENKIISKINYRL 
               .:    .:    *    .        *    *   . .               :      

 

2AWB          ILSELVRQ----DRLIVVEKFSVEAPKTKLLAQKLKDMALED-----VLIITGELDENLF 

1DMG          ALSVKYRE----NKLLVLDDLKLERPKTKSLKEILQNLQLSDKKTLIVLPWKEEGYMNVK 

1NWY          AIASRQEG----GKLVAVDGFDIADAKTKNFISWAKQNGLDG--TEKVLLVTDD--ENTR 

1K9M          ALAATADADLVADRGHEFDRDEVPVVVSDDFEDLVKTQEVVSLLEALDVHADIDRADETK 

pfL4          IFVY----------LLINKRSNIIIIKLENIINLLNIFYKNKNYCIFKLLYLKGIINNKY 
               :                .  .:     . : .  :            :        :   

 

2AWB          LAA----------RNLHKVDVRDAT---------------GIDPVSLIAFDKVVMTADAV 

1DMG          LSG----------RNLPDVKVIIADNPNNSKNGEKAVRIDGLNVFDMLKYDYLVLTRDMV 

1NWY          RAA----------RNVSWVSVLPVA---------------GVNVYDILRHDRLVIDAAAL 

1K9M          IKAGQGSARGRKYRRPASILFVTSDEPSTAARNLAGADVATASEVNTEDLAPGGAPGRLT 

pfL4          ILI-----------NLNNKLFNKN------------------IFINIIMYNYLIFLI--- 
                            .     .                        .               

 

2AWB          KQVEEMLA----- 

1DMG          SKIEEVLG----- 

1NWY          EIVEEEAGEEQQ- 

1K9M          VFTESALAEVAER 

pfL4          ------------- 
 

Figure 4-6. multiple sequence alignment of L4 sequences using CLUSTAL W. 

2AWB, L4 from E. coli; 1DMG, L4 from Thermotoga maritime; 1NWY, L4 from Deinococcus 
radiodurans; 1K9M, L4 from Haloarcula marismortui; pf L4, L4 from Plasmodium falciparum 
apicoplast. 
 

 

To assess the accuracy of the homologous model, the DOPE (Discrete Optimized 

Protein Energy) potentials were calculated during the modeling (Shen and Sali, 2006). 
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Both models yielded negative values (Fig. 4-7), which indicated that the models satisfied 

the stereochemistry constraints. The two models, pfL4 and G76V, were aligned in 

pyMol. The RMS between them is 1.68 Å. We found that the conformational change in 

G76V causes a collision between Leu75 and the second azithromycin (Fig. 4-5), which 

we ascribed to the azithromycin resistance of the mutant.  

 

 

Figure 4-7.  DOPE profiles of the homologous models pfL4 and G76V.  

The DOPE scores were calculated residue-by-residue for the homologous model of pfL4 (in black) and 
G76V (in blue). 
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This modeling structure was based upon a strong, yet reasonable hypothesis that 

Pfrpl4 shares the common feature with its D. radiodurans homolog, which was 

supported by sequence conservation (Table 4-1), and their similar ribosomal 

environments. This model has illustrated, but not proved the molecular mechanism of 

AZ potency and how resistance arises in the mutants. This mechanism is consistent with 

both the observations in genetics and pharmacology, and the stereochemistry knowledge 

up to date. Also, the power of science resides in its capability to predict. From our model 

of PfRpl4, we propose that the mutation of Leu75 into a less bulky amino acid, say 

alanine, would abolish the resistance effect to AZ. This could be tested in future genetic 

experiments. 
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CHAPTER V 

SUMMARY 

 

Chapter I is the introduction of the main method, X-ray crystallography, and the 

major topic, phage lysis, of this thesis. In the crystallography section, the focus is on the 

flow of information: how to transform the atomic structural information to the 

macroscopic observation; why the structural information is initially lost with the 

undetermination of the phases; and how the phase information is rescued with a priori 

knowledge. In brief, crystallography is a magnifier, amplifier, sampler, and compiler as 

described. As to the phage lysis, the classic λ strategy is introduced. At the beginning of 

each following chapters, there is also a short background more specifically related to the 

respective project.    

Chapter II addresses the activation mechanism of R21, the lysozyme of coliphage 

21, which has an N-terminal signal-anchor-release (SAR) domain that directs its 

secretion in a membrane-tethered, inactive form and its release and activation in the 

periplasm. Two crystal structures, combined with genetics studies, show that the SAR 

domain, once extracted from the bilayer, refolds into the body of the enzyme and effects 

muralytic activation by repositioning one residue of the canonical lysozyme catalytic 

triad. The NMR experiments not only support the crystal model, but also provide 

preliminary data for the possible dynamics involved. 

Chapter III explains how the phages overcome the unique cell wall of 

mycobacteria, which is composed of an arabinogalactan-peptidoglycan and mycolic 
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acid-rich lipid layer. The crystal structure allowed us to determine that  the gp12 from 

mycobacteriophage D29, D29 LysB, has an α/β hydrolase organization of the catalytic 

triad common to cutinases, but contains an additional four helix domain implicated in 

the binding of lipid substrates.  Further biochemical and genetic studies led to the 

proposal that LysB facilitates lysis by compromising the integrity of the mycobacterial 

outer membrane linkage to the arabinogalactan-peptidoglycan layer. 

Chapter IV strays from the crystallography and phage lysis, and discusses 

medicine in malaria. Azithromycin (AZ), a broad-spectrum antibacterial macrolide that 

inhibits protein synthesis, also manifests reasonable efficacy as an antimalarial. In the 

absence of a crystal structure, homology modeling of Plasmodium falciparum ribosomal 

protein L4 helps to interpret the pharmacologic observance, and suggests an action mode 

of azithromycin in malaria. 
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APPENDIX A  

NMR ASSIGNMENT OF iR21 

 

Table A-1. Chemical shifts of backbone atom in 
i
R

21
 

Residue number Atom nuclear shift 

Ser 29 N 15N 116.056 

Ser 29 H 1H 8.523 

Ser 29 CB 13C 63.622 

Ser 29 CA 13C 58.055 

Gly 30 N 15N 110.536 

Gly 30 H 1H 8.402 

Gly 30 CA 13C 45.182 

Asn 31 N 15N 118.868 

Asn 31 H 1H 8.402 

Asn 31 CB 13C 38.687 

Asn 31 CA 13C 52.859 

Asp 32 N 15N 120.264 

Asp 32 H 1H 8.397 

Asp 32 CB 13C 40.813 

Asp 32 CA 13C 54.192 

Gly 33 N 15N 108.554 

Gly 33 H 1H 8.329 

Gly 33 CA 13C 45.193 

Leu 34 N 15N 121.459 

Leu 34 H 1H 8.101 

Leu 34 CB 13C 42.673 

Leu 34 CA 13C 54.484 

Glu 35 N 15N 122.584 

Glu 35 H 1H 8.717 

Glu 35 CB 13C 29.845 

Glu 35 CA 13C 56.581 

Gly 36 N 15N 110.786 

Gly 36 H 1H 8.528 

Gly 36 CA 13C 45.083 

Val 37 N 15N 121.299 

Val 37 H 1H 7.871 

Val 37 CB 13C 32.812 

Val 37 CA 13C 61.074 
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Table A-1 (continued) 

Residue number Atom nuclear shift 

Ser 38 N 15N 119.553 

Ser 38 H 1H 7.999 

Ser 38 CB 13C 64.598 

Ser 38 CA 13C 56.321 

Tyr 39 N 15N 125.367 

Tyr 39 H 1H 8.958 

Tyr 39 CB 13C 37.727 

Tyr 39 CA 13C 58.759 

Ile 40 N 15N 117.421 

Ile 40 H 1H 7.6 

Ile 40 CB 13C 41.181 

Ile 40 CA 13C 56.809 

Pro 41 CB 13C 32.341 

Pro 41 CA 13C 62.945 

Tyr 42 N 15N 121.842 

Tyr 42 H 1H 9.48 

Tyr 42 CB 13C 41.021 

Tyr 42 CA 13C 55.325 

Lys 43 N 15N 121.326 

Lys 43 H 1H 8.31 

Lys 43 CB 13C 32.988 

Asp 44 N 15N 125.375 

Asp 44 H 1H 8.096 

Asp 44 CB 13C 40.365 

Asp 44 CA 13C 52.253 

Ile 45 N 15N 114.256 

Ile 45 H 1H 7.715 

Ile 45 CB 13C 38.332 

Ile 45 CA 13C 63.115 

Val 46 N 15N 115.265 

Val 46 H 1H 7.814 

Val 46 CB 13C 30.738 

Val 46 CA 13C 60.326 

Gly 47 N 15N 109.772 

Gly 47 H 1H 8.097 

Gly 47 CA 13C 45.311 

Val 48 N 15N 123.779 

Val 48 H 1H 8.409 
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Table A-1 (continued) 

Residue number Atom nuclear shift 

Val 48 CB 13C 32.18 

Val 48 CA 13C 61.566 

Trp 49 N 15N 130.064 

Trp 49 H 1H 8.442 

Trp 49 CB 13C 29.19 

Trp 49 CA 13C 58.223 

Thr 50 N 15N 119.423 

Thr 50 H 1H 9.266 

Thr 50 CB 13C 71.054 

Thr 50 CA 13C 60.15 

Val 51 N 15N 121.674 

Val 51 H 1H 8.79 

Val 51 CB 13C 35.78 

Cys 52 N 15N 120.034 

Cys 52 H 1H 8.759 

Cys 52 CB 13C 31.21 

Cys 52 CA 13C 54.676 

His 53 N 15N 126.098 

His 53 H 1H 9.013 

His 53 CB 13C 27.09 

Gly 54 N 15N 107.493 

Gly 54 H 1H 7.765 

Gly 54 CA 13C 45.262 

His 55 N 15N 118.761 

His 55 H 1H 7.965 

His 55 CB 13C 27.873 

His 55 CA 13C 57.167 

Thr 56 N 15N 116.099 

Thr 56 H 1H 7.57 

Thr 56 CB 13C 71.141 

Thr 56 CA 13C 59.027 

Gly 57 N 15N 106.878 

Gly 57 H 1H 8.512 

Gly 57 CA 13C 44.221 

Lys 58 N 15N 118.502 

Lys 58 H 1H 8.511 

Lys 58 CB 13C 31.781 

Lys 58 CA 13C 57.065 
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Table A-1 (continued) 

Residue number Atom nuclear shift 

Asp 59 N 15N 116.63 

Asp 59 H 1H 8.63 

Asp 59 CB 13C 39.345 

Asp 59 CA 13C 52.88 

Ile 60 N 15N 121.598 

Ile 60 H 1H 7.126 

Ile 60 CB 13C 37.859 

Ile 60 CA 13C 63.101 

Met 61 N 15N 129.37 

Met 61 H 1H 8.037 

Met 61 CB 13C 32.257 

Met 61 CA 13C 53.209 

Leu 62 N 15N 124.422 

Leu 62 H 1H 8.152 

Leu 62 CB 13C 39.38 

Leu 62 CA 13C 56.237 

Gly 63 N 15N 108.877 

Gly 63 H 1H 8.597 

Gly 63 CA 13C 44.971 

Lys 64 N 15N 123.781 

Lys 64 H 1H 7.415 

Lys 64 CB 13C 34.588 

Lys 64 CA 13C 55.117 

Thr 65 N 15N 119.672 

Thr 65 H 1H 8.194 

Thr 65 CB 13C 68.263 

Thr 65 CA 13C 61.636 

Tyr 66 N 15N 102.645 

Tyr 66 H 1H 10.099 

Tyr 66 CB 13C 40.073 

Tyr 66 CA 13C 57.892 

Thr 67 N 15N 110.711 

Thr 67 H 1H 9.043 

Thr 67 CB 13C 71.302 

Thr 67 CA 13C 59.363 

Lys 68 N 15N 120.512 

Lys 68 H 1H 8.861 

Lys 68 CB 13C 32.171 
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Table A-1 (continued) 

Residue number Atom nuclear shift 

Lys 68 CA 13C 60.882 

Ala 69 N 15N 121.683 

Ala 69 H 1H 8.603 

Ala 69 CB 13C 17.992 

Ala 69 CA 13C 54.9 

Glu 70 N 15N 121.29 

Glu 70 H 1H 8.263 

Glu 70 CB 13C 30.472 

Glu 70 CA 13C 59.024 

Cys 71 N 15N 116.401 

Cys 71 H 1H 9.02 

Cys 71 CA 13C 53.195 

Lys 72 N 15N 124.957 

Lys 72 H 1H 8.498 

Lys 72 CB 13C 31.736 

Lys 72 CA 13C 59.185 

Ala 73 N 15N 122.338 

Ala 73 H 1H 8.087 

Ala 73 CB 13C 17.445 

Ala 73 CA 13C 54.968 

Leu 74 N 15N 119.169 

Leu 74 H 1H 8.127 

Leu 74 CB 13C 42.628 

Leu 74 CA 13C 57.237 

Leu 75 N 15N 119.765 

Leu 75 H 1H 7.543 

Leu 75 CB 13C 40.778 

Asn 76 N 15N 117.461 

Asn 76 H 1H 8.45 

Asn 76 CB 13C 37.158 

Asn 76 CA 13C 55.73 

Lys 77 N 15N 122.178 

Lys 77 H 1H 7.985 

Lys 77 CB 13C 31.89 

Lys 77 CA 13C 59.246 

Asp 78 N 15N 122.755 

Asp 78 H 1H 8.411 

Asp 78 CB 13C 39.304 
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Table A-1 (continued) 

Residue number Atom nuclear shift 

Asp 78 CA 13C 57.293 

Leu 79 N 15N 120.714 

Leu 79 H 1H 9.004 

Leu 79 CB 13C 40.272 

Ala 80 N 15N 123.272 

Ala 80 H 1H 7.906 

Ala 80 CB 13C 17.27 

Ala 80 CA 13C 54.291 

Thr 81 N 15N 118.284 

Thr 81 H 1H 7.973 

Thr 81 CB 13C 67.969 

Thr 81 CA 13C 66.153 

Val 82 N 15N 122.186 

Val 82 H 1H 7.59 

Val 82 CB 13C 31.032 

Val 82 CA 13C 65.958 

Ala 83 N 15N 121.807 

Ala 83 H 1H 7.886 

Ala 83 CB 13C 16.91 

Ala 83 CA 13C 55.338 

Arg 84 N 15N 115.612 

Arg 84 H 1H 7.54 

Arg 84 CB 13C 29.976 

Arg 84 CA 13C 58.563 

Gln 85 N 15N 115.601 

Gln 85 H 1H 7.742 

Ile 86 N 15N 109.529 

Ile 86 H 1H 8.144 

Ile 86 CB 13C 40.285 

Ile 86 CA 13C 60.601 

Asn 87 N 15N 124.611 

Asn 87 H 1H 8.879 

Asn 87 CB 13C 35.366 

Asn 87 CA 13C 56.734 

Pro 88 CB 13C 30.852 

Pro 88 CA 13C 64.741 

Tyr 89 N 15N 112.761 

Tyr 89 H 1H 7.942 
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Table A-1 (continued) 

Residue number Atom nuclear shift 

Tyr 89 CB 13C 38.234 

Tyr 89 CA 13C 57.057 

Ile 90 N 15N 122.655 

Ile 90 H 1H 7.77 

Ile 90 CA 13C 61.496 

Lys 91 N 15N 126.203 

Lys 91 H 1H 9.22 

Lys 91 CB 13C 32.709 

Lys 91 CA 13C 55.069 

Val 92 N 15N 111.662 

Val 92 H 1H 7.024 

Val 92 CB 13C 34.775 

Val 92 CA 13C 58.563 

Asp 93 N 15N 121.898 

Asp 93 H 1H 8.522 

Asp 93 CB 13C 40.59 

Asp 93 CA 13C 54.131 

Ile 94 N 15N 120.592 

Ile 94 H 1H 7.878 

Ile 94 CB 13C 38.397 

Ile 94 CA 13C 56.63 

Pro 95 CB 13C 32.168 

Pro 95 CA 13C 62.321 

Glu 96 N 15N 125.137 

Glu 96 H 1H 9.027 

Glu 96 CB 13C 29.233 

Glu 96 CA 13C 59.642 

Thr 97 N 15N 108.236 

Thr 97 H 1H 8.111 

Thr 97 CB 13C 67.164 

Thr 97 CA 13C 63.565 

Met 98 N 15N 120.778 

Met 98 H 1H 7.084 

Met 98 CB 13C 33.582 

Met 98 CA 13C 56.502 

Arg 99 N 15N 120.298 

Arg 99 H 1H 7.607 

Arg 99 CB 13C 29.352 
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Table A-1 (continued) 

Residue number Atom nuclear shift 

Arg 99 CA 13C 60.242 

Gly 100 N 15N 103.435 

Gly 100 H 1H 8.172 

Gly 100 CA 13C 47.117 

Ala 101 N 15N 124.737 

Ala 101 H 1H 7.6 

Ala 101 CB 13C 18.409 

Ala 101 CA 13C 54.476 

Leu 102 N 15N 118.178 

Leu 102 H 1H 7.879 

Leu 102 CB 13C 41.102 

Leu 102 CA 13C 57.266 

Tyr 103 N 15N 118.126 

Tyr 103 H 1H 8.606 

Tyr 103 CB 13C 35.731 

Tyr 103 CA 13C 57.646 

Ser 104 N 15N 116.541 

Ser 104 H 1H 8.086 

Ser 104 CB 13C 39.764 

Ser 104 CA 13C 63.535 

Phe 105 N 15N 123.296 

Phe 105 H 1H 8.574 

Phe 105 CB 13C 39.142 

Phe 105 CA 13C 61.949 

Val 106 N 15N 119.991 

Val 106 H 1H 8.676 

Val 106 CB 13C 29.853 

Val 106 CA 13C 66.025 

Tyr 107 N 15N 122.173 

Tyr 107 H 1H 8.76 

Tyr 107 CB 13C 38.245 

Tyr 107 CA 13C 58.68 

Asn 108 N 15N 112.864 

Asn 108 H 1H 6.798 

Asn 108 CB 13C 40.774 

Asn 108 CA 13C 56.61 

Val 109 N 15N 111.309 

Val 109 H 1H 7.87 
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Table A-1 (continued) 

Residue number Atom nuclear shift 

Val 109 CB 13C 32.152 

Val 109 CA 13C 63.149 

Gly 110 N 15N 112.217 

Gly 110 H 1H 8.687 

Ala 111 N 15N 128.841 

Ala 111 H 1H 9.099 

Ala 111 CB 13C 17.985 

Ala 111 CA 13C 55.677 

Gly 112 N 15N 107.315 

Gly 112 H 1H 8.884 

Gly 112 CA 13C 46.868 

Phe 114 N 15N 118.672 

Phe 114 H 1H 8.349 

Phe 114 CA 13C 61.211 

Arg 115 N 15N 119.483 

Arg 115 H 1H 8.901 

Arg 115 CB 13C 29.883 

Arg 115 CA 13C 59.187 

Thr 116 N 15N 106.168 

Thr 116 H 1H 7.307 

Thr 116 CB 13C 68.194 

Thr 116 CA 13C 60.357 

Ser 117 N 15N 117.323 

Ser 117 H 1H 7.556 

Ser 117 CB 13C 65.421 

Ser 117 CA 13C 58.56 

Thr 118 N 15N 120.975 

Thr 118 H 1H 8.999 

Thr 118 CB 13C 67.374 

Leu 119 N 15N 122.877 

Leu 119 H 1H 8.535 

Leu 119 CB 13C 41.649 

Leu 119 CA 13C 59.081 

Leu 120 N 15N 118.497 

Leu 120 H 1H 7.78 

Leu 120 CB 13C 39.286 

Leu 120 CA 13C 57.234 

Arg 121 N 15N 118.177 
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Table A-1 (continued) 

Residue number Atom nuclear shift 

Arg 121 H 1H 7.102 

Arg 121 CB 13C 29.424 

Arg 121 CA 13C 59.651 

Lys 122 N 15N 116.055 

Lys 122 H 1H 8.276 

Lys 122 CB 13C 31.176 

Lys 122 CA 13C 58.09 

Ile 123 N 15N 120.453 

Ile 123 H 1H 8.222 

Ile 123 CB 13C 37.816 

Ile 123 CA 13C 65.758 

Asn 124 N 15N 116.613 

Asn 124 H 1H 8.473 

Asn 124 CB 13C 37.657 

Asn 124 CA 13C 54.223 

Gln 125 N 15N 118.349 

Gln 125 H 1H 7.724 

Gln 125 CB 13C 29.288 

Gln 125 CA 13C 55.075 

Gly 126 N 15N 110.058 

Gly 126 H 1H 8.413 

Gly 126 CA 13C 45.199 

Asp 127 N 15N 119.569 

Asp 127 H 1H 7.965 

Asp 127 CB 13C 39.193 

Asp 127 CA 13C 51.215 

Ile 128 N 15N 124.332 

Ile 128 H 1H 7.438 

Ile 128 CB 13C 36.967 

Ile 128 CA 13C 63.934 

Lys 129 N 15N 120.966 

Lys 129 H 1H 8.404 

Lys 129 CB 13C 31.678 

Lys 129 CA 13C 59.113 

Gly 130 N 15N 109.234 

Gly 130 H 1H 8.38 

Gly 130 CA 13C 46.865 

Ala 131 N 15N 125.903 
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Table A-1 (continued) 

Residue number Atom nuclear shift 

Ala 131 H 1H 8.684 

Ala 131 CB 13C 17.745 

Ala 131 CA 13C 55.214 

Cys 132 N 15N 116.355 

Cys 132 H 1H 8.066 

Cys 132 CB 13C 39.808 

Cys 132 CA 13C 58.375 

Asp 133 N 15N 118.279 

Asp 133 H 1H 8.021 

Asp 133 CB 13C 40.994 

Asp 133 CA 13C 57.394 

Gln 134 N 15N 115.345 

Gln 134 H 1H 8.152 

Gln 134 CB 13C 27.913 

Leu 135 N 15N 121.517 

Leu 135 H 1H 8.428 

Leu 135 CB 13C 41.307 

Leu 135 CA 13C 57.589 

Arg 136 N 15N 118.706 

Arg 136 H 1H 8.576 

Arg 136 CB 13C 29.874 

Arg 136 CA 13C 59.41 

Arg 137 N 15N 115.5 

Arg 137 H 1H 7.541 

Arg 137 CA 13C 55.545 

Trp 138 N 15N 124.287 

Trp 138 H 1H 7.591 

Trp 138 CB 13C 28.579 

Trp 138 CA 13C 58.644 

Thr 139 N 15N 122.725 

Thr 139 H 1H 7.586 

Thr 139 CB 13C 68.579 

Thr 139 CA 13C 61.16 

Tyr 140 N 15N 127.392 

Tyr 140 H 1H 8.757 

Tyr 140 CA 13C 58.176 

Ala 141 N 15N 127.3 

Ala 141 H 1H 8.782 
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Table A-1 (continued) 

Residue number Atom nuclear shift 

Ala 141 CB 13C 18.989 

Ala 141 CA 13C 52.211 

Gly 142 N 15N 109.265 

Gly 142 H 1H 8.506 

Gly 142 CA 13C 45.349 

Gly 143 N 15N 109.299 

Gly 143 H 1H 8.521 

Lys 144 N 15N 119.72 

Lys 144 H 1H 7.788 

Lys 144 CB 13C 33.253 

Lys 144 CA 13C 55.172 

Gln 145 N 15N 122.903 

Gln 145 H 1H 8.584 

Gln 145 CB 13C 29.325 

Gln 145 CA 13C 59.081 

Trp 146 N 15N 127.776 

Trp 146 H 1H 8.914 

Trp 146 CA 13C 57.492 

Lys 147 N 15N 127.523 

Lys 147 H 1H 8.982 

Lys 147 CB 13C 35.567 

Lys 147 CA 13C 54.683 

Gly 148 N 15N 107.196 

Gly 148 H 1H 8.702 

Gly 148 CA 13C 43.81 

Leu 149 N 15N 119.327 

Leu 149 H 1H 8.861 

Leu 149 CA 13C 54.612 

Met 150 N 15N 119.89 

Met 150 H 1H 8.296 

Met 150 CB 13C 34.727 

Met 150 CA 13C 55.102 

Thr 151 N 15N 117.094 

Thr 151 H 1H 9.066 

Thr 151 CB 13C 70.254 

Thr 151 CA 13C 60.818 

Arg 152 N 15N 121.016 

Arg 152 H 1H 8.277 
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Table A-1 (continued) 

Residue number Atom nuclear shift 

Arg 152 CB 13C 28.859 

Arg 152 CA 13C 59.673 

Arg 153 N 15N 117.009 

Arg 153 H 1H 8.046 

Arg 153 CB 13C 30.767 

Arg 153 CA 13C 58.634 

Glu 154 N 15N 121.038 

Glu 154 H 1H 7.76 

Ile 155 N 15N 121.103 

Ile 155 H 1H 8.12 

Ile 155 CB 13C 38.397 

Ile 155 CA 13C 65.592 

Glu 156 N 15N 118.069 

Glu 156 H 1H 8.319 

Glu 156 CB 13C 29.382 

Glu 156 CA 13C 58.981 

Arg 157 N 15N 118.087 

Arg 157 H 1H 7.959 

Arg 157 CB 13C 29.737 

Ile 159 N 15N 118.131 

Ile 159 H 1H 8.105 

Ile 159 CB 13C 36.212 

Ile 159 CA 13C 64.11 

Cys 160 N 15N 115.696 

Cys 160 H 1H 8.464 

Cys 160 CB 13C 47.2 

Cys 160 CA 13C 62.097 

Leu 161 N 15N 118.585 

Leu 161 H 1H 7.693 

Leu 161 CB 13C 41.34 

Trp 162 N 15N 125.184 

Trp 162 H 1H 7.916 

Trp 162 CB 13C 29.287 

Trp 162 CA 13C 57.147 

Gly 163 N 15N 106.744 

Gly 163 H 1H 8.694 

Gly 163 CA 13C 45.188 

Gln 164 N 15N 119.379 
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Table A-1 (continued) 

Residue number Atom nuclear shift 

Gln 164 H 1H 7.839 

Gln 164 CB 13C 29.233 

Gln 164 CA 13C 55.111 

Gln 165 N 15N 121.921 

Gln 165 H 1H 8.444 

Gln 165 CB 13C 28.627 

Gln 165 CA 13C 53.194 
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APPENDIX B  

SUPPLEMENTAL MATERIAL FOR CHAPTER III 

 

Table B-1. Oligonucleotides 

 
         Note: CPCloning Primer 
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Figure B-2. Phylogenetic relationships of LysB proteins. The LysB proteins of sixty completely 
sequenced mycobacteriophages, mycobacteriophage Ms6, and of a putative M. avium prophage 
(MAV-0786) were aligned in CLustal X and displayed using Njplot. Conserved domains 
identifiable in each LysB protein are shown to the right: pfam01083, Cutinase superfamily; 
pfam01471, putative peptidoglycan binding domain; cl09107, Esterase_lipase superfamily. The 
Genbank protein ID numbers are shown on the right. The three LysB proteins that have been 
examined experimentally are shown in bold. 
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Figure B-3. Genetic organization of mycobacteriophages lacking lysB. 

A. The lysis cassettes and surrounding genes of the five cluster A2 genomes are shown. All contain 
a lysA gene, but Che12 lacks lysB, seemingly through simple loss of the genes. Note that the 
putative holin is also apparently missing in Bxz2. The pham number with the number of phamily 
members in parentheses is shown above each gene. 
B. The lysis cassettes of five cluster B genomes are shown; PG1 belongs to cluster B1, Qyrzula and 
Rosebush to cluster B2, Phaedrus to cluster B3 and Cooper to cluster B4. Each genome contains a 
lysA gene, but both Qyrzula and Rosebush lack lysB. While both these genomes contain a different 
gene in the same location (Qyrzula gene 45 and Rosebush gene 47), these genes constitute 
Pham1989, which PSI-Blast analysis suggests is distantly related to the Pham 10 group of holins 
shown in Fig. A-3A. The location of putative holin genes in PG1, Phaedrus and Cooper is not 
known. 
C. The lysis cassettes of four phages of cluster C are shown; Rizal, ScottMcG and Spud all belong 
to subcluster C1, while Myrna belongs to subcluster C2. Each genome contains a lysA gene, but 
Myrna lacks lysB. The adjacent gene (244) is a candidate for involvement in lysis, but it is not 
related to the large family of cutinase-like proteins or other esterases. Myrna gene 245 is of 
unknown function. 
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Figure B-3 Continued 
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Figure B-3 Continued 
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APPENDIX C  

SUPPLEMENTAL MATERIAL FOR CHAPTER IV 

 

 

 

Figure C-1. Plasmid maps and live imaging of Pfrpl4-V5 transfected parasites. A. map of pLN-SP-
Pfrpl4-GFP plasmid. Transfection of this plasmid into P.falciparum (Dd2 strain) resulted in cytosolic 
expression of the PfRPL4-GFP protein (see panel C). B. map of pLN-ACP-Pfrpl4-V5 plasmid. Parasites 
transfected with either this plasmid or pLN-ACP-Pfrpl4-GFP (not shown) revealed no protein expression 
by Western blot (data not shown). C. Live imagingof Dd2 parasites transfected with pLN-SP-Pfrpl4-GFP, 
showing cytosolic expression of the PfRPL4-GFP fusion with a N-terminal signal peptide sequence from 
the ACP protein. DNA was stained using DAPI. Images were taken on an Olympus IX81 inverted 
microscope at 90× magnification, as described (Nkrumah et al. (2006) Nature Methods 3, 615-621). 
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Figure C-2. Amino acid sequence alignment of the ribosomal protein L22. The aligned sequences are 
from Plasmodium falciparum (P. falcip), Taxoplasma gondii (T. gondi), Staphylococcus aureus (S. 
aureus), Streptococcus pneumoniae (S. pneumo), Escherichia coli (E. coli) and Chloroflexus aurantiacus 
(C. aurant, an aerobic facultative bacterium that can photosynthesize in anaerobic situations). The long 
amino terminal extension of this protein in P. falciparum and T. gondii is not shown. Conserved residues 
are indicated in yellow shade, whereas the red shade shows the homology between these protein 
sequences. 
 

 

 

 

Table C-1. Antimalarial IC50 values in 48 h and 96 h drug assays*

 
     *Assays were performed in duplicate on six to eight separate occasions 
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Table C-2. Functional PfCRT and PfMDR1 haplotypes of recombinant lines and parents* 

 

*IC50 values (Mean±SEM, nM) of these parasite lines for AZ are also indicated. C-1Dd2, C-17G8, 
C2GCO3, SDDGCO3 and SDD3BA6 are control lines. 1. Lakshmanan et al. (2005) EMBO J. 24, 2294-
305; 2. Sidhu et al. (2002) Science 298, 210-13;3. Sidhu et al. (2005) Mol. Microbiol. 57, 913-26. 
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Table C-3. Antimalarial response of AZ-resistant lines* 

 

*IC50 values (mean±SEM) were calculated from 96 hr assays performed 
on 4 to 6 separate occasions in duplicate. 
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