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ABSTRACT

The Schrödinger Equation

as a Volterra Problem. (May 2011)

Fernando Daniel Mera, B.S., Texas A&M University

Chair of Advisory Committee: Stephen Fulling

The objective of the thesis is to treat the Schrödinger equation in parallel with a

standard treatment of the heat equation. In the books of the Rubensteins and Kress,

the heat equation initial value problem is converted into a Volterra integral equation

of the second kind, and then the Picard algorithm is used to find the exact solution

of the integral equation. Similarly, the Schrödinger equation boundary initial value

problem can be turned into a Volterra integral equation. We follow the books of

the Rubinsteins and Kress to show for the Schrödinger equation similar results to

those for the heat equation. The thesis proves that the Schrödinger equation with

a source function does indeed have a unique solution. The Poisson integral formula

with the Schrödinger kernel is shown to hold in the Abel summable sense. The

Green functions are introduced in order to obtain a representation for any function

which satisfies the Schrödinger initial-boundary value problem. The Picard method

of successive approximations is to be used to construct an approximate solution which

should approach the exact Green function as n→∞. To prove convergence, Volterra

kernels are introduced in arbitrary Banach spaces, and the Volterra and General

Volterra theorems are proved and used in order to show that the Neumann series for

the L1 kernel, the L∞ kernel, the Hilbert-Schmidt kernel, the unitary kernel, and the

WKB kernel converge to the exact Green function. In the WKB case, the solution

of the Schrödinger equation is given in terms of classical paths; that is, the multiple
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scattering expansions are used to construct from, the action S, the quantum Green

function. Then the interior Dirichlet problem is converted into a Volterra integral

problem, and it is shown that Volterra integral equation with the quantum surface

kernel can be solved by the method of successive approximations.
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CHAPTER I

INTRODUCTION

The books of the Rubinsteins [1] and Kress [2] show how the heat equation is converted

to a Volterra integral equation, which is then solved by the Picard algorithm. In this

thesis we shall show that the Schrödinger equation has similar properties and results

as the heat equation such as the existence of surface potentials and the Integral

Representation Theorem. The similarities between the Schrödinger equation and

the heat equation were used to create a theoretical framework which will give the

solution to the Schrödinger problem. As much as possible, we use the books [1, 2]

as guides to treat the quantum problem like a heat problem. However, the parallel

between the heat equation and the Schrödinger is found to be a limited one, and

we use the potential theory formalism that Kress laid down in his book in order

to study the existence, and uniqueness of the solution of the Schrödinger equation.

The difference between the heat operator and the quantum operator require different

proofs for the uniqueness theorems, the surface integral theorems, and the Poisson

Integral Theorem. As expected the Representation Theorem is formulated in terms of

the source integral term, the surface integral term, and the initial integral term. The

second chapter introduces the fundamental solution of the Schrödinger equation in Rn.

The representation theorem for the Schrödinger equation is proved in Chapter III. In

the same chapter, the boundary-value problem is introduced, and the solution of the

Schrödinger equation is formulated in terms of integral equations. In Chapter IV, the

uniqueness of the solution to the Schrödinger equation is proved. Also in Chapter IV,

the definition of a Green function is given and the complex Green function is shown to

This thesis follows the style of the IEEE Journal of Quantum Electronics.
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have reciprocity, and thus the Green functions have symmetry. The Green functions

are defined to satisfy the Dirichlet, Neumann, and Robin boundary conditions.

In Chapter V, we consider the pure initial value problem. The initial value

problem can be expressed as a Volterra integral equation of the second kind with

respect to time. Our main task is to use the method of successive approximation

in order to prove that there exists a unique solution to the integral equation. In

Chapter V, the article focuses on linear integral operators in arbitrary Banach spaces.

In Chapter VI, the article introduces the Volterra kernels and applies the Neumann

series to give an approximation to the exact solution. The Volterra integral equation

is shown to be solved by the method of successive approximations. In particular,

we work with Volterra integral operators Q̂ that go from Lp(I;B) to itself, where

1 ≤ p ≤ ∞. These Volterra integral operators Q̂ are assumed to have uniformly

bounded kernels such that A : B → B. Furthermore, we only consider kernels A which

are Volterra kernels in time. Then the Volterra theorem proves that Volterra integral

equation with a uniform bounded kernel can be solved by successive approximations

with respect to the topology L∞(I;B). The general Volterra theorem proves the more

general case when Lp(I;B), and where 1 ≤ p <∞. In Chapter VII, the article covers

four specific kernels, the L1 and L∞ kernels, the Schrödinger kernel, and the Hilbert-

Schmidt kernel. In the Schrödinger case, the perturbation expansion series contains a

unitary operator and a uniformly bounded potential, and we prove that the Neumann

series converges.

In Chapters VIII and IX we reach the projects that were the original motiva-

tion for this thesis: showing the convergence of the “classical paths” expansions for

solutions of the Schrödinger equation with a potential and with a boundary, respec-

tively. It turns out that these do not exaclty fit into the general Volterra theorems

proved in Chapter V, but the fundamental idea continues to apply and enables the
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proof to be carried out in the same way. In Chapter VIII a perturbation expansion is

constructed by using the semiclassical propagator and a uniformly bounded potential

V (x, t). The solution of the Schrödinger equation is given in terms of classical paths,

and the semiclassical propagator Gscl = AeiS/~ to the Green function is considered

as the building block for the exact Green function [3]. The semiclassical Neumann

series will also be shown to have norm convergence, and thus the Neumann series con-

verge to the exact Green function under some technical assumptions. In Chapter IX,

the boundary-value problem is written in terms of Volterra integral equations of the

second kind. Furthermore, the single-layer Schrödinger and double-layer Schrödinger

potentials with continuous density functions are shown to be extended to ∂U × (0, T ]

with some limiting values. Finally, the interior Dirichlet problem is considered, and

the double-layer Schrödinger operator is shown to be bounded from L∞(I; ∂U) to

itself. Thus Neumann series is shown to converge in the case of the quantum surface

kernel with respect to the topology of L∞(I; ∂U).
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CHAPTER II

FUNDAMENTAL SOLUTION OF THE SCHRÖDINGER EQUATION

The wavefunction Ψ(x, t) of a nonrelativistic particle in Rn is a solution to the

Schrödinger equation

HΨ(x, t) = i~∂tΨ(x, t) (II.1)

where H is the Hamiltonian, given by

H = H0 + V =
1

2m
p2 + V (x, t) = − ~2

2m
∆x + V (x, t) (II.2)

The kinetic operator T = 1
2m
p2, is also known as the free Hamiltonian H0 in nonrela-

tivistic quantum mechanics. The complex-valued function Ψ(x, t) is the wavefunction,

and |Ψ(x, t)|2 represents a particle density function. First, we will consider the case

when there is no potential, i.e, V (x, t) = 0. Therefore, the free Schrödinger equation

becomes,

i∂tΨ(x, t) = −a2∆xΨ(x, t) (II.3)

where a2 = ~
2m

. The fundamental solution to the equation (II.3) in Rn is the free

propagator,

Kf (x, y, t) =

(
m

2π~it

)n/2
eim|x−y|

2/2~t ∀x, y ∈ Rn, t 6= 0 (II.4)

Also, the fundamental solution Kf (x, t; y, τ) as a function of (x, t) satisfies(away from

the origin) the equation

−a2∆xKf (x− y, t− τ) = i∂tKf (x− y, t− τ) (II.5)

An important difference between the heat equation and the Schrödinger equation

is that the latter is reversible in time. The following calculations are motivated by
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Isaak and Lev Rubenstein’s treatment on the heat operator and its adjoint operator

[1]. In this article, our case deals with the Schrödinger equation, and we seek to

explore what are the differences and similarities between the heat equation and the

Schrödinger equation.

Suppose G ⊂ Rn is a bounded region with a lateral boundary ∂G . In this case

the integer n is the spatial dimension. Let u(x, t) ∈ C2,1(G × R+)
⋂
C1,0(Ḡ × R+),

i.e, the function u(x, t) is twice differentiable on the spatial region G , and once

differentiable with respect to time in the interval (0,∞). The Schrödinger operator

and its complex conjugate can be rewritten as

L = a2∆x + i~∂t (II.6)

and

L∗ = a2∆x − i~∂t (II.7)

where a2 = ~
2m

. Then the adjoint operator of L is

L† = L = a2∆x + i~∂t (II.8)

with respect to the usual L2 inner product and the imposed homogeneous boundary

conditions. In other words the Schrödinger operator L is formally self-adjoint. An

important difference to notice is that the heat operator is not formally self-adjoint

because the time derivative term changes sign.

Also, the kernel Kf (x − y, t − τ) as a function of (y, τ) satisfies(away from the

origin) the equation

a2∆yKf (x− y, t− τ) = i∂τKf (x− y, t− τ) (II.9)
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and hence,

L∗y,τKf (x− y, t− τ) = a2∆yKf (x− y, t− τ)− i∂τKf (x− y, t− τ) = 0 (II.10)

The solution to the Schrödinger equation can be given by a kernel that gives the

solution of the homogeneous problem for t > 0 in terms of the initial data at t = 0:

u(x, t) =

∫
Rn

Kf (x, y, t)f(y) dy (II.11)

The kernel that solves the nonhomogeneous problem for all t is an extension of the

kernel K(x, y, t) to negative t as identically 0 and then we introduce the difference

time variable t− τ and define K̃ by:

K̃(x, y, t, τ) ≡


Kf (x, y, t− τ) if t > τ

δn(x− y) if t = τ

0 if t < τ

(II.12)

Thus the nonhomogenous kernel can also be expressed by K̃(x, t, y, τ) = θ(t −

τ)Kf (x, y, t, τ). Then the nonhomogeneous kernel K̃(x, t, y, τ) satisfies the partial

differential equation:

(i∂t −Hx)K̃(x, t, y, τ) = δ(t− τ)δn(x− y) (II.13)

and the homogeneous kernel Kf (x, t, y, τ) satisfies the partial differential equation:

(i∂t −Hx)Kf (x, t, y, τ) = 0 ∀(x, t) ∈ Rn × R (II.14)

The solution u(x, t) that we obtain is the one that vanishes when t = 0. The free

propagator Kf (x, y, t) makes perfect sense for t < 0. Furthermore, the free propagator

is a kernel that solves the initial-value problem for the homogeneous Schrödinger



7

equation for any final time, and it is a distributional solution of the homogeneous

equation (II.5) for all times.

The free propagatorKf vanishes as a distribution as t→ 0 in the region x 6= y. As

can be seen from equation (II.13), the function K̃(x, y, t, τ) satisfies the homogeneous

Schrödinger equation distributionally except at the origin, where the time-dependent

Schrödinger operator creates from it a delta function δn(x−y)δ(t−τ). The connection

between Kf and K̃ will be proved and extended in the representation theorem in

Chapter III.

The following definition is from G. H. Hardy’s book on divergent series [4].

Definition 1 If the integral

P (α) =

∫ ∞
0

f(x)e−αx dx (II.15)

is convergent for α > 0, and approaches A when α→ 0, then it is said that P is Abel

summable to A and P (0) =
∫∞

0
f(x)dx = A.

The following theorem introduces the Poisson integral, which is a solution of the

Schrödinger equation without a potential term.

Theorem 1 Let f(x) be a function on Rn with the following property: (1+|y|2)f(y) ∈

L1(Rn). Then the Poisson integral

u(x, t) = Kf ∗ f =

∫
Rn

Kf (x− y, t)f(y) dy (II.16)

exists in the sense of Abel summability, and is a solution of the equation

Lu(x, t) = a2∆xu(x, t) + i∂tu(x, t) = 0 ∀(x, t) ∈ Rn × R. (II.17)

with given initial data. The Poisson integral defines a solution of the free Schrödinger

equation in Rn ,∀t 6= 0, even t < 0. This solution can be extended into Rn × [0,∞)
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with the initial condition u(x, 0) = f(x) for all points x at which f is continuous.

Proof: If |y|2f(y) ∈ L1(Rn), then the order of differentiation and integration

in the equation (II.16) can be interchanged to show that the Poisson integral obeys

Schrödinger equation. The hypothesis that |y|2f(y) ∈ L1(Rn) implies that the func-

tion u(x, t) solves the Schrödinger equation in Rn × R+. This hypothesis is obtained

from Chapter IV of Lawrence C. Evans’s book on partial differential equations [5].

Let y = x+ γz, where γ2 = 2~t
m

; then we can rewrite the Poisson integral as

u(x, t) =

(
1

πi

)n/2 ∫
Rn

ei|z|
2

f(x+ γz) dz (II.18)

where |z| = |x−y|
γ

. Let ε be any positive number. Then

(πi)n/2u(x, t) =

∫
Rn

ei|z|
2

f(x+ γz) dz = I1 + I2 + I3, (II.19)

where

I1 =

∫
|z|≤ε

ei|z|
2{f(x+ γz)− f(x)} dz. (II.20)

I2 =

∫
|z|≥ε

ei|z|
2

f(x+ γz) dz (II.21)

I3 =

∫
|z|≤ε

ei|z|
2

f(x) dz (II.22)

Now, we do some calculations for I1 in hyperspherical coordinates (ρ, φ1, . . . , φn−1).

Equation (II.20) can be rewritten in the following manner:

I1 =

∫
|z|≤ε

ei|z|
2{f(x+ γz)− f(x)} dz (II.23)

The continuity of f : Rn → Rn at some point y ∈ Rn implies that ∀ η > 0 ∃δ > 0

such that ∀x ∈ Rn with |x− y| < δ implies that |f(x)− f(y)| < η, and x, y are points

where f is continuous. Given ε, choose γ such that ε = γε < δ, and let η > 0, then

there exists a t so small such that |f(x + γz)− f(x)| < η for all z such that |z| ≤ ε.
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Therefore, by continuity, we obtain the following bounded estimate:

|I1| ≤ η

∫
|z|≤ε

dz (II.24)

or, Thus

|I1| ≤ η

∫
|z|≤ε

dz → 0 (II.25)

as γ|z| → 0 (i.e., y → x) as t→ 0.

Then, since f ∈ L1(Rn)

|I2| ≤
∫
|z|≥ε
|f(x+ γz)| dz → 0 (II.26)

(not necessarily uniformly in x) as ε → ∞. In order to handle I3 we use the Fresnel

integral formula ∫
Rn

ei|z|
2

dz = (πi)n/2 (II.27)

A proof of the one-dimensional Fresnel integral formula is outlined on [6]. The one-

dimensional Fresnel integral implies the product version∫
Rn

ei|z|
2

dz =

∫
Rn

exp

(
i

n∑
k=1

z2
k

)
dz =

n∏
k=1

∫ ∞
−∞

eiz
2
k dzk =

n∏
k=1

(πi)1/2 = (πi)n/2 (II.28)

Therefore, we have

lim
ε→∞

I2 = (πi)n/2f(x). (II.29)

Then we consider computing the Fresnel integral in terms of polar coordinates instead

of Cartesian coordinates. Thus, we can rewrite the equation (II.28) by∫
Rn

ei|z|
2

dz =

∫ ∞
0

∫
∂B(0,1)

eiρ
2

ρn−1 dρdΩ = ωn

∫ ∞
0

ρn−1eiρ
2

dρ (II.30)

Then we make use the substitution t = ρ2, and hence we obtain∫
Rn

ei|z|
2

dz =
ωn
2

∫ ∞
0

tn−1eit dt (II.31)
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Then we insert the Abel factor e−αt in the equation (II.31) and this gives

A(α) =
ωn
2

∫ ∞
0

e−αttn−1eit dt (II.32)

and ωn is the surface area of the unit n-sphere. The surface area of the unit n-sphere

is given by the following formula:

ωn =
2πn/2

Γ(n
2
)

(II.33)

The complex Gaussian integral (also known as the Gaussian Fresnel integrals) can

be generalized for any positive integer, i.e. the Gaussian integral is a special case

of
∫∞

0
xne−x

2
dx, when n = 0. The general Gaussian integral will be shown to be

convergent when n ∈ N. Then we consider the following complex integral

Pn =

∫ ∞
0

sn−1eis
2

ds (II.34)

where |z| = s = |x−y|
γ

= ρ
γ
. Let t = s2, and substituting this change of variables into

equation (II.36) we have

Pn =
1

2

∫ ∞
0

tmeit dt (II.35)

where, m = n−2
2

and hence,∫ ∞
0

tmeit dt = lim
r→∞

∫ r

0

tmeit dt (II.36)

Once again, the change of variables t = iz is performed and we have∫ r

0

tmeit dt = i

∫ −ir
0

(iz)me−z dz (II.37)

Then we insert the Abel factor e−αt into the left-hand side of equation (II.37) and

this gives ∫ r

0

tme−αteit dt = i

∫ −ir
0

(iz)me−iαze−z dz (II.38)
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Then the path of integration is shifted from 0 to −i∞, to 0 to ∞. Therefore,

lim
r→∞

i

∫ −ir
0

(iz)me−αze−z dz = lim
r→∞

i

∫ r

0

(iz)me−αze−z dz (II.39)

The integral in (II.39) is convergent for any positive α > 0, and the integral over the

semicircle at∞ tends to 0. In order for the above limit to hold, the path of integration

(iz)m must not go over a branch cut. Thus, if the integrand does not have any poles

in the path of integration, then the integral in equation (II.36) is Abel summable and

it is related to the gamma function Γ(m+ 1). The integrand in equation (II.39) is an

analytic function, and thus it does not have any poles or branch cuts in the path of

integration. In other words,

lim
r→∞

i

∫ −ir
0

(iz)me−iαze−z dz = im+1

∫ ∞
0

zme−iαze−z dz (II.40)

Then, we take the limit of α→ 0, and the above equation becomes

lim
α→0

im+1

∫ ∞
0

zme−iαze−z dz = im+1

∫ ∞
0

zme−z dz (II.41)

and this limit holds in the Abel sense, and we take im = ei(π/2)m. Thus,

Pn =
1

2
im+1Γ(m+ 1) =

in/2

2
Γ

(
n

2

)
(II.42)

and hence,

A(0) =

∫
Rn

ei|z|
2

dz =
in/2ωn

2
Γ

(
n

2

)
(II.43)

This confirms equation (II.28) in an alternative way.

This implies the continuity of u(x, t) at t = 0. Therefore, the Poisson integral

has the initial values u(·, 0) = f(x) for all points x at which f is continuous. �

The fundamental solution of the Schrödinger operator has some specific filtering

properties. Filtering properties refer to the ability of the Dirac delta function δ(t−τ)
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to pick out the value of some function φ(t) at the point t = τ . The filtering property

is also called the sifting property. These filtering properties are shown in theorem 2.

Theorem 2 is an extension of theorem 1

Theorem 2 Let the boundary ∂U of U possess a tangent plane at each point. If f(x)

is a function continuous in the closure Ū of U , then

η(x, t) = lim
t→0

∫
U

Kf (x, y, t)f(y) dy =


f(x) if x ∈ U, ∀t > 0

f(x)
2

if x ∈ ∂U, ∀t > 0

0 if x /∈ Ū , ∀t > 0

(II.44)

and this limit exists in the Abel summability sense.

Proof: Suppose there exist a function g(x) defined in the following way

g(x) =


f(x) if x ∈ U, ∀t > 0

0 if x /∈ Ū , ∀t > 0

(II.45)

where f is a continuous function almost everywhere. By applying Theorem 1 to g,

then we obtain the following result

η(x, t) = lim
t→0

∫
U

Kf (x, y, t)g(y) dy =


f(x) if x ∈ U, ∀t > 0

0 if x /∈ Ū , ∀t > 0

(II.46)

Suppose x ∈ ∂U . Then we introduce the hyperspherical coordinates (ρ, φ1, . . . , φn−1)

with the origin at x. Let us consider an n-sphere S(x, ε) with its center at x and

radius ε > 0. Let D be the intersection between the n-sphere S and the region U ,

i.e, D = S(x, ε) ∩ U . Thus, we can represent the region U as the following:

U = D ∪ (U \D) (II.47)
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Therefore,

Q(x, t) = Q1(x, t)+Q2(x, t) =

∫
U

Kf (x, y, t)f(y) dy+

∫
U\D

Kf (x, y, t)f(y) dy (II.48)

Since x /∈ U \D,

lim
t→0

Q2(x, t) = lim
t→0

∫
U\D

Kf (x, y, t)f(y) dy = 0 (II.49)

Therefore,

Q1(x, t) = F (x, t) +H(x, t) = f(x)

∫
D

Kf (x, y, t) dy +

∫
D

Kf (x, y, t){f(y)− f(x)} dy

(II.50)

or,

Q1(x, t) = f(x)

∫
D

(
m

2πi~t

)n/2
eim|x−y|

2/2~t dy +

∫
D

(
m

2πi~t

)n/2
eim|x−y|

2/2~t{f(y)− f(x)} dy

=
f(x)

(πi)n/2

∫
D

ei|x−y|
2/γ2 1

γn
dy +

1

(πi)n/2

∫
D

ei|x−y|
2/γ2{f(y)− f(x)} 1

γn
dy

=
f(x)

(πi)n/2

∫
D(z)

ei|z|
2

dz +
1

(πi)n/2

∫
D(z)

ei|z|
2{f(y)− f(x)} dz

(II.51)

where, y = x+ γz, and γ2 = 2~t
m

.

Then, the limit γ → 0 is taken, and since f is continuous almost everywhere,

then the above estimate becomes

|H(x, t)| ≤ η

πn/2

∫
D(z)

dz → 0 (II.52)

as γ → 0. Then, as ε → 0, the region D approaches half the surface area of the

n-sphere S(x, ε). This is true because of the fact that the boundary ∂D = S(x, ε)∩U

is required to have a tangent plane at each point. Thus, in this limit we can use the

tangent plane approximation to see that the ∂D becomes ∂K, which is the boundary
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of a half n-sphere K(x, ε).

Then we take the limit of γ → 0 and of ε→ 0 of the function I(x, t). Hence

lim
δ(γ)→∞

I(x, t) = lim
δ(γ)→∞

∫ δ(γ)

0

∫
∂D

σn−1eiσ
2

dσdΩ

= lim
δ(γ)→∞

∫ δ(γ)

0

σn−1eiσ
2

dσ · lim
δ(γ)→∞

∫
∂D

dΩ =
ωn
2

∫ ∞
0

σn−1eiσ
2

dσ

(II.53)

where, σ = ρ
γ
. The summability of the function I(x, t) is understood to hold and

exist in the Abel sense. Now, we use the Fresnel integral formula

Pn =

∫ ∞
0

σn−1eiσ
2

dσ =
i1/2

2
Γ

(
n

2

)
(II.54)

into the equation (II.53). Therefore, we get

lim
δ(γ)→∞

F (x, t) =
f(x)

(πi)n/2
lim

δ(γ)→∞
I(x, t) =

f(x)

2(πi)n/2

(
in/2ωn

2
Γ

(
n

2

))
(II.55)

Therefore,

lim
δ(γ)→∞

F (x, t) =
f(x)

2(πi)n/2
2πn/2

Γ(n
2
)

(
in/2

2
Γ

(
n

2

))
=
f(x)

2
(II.56)

In other words, if f(x) is a continuous function, then

η(x, t) = lim
t→0

∫
U

Kf (x, y, t)f(y)dy =
f(x)

2
∀x ∈ ∂U,∀t > 0. � (II.57)

Next, we cite some material that is found in Chapter IV of Evans’ book on partial

differential equations [5]. The Poisson integral formula can also be expressed as

u(x, t) =
e

i|x|2
4t

(4πit)n/2

∫
Rn

e
−ix·y

2t g(y) dy (II.58)

Lemma 1 If the solution u(x, t) is given by the above formula, and if g(x) ∈ L1(Rn)∩
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L2(Rn), then

‖u(t)‖L2(Rn) = ‖g‖L2(Rn) ∀t > 0 (II.59)

Thus, the mapping g 7→ u(t) is unitary with respect to the L2-norm.
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CHAPTER III

REPRESENTATION THEOREM

The boundary-value problem for the nonhomogeneous Schrödinger equation with non-

homogeneous initial conditions can be reduced to the analogous problem with homo-

geneous initial condition by using the integral fundamental representation

u(x, t) = Γ(x, t) + U(x, t) + Π(x, t) (III.1)

where u(x, t) is the solution of the nonhomogeneous problem, and as detailed below

U(x, t) is the source term, Γ(x, t) is the surface term, and Π(x, t) is the Poisson

integral term(initial term). The following theorem gives the fundamental integral

representations for the Schrödinger equation.

Theorem 3 (Representation Theorem)

The solution of the boundary-value problem for the Schrödinger equation can be rep-

resented as the following integral formula:

u(x, t) = Γ(x, t) + U(x, t) + Π(x, t) (III.2)

The initial term, the source term, and the surface boundary terms are given by the

following integral formulas:

Π(x, t) =

∫
U

Kf (x, t; y, t0)h(y) dy (III.3)

U(x, t) = i

∫ t

t0

∫
U

Kf (x, t; y, τ)Lu(y, τ) dydτ (III.4)

and,

Γ(x, t) = ia2

∫ t

t0

∫
∂U

(
Kf (x, t; y, τ)∂ν(y)u(y, τ)− u(y, τ)∂ν(y)Kf (x, t; y, τ)

)
ds(y)dτ

(III.5)
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where, Kf (x, t; y, τ) is the fundamental solution and a2 = ~
2m

, and u(x, t0) = h(x).

Remark: The upper limit t in equation (III.4) enforces the fact that the Kf in

that formula is effectively K̃.

Proof: Let u(x, t), and w(x, t) be solutions to the Schrödinger equation. Further-

more, assume that u(x, t), w(x, t) ∈ C2,1(U × R+)
⋂
C1,0(Ū × R+).

Remark: The above smooth conditions are required in order to justify all the

integrations by parts. Since, the functions u(x, t) and v(x, t) are solutions of the

Schrödinger equation, we require these solutions to be at twice differentiable on the

region U because Greens’ second formula applies to C2 functions. Similarly, the

temporal differentiability conditions are also needed for analogous reasons.

The Schrödinger operator L∗ acts on the (y, τ) variables, and not the (x, t) vari-

ables. Then, we subtract the term containing the w∗(y, τ)Lu(y, τ) minus the other

term u(y, τ)L∗w∗(y, τ), and we obtain

w∗(y, τ)Lu(y, τ)− u(y, τ)L∗w∗(y, τ) = a2w∗(y, τ)∆yu(y, τ)

+ i

(
w∗(y, τ)∂τu(y, τ)

)
− a2u(y, τ)∆yw

∗(y, τ) + i

(
u(y, τ)∂τw

∗(y, τ)

) (III.6)

and then integrating with respect to time τ and the spatial region U gives∫ t

t0

∫
U

w∗(y, τ)Lu(y, τ)− u(y, τ)L∗w∗(y, τ) dydτ =

a2

∫ t

t0

∫
U

[w∗(y, τ)∆yu(y, τ)− u(y, τ)∆yw
∗(y, τ)] dydτ

+ i

∫ t

t0

∫
U

w∗(y, τ)∂τu(y, τ) dydτ +

∫ t

t0

∫
U

u(y, τ)∂τw
∗(y, τ) dydτ

(III.7)

Therefore, we get∫ t

t0

∫
U

w∗(y, τ)Lu(y, τ)− u(y, τ)L∗w∗(y, τ) dydτ =

a2

∫ t

t0

∫
U

[w∗(y, τ)∆yu(y, τ)− u(y, τ)∆yw
∗(y, τ)] dydτ + J

(III.8)
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where,

J = i

∫ t

t0

∫
U

∂τ [u(y, τ)w∗(y, τ)] dydτ (III.9)

Green’s second formula is the following identity:∫
U

[v(y, τ)∆yu(y, τ)−u(y, τ)∆yv(y, τ)] dy =

∫
∂U

(
v(y, τ)∂ν(y)u(y, τ)−u(y, τ)∂ν(y)v(y, τ)

)
ds(y)

(III.10)

where, U is a region in R3 with lateral boundary ∂U . This lateral boundary is defined

by

∂U = {x, y, z : F (x, y, z) = 0} (III.11)

where (x, y, z) are the Cartesian coordinates in R3 and F is a continuously differ-

entiable function. Therefore, by Green’s second formula, we obtain the following

result:

a2

∫ t

t0

∫
U

[w∗(y, τ)∆yu(y, τ)− u(y, τ)∆yw
∗(y, τ)] dydτ

= a2

∫ t

t0

∫
∂U

(
w∗(y, τ)∂ν(y)u(y, τ)− u(y, τ)∂ν(y)w

∗(y, τ)

)
ds(y)dτ

(III.12)

Then, the second term of the right-hand side in equation (III.8) can be expressed in

the following manner:

J = i

∫ t

t0

∫
U

∂τ [u(y, τ)w∗(y, τ)] dydτ

= i

∫ t

t0

∂τ

∫
U

u(y, τ)w∗(y, τ) dydτ −
∫
∂U

u(y, τ)w∗(y, τ)∂τν(y) ds(y)dτ

= i

∫ t

t0

(
∂τ

∫
U

u(y, τ)w∗(y, τ) dy

)
dτ = i

∫
U

u(y, t)w∗(y, t) dy − i
∫
U

u(y, t0)w∗(y, t0) dy

(III.13)

where the integral term containing the time derivative of the normal vector vanishes

because the boundary ∂U is assumed to be static. Finally, we obtain the following
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equation:∫ t

t0

∫
U

w∗(y, τ)Lu(y, τ)− u(y, τ)L∗u∗(y, τ) dydτ

= i

∫
U

u(y, t)w∗(y, t) dy − i
∫
U

u(y, t0)w∗(y, t0) dy

+ a2

∫ t

t0

∫
∂U

(
w∗(y, τ)∂ν(y)u(y, τ)− u(y, τ)∂ν(y)w

∗(y, τ)

)
ds(y)dτ

(III.14)

Suppose that L∗w∗(y, τ) = 0, ∀(y, τ) ∈ U × (t0,∞). Then, equation (III.14) becomes∫ t

t0

∫
U

w∗(y, τ)Lu(y, t) dydτ = i

∫
U

u(y, t)w∗(y, t) dy − i
∫
U

u(y, t0)w∗(y, t0) dy

+ a2

∫ t

t0

∫
∂U

(
w∗(y, τ)∂ν(y)u(y, τ)− u(y, τ)∂ν(y)w

∗(y, τ)

)
ds(y)dτ

(III.15)

or,

i

∫
U

u(y, t)w∗(y, t) dy = i

∫
U

u(y, t0)w∗(y, t0) dy

− a2

∫ t

t0

∫
∂U

(
w∗(y, τ)∂ν(y)u(y, τ)− u(y, τ)∂ν(y)w

∗(y, τ)

)
ds(y)dτ +

∫ t

t0

∫
U

w∗(y, τ)Lu(y, τ) dydτ

(III.16)

Let w∗(y, τ) = Kf (x, y, t−τ+ε),and thus the solution w∗(y, τ) is a solution of equation

(II.9) i.e, L∗w∗ = 0 . By substituting this equation into equation (III.16) we have

i

∫
U

Kf (x, y, ε)u(y, t) dy = i

∫
U

Kf (x, y, t− t0 + ε)u(y, t0) dy

− a2

∫ t

t0

∫
∂U

(
Kf (x, y, t− τ + ε)∂ν(y)u(y, τ)− u(y, τ)∂ν(y)Kf (x, y, t− τ + ε)

)
ds(y)dτ

+

∫ t

t0

∫
U

Kf (x, y, t− τ + ε)Lu(y, τ) dydτ

(III.17)
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or,∫
U

Kf (x, y, ε)u(y, t) dy =

∫
U

Kf (x, y, t− t0 + ε)u(y, t0) dy

+ ia2

∫ t

t0

∫
∂U

(
Kf (x, y, t− τ + ε)∂ν(y)u(y, τ)− u(y, τ)∂ν(y)Kf (x, y, t− τ + ε)

)
ds(y)dτ

− i
∫ t

t0

∫
U

Kf (x, y, t− τ + ε)Lu(y, τ) dydτ

(III.18)

Then, we take the limit ε→ 0 of equation (III.18), and by theorem 2

u(x, t) =

∫
U

Kf (x, y, t− t0)u(y, t0) dy

+ ia2

∫ t

t0

∫
∂U

(
Kf (x, y, t− τ)∂ν(y)u(y, τ)− u(y, τ)∂ν(y)Kf (x, y, t− τ)

)
ds(y)dτ

− i
∫ t

t0

∫
U

Kf (x, y, t− τ)Lu(y, τ) dydτ

(III.19)

Therefore, we can write equation (III.19) as the representation formula

u(x, t) = Π(x, t) + Γ(x, t) + U(x, t) (III.20)

where Π(x, t) is the Poisson integral, Γ(x, t) is the surface integral and U(x, t) is the

source integral. �

The definition of the Green function will be given in this section in order to prove

the Representation Theorem for a more general Green function in place of Kf .

Definition 2 A Green function for the Schrödinger equation is a function G(x, t; y, τ)

satisfying

LG(x, t; y, τ) = 0 ∀(x, t) ∈ U × R (III.21)



21

and the filtering property

lim
t→τ

∫
U

G(x, t; y, τ)f(y) dy = f(x) (III.22)

for x ∈ U , and one of these boundary conditions

G(x, t; y, τ) = 0 ∀(x, t) ∈ ∂U × R (III.23)

or,

∂ν(x)G(x, t; y, τ) = 0 ∀(x, t) ∈ ∂U × R (III.24)

or,

∂ν(x)G(x, t; y, τ) + β(x, t)G(x, t; y, τ) = 0 ∀(x, t) ∈ ∂U × R (III.25)

Thus the function G(x, t; y, τ) satisfies the homogeneous Dirichlet, Neumann, or Robin

boundary conditions.

Recall that the function Kf (x, t; y, τ), the fundamental solution, satisfies

LKf (x, t; y, τ) = 0 in U × R (III.26)

and the filtering property

Kf (x, τ ; y, τ) = δ(x− y) (III.27)

In other words the function G(x, t; y, τ) is the response of the system at a field

point(variable point) (x, t) due to a delta function δ at the source point(field point)

(y, τ).

Lemma 2 The Green function is the sum of a particular integral of the homogeneous

equation and of the fundamental solution of the homogeneous equation

G(x, t; y, τ) = F (x, t; y, τ) +Kf (x, t; y, τ) ∀(x, t) ∈ ∂U × R (III.28)
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where F (x, t; y, τ) satisfies

LF (x, t; y, τ) = 0 ∀(x, t) ∈ U × R (III.29)

and it also satisfies one of the following boundary conditions

F (x, t; y, τ) = −Kf (x, t; y, τ) ∀(x, t) ∈ ∂U × R (III.30)

or,

∂ν(x)F (x, t; y, τ) = −∂ν(x)Kf (x, t; y, τ) ∀(x, t) ∈ ∂U × R (III.31)

or,[
∂ν(x) + β(x, t)

]
F (x, t; y, τ) = −

[
∂ν(x) + β(x, t)

]
Kf (x, t; y, τ) ∀(x, t) ∈ ∂U × R

(III.32)

and it also obeys the filtering property

F (x, τ ; y, τ) = 0 inU × {τ = t} (III.33)

The following corollary will not be proved until Chapter IV, after we present the Reci-

procity Theorem. In the meantime, the corollary serves to show that the Represen-

tation Theorem can be applied to any Green function which satisfies the Schrödinger

equation and the boundary conditions.

Corollary 1 The solution of the boundary-value problem for the Schrödinger equa-

tion can be represented as the following integral formula:

u(x, t) = Γ(x, t) + U(x, t) + Π(x, t) (III.34)

The initial term, the source term, and the surface boundary terms are given by the
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following integral formulas:

Π(x, t) =

∫
U

G(x, t; y, t0)h(y) dy (III.35)

U(x, t) = i

∫ t

t0

∫
U

G(x, t; y, τ)Lu(y, τ) dydτ (III.36)

and,

Γ(x, t) = ia2

∫ t

t0

∫
∂U

(
G(x, t; y, τ)∂ν(y)u(y, τ)− u(y, τ)∂ν(y)G(x, t; y, τ)

)
ds(y)dτ

(III.37)

where, G(x, t; y, τ) is any Green function and a2 = ~
2m

, and u(x, t0) = h(x).

As an application of the representation theorem, let us consider the following linear

boundary-value problem:

Lψ(y, τ) = V (y, τ)ψ(y, τ) ∀(y, τ) ∈ U × R (III.38)

with the initial and boundary conditions

ψ(x, 0) = f(x), ∀x ∈ U, α(x, t)ψ(x, t)+β(x, t)∂ν(x)ψ(x, t)

∣∣∣∣
∂U

= h(x, t) ∀t ∈ R.

(III.39)

In this case, the boundary conditions can determine the Dirichlet, Neumann or the

Robin boundary-value problem. The first case to be considered is the Dirichlet case.

Suppose ψ(x, t) is a solution to the given initial and boundary value problem. Then,

we apply the fundamental identity for the Dirichlet boundary-value problem, and we

obtain the following integral equation:

ψ(x, t) =

∫
U

G(x, t; y, 0)f(y) dy + ia2

∫ t

0

∫
∂U

G(x, t; y, τ)∂ν(y)ψ(y, τ) ds(y)dτ

− ia2

∫ t

0

∫
∂U

h(y, τ)∂ν(y)G(x, t; y, τ) ds(y)dτ − i
∫ t

0

∫
U

G(x, t; y, τ)V (y, τ)ψ(y, τ) dydτ

(III.40)
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Then, we treat the Neumann boundary-value problem:

α(x, t) = 0, β(x, t) = 1, ∂ν(x)ψ(x, t)

∣∣∣∣
∂U

= h(x, t) ∀t > 0 (III.41)

and once again apply the fundamental identity in order to obtain the following integral

equation:

ψ(x, t) =

∫
U

G(x, t; y, 0)f(y) dy + ia2

∫ t

0

∫
∂U

G(x, t; y, τ)h(y, τ) ds(y)dτ

− ia2

∫ t

0

∫
∂U

ψ(y, τ)∂ν(y)G(x, t; y, τ) ds(y)dτ − i
∫ t

0

∫
U

G(x, t; y, τ)V (y, τ)ψ(y, τ) dydτ

(III.42)

Finally, we treat the Robin boundary-value problem:

β(x, t) = 1, α(x, t)ψ(x, t) + ∂ν(x)ψ(x, t)

∣∣∣∣
∂U

= h(x, t) ∀t > 0 (III.43)

and once again we use the representation theorem in order to obtain the following

integral equation:

ψ(x, t) =

∫
U

G(x, t; y, 0)f(y) dy + ia2

∫ t

0

∫
∂U

G(x, t; y, τ)h(y, τ) ds(y)dτ

− ia2

∫ t

0

∫
∂U

ψ(y, τ)

(
∂ν(y)G(x, t; y, τ) + α(y, τ)G(x, t; y, τ)

)
ds(y)dτ

− i
∫ t

0

∫
U

G(x, t; y, τ)V (y, τ)ψ(y, τ) dydτ

(III.44)
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CHAPTER IV

GREEN FUNCTIONS AND THE RECIPROCITY THEOREM

Unlike [1], the boundary ∂U is considered to be a static boundary, and thus

∂tν(x) = 0 ∀x ∈ ∂U, ∀t > 0 (IV.1)

Theorem 4 Let U be an open and bounded domain in Rn, i.e., U ⊂ Rn. Consider the

following boundary-value problem: Find a function u(x, t) ∈ C2,1(U×R+)
⋂
C1,0(Ū×

R+), such that

Lu(x, t) + F (x, t) = 0 ∀x ∈ U ∀t > 0, (IV.2)

u(x, 0) = ϕ(x) ∀x ∈ U, (IV.3)

u(x, t) = f1(x, t) x ∈ ∂U1, ∀t > 0 (IV.4)

∂ν(x)u(x, t) = f2(x, t) x ∈ ∂U2, ∀t > 0 (IV.5)

where, ∂U1 ∪ ∂U2. If the solution of problem (IV.2)-(IV.3) exists, it is also unique.

Proof: If, u1 and u2 are two solutions of the problem, then their difference

u = u1 − u2 (IV.6)

is a solution of the corresponding homogeneous problem. First, we consider the

following equation,∫ t

0

∫
U

w∗(y, τ)Lu(y, τ) dydτ =

∫ t

0

∫
U

w∗(y, τ)

(
a2∆yu(y, τ) + i∂τu(y, τ)

)
dydτ

(IV.7)
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where, L is the Schrödinger operator. Let w(x, t) = u(x, t) and substitute v(x, t) ≡

w∗(x, t) into Green’s first identity, to obtain∫
U

u∗(y, τ)∆yu(y, τ) dy +

∫
U

∇u∗(y, τ) · ∇u(y, τ) dy =

∫
∂U

u∗(y, τ)∂ν(y)u(y, τ) ds(y).

(IV.8)

Therefore, equation (IV.7) becomes,∫ t

0

∫
U

u∗(y, τ)Lu(y, τ) dydτ = −a2

∫ t

0

∫
U

∇u∗(y, τ) · ∇u(y, τ) dydτ

+ a2

∫ t

0

∫
∂U

u∗(y, τ)∂ν(y)u(y, τ) ds(y)dτ + i

∫ t

0

∫
U

u∗(y, τ)∂τu(y, τ) dydτ

(IV.9)

The left-hand side of equation (IV.9) equals zero. Thus,

0 = −a2

∫ t

0

∫
U

∇u∗(y, τ) · ∇u(y, τ) dydτ + a2

∫ t

0

∫
∂U

u∗(y, τ)∂ν(y)u(y, τ) ds(y)dτ

+ i

∫ t

0

∫
U

u∗(y, τ)∂τu(y, τ) dydτ

(IV.10)

The second integral in the right-hand side of the above equation is equal to zero

because of the Neumann or Dirichlet boundary condition. Then

I = i

∫ t

0

∫
U

u∗(y, τ)∂τu(y, τ) dydτ

=
i

2

∫ t

0

∫
U

(
u∗(y, τ)∂τu(y, τ)−

(
∂τu

∗(y, τ)

)
u(y, τ)

)
dydτ

+
i

2

∫ t

0

∫
U

(
u∗(y, τ)∂τu(y, τ) +

(
∂τu

∗(y, τ)

)
u(y, τ)

)
dydτ

= I1 + I2

(IV.11)

Then, the first term in equation (IV.11) can be expressed in the following way,

I1 =
i

2

∫ t

0

∫
U

(
u∗(y, τ)∂τu(y, τ)−

(
u∗(y, τ)∂τu(y, τ)

)∗)
dydτ

= −
∫ t

0

∫
U

Im

{
u∗(y, τ)∂τu(y, τ)

}
dydτ

(IV.12)
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The second term in equation (IV.11) is:

I2 =
i

2

∫ t

0

∫
U

(
u∗(y, τ)∂τu(y, τ) + ∂τu

∗(y, τ)

)
u(y, τ)

)
dydτ

=
i

2

∫ t

0

∫
U

∂τ [u
∗(y, τ)u(y, τ)] dydτ =

i

2

∫
U

|u(y, t)|2 dy − i

2

∫
U

|u(y, 0)|2 dy
(IV.13)

In this equation the second term vanishes from the fact that u(y, τ = 0) = 0. Then

equation (IV.10) can be rewritten in the following manner,

a2

∫ t

0

∫
U

[∇u∗(y, τ) · ∇u(y, τ)] dydτ = −
∫ t

0

∫
U

Im

{
u∗(y, τ)∂τu(y, τ)

}
dydτ

+
i

2

∫
U

|u(y, t)|2 dy
(IV.14)

Thus, we take the real part of equation (IV.14),and we get the following expression,

a2

∫ t

0

dτ

∫
U

[∇u∗(y, τ) · ∇u(y, τ)] dy = −
∫ t

0

∫
U

Im

{
u∗(y, τ)∂τu(y, τ)

}
dydτ

(IV.15)

Also, if we take the imaginary part of the equation (IV.14), we get the following

expression,

1

2

∫
U

|u(y, t)|2 dy = 0 (IV.16)

The above equation implies that the function u(y, τ) ≡ 0,∀(y, τ) ∈ U × R+. Then

the real part of equation (IV.14) is satisfied trivially. �

Remark: In the case of the heat equation, the Rubinsteins’ proof went in a

different direction. A difference between the heat operator and the Schrödinger op-

erator is that the Schrödinger operator has a complex number in front of the partial

derivative with respect to time. There is no analogue of equation (IV.15) in the heat

equation case.

In the rest of this section, the method of Green function will be introduced as

an important method for solving different types of boundary-value problems such as
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the initial and boundary value problem. In this section, the Green’s function will be

shown to have reciprocity.

The following theorem is based on a similar theorem found on Chapter 15 on

Rubinstein book, but in this case it is proved for the Schrödinger case.

Theorem 5 (The Reciprocity of Green’s Functions)

Suppose (x, t) is a fixed point and (y, τ) ∈ U × R is a variable point. The function

G(y, τ ;x, t) is considered a function of the first variables, and is a solution of the

Schrödinger equation satisfying boundary conditions of Dirichlet, Neumann, or Robin

boundary value problem respectively. Therefore, we obtain the reciprocity of Greens

functions, i.e.,

G(y, τ ;x, t) = G∗(x, t; y, τ). (IV.17)

Proof: Suppose, G(y, τ ;x, t) = K(y, τ ;x, t) + F (y, τ ;x, t),where

LF (y, τ ;x, t) = 0 ∀(y, τ) ∈ U × R (IV.18)

such that,

F (y, τ ;x, t) = −K(y, τ ;x, t) ∀(y, τ) ∈ ∂U × R (IV.19)

or,

∂ν(y)F (y, τ ;x, t) = −∂ν(y)K(y, τ ;x, t) ∀(y, τ) ∈ ∂U × R (IV.20)

or,(
∂ν(y) + β(y, τ)

)
F (y, τ ;x, t) = −

(
∂ν(y) + β(y, τ)

)
K(y, τ ;x, t) ∀(y, τ) ∈ ∂U × R

(IV.21)

and also

F (x, t; y, t) = 0 inU × {τ = t} (IV.22)
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Green’s second formula is given by∫
U

[u(y, τ)∆yv(y, τ)−v(y, τ)∆yu(y, τ)] dy =

∫
∂U

(
u(y, τ)∂ν(y)v(y, τ)−v(y, τ)∂ν(y)u(y, τ)

)
ds(y)

(IV.23)

Then, we integrate the term [G∗(y, τ ;x, t)LG(y, τ ; ρ, θ)−G(y, τ ; ρ, θ)(LG(y, τ ;x, t))∗]

over the spacetime region U × (θ, t), and we have∫ t

θ

∫
U

G∗(y, τ ;x, t)Ly,τG(y, τ ; ρ, θ)−G(y, τ ; ρ, θ)L∗y,τG
∗(y, τ ;x, t) dydτ

= a2

∫ t

θ

∫
U

G∗(y, τ ;x, t)∆yG(y, τ ; ρ, θ)−G(y, τ ; ρ, θ)∆yG
∗(y, τ ;x, t) dydτ

+ i

∫ t

θ

∫
U

G∗(y, τ ;x, t)∂τG(y, τ ; ρ, θ) dydτ + i

∫ t

θ

∫
U

G(y, τ ; ρ, θ)∂τG
∗(y, τ ;x, t) dydτ

(IV.24)

Then, Green’s second formula is used in equation (IV.24), and we obtain∫ t

θ

∫
U

G∗(y, τ ;x, t)LG(y, τ ; ρ, θ)−G(y, τ ; ρ, θ)L∗G∗(y, τ ;x, t) dydτ

= a2

∫ t

θ

∫
∂U

(
G∗(y, τ ;x, t)∂ν(y)G(y, τ ; ρ, θ)−G(y, τ ; ρ, θ)∂ν(y)G

∗(y, τ ;x, t)

)
ds(y)dτ

+ i

∫ t

θ

∫
U

∂τ [G
∗(y, τ ;x, t)G(y, τ ; ρ, θ)] dydτ

(IV.25)

The surface integrals vanish in the Dirichlet boundary problem because G∗(y, τ ;x, t)

and G(y, τ ;x, t) vanish on ∂U ×R+. The surface integrals also vanish when we have

Neumann boundary conditions because ∂ν(y)G(y, τ ;x, t) = 0, on ∂U × R+. Then,

equation (IV.25) becomes∫ t

θ

∫
U

G∗(y, τ ;x, t)LG(y, τ ; ρ, θ)−G(y, τ ; ρ, θ)L∗G∗(y, τ ;x, t) dydτ

= i

∫ t

θ

∫
U

∂τ [G
∗(y, τ ;x, t)G(y, τ ; ρ, θ)] dydτ

(IV.26)
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or, ∫ t

θ

∫
U

G∗(y, τ ;x, t)LG(y, τ ; ρ, θ)−G(y, τ ; ρ, θ)L∗G∗(y, τ ;x, t) dydτ

= i

∫
U

G∗(y, t;x, t)G(y, t; ρ, θ) dy − i
∫
U

G∗(y, θ;x, t)G(y, θ; ρ, θ) dy

(IV.27)

Therefore, by using the definition of the Green function, we obtain

0 = i

∫
U

G∗(y, t;x, t)G(y, t; ρ, θ) dy − i
∫
U

G∗(y, θ;x, t)G(y, θ; ρ, θ) dy (IV.28)

or,

i

∫
U

δ(x− y)G(y, t; ρ, θ) dy = i

∫
U

δ(ρ− y)G∗(y, θ;x, t) dy (IV.29)

or,

G(x, t; ρ, θ) = G∗(ρ, θ;x, t) (IV.30)

Therefore, G∗(ρ, θ;x, t) = G(x, t; ρ, θ) and the quantum Green function has reci-

procity. �

Remark: The reciprocity of the Green function basically expresses the unitarity

of e−itH .

Finally, we present the corollary 2 which was introduced back in Chapter III.

This time we provide a proof to the corollary.

Corollary 2 The solution of the boundary-value problem for the Schrödinger equa-

tion can be represented as the following integral formula:

u(x, t) = Γ(x, t) + U(x, t) + Π(x, t) (IV.31)

The initial term, the source term, and the surface boundary terms are given by the

following integral formulas:

Π(x, t) =

∫
U

G(x, t; y, t0)h(y) dy (IV.32)
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U(x, t) = i

∫ t

t0

∫
U

G(x, t; y, τ)Lu(y, τ) dydτ (IV.33)

and,

Γ(x, t) = ia2

∫ t

t0

∫
∂U

(
G(x, t; y, τ)∂ν(y)u(y, τ)− u(y, τ)∂ν(y)G(x, t; y, τ)

)
ds(y)dτ

(IV.34)

where, G(x, t; y, τ) is any Green function and a2 = ~
2m

, and u(x, t0) = h(x).

Proof: Suppose there exists a function G(x, t; y, τ) such that

L∗y,τG
∗(x, t; y, τ) = 0, ∀(x, t) ∈ U × R (IV.35)

where (y, τ) is a variable point and (x, t) is a fixed point. In other words, the partial

differential operator L∗ acts on the (y, τ) variables. Also, by hypothesis the function

G(x, t; y, τ) satisfies the same filtering properties as the free propagator Kf (x, t; y, τ).

In this proof, the function is assumed to satisfy the filtering property. Thus, we

can write G(x, t; y, τ) as the sum of Kf (x, y, t − τ) and E(x, t; y, τ). The function

E(x, t; y, τ) satisfies the homogeneous equation

LE(x, t; y, τ) = 0, ∀(x, t) ∈ U × R (IV.36)

and vanishes when t = τ , i.e E(x, τ ; y, τ) = 0 inU × {t = τ}. This Green function

satisfies the same properties and equations as Kf , and thus we can replace w∗(y, τ)

by G∗(y, τ ;x, t) in equation (III.14), and we obtain∫ t

t0

∫
U

G∗(y, τ ;x, t)Lu(y, τ)− u(y, τ)L∗G∗(y, τ ;x, t) dydτ

= i

∫
U

u(y, t)G∗(y, t;x, t) dy − i
∫
U

u(y, t0)G∗(y, t0;x, t) dy

+ a2

∫ t

t0

∫
∂U

(
G∗(y, τ ;x, t)∂ν(y)u(y, τ)− u(y, τ)∂ν(y)G

∗(y, τ ;x, t)

)
ds(y)dτ

(IV.37)
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and by the Reciprocity Theorem, we can rewrite equation (IV.37) as

u(x, t) =

∫
U

G(x, t; y, t0)u(y, t0) dy

+ ia2

∫ t

t0

∫
∂U

(
G(x, t; y, τ)∂ν(y)u(y, τ)− u(y, τ)∂ν(y)G(x, t; y, τ)

)
ds(y)dτ

− i
∫ t

t0

∫
U

G(x, t; y, τ)Lu(y, τ) dydτ

(IV.38)

Therefore, we can write equation (IV.38) as the representation formula

u(x, t) = Π(x, t) + Γ(x, t) + U(x, t) (IV.39)

where Π(x, t) is the Poisson integral, Γ(x, t) is the surface integral and U(x, t) is the

source integral. �
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CHAPTER V

GREEN FUNCTIONS AND INITIAL VALUE PROBLEMS

A. Green Functions and Volterra Integral Equations

The boundary-value problem for the nonhomogeneous Schrödinger equation with non-

homogeneous initial conditions can be reduced into a problem with homogeneous

initial conditions by use of Theorem 3:

u(x, t) = Γ(x, t) + U(x, t) + Π(x, t) (V.1)

where u(x, t) is the solution of the nonhomogeneous problem, U(x, t) is the volume

potential, Γ(x, t) is the surface integral and Π(x, t) is the Poisson integral.

Let us consider the Schrödinger initial-value problem with a bounded potential

term:

−∆xu(x, t) + V (x, t)u(x, t) = i∂tu(x, t) (V.2)

u(x, 0) = f(x) ∀x ∈ Rn (V.3)

In this problem, we assume that V (x, t) is a continuously differentiable function on

Rn × R. Let V (x, t) be a bounded function such that

|V (x, t)| ≤M ∀(x, t) ∈ Rn × R (V.4)

Suppose the function V (x, t) is a piecewise continuous and a piecewise smooth func-

tion on Rn × R.

Then by equation (V.1) the solution u(x, t) can be written as the following inte-
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gral equation:

u(x, t) = Π(x, t) + U(x, t) ≡ Ûf(x) + Q̂u(x, t)

=

∫
Rn

Kf (x, t; y, 0)f(y) dy − i
∫ t

0

∫
Rn

Kf (x, t; y, τ)V (y, τ)u(y, τ) dydτ
(V.5)

where Û is a unitary operator and where Kf (x, t; y, τ) is the fundamental solution of

the Schrödinger problem. We are applying the integral representation theorem in a

case where V (x, t) is a bounded function. Thus,

u(x, t) + iSV u(x, t) = Ûf(x) (V.6)

and where

Q̂u(x, t) = −iSV u(x, t) = −i
∫ t

0

Û(t− τ)V (τ)u(τ) dτ (V.7)

In more detail, we can express equation (V.6) as

u(x, t) + i

∫ t

0

Û(t− τ)V (τ)u(τ) dτ = Ûf(x) (V.8)

where,

Û(t− τ)V (τ)u(τ) =

∫
Rn

Kf (x, t; y, τ)V (y, τ)u(y, τ) dy (V.9)

Therefore, equation (V.5) is a Volterra integral equation of the second kind with

respect to time. In order to find the solution to the Volterra integral equation of the

second kind, we let the kernel satisfy the following condition:

K(x, y, t, τ) = 0 if t < τ (V.10)

A Volterra integral equation of the second kind with respect to time, has the following

form:

φ(x, t)− λ
∫ t

0

∫
Rn

K(x, t; y, τ)φ(y, τ) dydτ = f(x, t) (V.11)

By defining Âφ(t) =
∫

Rn K(x, t; y, τ)φ(y, τ) dy, we rewrite equation (V.11) in a more
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compact form,

φ(t)− λ
∫ t

0

A(t, τ)φ(τ) dτ = f(t) (V.12)

In this article, we will work only on the Euclidean spacetime Rn+1. In this case,

we are trying to generalize the kernel and the linear integral operator. The kernel

K(x, t; y, τ) in equation (V.11) can be a Schrödinger kernel, a bounded kernel, or a

Hilbert-Schmidt kernel. The Volterra integral equation of the second kind can be

solved by Picard’s method of successive approximations. For a detailed treatment of

the Picard’s method of successive approximations, I will refer the reader to the Tricomi

reference [7]. The idea is to create an infinite sequence of functions, {φn(x, t)}∞n=0 that

satisfy the following recurrence relations:

φn(t) = f(t) + λ

∫ t

0

A(t, τ)φn−1(τ) dτ ∀n = 1, 2, . . . (V.13)

Then, let

φn(x, t) =
n∑

m=0

λmψm(x, t) ∀m = 1, 2, . . . (V.14)

The function ψm(x, t) can be expressed in the following way:

ψm(x, t) =

∫ t

0

∫
Rn

Km(x, t; y, τ)f(y, τ) dydτ ∀m = 1, 2, . . . (V.15)

or,

ψm(t) = Q̂mf(t) =

∫ t

0

Am(t, τ)f(τ) dτ ∀m = 1, 2, . . . (V.16)

Then, we can write the first term in the following manner,

ψ1(t) =

∫ t

0

A(t, τ)f(τ) dτ (V.17)

and,

An+1(t, τ) =

∫ t

0

A(t, θ)An(θ, τ) dθ ∀n = 1, 2, . . . (V.18)
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where

A1(t, τ) = A(t, τ) (V.19)

B. Integral Equations and Neumann Series

In the previous subsection, the Volterra integral equations of the second kind were

introduced. In this subsection, we introduce the integral operators in arbitrary Ba-

nach spaces in order to find a solution to the Schrödinger equation in Rn+1. Section

A is an informal preview of the Volterra and General Volterra Theorems which will

be proved in Chapter VI. In the following analysis of integral operators, this article

will use as a foundation Rainer Kress’ treatment on linear integral equations [2]. In

operator notation, the Volterra integral equation of the second kind is written in the

following manner:

φ− Q̂φ = f (V.20)

where Q̂ is a bounded linear operator from a Banach space B to itself and φ, f ∈ B.

The existence and uniqueness of a solution to an integral operator equation can be

found via the inverse operator (I−Q̂)−1, and whose existence will become clear below.

Definition 3 Let B(H;H) be the collection of bounded linear transformations from

H into H. Also, we denote the space B(H,F) as the set of bounded linear functionals

on H, where F = {R,C}.

Important Banach spaces which we will be dealing with are the Lebesgue spaces Lp(µ).

This article will cover the case when p = ∞, in order to create bounded estimates

of the Volterra operator Q̂ with respect to the norm ‖ · ‖. In the next section, the

Volterra Theorem will prove that the spectral radius of the Volterra operator is zero

using the L∞-estimates.
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Definition 4 The collection of all essentially bounded measurable functions is de-

noted by L∞(µ). The essential supremum of a function ϕ is given by

‖ϕ‖L∞(µ) = inf{M ≥ 0 : |ϕ(x)| ≤M holds for almost all x}. (V.21)

If ϕ does have an essential bound, then it is said to belong to L∞(µ).

Definition 5 Let A : X → X be a bounded linear operator, where X is a Banach

space, and let Ω be some measurable space. The norm of a bounded operator A(x, y)

is given by

‖A‖L∞(Ω2) ≡ inf{M ≥ 0 : ‖A(x, y)‖ ≤M, for almost all (x, y) ∈ Ω2}

= sup
(x,y)∈Ω2

‖A(x, y)‖
(V.22)

where,

‖A(x, y)‖ = inf{M ≥ 0 : ‖A(x, y)φ‖ ≤M‖φ‖,∀φ ∈ B} (V.23)

and where B is also a Banach space.

The operator equation of the second kind was obtained by reformulating the Schrödinger

equation as an integral equation. The existence and uniqueness of the operator equa-

tions of the second kind can be found by the Neumann series. In operator notation,

we can write the Volterra equation of the second kind, in the following way

φ− Q̂φ = f (V.24)

The integral operator Q̂ is a bounded linear operator in an arbitrary Banach space B.

The solution to an operator equation can be found by the inverse operator (I− Q̂)−1,

where I is the identity operator. In other words, the solution of the Volterra integral
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equation can be given by successive approximations. The successive approximations

φn+1 = Q̂φn + f (V.25)

converge to the exact solution of the integral equation, φ− Q̂φ = f .

In this section, it will be assumed that the integral operators are bounded lin-

ear operators on a Banach space B . The above integral equations are given for an

arbitrary Banach space B that will be used in Picard’s algorithm of successive ap-

proximation. Then, equation (V.25) is converging to the solution φ if the following

conditions are satisfied:

1)the integral operator Q̂ is a bounded linear operator in the Banach space B.

2)the function f belongs to a Banach space B,

3)and finally, the infinite series ϕ =
∑∞

j=0 Q̂
jf is a convergent series with respect to

the topology of L∞ in time and of B in space.

If these three conditions are satisfied, then it is possible to use the Neumann series

to obtain the exact solution to the original problem, which is the initial value problem

of the Schrödinger equation with a potential term V (x, t). The three conditions turn

out be the necessary hypotheses to prove the Volterra and General Volterra theorems.

Once again, we want to solve the Volterra integral equation φ− Q̂φ = f , and the first

initial term in the approximation is f . Then, we have,

(I − Q̂)φ = f, (V.26)

and the formal solutions is

φ = (I − Q̂)−1f (V.27)

with the following Neumann series,

φ = f + Q̂f + Q̂2f + · · · (V.28)
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Therefore, we obtain the partial sums

φm =
m∑
j=0

Q̂jf (V.29)

of the Neumann series which satisfy the recurrence relation φn+1 = Q̂φn + f, ∀n ≥ 0.

Finally, in our case, we have, f(t) = Ûg(x) =
∫

Rn Kf (x, t; y, 0)g(y) dy, and

Q̂f(t) = −iSV f(t) = −i
∫ t

0

∫
Rn

Kf (x, t; y, τ)V (y, τ)f(y, τ) dydτ, (V.30)

and the first-order approximation to the exact solution is,

φ1(t) = f(t) + Q̂f(t) = f(t)− i
∫ t

0

∫
Rn

Kf (x, t; y, τ)V (y, τ)f(y, τ) dydτ (V.31)

Even though we have extra dimensions, specifically, the spatial dimensions, the partial

sums still converge since the spatial linear integral is bounded in a Banach space B,

and the temporal integration has the Volterra property which makes it converge.
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CHAPTER VI

VOLTERRA KERNELS AND SUCCESSIVE APPROXIMATIONS

In this section we will revisit the method of successive approximations. We assume

that A is a bounded linear operator in a Banach space B. Physicists are especially

interested in Hilbert spaces which are special cases of Banach spaces because Hilbert

spaces have applications in quantum mechanics. If the spectral radius of the inte-

gral operator r(A) is less than 1, then we are guaranteed that the Neumann series

converges in the operator norm. Theorems 6 and 7 are from Rainer Kress’ book [2].

Theorem 6 Let A : B → B be a bounded linear operator mapping a Banach space B

into itself. Then the Neumann series

(λI − A)−1 =
∞∑
k=0

λ−k−1Ak (VI.1)

converges in the operator norm for all |λ| > r(A) and diverges for all |λ| < r(A).

Theorem 7 Let V̂ : B → B be a bounded linear operator in a Banach space B with

spectral radius r(A) < 1. Then the successive approximations

ϕn+1 = V̂ ϕn + f, n = 0, 1, 2, . . . (VI.2)

converge for each f ∈ B and each ϕ0 ∈ B to the unique solution of ϕ− V̂ ϕ = f.

The following theorem will prove that the Volterra integral operator of the second

kind has an spectral radius of zero. This theorem is not found in Rainer Kress’ book

Integral Equations. In this case, we assume that A is a bounded linear operator in a

Banach space B. If the spectral radius of the integral operator r(A) is less than 1,

then we are guaranteed that the Neumann series is a convergent series. However, the

proof of the Volterra and General Volterra theorems will not use the spectral radius
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to prove that the Neumann series converges. The Volterra operator is known to have

a nice property, known as the simplex structure. It is the simplex structure which

make the infinite Neumann series converge. It follows from the convergence of the

Neumann series that the spectral radius is zero.

It is a well-known fact that most kernels K(x, t; y, τ) usually do not belong to

a function space such as L∞,1(I2; R2n). Therefore, the most natural conditions to

impose are those of the sort assumed in the Generalized Young’s inequality as stated

by Folland [8]. In Chapter VII, we use the theorem in the form stated by Folland, but

in this chapter, we need it in a generalized form such that it takes values in a Banach

space. Examination of Folland’s proof show that it extends to our generalized case.

The following inequality theorem is mentioned in Gerald Folland’s book Introduction

to Partial Differential Equations. The Generalized Young’s Inequality theorem can

be found in the preliminary chapter of Folland’s book [8].

Theorem 8 (Generalized Young’s Inequality) Let B be a Banach space. Suppose

(X,µ) is a σ- finite measure space, and let 1 ≤ p ≤ ∞ and C > 0. Furthermore

assume that K is a measurable operator-valued function on Ω× Ω such that∫
Ω

‖K(x, y)‖ dµ(y) ≤ C (VI.3)

where ‖ · ‖ denotes the norm of an operator mapping B into B. If f ∈ Lp(Ω;B), the

function Af(x) defined by

Af(x) =

∫
Ω

K(x, y)f(y) dµ(y) (VI.4)

is well-defined almost everwhere and is in Lp(Ω;B), and ‖Af‖Lp(Ω;B) ≤ C‖f‖Lp(Ω;B).

If the space operator A(t, τ) turns out to be a bounded Volterra operator, then it

follows that the Volterra property will make the norm of An to be bounded by 1
n!

. In
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other words, we obtain the following corollary:

Lemma 3 Suppose A(t, τ) is a uniformly bounded operator. If A(t, τ) is also a

Volterra kernel, then by mathematical induction, ‖An‖L∞(I2;B) ≤ ‖A‖nL∞(I2;B)

T n−1

(n− 1)!
,

∀n ∈ N.

Proof: Suppose A(t, τ) is a Volterra kernel, and A2(t, τ)

A2(t, τ) =

∫ t

0

A(t, θ)A(θ, τ) dθ (VI.5)

then A2(t, τ) is also a Volterra kernel. Therefore, we obtain the following L∞ norm

estimates:

‖A2(t, τ)‖ ≤
∫ t

0

‖A(t, θ)‖ ‖A(θ, τ)‖ dθ ≤
∫ t

0

‖A‖2
L∞(I2;B) dθ = ‖A‖2

L∞(I2;B)t (VI.6)

Then,

‖A2‖L∞(I2;B) = max
(t,τ)∈[0,T ]2

| ‖A2(t, τ)‖ | ≤ ‖A‖2
L∞(I2;B)T (VI.7)

We continue by mathematical induction: Assume ‖An‖L∞(I2;B) ≤ ‖A‖nL∞(I2;B)

T n−1

(n− 1)!
,

∀n ∈ N. Then, we assume that the following inequality holds ∀n ∈ N,

‖An(t, τ)‖ ≤ ‖A‖nL∞(I2;B)

tn−1

(n− 1)!
(VI.8)

Then,

‖An+1(t, τ)‖ ≤
∫ t

0

‖A(t, θ)‖‖An(θ, τ)‖ dθ ≤ ‖A‖L∞(I2;B)

∫ t

0

‖An(θ, τ)‖ dθ

≤ ‖A‖n+1
L∞(I2;B)

∫ t

0

θn−1

(n− 1)!
dθ

≤ ‖A‖n+1
L∞(I2;B)

tn

n!

(VI.9)

and hence,

‖An+1‖L∞(I2;B) ≤ ‖A‖n+1
L∞(I2;B)

T n

n!
� (VI.10)
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The following theorem is the main theorem of the master thesis. And, it is also

used in the examples of Chapter VII. The General Volterra Theorem is simply just a

variant of the Volterra Theorem, i.e. it is the Lp-analogue.

Theorem 9 (Volterra Theorem) Let the kernel A(t, τ) be a measurable and uniformly

bounded linear operator such that A : B → B where B is a Banach space. Suppose

that the kernel satisfies the following condition, A(t, τ) = 0, when τ < t. The Volterra

integral operator, Q̂ : L∞(I;B)→ L∞(I;B), is defined by

Q̂ϕ(t) =

∫ T

0

A(t, τ)ϕ(τ) dτ =

∫ t

0

A(t, τ)ϕ(τ) dτ, (VI.11)

where ϕ ∈ B. Then, the Volterra integral equation with the above kernel A(t, τ) can

be solved by successive approximations. That is, the Neumann series converges in the

topology of L∞(I;B).

Proof: Let H = L∞(I;B) be the Banach space with norm ‖ · ‖L∞(I;B), where I =

(0, T ). Suppose that the function φ : I → L∞(I;B) is a bounded function with norm

‖φ‖L∞(I;B) = supτ∈[0,T ] | ‖φ(τ)‖ |. Thus there exists a number D such that

‖A(t, τ)‖B→B ≤ D <∞ ∀(t, τ) ∈ Ī2 (VI.12)

Furthermore, A(t, τ) = 0 when τ < t. Then A(t, τ) satisfies the hypothesis of the

Generalized Young’s Inequality with C = Dt. Thus, by Theorem 8, we have that

‖Aφ‖L∞(I;B) ≤ C‖φ‖L∞(I;B). Therefore, we obtain an estimate of the Volterra operator

Q̂ acting on the function φ(t),

‖Q̂φ(t)‖ ≤
∫ t

0

‖A(t, τ)‖ ‖φ(τ)‖ dτ ≤ ‖A‖L∞(I2;B)‖φ‖L∞(I;B)

∫ t

0

dτ ≤ ‖A‖L∞(I2;B)‖φ‖L∞(I;B)t

(VI.13)

or,

‖Q̂φ‖L∞(I;B) ≤ ‖A‖L∞(I2;B)‖φ‖L∞(I;B)T (VI.14)
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where φ ∈ L∞(I;B). Then we try to solve the Volterra integral of the second kind

via the Picard algorithm(successive approximations). The first term of the Neumann

series is given by

ψ1(t) = Q̂φ(t) =

∫ t

0

A(t, τ)φ(τ) dτ (VI.15)

and the second term is given by

ψ2(t) = Q̂ψ1(t) = Q̂2φ(t) =

∫ t

0

A(t, τ1)ψ(τ1) dτ1 (VI.16)

Then, we compute the bounded norm estimates for the second term of the Neumann

series and we obtain

‖ψ2(t)‖ = ‖Q̂2φ(t)‖ ≤
∫ t

0

‖A(t, τ1)‖ ‖ψ1(τ1)‖ dτ1 ≤ ‖A‖2
L∞(I2;B)‖φ‖L∞(I;B)

∫ t

0

τ1 dτ1

= ‖A‖2
L∞(I2;B)‖φ‖L∞(I;B)

t2

2

(VI.17)

Thus we obtain using equation (VI.14) the following symplex structure with respect

to the L∞ norm estimate for the Volterra equation Q̂2φ(t):

‖ψ2‖L∞(I;B) ≤ ‖A‖2
L∞(I2;B)‖φ‖L∞(I;B)

T 2

2
(VI.18)

Then by mathematical induction, we see that the nth term of the Neumann series ψn

gives the simplex structure:

‖ψn(t)‖ ≤ ‖A‖nL∞(I2;B)‖φ‖L∞(I;B)
tn

n!
(VI.19)

and hence,

‖ψn‖L∞(I;B) ≤ ‖A‖nL∞(I2;B)‖φ‖L∞(I;B)
T n

n!
(VI.20)
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Therefore the series
∑∞

n=0 ψn is majorized by

‖φ‖L∞(I;B) + ‖φ‖L∞(I;B)

∞∑
n=1

‖A‖nL∞(I2;B)

T n

n!
= ‖φ‖L∞(I;B)

∞∑
n=0

‖A‖nL∞(I2;B)

T n

n!

= ‖φ‖L∞(I;B)e
‖A‖L∞(I2;B)T

(VI.21)

Therefore, the Neumann series converges in the topology of L∞(I;B). �

Theorem 10 (General Volterra Theorem) Let the kernel A(t, τ) be a measurable and

uniformly bounded linear operator such that A : B → B where B is a Banach space.

Suppose that the kernel satisfies the following condition, A(t, τ) = 0, when τ < t. The

Volterra integral operator, Q̂ : Lp(I;B)→ Lp(I;B), is defined by

Q̂ϕ(t) =

∫ T

0

A(t, τ)ϕ(τ) dτ =

∫ t

0

A(t, τ)ϕ(τ) dτ, (VI.22)

where ϕ ∈ B and 1 ≤ p < ∞. Then, the Volterra integral equation with the above

kernel A(t, τ) can be solved by successive approximations. That is, the Neumann

series converges in the topology of Lp(I;B).

Proof: Let H = Lp(I;B) be the Banach space with norm ‖ · ‖Lp(I;B) and where

I = (0, T ). Suppose that the function ψ : I → Lp(I;B), is a bounded function with

norm

‖ψ‖Lp(I;B) =

(∫ t

0

‖ψ(τ)‖p dτ
)1/p

, (VI.23)

and where 1 ≤ p <∞. Define the Volterra integral operator in the following way,

Q̂φ(t) =

∫ t

0

A(t, τ)φ(τ) dτ, (VI.24)

where ϕ ∈ B. Let A : B → B be a measurable and uniformly bounded operator.

Thus there exists a number D such that

‖A(t, τ)‖B→B ≤ D <∞ ∀(t, τ) ∈ Ī2 (VI.25)
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Furthermore, A(t, τ) = 0 when τ < t. Then A(t, τ) satisfies the hypothesis of the

Generalized Young’s Inequality with C = Dt. Thus, by Theorem 8, we have that

‖Aφ‖Lp(I;B) ≤ C‖φ‖Lp(I;B). Therefore, we obtain an estimate of the Volterra operator

Q̂ acting on φ, and by the Generalized Young’s inequality, we have

‖Q̂φ‖Lp(I;B) ≤
∫ t

0

‖Aφ‖Lp(I;B) dτ ≤ C‖φ‖Lp(I;B)

∫ t

0

dτ = C‖φ‖Lp(I;B)t (VI.26)

We want to show that the series ψ =
∑∞

j=0 ψj where

ψj ≡ Q̂jφ. (VI.27)

converges with respect to the norm ‖ · ‖Lp . Then, we compute Lp-L∞ norm estimates

for the following equation:

‖ψ2‖Lp(I;B) ≤
∫ t

0

‖Aψ1‖Lp(I;B) dτ1 ≤
∫ t

0

C‖ψ1‖Lp(I;B) dτ1

≤ C2‖φ‖Lp(I;B)

∫ t

0

τ1 dτ1 = C2‖φ‖Lp(I;B)
t2

2

(VI.28)

Then by mathematical induction: ψn = Q̂ψn−1 = Q̂nφ implies

‖ψn‖Lp(I;B) ≤ Cn‖φ‖Lp(I;B)
tn

n
(VI.29)

Thus the series
∑∞

n=0 ψn is majorized by

‖φ‖Lp(I;B) + ‖φ‖Lp(I;B)

∞∑
n=1

Cn t
n

n
= ‖φ‖Lp(I;B)e

Ct (VI.30)

Therefore, the Neumann series converges with respect to the topology Lp(I;B). �

Next, we give a formal definition of the spectral radius. The following definition of

the spectral radius can be found in Chapter III of Kress’ book [2].

Definition 6 Let A : X → X be a bounded linear operator on a normed space X.

A complex number λ is called an eigenvalue of A if there exists an element ϕ ∈ X,
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ϕ 6= 0, such that Aϕ = λϕ. The element ϕ is called an eigenelement of A. A

complex number λ is called a regular value of A if (λI − A)−1 : X → X exists and

is bounded. The set of all regular values of A is called the resolvent set ρ(A) and

R(λ;A) := (λI − A)−1 is called the resolvent of A. The complement of ρ(A) in C is

called the spectrum σ(A) and

r(A) := sup
λ∈σ(A)

|λ| (VI.31)

is called the spectral radius of A.

Now, we can prove that the spectral radius of the Volterra operator is equal to zero.

Theorem 11 Suppose A is a Volterra integral operator from X to itself, where X is

a normed space. If the resolvent (λI − A)−1 exists and is bounded, then the spectral

radius r(A) is equal to 0.

Proof: Suppose the Volterra operator A : X → X is a bounded integral operator,

where X is a normed space. Assume that the resolvent R(λ;A) exists and is bounded.

For the Volterra operator, the resolvent R(λ;A) exists and is bounded for all λ 6=

0. Thus, the resolvent set ρ(A) = {∀λ 6= 0|λ is a regular value of A}. Then, the

spectrum σ(A) is the complement of the resolvent set and is given by

σ(A) = R\ρ(A) = 0 (VI.32)

Then, by the definition of the spectral radius, we have r(A) = supλ∈σ(A) |λ| = 0. �
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CHAPTER VII

APPLICATIONS OF THE VOLTERRA THEOREM

In this section, we apply the Volterra and General Volterra Theorems to four dif-

ferent types of kernels, the Hilber-Schmidt kernel, the L1 and L∞ kernels, and the

Schrödinger kernel. In this section, we will present several different types of appli-

cations of theorems 9 and 10. The first three examples are classical and example 4

is the unitary quantum-mechanical example. The closest example to quantum me-

chanics is example 4 where the spatial operator is a unitary operator. Each example

presents two versions, corresponding to the Volterra and General Volterra theorems,

respectively.

Let I be an interval in the temporal dimension, and let Ln,m(I; Rd) be the Banach

space of Lm(Rd) functions over I. Thus we will denote the Lebesgue space Ln,m(I; Rd)

as the following

Ln,m(I; Rd) =

{
φ :

(∫
I

[∫
Rd

|φ(y, τ)|m dy
]n/m

dτ

)1/n

= ‖φ‖Ln,m(I;Rd) <∞
}
.

(VII.1)

If m and n are equal, then the Lebesgue space Ln,m(I; Rd) will be written as Ln(I; Rd).

A. Example 1

Let the Banach space B be L∞(Rn) and let K(x, t; y, τ) be a bounded integrable (e.g.,

continuous) real or complex-valued kernel, satisfying the Volterra condition in (t, τ).

Let the Lebesgue space Lp in time be L∞(I). Define the Volterra kernel acting on φ

by

A(t, τ)φ(t) =

∫
Rn

K(x, t; y, τ)φ(y, τ) dy (VII.2)
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where φ(x, t) ∈ L∞(I; Rn). Then

|A(t, τ)φ(t)| ≤
∫

Rn

|K(x, t; y, τ)||φ(y, τ)| dy

≤ ‖φ‖L∞(I;Rn)

∫
Rn

|K(x, t; y, τ)| dy
(VII.3)

and by the Generalized Young’s Inequality theorem, we obtain the following result:

‖A(t, τ)φ(t)‖L∞(Rn) ≤ C‖φ‖L∞(I;Rn) (VII.4)

where ∫
Rn

|K(x, t; y, τ)| dy ≤ C (VII.5)

and hence,

‖ψ‖L∞(I;Rn) ≤ C‖φ‖L∞(I;Rn)t (VII.6)

Thus we have verified all the hypothesis of Theorem 9, and we conclude that that the

solution ϕ is given by the Neumann series ϕ =
∑∞

n=0 ψn. Hence by the Volterra The-

orem, the Volterra integral equation with a linear bounded operator A(t, τ) and with

a bounded integrable kernel K(x, t; y, τ) can be solved by successive approximations.

Let the Banach space B be L∞(Rn) and let K(x, t; y, τ) be a bounded integrable

(e.g., continuous) real or complex-valued kernel, satisfying the Volterra condition in

(t, τ). Suppose the Lebesgue space Lp in time is taken to be L1(I). Define Volterra

kernel acting on φ by

A(t, τ)φ(t) =

∫
Rn

K(x, t; y, τ)φ(y, τ) dy (VII.7)

where φ(x, t) ∈ L1,∞(I; Rn). Then

|A(t, τ)φ(t)| ≤
∫

Rn

|K(x, t; y, τ)||φ(y, τ)| dy

≤ ‖φ‖L∞(I;Rn)

∫
Rn

|K(x, t; y, τ)| dy
(VII.8)
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and by the Generalized Young’s Inequality theorem, we obtain the following result:

‖A(t, τ)φ(t)‖L∞(Rn) ≤ C‖φ(τ)‖L∞(Rn) (VII.9)

where ∫
Rn

|K(x, t; y, τ)| dy ≤ C (VII.10)

and hence,

‖Aφ‖L1,∞(Rn) ≤ C‖φ‖L1,∞(Rn) (VII.11)

Hence by the General Volterra Theorem, the Volterra integral equation with a linear

bounded operator A(t, τ) and with a bounded integrable kernel K(x, t; y, τ) can be

solved by successive approximations.

B. Example 2

Let the Banach space B be L1(Rn) and let K(x, t; y, τ) be a bounded integrable (e.g.,

continuous) real or complex-valued kernel, satisfying the Volterra condition in (t, τ).

Define the Volterra operator Q̂ acting on φ by

ψ(t) = Q̂φ(t) =

∫ t

0

∫
Rn

K(x, t; y, τ)φ(y, τ) dydτ, (VII.12)

where φ(x, t) ∈ L∞,1(I; Rn). Then the bounded operator A(t, τ), acting on φ ∈

L1(Rn), is defined by

A(t, τ)φ(t) =

∫
Rn

K(x, t; y, τ)φ(y, τ) dy (VII.13)

Then, we take the absolute value of the linear operator A(t, τ) operating on the

function φ, and this gives

|A(t, τ)φ(t)| ≤
∫

Rn

|K(x, t; y, τ)||φ(y, τ)| dy (VII.14)
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and by the Generalized Young’s Inequality Theorem, we obtain the following norm

estimate

‖A(t, τ)φ(t)‖L1(Rn) ≤ C‖φ(τ)‖L1(Rn) (VII.15)

where, ∫
Rn

|K(x, t; y, τ)| dx ≤ C (VII.16)

Therefore by the General Volterra Theorem, the Volterra integral equation with a

linear bounded operator A(t, τ) and with a bounded integrable kernel K(x, t; y, τ)

can be solved by successive approximations.

Let the Banach space B be L1(Rn) and let K(x, t; y, τ) be a bounded integrable

(e.g., continuous) real or complex-valued kernel, satisfying the Volterra condition in

(t, τ). Let the Lebesgue space Lp be L1(I). Define the function ψ as

ψ(t) = Q̂φ(t) =

∫ t

0

∫
Rn

K(x, t; y, τ)φ(y, τ) dydτ, (VII.17)

where φ(x, t) ∈ L1(I; Rn). Then the bounded operator A(t, τ), acting on φ ∈ L1(Rn),

is defined by

A(t, τ)φ(t) =

∫
Rn

K(x, t; y, τ)φ(y, τ) dy (VII.18)

Then, we take the absolute value of the linear operator A(t, τ) operating on the

function φ, and this gives

|A(t, τ)φ(t)| ≤
∫

Rn

|K(x, t; y, τ)||φ(y, τ)| dy (VII.19)

and by the Generalized Young’s Inequality Theorem, we obtain the following norm

estimate

‖A(t, τ)φ(t)‖L1(Rn) ≤ C‖φ(τ)‖L1(Rn) (VII.20)
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where, ∫
Rn

|K(x, t; y, τ)| dx ≤ C (VII.21)

Then we take the L1 with respect to time of inequality (VII.20) and we obtain

‖Aφ‖L1(I;Rn) ≤ C‖φ‖L1(I;Rn) (VII.22)

Thus we have verified all the hypotheses of the General Volterra Theorem, and we

conclude that that the solution ϕ is given by the Neumann series ϕ =
∑∞

n=0 ψn.

C. Example 3

Let the Banach space B be L2(Rn) and consider a bounded integrable (e.g., continu-

ous) real or complex-valued kernel A(t, τ), satisfying the Volterra condition in (t, τ).

The Hilbert-Schmidt kernel is a function K : Rn × Rn → F on the space variables,

where F = {C,R}. The norm of the Hilbert-Schmidt kernel is given by(∫
Rn×Rn

|K(x, t; y, τ)|2 dxdy
)1/2

= ‖K(t, τ)‖L2(R2n) ≤ N <∞ (VII.23)

The linear operator A(t, τ) is defined on L∞(I2), and A(t, τ) is a Hilbert-Schmidt

operator. Then the Hilbert- Schmidt operator A(t, τ) : L2(Rn)→ L2(Rn) is given by

A(t, τ)φ(t) =

∫
Rn

K(x, t; y, τ)φ(y, τ) dy ∀φ ∈ L∞,2(I; Rn) (VII.24)

It follows that the operator A(t, τ) is bounded. The function K(x, t; y, τ) belongs to

L∞,2(I2; R2n). Then we take the absolute values of A(t, τ)φ(t) and we obtain

|A(t, τ)φ(t)| ≤
∫

Rn

|K(x, t; y, τ)||φ(y, τ)|dy

≤
(∫

Rn

|K(x, t; y, τ)|2dy
)1/2(∫

Rn

|φ(y, τ)|2dy
)1/2 (VII.25)



53

and hence,

‖A(t, τ)φ(t)‖L2(Rn) ≤ ‖K(t, τ)‖L2(R2n)‖φ(τ)‖L2(Rn) ≤ N‖φ(τ)‖L2(Rn) (VII.26)

and where,

N ≡ ‖K‖L∞,2(I2;R2n) (VII.27)

Therefore by the General Volterra Theorem, the Volterra integral equation with a

Hilbert-Schmidt kernel K(x, t; y, τ) ∈ L∞,2(I2; Rn) can be solved by successive ap-

proximations.

Let H be L2(Rn) and consider a bounded integrable (e.g., continuous) real or

complex-valued kernel K(x, t; y, τ), satisfying the Volterra condition in (t, τ). Suppose

the Lebesgue space in time is L2(I). The linear operator K(x, t; y, τ) is defined on

L2(R2n), and A is a Hilbert-Schmidt operator on the (x, y) variables. Then the

Hilbert- Schmidt operator A(t, τ) is given by

A(t, τ)φ(t) =

∫
Rn

K(x, t; y, τ)φ(y, τ) dy ∀φ ∈ L2(I; Rn) (VII.28)

It follows that the operator A(t, τ) is bounded. The Hilbert-Schmidt kernel is a

function K : Rn × Rn → F with an L2 norm in the (x, y) variables defined as(∫
Rn

∫
Rn

|K(x, t; y, τ)|2 dydx
)1/2

= ‖K(t, τ)‖L2(R2n) (VII.29)

Therefore, the function K(x, t; y, τ)φ(x, t) belongs to L2(R2n). Hence,

|A(t, τ)φ(t)| ≤
∫

Rn

|K(x, t; y, τ)||φ(y, τ)| dy

≤
(∫

Rn

|K(x, t; y, τ)|2 dy
)1/2(∫

Rn

|φ(y, τ)|2 dy
)1/2 (VII.30)
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or,

|A(t, τ)φ(t)|2 ≤
(∫

Rn

|K(x, t; y, τ)|2 dy
)(∫

Rn

|φ(y, τ)|2 dy
)

(VII.31)

and hence,

‖A(t, τ)φ(t)‖2
L2(Rn) ≤

(∫
Rn

∫
Rn

|K(x, t; y, τ)|2 dydx
)(∫

Rn

|φ(y, τ)|2 dy
)

= ‖K(t, τ)‖2
L2(R2n)‖φ(τ)‖2

L2(Rn)

(VII.32)

Thus,

‖A(t, τ)φ(t)‖L2(Rn) ≤ ‖K‖L∞,2(I2;R2n)‖φ(τ)‖L2(Rn) (VII.33)

and hence,

‖Aφ‖L2(I;Rn) ≤ ‖K‖L∞,2(I2;R2n)‖φ‖L2(I;Rn) (VII.34)

Thus, we have shown that the norm of A(t, τ)φ(t) is bounded, and hence

‖ψ‖L2(I;Rn) ≤ ‖K‖L∞,2(I2;R2n)‖φ‖L2(I;Rn)t (VII.35)

Therefore by the General Volterra Theorem, the Volterra integral equation with a

Hilbert-Schmidt kernel in space and a uniformly bounded kernel in time can be solved

by successive approximations.

D. Example 4

Let V (x, t) be a bounded potential, and x ∈ Rn. The potential V may be time-

dependent, but in that case its bound should be independent of t (i.e., V ∈ L∞(I; Rn),

with ‖V ‖L∞(I;Rn) ≡ C). Let the Banach space B be the Hilbert space L2(Rn). Recall

that u(t) ≡ Uf (t, τ)h = Kf ∗ h, where Kf (x, t; y, 0) = (4πit)−n/2ei|x−y|
2/4t, is the

solution of the free Schrödinger equation with initial data u(x, 0) = h(x) in L2(Rn).

Remark: A unitary operator is a linear transformation U : H1 → H2 that is

a surjective isometry. In other words a unitary operator is an isomorphism whose
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range coincides with its domain. Also, a unitary operator between metric spaces is

a map that preserves the norm. The following is a modified definition from John B.

Conway’s book A Course in Functional Analysis [4].

Definition 7 If H1 and H2 are Hilbert spaces, an isomorphism between H1 and H2

is a linear surjection U : H1 → H2 such that

〈Uh, Ug〉 = 〈h, g〉 (VII.36)

∀h, g ∈ H1. In this case H1 and H2 are said to be isomorphic.

It is well known that Uf (t, τ) is a unitary operator, and hence the norm of Uf as an

operator from H to itself is ‖Uf (t, τ)‖L2(R2n) = 1. A proof that the operator Uf (t, τ)

is a unitary operator can be found on Chapter 4 of Evans’s book [5]. We wish to

solve the Schödinger equation with the potential V by iteration. The equivalent

integral equation is equation (V.8). However, the kernel is not of the type studied

in Example 2 (or 1). Because of the structure of equation (V.8), the operator is

effectively Volterra. Hence, the Volterra theorem applies.

In theorem 9, take B = H, A = UV as defined in equation (V.9). It remains to

check that UV is a bounded operator on H with bound independent of t and τ . Here

V (τ) is the operator from H to H defined by multiplication of f(y, τ) by V (y, τ), and

‖V (τ)‖ is its norm. But

‖V (τ)f(τ)‖2
L2(Rn) =

∫
Rn

|V (y, τ)f(y, τ)|2 dy ≤ C2

∫
Rn

|f(y, τ)|2 dy = C2‖f(τ)‖2
L2(Rn).

(VII.37)

Therefore,

‖V (τ)f(τ)‖L2(Rn) ≤ C‖f(τ)‖L2(Rn) ∀f ∈ H. (VII.38)

In other words ‖V ‖L∞(I;Rn), the norm of the operator V (τ) ≤ C ≡ ‖V ‖L∞(I;Rn), is the
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uniform norm of the function V (x, t). Therefore,

‖U(t, τ)V (τ)f(τ)‖L2(Rn) ≤ C‖f(τ)‖L2(Rn). (VII.39)

and the operator norm of A = UV is bounded by ‖U(t, τ)V (τ)‖L2(Rn) ≤ C. Then,

A(t, τ)f(τ) =

∫
Rn

K(x, t; y, τ)f(y, τ) dy =

∫
Rn

Kf (x, t; y, τ)V (y, τ)f(y, τ) dy

(VII.40)

Therefore, we obtain the following L2,∞ norm estimates for Q̂f = SV f

‖ψ‖L∞,2(I;Rn) = ‖SV f‖L∞,2(I;Rn) ≤ C‖f‖L∞,2(I;Rn)T (VII.41)

where,

ψ(t) = SV f(t) =

∫ t

0

U(t, τ)V (τ)f(τ) dτ (VII.42)

Thus we have verified all the hypotheses of Theorem 9, and we conclude that the

solution of the Schrödinger equation with potential V is the series ϕ =
∑∞

n=0 ψn,

where ψ0(t) = f(t) = Û(t, τ)h(x), and where h(x) is the initial data.

Let V (x, t) be a bounded potential, and x ∈ Rn. The potential V may be time-

dependent, but in that case its bound should be independent of t(i.e., V ∈ L∞(I; Rn),

with ‖V ‖L∞(I;Rn) ≡ C). Let the Banach space B be the Hilbert space L2(Rn). Suppose

the Lebesgue space in time is also the Hilbert space L2(I). In the first example in

Example 4, the norm of the potential function V and f is shown to be bounded and

the inequality is given by

‖V (τ)f(τ)‖L2(Rn) ≤ C‖f(τ)‖L2(Rn) ∀f ∈ H. (VII.43)

Then, we take the L2 norm with respect to the time variable and we obtain

‖V f‖L2(I;Rn) ≤ C‖f‖L2(I;Rn) (VII.44)
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Also, the operator A = UV is shown to be bounded by ‖UV ‖L2(Rn) ≤ C. Thus, we

have shown that the norm of V f is bounded, and hence

‖ψ‖L2(I;Rn) ≤ C‖f‖L2(I;Rn)t (VII.45)

Therefore by the General Volterra Theorem, the Volterra integral equation with a

unitary operator in space can be solved by successive approximations.
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CHAPTER VIII

HAMILTON-JACOBI EQUATION AND CLASSICAL PATHS

In this chapter, the semiclassical Neumann series will be shown to have norm con-

vergence. In other words, a semiclassical propagator Gscl(x, t; y, τ) will be used to

construct the full quantum Green function. Then, we use the results from section V

and VI to conclude that the successive method of approximations can used to obtain

a solution to the semiclassical Volterra integral equation.

Let us consider the case of a quantum particle subject to a bounded potential

V (x, t). Then the wave function of the particle can be written as

ψ(x, t) = A(x, t)e
i
~S(x,t) (VIII.1)

where A(x, t) and S(x, t) are the amplitude and the action of ψ(x, t), respectively.

Then, we substitute equation (VIII.1) into the time-dependent Schrödinger equation,

and we obtain the following partial-differential equation,

0 = A

[
∂S

∂t
+

1

2m
(∇S)2 +V

]
− i~

[
∂A

∂t
+

1

m
(∇A ·∇S)+

1

2m
A∆S

]
− ~2

2m
∆A (VIII.2)

where ∆ is the Laplacian operator. The classical limit is obtained by taking the limit

~ → 0. Then, we separate the real and imaginary parts of the above equation, and

we get

∂S

∂t
+

1

2m
(∇S)2 + V =

~2

2m

∆A

A
(VIII.3)

and,

m
∂A

∂t
+ (∇A · ∇S) +

1

2
A∆S = 0 (VIII.4)

Then, if we take the limit of ~→ 0, equation (VIII.3) becomes

∂S

∂t
+

1

2m
(∇S)2 + V (x, t) = 0 (VIII.5)
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and this equation is the Hamilton-Jacobi equation. In this case, the phase S(x, t) is

interpreted as the classical action. Another assumption we make is that there exists

a local curve x(t) which satisfies the following equations

dx(t)

dt
=
∂H

∂p
=

1

m
∇S(x(t), t) (VIII.6)

and,

dp(t)

dt
= −∂H

∂x
(VIII.7)

or,

p(t) = m
dx(t)

dt
= ∇S(x(t), t). (VIII.8)

and where H(x,∇S, t) is the classical Hamiltonian function. The classical Hamilto-

nian function is defined by H(x, p, t) = p2

2
+ V (x, t). Equation (VIII.6) enables one

to construct the action S(x, t) from a knowledge of the classical solutions x(t). Then,

we take the total time derivative of the action, and we obtain

dS

dt
=
∂S

∂t
+ ẋ · ∇S = −H + ẋ · p ≡ L(x(t), ẋ(t)) (VIII.9)

This equation implies that we can get solutions of the Hamilton-Jacobi equation by

integrating the Lagrangian L along the trajectories. Thus, the action S can be defined

by

S(x, y, t) =

∫ t

0

L(x(u), ẋ(u)) du+ S0 (VIII.10)

where S0 is initial data, and then S(x, y, t) solves the Hamilton-Jacobi equation. Also

if there exists a local solution of the Hamilton-Jacobi equation, then it will satisfy

the following partial differential equation

∂S

∂t
+H(x,∇S(x, t), t) = 0 (VIII.11)

In the following calculations we make use of the semiclassical Green’s function by using
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some results from Semiclassical Phyiscs by Matthias Brack and Rajat K. Bhaduri

[10]. It is in a similar fashion that we present the convergence of the semiclassical

approximation. An interesting property of the quantum propagator G(x, t; y, 0) is

that it satisfies the following equation

G(x, t; y, 0) =

∫
R3

G(x, t; r, τ)G(r, τ ; y, 0) dr (VIII.12)

In other words the quantum propagator describes the motion of a quantum-mechanical

particle travelling from the space-time point (y, 0) to (x, t) and can be interpreted as

passing through all possible intermediate points (r, τ). The Green functionG(x, t; y, 0)

satisfies the homogeneous Schrödinger equation in the variables (x, t), except at the

source point (y, 0). In this article we are considering a potential V (x, t) ∈ C∞(R3×R),

and thus in a local space-time region the particle evolves under the semiclassical

propagator between encounters with ∆A
A

. It is this basic concept which underlies the

theory of this semiclassical approximation. The free propagator Kf (x, t; y, 0) in the

space-time Rn × R+ is the following function,

Kf (x, t; y, 0) =
( m

2πi~t

)n/2
eim|x−y|

2/2~t (VIII.13)

The exponent in Kf (x, y, t) is basically the action S0(x, y, t) times i
~ for a free particle.

Then the determinant of the negative second partial derivatives of S0(x, y, t) is

det

(
− ∂2S0

∂xi∂yj

)
=

(
m

t

)n
(VIII.14)

Then the quantum free propagator in Rn×R+ can be written in the following manner:

Kf (x, t; y, 0) = A0(t)e
i
~S0(x,y,t) =

(
1

2πi~

)n/2√
det

(
− ∂2S0

∂xi∂yj

)
exp

{
i

~
S0(x, y, t)

}
(VIII.15)

Similarly, we can write a semiclassical propagator Gscl(x, t; y, 0) in the following man-
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ner:

Gscl(x, t; y, 0) = (2πi~)−n/2
√

detCeiS/~ (VIII.16)

where C is an n × n matrix, and its elements are Cij = − ∂2S
∂xi∂yj

. Also,
√

detCeiS/~

arises as the solution of the transport equation (VIII.4), with a normalization that

gives the correct initial value to G(x, t; y, 0) on the surface t = 0. Alternatively, if

one thinks of G(x, t; y, 0) as a solution of the nonhomogeneous Schrödinger equation

in all space-time, it gives the correct delta-function singularity at (x, t) = (y, 0).

Recall that to solve the Schrödinger equation through order ~ we need to solve

∂A

∂t
+

1

m
∇A · ∇S +

1

2m
A∆S = 0 (VIII.17)

but S solves the Hamilton-Jacobi equation, and we obtain

∇S = p
.
= mẋ (VIII.18)

Therefore, we obtain the following partial differential equation

− 1

2m
A∆S =

(
∂

∂t
+

1

m
∇S · ∇

)
A =

(
∂

∂t
+ ẋ · ∇

)
A =

dA

dt
(VIII.19)

Then we can solve for lnA by integrating the classical trajectories and hence

A(x, t) = exp

[
− 1

2m

∫ t

0

∆S(x(u), u) du

]
(VIII.20)

However, the amplitude function can be expressed in an alternative way:

A(x, t) = (2πi~)−n/2
√

detC (VIII.21)

where C = ∇x∇yS, and detC is known as the Van Vleck determinant. In this

section, we assume that the amplitude function is a twice differentiable function, i.e,

A ∈ C2(Rn). The fact that the determinant factor is a solution is well known but
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very nontrivial [10]. The normalization issue is very similar to the case of the free

propagator back in Chapters II and III. The classical action S also depends on (y, s)

and we have set τ = 0 without loss of generality, but can restore it by replacing t by

t − τ . This will become important on the next few pages, and we will need to start

writing S and A as functions of all four arguments.

The solution of the Schrödinger equation is given in terms of classical paths. The

Green function of the Schrödinger equation may be written as a sum of terms, each

of which can linked with a classical path. In the 1974 Balian and Bloch paper,

a semiclassical propagator is used to obtain the multiple scattering expansion of

Gscl(x, t; y, 0) [3]. First let us define a Volterra kernel Q̂ by one of the following

equations,

(−i~∂t +H)Gscl(x, t; y, τ) = δ(x− y)δ(t− τ)−QR(x, t; y, τ) (VIII.22)

or,

Gscl(x, t; y, τ)(−i~∂t +H) = δ(x− y)δ(t− τ)−QL(x, t; y, τ) (VIII.23)

Thus the operator version of the above two equations, for instance, is given by

(−i~∂t +H)Ĝscl = I − Q̂R (VIII.24)

or,

Ĝscl(−i~∂t +H) = I − Q̂L (VIII.25)

where Q̂R and Q̂L are Volterra operators. Then we obtain the Green function for the

initial value problem from equation (VIII.24) and this equation is rewritten as

Ĝ−1Ĝscl = I − Q̂R (VIII.26)
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or,

Ĝscl = Ĝ(I − Q̂) = Ĝ− ĜQ̂R (VIII.27)

where Ĝ−1 = (−i~∂t + H) and Gscl = A(x, t)eiS(x,t)/~ is a semiclassical propagator.

Therefore we can write the formal solution in operator notation:

Ĝ = Ĝscl(I − Q̂R)−1 (VIII.28)

where

Q̂Rφ(t) =

∫ t

0

Λ(t, τ)φ(τ) dτ (VIII.29)

and,

[Λ(t, τ)ϕ(τ)](x) =

∫
Rn

QR(x, t; y, τ)ϕ(y, τ) dy (VIII.30)

The space operator Ĝscl is defined by

Ĝsclφ(t) =

∫ t

0

Γ(t, τ)φ(τ) dτ (VIII.31)

where,

[Γ(t, τ)φ(τ)](x) =

∫
Rn

Gscl(x, t; y, τ)φ(y, τ) dτ (VIII.32)

The above formal solution is analogous to that of the nonhomogeneous Volterra in-

tegral equation of the second kind. The initial approximation in this case will be

a semiclassical propagator Gscl = A(x, t; y, τ)eiS(x,t;y,τ). The kernel Q is given by

Q(x, y, t, τ) = −(L+V )Gscl(x, t; y, τ) + δn(x−y)δ(t− τ) = [∆A(x, t; y, τ)]eiS(x,t;y,τ)/~.

The perturbation expansion of the exact solution of the Schrödinger equation is

Ĝ = Ĝscl + ĜsclQ̂R + ĜsclQ̂
2
R + · · · . (VIII.33)
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Then, we can rewrite the above operator equation in the following manner:

G(x, t; y, τ) = Gscl(x, t; y, τ) +

∫ t

0

Γ(t, τ1)Λ(τ1, τ) dτ1

+

∫ t

0

∫ τ1

0

Γ(t, τ2)Λ(τ2, τ1)Λ(τ1, τ) dτ2dτ1 + · · ·
(VIII.34)

Then, we can rewrite the above operator equation in the following manner:

G(x, t; y, τ) = Gscl(x, t; y, τ) +

∫ t

0

∫
Rn

Gscl(x, t; y1, τ1)

{
∆y1A(y1, τ1; y, τ)

A(y1, τ1; y, τ)

}
×Gscl(y1, τ1; y, τ) dy1dτ1 +

∫ t

0

∫ τ1

0

∫
Rn

∫
Rn

Gscl(x, t; y2, τ2)

{
∆y2A(y2, τ2; y1, τ1)

A(y2, τ2; y1, τ1)

}
×Gscl(y2, τ2; y1, τ1)

{
∆y1A(y1, τ1; y, τ)

A(y1, τ1; y, τ)

}
Gscl(y1, τ1; y, τ) dy2dy1dτ2dτ1 + · · ·

(VIII.35)

and the Laplacian operator ∆ acts upon the first space variable of the amplitude

function A(x, t; y, τ).

A closer connection to Volterra integral equations is used by considering the other

way of deriving the Volterra integral of the second kind. In other words, use equation

(VIII.25) and solve for the exact Green operator Ĝ. Hence, we obtain the following

operator equation

ĜsclĜ
−1 = I − Q̂L (VIII.36)

or,

Ĝscl = (I − Q̂L)Ĝ (VIII.37)

If we apply equation (VIII.37) to φ to get a Volterra integral equation, and this gives

the Volterra structure:

ψ − Q̂Lψ = f (VIII.38)

and where, ψ = Ĝφ, and f = Ĝsclφ. Therefore we can write the formal solution in
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operator notation:

Ĝ = (I − Q̂L)−1Ĝscl (VIII.39)

where Q̂Lφ(t) =
∫ t

0
Λ(t, τ)φ(τ) dτ and Λ(t, τ)φ(τ) =

∫
Rn QL(x, t; y, τ)φ(y, τ) dy. The

perturbation expansion of the exact solution of the Schrödinger equation is

Ĝ = Ĝscl + Q̂LĜscl + Q̂2
LĜscl + · · · . (VIII.40)

Then, we can rewrite the above operator equation in the following manner:

G(x, t; y, τ) = Gscl(x, t; y, τ) +

∫ t

0

Λ(t, τ1)Γ(τ1, τ) dτ1

+

∫ t

0

∫ τ1

0

Λ(t, τ2)Λ(τ2, τ1)Γ(τ1, τ) dτ2dτ1 + · · ·
(VIII.41)

Then, we can rewrite the above operator equation in the following manner:

G(x, t; y, τ) = Gscl(x, t; y, τ) +

∫ t

0

∫
Rn

[∆y1A(x, t; y1, τ1)]eiS(x,t;y1,τ1)/~

×Gscl(y1, τ1; y, τ) dy1dτ1 +

∫ t

0

∫ τ1

0

∫
Rn

∫
Rn

[∆y2A(x, t; y2, τ2)]eiS(x,t;y2,τ2)/~

× [∆y1A(y2, τ2; y1, τ1)]eiS(y2,τ2;y1,τ1)/~Gscl(y1, τ1; y, τ) dy2dy1dτ2dτ1 + · · ·

(VIII.42)

and the Laplacian operator ∆ acts upon the second space variable of the amplitude

function A(x, t; y, τ).

In the following theorem, we will use the operator notation where Ĝscl is on

the left-hand side of the Volterra operator Q̂R. In this chapter, we only consider

the Volterra operator Q̂R. From now on until the end of this chapter, the Volterra

operator Q̂R will be written simply as Q̂. Thus the Volterra integral operator Q̂ will

act on some function ϕ which belongs to the Lebesgue space L∞,2(I; Rn).
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Remark: In the case of the free propagator, the space operator is given by

U0(t, τ)φ(τ) =

∫
Rn

Kf (x, t; y, τ)φ(y, τ) dy (VIII.43)

and hence,

‖U0(t, τ)φ(τ)‖L2(Rn) = ‖φ(τ)‖L2(Rn). (VIII.44)

In the case of the semiclassical propagator, we lose the unitarity of the space operator,

and we obtain only an inequality for the L2 norm of Λ:

‖Λ(t, τ)φ(τ)‖L2(Rn) ≤M‖φ(τ)‖L2(Rn) (VIII.45)

and the smallest number M is the operator norm of ‖Λ‖op of Λ(t, τ). Once again, the

uniform norm of the semiclassical Green function Gscl is not finite because the uniform

norm of A(x, t) is not finite either, i.e, ‖Gscl‖L∞,2(I2;R2n) = ‖A‖L∞,2(I2;R2n) =∞.

Theorem 12 Let Λ(t, τ) be a semiclassical kernel, and suppose the following two hy-

potheses hold:

i.) ‖∆A
A
‖L∞(I2;R2n) <∞

ii.) Γ is a bounded operator from L2(Rn) to itself.

Then the semiclassical operator is a bounded linear integral operator such that Λ :

L2(Rn)→ L2(Rn). It follows that, the Volterra integral equation in the space L∞,2(I; Rn)

with the semiclassical kernel Q(x, t; y, τ) can be solved by successive approximations.

Proof: First of all we want to prove that the Neumann series converges. We want

to show that G =
∑∞

j=0(ĜsclQ̂)jϕ is a convergent series. Suppose, we make the

assumption on the amplitude function A(x, t), and ∆A(x, t) that ‖∆A
A
‖L∞(I2;R2n) <∞.

Let the Banach space B be the Hilbert space L2(Rn). Then we would like to prove

that the semiclassical Green operator Ĝscl is a linear bounded operator from L2(Rn)
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to itself. The Volterra operator is defined in the following way,

[ĜsclQ̂ϕ(t)](x) ≡
∫ t

0

Γ(t, τ1)Λ(τ1, τ)ϕ(τ) dτ

=

∫ t

0

∫
Rn

Gscl(x, t; y1, τ1)Q(y1, τ1; y, τ)ϕ(y, τ) dydτ

(VIII.46)

Thus, the first term of the Neumann series is given by

ψ1(t) ≡ ĜsclQ̂ϕ(t) =

∫ t

0

Γ(t, τ1)Λ(τ1, τ)ϕ(τ) dτ, (VIII.47)

and where the space operator Λ(t, τ) is given by

Λ(t, τ)ϕ(τ) =

∫
Rn

∆A(x, t; y, τ)eiS(x,t;y,τ)/~ϕ(y, τ) dy

=

∫
Rn

∆A(x, t; y, τ)

A(x, t; y, τ)
Gscl(x, t; y, τ)ϕ(y, τ) dy

(VIII.48)

and the space operator Γ(t, τ) is given by

Γ(t, τ)ϕ(τ) =

∫
Rn

Gscl(x, t; y, τ)ϕ(y, τ) dy (VIII.49)

and where Γ(t, τ) is a bounded operator from L2(Rn) to itself. Since the space oper-

ator Γ(t, τ) is bounded operator, this implies the following inequality:∫
Rn

|Γ(t, τ)ϕ(τ)|2 dx ≤
∫

Rn

(∫
Rn

|Gscl(x, t; y, τ)ϕ(y, τ)| dy
)2

dx

≤M2‖ϕ(τ)‖2
L2(Rn)

(VIII.50)

and hence,

‖Γ(t, τ)ϕ(τ)‖L2(Rn) ≤
(∫

Rn

(∫
Rn

|Gscl(x, t; y, τ)ϕ(y, τ)| dy
)2

dx

)1/2

≤M‖ϕ(τ)‖L2(Rn)

(VIII.51)

where M is independent of t, τ . The semiclassical amplitude A(x, t; y, τ) is not uni-

form with respect to time, and this can clearly be seen in the free propagator and
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harmonic propagator cases. In order to have an estimate we have to keep the t vari-

able fixed. A way to have a bounded norm estimate is to notice that the kernel Q can

be expressed as Q(x, t; y, τ) = ∆AeiS/~ = ∆A
A
Gscl. Another assumption that we will

make will be assume that ∆A
A

is L∞ in the space variables, and in the time variables.

Thus, we can obtain the bounded estimates for Λ(t, τ)ϕ(t) in the following way

|Λ(t, τ)ϕ(τ)| ≤
∥∥∥∥∆A

A

∥∥∥∥
L∞(I2;R2n)

∫
Rn

|Gscl(x, y, t, τ)ϕ(y, τ)| dy (VIII.52)

and hence,∫
Rn

|Λ(t, τ)ϕ(τ)|2 dx ≤
∥∥∥∥∆A

A

∥∥∥∥2

L∞(I2;R2n)

∫
Rn

(∫
Rn

|Gscl(x, y, t, τ)ϕ(y, τ)| dy
)2

(VIII.53)

Then we can express the above inequality in the following manner,

‖Λ(t, τ)ϕ(τ)‖L2(Rn) ≤
∥∥∥∥∆A

A

∥∥∥∥
L∞(I2;R2n)

(∫
Rn

(∫
Rn

|Gscl(x, t; y, τ)ϕ(y, τ)| dy
)2

dx

)1/2

≤M‖T‖L∞(I2;R2n)‖ϕ(τ)‖L2(Rn)

(VIII.54)

and where, T = ∆A
A

, and C ≡ ‖T‖L∞(I2,R2n). Then we obtain an estimate on the

function ψ1 which is given by:

‖ψ1(t)‖L2(Rn) ≤ N‖ϕ(τ)‖L2(R2n)t (VIII.55)

The above inequality has the Volterra structure, namely that the first term is pro-

portional to t. The second term of the Neumann series is given by

ψ2(t) =

∫ t

0

Γ(t, τ)φ(τ) dτ =

∫ t

0

Γ(t, τ)Λ(t, τ)ψ1(τ) dτ (VIII.56)

where φ(τ) = Λ(t, τ)ψ1(τ). Then we take the L2 norm of the second term of the
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Neumann series and hence we obtain

‖ψ2(t)‖L2(Rn) ≤
∫ t

0

‖Γ(t, τ)φ(τ)‖L2(Rn)dτ ≤
∫ t

0

N‖φ(τ)‖L2(Rn)τdτ (VIII.57)

or,

‖ψ2(t)‖L2(Rn) ≤ N

∫ t

0

M‖ψ1(τ)‖L2(Rn) dτ ≤ D

∫ t

0

‖ψ1(τ)‖L2(Rn) dτ

≤ D

∫ t

0

‖ϕ(τ)‖L2(Rn)τ dτ ≤ D‖ϕ‖L∞,2(I;Rn)

t2

2

(VIII.58)

Therefore, the norm estimate of the second Neumann series is given by

‖ψ2‖L∞,2(I;Rn) ≤ D‖ϕ‖L∞,2(I;Rn)

T 2

2
(VIII.59)

The second term of the Neumann series ψ2 is an example of the simplex structure

for the general term ψn. Since the above hypothesis holds for fixed t, then the

solution ϕ =
∑∞

n=0 ψn is bounded by a convergent infinite series. In analogy with the

Volterra theorem, the Volterra integral equation with the semiclassical propagator

Gscl(x, t; y, τ) can be solved by successive approximations. �
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CHAPTER IX

POTENTIAL THEORY AND GREEN FUNCTIONS

A. Introduction to Surface Potentials

In this chapter we seek to show the advantages of using the Schrödinger potentials

when constructing the integral equations for the Schrödinger kernel in the case of

domains with smooth boundaries. The Schrödinger potentials give an integral equa-

tion for the Green function in a bounded and open region in Rn. First, we formulate

the classical potential theory by studying the Laplace equation in Rn. The potential

theory treatment of the Schrödinger operator is similar to that of the heat operator.

Thus, we use the article by Irina Pirozhenko et al in order to draw a parallel between

the two partial differential operators [11]. Thus, we assume that the surface of the

bounded domain U ⊂ Rn is a smooth boundary. The fundamental solution for the

Laplace equation is

Φ(x, y) =



1
2π

ln 1
|x−y| if n = 2

1
4π

1
|x−y| if n = 3

1
(2n−4)πn/2

Γ( n
2

)

|x−y|n−2 if n ≥ 3

(IX.1)

The harmonic potentials for the Laplace equation are created by using the fundamen-

tal solution Φ(x, y). The volume potential V (x) is given by

V (x) =

∫
U

Φ(x, y)Lu(y) dy =

∫
U

Φ(x, y)ψ(y) dy (IX.2)

where ψ(x) is a continuous source term function. Similarly, the single-layer potential

is given by

ΓN(x) =

∫
∂U

Φ(x, y)µ(y) dy (IX.3)
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where µ(x) is a continuous surface density function. The double-layer potential is

expressed in the following manner

ΓD(x) =

∫
∂U

∂ν(y)Φ(x, y)ϕ(y) dy (IX.4)

and ϕ(x) is a continuous surface density function. These potentials are also solutions

of the Laplace equation. In Chapter II, we took care of the initial condition through

the Poisson integral. In order to handle the boundary data similarly, the surface

Schrödinger potentials are introduced. These surface potentials are continuous on

∂U × (0, T ]. The time integrals in both surface Schrödinger potentials are improper

integrals with respect to the upper limit. In Linear Integral Equations, Kress intro-

duces and proves the existence of the surface heat potentials [2]. It is a well-known

fact that the surface heat potentials have a jump discontinuity at the boundary ∂U .

This section attempts to prove the existence of the surface Schrödinger potentials. In

theorem 15, the jump-relations are proved for the double-layer Schrödinger potential.

The fundamental solution of the Schrödinger equation is

Kf (x, t; y, τ) = (4πi(t− τ))−n/2 exp

(
i|x− y|2

4(t− τ)

)
(IX.5)

where m = 1
2
, and ~ = 1. The free propagator Kf (x, t; y, τ) satisfies the nonhomoge-

neous initial condition

Kf (x, τ ; y, τ) = lim
t→τ+

Kf (x, t; y, τ) = δ(x− y) (IX.6)

The above nonhomogeneous initial condition allows the construction to the Cauchy

problem for the nonhomogeneous Schrödinger initial value problem

Lu(x, t) = ∆xu(x, t) + i∂tu(x, t) = f(x, t) (IX.7)

u(x, 0) = h(x) (IX.8)
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where f(x, t) = V (x, t)u(x, t) and V (x, t) is the time-dependent potential. Thus, we

can write the solution u(x, t) in terms of integral equations by using the Integral

Representation Theorem. Hence,

u(x, t) = Π(x, t) + U(x, t) (IX.9)

or,

u(x, t) =

∫
Rn

Kf (x, t; y, 0)h(y) dy +

∫ t

0

∫
U

Kf (x, t; y, τ)V (y, τ)u(y, τ) dydτ (IX.10)

From now on, we are going to set the background for the solution to the boundary-

value problem. The following formulas for the solution of the Dirichlet and Neumann

problems will be shown to exist until the second section of this chapter. At this point,

an informal preview of the Representation Theorem will be shown in this section, and

the representation formulas and jump-discontinuity will be proved in section 6.2. In

this section, we are interested in the homogeneous boundary-value problem,

Lu(x, t) = 0 (IX.11)

u(x, t) = g(x, t) on ∂U × R+ (IX.12)

where L is the Schrödinger operator. Then by the representation formula

u(x, t) = Π(x, t) + U(x, t) + Γ(x, t) (IX.13)

where Π(x, t) = 0 and U(x, t) = 0. In this chapter we show that the solution for the

Dirichlet boundary value problem is given by the double-layer potential

u(x, t) = ΓD(x, t) =

∫ t

0

∫
∂U

∂ν(y)Kf (x, t; y, τ)ϕ(y, τ) dσ(y)dτ (IX.14)
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and where µ(x, t) is a continuous surface density. Let us also consider the homoge-

neous Neumann boundary-value problem,

Lu(x, t) = 0 (IX.15)

∂ν(x)u(x, t) = g(x, t) on ∂U × R+ (IX.16)

Then the solution is given by the single-layer potential

u(x, t) = ΓN(x, t) =

∫ t

0

∫
∂U

Kf (x, t; y, τ)µ(y, τ) dσ(y)dτ (IX.17)

where ϕ(x, t) is a continuous surface density. Also the single-layer potential and

double-layer potential satisfy the initial condition u(x, 0) = 0. Furthermore, the

double-layer potential is discontinuous on passing through ∂U . Namely, the solution

is given by

W±(x, t) = W (x, t)∓ 1

2
ϕ(x, t), ∀x ∈ ∂U (IX.18)

where W+(x, t) is the potential when x approaches the surface ∂U from the interior

of U . Similarly, W−(x, t) is the double-layer potential when x approaches y ∈ ∂U

from the exterior of U . Then we consider the Dirichlet problem for the Schrödinger

equation in an open and bounded domain U . Thus,(
∆ + i∂t

)
u(x, t) = 0, ∀(x, t) ∈ U × R+ (IX.19)

u(x, 0) = 0, ∀x ∈ U (IX.20)

u(x, t) = g(x, t), ∀(x, t) ∈ ∂U × R+ (IX.21)

Therefore, the solution u(x, t) for the interior Dirichlet problem reduces on the bound-

ary to

u(x, t) = g(x, t) = W+(x, t) = W (x, t)− 1

2
µ(x, t), ∀(x, t) ∈ ∂U × R+ (IX.22)
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or,

−1

2
µ(x, t) +W (x, t) = g(x, t),∀(x, t) ∈ ∂U × R+ (IX.23)

or,

µ(x, t)−2

∫ t

0

∫
∂U

∂ν(y)Kf (x, t; y, τ)µ(y, τ) dσ(y)dτ = −2g(x, t), ∀x, y ∈ ∂U,∀t ∈ R+

(IX.24)

B. Surface Potentials and Volterra integral problem

In the previous subsection, the interior Dirichlet problem was transformed into a

Volterra integral equation of the second kind. The following theorems and lemmas

attempt to construct a formalism which proves that the Schrödinger surface potentials

do in fact exist. However, the boundary ∂U is considered to be of class C2. Lemma

4 , definition 8 and theorem 13 are from the book Linear Integral Equations [2].

Lemma 4 Let ∂U be of class C2. Then there exists a positive constant L and a

normal vector ν(x) such that

|ν(x) · (x− y)| ≤ L|x− y|2 (IX.25)

and

|ν(x)− ν(y)| ≤ L|x− y| (IX.26)

∀x, y ∈ ∂U .

Definition 8 A weakly singular kernel is a kernel K which is continuous for all

x, y ∈ ∂U , x 6= y, and there exist M > 0 and α ∈ (0, n] such that

|K(x, y)| ≤M |x− y|α−n. (IX.27)

where, n is the dimension of the Euclidean space Rn.
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Theorem 13 The integral operator with continuous or weakly singular kernel is a

compact operator on C(∂U) if ∂U is of class C1.

The following theorem is a more generalized version of Theorem 6.17 from Rainer

Kress’ book [2]. In this theorem we allow the harmonic density to depend on the

variables x and y and the parameter t. This theorem will be used in theorem 15 to

prove that the double-layer Schrödinger potential exists with uniform convergence on

∂U and on compact subintervals of (0, T ]. The proof of the generalized version of

Theorem 6.17 is based upon the proof of Theorem 6.17, but the theorem is extended

to include the temporal parameter t, as suggested by Kress.

Theorem 14 Let ∂U be of class C2. The double-layer harmonic potential v with

continuous density ψ can be continuously extended to ∂U × (0, T ] with limiting values

v±(x, t) =

∫
∂U

ψ(x, y, t)∂ν(y)Φ(x, y) dσ(y)∓ 1

2
ψ(x, t), x, y ∈ ∂U, t ∈ (0, T ], (IX.28)

where t is a parameter, and the integral exists as an improper integral.

Proof: The normal derivative of the fundamental solution of Laplace’s equation is

bounded, and by lemma 4 we have the estimate

|∂ν(y)Φ(x, y)| = |ν(y) · (x− y)|
ωn|x− y|n

≤ L

ωn|x− y|n−2
, x 6= y (IX.29)

Therefore, the integral in equation (IX.28) has a weakly singular kernel. By Theorem

13 the integral exists for x ∈ ∂U and t ∈ (0, T ] as an improper integral. Also, the

improper integral is a continuous function on ∂U × (0, T ]. Let x ∈ ∂U be represented

in the form x = z+hν(z), where z ∈ ∂U and h ∈ [−h0, h0] for some h0 > 0. Therefore,

the double-layer harmonic potential v can be expressed in the form

v(x, t) = ψ(z, t)w(x) + u(x, t), x = z + hν(z) ∈ D \ ∂U, (IX.30)
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where

w(x) =

∫
U

∂ν(y)Φ(x, y) dσ(y) (IX.31)

and

u(x, t) =

∫
U

[ψ(y, t)− ψ(z, t)]∂ν(y)Φ(x, y) dσ(y) (IX.32)

If x ∈ ∂U , then the integral in equation is also an improper integral. The function

w(x) is basically the double-layer potential with constant density. Thus,

w(x) =

∫
∂U

∂ν(y)Φ(x, y) dσ(y) =


−1, if x ∈ U

−1
2
, if x ∈ ∂U

0, if x ∈ Rn \ Ū

(IX.33)

and, in order to prove the theorem the function u(x, t) has to be continuous on the

boundary ∂U . In other words, we need to prove that the limit

lim
h→0

u(z + hν(z), t) = u(z, t), z ∈ ∂U, t ∈ (0, T ] (IX.34)

is uniformly continuous on ∂U × (0, T ]. The following inequality is obtained from

lemma 1,

1

2
[|z − y|2 + |x− z|2] ≤ |x− y|2 (IX.35)

for x = z + hν(z) and h ∈ [−h0, h0]. Thus, the normal derivative of the harmonic

potential can be expressed in the following form

∂ν(y)Φ(x, y) =
ν(y) · (z − y)

ωn|x− y|n
+
ν(y) · (x− z)

ωn|x− y|n
(IX.36)

Thus, using equation (4.26), the normal derivative of Φ(x, y) can be estimated by∣∣∣∣∂Φ(x, y)

∂ν(y)

∣∣∣∣ ≤ ∣∣∣∣ν(y) · (z − y)

ωn|x− y|n

∣∣∣∣+

∣∣∣∣ν(y) · (x− z)

ωn|x− y|n

∣∣∣∣ (IX.37)
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or, ∣∣∣∣∂Φ(x, y)

∂ν(y)

∣∣∣∣ ≤ L1|z − y|2

ωn|x− y|n
+
L2|x− z|2

ωn|x− y|n
≤ L1

ωn|x− y|n−2
+

L2|x− z|
ωn|x− y|n

(IX.38)

where, x − z = hν(z), and |x − z| = |h||ν(z)| < 1. Thus, |x − z|2 ≤ |x − z| < 1,and

we have ∣∣∣∣∂Φ(x, y)

∂ν(y)

∣∣∣∣ ≤ C1

|x− y|n−2
+

C2|x− z|
[|z − y|2 + |x− z|2]n/2

≤M

[
1

|x− y|n−2
+

|x− z|
[|z − y|2 + |x− z|2]n/2

] (IX.39)

for some constants C1, C2 > 0 and M > 0. Then, we project onto the tangent plane,

and we obtain the following estimate∫
∂U(z,r)

|∂ν(y)Φ(x, y)| dσ(y) ≤M

∫
∂U(z,r)

[
1

|x− y|n−2
+

|x− z|
[|z − y|2 + |x− z|2]n/2

]
dσ(y)

(IX.40)

where, ∂U(z, r) = ∂U ∩B(z, r). Since the surface ∂U is of class C1, the normal vector

ν is continuous on ∂U . Then, there exists δ ∈ (0, 1] such that

ν(x) · ν(y) ≥ 1

2
, ∀x, y ∈ ∂U (IX.41)

and |x− y| ≤ δ. Since |x− y| ≥ ρ, then the differential surface element becomes

dσ(y) =
ρn−2dρdΩ

ν(x) · ν(y)
≤ 2ρn−2dρdΩ (IX.42)
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Therefore, if ν(x) · ν(y) ≥ 1
2

, the surface integral estimate becomes

≤ 2M

∫
∂U(z,r)

[
1

ρn−2
+

|x− z|
[|z − y|2 + |x− z|2]n/2

]
ρn−2dρdΩ

≤ 2M

∫
∂U(z,r)

dρdΩ + 2M

∫
∂U(z,r)

|x− z|
[ρ2 + |x− z|2]n/2

ρn−2dρ

∫
dΩ

≤ C

[∫ r

0

dρ+

∫ r

0

|x− z|
[ρ2 + |x− z|2]n/2

ρn−2dρ

]
≤ C

[
r +

∫ ∞
0

ξn−2

[ξ2 + 1]n/2
dξ

]
(IX.43)

Therefore, the function w(x) is bounded and continuous on ∂U . Then,∣∣∣∣∂Φ(x, y)

∂ν(y)
− ∂Φ(z, y)

∂ν(y)

∣∣∣∣ =

∣∣∣∣ν(y) · (z − y)

ωn|x− y|n
+
ν(y) · (x− z)

ωn|x− y|n
− ν(y) · (z − y)

ωn|x− y|n

∣∣∣∣
=

∣∣∣∣ν(y) · (x− z)

ωn|x− y|n

∣∣∣∣ ≤ C
|x− z|
|x− y|n

≤ C
|x− z|
|z − y|n

(IX.44)

for some constant C > 0. Thus, the difference between the two functions w(x) and

w(z) can be estimated as follows∣∣∣∣∫
∂U\∂U(z,r)

∂ν(y)Φ(x, y)− ∂ν(y)Φ(z, y) dσ(y)

∣∣∣∣ ≤∫
∂U\∂U(z,r)

|∂ν(y)Φ(x, y)− ∂ν(y)Φ(z, y)| dσ(y)

≤
∫
∂U\∂U(z,r)

C
|x− z|
|z − y|n

dσ(y)

(IX.45)

If 2|x − z| ≤ r, and 2|x − z| ≤ |z − y|, then 1
|z−y| ≤

1
r
. Thus the above estimate

becomes ∫
∂U\∂U(z,r)

C
|x− z|
rn

dσ(y) ≤ D
|x− z|
rn

(IX.46)
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for some constant D > 0. Then, a bounded estimate can be given for the function

u(x, t), i.e,

|u(x, t)− u(z, t)| =
∣∣∣∣∫
∂U\∂U(z,r)

[ψ(y, t)− ψ(z, t)][∂ν(y)Φ(x, y)− ∂ν(y)Φ(z, y)] dσ(y)

∣∣∣∣
≤
∫
∂U\∂U(z,r)

|ψ(y, t)− ψ(z, t)||∂ν(y)Φ(x, y)− ∂ν(y)Φ(z, y)| dσ(y)

(IX.47)

Since ψ(x, t) is uniformly continuous on ∂U × (0, T ], ∀ε > 0, there exists r > 0 such

that

max
|y−z|≤r

|ψ(y, t)− ψ(z, t)| ≤ ε1/2

D
(IX.48)

Therefore, the bounded estimate for equation (IX.47) becomes

|u(x, t)− u(z, t)| ≤ ε1/2

D

∫
∂U\∂U(z,r)

|∂ν(y)Φ(x, y)− ∂ν(y)Φ(z, y)| dσ(y) ≤ ε1/2

D
D
|x− z|
rn

(IX.49)

Let δ < ε1/2rn, then |x− z| < δ, we obtain

|u(x, t)− u(z, t)| < ε1/2δ

rn
< ε (IX.50)

Therefore, the double-layer harmonic potential is uniformly continuous on ∂U and on

compact subintervals of (0, T ]. �

Theorem 15 will prove the existence of the double-layer Schrödinger potential.

Theorem 15 Let ∂U be of class C2. The double-layer Schrödinger potential v with

continuous density ϕ can be extended to ∂U × (0, T ] with limiting values

v±(x, t) =

∫ t

0

∫
∂U

ϕ(y, τ)∂ν(y)Kf (x, t; y, τ) dσ(y)∓ 1

2
ϕ(x, t), x ∈ ∂U, t ∈ (0, T ],

(IX.51)

and where the integral exists as an improper integral.
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Proof: In this case, we treat the higher-dimensional problem, i.e., when n ≥ 2. The

proof for n = 1 will not be provided here but it is similar and simpler to the higher-

dimensional case. Let x ∈ U , where a U is a bounded domain such that U ⊂ Rn.

Then it is possible to interchange the order of integrations over ∂U and (0, T ] since

the integrand term is continuous throughout ∂U × (0, T ]. Then, we obtain

v(x, t) =

∫
∂U

∫ t

0

1

(4πi(t− τ))n
i[ν(y) · (x− y)]

2(t− τ)
exp

{
i
(x− y)2

4(t− τ)

}
ϕ(y, τ) dτdσ(y)

(IX.52)

Let

s =
|x− y|√
4(t− τ)

(IX.53)

and substitute the above equation into equation (IX.52). Then, we can separate the

spatial components of the integrand in equation (IX.52) outside of the improper time

integral, and we obtain

v(x, t) =

∫
∂U

i[ν(y) · (x− y)]

|x− y|n

∫ ∞
|x−y|√

4t

sn−1eis
2

ϕ

(
y, t− |x− y|

2

4s2

)
dsdσ(y) (IX.54)

Then, we take the time integral to represent the function

ψ(x, y, t) =
1

(πi)n/2

∫ ∞
|x−y|√

4t

eis
2

ϕ

(
y, t− |x− y|

2

4s2

)
ds (IX.55)

Therefore, we can treat the double-layer Schrödinger potential as a harmonic double-

layer potential with the density ψ , which depends on t as a parameter. Therefore,

we can rewrite equation in the following manner:

v(x, t) = i

∫
∂U

∂ν(y)Φ(x, y)ψ(x, y, t) dσ(y) (IX.56)

Then, we prove that ψ is continuous on Rn × ∂U × (0, T ] with

lim
x→y

ψ(x, y, t) = Pnψ(y, t) (IX.57)
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for y ∈ ∂U and t ∈ (0, T ], where

Pn =
1

(πi)n/2

∫ ∞
0

sn−1eis
2

ds =
1

2πn/2
Γ

(
n

2

)
(IX.58)

The limit holds on the boundary ∂U and for compact subintervals of (0, T ]. The

function ψ is continuous for all x 6= y and t ∈ (0, T ]. Then, we show that the limit in

equation (IX.57) holds, by the following method:

ψ(x, y, t) =
1

(πi)n/2

∫ √|x−y|
|x−y|√

4t

sn−1eis
2

ϕ

(
y, t− |x− y|

2

4s2

)
ds+

ϕ(y, t)

(πi)n/2

∫ ∞
√
|x−y|

sn−1eis
2

ds

+
1

(πi)n/2

∫ ∞
√
|x−y|

sn−1eis
2

[
ϕ

(
y, t− |x− y|

2

4s2

)
− ϕ(y, t)

]
ds = I1 + I2 + I3

(IX.59)

Since ϕ ∈ L1(I; Rn), then the limit of x→ y is given by

lim
x→y

I1(x, y, t) = lim
x→y

1

(πi)n/2

∫ √|x−y|
|x−y|√

4t

sn−1eis
2

ϕ

(
y, t− |x− y|

2

4s2

)
ds = 0 (IX.60)

and this limit holds on ∂U and on compact subintervals of (0, T ]. In order to handle

I2, we use the Fresnel integral formula

Pn =

∫ ∞
0

sn−1eis
2

ds =
in/2

2
Γ

(
n

2

)
(IX.61)

Then the limit of the second term can be found by using the Fresnel integral formula

and hence,

lim
x→y

I2(x, y, t) = lim
x→y

ϕ(y, t)
1

(πi)n/2

∫ ∞
√
|x−y|

sn−1eis
2

ds (IX.62)

or,

lim
x→y

I2(x, y, t) = ϕ(y, t)
1

(πi)n/2

∫ ∞
0

sn−1eis
2

ds =
1

2πn/2
Γ

(
n

2

)
ϕ(y, t) (IX.63)
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Suppose that the double-layer density ϕ is continuous and that ϕ ∈ L1(I; R). Then

we make the substitution r = s2 in the third term I3 and we have

I3(x, y, t) =
1

2(πi)n/2

∫ ∞
|x−y|

rmeir
[
ϕ

(
y, t− |x− y|

2

4r

)
− ϕ(y, t)

]
dr (IX.64)

where, m = n−2
2

. Then we insert the Abel factor e−αr into equation (IX.64) and this

gives

I3(x, y, t) =
1

2(πi)n/2

∫ ∞
|x−y|

e−αrrmeir
[
ϕ

(
y, t− |x− y|

2

4r

)
− ϕ(y, t)

]
dr (IX.65)

Next, we take the absolute value of equation (IX.65) and we have

|I3| ≤
1

πn/2

∫ ∞
|x−y|

rme−αr
∣∣∣∣ϕ(y, t− |x− y|24r

)
− ϕ(y, t)

∣∣∣∣ dr (IX.66)

Since |x − y| < r, this implies that |x−y|2
r

< |x − y|. Therefore, we can bound

the bracketed factor in equation (IX.65) by taking the absolute value. Since ϕ is

continuous, ∀η > 0 ∃δ > 0 such that∣∣∣∣ϕ(y, t− |x− y|24r

)
− ϕ(y, t)

∣∣∣∣< η (IX.67)

∀y ∈ ∂U and ∀t, t1 ∈ [0, T ] such that |t− t1| < δ and |x−y|2
r

< |x− y| < δ. Since ϕ is

a continuous function, this implies that

|I3| ≤
η

πn/2

∫ ∞
|x−y|

rme−αr dr → 0 (IX.68)

as x → y, and this limit holds in the Abel sense. Therefore, ψ is continuous on

Rn × ∂U × (0, T ].
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Since, the function ψ is analogous to the harmonic density, we use theorem 14,

and we obtain the following result,

v±(x, t) = lim
h→0

v(x± hν(x), t) =

∫ t

0

∫
∂U

∂ν(y)Kf (x, t; y, τ)ϕ(y, τ) dσ(y)dτ ∓ 1

2
ϕ(x, t)

(IX.69)

where y ∈ ∂U . Therefore, the double-layer potential exists and it is Abel summable

on ∂U and on compact subintervals of (0, T ]. �

Theorem 16 Let ∂U be of class C2. Then the single-layer potential u(x, t) with

continuous density φ can be extended to ∂U × (0, T ]. On the boundary we have

∂ν(x)u±(x, t) =

∫ t

0

∫
∂U

φ(y, τ)∂ν(y)Kf (x, t; y, τ) dσ(y)dτ ± 1

2
φ(x, t), (IX.70)

∀x, y ∈ ∂U ,and t ∈ (0, T ]. In this case the integral exists as an improper integral.

Proof: The proof is similar to the proof for theorem 15. The single-layer surface

potential is continuous everywhere in U × (0, T ]. Since the integrand of the single-

layer potential has no singularities outside U × (0, T ] for any t ∈ (0, T ], it is also

continuous everywhere in Rn+1 \ (U × (0, T ]) for any t ∈ (0, T ]. Therefore, all we

have to show is that the jump relation holds. Then, the expressions for the normal

derivatives of the surface potential of a single layer is obtained by substituting the

double-layer density ψ(x, t) by the density of the single-layer potential u(x, t). The

single-layer jump-relation will have cosφ instead of cosϕ, where φ is the angle between

the normal vector ν(x) and the vector rxy = x − y. Thus, the proof is identical to

that of theorem 15. �

Next, we will show some corollaries which are the goal of this section. By us-

ing theorem 8 and 9, we can finally solve the main two problems of this section,

the Dirichlet and Neumann boundary value problem. The homogeneous Dirichlet
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boundary value problem is

Lu(x, t) = 0 (IX.71)

u(x, t) = f(x, t) on ∂U × (0, T ] (IX.72)

and the homogeneous Neumann boundary value problem is

Lu(x, t) = 0 (IX.73)

∂ν(x)u(x, t) = g(x, t) on ∂U × (0, T ] (IX.74)

where f and g satisfies the Dirichlet and Neumann boundary conditions respectively.

These two functions functions also satisfy the initial condition

f(·, 0) = 0 on ∂U (IX.75)

and

g(·, 0) = 0 on ∂U (IX.76)

Corollary 3 The double-layer Schrödinger potential

u(x, t) =

∫ t

0

∫
∂U

ϕ(y, τ)∂ν(y)Kf (x, t; y, τ) dσ(y)dτ, x, y ∈ ∂U, t ∈ (0, T ] (IX.77)

with continuous density ϕ is a solution to the interior Dirichlet problem provided that

ϕ is a solution of the integral equation

ϕ(x, t)−2

∫ t

0

∫
∂U

ϕ(y, τ)∂ν(y)Kf (x, t; y, τ) dσ(y)dτ = −2f(x, t), x, y ∈ ∂U, t ∈ (0, T ]

(IX.78)

Proof: This proof follows from theorem 15. �

Corollary 4 The double-layer Schrödinger potential

u(x, t) =

∫ t

0

∫
∂U

ϕ(y, τ)∂ν(y)Kf (x, t; y, τ) dσ(y)dτ, x, y ∈ ∂U, t ∈ (0, T ] (IX.79)
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with continuous density ϕ is a solution to the exterior Dirichlet problem provided that

ϕ is a solution of the integral equation

ϕ(x, t)+2

∫ t

0

∫
∂U

ϕ(y, τ)∂ν(y)Kf (x, t; y, τ) dσ(y)dτ = 2f(x, t), x, y ∈ ∂U, t ∈ (0, T ]

(IX.80)

Proof: This proof follows from theorem 15. �

Corollary 5 The single-layer Schrödinger potential

u(x, t) =

∫ t

0

∫
∂U

ψ(y, τ)Kf (x, t; y, τ) dσ(y)dτ, x, y ∈ ∂U, t ∈ (0, T ] (IX.81)

with continuous density ψ is a solution to the interior Neumann problem provided

that ψ is a solution of the integral equation

ψ(x, t) + 2

∫ t

0

∫
∂U

ψ(y, τ)Kf (x, t; y, τ) dσ(y)dτ = 2g(x, t), x, y ∈ ∂U, t ∈ (0, T ]

(IX.82)

Proof: This proof follows from theorem 16. �

Corollary 6 The single-layer Schrödinger potential

u(x, t) =

∫ t

0

∫
∂U

ψ(y, τ)Kf (x, t; y, τ) dσ(y)dτ, x, y ∈ ∂U, t ∈ (0, T ] (IX.83)

with continuous density ψ is a solution to the exterior Neumann problem provided

that ϕ is a solution of the integral equation

ϕ(x, t)− 2

∫ t

0

∫
∂U

ψ(y, τ)Kf (x, t; y, τ) dσ(y)dτ = −2g(x, t), x, y ∈ ∂U, t ∈ (0, T ]

(IX.84)

Proof: This proof follows from theorem 16. �

The equations (IX.78), (IX.80), (IX.82), and (IX.84) are Volterra integral equa-

tions of the second kind with respect to time. These four integral equations can be
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written in compact operator notation in the following way

ϕ± 2Ŝϕ = ±2f (IX.85)

and

ψ ∓ 2Ŝψ = ∓2g (IX.86)

where the first equation is for the Dirichlet problem, and the second equation is for

the Neumann problem. It remains to prove that these Volterra integral equations can

be solved by the method of successive approximations. The next problem we tackle

is to prove that the surface Volterra integral equations can indeed by solved by the

Picard algorithm. The following theorem is an application of the Volterra theorem

when the spatial Banach space B is L∞(∂U).

Theorem 17 Let us consider the interior Dirichlet problem only. Suppose that ϕ ∈

L∞(I; ∂U) is a solution of the integral equation

ϕ− 2Ŝϕ = −2f (IX.87)

where Ŝ is the Volterra operator defined on equation (IX.89) and where f is the

boundary data. Thus, the Neumann series of the above Volterra equation converges

to the exact solution with respect to the topology L∞(I; ∂U).

Proof: Let H = L∞(I;B) be the Banach space with norm ‖ · ‖L∞(I;B), where I =

(0, T ). Suppose that the function φ : I → L∞(I;B) is a bounded function with

norm ‖ϕ‖L∞(I;B) = supτ∈[0,T ] | ‖ϕ(τ)‖ |. We shall show that the surface Schrödinger

operator is a bounded operator from L∞(I; ∂U) to itself. Suppose the continuous

density function ϕ belongs to L∞(I; ∂U). Thus there exists a number C such that

∀(t, τ) ∈ Ī2 ∧ ∀ϕ ∈ L∞,2(I; Rn) =⇒ ‖Ŝϕ‖L∞(Rn) ≤ C‖φ‖L∞(Rn) (IX.88)
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The integral operator Ŝ : L∞(∂U)→ L∞(∂U) is given by

Ŝϕ(x, t) =

∫ t

0

∫
∂U

∂ν(y)Kf (x, t; y, τ)ϕ(y, τ) dσ(y)dτ (IX.89)

∀x, y ∈ ∂U and t ∈ (0, T ]. In this case, the integral is an improper integral with

respect to time. Therefore, the normal derivative of the free propagator is

∂ν(y)Kf (x, t; y, τ) =
1

(4πi(t− τ))n/2

(
i[ν(y) · (x− y)]

2(t− τ)

)
exp

(
i|x− y|2

4(t− τ)

)
. (IX.90)

Namely, by using lemma 4, the normal derivative of Kf (x, t; y, τ) can be given a

bounded estimate, and hence

|∂ν(y)Kf (x, t; y, τ)| ≤ L|x− y|2

|t− τ |n/2|t− τ |
t > τ, (IX.91)

and where L is a positive constant. Then, we define the space operator K̂(t, τ) in the

following way

K̂(t, τ)ϕ(τ) =

∫
∂U

∂ν(y)K(x, t; y, τ)ϕ(y, τ) dσ(y)

=

∫
∂U

1

(4πi(t− τ))n/2
i[ν(x) · (x− y)]

2(t− τ)
exp

(
i|x− y|2

4(t− τ)

)
ϕ(y, τ) dσ(y)

(IX.92)

Then we do the change of variables r = x−y
(4(t−τ))1/2 in equation (IX.92) and hence we

obtain

K̂(t, τ)ϕ(τ) =
1

2(πi)n/2

∫
∂U(r)

i[ν(x) · r]
(2(t− τ))1/2

eir
2

ϕ(y, τ) dσ(r) (IX.93)

Then, we take square of the absolute value of K̂ϕ and we obtain

|K̂(t, τ)ϕ(τ)| ≤ 1

2(π)n/2

∫
∂U(r)

|ν(x) · r|]
(2(t− τ))1/2

ϕ(x− 4(t− τ)1/2r, τ) dσ(r)

≤
D‖ϕ(τ)‖L∞(∂U)

(2(t− τ))1/2

∫
∂U(r)

|ν(x) · r| dσ(r) ≤
M‖ϕ(τ)‖L∞(∂U)

(2(t− τ))1/2

(IX.94)
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Then, we take the uniform norm on the boundary ∂U of the quantum surface operator

and we obtain

‖Ŝϕ(τ)‖L∞(∂U) ≤
∫ t

0

‖K̂(t, τ)ϕ(τ)‖L∞(∂U) dτ ≤
∫ t

0

M‖ϕ(τ)‖L∞(∂U)

(2(t− τ))1/2
dτ

≤M‖ϕ‖L∞(I;∂U)

∫ t

0

1

(2(t− τ))1/2
dτ ≤ N‖ϕ‖L∞(I;∂U)t

1/2

(IX.95)

and hence,

‖Ŝϕ‖L∞(I;∂U) ≤ N‖ϕ‖L∞(I;∂U)T
1/2 (IX.96)

Therefore, the quantum surface operator is a bounded operator from L∞(I; ∂U) to

itself. The Volterra structure is still present in the inequality (IX.96). The only dif-

ference is that the first term of the Neumann series will be proportional to t1/2 instead

of t. In analogy with the Volterra theorem, the Volterra integral equation with the

quantum surface kernel ∂ν(x)Kf (x, t; y, τ) can be solved by successive approximations.

�
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CHAPTER X

CONCLUSION

The similarities between the Schrödinger equation and the heat equation were used

to create a theoretical framework which will give the solution to the Schrödinger

problem. The Volterra theorem proves that Volterra integral equation with a uni-

form bounded kernel can be solved by successive approximations with respect to

the topology L∞(I;B). The general Volterra theorem proves the more general case

when Lp(I;B), and where 1 ≤ p < ∞. The boundary-value problem is written in

terms of Volterra integral equations of the second kind. Furthermore, the single-

layer Schrödinger and double-layer Schrödinger potentials with continuous density

functions are shown to be extended to ∂U × (0, T ] with some limiting values.

A perturbation expansion is constructed by using the semiclassical propagator

and a uniformly bounded potential V (x, t). The solution of the Schrödinger equation

is given in terms of classical paths, and the semiclassical propagator Gscl = AeiS/~ to

the Green function is considered as the building block for the exact Green function

[3]. The semiclassical Neumann series were found to have norm convergence, and

thus the Neumann series converge to the exact Green function under some technical

assumptions. Finally, the interior Dirichlet problem is considered, and the double-

layer Schrödinger operator is shown to be bounded from L∞(I; ∂U) to itself. Thus

Neumann series is shown to converge in the case of the quantum surface kernel ∂vKf

with respect to the topology of L∞(I; ∂U).
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