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ABSTRACT

Roughness-induced Transient Growth: Continuous-spectrum Receptivity and

Secondary Instability Analysis. (May 2011)

Nicholas Allen Denissen, B.S., Case Western Reserve University

Chair of Advisory Committee: Dr. Edward White

This dissertation analyzes the effect of periodic roughness elements on the stability

of a flat plate boundary layer. Receptivity data is extracted from direct numerical

simulations and experimental data and the results are compared to theoretical predic-

tions. This analysis shows that flow in the immediate vicinity of roughness elements is

non-linear; however, the evolution of roughness-induced perturbations is a linear phe-

nomena. New techniques are developed to calculate receptivity information for cases

where direct numerical simulations are not yet possible. Additionally, the stability

behavior of the roughness wake is analyzed. New instability modes are found, and

the effect of boundary layer complexity, perturbation amplitude and other factors are

examined. It is shown that the wake is much less stable than optimal perturbation

theory predicts, and highlights the importance of receptivity studies. The implication

of these results on transition-to-turbulence is discussed, and future work is proposed.
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CHAPTER I

INTRODUCTION AND LITERATURE REVIEW

A. Introduction

The transition of boundary layers from laminar to turbulent flow has attracted wide

research interest for over a century. The impact of transition on drag, surface heat

flux, turbulent mixing and other phenomena is well documented. For a wide variety

of flow conditions an impressive body of knowledge describes the physical mechanisms

that bring about the transition to turbulence. Traditional stability approaches that

focus on identifying unstable modal solutions of simplified forms of the Navier–Stokes

equations have produced a wealth of information for flows of aerodynamic interest.

These methods have proved effective for flows with features such as surface curvature,

wing sweep and compressibility effects, and can track mode interaction and non-linear

development.

For two-dimensional boundary layers, the linearized disturbance equations show

that spanwise-invariant traveling waves, Tollmien–Schlichting (T–S) waves, experi-

ence energy growth once a certain “critical” Reynolds number is reached. Initially

instigated by freestream turbulence, acoustic fluctuations or surface vibrations, these

exponentially growing instability waves eventually attain sufficient amplitude that

their distortion of the boundary layer becomes significant. This leads to secondary,

three-dimensional instabilities of the new base flow, and transition to turbulence. The

T–S transition process is understood well enough to appear in general textbooks[1].

Other exponentially growing instabilities exist for more complex boundary layers.

The three-dimensional boundary layer on a swept wing produces a different type of

The journal model is IEEE Transactions on Automatic Control.
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modal disturbance. Stationary and traveling crossflow waves grow exponentially be-

fore initiating secondary mechanisms. Similarly, concave surface curvature gives rise

to exponentially growing Görtler instabilities, with similar results. Compressibility

effects in high-speed flows allow multiple unstable waves to coexist and interact even

for two-dimensional boundary layers. The common feature of these disturbances is

that they are eigenmodes of the linearized Navier–Stokes equations, and their mode

shapes and growth rates are completely determined by solving the eigenvalue problem.

Despite this success there is still a great deal that is unknown about the transition

process. Of specific relevance to this dissertation, the presence of surface roughness

introduces complex behavior into the boundary layer. Much of this behavior has

resisted the traditional modal description. Instead, a growing body of work provides

evidence that roughness contributes to disturbance growth in the boundary layer via

an algebraic-growth mechanism intially proposed by Ellingsen and Palm[2]. This

concept was later solidified into the “lift-up” mechanism isolated by Landahl[3] and

others[4]. Landhal shows that a perturbation of finite size with a velocity component

normal to the base flow, and aligned with the base-flow gradient, results in the al-

gebraic growth of a streamwise disturbance. Further, three-dimensional disturbances

of any type with perturbations aligned this way will result in “streaks” of momen-

tum excess and defect as the normal velocity perturbation redistributes streamwise

momentum.

This mechanism, as it is now understood, has two important characteristics.

First, it can produce disturbance growth in a boundary layer even when no traditional

instabilities exist. That is, even though in the limit of long time or streamwise distance

all perturbations decay, there can be a period of initial disturbance growth. Second,

the theory used to describe these perturbations is linear which offers considerable

advantages in both computation and understanding necessary for future modeling.
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This Transient Growth potentially contributes to transition in a variety of contexts,

from simple pipe flow, to atmospheric reentry of bluff bodies[5]. In boundary layers,

transient growth creates long-lived streamwise streaks. Streaky boundary layers are

characterized by adjacent regions of accelerated and decelerated flow relative to the

one-dimensional boundary layer, and have been observed as a result of several different

forcing mechanisms, including roughness and free-stream turbulence.

Morkovin[6] provides a framework for categorizing the wide variety of behavior

seen in boundary layers. The transition roadmap shown in Fig. 1 shows the central

role transient growth can play in various transition scenarios. In this figure, Path A

represents the modal growth scenarios where a substantial amount of research has

brought significant results. This includes Tollmien–Schlicting (T–S) waves, Görtler

instabilities, crossflow waves, etc. How these modes grow and produce secondary

instabilities, eventually leading to breakdown has been explored in great detail.

Much of the work on roughness effects in boundary layers has focused on Path B,

that is, how the complications added to the boundary layer as a result of roughness

enhanced T–S wave growth[7, 8, 9]. More recent work has also looked at carefully

chosen roughness configurations in hopes of suppressing T–S growth[10, 11, 12]. This

work will be discussed in more detail below. However, while Path B is of consider-

able interest, given the central role T–S waves play in many applications, analysis

of Path B transition cannot be divorced from an analysis of Path C transition. In

Path C the transiently growing disturbances themselves attain sufficient amplitude

to bring about destabilizing secondary effects. In fact, for relatively high-amplitude

three-dimensional roughness, the T–S mechanism does not provide an explanation

for transition[13], and transient growth is thought to be of central importance. The

potential for transient growth to trip turbulence must be taken into account when an-

alyzing the impact of transient growth on modal instabilities. Certainly any attempt
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to modify the boundary layer in a predictable manner to control modal growth must

be concerned with unintentionally pushing the flow down Path C.

An analysis of Path C transition in the wake of surface roughness involves several

stages. Following the roadmap, there is first a receptivity phase, where the boundary

layer converts the roughness into a flow perturbation. A great deal of research effort

has been devoted to receptivity in the past as physics-based models for receptivity

are challenging to obtain. Unlike the growth of the perturbation itself, which this

work will show can be modeled by the linearized equations, the initial input forcing

is difficult to quantify and generalize. This problem is heightened in the case of tran-

sient growth as there is no fixed mode-shape to look for when analyzing experiments

or direct numerical simulation (DNS)[14]. The mode shape and the growth rate are

both determined by the receptivity, not by the eigenvalue problem. One of the key

focuses of the present dissertation is to fully capture this receptivity mathematically

so progress can be made in modeling the physics of the receptivity process. Experi-

ments point to the receptivity process being non-linear, even though the subsequent

evolution of the perturbation is linear[15].

The receptivity phase is followed by a period of transient growth, where the

perturbation generated by the roughness grows larger and begins to distort the mean-

flow. This growth is a linear process. Each of the eigenmodes that comprise the

perturbation decays; however, the sum of these modes experiences net energy growth.

This is possible because the linearized Navier–Stokes operator is non-normal, and thus

the eigenmodes are non-orthogonal[16]. That is, they may interfere destructively

with one another at one location, and constructively at another. This growth and

decay is computed by tracking every mode in the boundary layer, unlike T–S-type

disturbances where only the growing modes (and possibly some of the harmonics)

must be computed.
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As it evolves, the transiently growing perturbation alters the mean-flow, creating

streamwise streaks. These streaks risk destabilization by secondary, inflectional, in-

stabilities once they reach sufficient amplitude. It is this combined base-flow, Blasius

flow plus transient growth, that generates exponential instabilities. The growth rates

and mode shapes of these secondary instabilities can be computed by solving a set

of coupled eigenvalue problems. A complete analysis of receptivity, transient growth,

and potential secondary instabilities forms the primary objectives in the present work.

This dissertation has two main parts. The first part fully quantifies the boundary

layer receptivity to an array of roughness elements, and analyzes the energy growth

of each spanwise harmonic. Quantitative receptivity information is extracted from a

physically-realized, transiently-growing perturbation for the first time. This can be

used to demonstrate the linearity of disturbances generated by a class of roughness

elements in both experiments and DNS. Further, this analysis allows for quantita-

tive comparison between theoretical, experimental, and numerical approaches to the

receptivity problem.

The second part addresses the latter stage, the resulting instability of the rough-

ness wake as the perturbation evolves downstream. This builds on the the linear

nature of roughness wake, and systematically analyzes the stability characteristics of

the resulting secondary flow. This analysis shows that, relative to previously analyzed

theoretical models of transient growth (optimal perturbation theory), the physically-

realized transient growth is less stable to inviscid/inflectional instabilities. Further-

more, the combination of different spanwise harmonics generated by realistic rough-

ness gives rise to more unstable secondary modes than previous work. The stability

analysis is compared to experimental evidence to isolate the physical mechanisms that

lead to transition in the wake of surface roughness.
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B. Roughness-induced Transition

Although it is usually assumed in fluid dynamic analyses, no surface is truly smooth.

A great deal of attention has been focused on the effect of roughness on transition

given the observed sensitivity of the transition process. These investigations have

proceeded in several stages. The goal of the present work is to contribute to a more

detailed physical and mathematical understanding of these past results. It is im-

portant to summarize what is known about the stability of boundary layers in the

presence of surface roughness so that the current results can be properly contextual-

ized and applied.

Initial investigations, the “pre-history” of roughness-induced transition experi-

ments, sought to produce workable engineering correlations for roughened surfaces.

These works, including efforts by well known researchers such as Dryden[17], and

Klebanoff[18] formed the initial understanding of the effect of rough surfaces on tran-

sition location. The primary findings were noting the importance of the height of

the roughness to the thickness of the boundary layer (k/δ∗), and noting that over

both distributed roughness and localized 2D roughness the transition location moves

forward. In 2D this was explained by the presence of a persistent separation region in

the wake of the roughness. This separated region created both an inflection point and

decelerated flow which amplified T–S wave receptivity and growth. This established

the effectiveness of 2D trips for triggering turbulence.

Work on 3D roughness gave results that were less easily understood. While

a separation region may be present in the wake of 3D roughness, it is short-lived.

Researchers noted the relevance of the Reynolds number based on roughness height

(Rek = U(k)k/ν), as well as behavior deemed “critical.” That is, the transition lo-

cation experienced sharp movements as Rek was increased above a critical threshold
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[19, 20]. Trying to build engineering models and correlations to describe transition in

the presence of surface roughness made it clear that complex behavior was at work in

the wake of roughness elements and generated great interest in trying to understand

the physics of this phenomena as stability theory became increasingly effective. De-

velopments in stability theory motivated the first generation of experiments on the

physics of transition on roughened surfaces.

Generation 1 (1980s)

The first generation of detailed experiments involving 3D roughness include work by

groups at Case Western Reserve University[7], the Jet Propulsion Lab[9], and the

Illinois Institute of Technology[8], as well as continued work at NIST (cited as private

communication in Ref. [21]). Reshotko and Leventhal[7] found that transition moves

forward when distributed roughness (sandpaper) was placed in the region sub-critical

to T–S-wave growth, an effect partly attributed to the thickening of the boundary

layer as well as larger initial unsteadiness. In addition, for sufficiently high ampli-

tude roughness, transition was observed with no sign of a T–S-type mechanism. This

was referred to as “bypass” transition because the usual linear growth stage is by-

passed. Moving this roughness into the region where T–S waves are unstable, Corke

et al.[8] found that although the roughness did not seem to create inflectional pro-

files away from the wall, the streamwise vorticity generated by roughness, as well

as the decelerated flow near the wall, likely play a role in accentuating T–S growth,

and increasing the boundary layer’s susceptibility to secondary instabilities. Further

work at IIT also showed that the despite the complexity of the flow topology behind

three-dimensional roughness elements, the vortex structure and resulting streaks were

near-universal regardless of the shape of the roughness (cylinder, squares, etc.)[22].

In an experiment that presages those that will be the focus in this dissertation,
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Kendall[9] investigated the boundary layer response to an array of roughness elements

that were both repeatable and of significant size. He arranged an array of spheres on

a flat plate and contrasted results with single spheres and multi-sphere arrays. These

spheres produce counter-rotating vortex pairs that are persistent (i.e. long lasting

in the streamwise direction), and he found inflectional profiles (in the wall-normal

direction) may indeed exist, though closer to the wall surface than was able to be

measured previously in experiments involving distributed roughness. The difficulty

in measuring boundary layer profiles in and around surface roughness is a problem

that still attracts attention today.

Many of these results were summarized by Morkovin[21], who noted several things

that will be important when analyzing the present results. First he notes that “The

incubation distance from the offending roughness to the roughness-conditioned tran-

sition is initially very long” (emphasis in the original). This incubation distance

makes parameter-based correlations extremely difficult and argues for the necessity

of greater physical understanding of the flow behavior in the wake of roughness el-

ements. In retrospect this can be seen as evidence for a period of transient growth

behind roughness elements and of a tradeoff between roughness accentuating T–S

wave breakdown versus causing “bypass” transition. A modern look at these results

will make some sense of these findings.

Second, Morkovin noted that roughness acted as a receptivity source and “in-

creased three dimensionality due to the roughness and consequently an earlier onset

of secondary Herbert-type instability was observed.” This conclusion will be of great

importance when analyzing the potential for control strategies based on deliberately

applied surface roughness. Any positive impact gained by limiting the growth of

the initial 2D T–S wave must be balanced against the effects on the 3D secondary

disturbances that bring about rapid transition to turbulence. The tendency of rough-
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ness to act as a receptivity source will make eN type methods more challenging as

initial conditions based on smooth leading edges may not be applicable. Secondary

instabilities in wind tunnels may be much more pronounced than for “disturbance-

free” DNS. Additionally, the extent to which secondary instabilities generated by the

roughness wakes interact with traditional primary/secondary instabilities is of great

interest (though a full treatment is beyond the scope of this work).

Finally, Morkovin notes that “Reshotko (1984) wrote of an indication that the

departure from laminar flow was ‘explosive’.” This will be relevant in analyzing the

growth rates observed in the secondary instability analysis. Although T–S waves grow

exponentially, the growth rate is relatively slow, the secondary instability results in

this dissertation will have growth rates that are orders of magnitude larger.

Generation 2 (1990s)

Subsequent to the work summarized by Morkovin, the next generation of experi-

ments was undertaken with knowledge of secondary instabilities beginning to be well

established[23]. Klebanoff et al.[24] looked extensively at isolated roughness elements.

In addition to documenting “shedding” frequencies and critical Rek values for both

hemispheres and cylinders the authors offered an explanation of the wake behav-

ior consistent with an inflectional instability. Further, the extreme sensitivity to the

disturbance environment was seen as evidence of a secondary instability tied to inflec-

tional behavior. The authors admitted that this model was not consistent with some

other works, specifically work by Morkovin that found significant growth but subse-

quent decay of vortical structures. This result is now explainable via the transient

growth mechanism.

The most direct predecessor to the current transient growth experiments was

done at Novosibirsk in the mid 1990’s. Bakchinov et al.[25] performed detailed hotwire
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measurements behind an array of rectangular roughness elements and found several

important results. First, they posited that even at roughness-based Reynolds numbers

well in excess of any that will be looked in this dissertation, the elements themselves

did not cause transition, but rather created stationary vortex structures on which a

secondary instability grew. Further, they found that this instability was associated

with the spanwise gradients in the mean flow, and took place at a frequency well

above the unstable T–S frequency band. These three findings are in good agreement

with the secondary instability calculations that will be presented in this dissertation.

Optimal Theory

While the second generation of experimental work was underway a change in the

theoretical approach to the problem was taking place. Realizing that significant

disturbance growth could take place even if all the modes were damped, focus was

shifted away from the eigenvalue problem and toward the initial value problem (IVP)

for a flow perturbation. Using a variational calculus approach, Butler and Farrell[26]

solved the IVP for the “optimal” input perturbation. That is, the input perturbation

that leads to the most energy growth over a finite streamwise domain. This approach

exploited the fact that the spectrum of the Orr–Sommerfeld operator is non-self-

adjoint. Thus, eigenmodes can cancel one another at one location, and at another

location this cancellation can decrease, yielding a period of strong energy growth in

the absence of any modal instability.

This helped form the basis for transient growth and was further grounded mathe-

matically by Schmid and coworkers[27, 28]. These works formulated the optimization

problem as a singular value decomposition (SVD) and generalized the approach. This

dissertation will show the variational calculus approach of Butler and Farrell and the

SVD approach of Schmid and Henningson are equivalent.
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Following this initial formulation, the approach was extended to non-parallel

boundary layers[29], as well as to the spatial evolution framework[30]. These studies

solidified that the optimal perturbation, in terms of the ratio of input to output energy,

is a stationary streamwise vortex. This vortex efficiently redistributes the mean flow

momentum, causing large boundary layer disturbances with little input energy. These

resulting disturbances take the form of streamwise streaks, regions of adjacent high-

speed and low-speed flow. These streaks grow algebraically until the streamwise

vortex dissipates and the streak begins to decay exponentially. This mechanism fit

well with previous work with boundary layers subject to freestream turbulence[31, 32]

(which is beyond the scope of the present work) as well as experiments involving

three-dimensional roughness elements. By the end of the decade the transient growth

mechanism became a suspect in a variety of previously challenging transition scenarios

including pipe flow, reentry of blunt bodies, and the effect of distributed roughness[5].

These optimal disturbances have formed the foundation for much of the numerical

and theoretical work done over the past ten years. Notably, extensive secondary

instability calculations were performed by Andersson et al.[33] that mapped neutral

curves and growth rates depending on the amplitude of these optimal perturbations.

Their approach will form the basis of the secondary instability calculations in this

dissertation and the physical results are the point of departure for the present work.

Additionally, optimal perturbations are used in computational studies by Cossu and

Brandt[11, 34] that show T–S waves are attenuated by the inclusion of streaks in the

boundary layer.

Optimal perturbations have seen some success in analyzing perturbations in-

duced in a boundary layer as a result of freestream turbulence (FST). Experimental

work by Westin et al.[31] and Matsubara and Alfreddson[32] found fluctuations in the

boundary layer whose peak amplitude agreed with optimal perturbation predictions.
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However, explicit comparison is challenging as it is difficult to divorce any potential

transient growth from the disturbance accumulation as the FST interacts with the

boundary layer. Work in the second part of this dissertation suggests that this agree-

ment may be more the result of non-uniform dissipation of the vortical fluctuations in

the certain regions of the boundary layer as opposed to a specific growth mechanism.

Generation 3 (2000’s)

The potential of transient growth to explain earlier work in roughness-induced transi-

tion spurred a great deal of research interest. In many ways these new studies mirrored

experiments done previously. Now researchers had a different focus, a new mechanism

to look for that would explain the results that had been baffling in previous work.

Using a setup similar to Backhinov et al.[25], White[14] was able to clearly identify

transiently growing perturbations in the wake of cylindrical roughness elements.

In some ways these experimentally measured perturbations agree qualitatively

with the results obtained by the optimal perturbation models. The general behav-

ior of algebraic growth followed by exponential decay is clear in the experiments.

However, the growth rates, and the development lengths (Morkovin’s “incubation

distances”) over which the growth took place are significantly different than those

predicted by optimal theory. Also, these perturbations achieved their maximum dis-

turbance amplitude lower in the boundary layer than optimal predictions, in contrast

to the results found in experiments using FST. These disturbances were termed “sub-

optimal.” Using a similar setup of cylinders, Frannson et al.[35] saw similar behavior,

and this setup has become a canonical one for studying transient growth. In all

experiments and simulations known to the author physically realized perturbations

have been found to exhibit this sub-optimal behavior.

Another feature of physically-realized transient growth, in contrast to the optimal
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theory, is the rich behavior found in the wake of the roughness elements. Transient

growth is seen in several spanwise wavelengths, including the element spacing (λk),

and the element diameter (λk/3 in the case analyzed in this dissertation), but also

wavelengths that aren’t directly forced such as λk/4. Additional work by White and

coworkers[15, 36] revealed more complex behavior as the diameter of the cylinders

was varied. This makes it clear that optimal theory alone is unlikely to capture the

behavior behind physical surface roughness.

Despite the complex behavior found in the experiments some general trends were

identified in the work by the White group. Importantly, the total disturbance energy

generated by the roughness elements scales well with Re2k, collapsing disturbance

energy curves for different roughness heights. This finding, that the energy scaled

non-linearly with the height of the roughness, was unexpected and initially at odds

with linear stability and optimal perturbation theory. The validation of this scaling is

evidence of complex receptivity phenomena prior to the linear transient growth phase.

This scaling has been verified through continued work[37] and unsteady contours

in the wake of these elements have been documented[36, 37] and will be used to

analyze the secondary instability results in this dissertation. Additionally, despite

the perturbations increasing in magnitude as Rek is increased, the location in the

boundary layer where the peak fluctuations occur is only weakly affected by changing

the element height. Thus, increasing the height of the roughness element changes the

amplitude but not the shape of the perturbation. This fact makes it possible to use

a rescaled velocity perturbation as a proxy for changing roughness height.

Modern computational tools have also been brought to bear on this problem.

Direct numerical simulations (DNS) show promising agreement with the experimental

work. Initial analysis by Fischer and Choudhari[38] captures the behavior in different

spanwise harmonics for a relatively low Rek = 119. A more detailed simulation on
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higher Rek configurations (202, 334) was performed by Rizzetta and Visbal[39]. This

simulation shows good agreement with the streamwise velocity measurements made

by White and coworkers, and the data from this DNS will be used throughout this

dissertation. Additionally, work is proceeding by Goldstein and coworkers[40] at the

University of Texas using immersed boundary methods.

Emerging Work

In addition to the work already discussed there is recent work that, while it does

not form the basis of this dissertation, informs the present work. Downs et al.[41]

extends previous work done by the White group by employing a novel method of

generating repeatable randomized roughness. Experiments with these distributed

roughness patches show many features similar to work done with discrete cylinders.

Some of the numerical work done for this dissertation is undertaken with the goal of

expanding the techniques to future work on this type of distributed roughness. The

complexity of the surface makes a fully-resolved DNS very challenging. The present

work develops an analytical tool that does not rely on DNS, making analysis of this

complex case possible.

Additionally, groups at The Royal Institute of Technology (KTH) in Sweden

have investigated using controlled roughness to attenuate the growth of T–S waves

both numerically[11] and experimentally[10]. In light of these works a more detailed

examination of the transient growth and secondary instabilities behind roughness ele-

ments will be critical in judging their effectiveness. Moving away from roughness and

toward vortices generated by plasma actuators, Hanson et al.[12] have investigated

boundary layer control methods by vortex generation. These vortices seem to behave

similarly to those generated by roughness elements, and so a deeper understanding

of boundary layer response to roughness would be beneficial.
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C. Approach and Organization

The objective of this dissertation is to fully analyze transiently growing perturbations,

from receptivity to secondary instability, and contrast these results with optimal per-

turbations, DNS, and experiments. The focus will be on the aspects of transient

growth most directly applicable to roughness effects. Three numerical/theoretical

tools are used to investigate the evolution of a transiently growing perturbation.

Multimode decomposition, based on the Biorthogonal Eigenfunction (BES) formal-

ism developed by Tumin[42], will be derived and employed to calculate receptivity

information for transient growth seen in DNS. This formulation allows for a complete

solution to the initial value problem in wall-bounded flows. A good deal of time will

be spent developing the method as it is somewhat abstract and an extended deriva-

tion does not exist in the literature. Also, multimode decomposition will be expanded

to analyze the receptivity in experimental data.

In lieu of calculating receptivity information using multimode decomposition,

previous authors have used optimal perturbation theory to generate initial conditions

for transient growth. The present work will use these optimal calculations to contrast

with the behavior of roughness-induced transient growth. Methods for computing op-

timal perturbations will be shown both using a variational calculus approach[26] and

a singular value decomposition method[28]. Third, a numerical solution of the two-

dimensional inviscid stability problem[33] is used to study the secondary instabilities

in the transiently growing boundary layer. Thorough background on all the mathe-

matical techniques and numerical methods employed will be given in the subsequent

sections.

The dissertation is organized as follows. Chapter II outlines the linearized distur-

bance equations and the methods used to solve the eigenvalue problem, the optimal
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perturbation problem, and the modal decomposition. Chapter III uses these tools

to analyze transient growth in both experiments and DNS, demonstrating the flows

linearity and mathematically quantifying the receptivity. Chapter IV introduces the

terminology and methods for calculating secondary instabilities and addresses the

necessary numerical methods for solving this problem. Chapter V gives the results

of secondary stability calculations for a model boundary layer based on optimal per-

turbation theory as well as roughness-induced transient growth computed via DNS.

Chapter VI offers conclusions about roughness-induced transient growth and outlines

future work to be undertaken.
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CHAPTER II

TRANSIENT GROWTH THEORY

Linear stability analysis provides insight into the physics governing transition from

laminar to turbulent flow. The complete Navier–Stokes equations are linearized

around a known basic state by neglecting higher-order disturbance quantities. The

resulting linear system is then analyzed to show if small perturbations are likely to

grow as they evolve in time and space. For this study of transient growth, the Navier–

Stokes equations are linearized about a zero-pressure-gradient flat plate boundary

layer. The goal is to use these linearized equations to describe the evolution of

transiently-growing perturbations.

The resulting system of equations, the Orr–Sommerfeld/Squire (OSS) equations,

is very familiar, but in the present work some features of the OSS system will be

used in less typical ways. For traditional instabilities the goal is to find the unstable

eigenvalues. Once found, the solutions of the eigenvalue problem provide the growth

rates, spatial and temporal frequencies, mode shapes and other information about the

exponentially growing perturbations. For analysis of transient growth the approach

is different. The initial value problem (IVP) must be solved using the full eigenvalue

spectrum. The details of the decaying spectrum cannot be ignored. Because the

complete spectrum is necessary, and due to the complexity of the OSS spectrum, the

usual equivalence between the mathematical Fourier transform and the normal-modes

ansatz is not as straightforward.

Care must be taken in the derivation of the OSS system to identify features

in the complex plane that will be important in interpreting the solution in physical

space. While this is straightforward for discrete eigenvalues, it is more involved when

trying to resolve the continuous spectrum that exists for boundary-layer flows. The
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discrete eigenvalues of the Orr–Sommerfeld equation do not form a complete set for

boundary-layer flows. To solve the IVP, the contribution from a continuous spectrum

of eigenvalues must be taken into account[16]. It is these additional eigenfunctions

stemming from the continuous spectrum that are non-orthogonal and their integrated

contribution creates transient growth. The goal is to solve the IVP by expanding an

arbitrary disturbance into an integral of solutions whose eigenvalues belong to the

continuous spectrum. The amplitude distribution among the continuous spectrum

modes provides the important receptivity information necessary for characterizing

roughness-induced perturbations. To highlight the relevant features, some details of

the derivation of the Orr–Sommerfeld equation are important.

A. Linearized Equations and Continuous Spectrum

Starting with the Navier–Stokes equations for an incompressible Newtonian fluid,

suitably non-dimensionalized:

∂u

∂t
+ (u · ∇)u = −∇p+

1

Re
∇2u (2.1)

an expansion is formed by substituting u = [U(y), 0, 0]T + [u′, v′, w′]T and p = P + p′.

The variables with capital letters are the mean quantities found from the Blasius

profile and primes represent small perturbations (functions of x, y, z and t). Making

this substitution, subtracting the mean flow, and neglecting terms that are products
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of the perturbed quantities yields the following linearized system:

∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0

∂u′

∂t
+ U

∂u′

∂x
+ v′

∂U

∂y
= −∂p

′

∂x
+

1

Re
∇2u′ (2.2)

∂v′

∂t
+ U

∂v′

∂x
= −∂p

′

∂y
+

1

Re
∇2v′

∂w′

∂t
+ U

∂w′

∂x
= −∂p

′

∂z
+

1

Re
∇2w′

For the purpose of stability and receptivity analysis, the linearized disturbance equa-

tions are analyzed more readily in spectral rather than physical space. However,

some care is necessary when defining the transformation to spectral space to account

for transient mechanisms. Traditional modal growth analysis focuses on the normal

modes. Solutions of the form u′ = û(y) exp [i(αx+ βz − ωt)] + c.c. are assumed,

with û → 0 as y → ∞. This approach can be problematic as foregoing a rigorous

Fourier transform in favor of exclusively focusing on normal modes suppresses non-

exponential, transient effects and yields only the discrete eigenvalues. These discrete

modes cannot be used to represent an arbitrary perturbation[43].

The continuous spectrum accounts for these lost transient effects. The normal

mode solution is substituted as before, and the boundary conditions for each eigen-

mode are no slip and no penetration at the wall: û = 0 at y = 0. However, in the

freestream, the modes are only required to be bounded, |û| < ∞ as y → ∞. When

the total contribution of the continuous spectrum is considered the result will sum

to zero far from the wall for a localized perturbation. This relaxed boundary con-

dition defines the continuous spectrum and makes the set of eigenvalues complete.

It is important to note there is an equivalence between this spectrum of solutions

with relaxed boundary conditions and the inverse Fourier transform operation that

is necessary to account for transient effects[44].
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With the substitution carried out, the partial derivatives are replaced with with

multiplication by the wavenumbers (e.g. ∂u′/∂x → iαû). This removes the deriva-

tives with respect to the variables that do not appear in the basic state and leaves a

linear ordinary differential equation whose derivative is in the wall-normal direction

(y). This is the OSS system:

∂φ̂

∂y
= LOSφ̂ (2.3)

where φ̂ = [û, ∂û/∂y, v̂, p̂, ŵ, ∂ŵ/∂y]T (the hats denote one-dimensional variables in

Fourier space). The components of the OSS operator, LOS, can be found in Appendix

A.

Because spatial, not temporal, evolution of disturbances is observed in experiments[30],

Eq. 2.3 is an eigenvalue problem that is solved for complex α corresponding to spec-

ified real-valued β and ω. This spatial versus temporal distinction is important be-

cause Gaster’s transformation, which is used to convert between spatial and temporal

stability, is not well defined for the continuous spectrum solutions.

Successful analytical and numerical approaches to Eq. 2.3 have been known for

several decades. In the freestream where U → 1 and ∂U/∂y → 0, LOS reduces to a

matrix of constant coefficients, and solutions take the form φ̂ ∝ eλy. This system has

6 eigenvalues, 2 of which are repeated:

λ1 = −
√

α2 + β2 λ2 = +
√

α2 + β2

λ3,5 = −
√

i(α− ω)Re+ α2 + β2 λ4,6 = +
√

i(α− ω)Re+ α2 + β2 (2.4)

The corresponding eigenvectors are basis functions for solutions in the freestream (see

Appendix 1).

In general, two classes of solutions to Eq. 2.3 exist. One class, the discrete modes,

tend to zero as y → ∞. Thus, in the freestream, their solution must be a linear
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combination of eigenvectors associated with the eigenvalues λ1,3,5 (using the principal

value of the complex square root). These freestream solutions can be integrated from

the freestream to the wall, and combined to satisfy the wall boundary conditions

(though in practice this method is unwieldy). There are only finitely many values of

α that allow φ̂ to satisfy the three wall boundary conditions, and no solutions of this

type for steady flow (ω = 0). Fig. 2(a) shows an example of a discrete mode, the

well-known Tollmien–Schlichting wave.

The second class of solutions, the continuous spectrum modes, requires only

boundedness as y →∞. In the freestream, this means λ is purely imaginary, λ = iκ

where κ is any non-negative real number. Fig. 2(b) shows an example of a continuous

spectrum mode. It is this type of mode that will be used to describe an arbitrary

perturbation. In the freestream φ̂ ∝ exp(λjy) = exp(iκy), and κ can be interpreted

as a wall-normal wavenumber of an oscillatory solution in y. κ also dictates the decay

rate of each individual mode, as it parameterizes the eigenvalue α. It is this variability

in decay rates, combined with the non-normality of the OSS operator, that produces

transient growth.

When λ is purely imaginary, instead of having three solutions to satisfy the three

wall boundary conditions, there are at least four, as λ2,4,6 become acceptable solutions

for continuously distributed values of α. As κ is varied along the positive real line,

α traces a path in the complex plane that gives the continuous spectrum. For cases

in which ω 6= 0, λj = iκ produces four such paths (corresponding to the four distinct

eigenvalues), or branches, in the complex α plane.

Figure 3 shows a schematic of the α plane that defines the different types of

modes. The first region is when α does not lie on either the imaginary axis, or the

hyperbolic branch cut. In this area of the complex α plane, three of the eigenvalues

defined by Eq. 2.4 will be positive, and three will be negative. The positive exponential
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terms are eliminated, and the remaining three basis functions can be combined to

satisfy the three boundary conditions. If an eigenmode can be found that satisfies

the three boundary conditions it is a discrete mode (T–S wave). If the value of α in

this region is not part of the discrete spectrum it is part of the resolvent set and there

is no non-trivial solution.

If a value of α is chosen along the branch cuts, there are now more than 3

basis functions available as some of the eigenvalues will be purely imaginary, and not

eliminated by the boundedness condition. Thus, all values of α along the branch

cuts constitute potential solutions to the eigenvalue problem. The solutions found

using α along the hyperbolic branch are the vorticity modes[30], because they have

non-zero vorticity in the freestream. This branch is found by setting λ3−6 = iκ.

The solutions found along the imaginary α axis branch cuts are pressure modes, from

setting λ1,2 = iκ, because they have non-zero pressure perturbations in the freestream.

Substituting the branch values into Eq. 2.4 gives the dispersion relations.

α1,2 = ±i
√

κ2 + β2, α3−6 = −iRe
2

[

1±
√

1 +
4(β2 + κ2 − iωRe)

Re2

]

(2.5)

Branches in the lower half plane, corresponding to α with a negative imaginary part

do not represent exponentially growing disturbances. Rather, α values with a neg-

ative imaginary part represent upstream traveling solutions with rapidly decaying

upstream growth rates[44]. Considering these solutions makes the problem ill-posed

from an initial-value problem perspective. Knowledge about the initial condition and

direction of wave propagation eliminates these two branches. Only parts of the con-

tinuous spectrum with an imaginary part of α greater than zero are considered in the

expansion. This is consistent with the idea that transient growth stems only from

decaying modes. For a detailed discussion of these branches and the structure of the

complex plane see Ref. [44].
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At low amplitudes, surface roughness produces stationary disturbances, ω = 0.

As the frequency of the disturbance tends to zero the vorticity branches approach the

imaginary axis because the term in square brackets in Eq. 2.5 is purely real. Fig. 4

shows an example of this shift as a function of decreasing ω. For the present case,

all branches approach the imaginary axis, and therefore all α are purely imaginary.

This means the vorticity and pressure branches lie on top of each other for a segment

of the complex plane. Fig. 5 shows schematically the structure of an integral in the

complex α plane for the present case, the diversion around the branch cut includes

the continuous spectrum modes in the inverse Fourier transform.

Only the branches that come from setting λ3−6 = iκ, the vorticity modes, will

be considered. The pressure modes, λ1,2 = iκ, decay much faster and should not play

an important role. With λ3−6 = iκ there are four solutions that satisfy the boundary

conditions beginning at the branch point, α ≈ iβ2/Re. However, these four are two

complex-conjugate pairs and thus only two of the four are independent. The two

independent branches will be referred to as the A and B branches, and an A and B

mode exist for every α along the imaginary axis starting at the branch point. Only

modes up to the branch point for the pressure modes (α = iβ) will be considered.

Solutions above this point are neglected due to their rapid spatial decay. The goal

is to solve the initial value problem by expanding an arbitrary disturbance into an

integral of solutions whose eigenvalues belong to the A and B mode branches spanning

αi ∈ [β2/Re, β].

B. The Receptivity Problem

Chapter I explains the Transition Roadmap provided by Morkovin in Fig. 1. The

second block in the roadmap encapsulates the idea of receptivity. Receptivity is the
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process by which environmental disturbances like freestream turbulence, acoustic fluc-

tuations, or geometric features like surface roughness are absorbed into the boundary

layer and converted into flow perturbations. Receptivity has attracted significant

interest because it provides the crucial initial condition in determining transition to

turbulence that linear theory alone cannot provide. The relation between input en-

vironmental disturbances and the resulting amplitude of the growing instability has

been studied computationally and experimentally for various combinations of modal

instabilities (T–S, Crossflow. . . ) and environmental forcing (freestream turbulence,

acoustic forcing, roughness. . . ). This work has been critical in explaining some of the

complexity observed in predicting transition onset.

When measuring receptivity for a modal disturbance in an experimental or com-

putational environment the growth rate and mode shape are known a priori. That

is, the Orr–Sommerfeld/Squire system determines how the growing instability looks

as well as how it evolves downstream. By taking careful measurements the mode

shape of interest can be extracted, validated, and its growth calculated. Once these

measurements are complete, the initial amplitude that resulted from the input forcing

can be found. Thus a one-to-one correspondence between input forcing and output

response can be formulated in terms of a single receptivity coefficient.

For transient growth this input-output formulation is less straightforward. There

is not a unique mode of interest that can be measured independently of other dis-

turbances present in the boundary layer. This is particularly problematic because in

the case of transient growth receptivity sets the initial amplitude, the growth rate

and the mode shape. Experiments have been able to formulate trends that correlate

an input parameter such as the roughness height (Rek) with an output description

of the disturbance energy generated[15, 37]; however, apportioning this energy into

its constitutive modes in a way that allows predicting downstream energy evolution
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or making comparisons across different types of roughness has not been possible. Be-

cause an eigenfunction exists at every point along the branches defined in Eq. 2.5,

and because all modes play a role in transient growth, a receptivity function, instead

of a receptivity coefficient, must be defined along the branch cut in the complex α

plane to describe the initial disturbance.

Solving the receptivity problem gives a distribution of modal amplitudes, Cα that

allows the perturbation to be computed at any downstream location as an integral

over the continuous spectrum α values.

φ(x, y, β, ω) =
∑

A,B

∫

Γ

Cαφ̂α(y)eiαxdα (2.6)

In Eq. 2.6 it is implied that Cα, and φ̂α are functions of complex α for a fixed set

of parameters, β, ω, Re etc., depending on the spanwise/temporal modes of interest.

Here Γ is a curve in the complex α plane diverting around the continuous spectrum

branches defined in Eq. 2.5. Once the function Cα is found, Eq. 2.6 is the solution to

the IVP.

Three approaches will be used in this dissertation to solve the receptivity prob-

lem. Optimal perturbation theory is widely used in the literature and will serve as

the starting point for the present work. Multimode decomposition of an arbitrary

perturbation will be used to contrast optimal perturbations with physically realized

perturbations, and a linearized receptivity calculation will be used assuming the limit

of small roughness. These three methods are described in detail below.

1. Optimal Perturbation Theory

Due to the difficulty in analyzing the receptivity process in transient growth, op-

timal disturbance theory has been used extensively to investigate transient growth
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phenomena[26, 27, 28, 29, 45, 30] as well as secondary effects of transiently growing

perturbations[33, 11]. Because the distribution of amplitudes amongst the continuous

spectrum modes is not known, optimal disturbance theory calculates the modal dis-

tribution that produces the most energy growth over a given interval. This approach

has yielded insight into the physical mechanisms that drive transient growth, and

focused efforts toward the types of disturbances that produce appreciable transient

growth: stationary, spanwise-periodic, streamwise vortices.

Two approaches to this computation exist in the literature. Butler and Farrell[26]

formulate an eigenvalue problem by taking a variational calculus approach, whereas

Schmid and Henningson[28] use a singular value decomposition (SVD) of a factored

energy matrix. More physical insight can be gained from the variational calculus

approach, and then it will be shown to be equivalent to the SVD method.

To deal with the problem numerically, the integrals in Eq. 2.6 must be discretized

to a sum over a range of α. This is accomplished by discretizing κj , giving mode shapes

φ̂αj
. The functions of a complex variable must be be enumerated, i.e., Cα → Cαj

.

Given a suitable discretization, an arbitrary velocity field can be expanded as a sum

of eigenmodes φ̂αj
for a given β and ω:

φ(x, y) =
N
∑

j=1

Cαj
φ̂αj

(y)eiαjx . (2.7)

There are an unlimited number of ways to discretize the continuous spectrum in

order to generate the necessary basis functions to represent an initial velocity profile

as in Eq. 2.7. This characteristic of the continuous spectrum makes the choice of

basis functions somewhat ambiguous, as integral methods can be used to generate an

eigenfunction at any point on any branch of the continuous spectrum. However, there

are distinct advantages to using the discretization of the continuous spectrum that
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is obtained naturally from a Chebyshev pseudospectral technique (See Appendix B),

with a factorization-based eigenvalue algorithm (e.g. QZ), to solve the eigenvalues

problem, Eq. 2.3. First, this discretization handles multiple continuous spectrum

branches without difficulty. Second, this discretization provides modes that have

û, v̂, ŵ = 0 at the top of the computational domain (though |∂û/∂y| 6= 0 ). This can

be combined with quadrature methods (see Appendix B) to ensure spectral accuracy

and overcome the fact that the basis functions are not square-integrable in the wall-

normal direction. The distribution of the eigenvalues along the continuous spectrum

can be controlled by varying the maximum height of the computational domain,

as well as the mapping from the Chebyshev domain to the physical domain, and

the density of eigenvalues can be controlled by varying the number of Chebyshev

polynomials.

The goal is to find the combination of Cαj
that produce the most energy growth

over a specified x interval. To this end let E be an energy operator:

E [φ, φ]x =

∫ ∞

0

ū(x)u(x) + v̄(x)v(x) + w̄(x)w(x)dy =

∫ ∞

0

|φ(1)|2 + |φ(3)|2 + |φ(5)|2dy

(2.8)

where the overbars mean complex conjugation, and the parenthetical indices are

the vector components. If x∗ is the optimization location, the optimal perturbation

should solve the maximization problem:

max E [φ, φ]x∗
(2.9)

subject to the constraint

E [φ, φ]x0
= 1 . (2.10)

That is, the initial perturbation should have unit energy and produce the largest

response at x∗. This maximization problem can be formulated as a variational calculus
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problem. Let J be the objective function, the variational problem is then:

J = E [φ, φ]x∗
+ λ0(E [φ, φ]x0

− 1) . (2.11)

Using Eq. 2.7, the unknowns in Eq. 2.11 are the amplitude coefficients Cαj
. The

operator form can be replaced with a linear algebraic form by substituting the modal

representation from Eq. 2.7. Let Cα be the vector of amplitude coefficients Cαj
, φα

be the vector of eigenmodes φαj
, and R = diag(exp iαj(x − x0)) a diagonal matrix

that governs the evolution of each mode in the x direction. Then each component of

Eq. 2.7 can be rewritten:

φ(k)(x, y) = φ(k)T
α RCα . (2.12)

Using the matrix-vector form, the energy operator can be expanded:

E [φ, φ]x = CH
α RH

{
∫ ∞

0

φ̄(1)
α φ(1)T

α + φ̄(3)
α φ(3)T

α + φ̄(5)
α φ(5)T

α dy

}

RCα (2.13)

where R = R(x), and H is the complex-conjugate transpose. Using the definition of

the energy operator, the middle term becomes a matrix E whose terms are defined:

Eij = E [φαi
, φαj

] . (2.14)

Once the mode shapes are computed, this matrix is completely known. This gives

a problem solely in terms of the unknown receptivity coefficients, which reduces the

energy operator definition to:

E [φ, φ]x = CH
α RHERCα . (2.15)

Using this definition, and the fact that R = I at the initial condition, the variational

problem, Eq. 2.11, can be rewritten:

J = CH
α RHERCα + λ0(C

H
α ECα − 1) . (2.16)
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The optimization conditions are found by setting the derivative of J with respect to

the unknown coefficients and the Lagrange multiplier to zero. Setting ∂J /∂λ0 = 0

gives the normalization condition. The partial with respect to the unknowns gives:

∂J
∂Cα

= RHERCα + λ0ECα = 0 . (2.17)

Eq. 2.17 is an eigenvalue problem for the unknown coefficients Cα, and the eigenvalue

λ0 gives the growth rate. This is similar to the formulation given in Ref. [26].

An alternative formulation is to note that the matrix representation of the energy

operator can be factored. Because E is symmetric and positive definite it can be

factored E = FHF. With this substitution, the energy amplification can be written

as the standard vector-norm:

G(x∗) =
E [φ, φ]x∗

E [φ, φ]x0

=
‖FRCα‖2
‖FCα‖2

. (2.18)

Without loss of generality the initial condition is constrained to have unit energy,

and this becomes the maximization problem

max
‖FCα‖=1

‖FRCα‖2 (2.19)

Noting that by definition the two-norm of a matrix A is:

‖A‖22 = max
‖x‖=1

‖Ax‖2 (2.20)

then FCα = x −→ Cα = F−1x. This replacement of Cα means the optimization

problem is equivalent to finding the two-norm of the matrix:

G(x∗) = max
‖x‖=1

‖FRF−1x‖2 = ‖FRF−1‖22 (2.21)

The two-norm in Eq. 2.21 is found via an SVD and represents the evolution of the
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perturbation kinetic energy. The SVD gives the factorization:

FRF−1 = UΣVH . (2.22)

In this factorization U and V are unitary matrices, and Σ is diagonal. Physically,

this represents the relation between the input V and the output U, scaled by a factor

from Σ due to the spatial evolution. The largest singular value, σ1 = Σ11 gives the

optimal amplification, and the initial amplitude distribution can be found from the

associated right singular vector Cαj
= F−1v1. This is the approach taken by Schmid

and Henningson[28]. The advantage is that both the input and output perturbations

are known after the SVD is calculated, and the SVD is numerically more tractable to

compute. The disadvantage is the one-time cost of the Cholesky factorization of E.

The solution of Eq. 2.21 provides the first base flow of interest. The optimal per-

turbation is computed for a zero-pressure-gradient, flat-plate boundary layer. Eq. 2.3

is solved using a Chebyshev pseudospectral method based on Ref. [46]. Three hundred

polynomials are used on a grid with ymax = 45 where y has been non-dimensionalized

with δ, the Blasius scaling, in all computations and figures. Further details of the

code can be found in Appendix B, and the specific conditions used are given in the

results sections.

2. Multimode Decomposition

Optimal theory provides one solution to the receptivity problem. However, all tran-

siently growing disturbances that are generated by physical roughness have been found

to be sub-optimal[14, 35]. The collection of modal amplitudes that create transient

growth are quantitatively and qualitatively different than those that make up the

optimal disturbances[47]. This discrepancy between optimal predictions and physi-

cal realization is especially important in the context of transient growth. While a
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great deal of progress has been made in the study of modal instabilities even without

detailed receptivity information, the divide between receptivity and linear theory is

more challenging in the case of transient growth.

The fact that optimal calculations do not match what is physically realized in

an experiment is not surprising. In the traditional modal growth scenario, broad-

band forcing is channeled into a specific mode shape with a fixed growth rate. The

resulting mode then grows to rise above the decaying background noise and becomes

the dominant flow feature. By contrast, a transiently growing perturbation relies on

details of the initial disturbance generator to determine the growth rate. Therefore,

the optimal perturbation does not arise naturally out of broadband forcing, in fact it

would likely not appear at all. Optimal calculations provide proof of the existence of

transient growth in general, but cannot show what will be seen in a specific physical

situation. Unlike modal growth, the optimality/growth rate of a disturbance and its

likelihood of occurring are not directly related.

A necessary first step toward analyzing physically realizable, sub-optimal distur-

bances is to find continuous spectrum amplitude distributions of measured distur-

bances. Once these sub-optimal disturbances can be correctly characterized in terms

of linear theory, models and correlations can be generated that take into account the

differences between modal and non-modal mechanisms. The mathematical formula-

tion necessary for decomposing an arbitrary perturbation into its continuous spectrum

modes has been put forward by Tumin[42], but has yet to find widespread adoption.

This multimode decomposition was initially employed on an example problem (an

optimal perturbation in Ref. [42]) and by the same author in a two-dimensional

hypersonic boundary layer[48]. Prior to the work of this dissertation, the method

had yet to be used to confirm whether measured transient growth is indeed a lin-

ear phenomenon, or to compare the amplitude distribution to optimal or linearized
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receptivity approaches.

Multimode decomposition is used to calculate this amplitude distribution for a

physically-realized transiently-growing perturbation for the first time. Further, one of

the reasons for the limited use of this technique despite its potential for dealing with

a large number of complicated stability problems has been the lack of a dissertation-

length derivation and explanation of the method. This section includes a detailed

derivation of the necessary bi-orthogonality relationships that underlie multimode

decomposition. In addition, the normalization functions, that do not appear in the

existing literature, are given explicitly.

a. Biorthogonal Eigenfunction System

In order to extract the amplitude function from an arbitrary initial condition a set

of functions must be constructed that are orthogonal to the eigenfunction basis con-

structed by solving Eq. 2.3. This adjoint basis will be distinct from the set φ̂α because

the operator LOS is not self-adjoint. The adjoint solution is constructed by multiply-

ing Eq. 2.3 by an adjoint vector function ψ̂ and integrating with respect to y:

∫ ∞

0

ψ̂T

(

∂φ̂

∂y
− LOSφ̂

)

dy = 0 . (2.23)

Integrating by parts to transfer the derivative gives:

[BC]−
∫ ∞

0

φ̂T

(

∂ψ̂

∂y
+ LT

OSψ̂

)

dy = 0 . (2.24)

Setting the terms inside the parentheses and the boundary conditions equal to zero

constitutes the adjoint equation.

−∂ψ̂
∂y

= LT
OSψ̂ (2.25)
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The boundary conditions are selected to eliminate the boundary terms in Eq. 2.24,

giving ψ̂(2) = ψ̂(4) = ψ̂(6) = 0 at y = 0, and the total perturbation must go to zero

far from the wall. The same boundedness conditions apply in the freestream on the

individual adjoint modes, |ψ̂α| < ∞ as y → ∞. This presents some complication

as both the adjoint and direct modes are not square integrable when considered

alone. This will be addressed below when constructing the bi-orthogonal system.

The eigenvalues of LT
OS are the same as Eq. 2.4, and the basis functions are found

from the eigenvectors in Appendix A.

The goal is to construct a bi-orthogonality relationship between eigenfunctions

of different values of α. Unfortunately, α appears nonlinearly in the operator LOS.

To derive the bi-orthogonality condition, the vector of unknowns is augmented, Φ =

[û, ∂û/∂y, v̂, p̂, ŵ, ∂ŵ/∂y, ∂û/∂x, ∂v̂/∂x, ∂ŵ/∂x]T , and the adjoint is the correspond-

ingly augmented Ψ. This allows the operator LOS to be split into two components

that are independent of α:

∂Φ

∂y
= A1Φ + iαA2Φ (2.26)

where the matrix components are given in Appendix A.

From this augmented definition a bi-orthogonality condition can be derived. Let

Φκ be a modal solution to Eq. 2.3, where κ parameterizes the continuous spectrum

of α. Let Ψκ′ be a solution to Eq. 2.25 for a different eigenvalue α′ converted into

augmented form. Inner products with respect to the continuous spectrum modes are

improper in the sense that the integrals do not converge. There are two methods

to handle this difficulty. Either the inner products can be weighted with a term to

render them convergent, or, more physically, the integrals can be considered in the

limit of a narrow wave-packet. For notational simplicity this means:

Φκ =

∫ κ+ǫ

κ−ǫ

Φkdk , ǫ→ 0 . (2.27)
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The wavepacket approach will be used here. First, it will be assumed that the narrow

wave-packet limit renders the integrals well-behaved for the purposes of deriving the

orthogonality relationship. This will be validated when showing the normalization

conditions.

Consider the inner product of two modes of differing wavenumber by multiplying

Eq. 2.26 by Ψκ′ and integrating:

∫ ∞

0

ΨT
κ′

∂Φκ

∂y
dy =

∫ ∞

0

ΨT
κ′A1Φκ dy + iα

∫ ∞

0

ΨT
κ′A2Φκ dy . (2.28)

Integrating by parts and using the definition of the adjoint Eq. 2.25 and its boundary

conditions gives:

∫ ∞

0

[

(

A1
T Ψκ′

)T
Φκ + iα′

(

A2
T Ψκ′

)T
Φκ

]

dy =

∫ ∞

0

ΨT
κ′A1Φκdy+iα

∫ ∞

0

ΨT
κ′A2Φκdy .

(2.29)

The first term vanishes identically, leaving:

i(α− α′)

∫ ∞

0

ΨT
κ′A2Φκ dy = 0 (2.30)

For two different continuous spectrum modes, α 6= α′, Eq. 2.30 gives the bi-orthogonality

condition. For α = α′, the integral must be shown to be convergent and the normal-

ization constant (Qα) found such that:

∫ ∞

0

ΨT
κ′A2Φκ dy = Qαδ(κ− κ′) . (2.31)

The values for the normalization constants, and analysis of the convergence of the

integrals will be given in the next subsection. There is a one-to-one correspondence

between the parameter κ and the eigenvalue α and thus the α and κ subscripts are

interchangeable. The decomposition formulas can be expressed in terms of α to give

more physical meaning, but κ is used here when describing convergence behavior.
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Once the values for Qα are found, the decomposition of an arbitrary disturbance

can be formulated. Because the direct modes are orthogonal to every adjoint mode ex-

cept the one with common eigenvalues, multiplying an arbitrary profile by an adjoint

and integrating returns the amplitude Cα of the particular mode. The decomposition

can be expressed:

Cα =
1

Qα

∫ ∞

0

ΨT
αA2Φ0 dy (2.32)

where Φ0 is the full disturbance data. This is the biorthogonal decomposition rela-

tionship. However this is still working in the 9x9 system, by manipulating Eq. 2.32

the 9x9 system can be simplified back to the 6x6 system in this way (see Appendix A):

Cα =
−i
Qα

∫ ∞

0

∂LOS

∂α
φ̂(x0) · ψ̂α dy . (2.33)

b. Normalization

For the continuous spectrum of the Orr–Sommerfeld/Squire system, the normalization

of the bi-orthogonal eigenfunction system is non-trivial. For a set of discrete modes

the normalization can be found numerically such that Eq. 2.30 is equal to one, and the

functions are orthonormal. Because the solutions φ̂α and ψ̂α are not square integrable,

some analysis is necessary to compute Qα.

Expressed in the reduced sixth-order notation, the normalization condition is:

Qαδ(α− α′) = −i
∫ ∞

0

∂LOS

∂α
φ̂α · ψ̂α′ dy (2.34)

and the value for Qα must be found for an arbitrary normalization of the adjoint and

direct modes. To find this, first note that as y → ∞; φ̂, ψ̂ ∝ exp(±iκy). As before

a narrow wave-packet is assumed. The integrals can be split, letting δ1 be the top of
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the boundary layer:

∫ ∞

0

ψ̂κ′ ·
(
∫ κ+ǫ

κ−ǫ

∂LOS

∂α
φ̂k dk

)

dy =

∫ δ1

0

ψ̂κ′ ·
(
∫ κ+ǫ

κ−ǫ

∂LOS

∂α
φ̂k dk

)

dy

−
∫ δ1

0
∞ψ̂κ′ ·

(
∫ κ+ǫ

κ−ǫ

∂LOS

∂α ∞φ̂k dk

)

dy

+

∫ ∞

0
∞ψ̂κ′ ·

(
∫ κ+ǫ

κ−ǫ

∂LOS

∂α ∞φ̂k dk

)

dy (2.35)

Where the ∞ terms are the asymptotics evaluated outside the boundary layer. The

first two integrals on the right hand side vanish as ǫ → 0 because the integrals

are finite. The last integral does not vanish, though the terms are all known and

constant outside the boundary layer. Pulling these constants out leaves integrals of

the following type:

∫ ∞

0

e−iκ′y

∫ κ+ǫ

κ−ǫ

eiky dk dy = 2

∫ ∞

0

ei(κ−κ′)y sin ǫy

y
dy . (2.36)

Expanding in terms of trigonometric functions, the integrals can be found in Ref. [42].

The imaginary part of Eq. 2.36 gives:

2i

∫ ∞

0

sin [(κ− κ′)y] sin ǫy
y

dy = i log

∣

∣

∣

∣

ǫ+ (κ− κ′)
ǫ− (κ− κ′)

∣

∣

∣

∣

(2.37)

which is zero for κ = κ′. The real part of Eq. 2.36 gives:

2

∫ ∞

0

cos [(κ− κ′)y] sin ǫy
y

dy =











π, (κ− κ′) < ǫ

0, (κ− κ′) > ǫ
(2.38)

As ǫ → 0 this integral converges to a single point for κ = κ′, and all integrals of

this type tend to πδ(κ − κ′) (this also demonstrates the convergence necessary in

the previous section). Computing Qα then reduces to finding the coefficients of the

freestream asymptotic solutions.

On the vorticity branch there are six asymptotic solutions, but only four are non-
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zero far from the wall. A solution consists of a sum of any three, and thus four different

combinations are possible. However, two of the combinations are simply complex

conjugates of the other two. The combinations define the A and B branches. The

sum of these components make up the continuous spectrum mode in the freestream.

Let ζ be the coefficients of the freestream modal components of φ̂ and ξ the coefficients

of ψ̂, then:

∞φ̂α,A = ζ3
(3)

∞ φ̂αe
λ3y + ζ5

(5)

∞ φ̂αe
λ5y + ζ6

(6)

∞ φ̂αe
λ6y (2.39)

∞φ̂α,B = ζ3
(3)

∞ φ̂αe
λ3y + ζ4

(4)

∞ φ̂αe
λ4y + ζ6

(6)

∞ φ̂αe
λ6y (2.40)

∞ψ̂α,A = ξ3
(3)

∞ ψ̂αe
λ3y + ξ5

(5)

∞ ψ̂αe
λ5y + ξ6

(6)

∞ ψ̂αe
λ6y (2.41)

∞ψ̂α,B = ξ3
(3)

∞ ψ̂αe
λ3y + ξ4

(4)

∞ ψ̂αe
λ4y + ξ6

(6)

∞ ψ̂αe
λ6y (2.42)

where the left indices correspond to the different freestream vectors associated with

λ3−6. From the definition of the continuous spectrum, λ4,6 = −λ3,5 = iκ, and from the

analysis of the asymptotic solutions the only terms contributing in the dot product

are those with opposite signs associated with iκ. Substituting these definitions back

into the normalization formula gives:

Qα = −iπ∂L
(ij)
OS

∂α

(

ζ3
(3)

∞ φ̂(j)
α ξ6

(6)

∞ ψ̂(i)
α + ζ5

(5)

∞ φ̂(j)
α ξ6

(6)

∞ ψ̂(i)
α + ζ6

(6)

∞ φ̂(j)
α ξ3

(3)

∞ ψ̂(i)
α + ζ6

(6)

∞ φ̂(j)
α ξ5

(5)

∞ ψ̂(i)
α

)

(2.43)

for branch A, where the summation convention is used to express this compactly.

The branch B normalization constant is found in a similar manner.

c. Experimental Decomposition

Experimental data is necessary to advance understanding of complex roughness. This

demands a method be developed for extracting the receptivity information when only

the streamwise velocity disturbance can be obtained. Hotwire anemometry can be
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used to obtain detailed measurements of the streamwise perturbation in the wake of

realistic roughness elements, but cannot obtain the spanwise and wall-normal velocity

with accuracy necessary to perform a multimode decomposition. Further, spatially

distributed steady pressure perturbations are essentially unmeasurable. The result

is that in the initial condition vector, the streamwise velocity component and its

derivative can be used, but the unmeasured components v̂, ŵ and p̂ must be left as

sums of the eigenmodes and unknown coefficients[49]:

φ̂(x0) =

[

û0, Dû0,

∫

α

Cαv̂α,

∫

α

Cαp̂α,

∫

α

Cαŵα,

∫

α

CαDŵα

]T

. (2.44)

The integrals are discretized into sums, and substituted into Eq. 2.33. This yields a

system of algebraic Eq. in Cα that is made non-singular by the presence of u0. This

gives a linear system in the amplitude coefficients.

MjαCα = Fj (2.45)

where

Mjα =

∫ ∞

0

[

−ψ̂(2)
j pα + ψ̂

(4)
j (2α/Re+ iU)vα − ψ̂(6)

j (iURe + 2α)wα

]

dy + iQαδαj

(2.46)

and

Fj =

∫ ∞

0

[

ψ̂
(2)
j (iURe + 2α)u0 − iψ̂(3)

j u0 − ψ̂(4)
j (i/Re)Du0

]

dy . (2.47)

I is the identity matrix.

Formulating Eq. 2.45 without v̂, ŵ and p̂ greatly reduces the information present

in the initial data. This is especially true given that generic “streaky” structures

(i.e., streamwise u′ disturbances) are ubiquitous in boundary layers. Attempting a

decomposition using only streamwise velocity information is not successful because

the amplitude distribution that produces a streak is not unique. Specifically, the un-
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derlying streamwise vortex dynamics that drive the transiently growing perturbation,

the “lift-up” forcing, are not present, making a growing streak and a decaying streak

indistinguishable. However, although the underlying spanwise and wall-normal ve-

locity cannot be directly measured, their effect on the flow can be. The impact of

the underlying streamwise vortex can be seen indirectly in how the streak evolves

downstream. Therefore, using multiple streamwise locations in the decomposition

can build the necessary physics back into the numerical solution.

To build multiple streamwise locations into the computation, Mjα is expanded

from an N ×N system to an N ×KN system, where K is the number of streamwise

stations where hotwire measurements have been obtained. Attempting to solve this

overdetermined system utilizing a general least squares approach fails due to the fact

that Eq. 2.45 remains ill-posed. It is ill-posed in the sense that small changes in the

vector of known data Fj can produce large changes in the modal amplitudes Cα, both

due to the inherent stiffness of the OSS system and the multiple possible solutions

that constitute a streamwise streak. This sensitivity is especially problematic due

to inherent measurement uncertainty. To remedy this ill-posedness, a regularization

method based on Tikhonov[50] is utilized. A set of regularization norms and an

algorithm for solving Eq. 2.45 that minimizes the error in the measured velocity

profiles is developed. This procedure produces a unique solution with no information

other than experimentally obtained, streamwise velocity profiles.

The approach is to minimize a functional, M, that contains both the general

least-squares functional, as well as one or more “regularizing” functionals, that serve

to constrain the magnitude and smoothness of the solutions. These additional con-

straints are weighted by arbitrary constants, γ1 and γ2. In the present work M is

defined:

M = ||MjαCα − Fj ||2 + γ1||Cα||2 + γ2||ΓCα||2 (2.48)
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In Eq. 2.48, the first norm represents the standard least-squares solution. This least

squares term can also expanded to include weighted least squares to account for the

different levels of measurement uncertainty at different streamwise locations. In the

present work, weighted least squares is used to allow for locations with relatively

uncertain measured û values to be prioritized less than measurement locations that

are known with better accuracy.

The second norm attempts to minimize the overall vector norm of the solution.

Because the modes are non-orthogonal, substantial cancellation can occur between

modes when solving Eq. 2.45. This cancellation allows for solutions with arbitrarily

large amplitudes, that are then cancelled by equally large modes that are nearly

out of phase. Controlling the vector norm of the solution is a means of biasing the

computation to prefer setting two modes to zero, where appropriate, as opposed to

allowing arbitrarily large amplitudes and opposite phase.

The third norm exploits the fact that Cα must be a smooth function. Γ is a

matrix representation of the derivative operation with respect to α, that acts as a

penalty for discontinuities in Cα. Thus, this regularizer controls the realizability of

the hypothetical disturbance input.

This M functional is strongly convex[50], so a minimum is found by equating

the first derivative ofM to zero. A regularized equation is then obtained:

Cα =
(

MH
jαMjα + γ1I + γ2Γ

HΓ
)−1

MH
jαFj (2.49)

Eq. 2.49 can give Cα in a more tractable way than inverting Eq. 2.45 directly.

The constants γ1 and γ2 are adjusted to provide the best solution. Some theo-

retical techniques for setting these coefficients are given for simple, model problems

in Ref. [50]. However, for the present case with multiple regularizers and complex

inputs the physical knowledge of the system can be used to optimize γ1 and γ2.
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The following algorithm is used to optimize the regularization coefficients. First,

the total energy of the experimental data is calculated. The disturbance profiles are

integrated in y to find the energy as a function of x, and then integrated in x to

give a single total energy. This number is then used to normalize the total energy

of the input data to unity. The decomposition is performed for a range of γ1 and γ2

and the resulting output is also scaled to have unit total energy. This rescaling both

helps numerically by making the total disturbance energy O(1) and helps account for

error introduced from the regularization. That is, by penalizing the overall vector

norm, the regularized solution tends to give a slightly lower total energy than the

experimental data. However, since the problem is linear, rescaling this solution back

to unit energy is an equally valid solution. Once rescaled, the rms error is computed

for every û velocity profile and summed over all x locations available. The combination

of parameters that give the minimum error is then taken as the regularized solution.

Once this “best” regularized solution is obtained, the continuous spectrum solution

and experimental data are scaled back to the physically appropriate values. This

procedure produces a unique solution with no information other than experimentally

obtained, streamwise velocity profiles. The optimal parameters will be given in the

results section.

3. Linear Receptivity

Tumin and Reshotko[51] use the biorthogonal eigenfunction system to compute the

receptivity function for small amplitude surface roughness. This is accomplished

by assuming the roughness element can be linearized, and the geometric boundary

condition of the roughness height can be replaced with an equivalent slip boundary

condition on the streamwise velocity. Letting the roughness height be y = hf(x, z),

and expanding the roughness geometry in a Taylor series about y = 0, gives the
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boundary condition:

uw = −hf(x, z)
∂U

∂y
. (2.50)

The contribution to each eigenfunction is computed by taking the Fourier transform

of the boundary condition:

ûw(α) =
−h
2π

∂U

∂y

∫ ∞

−∞

∫ ∞

−∞

f(x, z)eiαx+iβz dx dz . (2.51)

Eq. 2.33 gives the orthogonality condition for obtaining the amplitude coefficients;

however, not all boundary conditions vanish in the orthogonality relationship because

of the non-Dirichlet conditions created by the roughness. That is, the right hand side

of Eq. 2.30 is not zero. Instead the right-hand side is the product of the adjoint and

the streamwise velocity component at the wall:

∫ ∞

0

∂LOS

∂α′
φ̂α′ · ψ̂α dy =

ûw(α′)ψ
(1)
α |0

i(α− α′)
. (2.52)

Integrating over all α′ gives the contribution for all wavenumbers (using the residue

theorem):

Cα =

∫ ∞

−∞

ei(α′−α)xûw(α′)ψ
(1)
α |0

i(α− α′)Qα

dα′ = − 2π

Qα

û(α)ψ(1)
α |0 (2.53)

Ref. [51] does not find transient growth for the cylindrical roughness case, which is

consistent with the receptivity process being non-linear. The receptivity function

results here can be contrasted with those computed using optimal perturbation and

decomposition methods to see why this is the case.
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C. Numerical Tools

Several numerical tools are developed to carry out the multimode decomposition and

optimal growth computations outlined in this section. Some details of the codes can

be found in the Appendix B.

Orr–Sommerfeld Solver (Algebraic) solves spatial or temporal Orr–Sommerfeld/

Squire system using Chebyshev collocation to discretize the eigenvalue problem,

and QZ factorization to solve the resulting linear algebra problem.

Orr–Sommerfeld Solver (Integral) solves spatial Orr–Sommerfeld/Squire system

for continuous spectrum modes using variable stepping 7th-8th order Runge-

Kutta. This code stores the modal asymptotic information necessary to con-

struct the normalization constants.

Spatial Optimal Solver computes optimal transient growth solutions given a col-

lection of continuous spectrum modes from the algebraic Orr–Sommerfeld solver,

using both SVD and eigenvalue formulation.

Complete Data Multimode Decomposition Solver computes amplitude func-

tions, Cα, given mode shapes and normalizations from the Orr–Sommerfeld

solver, and initial profiles from DNS. Also provides post-processing of energy

evolution, velocity profiles and error analysis. Also includes formulation for

solving the decomposition problem when information about the pressure per-

turbations is absent.

Partial Data Regularization Solver computes amplitude functions, Cα, given mode

shapes and normalizations from the Orr–Sommerfeld solver, and initial stream-

wise velocity measurements from experimental data.
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CHAPTER III

DECOMPOSITION RESULTS

The previous chapter provides an extended derivation of the bi-orthogonality rela-

tionship for the continuous spectrum of the Orr–Sommerfeld/Squire system. Instead

of an amplitude coefficient assigned to a particular mode, this bi-orthogonality rela-

tionship gives an amplitude function defined along the branch cuts in the complex α

plane.

Cα =
−i
Qα

∫ ∞

0

∂LOS

∂α
φ̂(x0)ψ̂α dy (2.33)

In this formulation, the spanwise wavenumber (β), and the Reynolds number (Re) are

parameters, the integration over y eliminates the wall-normal dependence, and the

amplitude function Cα is thus a function of α only. Similarly Qα is a normalization

function that also depends on α. φ̂(x0) is the vector of initial data (for a given β)

and ψ̂α is the adjoint solution.

Once the amplitude functions have been calculated from the initial data using

Eq. 2.33, the velocity and pressure profiles of the perturbation can be calculated at

any location downstream.

φ(x, y, β, ω) =
∑

A,B

∫

Γ

Cαφ̂α(y)eiαxdα (2.6)

The sum in Eq. 2.6 accounts for the contribution of the A and B branches of the

continuous spectrum vorticity modes, and the integral over α accounts for total con-

tribution along the branch.

The problem of interest is the now-canonical method of generating and measuring

transient growth. A spanwise periodic array of circular cylinders in a flat plate bound-

ary layer has been investigated extensively both experimentally[14, 15, 36, 35, 10, 37]
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and via direct numerical simulation (DNS)[38, 39, 40]. Fig. 6 shows a schematic of the

setup. This chapter utilizes multimode decomposition to investigate two separate re-

alizations of this setup and contrast the results to other receptivity approaches. First,

a DNS of the cylinder array is analyzed. When DNS results are available, a complete

description of the flow field is known. This allows Eq. 2.33 to be solved directly.

The solution gives the receptivity of the boundary layer to cylindrical roughness ele-

ments. Second, experimental results with only streamwise velocity measurements are

analyzed using the partial data method.

The case selected for analysis matches experiments by Ergin and White[52] and

DNS by Rizzetta and Visbal[39]. The roughness-based Reynolds number is, nomi-

nally, Rek ≈ 200, and the cylinder spacing (λk) is three times the diameter (D). The

Rek value is relatively large, but still subcritical, meaning transient growth is ob-

served but does not cause transition. The relevant dimensional and non-dimensional

parameters are summarized in Table I. In this table, all quantities with subscript k

indicate their values at the roughness location. Streamwise x locations are referenced

to the virtual leading edge, which is 5 mm upstream of the physical leading edge.

TABLE I

Experimental and DNS Parameters

Parameter Re′ (m−1) Rek xk (mm) λk (mm) D (mm) δk (mm)

Experiment 764× 103 209 305 19 6.35 0.626

DNS 769× 103 202 305 19 6.35 0.633

The continuous spectrum theory described above assumes parallel flow. However,

over the domain of interest there is non-negligible boundary layer growth. To account

for this when making comparison between theory and experimental/DNS results,

an effective boundary layer scale and Reynolds number is employed. An average
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boundary layer scale is defined

δavg(x) =
1

x− xk

∫ x

xk

δ(ξ)dξ (3.1)

Results from DNS and experiments are plotted against a non-dimensional streamwise

location, (x−xk)/δavg. For the decomposed solutions, the value of δ used to calculate

Re is the local value at the decomposition location δ = 0.668 mm. In the case of

the experimental decomposition, where multiple streamwise stations are used, there

is no “local” δ to unambiguously set the Reynolds number for calculating the modes.

To facilitate comparison, the same Re = 510 is used for the experimental and DNS

decompositions. This corresponds to a δavg of roughly 375mm from the leading edge,

near the center of the experimental measurement domain, and therefore is a reasonable

balancing of non-parallel effects.

In this chapter, Section A analyzes the ability of linear theory to capture the

complex behavior in the roughness wake. Section B contrasts the results of this

receptivity calculation with optimal and linear receptivity approaches and highlights

the significant differences. While the complete flow data makes solving Eq. 2.33

relatively straightforward, the computational expense of DNS leaves many situations

where only experimental data is available. In this case, often only the streamwise

component of the velocity is measurable. Section C validates the method of solving

Eq. 2.45 when only certain components of the initial condition are available.

A. DNS Decomposition

A direct numerical simulation of flow over periodic cylinders in a flat plate bound-

ary layer has been carried out by multiple authors[38, 39, 40]. The most detailed

computation was performed by Rizzetta and Visbal (RV)[39], at the Air Force Re-
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search Lab. The computational cost of this simulation was substantial, utilizing 391

processors over the course of several months. Contrasting the results of RV to other

DNS and experimental results reveals these computations and experiments are ex-

tremely sensitive to small changes in how the roughness elements are created, as well

as the background disturbance environment. Achieving reliable and repeatable DNS

results, even for this simplified geometry, remains a challenging task. Thus, extracting

as much information from these simulations as possible is essential.

Within the limits of the parallel flow and linear disturbance assumptions, char-

acterizing the flow response in terms of its continuous spectrum amplitude distribu-

tion offers many benefits. First, it represents a substantial data reduction, as a 3D,

nonlinear, DNS can be reduced to one complex valued function, Cα, that contains

information about all streamwise locations for a given β. This reduction provides

the potential for future modeling of complex roughness features. Second, hope for

developing a comprehensive understanding of “bypass” transition will rely on being

able to make general statements across different geometries and flow conditions. The

continuous spectrum analysis provides a quantitative way of expressing a DNS re-

sult that makes this possible. Further, the growth rate and distribution of Cα can

be contrasted with previous theoretical results from both optimal and linear recep-

tivity calculations. This gives a quantitative assessment of how effectively different

geometries act as receptivity sources. Finally, a demonstration that perturbations

evolve linearly after a small streamwise distance would substantially reduce compu-

tational time and make parametric studies possible as only a limited amount of the

downstream evolution would need to be capture by the DNS.

When the results of both the DNS and the experiment are Fourier transformed

in the spanwise direction, the disturbance energy is concentrated initially in the third

harmonic, λk/3. Additionally, this wavelength exhibits substantial transient growth
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over the measurement domain, and its behavior is most consistent with optimal the-

ory. For these reasons, the initial focus will be on the results from this wavelength.

To solve the problem numerically, the two branches of the continuous spectrum

are discretized using 500 A and 500 B modes. κ is logarithmically spaced from

κ = 0.01 to capture behavior near the branch point at κ = 0 up to a value of κ

corresponding to the second branch point, iβ. The pressure modes that begin at

this branch point are neglected due to their rapid spatial decay. To generate the

modes, an integration-based technique was used, with normalization conditions mod-

eled after Ref. [42] (∂u/∂y|0 = 1). The mode shapes were verified with a Chebyshev

pseudospectral technique based on Ref. [46].

Although exhaustive resolution studies are not conducted, the resolution is ver-

ified by ensuring the computed velocity profiles sum to zero in the freestream at

multiple x locations. Additionally, the velocity reconstructions show no “ringing”

phenomena and exhibit complete freestream cancellation (see e.g., Fig. 7). Further,

unlike discretization methods used in DNS and similar computations, the method

of discretizing the continuous spectrum has no effect on the mode shapes. That is,

the shape and evolution of each mode is independent of the neighboring modes, and

adding additional solutions would serve to “sharpen” the solution. Given this, the

a posteriori validation is deemed sufficient, and the lower bound on the necessary

number of modes will be explored in the future as work on more computationally

demanding problems is undertaken.

Using the DNS data available from Ref. [39], Eq. 2.33 can be used to directly

compute the amplitude distribution Cα. Once this decomposition is performed at an

initial streamwise station, the initial value problem is fully specified, and the down-

stream flow-field is completely determined. The evolution given by linear parallel

theory is then compared with the DNS results. Figure 7 (a) compares the streamwise
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disturbance velocity for the λk/3 wavelength from the DNS and the eigenfunction

reconstruction plotted against the Blasius coordinate (η = y/δ). This result is for

the decomposition performed 25 mm (35 δavg) downstream of the roughness elements.

The decomposition/reconstruction reproduces the û velocity with high accuracy. Fig-

ure 7 (b) shows the results for the ŵ and the v̂ and the agreement is also very good.

Note that û and v̂ are even functions, and thus purely real, while ŵ is odd so the

imaginary component is shown. The error is significantly less than 1% of the maxi-

mum û disturbance, which is scaled to unity. This agreement demonstrates that the

continuous modes can be combined to accurately describe an arbitrary disturbance

at one streamwise location. While this alone does not validate the linear/parallel

assumptions, it does validate the choices of how to discretize the branches. Validat-

ing the accuracy of the other assumptions requires evaluating the agreement as the

disturbance evolves downstream. This agreement is shown below.

As described above, the λk/3 disturbance is composed of two continuous distribu-

tions of modes with purely imaginary α values ranging from αi ≈ β2/Re = 8.5×10−4

for κ → 0 to αi = β = 0.658 as κ is increased. For each imaginary α, the A and

B modes have complex amplitudes, Cα. The amplitudes and phases of these two

branches are plotted in Fig. 8 for the x location corresponding to Fig. 7. This plot is

the complete quantitative description of the flow’s receptivity to the roughness.

The Cα distributions are centered about αi = 0.006. In physical terms, this

roughly defines the overall decay rate of the disturbance. That is, because the largest

amplitude modes decay with αi = 0.006, eventually, the disturbance will exhibit

roughly this decay rate after the transient growth has subsided. The corresponding

phase plot shows that the A and B modes are almost exactly out of phase. It should be

pointed out the opposite sign of either phase could be shown, as the choice of the A and

B modes is arbitrary. Had the complex conjugate A mode been selected, the spectrum



50

would be of opposite sign. This phase behavior may be a consequence of enforcing

the condition that the perturbation tend to zero in the freestream. Additionally, the

distribution function is dependent on the choice of normalization when solving both

Eq. 2.25 and Eq. 2.33. Therefore, relative differences between spectra are meaningful,

but the numerical values depend on details of the method and howQα is defined. With

this in mind, it is interesting that the amplitude distribution is a surprisingly simple

function given the complexity of the roughness wake. The fact that the amplitude

distribution is simple and could be described by just a few parameters suggests it

may be possible to construct simplified empirical models of how roughness leads to

non-optimal disturbances.

Previous experimental work[15] has shown that the boundary layer receptivity to

roughness elements scales nonlinearly with increasing roughness amplitude. Further,

qualitative results from both experiments and DNS visualizations indicate that finite

disturbances exist in the very near wake of the roughness elements, possibly due to

a separation bubble on the leeward side of the roughness element. Given these two

facts, it is expected that the perturbations are not well described by linear theory in

the immediate wake of the roughness element. Instead, the large perturbations must

be allowed to decay before linear theory is applicable. The decomposition technique

can be used to determine the extent of the nonlinear region.

Figure 9 shows the results for decompositions at several downstream locations.

This figure shows that for approximately 20 mm (3D) downstream of the roughness,

the decomposition cannot capture the energy evolution in the λk/3 wavelength. The

predicted peak energy is higher at 10 mm than at either 6 mm or 15 mm. However,

downstream of this location the agreement is quite good. The decomposition at 25

mm is accurate for over 150 δavg, until, presumably, non-parallel effects begin to

cause disagreement. The energy evolution from the decomposition at 20 mm is also
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reasonably accurate. The disturbance energy is a sensitive metric, and the small

overshoot between 25 mm and 20 mm can be partially attributed to the slightly

different values of Reynolds number used at the decomposition locations.

This process is repeated for the other important wavelengths. Figure 10 shows

that the other wavelengths also compare well to results found in Ref. [52]. Notably,

the decomposition is able to not only capture the transiently growing disturbances

found in the third and fourth harmonics, but also show the decay in the second

harmonic. Also, the decomposition tracks the the transition from decay to growth

and back to decay of the fundamental wavelength despite the relatively small energy

content at the decomposition location, x0 = 35δavg. There is a small but noticeable

underprediction in the energy content of the fundamental wavelength that will also

be seen in the experimental decomposition. This is potentially due to non-parallel

effects.

The behavior of each of the wavelengths can be explained by the amplitude dis-

tributions shown in Fig. 11. The peak of the amplitude distributions for the third and

fourth harmonic fall at roughly the same wavenumber αi = 0.006, which translates

into their energy maxima occurring at roughly the same downstream location, with

different total energies. The fundamental wavelength has its maxima at a much lower

wavenumber, which indicates maximum growth further downstream and slower de-

cay. These features are seen in the energy evolution. In contrast the spectrum of the

second harmonic is much broader and lacks the defined structure of the other spectra.

These features may lead to the absence of transient growth in this case. In addition

to the information found in the amplitude distributions, the phase distribution may

be important, however its role is unknown without further cases to analyze.
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Parametric Analysis

Work is ongoing at the Computational Fluid Physics Laboratory at the University

of Texas to perform detailed DNS of other roughness geometries, including differ-

ent roughness heights and diameters. Decomposing results from this DNS presents

a challenge in that the DNS is a pressure-free formulation, and the decomposition

process must be modified slightly. Fig. 21 shows that decomposing a perturbation

without pressure information gives identical results to the full decomposition. This

work has recently achieved some useful results for very low Rek ≈ 50, and over cer-

tain domains for larger amplitude roughness configurations (private communication).

However, difficulties with the DNS finding a steady state (which will be explained in

the secondary instability chapter) have made larger parametric comparisons difficult.

There is not enough confidence in these results to make delicate comparisons across

roughness geometries.

However, through this collaboration, an additional application for multimode de-

composition has been found, namely, validating DNS results by showing the deviation

from linear predictions. The multimode decomposition of DNS results with smaller

roughness elements than those considered by RV showed significant discrepancy with

the linear theory (despite smaller disturbances), thus encouraging grid refinement and

more detailed study.

B. Theoretical Receptivity Comparisons

An optimal perturbation is defined as the initial condition that generates the most

kinetic energy growth over a specified domain. Refs. [14, 35, 15] found experimentally

that physically realized perturbations attained maximum energy well upstream of op-

timal predictions. This section attempts to quantify the difference between optimal
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and realizable perturbations by identifying their amplitude distributions. The present

decomposition calculations provide a means of explaining not just how realizable dis-

turbances are different, but why they are different from a receptivity perspective.

Further, the important connection between optimality and the location of the dis-

turbance in the boundary layer identified in Ref. [35] can be analyzed in a rigorous

way. Contrasting the amplitude distribution of theoretically generated and physically

realized disturbances is central to future progress in modeling of increasingly realistic

disturbances. The optimal solutions corresponding to the present parameters were

found using the singular value decomposition described in Chapter II. Comparisons

are also made to the linear receptivity model[53].

The amplitude distribution of the continuous spectrum modes found in Fig. 8

are compared to the distribution of an optimal disturbance in Fig. 12. This figure

shows that higher αi modes are excited by roughness than are required for an op-

timal disturbance. This is to be expected as the realized disturbance decays much

more quickly than the optimal disturbance. It is also noteworthy that the amplitude

shape is similar between the two disturbances, indicating that a wide class of dis-

turbances likely share this one-peaked structure. Figure 12 also shows that the shift

in wavenumber space moves the spectrum toward the linearized boundary conditions

found in Ref. [53], whose amplitude distribution is also similarly shaped. This sug-

gests that the physically realized disturbance, though not well described by linear

receptivity or optimal disturbance theory, lies in between these two extremes with a

somewhat predictable amplitude distribution.

Prior to the development of the present approach[42], a method of characterizing

sub-optimal disturbances was proposed by Fransson et al.[35] that involves rescaling

an optimal disturbance, compressing it lower in the boundary layer and computing

its growth using a spatial marching technique. Fransson et al. found that the energy
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evolution of this rescaled vortex was a closer approximation of the physically realized

energy than optimal theory. This approach can be evaluated using multimode de-

composition, by first solving for the optimal disturbance, rescaling the y coordinate

by a factor c, performing the decomposition, and then projecting the result down-

stream. This calculation shows similar behavior to what is found in Ref. [35]. The

energy maximum occurs further upstream in accordance with the experimental find-

ings. Figure 13 shows that the effect of this process on Cα is to shift the spectrum

up in wavenumber space toward larger αi. This suggests a correlation between the

distribution of amplitudes in the wavenumber space and the location of a disturbance

in the boundary layer.

Continuing this process to match the experimental results described in the present

work gives a value of the scaling parameter c = 0.32. Fig. 14 shows the continuous

spectrum amplitudes, and Fig. 15 shows the energy evolution for this case. The con-

tinuous spectrum peak has shifted in line with the DNS solution, and the energy

evolution now peaks in the same downstream location. These results somewhat val-

idate the results found in Ref. [35]. However, Fig. 16 shows that the decomposition

does not do as effective a job of decomposing this disturbance as compared to the

physically realized disturbance shown in Fig. 7. The poor comparison means that

the initial condition of a compressed optimal disturbance is not a solution of the OSS

equations in the band of α examined here. However the location of the resulting

streamwise streak is in agreement with the present results and will be used later.

As the disturbance shown in Fig. 16 evolves downstream, the higher harmonic

oscillations in y decay quickly and the resulting perturbation is consistent with what is

seen in the DNS and decomposition resulting in similar energy growth. However, it is

clear that agreement of the energy evolution requires the velocity profiles to not agree

with the input scaled-optimal disturbance, so that approach is not self-consistent.
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Moreover, although the λk/3 and λk/4 energies may be captured by compressed

optimal disturbances, for the other cases shown in the present work, λk/2, where

there is minimal growth, and λk, which experiences both decay and growth, rescaling

an optimal disturbance does not reproduce even the energy evolution. Therefore,

as more complicated roughness geometries are analyzed it is unlikely that rescaling

an optimal disturbance will be able to account for these more intricate spanwise

variations.

C. Experimental Decomposition

The decomposition into continuous spectrum modes can be found from Eq. 2.33 when

all velocity and pressure components of φ̂(x0) are known. This level of detail and ac-

curacy is possible in DNS. However, in an experiment this complete and accurate

information is not available[15]. While DNS can be performed for certain simple

geometries, it remains resource intensive and, at this point, a DNS of realistic dis-

tributed roughness (e.g., Ref. [41]) is not feasible. Thus, for distributed roughness in

a variety of realistic situations, experiments will remain the primary source of new

data.

Since the linearity of the transient growth in this experimental configuration was

demonstrated in the previous section, the experimental results from Ergin and White

(EW)[36] are a good candidate to attempt a partial data decomposition. Again,

the goal is to extract information similar to what was found in the decomposition

of the DNS, using only the streamwise velocity at multiple streamwise locations. A

successful decomposition will not only provide the receptivity information, but also

reveal the correct underlying vortex dynamics that drive the transient growth but

have proven too challenging to measure directly.
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Disturbance profiles from 13 x locations are used to reconstruct the energy evo-

lution. The optimal regularization coefficients can be found in Table II. The least

squares term in Eq. 2.49 is weighted by the estimated measurement uncertainty for a

given x location, allowing the solver more flexibility at locations with less certainty.

Recall that γ1 is the penalty for large amplitudes and γ2 is the smoothness penalty.

Whereas Eq. 2.49 includes an amplitude regularizing term, in all cases except λk/2

the best result gave γ1 = 0. This is not universal; depending on how the modes

are discretized and other measurement factors, γ1 can be important. It is worth

noting that, for the cases with growth, the larger difference between the measured

perturbation and the optimal perturbation requires a larger γ2.

TABLE II

Regularization Parameters

Wavelength λk λk/2 λk/3 λk/4

γ1 0 1.33 0 0.0

γ2 3750 0 7.50 562.5

Figure 17 shows the agreement between the input disturbance energy and the

calculated energy found with the partial data composition. This figure shows that for

a case of initially strong energy growth (λk/3, λk/4), a case of initial decay followed by

slower growth (λk), and a case of almost no growth (λk/2), the partial data technique

is able to capture the appropriate energy evolution. This energy evolution falls within

the error estimates for much of the domain for cases with strong initial growth, and

decays slightly faster than the experiment, likely owing to non-parallel effects as the

disturbance travels downstream. For the fundamental wavelength, the decomposition

is not as accurate. This is partly due to the very low energy in the upstream x

locations for the fundamental harmonic. These initial x locations have a strong
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influence on the overall result. Further it should be noted that the DNS decomposition

also underpredicts the energy evolution.

Figure 18 shows the reconstructed velocity profiles. Recall that the lines in this

figure were generated without any measured v̂ and ŵ. The maximum û perturbation is

scaled to unity for comparisons between the DNS and experiment (whose total energy

is not in exact agreement). These figures show excellent agreement in the profile

shapes in the streamwise, wall-normal and spanwise directions. All profiles peak at

roughly the same velocity and η values. There is some disagreement in the upper-lobe

of the ŵ profile and the magnitude of v̂ but the energy evolution in the experiment

and in the DNS are not identical. In fact, at this location, 25 mm downstream, the

experiment has undergone somewhat more dramatic transient growth, so it is not

unexpected that the profiles show some differences. Regardless of this, these profiles

show it is possible to extract the underlying streamwise vortex structure. This was

impossible using slantwires. From this reconstruction it is clear why measuring these

profiles was so experimentally challenging. The velocity profiles in Fig. 18 are scaled

by the maximum of the û disturbance. The û perturbation is less than 5% of the

mean flow velocity, and the spanwise and wall-normal components are on the order

of 5% of the û value.

While on its face, the quality of the decomposition in Fig. 16 is on par with

Fig. 18, note that Fig. 16 compares a decomposition performed with complete flow

data to that same data whereas Fig. 18 compares a DNS solution to a decomposition

computed using only experimental û data. Thus, for the approach of rescaling optimal

disturbances to be judged an effective means of representing sub-optimal disturbances,

the comparison shown in Fig. 16 should be as good as that shown in Fig. 7 (i.e., the

comparison of the sub-optimal DNS solution to its decomposition). The relatively

worse agreement in Fig. 18 can be attributed to the facts that it compares v̂ and ŵ
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profiles generated using only experimental û data and simply that it is a comparison

between two different data sets, an experiment and DNS.

Figure 19 shows contours of streamwise and wall-normal velocity transformed

back to physical space. The upper figures are wall-normal velocity and the lower

figures are spanwise velocity. The far left is the reconstruction based on the exper-

imental decomposition using the four dominant modes slightly further downstream

(50 mm, 68δavg). The center figure is the DNS result using only those modes, and the

far right figure is the complete DNS. These figures show that the experimental de-

composition captures the essence of the underlying vortex structure in the roughness

wake, making it possible to visualize the complete flow field behind an arbitrary per-

turbation. This makes it possible for experiments to proceed with more complicated,

distributed roughness elements that are currently beyond the scope of DNS.

Figure 20 shows the continuous spectrum distribution for the λk/3 solution. The

overall magnitude is larger in the experimental decomposition for the same total

energy. This indicates that there is more mode cancellation present in this solution,

which is consistent with the faster growth rate seen in the experiments as compared to

the DNS[54]. However, the location of the peak amplitude and the slope of the phase

distribution are in good agreement. While qualitatively similar in some respects to

the DNS solutions, there is one notable difference. The A branch distribution has

two peaks and not just a single peak. This could complicate modeling attempts

as more parameters may be necessary to describe this distribution than the more

straightforward DNS result.

An important note regarding Fig. 20 is the complication imposed by non-parallel

flow. While the DNS decomposition can be calculated purely locally, the multiple

stations used in the experimental decomposition necessarily re-introduce these ef-

fects. Future efforts will focus on larger, more developed boundary layers (i.e. less
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non-parallel) to explain why the experimental amplitudes are not single-peaked as

they appear in the DNS data. Numerically speaking, increasing the least squares

regularization (γ1) smooths out this structure, but decreases the accuracy of the re-

sult. Given this, the additional peak is likely not a numerical artifact but rather the

solution compensating for non-parallel effects.

D. Summary

Several features of roughness-induced transient growth have been isolated in this

chapter. First and foremost, physically realizable transient growth is a linear process.

While the receptivity is non-linear, the subsequent evolution of the perturbation is

governed by the linear initial value problem. This means that the discrepancy between

optimal perturbation predictions and what is measured experimentally is due to a

difference in the receptivity function, not due to non-linear evolution. Further, the

extent of the non-linear receptivity region can be mapped by determing where the

linear initial value problem solution is valid.

Second, multimode decomposition can sort and track the behavior of different

spanwise modes, and reduce large data into simplified amplitude functions. Future

modeling will rely on reduced models of the dynamics of the boundary layer. While

methods such as proper orthogonal decomposition can give a reduction of the dynam-

ics for systems with large training data sets, they do not reflect to true underlying

dynamics. Continuous spectrum analysis does capture the correct dynamics, and

understanding its behavior is key to future modeling and control.

Third, realizable amplitude functions are qualitatively and quantitatively dif-

ferent than optimal theory and linear receptivity, but share some key features that

may make modeling possible. The shapes of the receptivity functions do not appear
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overly complex and are somewhat consistent with shifts in the complex α plane. It

is possible that some universal behavior can be isolated from these functions.

Fourth, the decomposition problem can be solved using DNS without all the flow

data being available. This makes the process feasible for DNS codes that solve without

pressure information. More importantly, the decomposition problem for experimental

data with only streamwise velocity is solved using multiple streamwise measurement

locations and regularization methods for ill-posed problems. This decomposition of

experimental data reveals previously unmeasurable velocity components and the vor-

tex behavior that drives transient growth in addition to the receptivity information.
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CHAPTER IV

SECONDARY INSTABILITY THEORY

Experimental investigations[55, 56] have shown that even in cases where the primary

instability is two-dimensional, i.e. a T–S wave, the onset of turbulence is preceded

by the rapid growth of a three-dimensional instability. This secondary instability

structure, characterized in flow visualizations as either aligned or staggered Λ-vortices,

exists on top of the mean flow distortion created by the growing T–S wave. In the case

of a traveling T–S wave, relatively small amplitudes can create secondary instabilities

(u′rms ∼ O(1%)). Floquet analysis, taking advantage of the streamwise periodicity

of the T–S wave, has proved a useful approach in isolating the secondary instability

mechanisms[23].

The second generation of experiments described in the first chapter[24, 25], give

experimental evidence that suggests the role of a “secondary” instability, due to in-

flectional velocity profiles, in cases of roughness-induced transition. Further, the ob-

servation by Morkovin[21] that roughness enhances the onset of the three-dimensional

instability mechanism highlights the importance of these type of disturbances. How-

ever, some care must be taken in defining the concept of “secondary” instability in

the present work. Secondary instability appears in the previous sentences in quotes

because, as has been shown, the disturbance growth behind cylindrical roughness el-

ements analyzed in the current work is a result of the transient-growth mechanism,

and not any primary instability.

This work will not address how transient growth affects the primary T–S insta-

bility (Path B in Fig. 1). Further, the interaction between the secondary instability of

T–S waves and the “secondary” instabilities that arise from transient growth (poten-

tial Path B–C connection) suggested by Morkovin will only be addressed tangentially.
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While this problem is of great interest, a complete, viscous, interaction-theory type

computation[57] is beyond the scope of this dissertation.

The focus here is on secondary instabilities generated by the basic state mod-

ulation due to transient growth, Path C in Fig. 1. The method of analysis will be

similar to previous secondary instability calculations. Instead of the basic state be-

ing the Blasius boundary layer and a traveling, streamwise-periodic T–S wave, the

basic state is the Blasius boundary layer and a steady, spanwise-periodic, transiently-

growing perturbation. In both cases, the amplitude of the primary disturbance is

varied to correlate the necessary disturbance amplitude with the onset of a secondary

instability, and the physics of the instability that arises can be studied.

A secondary stability analysis of optimal transient growth was carried out in de-

tail using inviscid Floquet theory by Andersson et al.[33]. This study found two unsta-

ble secondary instabilities associated with the optimal perturbation. One instability

is anti-symmetric in the spanwise direction, referred to as a sinuous perturbation, that

is sustained by velocity gradients in the spanwise direction. The second is symmetric

in the spanwise direction, referred to as varicose, and is sustained by gradients in the

wall-normal direction. This varicose profile is non-physical and unlikely to contribute

to breakdown due to non-vanishing streamwise velocity at the wall. This solution is

permissible in the inviscid approximation, but would be strongly attenuated with the

inclusion of viscosity.

Comparison with experiments and DNS led the authors in Ref. [33] to conclude

that sinuous perturbations, unstable due to spanwise inflectional velocity profiles, are

the likely cause of breakdown in the presence of high-amplitude streaks. However,

later experimental work[36] observed breakdown at amplitudes deemed subcritical to

these secondary instabilities. To analyze whether this type of inflectional secondary

instability is at work in these experiments, the present work performs secondary
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instability calculations using the sub-optimal transient growth found in experiments

and DNS consistent with Ref. [36].

Prior chapters have dealt in great detail with how physically realized transient

growth is not consistent with optimal perturbations. Thus, any secondary instability

calculations involving the more realistic basic state from previous chapters will provide

results that are somewhat different than previous work. However, a broader physical

argument is important. Much of the justification for optimal growth approaches has

been that they represent the “most dangerous” perturbations. Thus if analytical

efforts focus on optimal perturbations, the results represent a conservative upper-

bound for predicting transition behavior. This argument is at odds with experimental

findings that observe more rapid breakdown than predicted in the presence of sub-

optimal perturbations.

While optimal perturbations are “optimal” in the sense that they produce the

most energy growth, they are, in fact, sub-optimal in terms of generating secondary

instabilities. Physically, the optimization process reduces the velocity gradients that

comprise the growing laminar “streak”. While this leads to a larger streak amplitude

and slower disturbance decay downstream, it also limits the profile’s susceptibility

to secondary instabilities which feed on these gradients. Chapter V shows, both via

a simplified model streaky boundary layer, and using the complete boundary layer

profile behind the roughness elements, that physically realized transient growth has

higher growth rates and a neutral curve at lower amplitudes than optimal predictions.

Further, this approach will explain the “critical” nature of transition behind these

roughness elements seen in experiments and DNS dating back several decades[18], as

well as why some DNS approaches have difficulty achieving convergence to a steady-

state.
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A. Theoretical Development

The approach to secondary instability analysis is the same as was used to study

optimal streaks in Ref. [33], a temporal stability calculation with a Floquet expansion

in the spanwise direction. With the inviscid assumption the governing equations

are the Euler equations. They are linearized about a meanflow profile that now

depends on both y and z as it has been modulated by the transient growth, U(y, z) =

UB(y) + uTG(y, z). These equations are:

∂u′

∂x
+
∂v′

∂y
+
∂w′

∂z
= 0

∂u′

∂t
+ U

∂u′

∂x
+
∂U

∂y
v′ +

∂U

∂z
w′ = −∂p

′

∂x
(4.1)

∂v′

∂t
+ U

∂v′

∂x
= −∂p

′

∂y

∂w′

∂t
+ U

∂w′

∂x
= −∂p

′

∂z

scaled by δ =
√

νx/U∞, with the limit taken as Re → ∞. As shown in previous

chapters, the spanwise and wall-normal velocity of the basic state, V and W , are very

small compared to U .

Unfortunately, unlike in the usual inviscid scenario where Eq. 4.2 can be manip-

ulated to get a solution for v only, the fact that U → U(y, z) prevents this. However,

the pressure can be decoupled to arrive at an equation that is free of other variables:

(

∂

∂t
+ U

∂

∂x

)

∇2p′ − 2
∂U

∂y

∂2p′

∂x∂y
− 2

∂U

∂z

∂2p′

∂x∂z
= 0 (4.2)

Since the mean flow variables do not depend on x or t a normal modes substitution

is possible:

p′(x, y, z, t) = p̃(y, z)eiα(x−ct) + c.c. (4.3)

A normal modes substitution gives a two dimensional equation parameterized by the
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real streamwise wavenumber α and the complex phase speed c.

(U − c)
(

∂2

∂y2
+

∂2

∂z2
− α2

)

p̃ = 2
∂U

∂y

∂p̃

∂y
+ 2

∂U

∂z

∂p̃

∂z
(4.4)

This equation is very similar to the Rayleigh equation, reflecting the inviscid nature

of the disturbance. The boundary conditions on p̃ for Eq. 4.4 are ∂p̃/∂y = 0 at

y = 0,∞.

There are a few methods available to solve eigenvalue problems of the form in

Eq. 4.4. Some authors, in an effort to generate more general-purpose codes, solve

a collocation problem in both the y and z direction (see e.g. [58]) or compact fi-

nite differences (see e.g. [59]). Alternatively, the periodicity of the basic state can

be exploited to address the problem using Floquet analysis. This approach handles

the physical coupling in the z direction first, before solving the eigenvalue problem

using collocation in the wall-normal direction only. This approach has the advantage

of solving an eigenvalue problem with banded matrices (in contrast to the colloca-

tion methods) as well as having an explicit way of monitoring whether the spanwise

resolution is sufficient (in contrast to the finite difference approaches).

Floquet analysis is the extension of the normal modes approach to situations

where the coefficients of the problem vary periodically. Ordinarily, the normal modes

assumption relies on the basic state being independent of the the normal mode vari-

able. This variable then must appear in the solution as an exponential term and

the solutions can be decoupled from each other. For example, the substitution from

Eq. 4.3 is justified and general based on the fact that the base flow has no time or

streamwise dependence. However substituting a normal mode for y would not be

feasible.

Since the baseflow is two-dimensional, a simple normal mode substitution for z is

also not possible. However, recognizing the periodicity in z at a wavelength specified
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by the spacing of the roughness array, the baseflow can be represented:

U(y, z) =

∞
∑

k=−∞

Uk(y)e
ikβz (4.5)

Given the setup of the problem as periodic cylinders, this form will describe the basic

state velocity well even when only relatively few terms are considered. The series will

be truncated at k = m, then Uk(y) = 0 when |k| > m. This reduces the size of the

problem significantly.

Since the baseflow varies periodically in z, the solution retains the exponential

dependence on z. This allows expanding p̃ as:

p̃(y, z) =
∞
∑

k=−∞

p̂k(y)e
i(k+γ)βz (4.6)

Here γ is the Floquet parameter and determines the extent to which the disturbance

is fundamental (γ = 0), subharmonic (γ = 0.5), or detuned (γ ∈ (0, 0.5)). The

fundamental mode varies over the same wavelength as the fundamental β in the basic

state expansion. The subharmonic modes vary over double this wavelength, repeating

the fluctuating mode shape once every two sets of streaks. Detuned modes represent

other possible combinations, and preserves the generality of the expansion.

Taking derivatives the new form of the z dependent solutions gives:

∂p̃

∂z
=

∞
∑

k=−∞

i(k + γ)β p̂k(y)e
i(k+γ)βz (4.7)

∂2p̃

∂z2
=

∞
∑

k=−∞

−(k + γ)2β2 p̂k(y)e
i(k+γ)βz (4.8)

∂U

∂z
=

∞
∑

k=−∞

ikβ Uk(y)e
ikβz (4.9)
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Substituting these into Eq. 4.4 gives:
(

∞
∑

k=−∞

Uk(y)eikβz − c

)

∞
∑

k=−∞

[

D2p̂k −
(

(k + γ)2β2 + α2
)

p̂k

]

ei(k+γ)βz = (4.10)

2

∞
∑

k=−∞

DUk(y)eikβz
∞
∑

k=−∞

Dp̂k(y)ei(k+γ)βz + 2

∞
∑

k=−∞

ikβUk(y)eikβz
∞
∑

k=−∞

i(k + γ)βp̂k(y)ei(k+γ)βz

where D = ∂/∂y. The periodicity of the problem ensures these sums converge. Thus,

the series multiplication can be carried out term-by-term. In all instances the outer

sum stays as k and let the inner sum go to j, which gives:

∞
∑

k=−∞

∞
∑

j=−∞

Uk(y)
[

D2p̂j − (j + γ)2β2p̂j − α2p̂j

]

ei(k+j+γ)βz

- 2
∞
∑

k=−∞

∞
∑

j=−∞

DUk(y)Dp̂j(y)ei(k+j+γ)βz + 2
∞
∑

k=−∞

∞
∑

j=−∞

kβ2(j + γ)Uk(y)p̂je
i(k+j+γ)βz

= c

∞
∑

k=−∞

[

D2p̂k − (k + γ)2β2p̂k − α2p̂k

]

ei(k+γ)βz (4.11)

Because the problem is still linear, and the z dependence has been removed, this

equation must hold for all values of the integer k in the outermost sum. Since each

of the terms on the left hand side goes as ei(k+j+γ)βz, and the right hand side goes as

ei(k+γ)βz , equating the two sides for common wavenumbers requires that the equality

holds for k on the right-hand side when on the left-hand side: k → k − j. This

shows why the simple normal mode expansion in Eq. 4.3 is not possible in the z

direction, because the solutions here are not uncoupled. That is, the different pressure

perturbation modes interact with the basic state modes. Thus the complete sums

must be considered, not just the individual wavenumbers.

Removing the outer k sum, this substitution then gives:

∞
∑

j=−∞

{

Uk−j

[

D2p̂j − (j + γ)2β2p̂j − α2p̂j

]

− 2DUk−jDp̂j(y) + 2β2(k − j)(j + γ)Uk−j p̂j

}

ei(k+γ)βz

= c
[

D2p̂k − (k + γ)2β2p̂k − α2p̂k

]

ei(k+γ)βz (4.12)
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Eliminating the exponential dependence and gathering terms gives the desired

eigenvalue equation:

∞
∑

j=−∞

{

Uk−j

[

D2 − (j + γ)2β2 − α2
]

− 2DUk−jD + 2β2(k − j)(j + γ)Uk−j

}

p̂j

= c
[

D2 − (k + γ)2β2 − α2
]

p̂k (4.13)

with the boundary condition remaining that the derivative of p̂ must vanish at the

wall and at ∞. This gives an infinite system of coupled differential equations, but it

is now an eigenvalue problem for the phase speed c, non-homogeneous in y, for given

α, β, k and γ (the detuning parameter).

This is a familiar form: y dependence only and real parameters. The sum for

j must be truncated to allow for a numerical solution. In Ref. [33] j ∼ 15 is used.

With the increased complexity of the present work, many more spanwise modes are

necessary. A safe truncation for j, typically j ∼ 45, will be numerically verified

by showing there is little energy content in the high wavenumbers. Limiting the

wavenumbers for U(y, z) to |k| ≤ m, reduces the problem to a block diagonal form.

That is, because Uk−j = 0 for |k − j| > m, the modes will only interact with certain

“neighbors”. Defining the operator on the left hand side of Eq. 4.13 to be Lk−j,j, and

the right hand side to be Rk the equations can be rewritten more compactly:

∞
∑

j=−∞

Lk−j,jp̂j = cRkp̂k (4.14)

If only one harmonic is included in the basic state, m = 1, then Lk−j,j = 0 for k > 1,
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and a block-tri-diagonal structure is obtained:
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It can be seen that this also reduces further to the decoupled case (Rayleigh Equation)

if L−1,j = L1,j = 0.

The structure of the basic state permits only even and odd solutions for the non-

detuned modes. Thus, the numerical problem can be recast to exploit the symmetric

or anti-symmetric nature of the solutions. For the majority of the computations in

Chapter V, the anti-symmetric, fundamental sinuous mode, is of the greatest interest.

In this case, p̂−j = −p̂j and p̂0 = 0. These two equalities reduce the necessary modes

in half, increasing the resolution greatly.

Discretizing the eigenvalue problem can be approached in the same way as the

Orr–Sommerfeld equation in earlier sections, using Chebyshev collocation in y. The

problem is sized by the number of y locations, and the number of spanwise modes.

While the collocation method is similar to previous approaches, such a large scale

eigenvalue problem will require a modified solution methodology as compared to the

standard QZ algorithm for the Orr–Sommerfeld problem.
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B. Large-scale Eigenvalue Computations

Typical eigenvalue problems in boundary layer stability encountered in engineering

applications (i.e., amenable to solution with existing software such as LASTRAC[60])

tend to be of modest size. A typical computation will have O(102) points in the

wall-normal direction, resulting in a matrix with O(104) elements. A QZ factoriza-

tion approach to matrices of this size yields the eigenvalues with sufficient accuracy

in reasonable time. However, the problems of interest in the proposed dissertation

can be up to four orders of magnitude larger, O(108) matrix elements. This makes

factorization limiting in both time and accuracy. Also, only a few of the least sta-

ble eigenvalues are of interest, thus the expense of the complete factorization of the

matrix is not justified. To find the eigenvalues of Eq. 4.13, iterative methods are

employed instead.

A popular class of iterative methods for large-scale eigenvalue problems in fluid

dynamics are based on Arnoldi iteration. These methods use a sophisticated form

of power iteration to construct subspaces on which iterated solutions converge to the

correct eigenvectors. One implementation of the procedure, which also incorporates

implicit restarts to the iterations (IRAM), is available for research use as ARPACK[61]

and has been shown in a variety of cases to be an efficient eigenvalue algorithm[62]

(See Appendix B for a brief explanation). While some drivers are available for simple,

or symmetric eigenvalue problems, some work is required to implement the IRAM

algorithms in ARPACK for generalized, complex, non-symmetric eigenvalue problems.

Several numerical techniques are used to quickly compute eigenvalues and eigenvectors

of large-scale problems.

Consider the eigenvalue problem:

Ax = λMx (4.15)
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with both A and M general, complex n × n matrices. While some factorization

methods are possible for generalized matrices without inverting, Eq. 4.15 can be

reposed as a standard eigenvalue problem.

M−1Ax = λx (4.16)

If this inverse were found directly it would be both computationally expensive and

potentially error-prone given the size of the matrices involved, but its computation

is not necessary for iterative schemes. For any iterative method applied to Eq. 4.16,

what is required is an efficient way of computing the matrix-vector product:

vi+1 = M−1Avi (4.17)

For the present problem the focus is the most efficient way of supplying Eq. 4.17 to

the underlying Arnoldi algorithm.

The IRAM converges to a specified number of eigenvalues of largest magnitude

lying near the convex hull of the c spectra. Fig. 22 shows an example of what a

convex hull might look like for the case of a Rayleigh-type equation. In a sense,

the hull corresponds to the eigenvalues furthest in magnitude from the center of the

spectra. Convergence toward the eigenvalues near the hull, that is, away from the

real line, is more rapid. This property that can be exploited if an initial guess for the

eigenvalue of interest is known.

Let the estimated eigenvalue be σ. Eq. 4.15 can be rewritten:

Ax− σMx = λMx− σMx (4.18)

Factoring with respect to x gives:

(A− σM) x = (λ− σ)Mx (4.19)
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which can be recast as a standard eigenvalue problem:

(A− σM)−1 Mx =
1

(λ− σ)
x = θx (4.20)

If the true eigenvalue is near the estimated eigenvalue θ = (λ − σ)−1 → ∞ and this

eigenvalue is mapped very far from all others. This is shown in Fig. 23. This shift-

invert strategy in Eq. 4.20 leads to very rapid convergence for the iterative method,

provided there is an efficient way of supplying the matrix-vector product:

vi+1 = (A− σM)−1 Mvi (4.21)

Another method for improving the convergence of the IRAM is a slightly more

complicated transform advocated by Schmid and coworkers[63, 59], that seeks to

exploit the shift-invert convergence behavior of Eq. 4.20, but improve the matrix-

vector product computation. Noting that Eq. 4.20 maps the eigenvalue of interest

toward ∞, but all other eigenvalues toward zero, it is expected that the condition

number for the matrix inversion, approximated as the largest eigenvalue over the

smallest, will get very large. To remedy this instead of mapping the eigenvalues to

zero, a generalized Cayley transform is employed that maps unwanted eigenvalues to

one, and provides the additional flexibility of rotating this mapping in the complex

plane.

Starting again with Eq. 4.15 and multiplying both sides by the same factor:

(ξ − 1)Ax = (ξ − 1)λMx (4.22)

this can be rearranged:

ξAx = Ax+ (ξ − 1)λMx (4.23)

letting what will once again be the initial eigenvalue guess be σ, a term can be
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subtracted from both sides:

ξAx− σξMx = Ax+ (ξ − 1)λMx− σξMx (4.24)

factoring and inverting the left-hand side leaves:

ξx = (A− σM)−1 (A− (ξσ − (ξ − 1)λ)M) x (4.25)

Letting µ = ξσ − (ξ − 1)λ, gives the final form for the generalized Cayley transform:

ξx = (A− σM)−1 (A− µM) x (4.26)

Now, specifying σ near the true eigenvalue once again maps the true solution toward

infinity as:

ξ =
µ− λ
σ − λ . (4.27)

Solutions far from σ are mapped toward one, and µ provides another parameter that

allows rotations in the complex plane to move desired eigenvalues to different places

that are more accessible to the iterative procedure. The eigenvalue can be recovered:

λ =
ξ − µ
ξ − 1

(4.28)

and the eigenvectors are the same as for the un-altered case.

Whether Equations 4.16, 4.20 or 4.26 are employed an efficient method of pro-

viding a matrix-vector product involving an inverse is necessary. Taking Eq. 4.20

as an example, the IRAM (or any iterative method) requires repeated matrix-vector

products of the form:

vi+1 = (A− σM)−1 Mvi (4.29)

For reasons of computational cost and accuracy, finding the inverse of the matrix in

Eq. 4.29 is undesirable. Fortunately, because an iterative method is being employed
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as opposed to a factorization method, this matrix need never be calculated. Instead,

the following procedure is used to compute the matrix-vector product necessary for

iterations. First the straightforward matrix-vector product is computed:

w = Mvi (4.30)

Undoing the inverse procedure would give a system of linear equations in the following

form:

(A− σM) vi+1 = w (4.31)

Noting that the matrix on the left hand side is constant for each iteration (it only

changes when the parameters in Eq. 4.13 change), it is possible to prefactor the

left hand side once, and use this factorization for all iterations. Computing the LU

Decomposition:

(A− σM) = LU (4.32)

the “inverse” can be computed at every iteration with only simple back and forward

substitutions, and what is is left is a three step procedure for evaluating every iteration

that requires no factorization at all.

Multiply : w = Mvi (4.33)

Solve : Ly = w (4.34)

Solve : Uvi+1 = y (4.35)

In practice, if a reasonable guess for σ is chosen, the one-time LU factorization is

more time consuming than all subsequent iterations.

The Cayley transform is of less importance for the problem of present interest

than in the works cited[63, 59]. First, because of the inviscid assumption, the resulting

eigenvalue problem is significantly less stiff than the viscous problem. Second, since
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the solution approach involves a relatively straightforward LU factorization, and the

back and forward substitutions, it is less sensitive to ill-conditioned systems than

solving Eq. 4.31 using an advanced iterative method (i.e. GMRES, or Bi-Conjugate

Gradient Methods) as was necessary in Ref. [59]. This makes the shift-invert approach

the method of choice for most computations.

An example of the improvement in computational time is shown in Fig. 24. Here

a standard QZ factorization method (used for optimal perturbation calculations) is

contrasted with the iterative method for different combinations of wall-normal grid

points and spanwise modes included in the Floquet expansion. The total size of the

eigenvalue problem is the product of these two numbers. On a standard desktop

computer with no parallelization, Fig. 24 shows that the computational time for QZ

algorithm goes as N3.2, whereas the iterative method goes as N2.2. There is a spread

in the iterative method as the initial condition is randomized every time, whereas

the QZ algorithm is deterministic from run-to-run. For the large scale eigenvalue

problems considered in the next section, the iterative method provides a substantial

time savings.

The procedure for computing and tracking eigenvalues is to solve Eq. 4.13 for

a basic state with a high-amplitude transient perturbation. This high amplitude

ensures that the eigenvalue spectrum is sufficiently spread off the real line to allow

the IRAM to converge to the several largest imaginary values. Once these largest

values are found, each one is tracked using a transform method as the transient-

growth amplitude is decreased.

Figure 25 shows why the shift-invert procedure is necessary. For high-amplitude

transient growth, the standard IRAM procedure converges rapidly. In fact in con-

verges more rapidly than the shift invert procedure as the shift invert transformation

requires computations be done with complex numbers instead of real numbers. How-
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ever, as the amplitude is decreased, the computational cost of the shift-invert method

stays constant while the standard method begins to grow unpredictably, and does not

converge for uTG,rms < 0.08.

C. Neutral Curve Computations

An additional problem presents itself when dealing with the inviscid stability equa-

tions as opposed to the full Orr–Sommerfeld/Squire equations. Complications in

interpreting solutions to the inviscid stability equations in relation to the viscous

limit of the Orr–Sommerfeld system have been known for many decades[64]. Of note

is that although the eigenvalues of Eq. 4.13 appear in complex conjugate pairs, due to

the fact the equation is real-valued, these solutions do not represent damped modes.

Rather they are solutions on a different branch of the complex plane resulting from a

logarithmic singularity that exists in Tollmien’s inviscid solutions[46]. For the inviscid

computation there is a spectrum of neutral modes that arise as a result of a singular-

ity at the critical layer. Trying to track the eigenvalues of interest through the real

line (ci = 0) is neither possible computationally given our iterative method (which

requires isolated eigenvalues for rapid convergence), nor it it physically meaningful as

the solutions exist on a separate part of the complex plane.

These singular modes are neutral due to the fact that the basic state velocity

is real, and thus U = c only on the real line. In order to track an eigenvalue below

the real line, ci < 0, these modes must be diverted downward and out of the way. If

the goal is to have these singular modes at ci < 0, it is necessary for U → Uc, with

Im(U) < 0. This is accomplished via analytical continuation, mapping the eigenvalue

problem from real y to complex yc. If this deflection of y into the complex plane

is chosen correctly, a complex basic state velocity will be obtained with a negative
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imaginary part, thus mapping the singular modes away from the region of interest.

Following Ref. [33], the wall normal coordinate y can be replaced with a complex

value yc:

yc = y − iC
√

ymaxy − y2 (4.36)

which results in a shallow arc into the complex plane depending on the amplitude

of the parameter C. For this new yc, complex-valued Chebyshev polynomials can be

created to solve the collocation problem, as the analytical continuation of a polynomial

is straightforward. While not available explicitly, the complex basic state Uc can be

found numerically using analytical continuation (via a Taylor Series):

Uc = Ur + iyi

∂Ur

∂y
. (4.37)

As the eigenvalues approach the neutral point, increasing values of C can be used to

deflect the singular modes away and allow for the unambiguous computation of the

neutral curve for the inviscid solutions.

D. Energy Analysis

The Navier–Stokes Equations can be manipulated to derive an evolution equation for

the total perturbation kinetic energy. This energy equation holds for all flows, and is

not a linearized approximation.

dE

dt
= −

∫

V

[

u′u′ : ∇U +
1

Re
(∇u′ : ∇u′)

]

dV (4.38)

Defining the perturbation kinetic energy density as e′ = (u′2+v′2+w′2)/2 it is possible

to derive an evolution equation for the total perturbation kinetic energy in terms of

the disturbance modes that isolates the production mechanisms.

Following Ref. [34], the total energy in a given wavelength for a basic state
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U = [U(y, z), 0, 0], can be written:

dE

dt
= Ty + Tz −D (4.39)

where the terms in Eq. 4.39 are integrated values for the total disturbance energy and

the its production and dissipation:

E =
1

λxλz

∫ λz

0

∫ ∞

0

∫ λx

0

e′ dx dy dz (4.40)

Ty =
1

λxλz

∫ λz

0

∫ ∞

0

∫ λx

0

(−u′v′)∂U
∂y

dx dy dz (4.41)

Tz =
1

λxλz

∫ λz

0

∫ ∞

0

∫ λx

0

(−u′w′)
∂U

∂z
dx dy dz (4.42)

D =
Re−1

λxλz

∫ λz

0

∫ ∞

0

∫ λx

0

(∇u′)2 dx dy dz . (4.43)

D = 0 in the inviscid limit as Re→∞. The integrals are computed by substituting

in the normal modes expansion defined previously. The integral in the x direction can

be removed as the velocity components have no x dependence. This gives the system

in terms of the complex quantities available from solving the eigenvalue problem.
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Ee−2ωit = Ẽ =
1

λz

∫ λz

0

∫ ∞

0

(ũũ+ ṽṽ + w̃w̃) dy dz (4.44)

Tye
−2ωit = T̃y =

−1

λz

∫ λz

0

∫ ∞

0

(ũṽ + ũṽ)
∂U

∂y
dy dz (4.45)

Tze
−2ωit = T̃z =

−1

λz

∫ λz

0

∫ ∞

0

(ũw̃ + ũw̃)
∂U

∂z
dy dz (4.46)

Substituting these equations into Eq. 4.39 gives a relationship between the temporal

growth rate ωi and the kinetic energy measures.

ωi =
T̃y

2Ẽ
+
T̃z

2Ẽ
(4.47)

Eq. 4.47 serves two purposes. First, it is a useful check on the accuracy of the

eigenvalue computation. Since the eigenvalue problem is solved for pressure and then

transformed back to full two-dimensional velocity fields, agreement between Eq. 4.47

and the eigenvalue solution is an indication of accuracy. Second, Eq. 4.47 reveals the

physical mechanisms responsible for the energy growth in the secondary disturbances.
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E. Numerical Tools

Several numerical tools are developed to carry out the secondary instability and and

energy analysis outlined in this section. Some details of the codes can be found in

the Appendix B.

IRAM Drivers Computational routines for solving large-scale eigenvalue problems

using shift-invert and generalized Cayley transforms for generalized, complex,

non-symmetric eigenvalue problems using an Implicitly Restarted Arnoldi Method

General Inviscid Floquet Solver Inviscid stability analysis of spanwise periodic,

wall-normal non-homogeneous basic states, allowing specification of the number

of wall-normal points, grid clustering, number of basic state modes and number

of solution modes

(Anti) Symmetric Floquet Solver For fundamental secondary instabilities (γ =

0), symmetry is exploited to double the spectral resolution at comparable com-

putational cost.

Contour Deflection Floquet Solver Analytic continuation is employed to deflect

singular neutral modes off the real line and calculate the neutral curves for

secondary instabilities.

Post-Processing Routines Results from the above solver are processed to validate

eigenfunctions via energy analysis, and provide two and three-dimensional out-

put that can be analyzed in Tecplot in addition to standard plotting routines.
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CHAPTER V

SECONDARY INSTABILITY RESULTS

The methods outlined in the previous chapter are used to study three separate base

flows. The goal is to identify the main differences between optimal transient growth

predictions and roughness-induced transient growth, and examine their effects on sec-

ondary instability behavior. There are four primary differences examined in this chap-

ter. First, roughness-induced perturbations occur lower in the boundary layer than

optimal perturbations, and the effect of this location is analyzed. Second, roughness-

induced perturbations are more complex than optimal perturbations. Multiple span-

wise modes are generated by each roughness element as opposed to single mode op-

timal perturbations. Third, the effect of the magnitude of the transient growth is

evaluated to determine the onset of the secondary instability, and finally the effect of

different spanwise modes evolving downstream at different rates is addressed.

The first baseflow is a simplified model of a streaky boundary layer. It consists

of the superposition of the Blasius profile with an optimal perturbation, scaled to

different heights in the boundary layer. This approach gives insight into the impor-

tance of perturbation location. The second basic state will be the flow in the mid

wake of the roughness element with velocity profiles generated by DNS. This com-

plex boundary layer will include many spanwise harmonics and characterize the range

where the third harmonic, λk/3, is the dominant flow structure. The third baseflow

will be further downstream, where the fundamental spanwise mode, λk, is dominant.

A. Model Boundary Layer

Despite differences in initial conditions that lead to optimal or sub-optimal transient

growth, the resulting “streak” profile in the streamwise velocity is relatively consis-
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tent. In fact, the resulting streak profile is similar whether perturbations are gener-

ated by free-stream turbulence, roughness, blowing and suction, or other means[29].

Due to this, a generic streak is ubiquitous not only in laminar boundary layers but

in turbulent boundary layers as well. One important difference found by White[14]

is that the maximum amplitude of sub-optimal perturbations occurs lower in the

boundary layer than optimal predictions. Further work by Fransson et al.[35] showed

that compressing an optimal initial condition lower in the boundary layer led to en-

ergy growth more consistent with experimental results. This connection between the

wall-normal streak location and reduced energy growth was confirmed via multimode

decomposition[54].

Given the important link between the optimality of perturbations and their lo-

cation in the boundary layer relative to the wall, a simple model for contrasting

optimal perturbations with sub-optimal perturbations is to stretch or compress a

generic streak, found either via DNS, experiment or optimization. In spite of the fact

this representation is not self-consistent as an input condition, the output provides

a straightforward means of contrasting optimal and sub-optimal transient growth.

Fig. 26 shows a streak profile with different wall-normal scalings, with the initial

streak found by solving the optimization problem, Eq. 2.21. Compressing the streak

downward, gives a streak that is increasingly closer to the experimental conditions.

Therefore, a simple model is to calculate the stability behavior of the model boundary

layer for different scalings.

The optimal perturbation is computed for a zero-pressure gradient, flat-plate

boundary layer. Following Ref. [30] the case considered is for Re = 103, β = 0.45,

with the optimization length taken to be x/δ = 103. This is different than the

conditions used in Ref. [33] for secondary instability analysis, but it will be shown

the results are similar. Fig. 27 shows excellent agreement with previous work. The
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left figure is the input perturbation, and consists of a streamwise vortex with zero

initial streamwise velocity perturbation. The right figure shows the output streamwise

streak 103δ downstream. The vortex with no streamwise velocity evolves into periodic

accelerated and decelerated zones of streamwise velocity, i.e., streaks. The initial

condition has purely real wall-normal velocity, and purely imaginary spanwise velocity,

as the optimal perturbation is symmetric in v and anti-symmetric in w. The v

and w components decay monotonically, while the streamwise velocity perturbation

experiences undergoes initial growth before decay.

Figure 28 shows the superposition of the Blasius solution and the optimal output

perturbation with maximum amplitude of 36% of the freestream velocity. The lines in

Fig. 28 are streamwise velocity contours and show a decelerated zone, the low-speed

streak, about z = 0.

Consistent with Ref. [33] the streak amplitude is given by:

As =
1

2
[maxuTG −min uTG] . (5.1)

When only one spanwise mode is present this measurement is well defined, and the

maximum amplitude of the optimal perturbation is used to contrast different ampli-

tudes of transient growth with previous work[33, 34]. In subsequent sections, with

more complicated flowfields, the maximum spanwise root-mean-squared velocity will

be used instead of the maximum amplitude to better account for the total disturbance

energy. The best way to measure the “size” of the perturbation for more complicated

transient growth is not readily apparent. While measuring the maximum amplitude

does not account for increased complexity associated with multiple spanwise modes

in the basic state, measuring the average of the perturbation will tend to underesti-

mate more localized disturbances (e.g., as the roughness elements are spaced further

apart). This should be kept in mind when comparing the results of the present work
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to other roughness configurations.

In reality, with an amplitude as large as 36% of streamwise velocity, there would

likely be non-linear distortion of the mean flow. For the computations here, the

“shape assumption” is employed, so potential non-linear distortion of the streak is

not considered. This assumption has been used in secondary instability analysis for

T–S waves[23] and streamwise streaks[33]. While not truly valid in a physical situation

this assumption is sufficient for the qualitative analysis of the effect of streak height on

the secondary instability, and can be compared to previous results. The assumption

is more appropriate for the work presented here than previous work as the secondary

instabilities will be apparent at lower streak amplitudes.

Figure 29 shows the two-dimensional mode shapes of the secondary instability

for optimal transient growth. The thin solid lines are contours of the absolute value

of streamwise velocity perturbation, with the largest magnitude in the center. This

represents what would be measured as unsteady fluctuations with a hotwire. The

thick line represents the basic state velocity at the critical layer, where the phase

speed of the perturbation is equal to the basic state velocity cr = U(y, z). For the

sinuous perturbation (left figure) the left and right lobes are out of phase, and each

lobe is out of phase about the critical layer.

The physical meaning of this can be seen in Fig. 30. This is a top down view of a

slice in the x−z plane at constant y = 2.2. The contours here are streamwise velocity

and include the streaky basic state and the secondary instability at a single instant

in time. The sinuous mode oscillates side-to-side in the spanwise direction as the flow

travels in the streamwise direction. This is in contrast to the varicose mode which

oscillates in and out. These mode shapes compare very well with the results found

in Ref. [33] despite the non-parallel method, and differences in Re and optimization

length x∗.
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The focus of the present work is primarily on the fundamental sinuous mode.

While the fundamental varicose mode (right figure) is more unstable in this case, it

has non-zero velocity at the wall, and would likely be strongly attenuated by viscosity.

Further, previous work has isolated the central importance of the sinuous secondary

instability in breakdown of streaks to turbulence (see Refs. [33, 65]). The sinuous

instability of optimal transient growth has been explored previously and forms the

basis of all subsequent work on transient growth. The differences between this case

and roughness-induced transient growth is explored below.

Effect of Streak Height

Analyzing the effect of the streak height in the boundary layer is a simplified model

contrasting optimal results with roughness-induced perturbations. Fig. 31(a) shows

the dramatic effect of the re-scaling approach. Placing the streak lower in the bound-

ary layer yields a substantial increase in the growth rate of the secondary instability.

Here, c is the scaling parameter such that y → cy moves the perturbation lower

in the boundary layer for c < 1. For a fixed streak amplitude, moving the loca-

tion of the streak down by 10% doubles the growth rate of the secondary instability.

Moving the streak down to c ∼ 0.5, which is in line with the experiments of Ergin

and White[52], results in a maximum growth rate nearly ten times greater than the

optimal perturbation for this amplitude.

This rescaling also expands the range of wavenumbers, α, that are unstable. This

is important because the range of unstable temporal frequencies is directly related to

this range, and potential interaction with T–S instabilities relies on matching between

these wavenumbers and frequencies. The larger the range of unstable wavenumbers,

the greater the possibility for interaction.

The physical mechanism for the enhanced growth rate is seen by using the method
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outlined in Chapter IV. Fig. 31(b) shows the production based on meanflow gradients

in the y direction, Ty, and the production based on z gradients, Tz. When summed

and normalized by the total energy these two components give the growth rate. For a

fixed wavenumber, α = 0.3, Fig. 31(b) plots these values against the scaling parameter

c. This figure shows that while the production of energy from the spanwise direction

remains relatively constant, the production from wall-normal gradients changes from

negative to positive as the perturbation is moved lower in the boundary layer. That

is, in an optimal perturbation the wall-normal velocity gradients are stabilizing while

in the sub-optimal case they contribute to the secondary instability growth.

This result is consistent with physical intuition. Rescaling the optimal pertur-

bation in y does not change the spanwise gradients much; however, the wall-normal

gradients change significantly. Optimal perturbation theory favors the perturbation

with smaller y gradients in order to minimize dissipation of the streak, but the steeper

gradients seen in the rescaling approach dramatically decrease the stability of the flow.

This trend can be seen at all wavenumber and amplitude combinations. Fig. 32

shows the neutral curve for the optimal and c = 0.5 case. The critical amplitude for

the optimal case here is just over 28%, which is very similar to the result found in

[33] (despite a non-parallel streak model and different Re and optimization length).

In the present work, the critical amplitude for the sub-optimal perturbation is less

than half that of the optimal perturbation, near 12.5% amplitude.

Given this, deliberately introducing high-amplitude streaks for use in delaying T–

S waves is risky if the streaks are generated by roughness elements. This simple model

shows how significantly more unstable the boundary layer is with the addition of sub-

optimal perturbations. Future analysis of T–S stabilization by streaks should also

include potential interactions between the streak, the T–S wave, and the secondary

instability to fully account for potential resonance. This will be discussed in more
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detail in the next section.

B. Near Wake

The second characteristic of roughness-induced transient growth that is distinct from

optimal perturbation calculations is the complexity of the boundary layer. Unlike

an optimal perturbation, the boundary layer in the wake of a roughness element

contains energy in various spanwise wavelengths, each of which may be experiencing

growth or decay at a location downstream. Using the DNS of Ref. [39] as the base

flow 40 mm downstream of the roughness gives a profile significantly more complex

than those both in the previous section, as well as earlier work. Not only is the

dominant perturbation in the third harmonic, but many more spanwise wavelengths

must be considered in order to resolve the basic state correctly. The inclusion of

these additional basic state modes makes the problem increasingly interesting and

more numerically complex. This complex behavior is illustrated in Fig. 33, where

the energy of the different spanwise modes are rising and falling independently. Con-

trasting secondary instability results as the number of included spanwise modes are

increased bridges the gap between an optimal perturbation and a roughness-induced

perturbation.

Figure 34 shows contours of streamwise velocity found in Ref. [39] at two locations

downstream of the roughness. Both these locations are in regions where the evolution

of the perturbation is well described by linear theory. Fig. 33 shows the energy

evolution of the dominant spanwise modes. After the nonlinear interactions in the

near-wake region, by 40 mm downstream (mid wake, station 1) the third harmonic is

the dominant energy component. Note that x = 0 is the roughness location, not the

leading edge. Further downstream at 190 mm (far wake, station 2) the fundamental
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spanwise mode is dominant. Station 2 will be addressed in the next section.

The secondary instability approach outlined in Section 3 uses a Floquet expansion

to express the base flow in its spanwise Fourier modes. Fig. 35(e) shows the energy

content in each of the spanwise harmonics (based on the roughness element spacing,

λk). At 40 mm downstream, the third harmonic is the dominant velocity component,

followed by the fourth and so on. Determining how many spanwise modes to include

in the basic state is not as straightforward as in the case of optimal perturbations

where only one spanwise wavelength is considered.

The present work examines several cutoffs, both to ensure convergence of the

eigenvalues, and to evaluate the effect of the increasingly complex behavior found

behind more realistic roughness elements. Fig. 35 shows the streamwise velocity con-

tours for various cutoffs, A–D at 40 mm downstream. Case A includes just the dom-

inant transiently growing mode, Case B includes the first 4 modes etc. An attempt

is made to make these breaks where natural, however the size of the banded matrix

computed in the secondary stability calculations is determined by whether there is

a common integer factor in the included modes. That is, the one mode computa-

tion for λk/3 can be computed with the same computational size as the fundamental

wavelength simply by changing the spanwise wavenumber β used in the computation.

Similarly λk/3 and λk/6 can be used with only a doubling of the non-zero matrix

elements. However, a computation involving λk/3 and λk/4, cannot be reduced and

thus, at least in terms of matrix structure, there is no reason not to also include the

first and second harmonics. The secondary stability calculations are performed for

the various number of modes shown in Fig. 35 for the basic state 40 mm downstream.

For the second location, 190 mm downstream, only a case with a high number of

spanwise basic-state modes is considered in the next section. This section looks at

cases A–D, 40 mm downstream of the roughness elements.
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Figure 36 shows the convergence behavior of the spanwise modes of the pressure

fluctuation, p̂k obtained by solving the eigenvalue problem, Eq. 4.13. For the funda-

mental sinuous instability, symmetry has been exploited to reduce the computational

cost, and more than 45 spanwise perturbation modes are calculated. Fig. 36 shows

that for all cases, roughly 30 spanwise modes are necessary to capture the full pertur-

bation. All eigenvalue calculations are deemed converged if the residual is O(10−10),

and the high spanwise mode numbers all fall below this threshold. Case A exhibits

slightly different behavior, as it only includes 1 spanwise mode in the basic state, and

that mode is not the fundamental.

1. Effect of Complexity

Figure 37(a) shows how, for fixed streak amplitude, the growth rate increases, and

the band of unstable wavenumbers expands as more spanwise modes are included.

The unstable secondary instability is able to extract more energy from the spanwise

variation of the basic state as more modes are added. Here, Case A is the single-

spanwise-mode approximation, including only the third harmonic. This boundary

layer profile is similar to the rescaled optimal perturbation with c = 0.5. This agree-

ment is good despite different β and Re of the basic state. For Cases B, C, and D,

the increased complexity suggests the maximum root-mean-square of the disturbance

velocity be used to measure the amplitude.

Figure 37(a) increases the amplitude of the DNS perturbation to keep the span-

wise uTG,rms at the same level as the 36% streak amplitude in previous computations,

thus the amplitude of the λk/3 basic-state mode decreases from case to case, as the

total rms disturbance is kept constant and more modes are added. Case A’s ampli-

tude is the same under both schemes. The results show much increased growth with

realistically complex disturbances and that approximating a roughness-induced per-
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turbation with a rescaled optimal perturbation is likely to greatly underestimate the

growth rate. It should be noted that the amplitude used here is larger than the true

amplitude from the DNS in order to make comparisons to previous optimal results.

Figure 38 shows how the mode shapes change as more spanwise basic state modes

are included. The basic-state streak and perturbations becomes more localized. The

fluctuations cluster around the steep gradients associated with the up-welling of low-

momentum fluid, i.e. the low speed streak. It is this region that would begin to

oscillate back and forth as the streak became unstable.

Interestingly, Fig. 38(a) shows that the most unstable sinuous instability for case

A is really the 1/3 subharmonic, not a periodic arrangement of instabilities shaped

like those in Fig. 29. This is shown further in Fig. 37(b), which plots this growth rate

as a function of the Floquet detuning parameter γ. The 1/3 subharmonic (γ = 1/3)

has a growth rate more than 35% higher than the fundamental. This contrasts with

results found in Ref. [33] for optimal perturbations that in most cases the fundamental

was the least stable, and that generally there was very little variation in growth rate.

For sub-optimal perturbations, detuned modes can have significantly higher growth

rates. Further, increased complexity expands the range of unstable α.

The increased complexity has another effect in addition to localizing the pertur-

bation. Previous results (and the present work) for optimal disturbances show the

existence of a single varicose and a single sinuous fundamental instability. For the

more complex basic state found in the DNS a second sinuous and second varicose

fundamental mode are found. Fig. 39 shows the mode shapes for these disturbances.

Further, while the non-zero velocity components at the wall make the first fundamen-

tal varicose mode an unlikely candidate for generating boundary layer breakdown,

the second varicose mode is localized away from the wall in an area where it may

be sensitive to unsteady effects emanating from the top of the roughness element.
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This type of instability could play a role in an as-yet-unseen varicose breakdown [65]

related to strong gradients/separation from the top of a roughness element. More

modes can be found with high amplitude basic states, but those are less unstable

than those shown in Fig. 39.

2. Mode Validation

Figure 40 shows the dominant secondary instability at station 1 for the Rek = 202

case, i.e. the true DNS condition. The colors here represent the absolute value of the

ũ fluctuations that would be measured by a hotwire. Fig. 41 shows similar unsteady

contours, from the DNS and the experiment. The experimental contours are the

time-averaged fluctuations, the DNS contours are an instantaneous snapshot. The

secondary instability mode is the dominant wavenumber α = 0.086, though it is

representative of all the unstable frequencies.

Contrasting the secondary instability with the DNS shows the growth of the two

lobes about the centerline. The experiment shows these two unstable lobes as well.

Further, close examination shows that there are also bands of increased instability in

the region where the basic state profile is two-dimensional, |z/λk| > 0.25, consistent

with the outboard fluctuations in the secondary sinuous mode.

Despite this agreement, the sinuous secondary instability does not account for

the central point of large fluctuation intensity along the centerline. While in the ex-

periment this may be ascribed to the hotwires inability to resolve the small separation

distance between the two out of phase lobes, this would not be a problem in the DNS.

Thus it seems likely there is an additional unsteady feature in the flow that is not

completely described by the sinuous secondary instability.

There are a few potential explanations for this. First, an additional instability

related to to separation off the top of the roughness element could play a role. Second,
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though at this amplitude the second varicose mode is not amplified, in this region

a potential interaction between that mode, a nascent T–S type instability, and the

transient growth may be causing this feature. This possibility and its implications will

be discussed in Chapter VI. Third, the basic state is evolving in the x direction, but

the stability analysis is purely local. It is possible this x evolution is redistributing

the fluctuating spanwise and wall-normal velocity components into the streamwise

direction, resulting in seeming growth in the streamwise fluctuations.

It is important to note that the receptivity environments are quite different for

the DNS and the experiment. The DNS includes no initial unsteadiness upstream of

the roughness elements, whereas there is non-zero freestream disturbances in the wind

tunnel. These differences can result in different secondary modes being preferred in

the transition process as has been noted in many cases involving the transition of T–S

and crossflow instabilities. The DNS did not store information about the fluctuating

spectrum at this location, and the experiment does not do a good job of resolving the

relative low temporal frequencies seen here. Future wind tunnel work to isolate some

of these features will be discussed in Chapter VI.

3. Effect of Amplitude

Experimental work by White and coworkers[15, 52, 37] has established a receptivity

scaling for transient growth behind an array of cylindrical roughness elements. The

total kinetic energy (as well as the modal components) of the disturbance scales well

with the roughness-height Reynolds number squared, Re2k. Further, these works show

that the location of the perturbation in the wall-normal direction (the importance of

which was discussed above) is only weakly affected by changing roughness height. In

addition to this result, the theoretical analysis done in Ref. [47] using the DNS results

of Ref. [39] demonstrated the linearity of the transient growth for Rek ∼ 200. The
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combination of these various results gives a physical meaning to rescaling the ampli-

tude of the DNS results of Ref. [39] as a proxy for roughness height, and investigating

the onset of unsteadiness as a function of Rek. Performing a full DNS for a range of

roughness heights numerically infeasible; however, combining theory, experiment and

simulation can give some insight to an otherwise intractable receptivity problem.

Using the scaling of White, Rice and Ergin[15] to translate from disturbance am-

plitude to Rek, the solid lines in Fig. 43 shows growth rate curves for the dominant

sinuous perturbation as a function of non-dimensional frequency F = ωr/Re, and

Rek. The non-dimensional frequency is related to the dimensional frequency of the

perturbation F = 2πfν/U2
∞, and is used to categorize the stability of T–S waves in

a way that is independent of streamwise location. Here the Reynolds number is from

the DNS 40 mm downstream of the roughness elements. The top axis shows the cor-

relation between Rek and the maximum disturbance amplitude. The low amplitudes

that sustain unsteadiness are striking compared to the optimal perturbation which

has a minimum critical amplitude of max(uTG,rms) ≈ 0.2 (see top axis of Fig. 32).

From this figure it is clear that the boundary layer can exhibit instability at relatively

low values of Rek, and for frequencies in the T–S wave passband. Both experiments

and computations[52, 39] observe transition for Rek ∼ 335, which lies in the region

of instability, although in the experimental work the frequency range of interest was

not closely examined, and the DNS did not retain frequency components.

The frequency range does compare favorably to that seen by Bakchinov[25] using

rectangular instead of cylindrical roughness elements at much higher Rek ∼ 750 −

1000. Fig. 44 shows the secondary instability spectra from that experiment in physical

space. For the first case, Rek = 750, Fig. 43 shows the peak unsteadiness for F ≈

200, using U∞ = 8.2m/s, and standard viscosity, the peak dimensional frequency

f ≈ 135Hz. This is consistent with the peak unsteadiness in this case. Similarly,
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using U∞ = 10m/s and F ≈ 225 shifts the spectrum an appropriate amount to agree

with the second spectrum plot for Rek = 1000, f ≈ 225Hz. This comparison is not

rigorous, as these frequencies are being plotted at many different x locations with

different Reynolds numbers and stability behavior. It does give some insight into

how flow behind roughness elements may be somewhat universal.

Frequency analysis aside, what can be gleaned from Fig. 43 is that even rela-

tively small-amplitude roughness can create transient disturbances that can sustain

unsteadiness. Designing flow control methods using the beneficial stabilizing proper-

ties of streaks must be done with caution. If the streaks are created by streamwise

vorticity generated by roughness elements, they will likely be sub-optimal and thus

much more risky than calculations made using optimal disturbances would suggest.

Further, the extent to which these streaks sustain unsteady disturbances that may

interact with T–S waves and their secondary instabilities must be addressed in greater

detail.

It should be noted that the boundary layer is evolving in the streamwise direction,

and therefore not all values of αr (and hence F ) are physically meaningful. Low

values of αr (F ) result in wavelengths longer than the development length of the

transient growth, and are thus unphysical. Further, in order to trigger transition

to turbulence, a perturbation must grow significantly before the nature of the basic

state changes significantly. Ref. [52] outline how the transition process in the wake of

these roughness elements is a competition between the growing unsteadiness and the

inevitable decay of the transient growth. The secondary instabilities must reach a

sufficient amplitude before the underlying velocity gradients dissipate. Thus relatively

high growth rates are necessary in order for there to be significant boundary layer

destabilization. The onset of unsteadiness alone is not enough.

The growth rate curves in Fig. 43 allow an order-of-magnitude N-factor estimate.
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In experiments and DNS, transition is observed behind this configuration of roughness

elements at roughly Rek ∼ 350. This region has a maximum temporal growth rate

of approximately ωi ≈ 0.01. Using Gaster’s transformation, this can be related to a

spatial growth rate αi ≈ ωi/cr (∂cr/∂ar is small). For the sinuous perturbations this

gives αi ∼ 0.03. This growth rate is an order of magnitude larger than T–S growth

rates, and simple N factor correlations based on slower growth rates are likely suspect.

However, examining Fig. 33, and noting that δ ≈ 0.75mm, the region dominated by

the third harmonic is approximately 100δ in length. For this growth rate, that is a

relatively small N ≈ 3 for transition. As explained above, using this as a transition

criteria would be complicated by the complex receptivity environment, as well as the

centerline unsteadiness.

It should be noted that the transition location for these cases is extremely sensi-

tive. The DNS[39] and later experiments[37] find transition relatively quickly in the

mid-wake region, whereas Ergin and White[52] finds the onset of substantial turbu-

lent fluctuations into the region where the fundamental spanwise mode is dominant.

Differences in how the roughness elements were created is given as one reason for

this, and illustrate how sensitive the transition location is to small changes. Thus,

it is unlikely an eN correlation will be able to capture these effects. Small unsteadi-

ness around the roughness element would dramatically affect the receptivity in these

regions. More work is required to define a workable transition criteria for these cases.

C. Far Wake

In experimental investigations of flow behind distributed and isolated roughness,

a common parameter of interest is the “critical” Reynolds number. That is, the

Reynolds number based on roughness element height that results in the transition
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location moving forward dramatically. Ref. [18] describes this behavior as critical

because with a small change in the roughness height relative to the boundary-layer

thickness the transition location jumps from its T–S dominated transition location to

a location in the wake of the roughness element. Though this result was for isolated

roughness elements, further work by others on periodic arrays of elements found sim-

ilar behavior (see Ref. [9], and White and coworkers). Contrasting the mid wake with

behavior in the far wake gives insight into this phenomenon.

As the perturbation continues to evolve downstream the fundamental spanwise

mode begins to dominate, and this persists over a long distance. Station 2 in Fig. 33

provides a second important basic state to analyze for secondary instabilities. This

region is more consistent with the optimal theory in that there is only one dominant

mode, and it is the fundamental spanwise mode.

Figure 45 shows the mode shapes of the dominant far-wake modes, computed

from the DNS basic-state 190 mm downstream of the roughness elements. It is

important to note the difference in appearance of the dominant sinuous mode here

in contrast with the dominant sinuous mode in the mid wake. In fact, the dominant

mode here is the second sinuous mode in the mid-wake. That is, a significant amount

of the perturbation is outboard of the streak structure. Therefore strong growth in

the dominant mid-wake mode may not translate to strong fluctuations downstream.

It is not known whether the mid-wake frequencies would also be dominant in the far

wake and what effect this would have on the growth of secondary instabilities in this

region.

The dashed lines in Fig. 43 shows that for a range of wavenumbers the boundary

layer in the far wake of the roughness elements is significantly more stable than the

mid wake. The minimum critical amplitude is more than double the case of the mid-

wake. This provides a mechanism for understanding the sharp change in transition
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location observed in experiments. The far wake is significantly more stable than the

mid-wake region 40 mm behind the elements, and is dominated by a different class of

disturbance modes. As the height of the roughness element is increased, the transition

location would skip this far-wake region and jump from the T–S dominated region

to the mid-wake region dominated by rapidly-growing secondary instabilities shown

in Fig. 38, resulting in the critical behavior seen experimentally. In fact, this result

agrees well with the above comparisons between roughness-induced transient growth

and the optimal perturbation method. The far wake is much closer to an optimal

perturbation than the mid wake, in that there is a single dominant spanwise mode

and it occurs higher in the boundary layer. Any configuration for which the far wake

could cause transition would be even more unstable in the mid wake.

The long persistence of this region downstream makes it interesting for future

work on the interaction between T–S waves and transient growth. Any instabilities in

this region would have a large distance to grow and influence the T–S disturbances. It

is likely that interactions in this region are responsible for the slight increase in tran-

sition location seen when subcritical roughness elements are placed in the flow, but

don’t initiate turbulence in the mid-wake region. How these interaction are impacted

by potential upstream unsteadiness is also an open question. In DNS and some ex-

periments, basic states such as this location have shown reduction in the growth rate

of T–S waves. However, previous work has shown that transition is brought about

by the onset of three-dimensional secondary instabilities, and the interaction of this

part of the wake with those secondary instabilities is an important topic for future

work.
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D. Summary

This chapter has established several important results regarding the secondary insta-

bility of roughness-induced transient growth. First, optimal predictions dramatically

over-estimate the stability of streaky boundary layers. If streaks are generated by

roughness elements, they are substantially less stable than optimal disturbances, and

thus optimal theory is not an appropriate “worst case” design estimate. Only de-

tailed receptivity analysis can say how likely a particular roughness configuration is

to cause transition. That is: “optimal” and “most-dangerous” are not synonymous.

Second, the increased complexity of the roughness induced perturbations increases

the growth rate of the instability when the maximum rms disturbance amplitude

is kept fixed. Thus, a more complex perturbation, with the same total energy, is

less stable. This results in simplified model perturbations also underestimating the

growth rate of roughness-induced perturbations.

Using the energy scaling found by White and coworkers, the amplitude of the

roughness elements is scaled to an effective perturbation amplitude. This scaling

provided a neutral stability diagram that clearly contains the observed experimental

unsteadiness in sub-critical and super-critical transient growth experiments. Finally,

the mechanism for the “criticality” in flow behind roughness elements is explained by

the changes in stability behavior between the mid wake and the far wake. The more

stable far wake results in the transition location moving forward rapidly as the mid

wake region goes unstable. These results encourage future work on receptivity and

roughness effects, as well as the interaction between transient growth, T–S waves,

and the resulting secondary instabilities.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

This dissertation has explored numerous factors that influence transition to turbulence

in the wake of surface roughness. The fundamental results can be distilled into a

single sentence. While receptivity is non-linear, physically realizable transient growth

is a linear process, and the resulting complex boundary layer is much less stable than

optimal-theory predictions. The remainder of this dissertation explored the causes

and provided justification for this claim, as well as provided details of the resulting

instability.

Chapter II outlined the mathematical preliminaries necessary for continuous

spectrum analysis. For the first time it gave explicitly formulas for calculating the nor-

malization constants for arbitrary continuous spectrum solutions. With the normal-

ization constants and the adjoint solutions multimode decomposition was formulated

rigorously. In addition, methods for calculating optimal perturbations were grounded

in variational calculus and linear algebra, and linear receptivity methods were shown.

A method for calculating receptivity functions for arbitrary, experimentally measured,

disturbances was given for the first time.

Chapter III gave the results of a multimode decomposition for various cases and

contrasted DNS, experimental and theoretical results. The continuous spectrum so-

lutions proved capable of representing an arbitrary disturbance for multiple spanwise

wavelengths. The decomposition showed the clear differences between optimal per-

turbations, linear receptivity, and physically-realistic transient growth. The extent of

the receptivity region was determined, and the linear initial value problem was shown

to describe the physics well downstream of this region.

A method for calculating the stability of the streaky boundary layer resulting
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from the transient growth was presented in Chapter IV. An inviscid Floquet expansion

was developed for the purpose of studying sinuous secondary instabilities. Numerical

methods were presented for solving large-scale eigenvalue problems resulting from this

expansion and the computational effectiveness of this scheme was analyzed. Finally,

the chapter outlined an energy analysis method to examine the physical mechanisms

at work in the stability of boundary layer streaks.

Chapter V used the secondary instability analysis to examine both a model

problem involving optimal streaks and two boundary layers obtained via the DNS. The

model problem showed substantial destabilization of the boundary layer streaks as

their location in the boundary layer moved closer to the wall, in closer agreement with

experiments. The stability analysis of the DNS showed that increasing the complexity

of the boundary layer resulted in increasing growth rate as well. Thus the two key

distinctions between optimal perturbations and physically realistic transient growth

the location and complexity of the streak, both underestimate the resulting instability.

In addition, new mode shapes were found that could contribute to mode interaction in

future analysis. Finally, analysis of the far wake behind the roughness element showed

it to be significantly more stable than the region closer to the roughness, providing

physical justification for the critical nature of roughness-induced transition.

A. Does Path C Exist?

Despite the conclusions above, this dissertation does not make a conclusive case for

the existence of transition via Path C in Fig. 1. The unsteady velocity contours found

in the DNS and experiment in Chapter V agree well with the unsteadiness predicted

by the secondary instability calculation. However, the present calculations cannot

account for the unsteadiness found along the centerline of the roughness element
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found in both DNS and experiments. Thus it appears that while the instabilities

discussed in this dissertation exist in the wake of these roughness elements, there are

other instabilities present. The instability ultimately responsible for transition is not

clear. In the transitional case analyzed by DNS, unsteadiness along the centerline

played a dominant role, in transition experiments it seems that a combination of

modes is at work. This distinction can be attributed to the very different receptivity

environments, but it highlights the difficulties in isolating physical mechanisms.

The additional instabilities could be three-dimensional modes associated the

rapidly changing flow field that exists in the near-wake of the element or with un-

steadiness emanating from the roughness element. Another possibility is that the

observed unsteadiness is the result of interaction among multiple modes. At the

Reynolds number seen in these experiments, there is a slowly growing T–S instability

(modulated somewhat by the transient growth), in addition to the unstable modes

seen in this work. While the varicose modes seen in this work are either not ampli-

fied for Rek ≈ 200 (Mode 2) or the growth rate is non-physically large (Mode 1), a

resonant interaction between them could greatly increase the growth rate. This be-

havior is seen in three-dimensional boundary layers distorted by crossflow instabilities

in Ref. [57] and the potential for interaction exists in transiently growing boundary

layers as well.

It is worth noting that the canonical transient growth setup analyzed in this

dissertation is designed to produce large, measurable, transient growth. That is, the

transient growth examined here is more dramatic than what would likely be seen on

a realistic surface with random, distributed roughness. If transition in the present

case is dictated by resonant interactions with “primary” and secondary instabilities,

this would also be true in the realistic case. In fact it is less likely to be Path C

transition as relatively large amplitudes are still required. It seems unlikely that
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realistic distributed roughness would create transient growth of sufficient amplitude

to cause transition via purely secondary instabilities a la Path C.

What is more likely is that the mechanisms analyzed here interact with clas-

sical instabilities in a way that enhances the growth rate and onset of the three-

dimensionality that is the harbinger of transition to turbulence. That is, the tran-

sient growth mechanism is what enables surface roughness to have profound effects

on transition, but the purely linear analysis does not capture all of the complicated

mechanisms necessary to describe roughness-induced transition.

B. Future Work

The complications outlined above suggest a wide array of future work to isolate the

physical mechanisms at work in roughness-induced transition.

1. Computational

Many computational problems present themselves as natural outgrowth of the current

work. First, expanding the two-dimensional stability calculation to viscous problems

is an important next step. While the sinuous modes studied in the present dissertation

should not be affected a great deal, the viscous code should produce a more realistic

varicose Mode 1, as well as allow the computation of transient-growth modulated

T–S waves. With these mode shapes available, a next step would be expanding to

parabolized stability or interaction-type computations to analyze the effect of the

various instability modes on one another. Many different types of interaction are

possible and a full two-dimensional interaction problem is of great interest.

In addition, a coupled DNS/three-dimensional stability computation of the type

proposed in Ref. [59] in the region of the roughness element could give insight into
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potential unsteady fluctuations generated by roughness element itself. These large-

scale computations push against current computational limits but have the potential

to analyze unsteady shedding/flow separation in these types of flows. One of main

focuses of this work will be how to appropriately define the basic state about which to

linearize the disturbance equations, and how to extrapolate the results of an individual

calculation to broader classes of flows.

2. Experimental

The Klebanoff–Saric Wind Tunnel (KSWT) at Texas A&M is an ideal facility to

try and isolate some of the mechanisms highlighted in this dissertation[66]. The

low disturbance level in this facility should make it ideal for studying the onset of

unsteadiness in the flow behind roughness elements. Previous work has either had

difficulty isolating the particular frequencies of interest because of tunnel noise, or

did not keep the complete time history necessary to compute the disturbance shapes

in the frequency domain.

Future work in the KSWT can be done in combination with the present method

of analysis to identify the likely instabilities, and possible apply forcing to increase

the receptivity and make the secondary instabilities easier to observe. This type of

detailed experimental work will also shed some light on the centerline unsteadiness.

If the frequency of this centerline unsteadiness is the same as the sinuous instability,

than the instability is potentially related to the same mode. If it is different, the

combination can be explored via possible selection mechanisms that would produce

the necessary frequency.

In addition to the secondary instability computations, detailed measurements on

realistic roughness can be used as input to the experimental decomposition method

described in Chapters II and III. The receptivity of the flow to “random” roughness
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such as that in Ref. [41] can be contrasted to the present work and reveal more

information about the physics of the receptivity process. Hopes of general modeling

will require consistent features be extracted from different roughness geometries. This

can be done quantitatively via multimode decomposition.

3. Theoretical

There is a great deal of work still needed to develop transient growth “theory.” The

present work has shown that concept of optimal energy growth is inherently limited as

it naturally insulates the resulting transient growth from secondary instabilities and

does not accurately capture physically realizable transient growth. A key necessity

for future theoretical work is to move away from an energy optimal toward an optimal

defined by the likelihood of the perturbation to cause transition. It is the combination

of the growth of the streamwise streak, and the growth of secondary instabilities of

that streak that may cause transition. Formulating the optimization problem to find

the maximum integrated growth rate of the resulting secondary disturbances would

provide a way to make transient growth more physically meaningful as a design tool.

A second advance would be the ability handle more general roughness config-

urations with an eye toward modeling truly random features. In the case of finite

perturbations generated by roughness this may be possible using the experimental

decomposition methods and data from the KSWT. In the case of infinitesimal per-

turbations this means developing a solution to the linearized initial value problem for

randomized surfaces. It is not clear at this point whether this will be satisfactory

as flow over very small distributed roughness likely leads to energy growth via dis-

turbance accumulation as opposed to true transient growth (see Ref. [51]), and the

extent to which this can be included in present theories is an open question.

More generally, the mathematical abstractions necessary for the analysis outlines
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in Chapter II make continuous spectrum analysis somewhat daunting. However, the

approach taken by numerical analysts (including parts of this dissertation) of simply

allowing a Chebyshev collocation solver to discretize the continuous spectrum is lim-

ited in terms of future theoretical advances. Analysis of perturbations via continuous

spectrum modes neglects some knowledge of the physics in the sense that it is known

a-priori that the perturbations tend to zero in the free-stream. Exploiting this fact to

generate more conceptually tractable “wave-packets,” that nonetheless constitute a

complete set for expanding an arbitrary perturbation would make this type of analysis

easier to comprehend. If the continuous spectrum modes could be converted into a

set of distinct wave-packet solutions this would eliminate the dual conceptual hurdles

of an uncountable set of modes and as well as oscillatory behavior infinitely far from

the wall. This would be an important step in converting transient growth analysis

from a problem in applied mathematics to a true engineering tool.
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APPENDIX A

MATRIX AND VECTOR COMPONENTS

LOS = (A.1)
















0 1 0 0 0 0
i(αU − ω)Re + β2 + α2 0 ReDU iαRe 0 0

−iα 0 0 0 −iβ 0

0 − iα
Re

−β2−α2

Re
− i(αU − ω) 0 0 − iβ

Re

0 0 0 0 0 1
0 0 0 iβRe i(αU − ω)Re + β2 + α2 0

















where D = ∂/∂y

(1)
∞ φα = [α, λ1α,−iλ1,−α, β, λ1β]T

(2)
∞ φα = [α, λ2α,−iλ2,−α, β, λ2β]T

(3)
∞ φα = [1, λ3,−iα/λ3, 0, 0, 0]T (A.2)

(4)
∞ φα = [1, λ4,−iα/λ4, 0, 0, 0]T

(5)
∞ φα = [0, 0,−iβ/λ5, 0, 1, λ5]

T

(6)
∞ φα = [0, 0,−iβ/λ6, 0, 1, λ6]

T
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(1)
∞ ψα =

[

0, α2,−iαλ2
3,−iReαλ1, 0, αβ

]T

(2)
∞ ψα =

[

0, α2,−iαλ2
3,−iReαλ2, 0, αβ

]T

(3)
∞ ψα =

[

iReλ3α,−α(Re− iα), iαλ2
3, iReαλ3, 0,−αβ

]T
(A.3)

(4)
∞ ψα =

[

−Reλ4α, α(Re− iα),−αλ2
4,−Reαλ4, 0,−iαβ

]T

(5)
∞ ψα =

[

0, iαβ, βλ2
5, Reβλ5, Reλ5α, iβ

2 − Reα
]T

(6)
∞ ψα =

[

0,−iαβ,−βλ2
6,−Reβλ6,−Reλ6α,−iβ2 +Reα

]T

(A.4)
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0 0 0 −iβRe 0 β2 0 0 0
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(A.5)
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and

A2 =
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URe 0 0 Re 0 0 −1 0 0

−1 0 0 0 0 0 0 0 0

0 −1/Re −U 0 0 0 0 1/Re 0
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0 0 0 0 URe 0 0 0 −1

−1 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0





















































(A.6)

Conversion between 6x6 and 9x9

Using the definition of Ψ and the 9x9 system A = A1 + iαA2:

−∂Ψ
∂y

= AT Ψ (A.7)

the relation between the three additional adjoint terms, Ψ7−9, can be found from

setting the last three rows to zero:

ψ7 = iαψ2

ψ8 = −iα/Reψ4 (A.8)

ψ9 = iαψ6 .

Evaluating the inner product 〈A2Φ,Ψ〉 gives:
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〈A2Φ,Ψ〉 =
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(A.9)

Rearranging to eliminate the additional rows

〈A2Φ,Ψ〉 = −i[(iURe + 2α)φ1ψ2 + iReφ4ψ2 − iφ1ψ3 − i/Reφ2ψ4 − . . .(A.10)

(2α/Re+ iU)φ3ψ4 + (2α + iURe)φ5ψ6)] (A.11)

Which is identically equal to

〈A2φ, ψ〉 = −i
〈

∂LOS

∂α
φ0, ψα

〉

(A.12)
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APPENDIX B

DETAILS OF NUMERICAL METHODS

Many numerical techniques are used throughout this dissertation. This appendix

includes short explanations of some of the relevant features. The treatment is not

meant to be exhaustive but more to define the terms and give appropriate references.

Chebyshev Collocation

There are several approaches to solving the differential eigenvalue problems outlined

in this dissertation. Given an initial guess for the eigenvalue, integration methods

can be used iteratively to converge on the true solution. This method allows control

over the accuracy of the solution, but gives only one eigenvalue/vector at a time and

requires a sufficiently good guess to iterate toward the true solution. The continuous

spectrum solutions use integral methods because the eigenvalues are known a-priori

and thus no iteration is required. The other eigenvalue problems addressed in this

dissertation, the optimization and secondary instability problems, are better han-

dled by first converting the differential eigenvalue problem to an algebraic eigenvalue

problem, and then applying a method to obtain the eigenvalues from the resulting

matrices. While initial discretization errors are introduced, when combined with a

factorization method, the conversion to an algebraic eigenvalue problem provides the

complete spectrum with no initial guesses for the eigenvalues.

Many methods are available to discretize eigenvalue problems, but Chebyshev

pseudo-spectral collocation is a common choice in hydrodynamic stability. The most
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straightforward definition of the Chebyshev polynomials is via the recurrence relation:

T0 = 1

T1(y) = y

Tn(y) = 2yTn−1 − Tn−2 (B.1)

However, to compute the solutions numerically the trigonometric definition is more

easily computed:

Tn(y) = cos(n cos−1(y)). (B.2)

The polynomials are an orthogonal set in the region y ∈ [−1 : 1] with the following

relation
∫ 1

−1

Tn(y)Tm(y)
√

1− y2
dy = π/2δnm (B.3)

and an arbitrary function can be represented as a sum of Chebyshev polynomials:

f(y) =

N
∑

n=0

anTn(y) (B.4)

The sum of Chebyshev polynomials is substituted into the eigenvalue problem, and

evaluated at N points in y to give an algebraic eigenvalue problem:

Ax = λMx (B.5)

where each row represents a y location, and the unknown eigenvector x is the vector

of Chebyshev coefficients. To maximize accuracy the collocation grid to be at the

maxima of the highest order polynomial

yj = cos(jπ/N) (B.6)

where N is the number of polynomials used, and also the number of collocation points.

The domain is transformed from the Chebyshev domain to the physical domain
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using the rational map from Ref. [46] that clusters points in the boundary layer.

Letting η be the wall-normal coordinate, and y ∈ [−1 : 1] be the Chebyshev domain

the map:

η = a
1 + y

b− y a =
ηiηmax

ηmax − 2ηi

b = 1 +
2a

ηmax
(B.7)

distributes half the grid between 0 and ηi. ηi and ηmax are specified by the user.

Chebyshev polynomials are an attractive choice as their derivatives can be writ-

ten as a sum of lower order polynomials:

dk

dyk
(Tn(y)) = 2n

dk−1

dyk−1
(Tn−1) +

n

n− 2

dk

dyk
(Tn−2). (B.8)

This allows a derivative of f(y) =
∑N

n=0 anTn(y) to be written as
∑N

n=0 asDnsTn(y)

where Dns is a known differentiation matrix (post-mulitplication in matrix form if

the y locations are stored in columns of T ). The second, third and fourth derivatives

can similarly be computed as powers of this D matrix.

D =



















0 1 0 3 0 5 0 7 0 9 . . .

0 0 4 0 8 0 12 0 16 0 . . .

0 0 0 6 0 10 0 14 0 18 . . .

0 0 0 0 8 0 12 0 16 0 . . .

0 0 0 0 0 10 0 14 0 18 . . .
...

...
...

...
...

...
...

...
...

...



















(B.9)

For the spatial Orr-Sommerfeld problem, the discretization is applied to the

linear first order form of the equations, Eq. 2.3, with three additional equations so

the eigenvalue α appears linearly. Defining all the variables as a system xi with

u = x1, Du = x2, v = x3, p = x4, w = x5, Dw = x6, ∂u/∂x = x7, ∂v/∂x = x8 and
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∂w/∂x = x9. This yields the set of 9 equations for the 9 unknowns.

Dx1 − x2 = 0 Dx5 − x6 = 0

Dx3 + x7 + iβx5 = 0

Ux7 +DUx3 −Dx2/Re+ (β2/Re− iω)x1 = α [ix7/Re− ix4]

Ux8 +Dx4 + iβx6/Re+ (β2/Re− iω)x3 = α [ix8/Re− ix2/Re]

Ux9 −Dx6/Re+ iβx4 + (β2/Re− iω)x5 = α [ix9/Re] (B.10)

x7 = α [ix1] x8 = α [ix3] x9 = α [ix5]

The boundary conditions on the first and last 9 rows are given by

x1,3,5,7,8,9 = 0

Dx3 = 0

Dx4 +Dx7/Re+ iβx6/Re = 0 (B.11)

iβx4 −Dx6/Re = 0

at the wall and infinity.

For the secondary instability eigenvalue problem, Eq. 4.13, the equations are left

in second order form and the eigenvalue appears linearly so no additional terms are

required.

Quadrature Integration

An additional benefit to using a spectral method for discretizing the problem is that

spectrally accurate quadrature formulas can be derived to compute integrals based

on the Chebyshev coefficients at the grid points. For a quadrature method the goal
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is to replace an integral with a weighted sum:

∫ 1

−1

f(y)dy =
N
∑

j=0

f(yj)W (yj) (B.12)

where the weighting coefficients W can be determined in advance from the polyno-

mials. This approach is adopted from Ref. [67]. Using Eq. B.4, and the integrals of

the polynomials:
∫ 1

−1

Tn(y)dy =
2

1− n2
n even (B.13)

gives the weights:

W (yj) =
cj
2N

{

2 +

N
∑

n=2

cn
1 + (−1)n

1− n2
cos

(

njπ

N

)

}

. (B.14)

here c0 = cN = 1 and cj = 2 for j 6= 0, N . This can be expanded to calculate the

integrals in the new mapped coordinates. Let η be the coordinates defined above,

then the weights can be generalized:

W (ηj) =
cj
2N

N
∑

n=0

{

cn cos

(

njπ

N

)∫ 1

−1

Tn(y)
dη

dy
dy

}

. (B.15)

The integral term in Eq. B.15 is evaluated using the quadrature rule from Eq. B.14

to preserve the spectral accuracy. This quadrature integration is used to evaluate the

integrals in the energy analysis.

Arnoldi Iteration

In addition to standard factorization methods, iterative methods are used in this

dissertation to compute selected eigenvalues of large scale problems. These iterative

methods do not give the complete spectrum, but rather rapidly find a desired subset

of the spectrum, in this case the least stable eigenvalues. In contrast to a factorization

method, iterative methods do not rely on reconstructing an entire matrix, but rather
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matrix-vector products which can be found efficiently. The brief development here

will follow Ref. [61], and Ref. [68].

Consider the eigenvalue problem:

Ax = λx (B.16)

The simplest iterative method is power iteration where, starting with and initial guess

x0, the iteration simply replaces the current vector with a new vector xi+1 ← Axi. If,

after rescaling to unit norm, xi+1 = xi, an eigenvalue has been found. This method

is simple to implement but is limited in terms of convergence properties and finding

multiple eigenvalues.

A more sophisticated iterative scheme uses the notion that power series tend

to converge to dominant eigenvalues to improve on this method. Instead of simply

computing the power iterations, letK be a Krylov Subspace. The k-th Krylov subspace

is defined:

Kk = span
{

x,Ax,A2x, . . .Akx
}

. (B.17)

That is, the vector space spanned by the iterations. Let A ∈ Cn×n, and Vk ∈

Cn×k be an orthonormal basis extracted from Kk (using e.g. Gram-Schmidt) then for

appropriately chosen basis the following relationship (Arnoldi Factorization) holds:

AVk = VkHk + fke
T
k (B.18)

where Hk ∈ Ck×k is upper-Hessenberg and the rank one error terms are orthogonal to

Vk. It can be shown[61] that the eigenvalues of Hk are the eigenvalues of A within

a tolerance defined by the error fk. These eigenvalues can be found quickly as Hk is

smaller than A and already in upper-Hessenberg form. However, simply increasing

k until convergence is unwieldy and would have large storage requirements as the
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problem grows.

To remedy this, a restarting procedure is implemented to periodically condense

the “good” information from the iterative scheme. In this restarting let k be the

number of eigenvalues desired, and m be the total number of Arnoldi vectors being

used in the computation. After constructing the Arnoldi factorization, and thus Hm,

an implicitly shifted QR algorithm is applied to Hm with p = m − k shifts. This

pulls the eigenvector behavior out of the larger Hm into the first k rows/columns.

The remaining p columns are then truncated and Hm is reformed using the Arnoldi

factorization and the new k columns.

Thus the IRAM requires factorization methods on only a small subset of the

total computation. In the present work k < 10 and m < 40 in all computations

and typically k = 1 and m = 10 for the shift-invert computations. Thus all that

is required is a rapid method of supplying the matrix-vector product necessary for

creating the initial subspaces.
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APPENDIX C
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Fig. 1. Transition roadmap – adapted from Morkovin et al.[6]
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Fig. 6. Schematic of setup for experiment of Ref. [52] and DNS of Ref. [39]
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η

10.50-0.5-1

8

7

6

5

4

3

2

1

0

Im(ŵ)
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Re(v̂)

v̂ ,ŵ

0.060.040.020-0.02-0.04-0.06

(a) streamwise velocity (b) spanwise and wall-normal velocities

Fig. 18. Comparison of partial data method (lines) with DNS (symbols) 25mm down-
stream of the roughness elements



128

Experiment DNS (4 modes) DNS (all modes)

η

0

2

4

6

8

η

0

2

4

6

8

−2/3 −1/3 1/3 2/30

z/λk

−2/3 −1/3 1/3 2/30

z/λk

−2/3 −1/3 1/3 2/30

z/λk

Fig. 19. Wall normal (top) and spanwise (bottom) velocity contours for experimental
reconstruction, DNS with four dominant modes, and full DNS – 50 mm downstream



129

DNS

B

A
|C

α
|

2

1.5

1

0.5

0

αi

P
h
a
se

0.10.010.001

2π

π

0

−π

−2π

Fig. 20. Amplitude and phase of the coefficients of the continuous spectrum modes
for λk/3 using the partial data technique

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0.001  0.01  0.1

C
α

αi

DNS-A
DNS-B

Partial Data-A
Partial Data-B

Fig. 21. Receptivity amplitude for λk/3, 25mm downstream using no pressure infor-
mation



130

Fig. 22. The solid line is the convex hull, x’s represent eigenvalues, the iterative
method will converge to the eigenvalues off the real line, nearest the solid line

Fig. 23. Shift invert transform mapping the eigenvalue of interest toward ∞ and all
others toward zero
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Fig. 30. Top down view of sinuous streak instability, contours of streamwise velocity
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Fig. 38. Sinuous secondary instability – 40mm downstream, uTG,rms = 36%/
√

2,
α = 0.3



140

Y

-0.4 -0.2 0 0.2 0.4
0

1

2

3

4

5

Z

Y

-0.4 -0.2 0 0.2 0.4
0

1

2

3

4

5

(a) Sinuous mode 2, cr = 0.218

Y

-0.4 -0.2 0 0.2 0.4
0

1

2

3

4

5

Z

Y

-0.4 -0.2 0 0.2 0.4
0

1

2

3

4

5

(b) Varicose mode 2, cr = 0.425

Fig. 39. Additional modes, DNS basic state, u′rms = 36%/
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Fig. 40. Fundamental sinuous mode, Rek = 202, 40mm downstream, solid lines are
10% U∞, colors are fluctuating |ũ|
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Fig. 41. Figure from Ref. [69], DNS and experimental[52] fluctuating streamwise
velocity, Rek = 202, 40mm downstream
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Fig. 42. 3D streamwise velocity contour slices, basic state plus fundamental sinuous
mode
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