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ABSTRACT

Discrete Triangulated Meshes for Architectural Design and Fabrication. (May 2011)

Mayank Singh, B.S., Indian Institute of Technology at Roorkee;

M.S., Marquette University

Chair of Advisory Committee: Dr. Scott Schaefer

Recent innovations in design and construction of architectural buildings has led

us to revisit the metrics for discretizing smooth freeform shapes in context with both

aesthetics and fabrication. Inspired by the examples of the British Museum Court

Roof in Britain and the Beijing Aquatic Centre in China, we propose solutions for

generating aesthetic as well as economically viable solutions for tessellating smooth,

freeform shapes.

For the purpose of generating an aesthetic tessellation, we propose a simple

linearized strain based metric to minimize dissimilarity amongst triangles in a local

neighborhood. We do so by defining an error function that measures deformation

required to map a pair of triangles onto each other. We minimize the error using a

global non-linear optimization based framework.

We also reduce the complexity associated with prefabricating triangulated panels

for a given shape. To do so, we propose a global optimization based framework to

approximate any given shape using significantly reduced numbers of unique triangles.

By doing so, we leverage the economies of scale as well as simplify the process of

physical placement of panels by manual labor.
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CHAPTER I

INTRODUCTION

A. Architectural Design Process

Architectural design process begins with a set of requirements and associated con-

straints presented to an architect by a client. The architect proposes a creative design

solution, that best satisfies the initial set of requirements. The proposed design is

then handed over to a group of domain experts. These domain experts then analyze

various aspects of the preliminary design. This analysis covers the study of structural

integrity, adequate lighting, thermal comfort, acoustic reverberations, and cost lim-

itations of the design. Based on expert recommendations the architect reviews and

revises the initial design. This cycle continues until all involved groups are satisfied.

Figure 1 is a diagrammatic representation of this process.

It is noteworthy that the ever-increasing computational-processing power is pro-

moting the rapid decline of feedback time for simulation and analysis. The increase

in processing power has directly contributed to increase in the number of design

improvement iterations. Axel Kilian [Kil06], in his doctoral research, elaborates in

detail how modern design practices are being influenced by bidirectional simulation

and fabrication constraints.

This iterative improvement process also occurs in the construction phase of the

project. The focus of our work lies in the latter part of design process, that is the

analysis and optimization of design for construction purposes.

This dissertation follows the style of Computational Aesthetics.
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Fig. 1. Overview of architectural design process.

B. Digital Representation and Fabrication of Freeform Shapes for Architecture

The design process described above is common to all building shapes. We however

focus on a small subset of design shapes referred to as freeform surfaces. Unlike tra-

ditional architecture where building shapes are generated using orthogonal planes,

freeform shapes are created using smoothly curving surfaces. Figure [2] shows an ex-

ample of a freeform design created by Frank O’ Ghery. Freeform shapes are inspired

by various sources such as naturally occurring organic shapes, continuous mathemat-

ical functions, or other aerodynamic shapes.

Advances in digital modelling has made it possible to generate complex freeform

architectural designs with minimal input. Until recently such shapes were limited to

other industries such as automotive, aviation, and shipping. This recently adopted

architectural design practice has brought forward a new set of shape representation
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Fig. 2. Guggenheim Museum Bilbao, Spain is an example of free-form architectural

design using developable surface ( c©Bastian).

and fabrication challenges. Beyond digital representation of freeform shapes, we also

need to consider the equally important aspect of physical fabrication of these shapes.

Aided by cheap memory and the ease of digital data exchange between systems, we

now have exceptional computer aided fabrications techniques. However, unlike other

similar industries, the scale and material requirements of an architectural design

brings a set of unresolved problems to the existing system of fabrication.

We aim to identify and address practical problems related to the virtual design

representation as well as physical construction of freeform architectural shapes.

C. Discrete Representation of Freeform Shapes

Smart Geometry Group (SGG), a small collection of people from academia and con-

struction industry, regularly conducts workshops and symposiums to push forward

the state-of-the-art in computational tools for architectural design. Broadly speak-

ing, the idea of optimizing geometry for any given discrete constraint falls in the area

of discrete differential geometry (DDG) [AIB08, GS08, KHW05, Pol02]. Recently, a
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new field of study has emerged from the intersection of DDG and architectural engi-

neering called architectural or smart geometry [HPK07]. The idea behind this field is

to computationally engineer smart geometric structures that conform to a new set of

metrics defined by architectural design process.

Digital representation of a smooth shape requires decomposing the same into dis-

crete parts. The spatial union of these parts approximate the underlying shape. This

is an extensively studied problem in Computer Graphics [Far01]. Current CAGD

systems can efficiently segment a smooth surface (implicit or parametric) into dis-

crete triangulated representations. The triangles thus formed are nicely shaped and

well suited for finite element simulations [She96, She01, She02b]. Since the end-goal

for architectural tessellation is not to conduct simulations, these engineering based

tessellation metrics may not apply to freeform architectural shapes.

Aesthetics are vital to architectural shapes since they are built on a large-scale

and are visible to public scrutiny. This requirement guides a new set of metrics for

shape rationalization. Defining aesthetic rationalization can be a subjective choice

that varies from one project to another. The subjective nature of the problem makes

it very transient and challenging. Some challenges may also be unique to a certain

project such as packing a set of circles over a curved surface(example shown in Fig-

ure [SHWP09]). On the other hand, Carlos Séquin [S0́5] defines aesthetics using

quantifiable geometric attributes. He defines shape aesthetics by either using proce-

dural rules or via shape optimization of constrained curves and surfaces with some

associated global cost function.

Alternatively, rationalization of a shape can be guided by other factors such as

structural stability, economic concerns or merely to simplify construction related com-

plexities. Structural considerations are relatively well-defined mathematical problems

with expected numerical tolerances. Examples of such problems can be planarization
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Fig. 3. An example of triangulated (left) and quadrilateral (right) glass panels ( c©Drew

Leavy (left) and Sakena (right)).

of polygonal panels [LPW∗06, CW07], generating multi-layer geometry for a given

shape [PLW∗07], producing torsion free support structure for panels [SHWP09], or

discretization of surface into developable parts [KFMP08, PSB∗08]. The following

chapter describes these problems and associated solutions in depth.

Dennis Sheldon [She02a] in his doctoral research first studied the problems as-

sociated with rationalization of freeform shapes in the context of various material

properties. His discretization metric was guided by the analysis of mean curvature

of the underlying shape. The analysis presented by him was closely tied to the man-

ufacturing and construction tolerances of bendable metallic panels. This pioneering

work presented by Dennis Sheldon was later used by the engineering team at Ghery

Partners for the construction of Guggenheim Museum in Bilbao, Spain as shown in

Figure 2.

Rationalization of surface can also be guided by the economics of the project. For

example Eigensatz et al. [EKS∗10] approximated a surface using a small set of molds.

Each mold has an associated cost function. Planar panels are cheaper to manufacture

and transport compared to spherical and cylinderical panels. Their method aims to

balance two potentially conflicting goals - the aesthetic quality and the final cost of
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the built shape. The method is flexible and the final decision can be left for the

designer. Apart from using a set of molds for creating panels, the designer can also

choose between using triangles, quadrilaterals or other n-sided polygons for the shape.

Figure 3 shows an example of freeform surface using triangle (left) and quadrilateral

(right) panels.

Fig. 4. Beijing Aquatic Center. An example where number of unique panels were

greatly reduced( c©neutralSurface).

Another example of cost cutting is the panelization of Beijing Aquatic Center

in Beijing, China as shown in Figure 4. The initial design consisted of a set of

randomly sized panels placed over the planar facade. However due to prohibitive

cost of fabricating panels and complex construction process, the team was forced

Figure “The Great Courtyard of the British Museum” is copyright (c) 2007 by
Drew Leavy available under a Attribution-NonCommercial-NoDerivs 2.0 Generic license
(http://www.flickr.com/photos/drewleavy/786235580/) and Figure “Color changing
roof” is copyright (c) 2010 by Sakena available under a Attribution 2.0 Generic license
(http://www.flickr.com/photos/sakena/4832972895/)

Figure “National Aquatic Center (Water Cube)” is copyright (c) 2010 by neu-
tralSurface available under a Attribution-NonCommercial-NoDerivs 2.0 Generic license
(http://www.flickr.com/photos/jbergen/4521655448/)
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to redesign. The facade now consists of fewer number of unique panels repeated

over the surface. This redesign reduced manufacturing cost as well as simplified the

construction complexity.

Another principle defined for architectural aesthetics is the repetition in shape

as mentioned by E. L. Garbett’s [Gar67] treatise on the Principles of Design in Archi-

tecture. Repetition of panels for a planar surface is trivial. In past, famous architects

such as Mies van der Rohe and other fellow modernists relied on repetition via geo-

metric symmetry (rotational, reflective and translational). Construction experts have

leveraged the idea of reuse, even when the parts had varied performance requirement.

For example in case of a high-rise buildings the panels at the top would require more

structural integrity than the ones at bottom. However in view of cost it is more

effective to use the same panel everywhere.

A successful real life example of using a computational engine to improve the

aesthetics of a shape is the British Museum Great Court Roof. The roof is designed by

the architectural firm Foster and Partners along with Buro Happold as the structural

engineering firm. It was fabricated and installed by Waagner Brio. The roof consists

of a triangulated grid with double glazed glass panels supported by steel members.

The circular inner boundary of the roof as shown in Figure 5 is supported by the

Reading Room, while the rectangular outer boundary stands on the existing structure.

This roof shape is generated by sampling points in x, y plane using polar coordinates.

For each point a z value is derived using the summation of three different height

functions. Profile of the shape is shown at the bottom of the Figure 5. This produces

artifacts along the parameter lines (sharp turns) at the diagonals of the rectangular

boundary.

Williams et al. [Wil01] suggested a relaxation based method that computes forces

along the edges of the mesh. Each edge is treated as a spring in tension connecting
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Top view of the mesh (input on the left and output on the right).

Side view of the mesh (input mesh on the top and output mesh on the bottom).

Fig. 5. Mesh for British Museum Court Roof.

vertices of the mesh. He is able to remove these artifacts by relaxing the mesh. Spring

based relaxation methods are numerically unstable (as mentioned by the authors)

and frequently explode unless the time step for integration as well as the tension

coefficients for the spring are kept sufficiently small.

Inspired by the example of British Museum roof where the design team aim to

create an aesthetic mesh, and the construction feasibility analysis done in case of

Beijing Aquatic Centre we define the scope of our research as follows:
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Fig. 6. An example of a dome shaped architectural design. Right: the black lines shows

the rationalization of the original shape. Left: the same shape approximated

using only six unique triangulated panels.

D. Objectives

• The first concern is how best to create an economically viable tessellation. Our

goal is to approximate the input shape as best as possible using a very small

number of unique triangles. Along with we ensure that the spacing or overlap

between these set of triangles remains below prescribed tolerance levels. We be-

gin the process of reducing the number of unique triangles by detecting clusters

of similar triangles in the shape. For each cluster we compute a representative

triangle. We then replace each triangle in the shape with the representative

triangle of the cluster it belongs to. We do so while maintaining the output

shape as similar as possible to the input shape. Figure 6 shows an example of a

dome shaped architectural shape. The input shape is shown on the left and the

optimized output shape on the right. Each cluster is depicted using a unique

color.

• The second goal is to approximate the input shape using a set of triangles that
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Gaussian Bump Parabloid

Fig. 7. Example of simple shapes generated using our method for creating a set of

locally similar triangles.

are similar in a local neighbourhood, thus creating an aesthetic tessellation

for the shape. To do so we build an error metric that measures dissimilarity

between triangles sharing a common edge. By doing so we can write an error

function over the entire mesh. We then minimize this non-linear error function

to create aesthetically pleasing triangles. Figure 7 illustrates the result of our

method using a Gaussian bump and a Parabloid shaped mesh.
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CHAPTER II

PREVIOUS WORK IN RATIONALIZATION OF FREEFORM

ARCHITECTURAL SHAPES

In the following chapter I will briefly cover the relevant background work in the

optimization of free-form shapes.

A. Types of Rationalization

The choice of rationalization for a given shape resides with the chief designer of the

project. For a given rationalization the engineering team produces a unique beam

layout along with its structural requirements. Rationalization using triangles is a well

studied problem in Computer Graphics. Triangulated panels are inherently planar,

easy to fabricate and transport. Hambleton [DH09], while comparing triangle versus

quadrilateral based rationalization, mentions that triangles provide the highest design

flexibility at the cost of structural overhead of higher node complexity. Pottmann et

al. [PLW∗07] argue in favor of quadrilaterals over triangles based on its simplified

node complexity, reduced cost per panel, lighter support structure, and torsion free

nodes.

Quadrilateral discretization can be achieved using any one of the following meth-

ods [DH09] (a relative comparison of the following methods is provided in Table I):

• Fitted Rotational Surface: Translational and rotational surfaces are surfaces

that are generated by translating or revolving one curve around another [sec-

tion 1].

• Principal Curvature Mesh: Parametrization of surface using conjugate network

of curves, typically principal curvature lines. Liu et al. [LPW∗06] use such a
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parametrized surface to generate a planar quad mesh [section 2].

• Developable Strip Model : Use one family of parameter lines to discretize surface

into ruled strips with zero gaussian curvature. Kilian et al. [KFMP08] describe

an optimization based method to generate corresponding planar quad mesh for

an underlying developable surface [section 6].

Design Type Node Simplic-
ity

Structural
Transparency

Design Intent Material Effi-
ciency

Triangulated
Mesh

1 1 3.5 2.5

Quadrilateral
Mesh

1.5 3 2 3.5

Fitted Rota-
tional Surface

4 3.5 2 3.5

Principal Cur-
vature Mesh

4 4 4 3.5

Developable
Strip Model

3 4 4.5 2.5

Table I. Relative comparison of various types of surface rationalization as described

by Hambleton [DH09].

B. Rationalization in Context to Structural Constructability

1. Rationalization using Gaussian Curvature

Dennis Shelden [She02a] first attempted to solve the problems related to construction

of free-form shapes designed by Frank O’ Ghery. He approached the problem of dis-

cretization by analysing the Gaussian curvature of the smooth surface in context to

the flexibility of the material. He studied the structural limits of bendable metallic
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panels for cladding the entire surface. Deforming sheets aid in accommodating given

curvature, although this may come at the cost stretching the sheet in certain direc-

tions. The stretch leads to overlap and / or discontinuity amongst adjoining sheets.

This discontinuity among sheets always lies within pre-established construction tol-

erance levels.

In cases where Gaussian curvature of the surface patch exceeds the prescribed

material limits the shape is cut into disjoint pieces. The cutting is done such that the

curvature of each of resulting piece is less than curvature of the original surface patch.

Cutting the surface, or rationalization, reduces the limits on curvature, although this

comes at a cost. As more pieces are introduced, fabrication cost rises. Tangential

discontinuities introduced by rationalization also have aesthetic implications. Thus it

is critical to have the designer input when introducing breaks in the surface. Highly

rationalized surface will lead to smaller discrete pieces or panels. Higher number

of panels will add to the complexity of physical placement of panels. Also, higher

number of sheet pieces will require more attention to waterproofing strategies, since

such cases may have poor inter-sheet connectivity.

2. Planarization of Panels and PQ-Mesh

In cases where the material of choice is non-bendable such as glass, the rationaliza-

tion requires all resulting panels to be planar. Quadrangulation of freeform shapes

produces a set of non-planar quadrilaterals.

Glymph et al. [GSC∗04] used a very simple technique to generate planar quads

from smooth surface via a set of conjugate curves called Directrix and Generatix. The

directrix curves were translated along generatix without any rotation, thus producing

planar quadrilaterals, which can be used to fabricated glass and steel panels. Figure 8

shows an example of a simple curved shape along with its corresponding directrix and
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generatix curves.

Fig. 8. Example of transforming a parametric shape into planar quadrilaterals using

conjugate curves for installation of glass panels.

The need for planar panels come not only from limitations on fabrication methods

but also for facilitating transport and storage. Planar panels, triangles or quadrilat-

erals, can be easily stacked on top of one another. Liu et al. [LPW∗06] introduced a

non-linear optimization based algorithm that would slightly perturb an input quadri-

lateral mesh and create a planar quadrilateral mesh (PQ mesh). In differential geom-

etry the idea PQ meshes was first introduced by Sauer [Sau70], although its discrete

counterpart came in much later.

A quadrilateral Q can be made planar by enforcing a simple constraint such that

the sum of interior angles is equal to 2π. Additionally, Liu et al. [LPW∗06] enforces

an additional constraints to maintain proximity to the given reference surface. An

important aesthetic consideration for architectural freeform shapes is maintaining a

set of streamlines over the surface. Liu et al. [LPW∗06] do not explicitly account

for preservation of streamlines over the surface, they however have a Laplacian term

that accounts for the fairness of the surface for their non-linear optimization. Finally,
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Fig. 9. Planarization of Quadilateral panels. The quadilateral mesh on the left is a

planarized, resulting producing the mesh on the right hand side.

the function for minimization is expressed as a sum of angle constraints, closeness to

original surface and laplacian term. Mathematically,

fPQ = fangle + w1flaplacian + w2fcloseness

fangle :=
∑
i,j

(φ1
i,j + · · ·φ4

i,j − 2φ)2

flaplacian :=
∑
i,j

[
(vi+1,j − 2vi,j + vi−1,j)

2 + (vi,j+1 − 2vi,j + vi,j−1)2
]

fcloseness :=
∑
i,j

‖vi,j − yi,j‖

where vi,j is unknown and yi,j is the footpoint on the original surface Φ. w1 and

w2 are user tunable coefficients. They also demonstrated the results of their work in

context to hierarchical subdivision surfaces by alternating the use of Catmull Clark

subdivision and applying PQ perturbation. Optimizing a quadrilateral mesh such

that it forms a PQ mesh is highly dependent upon the input mesh. In order to

produce aesthetic PQ meshes, rationalization of the surface should be done such

that the network of discrete conjugate curves follow the principal curvature lines.

Figure 9 shows an example of a simple quad mesh which when optimized has planar

quadrilaterals.
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3. Circular and Conical Mesh

As an extension to PQ meshes Liu et al. [LPW∗06] describe another family of meshes

known as Circular (in 2d) or Conical (in 3d) meshes (CP meshes). A subset of PQ

meshes are referred to as Circular meshes if the planar quadrilateral in mesh have the

circumcircle property [DMP93, AIB08]. A given vertex v of a quadrilateral mesh is a

conical vertex if all four face planes touching v are tangent to a common sphere. This

is equivalent to having all four faces tangent to a common oriented cone of revolution

whose axis of revolution is collinear with the normal at the vertex v. Conical meshes

can be generated from PQ meshes by adding another constraint to the optimization

such that the opposite angles of the quad sum to π, i.e.

ω1
i,j + ω3

i,j − ω2
i,j − ω4

i,j = 0.

With the aid of various examples the authors demonstrate that the combination of

subdivision and conical/circular perturbation produces high quality meshes that are

suitable for aesthetic architectural design.

4. Multilayer Freeform Structures

A resulting implication based upon the choice of rationalization is how offset geometry

is computed for a given shape. According to Pottmann et al. [PLW∗07], computing an

offset mesh for triangulated disretization is trivial (translation and scaling), however

this is not true for a quadrilateral mesh. They also strongly advocate the use of

quadrilateral meshes for free-form architectural structures citing the following reasons:

• A triangulated structure built using glass along with steel frame will have higher

node complexity (six, as versus to four for a quadrilateral mesh).

• Cost per panel for triangulated panels is higher than quadrilaterals.
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• Torsion free nodes are preferred for construction of steel beams. According to

Pottmann et al. [PLW∗07] torsion free nodes do not exist for triangle meshes.

• Disregarding trivial cases, triangle meshes do not posses offset at constant face-

face or edge-edge distance.

Working with quadrilateral meshes, Pottmann et al. [PLW∗07] states that two

meshes (M,M′) are combinatorially equivalent if there is a 1 − 1 correspondence

between vertices and edges. Also the meshes are parallel if the distance between

them is constant throughout the mesh. In a discrete setting, parallel meshes can lead

to three different variations - vertex, edge, and faces offsets meshes. In each case the

distance between corresponding elements of (M,M′) will be a constant value d. An

alternative description of offset meshes is achieved via using discrete Gauss image

mesh(S).

S =
(M′ −M)

d
whose vertices

si =
(mi −mi)

d
can be regarded as discrete normal vectors

Now, for

• M′ to be a vertex offset mesh of M ⇐⇒ the vertices S lie on the unit sphere

S2. Circular meshes hold this property.

• M′ to be a edge offset mesh of M⇐⇒ the edges of S are tangent to S2.

• M′ to be a vertex face mesh ofM⇐⇒ the faces of S are tangent to S2. Conical

meshes hold this property.

In order to simultaneously achieve all of the above conditions in a discrete setting

Pottmann et al. [PLW∗07] suggest minimizing the following function Foffset. Note
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that this only produces an approximately offset mesh.

Foffset = λ1flaplacian(M) + λ2ffaces + λ3fvert + λ4fclose,1 + λ5fclose,2 + λ6fpar

flaplacian(M) =
∑

vertices mi

(mi −
1

deg(mi)

∑
mj∈star(mi)

mj)
2

ffaces =
∑

faces F∈M
(nF · (si(F ) − nF ))2

fvert =
∑

vertices mi

(si − ñi)
2

fclose,1 =
∑
i

dist(mi,Φ)2

fclose,2 =
∑
i

‖si‖2

fpar =
∑

edges mi,mj

‖ mi −mj

‖mi −mj‖
× (si − sj)‖2.

The fairness term flaplacian produces edge offset properties for a given mesh M. For

the face offset, the function ffaces minimizes the angle difference between normal of

the face and its corresponding set of vertices on the Gauss image. The vertex offset

function fvert minimizes the difference between the vertex on Gauss image and the

corresponding vertex normal (ñi) on input mesh Mi. fclose,1 and fclose,2 maintain

proximity to the input mesh(M) and its Gauss image(S) respectively. fpar expresses

the parallelism of input mesh(M) and its Gauss image(S). Finally, λ1,2,3,4,5,6 are

coefficients to manipulate the weight of each function. This non-linear system is

solved using Gauss-Newton method with Levenberg–Marquardt (LM) regularization.

5. Freeform Surfaces from Single Curved Panels

In order to simplify the construction of architectural freeform shapes, Pottmann et

al. [PSB∗08] introduced the use of semi-discrete surfaces. These semi-discrete surfaces

are continuous in one direction and discrete in the conjugate direction, i.e. the surface

has continuous parametrizations in one direction and discrete in the other. The
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surfaces are generated using an optimization based framework in conjugation with a

B-spline representation.

A coarse PQ mesh under refinement produces a conjugate curve network. How-

ever, if the PQ mesh is refined in only one direction it produces developable strip

model (d-strip). A D-strips model when joined together along edge curves pi(u) can

be interpreted using a b-spline

xi(u, v) = (1− v)pi(u) + vpi+1(u)

pi(u) =
∑
j

B3(u− j)bi,j

where parameter v is parallel to the ruling on the strip and u in the conjugate di-

rection. B is the b-spline basis function for integer knots. bi,j is the control point

closest to the point pi(j) on the curve.

In order to approximate a given surface Φ by a D-strip model, the control points

are subjected to a non-linear optimization, described as follows:

λ1fprox + λ2fboundary−prox + λ3fdev + λ4ffair−edge + λ5ffair−rulings

This minimization function accounts for closeness to Φ, closeness to the boundary

curve of Φ, developability of the strips, and the fairness of the optimized surface. The

proximity terms compute the distance to the tangent plane and the boundary of Φ.

Developability (λ3fdev) along a strip is maintained by keeping the quad planar. Fair-

ness along the edges of a developable strip is maintained by minimizing the bending

energy (or in this case the second derivative).

λ4ffair−edge =
∑
i

∫
‖p̈i(u)‖2du,
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And fairness of rulings is achieved by minimizing via discrete differencing

λ5ffair−rulings =
∫

(
∑
‖pi+1 − 2pi + pi−1‖)du.

6. Curved Folding

A developable surface is a ruled patch that can either be planar or curved (cylinder,

cone or tangent surfaces). All developable surfaces have a property of zero curvature

in the direction of the rules, thus producing a zero gaussian curvature. The freeform

shapes of Guggenheim Museum in Bilbao, Spain in Figure 2 is an examples of curved

developable surface.

Inspired by idea of approximating a freeform surface with a sequence of ruled

surfaces, Kilian et al. [KFMP08] introduced an optimization based computational

framework for the design and construction of developable surfaces using PQ meshes.

Their method practices a minimization that alternates between maintaining planarity

of quadrilaterals and generating minimally bending rules for a developable patch

based upon user defined creases. To do so, the authors define bending energy that

encapsulates curvature in the direction perpendicular to the rules, using discrete

differences of normals. The method also estimates appropriate direction of rules

based upon curvature of the patch. As a measure of convergence the optimization

stops when the distance between patches is below a user-defined threshold.

Mathematically a vertex is considered developable if the distance between points

on its geodesic circle and euclidian circle lie within a given threshold. The proposed

method estimates rulings based upon predominant curvature direction. Ridges and

valleys [OBS04] are marked as curve folds, or boundaries for developable parts. Ruling

direction computed at each vertex is extended until it hits a crease (or boundary).

Once the direction of rulings is determined for a given patch, it is flattened into a
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Fig. 10. Selfridges Building, Birmingham exemplifying the use of circle packing

( c©Welshdan).

plane, using as rigid as possible parametrization. This planar patch is now used to

generate an initial coarse quad dominant mesh.

The shape of the planar faces (P ) and the position and orientation of corre-

sponding polygonal soup (M) are optimized in an alternating manner. Optimization

converges once the spacing between vertices of M are within a prescribed threshold.

Optimization for M minimizes the following function:

minimize F = Fvert + λFfit + µFfair

where Fvert is vertex laplacian, Ffit approximates the input surface and Ffair mini-

mizes the bending energy of the developable patch. The bending energy is computed

using the curvature of the patch (Ebend = difference of normals in gauss image /

distance between vertices).



22

7. Surface Packing Design

Inspired by the circle packing like arrangement in the facade of Selfridges Building,

Birmingham as shown in Figure 10 , Schiftner et al. [SHWP09] introduced the concept

of Circle Packing (CP) meshes. CP-meshes exhibit the property of aesthetic triangles

(more or less equilateral) along with producing a torsion free structural support for

panel inserts. The idea behind CP-mesh is to have the incircle of a triangle touching

the incircles of the adjacent triangles at a common point along the shared edge. For

a given pair of triangles v1, v2, v3 and v1, v3, v4, we can achieve circle packing if,

l12 + l34 = l23 + l14

where lij is the edge length between vertex vi and vj. Using this simple constraint

along with maintaining proximity to the input reference mesh, Schiftner et al. [SHWP09]

suggesting using a nonlinear optimization to transform an ordinary triangulated mesh

into a CP-mesh. The optimization function is stated as:

F = λ1fcp + λ2fprox + λf∂
prox

where fcp measures the incircle packing property, fprox maintains the input shape,

and f∂
prox maintains the boundary to the input shape.

fcp =
∑

interior edges vi,vj

(lik + ljm − lkj − lim)2

where (vi,vj,vk) and (vi,vj,vm) are faces adjacent to the edge vi,vj. Alternatively,

the radii for incircle can be precribed and the constraint condition can be rewritten

Figure ”Selfridges Building @ The Bullring Birmingham” is copyright (c) 2010 by
Welshdan available under a Attribution-NonCommercial-NoDerivs 2.0 Generic license
(http://www.flickr.com/photos/welshdan/4728379862/)
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as:

fbp =
∑

interior edges vi,vj

(‖vi − vj‖ − ri − rj)2

Derived Structures: Apart from producing aesthetic meshes, CP triangulated

meshes produce torsion free beam layout. Dual of CP-meshes leads to torsion free

hexagonal meshes. The hexagons can be filled by inserting a vertex in the center and

splitting the face such that it has three quads. Subsequent optimization can then

move vertices in such a manner that it penalizes non-planarity of quads. CP-meshes

can also be used to generate another aesthetic variant called tri-hex meshes. As stated

in their explanation, the main limitation of this process is that the optimization can

succeed only if the mesh is topologically equivalent to a sphere or disk, and fails for

surface with higher topological complexity.

8. Discretization of Freeform Surface into Finite Set of Panels

Rationalization of any freeform surface will produce a discrete set of panels. Physical

construction of thus generated panels could be prohibitively expensive if each panel

would require a custom mold. Eigenstaz et al. [EKS∗10] suggested an optimization

based framework that would minimally deform the shape such that each panel would

be a part of a small subset of predefined molds, thereby reducing the production cost

of panels. According to Eigenstaz et al. [EKS∗10] each panel would fall in one of

the following categories : planar, cylindrical, paraboloid, torus patch or generic cubic

patch. Obviously, each mold will have an associated cost.

Any given freeform surface F can be approximated with the union of P =

{P1, · · · , Pn} panels. According to Eigenstaz et al. [EKS∗10] the quality of approxi-

mation depends upon two critical factors - divergence (spatial gap between panels)
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and kink angle (jump in normal across adjacent panels). Let us assume that we have

M = {M1, · · · ,Mm}, molds where m is significantly less than n, along with an as-

signment function A that assigns each one of the n panels to one of the m molds.

The assignment function (A : [1, n] → [1,m]) consists of a distance metric and an

associated rigid transformation. Each mold can an associated cost function c(Mk).

The total cost of manufacturing the freeform shape can computed as follows:

cost(F,P ,M, A) =
m∑
k=1

c(Mk) +
n∑

i=1

c(MA(i), Pi).

Entire framework alternates between discrete (local) and continuous (global)

optimization steps. The local optimization computes the assignment function A while

the global optimization slowly deforms the underlying surface to match the assigned

panels.

In order to minimize the error when using the assigned panels, the non-linear

global optimization attempts to minimize the following: deviation from the input

surface, the divergence from the curve network, the kink angle between panels, fairness

of the curve network, and panel centering. Mathematically, it can be expressed as

linear combination of above mentioned constraints:

E = αfitEfit + αdivEdiv + αkinkEkink + αfairEfair + αcenEcen

Each one there terms are further described as follows. Efit refers to the deviation of

curve network from the reference input surface.

Efit =
L∑
l=1

‖cl − fl‖2,

where cl are the sample points on the curve network C and fl is the closest point on

F from cl. L is the number of samples used. Constraint for minimizing divergence

between the curve network samples and adjacent aligned mold surfaces is expressed
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as

Ediv =
L∑
l=1

‖cl − xi(l)‖2 + ‖cl − xj(l)‖2

xi(l) is the closest point to cl on the aligned mold surface M∗
i(l). Point xj(l) is defined

analogously. The condition for tangential continuity (or kink angle) is described as:

Ekink =
L∑
l=1

‖n(xi(l))− n(xj(l))‖

where n(xi(l)) is the normal vector of the aligned mold M∗
i(l). Although Efit may

keep the curve network close to the underlying surface, it may cause undesirable

undulations and large tangential motion of the boundary curves. A fairness term

(Efair) is added to account for normal displacement.

Efair =
∑

(j1,j2)∈C
(dj1 − dj2)2

where (j1, j2) is an index pair denoting an edge of the polygonal representation of

the curve network C. Along with maintaining quality curve network, we would like

to center the panel. Thus an additional term for centering panels is added as

Ecen =
n∑

i=1

‖bi − pi‖2

Here, bi is an approximation of the barycenter of the segment Si computed as the

average of all the adjacent curve segment samples, and pi is the projection of bi onto

the surface normal at the center of the aligned mold M∗
i(l).

An exhaustive search for an assignment function A can be a critical bottleneck.

This search lies in non-linear space. In order to ease the computational complexity,

the authors introduce a 6D function that computes the distance between a panel and

a mold type.
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9. Equivalence Classes for Quadrilaterals

The method described by Eigenstaz et al. [EKS∗10] reuses a small subset of molds to

generate non-congruent panels. A logical extension is to be able to take advantage

of economy of scale and design a set of congruent panels that can cover the entire

surface. This is slightly more difficult since it would require prior knowledge of size

of panels as well as the number of unique panels.

Fu et al [FLHCO10] resolved this problem using non-planar quads. They initiate

their non-linear global optimization with large number of unique panels (equal to the

number of quads in the shape) and reduce the number such that the spacing between

panels lie within construction tolerance. The entire optimization can be termed as a

linear combination of following terms:

minF = µ1Fd + µ2Ff + µ3Fe + µ4Fa + µFo

where Fd is distance to original surface term that helps in closely approximating

the input shape, Ff is a laplacian fairness term (common to all such optimization

techniques), Fe minimizes the difference between edges lengths of adjacent panels, Fa

is minimizes the difference between the sum of lengths of diagonals of the quad to

the canonical quad and finally Fo is a signed volume term used to maintain the final

shape of non-planar quad as close as possible to the canonical quad. The canonical

quads are computed as an average of all the quads in the same cluster.
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CHAPTER III

EQUIVALENT CLASSES FOR TRIANGLE MESHES

We aim to simplify the fabrication process for a given architectural freeform shape.

Unlike the set of methods described in Chapter II our method operates only upon

triangle rationalization. We do so since triangles are inherently planar, easier to fab-

ricate from a single mold and can be stacked on top of each for ease of transportation.

Figure 11 shows an example of freeform architectural surface approximated using only

six unique triangles (originally the surface has 576 triangles). They also provide the

designer with utmost design flexibility as argued by Hambleton [DH09].

We reduce the fabrication complexity by approximating a given shape with a re-

duced set of unique planar panels. We use a global linear optimization based method

to generate a small set of congruent panels that approximate a given triangulated

mesh. Figure 12 provides a brief overview of the entire method. We begin by detect-

ing a set of triangles that are similar to each other. Each triangle in the set is assigned

to a single cluster. There can be more than one cluster of similar triangles. For each

one of such triangle clusters we compute a representative triangle. This representa-

tive or canonical triangle replaces all the triangles in the corresponding cluster. Thus

creating a mesh of disconnected and/or overlapping canonical triangles. We use a

Poisson based global optimization to reduce the spacing and overlap between canoni-

cal triangles. We continue this process of canonical triangle computation and surface

optimization until the error falls below construction tolerance level.

Tiling or approximating a shape with repeated units is a well studied problem,

computationally and otherwise. Grünbaum, Branko and Shephard [GS86] presented

the combinatoric theory behind 2D periodic tiling. Their example set was limited

to only planar patterns. Craig Kaplan in his doctoral dissertation [KS04] presented
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Fig. 11. Example of a dome shaped architectural roof originally consisting of 576 tri-

angles. The shape shown above is approximated with only 6 unique triangles.

an interactive computational engine to create a variety of planar Islamic patterns.

Creating 2/3-D mosaics is also a relevant body of work. Kim and Pellacini [KP02]

first presented a technique to auto-generate 2D mosaics by covering the entire image

with repeating units. Elber and Wolberg [EW03] improved upon 2d mosaics by taking

into account the curvature lines. The concept of using tiles are extended to 3D by Lai

et al. [LHM06]. They used a set of equi-size quadrilateral pieces along with grout to

cover the entire 3D surface. Their approach even though produces aesthetic mosaics

uses significant amount of grout. This may not be feasible for building construction

purposes. Passos and Walter [DPW08] extended this work so as to use variable sized

tiles. Even this approach requires significant amount of grout to hold the panels in

place.
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Fig. 12. Overview for creating a set of equivalence classes.

A. Distance Between Two Triangles

We begin with a closed or open (with boundary) triangle mesh along with an initial

specification of number of clusters (n) and construction tolerance (ε). The ε-tolerance

is specified as a percentage of the diagonal of the bounding box of the mesh. We

aim to approximate the shape within the specified tolerance limit using n-distinct

equivalence classes of triangles.

In order to compute clusters of similar triangles we need to define a similarity

metric between two triangles. Given two triangles A and B with vertices a1, a2, a3

and b1, b2, b3 respectively we measure similarity as the sum of distance between the

corresponding vertices. However before we can measure the distance between corre-

sponding vertices we need compute rigid transformation that maps triangle A onto

Rigid transformation consists of rotation and translation. It maintains the angles
and length of edges of the triangle under transformation.
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the triangle B. Apart from computing the rigid transformation we also consider the

set of six possible correspondences for mapping the vertices of triangle A to B. We

select the correspondence that best minimizes the distance between the two trian-

gles. The six correspondence include rotation as well as reflection of the triangle. Fu

et al [FLHCO10] also used a similar metric for measuring the distance between two

quadrilaterals.

Mathematically the distance between the two triangles P and Q is expressed as

D(P,Q) = min
RTR=I,T,j

3∑
l=1

|RPperm(j,l) + T −Ql|2 (3.1)

where R and T represent the rigid transformation. perm(j, l) represent the lth el-

ement of the jth permutation of the indices {1, 2, 3}. We compute the best rigid

transformation R and T using the method proposed by Arun et al [AHB87], where

the translation is given by

T = Q̄−RP̄

where P̄ and Q̄ represent the centroids of the two triangles. We now represent the

vertices as

P ∗l = Pl − P̄

Q∗l = Ql − Q̄

and define M to be

M =
3∑

l=1

P ∗l (Q∗l )
T .

The rotation matrix R is given by

R = UV T



31

1: All points are assigned to a single cluster. 2: Using non-linear search we compute the canonical
triangle for this cluster.

Fig. 13. First and second steps in clustering points.

3: Now we select the point that has the maximum
distance from the center (canonical) of the cluster
and assign it to a new cluster.

4: Recompute the distance of all points to the cen-
ter of two clusters. Assign each point in the space
appropriately.

Fig. 14. Third and forth steps in clustering points.

where

M = UΣV T

is the singular value decomposition of M. If Det[M ] < 0 we negate the vector in V

corresponding to the smallest singular value.

This distance metric D(P,Q) is symmetric in P,Q and has the property that if

one is the rotation or reflection of the other, the distance is returned as zero. If the

panels need to be oriented then we can drop the three correspondences that account

of reflection of triangles.
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5: Now we have split the space into two clusters. 6: We repeat this process of cluster generation until
pre-defined number of clusters are created.

Fig. 15. Fifth and sixth steps in clustering points.

B. Clustering of Triangles

Now that we understand the distance metric between two triangles, we can detect a set

of similar triangles and assign them to a single cluster. Once the mesh is partitioned

into discrete clusters we can represent each cluster with a representative triangle

referred to as canonical triangle. This canonical triangle attempts to minimize the

squared sum of distance to all the triangles in the set. The function is expressed as

min
Cj ,ind

∑
i

D(Pi, Cind(i)) (3.2)

where Cj is the canonical triangle for the jth cluster and ind(i) refers to the cluster

that triangle Pi is assigned.

In order to identify clusters of similar triangles we use a well-known clustering

algorithm called adaptive k-means clustering [AV07]. Figure 13, 14, and 15 illustrates

the k-means clustering process via circles that represent triangles in 3d space. The

clustering process is preformed in an alternating fashion. First we assume the Cj

are fixed and optimize ind by assigning the Pi to the closest canonical polygon as

measured by the distance function D(Pi, Cj). Then we assume ind is fixed to optimize

for Cj.

The k-means clustering requires computation of cluster center. In our case the
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center is represented by the canonical triangle. The distance metric in equation 3.1

is a highly non-linear function. Thus we employ a non-linear optimization using the

Levenberg-Marquardt algorithm [FJNT04] to search for canonical triangle Cj for each

cluster. The canonical triangle is a reference frame independent triangle. Instead

Fig. 16. A 5-Point tensile membrane with varying number of clusters. On the left

hand side the entire shape is approximated with a single cluster. Beneath the

shape is the single canonical triangle. On the right is the same shape with 10

clusters. The 10 canonical triangles are shown at the below the shape.

of nine-floating point numbers we represent the triangle using only three degrees

of freedom. Now even though the search for canonical triangle is non-linear, our

search space is limited to three unknowns, thus making the problem computationally

tractable. There are multiple ways to represent a triangle with three degrees of

freedom. We choose to do so using the vertices of the canonical triangle Cj as follows:

Cj,1 = (0, 0, 0)

Cj,2 = (x2, 0, 0)

Cj,3 = (x3, y3, 0).

Typically k-means clustering begins with random seeds. However since we use the
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variant proposed by [WYZG09], the process of clustering is deterministic and tends

to produce better results. We begin our non-linear search with a single cluster and

run the k-means clustering to convergence. We then iteratively add a new cluster

corresponding to the polygon with the worst error in the summation from Equation 3.1

and repeat this process until n clusters have been added. Figure 16 demonstrate the

results of varying clusters using a 5-point tensile roof. As shown in Figure Figure 17

the error drops rapidly as initial clusters are created but slows down significantly as

more clusters are added. The spacing and other overlap between canonical triangles

is significantly reduced as the number of clusters is raised from 1 to 10. Figure 18, 19

and 20 show similar results.

Fig. 17. A graph showing how the error drops as we increase the number of clusters.

Note that the rate of error drop diminishes very rapidly after the 5th cluster

is created.
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1 Cluster 5 Clusters

Before global optimization

After global optimization

Fig. 18. Bean with 1 cluster on the left and 5 clusters on the right size both before

and after optimization.
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10 Clusters 20 Clusters

Before global optimization

After global optimization

Fig. 19. Bean with 10 clusters on the left and 20 clusters on the right size both before

and after optimization.
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1 2

3 4

5 6

Fig. 20. Clustering for architectural roof. Clockwise from top shows the number of

clusters in color along with the shape. Note that as the number of clusters

grow, the spacing and overlap between triangles diminishes.
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C. Global Optimization

Using the rigid transformation described in equation 3.1 we can replace each triangle

in the mesh with its corresponding canonical triangle. This produces a disconnected

mesh of canonical triangles, where the number of unique triangles is equal to the

number of clusters. The spacing and overlap between transformed canonical triangles

diminishes as we raise the number of clusters. Theoretically, the error would be zero

if each triangle is assigned to its own cluster. However we aim to reduce this spacing

and overlap between canonical triangles while keeping the number of clusters as low

as possible.

1. Poisson Based Optimization

For a given assignment of triangles to clusters and the transformed canonical polygons

Ĉind(i) we attempt to a find a surface whose triangles match the canonical triangle

mesh. Yu et al. [YZX∗04] tackled a very similar problem in context of mesh deforma-

tion. They solved the problem using a global Poisson based optimization. We follow

the same approach by minimally deforming the input mesh such that the gradient

of triangle Pi matches the gradient of transformed canonical triangle Ĉind(i). The

Poisson based optimization can be expressed as a function that minimizes the sum of

difference in gradients over the entire mesh.

Eg =
∑
i

∣∣∣∇Pi −∇Ĉind(i)

∣∣∣2 ∆i

where ∆Pi is the gradient of triangle Pi and ∆i is the area of Pi.
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2. Surface Proximity

As our global optimization attempts to reduce the difference in gradients, we would

also like to approximate the input shape as closely as possible. Thus we define

a proximity metric that penalizes the global optimization if the optimized surface

deviates from the input mesh. This proximity metric also aids in avoiding a trivial

zero solution. We build this proximity metric by computing a footpoint for each

vertex in the mesh. For each triangle Pi of the current surface we compute the closest

point (xi) and normal (ni) on the input shape from the centroid of triangle Pi. The

proximity error is then defined as

Ec =
∑
i

(ni · (pi − xi))
2 .

The expression Ec allows the vertices to move freely move in the tangent plane but

would penalize if the vertices move off the surface (along the normal). For shapes with

boundaries we have an additional term that accounts for maintaining the shape of the

boundary. For each boundary vertex we compute the distance to closest boundary

edge from the input mesh and attempt to minimize this distance. For example if pl

is a vertex on the boundary of P and y1 and y2 are vertices of the boundary edge

that is closest to pl, then the boundary proximity error is expressed as

Eb =
∑
i

|pl − y1 −
(pl − y1) · (y2 − y1)

(y2 − y1) · (y2 − y1)
(y2 − y1)|2.

Eb error is summed over all the boundary vertices of P . The final global minimization

error is expressed as

minpEg + αEc + βEb

where α and β are linear weight associated with the proximity metric. Higher value

for α and β would preserve the original shape, however higher weights for α and β
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Fig. 21. Poisson based global optimization loops until convergence.

inhibit the rate of convergence. We are able to faithfully approximate the original

shapes by keeping α and β to 0.001 and 0.01 respectively. We decrease these weights

as the optimization progresses.

Our error function is quadratic and its minimum is given by the solution of a

sparse system of linear equations. The entire minimization function is expressed a

least square problem of the form

Af = b

and can be numerically solved using the conjugate gradient method. After solving

for new vertex positions of P , as shown in Figure 21, we iterate the entire process of

clustering and computing canonical triangles. This process loops until convergence.

3. Surface Fairness

The proximity metric is designed such that input mesh is closely approximated. Un-

fortunately this metric falls short of reproducing the input shape. Even though the

vertices of the optimized mesh closely approximate the input shape, the normals of

the optimized shape may not be faithful to the input shape. This causes undesired
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Without rotation 10% rotation

Fig. 22. Example of an optimized mesh showing the effect of rotating canonical tri-

angles towards the normal of the closest point on the surface. Notice how

even a small amount of rotation can fix most of the artifacts cause by surface

oscillation.

undulation in the optimized mesh. Figure 22 (left) shows an example of how even

though the geometry is closely approximated the shape has undesirable artifacts.

These artifacts can be removed if the optimized shape maintain the geometry as

well as the normals of the input shape. We can match the normals of the optimized

shape to the original shape by supplementing our our global optimization with a

non-linear term that accounts for matching normals. Doing so will inhibit the rate of

convergence of our global optimization.

Instead we maintain our global linear optimization as is and reproduce the nor-

mals of the input shape by slightly modifying the way we map a canonical triangle to

its corresponding triangle in the mesh. Let ni be the normal of the closest point p0

(on the input mesh) to pi and let mi be the normal of P k, where P k is the polygon

of the mesh in current iteration of the optimization that pi belongs to. When map-
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50% rotation 100% rotation

Fig. 23. Example of an optimized mesh showing the effect of rotating canonical trian-

gles towards the normal of the closest point on the surface. Notice that even

rotating canonical polygons by half the way produces significantly improved

results.

ping the canonical triangle Ĉind(i) using rigid transformation, additionally we rotate

the canonical triangle about the axis mi × ni by a small fraction. We do so before

performing our Poisson optimization.

Figure 23 shows how the oscillating artifacts are removed by aligning the normal

mi with ni. Figure 22 demonstrates that we can achieve very good results by rotating

the canonical triangle by only 1/10 of the angle between the two normals (ni,mi).

Larger rotations do not significantly improve the quality of results, although it does

hamper the rate of convergence for our global optimization.

D. Discussion and Results

The optimization process alternates between assigning clusters/computing canonical

triangles and performing global optimization. This process continues until the sum of
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Fig. 24. A high genus shape with 2492 polygons. The initial shape is shown on the

left and the optimized shape with 64 clusters is shown on the right.

distance between a triangle and its canonical counterpart (equation 3.2) falls below

the prescribed tolerance level (ε). As shown in Figure 26 the error drop significantly

during the initial stages of optimization. However the rate of error drop levels off

during the latter part of the optimization. If in case the optimization fails to bring

the error below the user-defined tolerance level, we simply add another cluster so as

to better approximate the triangles in the input shape. The new cluster is initiated

by the triangle with the worst error in the set. The number of clusters is highly

dependent upon the shape as well as the tolerances expected. For example a closed

shape (Figure 24) with high genus and curvature requires higher number of clusters

in comparison to an open shape with zero genus (Figure 11). Table II shows a brief

comparison of various shapes in terms of number of clusters required to approximate

the shape along with the corresponding error levels.

Our optimization is meant to run before initiating the construction phase but

only after the design has been finalized by the architect. The optimization is run
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Tris Clusters Mean Error RMS Error

Figure 11 576 6 0.033% 0.063%

Figure 16 rhs 1280 10 0.029% 0.061%

Figure 21 1724 44 0.051% 0.099%

Figure 24 2492 64 0.026% 0.050%

Figure 27 top lhs 1396 84 0.055% 0.104%

Figure 27 mid rhs 676 19 0.023% 0.045%

Figure 27 btm lhs 1800 31 0.008% 0.017%

Figure 27 btm rhs 2880 58 0.012% 0.023%

Table II. The number of clusters and error for various models. The error is of the

form mean error and RMS error in terms of a percentage of the length of the

bounding box diagonal from the initial shape.

as an offline process to generate approximate geometry. The optimization requires

n nonlinear optimizations per iteration to find the canonical polygons each of which

may be repeated several times in the k-means clustering until the assignments in ind

converge. Furthermore, we also solve a global system of equations in each iteration.

The bean shaped example shown in Figure 25 has 1792 polygons and we optimized

to 17 clusters. Initial clustering takes 499 seconds and each step of the optimization

(reclustering and global optimization) takes about 9 seconds on an Intel Core 2 6700.

A typical optimization may run for hundreds or even a few thousand iterations, though

this amount is strongly dependent on ε.

Figures 11, 16, 21, 24 and the figure 27 on p. 48 show examples of shapes that

we have run our optimization on. In all of these examples, we show the transformed

canonical polygons Ĉind(i) instead of the optimized triangle surface P so that any

gaps/overlaps are visible; though the error tolerance is set low enough that these
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Fig. 25. Example of different clustering methods. Left: the shape is partitioned into 17

clusters before running global optimization. Right: the same shape starting

with 1 cluster and incrementally adding clusters and running the optimization

to convergence each time a cluster is added up to 17 clusters.

discrepancies are not visible. Figure 16 shows an example of our optimization run

on a tensile structure where the clustering is depicted by different color polygons.

This shape has 1280 triangles and we use only 10 canonical triangles, shown on the

right of the image. We terminate our optimization based on the maximal error, the

average error for these shapes is typically far lower. For example, the mean error is

only 0.029% of the length of the bounding box diagonal.

For complex shapes such as Figures 21 and 24, more clusters are typically required

to achieve low error tolerances. Even though the number of clusters may be higher

than for other shapes, the total number of clusters is still only a small fraction of

the total number of polygons (about 2.4% in the case of Figure 24). Furthermore,

closed shapes tend to be more difficult than shapes with boundaries to optimize as

well. Closed shapes with zero error must satisfy a global constraint implied by the

Gauss-Bonnet theorem, which states that the integral of curvature for closed shapes

is a constant dependent on the genus of the surface. When boundaries are present,

the surface has more degrees of freedom to shrink or expand even when we add an

error term to maintain the shape of the boundary during optimization.
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Fig. 26. Error graph for the performing clustering before global optimization (blue)

and clustering while performing global optimization (red).

The initial number of clusters n the user specifies also has an effect on the

result of the optimization. If we start with a single cluster, run the optimization

to convergence and repeat by adding a cluster each time up to n clusters, we tend

to achieve a lower error than simply beginning the optimization with n clusters.

Figure 25 shows the difference between these two approaches and the plot of the

error is shown in Figure 26. If we begin the optimization with a single cluster, the

initial error is much higher than if we start with n. However, if we begin with n

clusters, the error converges quickly. In contrast, if we begin with a single cluster and

incrementally add clusters during optimization, we often achieve a lower total error

after reaching n clusters. The disadvantage of incrementally adding clusters is that

the canonical polygons will be very similar to one another. This effect can be seen in

the optimized shapes in Figure 25 where the polygons are more uniform in shape.
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E. Conclusion and Future Work

While our optimization works well, there are some areas that we would like to improve

in the future. Outliers may be a problem for our optimization where the clusters are

relatively tight except for a few triangles of the surface. By identifying and removing

these outliers from the optimization we may be able to use fewer repeatable clusters

at the cost of having a small percentage of the polygons as custom shapes.

Unlike Eigensatz et al. [EKS∗10], we do not explicitly account for aesthetic con-

siderations such as preservation of streamlines over the surface. Conforming to the

visual appearance of input mesh can be an additional constraint for our global opti-

mization. Although this may come at a cost of slowing down the rate of convergence.

Also for shapes such as Stanford Bunny (Figure 27 on p. 48 Top-RHS) defining as

well as detecting streamlines will be a non-trivial task.

Finally, we would like to incorporate n-gons into our optimization instead of sim-

ply restricting ourselves to triangles though doing so may be complex. In terms of

practical construction, these n-gons will typically need to be planar surfaces [LPW∗06].

The constraints for planar quad meshes are already non-linear and will certainly harm

the convergence of our method, possibly requiring substantially more clusters.
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Fig. 27. Final results of various shapes with different number of clusters. The details

of each shape are summarized in Table II.
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CHAPTER IV

AESTHETIC TRIANGLES

An extensive collection of research work in Computer Graphics aim to create aesthetic

meshes using a set of good triangles [She96, She02b]. The primary motivation behind

creating such a mesh is to be able to conduct geometry dependent discrete finite

element simulations (FES) in a stable and efficient manner. High quality meshes for

FES aim to maximize the minimum angle of each triangle in the mesh. Such a mesh

is isotropic in nature and visually all triangle aim to be roughly equilateral.

We wish to take an alternative approach to the problem of generating a set of

good triangles by broadening the definition of aesthetic meshes. While maintaining

the visual quality of input mesh we aim to alter triangles that are dissimilar in their

local neighbourhood. For example if we have a skinny or small triangle adjacent to

a large triangle, we aim to simultaneously deform both triangles minimally such that

they are visually similar. We do so by introducing a skew error metric that measure

dissimilarity of triangles across a shared edge. The error function for a given shape is

defined as the cumulative sum of this skew error metric measured over all the edges

sharing a pair of triangles (i.e. excluding boundary edges). We then optimized the

shape so as to minimize our non-linear error function. Figure 28 shows two examples

of an architectural shape optimized using our error metric. Note that in both cases

the shape of triangles vary smoothly over the surface.

Our approach primarily focuses towards generating meshes for freeform architec-

tural shapes. Unlike other applications in Computer Graphics (CG), freeform shapes

for architectural buildings are massive in scale and the mesh stands in public eye, thus

making the aesthetics an imperative aspect of the final shape. These architectural

shapes are created by architects or designers and it is critical to maintain features
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Fig. 28. Example of an optimized dome shape architectural roof highlighting the dif-

ferent between using the two alternatives (reflections only on the left and

reflection and rotation on the right) for for our strain based error metric.

such as boundary of the shape, parameter lines, and topology of the original shape.

Our method preserves both the input geometry and topology.

Our skew based error metric is similar to the linearized strain which is com-

monly used while studying the deformations of physical objects in Computer Graph-

ics [ITF04, WRK∗10]. Strain for a physical object is measured as deformation repre-

senting the displacement between particles in the body relative to its reference length

or size. In our context, we measure deformation by mapping adjacent triangles, that

share a common edge, onto each other. The deformation of one triangle is measured

using the shape of the other as a default state or rest pose. This measurement is

performed in a symmetric manner such that deformation of each triangle is measured

using the other as the rest pose. We illustrate the effectiveness of our strain based

mesh fairing method using a set of models with varying curvature and feature size in

section H.

To summarize, as a part of this work we propose a simple edge based error metric
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to quantify dissimilarity between a pair of triangles. We will also present a rotation

minimizing simplified form of this metric expressed using a combination of edges and

areas of the two triangles. We demonstrate the effectiveness of this metric via a non-

linear optimization based solver. Additionally, we also provide a closed form analytic

Jacobian of the error function so as to be computationally efficient for large meshes.

A. Relevant Work

Williams et al. [Wil01] proposed a simple spring relaxation based method for creat-

ing a set of aesthetic triangles. Initial mesh for the British Museum Court Roof was

generated by tessellating a regularly sampled 2d parametric function with associated

height value. The method relaxes the mesh by preforming a discrete differencing of

vertices along the parameter lines. It also takes into account the stipulated maxi-

mum triangle size for the glass panels. Even though this method was successful in

generating the resulting mesh, the authors mention that it is numerically unstable

and explodes unless the time step as well as the spring tension is kept sufficiently

small.

Shewchuk [She02b] describes a comprehensive set of attributes to measure the

quality of triangles in a mesh. His work compare and contrast triangle quality both in

terms of aesthetics and stability for performing finite element simulations. The most

commonly used method for generating quality triangles is via Delaunay triangulation.

This method maximizes the minimum angle for all the triangles in the mesh, hence

avoiding skinny triangles. Detailed references for fundamental notions, algorithms,

and applications are available with Aurenhammer [Aur91] and Okabe et al. [OBSC00],

Centroidal Voronoi Tessellation (CVT) [DFG99] is a very commonly used simple

and stable method for generating high quality isotropic triangles. The method consists
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of interleaving Delaunay triangulation with optimization of the triangle domain using

Lloyd’s algorithm. During Lloyd’s iteration, each vertex in the mesh is moved to the

center of its Voronoi cell. This iterative alternating technique reduces the quadratic

error described in equation 4.1.

ECV T =
∑

i=1···N

∫
Vi

‖x− xi‖2dx (4.1)

where xi are the vertex position and Vi is the local voronoi cell associated with the

vertex xi. A variation of CVT was introduced by Chew [Che87] where so-called

Steiner points were inserted to limit the size of triangle edges below a given user-

defined threshold. Ruppert [Rup95] and Shewchuk [She01] extended Chew’s [Che87]

method to account for triangle size. The associated size factor for the triangles is

modulate manually or defined using spatial characteristics such as distance to the

medial axis of the mesh. In order to generate meshes over a 3d surface a variant

of CVT is used referred to as constrained CVT (CCVT) [DGJ02] or restricted CVT

(RCVT) [YLL∗09].

CVT and variants thereof tend to produce triangles that are very close to being

equilateral. We define our metric such that it would return a zero error if all triangles

are equilateral. Our skew-based error metric will also return a zero error in cases

where all triangles are not equilateral.

For example let the set of triangles shown on the left hand side of Figure 29

be input for both CVT and our method. The mesh in the middle of Figure 29

is generated as a result of performing CVT over the input domain. Note that all

triangles are roughly equilateral. Our method will return a zero error for the mesh

illustrated in the middle of Figure 29. Mesh on the right side of Figure 29 is produced

as a result of performing our skew based optimization over the input domain. The

error for this mesh is zero as well. However the triangles in the mesh on the right
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Fig. 29. The input mesh is shown on the left hand side. In the middle is the result of

optimizing the input mesh using CVT like methods. On the right hand side

is the input mesh optimized using our method. Our method returns a zero

error for both meshes in the center as well the one on the right hand side.

Note that the shape of triangles in the mesh on the right hand side and in the

middle is distinctly different.

side of Figure 29 are not equilateral. In a sense we aim to broaden the definition

of aesthetic triangles such that it would return a zero error not only for a set of

equilateral triangles but for other shape and size triangles as well.

B. Skew Transformation

Presuming that we are given a correspondence between the vertices of two triangle P

and Q as illustrated in Figure 30 we can map P onto Q in a congruent manner using

an affine transformation defined as

A(P,Q) =
3∑

`=1

p∗` (q∗` )T (4.2)
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Fig. 30. The error metric operates upon a shared edge e1, e2 with triangle P and Q

on either side.

where p∗` and q∗` are the centroids of triangle P and Q respectively. The affine transfor-

mation (A(P,Q)) between P and Q is a set containing rotations, translations, dilations,

and shears. Here the translation is given by

T(P,Q) = q∗ − p∗ · (A(P,Q)).

We factor the affine transformation mapping P onto Q into two parts. The first part

transforms P onto Q in a rigid manner, where the length of edges and area of triangle

P are preserved. The second part deforms the triangle P such that the vertices of

P are co-located with the vertices of triangle Q. Mathematically, this relationship is

expressed as

A(P,Q) = R(P,Q) · S(P,Q),

here R(P,Q) is the rigid transformation that consists of only rotation and reflection,

while S(P,Q) is referred to as skew transformation. A similar formation was used by

and Irving et al. [ITF04] and Wicke et al. [WRK∗10] while computing deformation

gradient of a tetrahedron. We can compute the rigid and skew transformation via

singular value decomposition of A(P,Q) expressed as

A(P,Q) = UWV T = (UV T )(VWV T )
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where U and V are orthogonal and W is diagonal with all its diagonal entries positive.

The rigid transformation (rotation and reflection) is computed as

R(P,Q) = UV T .

If det(R) < 0, we simply negate the vector in V corresponding to the smallest singular

value. The left over skew transformation is defined as

S(P,Q) = VWV T

Note that linearized strain matrix is defined as ε = V (W − I)V T by Wicke et

al. [WRK∗10]. Now our skew transformation can be simply expressed as

S(P,Q) = R−1
(P,Q) · A(P,Q) = RT

(P,Q) · A(P,Q)

since R−1 = RT .

C. Skew Error Metric

We define the error between triangle P and Q as the magnitude (Frobenius norm) of

skew or deformation required to map one onto other. The error is expressed as

Err(P,Q) = |I − S(P,Q)|F = |I −RT
(P,Q) · A(P,Q)|F . (4.3)

Note that the error in equation 4.3 is zero if the triangle P maps perfectly onto Q.

Thus if both triangle P and Q are equilateral the error will be zero. For a given edge

i, we consider a symmetric error by taking into account the reverse mapping as well.

The final error for an edge i shared by the triangles P and Q is expressed as

Erri = Err2
(P,Q) + Err2

(Q,P ).
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Based upon this error metric we define a minimization function over the entire mesh

as

Es = min
n∑

i=0

Erri, (4.4)

where n is the number of edges in the mesh that share a pair of triangles on either

side.

D. Minimizing Rigid Transformation

We simplify our error function as described in equation 4.3 by minimizing the rigid

transformation. To do so we project the pair of 3d triangles P and Q into a 2d plane.

We are able to perform such a projection because our error function is invariant under

orthogonal transforms. By projecting the triangles into 2d plane we reduce the affine

and the rigid transformation to a 2×2 matrix. Therefore rewriting the error function

Err(P,Q) as defined in equation 4.3 between two triangles P and Q as

Err2
(P,Q) = |I −

 c −s

s c

 ·
 a0 a1

a2 a3

 |2F . (4.5)

We minimize the rigid transformation in the above error expression (equation 4.5)

and compute the values of c and s as

a0 + a3√
(a0 + a3)2 + (a1− a2)2

and

a1− a2√
(a0 + a3)2 + (a1− a2)2

respectively. Based upon the above values of c and s, we simplify the skew error

function (Err2
(P,Q)) between P and Q as

2 + a02 + a12 + a22 + a32 − 2
√

(a1− a2)2 + (a0 + a3)2. (4.6)
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P
p2 p1

p3

P

Q

p1 p2

p3

q1 q2

q3

Q

q1 q2

q3

Fig. 31. Two different alternatives to map triangle P (p1, p2, p3) onto Q(q1, q2, q3). On

the left is the reflection mapping and on the right side is the rotation mapping.

He et al. [HSH10] defined the same solution as described in equation 4.6 in context

of as-rigid-as-possible surface parametrization. This formulation expresses our error

function in a manner such that it only requires us to compute affine transformation

between triangles P and Q as mentioned in equation 4.2. Now even though affine

transformation requires inverting a matrix, it is only a 2× 2 matrix and can be done

easily and efficiently. We can compute the error Err(Q,P ) for reverse mapping by

simply inverting A(P,Q), a 2× 2 matrix.

E. Mappings

So far we have presumed that a correspondence is provided between vertices of triangle

P and Q. For a given pair of triangles P and Q as shown in Figure 30 with vertices

(p1, p2, p3) and (q1, q2, q3) respectively let there be a shared edge between the vertices
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(p1, p2) and (q1, q2). Figure 31 highlights the two alternatives for mapping vertices

of P onto Q that take advantage of the shared edge. The left side of the Figure 31

illustrates a mapping where a reflection of triangle P is mapped onto Q such that p1

is mapped to q1, p2 is mapped to q2 and p3 is mapped onto q3. Henceforth we will

refer to this mapping as reflection mapping between P onto Q. The right side of the

Figure 31 shows a mapping between triangle P and Q where triangle P is rotated

and reflected such that p1 is mapped to q2, p2 is mapped to q1 and p3 is mapped

onto q3. We will refer this mapping as rotation mapping between P and Q.

Input shape Min of reflection & rotation

Only reflection metric Only rotation metric

Fig. 32. Optimized model of bean using only reflection mapping (bottom left), only

rotation (bottom right) and using minimum of reflection and reflection (top

right) mapping. Note that high curvature features on either side of the bean

are better preserved while using the minimum of both mappings.
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Figure 32 shows an example of bean shaped model using reflection mapping on

the left side of bottom row, rotation mapping on the right side of bottom row and

minimum of reflection and rotation on the right side of top row. Note that the high

curvature features on the either side of the bean are better preserved while using

the minimum of two mappings (reflection and rotation). Also the minimum of two

mappings provides visually pleasing variation amongst the triangles, unlike rotation

or reflection where the optimization tends to make all triangles the same shape. Also,

note that the parameter lines are well preserved while using the preferred minimum

of reflection and rotation mapping.

F. Canonical Space

The error expression in as described in equation 4.6 requires us to map the two

triangles P and Q into a 2d plane and compute an affine transformation between P

and Q. By reducing our search space to only 2 mappings (reflection and rotation)

we can further simplify our error function such that the skew error is expressed in

a dimension independent manner using only the edge lengths and area of the two

triangles.

To do so we begin by considering the default mapping between the two triangles

P and Q, such that p1 maps to q1, p2 maps to q2 and p3 maps to q3. Subsequently

we transform the two triangles to a canonical space where p1 and q1 are co-located at

the origin and the edges (p2− p1) and (q2− q1) are aligned along the positive x-axis.

Now we can rewrite the coordinates of the two triangles as

p1 = (0, 0) p2 = (L, 0) p3 = (x1, y1)

q1 = (0, 0) q2 = (L, 0) q3 = (x2, y2)
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We define the edges for triangles P as

pE1 = (p3− p2) = {x1− L, 0}

pE2 = (p1− p3) = {−x1, 0}

pE3 = (p2− p1) = {L, 0}

and similarly for triangle Q as

qE1 = (q3− q2) = {x2− L, 0}

qE2 = (q1− q3) = {−x2, 0}

qE3 = (q2− q1) = {L, 0}

Using the 2d canonical coordinate space we simplify the error between triangles P

and Q as expressed in equation 4.6 to

3 +

(
x1 − x2

y1

)2

+

(
y2

y1

)2

− 2

√√√√(x1 − x2

y1

)2

+

(
1 +

y2

y1

)2

In context of canonical coordinates we also know that

pE3 · pE2 = −Lx1

qE3 · qE2 = −Lx2

Also

∆p =
Ly1

2

∆q =
Ly2

2

where ∆p and ∆q are the area of triangles P and Q respectively. Using the above
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relationship we can rewrite the error function (Erri(P,Q))
2as

3 +

(
−pE3 · pE2 + qE3 · qE2

2∆p

)2

+

(
∆q

∆p

)2

−2

√√√√(−pE3 · pE2 + qE3 · qE2

2∆p

)2

+

(
1 +

∆q

∆p

)2

. (4.7)

Similarly for the reverse mapping of triangle Q onto P we can express (Erri(Q,P ))
2 as

3 +

(
−pE3 · pE2 + qE3 · qE2

2∆q

)2

+

(
∆p

∆q

)2

−2

√√√√(−pE3 · pE2 + qE3 · qE2

2∆q

)2

+

(
1 +

∆p

∆q

)2

(4.8)

The equation 4.7 and 4.8 can be used for the reflection mapping as well. We will just

need to recompute pE3, pE2, qE3 and qE2. ∆p and ∆q remains the same.

The skew error for triangles P and Q in equation 4.7 and 4.8 is simplified such

that it does not require projection into 2d plane or computation of an affine transfor-

mation between P and Q. Note that the error is expressed in a dimension independent

manner using only using edge lengths and area of the two triangles. Also, we can eas-

ily decompose the error expressed in equation 4.7 and 4.8 so as to compute analytic

derivatives as shown in appendix B.

G. Global Optimization

In order to avoid a trivial zero error solution and also to maintain the original input

shape we supplement our optimization function as described in equation 4.4 with two

additional proximity terms. The first term Esp represents closeness to the original

surface and the second term Ebp accounts for proximity to the boundary of the original

surface. Obviously the second term will be zero for a closed surface. We compute
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proximity to the surface as

Esp =
∑
i

(ni · (xi − pi))
2 (4.9)

where xi is the position of ith vertex of mesh in the current iteration of optimization,

pi is the footpoint of xi on the original mesh and ni is the normal of the original

surface at point pi. This formulation not only keep the optimized surface close to the

original surface it also allows the point xi to move laterally within the tangent plane.

Additionally, while preserving the shape we would also prefer to reproduce the

boundary of the original input shape. To do so for each boundary vertex we compute

the distance to closest boundary edge from the input mesh and attempt to minimize

this distance. For example if pl is a vertex on the boundary of P and y1 and y2 are

vertices of the boundary edge that is closest to pl, then the boundary proximity error

is expressed as

Ebp =
∑
i

|pl − y1 −
(pl − y1) · (y2 − y1)

(y2 − y1) · (y2 − y1)
(y2 − y1)|2.

This error Ebp is summed over all the boundary vertices of the input mesh. The final

global minimization error is expressed as

min
p
Es + αEsp + βEbp (4.10)

where α and β are linear weight associated with the proximity metric. Higher val-

ues for α and β will closely maintain the original shape. We are able to faithfully

approximate the original shapes by setting α and β to 50.0 and 50.0 respectively.

We solve our cumulative error function mentioned in equation 4.10 using non-linear

optimization via Levenberg–Marquardt algorithm as implemented in an open-source

library available online [Lou04].
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H. Discussion and Results

We demonstrate the effectiveness of our non-linear optimization based method against

a set of simple shapes consisting of both positive and negative curvature. All examples

shown in this section use the minimum of 2 mappings (default and reflection) as

mentioned in section E, unless otherwise noted.

The example shapes in Figure 33 are created using a set of randomly distributed

points in (x, y)-plane. For each sample point in 2d we compute the z-coordinate us-

ing a simple algebraic function. For the example test shapes in Figure 33 we use 200

interior vertices and 40 vertices lie along the boundary of the surface. We perform

Delaunay triangulation to create the initial set of triangles. Figure 33 illustrates the

shapes rendered using a simple linear false color mapping where green indicates high

error while blue shows triangles with lower error. Error for a face is computed as a

sum of error of the three edges. The right column of Figure 33 shows significantly

improved tessellation for all shapes without transforming all the triangles into equilat-

eral triangles. Note that as mentioned previously we do not edit the initial topology

of the shape. For the Gaussian bump, Saddle and the Wavy surface we reduced

the final error to less than 1% of the initial error. For the final shape of Parabloid

we constrained the four boundary vertices such that their position in space is fixed.

Therefore most of the error (green color triangles) is localized around the boundary

of the shape. The error for the final shape of Parabloid is reduced to 2.5% of the

error of the original shape.
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Before optimization After optimization

Fig. 33. Gaussian bump, Saddle, Wavy surface, and Parabloid generated using sim-

ple algebraic functions. The shapes are colored based on error, where green

indicates higher error and blue indicates low error.
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Surface before optimization.

Surface after optimization.

Fig. 34. Example of a tube shaped surface generated using Marching Cubes algorithm.

Along with simple algebraic shapes, we also tested our method on shapes gen-

erated by the Marching Cubes (MC) method [LC87]. The MC method tends to

produce a set of bad skinny triangles along the edges of the grid cells. We illustrate

the problem of bad triangles using an example shape in Figure 34 consisting of two

intersecting hollow tubes. The final error for the optimized output shape as shown

on the right side of Figure 34 is less than 0.5% of the input shape generated using

the MC method.
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Apart from maintaining the topology of the input mesh, our method optimizes

the mesh such that it tends to reduce the dissimilarity amongst triangles in a local

neighbourhood while editing the mesh in a minimal manner. This is illustrated via

examples of Venus and Bunny in Figure 35 and 36 respectively where fewer dissimilar

triangles are highlighted in green color. The final error for Venus drops to 18.55% of

the original shape while making certain that the final position of vertices lie perfectly

on the input shape. For the Bunny, this error drop to 17% of the input shape.

Convergence for closed shapes is slower than shapes with flexible boundary, since a

shifting boundary can provide extra degrees of freedom during the optimization. Note

that unlike CVT and its variants our optimization does not tend to create isotopic

triangles. For example, the top right side of Figure 35 shows the back of Venus

where we have a set of long triangles. Note that the shape of these triangles remains

approximately the same in the optimized shape as shown in the bottom right side of

Figure 35.

We observe that the error in optimized shape tends to localize around low valence

vertices (3 or 4). These vertices do not provide enough degrees of freedom to lower the

error without sacrificing the quality of surface. Our optimization tends to move low

valence vertices along the normal of the surface, thereby causing undesirable artifacts.

We can avoid such artifacts by raising the value for proximity coefficients α and β.

Higher values for proximity coefficients will inhibit the rate of convergence. We use 50

and 100 for α and β respectively, for both Venus (Figure 35) and Bunny (Figure 36).
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Front Back

Before optimization

After optimization

Fig. 35. Example of front (top) and back (bottom) of input (left) and optimized (right)

model of Venus.
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Front Back

Before optimization

After optimization

Fig. 36. Example of front (left) and back (right) of input (top) and optimized (bottom)

model of Bunny.
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Before optimization After optimization

Fig. 37. Example of an abstract shape. The size of the triangles along the tube is

significantly smaller in the optimized shape on the right.

Using the minimum of two mappings (reflection and rotation) as described in

section E we are able to implicitly maintain parameter lines over the surface, as can

be seen in the abstract shape in Figure 37. Note that along the tube, in the input

shape on the left, the small size triangles are adjacent to larger triangles. The triangle

size is approximately uniform in the optimized output shape as shown on the right

side of Figure 37.

We also tested our method against a set of freeform roofing structures. Figure 38

shows a coarse approximation of the roof of British Museum, in London, England.

The vertices of this mesh are sampled off the final shape of the roof. Notice that

significant portion of the error lies along the boundary of the shape as can be seen in

the side view of the roof (bottom of Figure 38). The optimized shape shown on the
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right fixes the smaller triangles on the edge as well as maintains the parameter lines

along with the interior and the exterior boundary of the shape.

Before optimization After optimization

Side view of the British Roof before optimization

Side view of the British Roof after optimization

Fig. 38. A coarse approximation of British Roof. The points for the mesh are sampled

off the original British Museum. Error shown in green mostly occurs on either

side of the surface. The optimized shape on the right reduces the error while

maintaining the aesthetic parameter lines. Final error is reduced to 1.98% of

the original surface.
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Before optimization After optimization

Fig. 39. An example of subdivided architectural roof. The error is localized around the

extraordinary vertices. Note that parameter lines are very well maintained in

the final shape.

Another roof shaped structure is shown in Figure 39. The final shape of the

roof is created as a result of Catmull-Clark subdivision. While most of the shape has

extremely good triangulation, there are high error areas around the extraordinary

vertices. The shape of these triangles comes from the parameter lines generated from

the characteristic map of the chosen subdivision scheme. Our method highlights such

problem areas in green color as seen in Figure 39 and attempts to reduce dissimilarity

amongst triangles around the extraordinary vertices. The bottom of the Figure 39

shows a zoom-in view of the problem areas. Note that the optimized shape on the
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right reduces the error for these triangles while maintaining the boundary and the

parameter lines of the original shape.

Additionally we also tested our method on another example of roof that has

substantially higher curvature than the last two examples. Figure 40 shows the input

dome shaped roof on the left and the optimized shape on the right. Notice that in

this case the error (in green) is localized to areas where the smooth curving dome

meets the central area. The final optimized shape attempts to smooth the change in

triangle shape and size in the areas highlighted in green in the input shape as shown

in the left side of Figure 40.

We have also tested our method using only the reflection mapping. Such a

mapping tends to lose the parameter lines of the surface and creates triangles that

are all similar in shape and size to each other. Figure 28, 32(left) and 41(right) are

examples of shapes that are optimized using only the reflection mapping. The results

generated using only reflection mapping is similar but significantly better than using

a simple linear parallelogram based metric defined by Touma and Gotsman [TG98]

in context to mesh compression. The linear parallelogram based error metric is scale

independent and works well only for planar meshes. We illustrate the comparison

between our non-linear skew-based error function and linear parallelogram based error

metric via a couple of simple examples in Figure 41. Note that the parallelogram

metric shown on the left side of Figure 41 tends to displace the parameter lines in

a non-symmetric manner for both Gaussian bump and the domed architectural roof.

While our skew-based metric as shown on the right side of Figure 41 tends to create

triangles that vary smoothly in terms of shape and size.
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Fig. 40. An example of a dome shaped architectural shape, before (top) and after

optimization (bottom). The dissimilar triangles are highlighted in green.
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Parallelogram Metric Our Metric

Fig. 41. Comparison of using a parallelogram based metric (left) versus using our skew

based error metric with single mapping (right).
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The graph in Figure 42 shows a comparison of initial and final error for a set

of models. We distinguish the algebraic surface (Gaussian bump, Saddle, Wavy and

Parabloid) generated using random set of points from the other since the initial error

is extremely high for them.

Our method is meant to be run only once as an off-line preprocessing step. The

computational speed of our method is directly proportional to the size of input mesh.

As the number of vertices increases the size for Jacobian matrix of the error function

is doubles. Computing the inverse of sparse Jacobian matrix of the error function is a

bottle neck for our method. Using the analytic Jacobian as described in Appendix B

we can take large steps towards the minimum of the function and quickly converge

to an approximate solution. Here onwards we can switch to discrete differencing for

a finer grain solution. Our method is only as robust as the closest point computation

is. This tends to cause problems in cases where two layers of the surface are very

close to each other (for example the ears of Bunny in Figure 36).
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Fig. 42. Comparison of initial (in green color) and final error (in blue color).
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I. Conclusion and Future Work

We are able to successfully reduce dissimilarity amongst triangles in a variety of

models. The triangles without aiming to look equilateral tends to become visually

harmonious as a result of our optimization. We are able to achieve these results while

maintaining the geometry as well as the topology of the input shape.

Maintaining smooth parameter lines over the discretized surface is a critical as-

pect of freeform shapes. Eigenstaz et al. [EKS∗10] optimizes freeform shapes for fewer

panels while accounting explicitly for parameter lines. We would like to account for

parameter lines as well. However since our method operates upon arbitrary shapes it

may be difficult to accurately detect parameter lines. For example in shapes such as

Venus (Figure 35) or Bunny (Figure 36) - there may not be any parameter lines to

detect. How best to robustly account for parameter lines is an aspect we would like

explore further in future.

While minimizing the skew metric norm, as the triangle size changes, it may no

longer be suitable to depict high frequency details over the surface. Larger triangles

may not be able to adequately represent areas of high curvature. A common approach

used by CVT liked methods is to insert Steiner points and add more triangles to

better approximate local features. An analogous approach in our case would be to

perform local adaptive subdivision. This would insert additional set of triangle at high

curvatures areas thus providing the non-linear optimization with enough degrees of

freedom to better approximate the underlying shape.
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CHAPTER V

CONCLUSION

As a part of this work we have developed methods to improve upon the aesthetics

as well as to simplify the process of physical fabrication of triangle meshes. We have

proposed a non-linear optimization based method to create harmonious triangles in a

local neighbourhood. Along with creating an aesthetic mesh we can also cluster a set

of triangles in a mesh so as to replace each triangle in the cluster with a single unique

canonical triangle. This simplify the process of transport and physical placement of

panels.

Advances in design representation and fabrication has opened new avenues for

research in context of freeform architecture. By leveraging the improving computa-

tional efficiency we can now not only optimize shapes for geometric problems but

also for associated physical limitations. For example along with optimizing for tri-

angle panels we can compliment the function with other physically based constraints

such as the weight associated with glass panels, the thickness required for structural

support of panels.

Whiting et al [WOD09] attempted to look into structural stability of architec-

tural forms. However they viewed the problem from the perspective of traditional

masonry based orthogonal architectural shapes. We would like to adapt our geomet-

ric algorithms for modern freeform shapes such that the geometry not only adapts to

visual or fabrication needs but also to the structural stability of the shape. In future,

we would also like to explore metrics that adapt the geometry of a shape based upon

feedback from simulations results from other analysis such as lighting, acoustics and

energy usage etc.
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APPENDIX A

SHORT NOTE ON CONSTRUCTION OF FREE-FORM ARCHITECTURAL

SHAPES

According to Dennis Shelden [She02a] fabrication strategy for each project de-

pends upon the choice of materials. The cladding of a surface can be done using

transparent rigid material such as glass or opaque flexible metallic sheets made up of

stainless steel, aluminum or, for Bilbao titanium.

He mentions that the tooling of dies for extrusion molding or stamping fabrication

technology can incur a high fixed cost of product manufacturing. Stamping with metal

mold will require creating both negative and positive dies. Creating such a die is a

multi-step process. The high cost of creating each mold can be offset if they are used

to produce high volume of pre-fabricated parts. This is also true for life-time fixing

or replacement of the parts.

He also points out that economies of scale are not only limited to physical pro-

duction. A subtle implication is that of cost of information required to generate each

part. Using Computer Numerically Controlled (CNC) production, unique parts can

be custom created with a high degree of precision. Although each unique part comes

with the overhead of shop drawing information required for fabrication. The cost of

carrying information for each unique part ripples through all aspects of design and

construction such as engineering, modelling, drafting even digital storage associated

with the development of the part. Fewer unique parts also minimized the chances of

discrepancies to occur in the process pipeline. Also, once the engineer has to work

with fewer parts, greater attention can be given to each part. More time and effort

can be spent towards configuration and fabrication of the mold, than it would be in

case where all parts are unique and have to handled separately.
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CNC based fabrication can achieve tolerances of 1 millimetre [She02a]. However

higher tolerances are introduced during traditional manual assembly methods. Lower

tolerance during construction requires higher premium and can be cost prohibitive.

On-site digital surveys are carried out to maintain accuracy in placing components in

their appropriate position. With higher number of unique parts, more survey samples

are required to maintain conformance with the digital model. This can affect both

the associated time and cost.

An alternative strategy is to take such construction tolerances into considera-

tion while designing parts. Fewer unique parts will not only simplify the fabrication

process but also reduce the sampling overhead of maintaining accuracy for physical

placements of panels. Such construction tolerances also take advantage of adjustable

connection strategies that are used for resolving dimensional discrepancies between

parts. Shelden [She02a] also mentions that the cost of manufacturing primary struc-

tural elements to tight tolerance (such as glass) is far greater than that of fabricating

secondary system to similar tolerances (steel frame holding the panels).
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APPENDIX B

DERIVATIVES FOR SKEW BASED ERROR FUNCTION

The error function described in equation 4.7 and 4.8 consists of two parts. The first

one is built using a set of edges and other consists of the area of the two triangles.

By decomposing the error equation into parts we have

a = −pE0 · pE2 + qE0 · qE2 (B.1)

b = ∆p

c = ∆q

Furthermore let t1 = a
b

and t2 = c
b
. Now we can rewrite the error functions Err(P,Q)

as

Err2
(Q,P ) = f 2 = 3 +

1

4
t21 + t22 − 2

√
1

4
t21 + (1 + t2)2

For Err(Q,P ) we simply switch the values of b and c. Now we can easily write the

derivative of f with respect to any vertex X as

∂f

∂X
=

1

2
√
f

1

2
(t1t

′
1) + 2(t2t

′
2)−

1
2
(t1t

′
1) + 2(1 + t2)t′2√

1
4
t21 + (1 + t2)2


where

t′1 =

(
a′b− ab′

b2

)

t′2 =

(
c′b− cb′

b2

)
.

In order to compute Jacobian of the function with respect to each vertex of triangle

P and Q we need to compute derivatives of a, b and c.

∂a

∂p0

= 2p0 − p1 − p2
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∂a

∂q0

= 2q0 + q1 + q2

∂b

∂p0

=
1

2
(pE0 cot θ0 + pE2 cot θ2)

∂b

∂q0

= {0.0, 0.0, 0.0}

∂c

∂p0

= {0.0, 0.0, 0.0}

∂c

∂q0

=
1

2
(qE0 cotφ0 + qE2 cotφ2)

∂a

∂p1

= −p0 − p1

∂a

∂q1

= q0 − q2

∂b

∂p1

=
1

2
(pE1 cot θ1 + pE0 cot θ0)

∂b

∂q1

= {0.0, 0.0, 0.0}

∂c

∂p1

= {0.0, 0.0, 0.0}

∂c

∂q1

=
1

2
(qE1 cotφ1 + qE0 cotφ0)

∂a

∂p2

= −p0 + p2

∂a

∂q2

= q0 − q1

∂b

∂p2

=
1

2
(pE2 cot θ2 + pE1 cot θ1)

∂b

∂q2

= {0.0, 0.0, 0.0}

∂c

∂p2

= {0.0, 0.0, 0.0}

∂c

∂q2

=
1

2
(qE2 cotφ2 + qE1 cotφ1)
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