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ABSTRACT

Testing Lack-of-Fit of Generalized Linear Models
via Laplace Approximation.
(May 2011)
Daniel Laurence Glab, B.S., University of Wisconsin-Maxais
M.S., Texas A&M University

Chair of Advisory Committee: Dr. Thomas E. Wehrly

In this study we develop a nhew method for testing the null ligesis that the predictor
function in a canonical link regression model has a presdrinear form. The class of
models, which we will refer to as canonical link regressioodels, constitutes arguably
the most important subclass of generalized linear modelsranhudes several of the most
popular generalized linear models. In addition to the prym@ntribution of this study,
we will revisit several other tests in the existing liter&uThe common feature among the
proposed test, as well as the existing tests, is that theglhbased on orthogonal series
estimators and used to detect departures from a null model.

Our proposal for a new lack-of-fit test is inspired by the réasntribution of Hart
and is based on a Laplace approximation to the posteriorapitity of the null hypoth-
esis. Despite having a Bayesian construction, the regudtiatistic is implemented in a
frequentist fashion. The formulation of the statistic iSée on characterizing departures
from the predictor function in terms of Fourier coefficigraad subsequent testing that all
of these coefficients are 0. The resulting test statistichkeanharacterized as a weighted
sum of exponentiated squared Fourier coefficient estireatanereas the weights depend
on user-specified prior probabilities. The prior probaie$ provide the investigator the
flexibility to examine specific departures from the presedilnodel. Alternatively, the use

of noninformative priors produces a new omnibus lack-os$tftistic.



We present a thorough numerical study of the proposed testh@nvarious exist-
ing orthogonal series-based tests in the context of thetiogiegression model. Simula-
tion studies demonstrate that the test statistics undesideration possess desirable power
properties against alternatives that have been identifigba existing literature as being

important.
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CHAPTER |

INTRODUCTION
1.1 Overview

In this chapter we will define the class of models known as generalized linear models (Sec-
tion 1.2) as well as the canonical link regression model (Section 1.2.3), which may arguably
be the most familiar, if not most important, subclass within generalized linear models. In
addition to defining these models we present several examples (Sections 1.2.3, 1.2.3 and
1.2.3) and selected theoretical results which are utilized in the subsequent chapters (Sec-
tion 1.3). We will also formally present the problem of testing lack of fit for such classes of
models. Finally, we will conclude this chapter by providing an overview of the remainder

of this dissertation.

1.2 The Generalized Linear Model

The class of linear models for which the distribution of the response variable is in the
general exponential family is called tigeneralized linear mod€GLM). GLMs constitute
one of the most important model classes for data analysis since most of the nonnormal
regression models used in practice are members of this class, see, e.g. McCullagh and
Nelder (1989), Fahrmeir and Tutz (2001), Shao (2003).

More to make the definition more formal and precise, we will assume the following
throughout the remainder of this chapter: Suppose the (data,), . . ., (x,, y,) are ob-
served where, foir = 1, ..., n, x; is a fixed vector of covariates apgdis a scalar response

for theth subject.

This dissertation follows the style &@iometrics.



1.2.1 Response Distribution

A GLM consists of a responsé with independent observations, . . . , y,,, each of which

have an exponential family probability density functiomeass function of form

[ (Wi; 05,0) = exp{ [yt — b(0:)]/a(2)) + c(yi, ¥)}, (1.1)

wherea(-), b(-) andc(-) are known functions; in practice(-) need not be specified ex-
plicitly. The parameteé; is called the canonical parameter and, in the context of a GLM
the value of9; may vary fori = 1,...,n as a function of covariates; that &, = 0(x;).
The parametew is the unknown dispersion parameter that allows a more flexdsation-
ship between the mean and variance than the traditiondldgaares regression model. In

particular, forY; with a probability density or mass function given by (1.1) mave

E(Y;) =V(0;) = (1.2)

and

var(Y;) = a()b"(6;) = a(¢)v(p:) (1.3)

where the variance functiar{x) is uniquely determined by the specific exponential family
through the relation() = b”(6). Several important distributions are special cases of

(1.1), including the Poisson and binomial.

1.2.2 Components of the Exponential Family Regression Mode

Using the exponential family for a regression analysis meguthree specifications. First,
we need to specify theandom componendf the model; that is, we have to choose which

member of (1.1) will be taken as the response distributiomcesh(6;) uniquely deter-



mines each member of (1.1), specifying the random comparanunts to selecting-)
to produce a distribution which reflects the observed daia tgr the response.

The systematic componetf an exponential family regression model refers to the
specification of the function used to obtain an estimate tileown regression function,
which is denoted by). Sincern is a function of the covariates, we will writg = 7(x;),

i = 1,...,n. In general;y can be estimated using either a parametric or nonparamet-
ric regression model. Examples of nonparametric regressiadels include the general-
ized additive model (Hastie and Tibshirani, 1986, 1987 0)@thd the single index model
(Ichimura, 1993). A GLM estimates a vectgr= (1,...,7,)T as a function of the ex-

planatory variables through a linear model

p
n(xi; B) = Z Bivi(xi), i=1,...,n. (1.4)
j=1
whereyy, . .., ~, are known functions@ = (534, ...,3,)" an unknown parameter vector.

This linear combination of explanatory variables is calilked linear predictor Usually,
m(x;) = 1 for all 4, in which case3; will be regarded as the coefficient of an intercept
in the model. The linearity distinguishes GLMs from othepexential family regression
models such as generalized additive models or single indebers, which use more general
regression functions.

The third component of an exponential family regression ehcdalink functionthat
connects the random and systematic components. The ma#slulj to n; through the

formula

where the link functiork is a monotonic, differentiable function. Hence the linkdtion

“links” the mean response to the explanatory variables.c&jn = '(6;), there is an



implied relationship

9(0;) = n; (1.6)

betweery; andg.
The link functionh(n) = pu, called theidentity link hasrn, = p;. It specifies a linear

model for the mean itself. The choice fofy:;) such that, = h(u;) or

6, =n; a.7)

is called thecanonical-link function

In a canonical link regression model, the analyst has moné&r@oover specification
of the systematic component than any other component ceimgrihe model. We have
noted that specification of the response distribution isaticl primarily by the observed
data type. Furthermore, since the canonical link requines&; = h(u;) while p; =
b'(6;), specification ofu(-) depends upon the specificationtf). In other words, for the
canonical link regression model, the link is implicitly sifeed upon specification of the

response distribution. A few examples will be discussethéfollowing subsection.

1.2.3 Canonical Link Models

Canonical link models constitute some of the most commos&dunodels within the class
of GLMs. In this section we present canonical link modelgegponding to several of the
most familiar response distributions.

The normal regression model

Supposey;, i = 1,...,n have been observed from a normally distributed resporese, i.
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i = p(x;), €,..., €, are i.i.d.N(0,1). We can write the response density as

)2 2 2
o(y:) = \/21_7m exp {—M} = exp {%72%/2 — % - |og(\/%a)} (1.8)

Thus, taking

0; = (1.9)

it is clear thaty; has an exponential family distribution as in (1.1) with

a(¥) =a*, b)) = [x)*/2, ey, ¥) = —y;/(20°) — log(V270)

where we set) = o. From (1.7) and (1.12) we see that the canonical link modeidomal

data is obtained by takinin (1.5) to be the identity linki(x;) = p;, so that

n(xi) = h(p:) = pi = 0;. (1.10)

The logistic regression model

Suppose now that the observed response is binary, thatis0,1,7 = 1,...,n. In this
case one would be inclined to proceed ag ifs a realization of th&ernoulli(x;) random
variableY; whereyu,; = u(x;) € (0,1),7 = 1,...,n denotes the probability of “success”

for theith individual. The probability mass function &f is given by



11— 7
(1.11)
Thus, taking
6, = log < s ) (1.12)
L=y
it is clear thaty; has an exponential family distribution as in (1.1) with
a(y) =1, b(0;) =log(l — ;) c(y,y)=0. (1.13)

Note the absence of a nuisance paramettar this response distribution. From (1.7) and
(1.12) we see that the canonical link model for Bernoulliadiatobtained by taking in

(1.5) to be the logistic link, lof; /(1 — p;)}, so that

n(xi) = h(ps) = log{pi/(1 — ps)} = ;. (1.14)

This in turn implies that the probability of success can bgressed as follows

_exp{n(x)}
Ho5) = T e}

(1.15)

The Poisson regression model

Suppose;, i = 1,...,n denote counts so that the response values are nonnegétiyeris
In this case a reasonable distribution 1Qiis the Poisson distribution. Then the probability

mass function ot is given by

e !
PY;=y)=—7-

7.

= exp {y;log(w;) + i —log(y:!)}, v =0,1,2,... (1.16)



Thus, taking

6, = log(1) (1.17)

it is clear thaty; has an exponential family distribution as in (1.1) with

As in the case of logistic regression, the response disioibidoes not have a nuisance
parameter). From (1.7) and (1.17) we see that the canonical link moddPfmsson data

is obtained by taking in (1.5) to be the log linkh(u;) = logu;, so that

n(x;) = h(p:) = logu; = 6;. (1.19)

1.3 Selected Estimation and Inference Results

To make our discussion of generalized linear models moreptate we feel that it is
beneficial to briefly review of some fundamental results dimestion and inference applied
to generalized linear models (particularly, canonicak lilegression models). While the
results described in this section will be familiar to thedea this discussion provides an
opportunity to further establish terminology and notatmmmventions that will be used
repeatedly throughout the remainder of this dissertatiime results summarized in this
section both provide the impetus for pursuing the methodnepgse as well as justification
for its use.

In the context of generalized linear models, both estinmagind inference are based
on (log-)likelihoods. In light of (1.7), we write the logkkelihood function for a canonical

link model explicitly in terms of a specified regression ftion as follows



1B, Y) = >, logf (yi;s n(xi; B),¢)
(1.20)

= i {lyin(xi: B) = b(n(x; B))]/a(¥) + c(yi, )},

wherea(-), b(-) andc(-) are defined as in 1.1.

1.3.1 Regularity Conditions

Several assumptions are required to ensure that inferesalts we will review in this sec-
tion actually hold and that the parameter estimators pesseain desirable properties.
While there is no unique collection of assumptions, theeesaveral generally accepted
conditions that have been adopted in the literature. Thesenaptions are often referred
to as (“standard” or “generalPegularity conditions Regularity conditions mainly relate
to identifiability of the parameters; existence and behadaivatives of the response den-
sity with respect to the parameters; existence of third nuamefy; and convergence of
the Hessian of the log-likelihood scaled by the sample $i#®,1), to a positive definite
limit as the sample size tends to infinity. We will defer a fatrpresentation of regularity
conditions until Chapter IV where we will use them expligitA collection of regularity

conditions that are appropriate for application to GLMsrissgnted in Shao (2003).

1.3.2 Estimation

In a generalized linear model, the parameter of intergst iBhis parameter is usually esti-
mated by maximum likelihood estimation. Possible candisi&dr the maximum likelihood

estimates are the roots of the score function

su(B) =0 (1.21)



where3™ = (31, ..., 3,) denotes the estimated value@®and

n

a1 a9 B)
sn(B) = 08 e ; {[yz —b (n(xi,ﬂ))]T}

(1.22)
- a<1w> Z {lyi — V' (n(xi; B))]T:} -

Note that an MLE of3 can be obtained without estimatigig Obtaining an estimate gf by

maximum likelihood estimation is generally difficult in ptéce, so several other alternative
estimators have been suggested (Fahrmeir and Tutz, 20@ulMgh and Nelder, 1989).
A closed form solution of the MLE qﬁ is not available for most GLMs. Thus, numer-
ical techniques such as the Newton-Raphson or the Fisbenrganethods are required to
obtain estimates. These two methods are identical for gaaldmk regression models and

are summarized by the following iteration procedure:

BT =B~ [J(B)) sa(BY), t=0.1.... (1.23)

whereJ (8,.,) = J(B)| 55 andJ(B..x) is the Hessian of the log-likelihood

10) =-S5 — ewign) (1.24)

where W (8) = diag{wi(8), ..., w.(8)}, andw; (8) = H'(;(8))*(1;(8)) (McCul-
lagh and Nelder, 1989). The mattiX3) is often called thénformation matrix

A numerical approximation to an MLE that we will find partiedly useful is called the
“one-step” MLE and can be obtained by taking the first iteraif the Newton-Raphson

procedure (i.et = 0)

BY =B — [J(B)] s.(BY)
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where3” is the initial value.

1.3.3 Statistical Properties of Estimators

Under general regularity conditions the following hold ﬁ)(Shao, 2003)

() There is a unique sequen@én} such that

~

P(s,(B,) = 0) — 1 and B, 5 B,

(i) Let Z,,(B) = Var(s,(8)). Then

d

(Z.(B)]2(Bn = B) 5 Ny(0, 1,).
wherel, is ap x p identity matrix.

(iii) If + in (1.1) is known or the p.d.f. in (1.1) indexed ko, ) satisfies the suitable

conditions, therf,,(3) = J(8), that is, 3, is asymptotically efficient.

If an initial estimate,@,%o), is y/n-consistent for3, then the one-step ML@,&” is asymp-

totically efficient under the same conditions (Shao, 2003).

1.3.4 Likelihood-based Inference on Regression Coeftgien

In our subsequent discussion, we will often encounter dagiothesis testing techniques
designed to assess the contribution of a subset of the eteario the linear predictor
of a GLM. While such methods of testing are well-known (pardarly in the context of
traditional linear model theory), we will take this opparity to briefly review two test
statistics that can be used to carry out such tests and gighheir properties as well
as establish notational conventions that will be utilizectighout the remainder of this

dissertation.
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Let 3 be partitioned a@ = (3;,32). Suppose, without loss of generality, that we
wish to investigate the contribution of the subset of caitas corresponding 18,. Thus,

it is of interest to test

Hy: By =0, B, ¥ unrestricted (1.25)

against

H, : 31, B2, ¥ unrestricted. (1.26)

We will distinguish the parameter estimates obtained froemrhodels corresponding to
these hypotheses by denoting the unrestricted MLE umﬂeasﬁ = (ﬁlﬁg) and the
MLE under the restriction ofl, asg3 = (8;,0). Correspondingly;> and) are consistent
estimators oty underH; and H,, respectively.

Thelikelihood ratio statistic

£ =-2{I(B) - 1(B)}

compares the unrestricted maximu](ﬁ) = l(ﬁlﬁg,@ of the (log-)likelihood with the
maximumi(3) = (31, 0, ¢) obtained for the restricted MLB, computed undeH, (note
that the dependence upon the dispersion parameitgisuppressed for conveniencédyy
will be rejected in favor ofd, if the unrestricted maximunl(ﬁ) is significantly larger than

[(B), implying that. is large.

Alternatively, a test based on teore statisticejectsH, when the value of

S =[s(8)" T (B)s(B) (1.27)

is large, wheres(3) is the score function and(3) is the information matrix. The score

test is based on the rationale that the statiStimeasures the distance between the score
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function evaluated at the estimates obtained under thehgpthithesis and the zero vector
in a fashion similar to that of the Mahalanobis distance. kelsy, by (1.21),9(@ =0and
henceS measures the discrepancy betweetﬁ) ands(3). If H, is not true, the estimates
of B andﬁ will differ so thats(B) will be significantly different fron0, which in turn leads
to a large value o and rejection ofH,. It is worth noting that (1.27) can be simplified
to an expression involving a subvector of the score vectdrsarbmatrix of the inverse
information matrix each constructed to conform with thetiianing of 3.

Under Hy, both £ andS are asymptotically?(r), r = dim(3;), provided that reg-
ularity conditions such as those described in Section hald. Under such regularity
conditions, the Taylor series expansion can be used to &xfie likelihood ratio in terms

of the score statistic as follows

—2{1(8) — 1(B)} = [s(B)]" T (B)s(B) + Op(n7%).

Thus, the score statistic is asymptotically equivalenheolikelinood ratio statistic. In fact,
this representation along with the asymptotic normality(@f) is a key step in demonstrat-
ing that£ has a chi-square limiting distribution (Shao, 2003).

Generally, the likelihood ratio statistitis preferred for moderate sample sizes (Fahrmeir
and Tutz, 2001). However, by the asymptotic equivalencé andsS cited above, it is rea-
sonable to us& for larger sample sizes since the two test statistics willlteo agree
closely. In such caseS is often preferred because its computation only requiressén
mate from the null (i.e., constrained) model. This propeftihe score statistic is especially

convenient in situations where there are multiple test®undnsideration.
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1.4 Testing the Fit of a Parametric Model

In order for a model such as a GLM to be of practical use, we magt some assurance
that it provides a reasonably accurate description of the. déests of fit provide a means
of assessing how well a statistical model fits the observéa @&ome of the more familiar
tests of fit achieve this objective rather explicitly by dilg measuring the discrepancy
between observed values and the values expected undeofespd model.

In our discussion we will assume that the model under corglide can be thought
of as a “final model” in that it represents a regression modtdmnined via a formal model
building analysis. In particular, we assume that to the bésiur knowledge, the model
contains those variables that should be in the model anthib&triables have been entered
in the correct functional form.

In general, tests of fit fall mainly into two categories: (ay@metric methods designed
to detect specific types of departures from the prescribedein@and (b) nonparametric
methods. Parametric tests embed the model under consieirat wider class of (para-
metric) models and check if the data can be better descripéaiebmore general model. If
not, we stay with our fitted model. On the other hand, a nonpatac test of a parametric
hypothesis does not evaluate specific parametric altegsatbut rather tests unspecific hy-
potheses of the form ‘the model fits’ versus the alternatiie model does not fit'. Such
tests are appealing in that, for a sufficiently large samizle, $shey are able to detect vir-
tually any departure from the hypothesized parametric mhablaile we will discuss tests
from each of the two categories cited, we will focus primaah nonparametric tests.

One approach for constructing nonparametric tests is toedntioe null model in a
much wider class of parametric models that increases withound asn — oo. The
class of parametric models constitutes a collection ofrradiieve models against which

the null is tested. This strategy for constructing tests el studied extensively in this
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dissertation. While this approach may sound similar to tw@metric methods described
above, it is distinct from parametric tests in that thesenartedesigned to detect specific
departures. That is, the class of alternatives is formdlateorder to approximate any
possible departure from the null model and the departurpoapnated by the collection

of alternative models grows as— oo.

1.4.1 The Lack-of-Fit Test

For the exponential regression model described in Sectbuodnsider a test of whether

belongs to a specified parametric family,

Ho: n(-) € {n(B): B € B} (1.28)

where the parameter spaBes a subset oR? with p a finite positive integer.
In this context, our interest is in tests that are sensitivedsentially any departure
from a proposed parametric model fpr Stated more precisely, is contrasted with the

nonparametric alternative

Hy: () & {n(;B):B € B} (1.29)

Since this formulation leaves the functional formrptinspecified, the test we have just
described constitutes a nonparametric test of the regrefsnction.

In the context of regression, such a test is usually refetoeds alack-of-fit test.
An analogous procedure for testing whether a set of indegr@ndentically distributed
observations arises from a given class of probability digtrons is more often called a
goodness-of-fitest; however, several authors working in the regressiotest have used
the term “goodness-of-fit” in reference to their proposedhmd. Consequently, we will

use the terms lack-of-fit and goodness-of-fit somewhatchtargeably, but we will often
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refer to such testing methods generically “test of fit”.

1.4.2 Smoothing-based Tests of Fit

Lack-of-fit tests may be constructed by means of nonparasstroothers. The motivation
for the use of nonparametric function estimates as a meavaittate parametric models
comes from the notion that a well-constructed nonparamestimate will be free of any
unjustified restrictions which may be imposed by specificatf a parametric model. That
is, by imposing minimum structure on the regression fumgtaononparametric curve esti-
mate is designed to refleahlythe evidence which is available from the data. This notion is
summed up in the familiar expression, “nonparametric mithet the data speak for them-
selves.” Thus, if one accepts the notion that the nonpar&rettimate depicts the data
well, then a fitted parametric model which produces a mednimnigparture from a given
nonparametric estimate may be viewed as an inadequate fitdabserved data. This is
the fundamental premise for pursuing lack-of-fit tests dasenonparametric smoothing.

Smoothing-based tests have the following desirable ctexatics, (Hart, 1997):

1. They are omnibus in the sense of being consistent aganktmember of a very

large class of alternative hypotheses.
2. They tend to be more powerful than competing omnibus.tests

3. The corresponding nonparametric function estimateigesvinsight to the nature of

the lack of fit.

There are two ways to utilize smoothing methods in testirgfihof a parametric
model: either compare a nonparametric estimatg(gf to the parametric model or else

examine a smoothed version of the residuals (obtained ff@rparametric model) for
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departures from zero. In the former approach one obtairtsdparametric and a nonpara-
metric estimate of the regression function and then praceedxamine some measure of
discrepancy (e.g., Kullback-Leibler difference) betwdles two estimates. Following the
logic discussed above, one would reject the parametric mbdenontrivial discrepancy
were observed. In the latter approach one obtains resifralbe parametric model and
subsequently obtains a nonparametric estimate of the ynagresidual function. In this
case, if the parametric model holds, one would expect tleutiderlying residual func-
tion is identically0. Thus, nontrivial departures fromin the nonparametric estimate of
the residual function would lead to rejection of the parammehodel. Smoothed resid-
ual methods are generally easier to implement and posssisalale theoretical properties
(Hart, 1997). Thus, as we will see in the subsequent chapesislual-based methods have

received more attention in the literature.

1.5 Discussion

In Chapters Il and Il we will review and discuss two distirsttands of research which
provide various means of testing the fit of GLMs. In ChaptempiPdpose and examine a
test for canonical link regression models which is inspiogda recent contribution to the
series based lack-of-fit testing literature. In Chapter Vstely the power properties of
the test proposed in Chapter IV in a logistic regressionrggttia simulation and compare
the test’s performance with some of the more widely accefgsts discussed in Chapter
II. In Chapter VI we will discuss our final conclusions basedindings from the previous
chapters and identify future directions for research.

In Chapter 1l we will review the first of two collections, whidocuses on testing the
fit of an important special case of generalized linear mqodieéslogistic regression model.

As we will describe in greater detail in Chapter Il, examanthe fit of a logistic regression
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model presents some practical problems which are uniquadspecific model. Hence,
while some of the methods discussed in Chapter Il apply toGloyl, most have been
developed specifically for logistic regression models atdress the binary nature of the
response. A few of these methods have gained rather widgptacoe and are viewed as
the preferred means to the test the logistic regression inode

Next, in Chapter Il we will discuss the second strand of digweent which provides
an alternative approach to testing the fit of a regressioretrimdutilizing orthogonal series
estimators to detect departures from a proposed null mdseleral of these tests have
been applied in a canonical link regression setting and ¢hnsbe used to test the fit of
a logistic regression model. This line of development hasrged out of the literature
for nonparametric tests of fit which have been inspired bykbknogorov-Smirnov and
Cramér-von Mises tests of goodness-of-fit.

With our review we intend to provide answers to the followmgestions for the two
collections of literature identified above in an effort tatify further examination of our

proposal:

1. What are the contributions which have been made to thed&fiktesting literature

within each of the two collections of literature?
2. How do these two collections of literature differ eachanth

3. How do the contributions within each collection diffeorin each other and in what

ways are they similar?

4. What has the literature revealed in regards to the relg@rformance of these tests

in settings often encountered in practice?

With regard to the last question, we note that while testedas parametric families will

be discussed briefly in Section 2.6, we will primarily focus @amnibus tests of fit. Hart
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(2009) explains that no one omnibus test will ever be supénderms of power) to every
other omnibus test. Thus, we will compare the tests on this lodighe “overall” power
properties reported in the literature and other factorshsas simplicity and how widely
they can be applied.

Finally, it is interesting to note that the bibliographidglmese two collections of re-
search contain few common references. Most of these comeferences are devoted to
general issues such as GLMs and their properties rathertéisting methodology. Fur-
thermore, it is even more rare that articles in one colleat&search cites articles from the
other. Consequently, there has been no resolution to the @sthe relative performance
of the methods from these two collections of research. luishtmpe that the findings of

Chapter V will provide some measure of resolution to thissgjoa.
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CHAPTER I

TESTS OF FIT FOR LOGISTIC REGRESSION MODELS

2.1 Overview

Given the wide use and applicability of the logistic regr@ssnodel to analyze data from
essentially every field of applied science, finding meansatimate fitted models is a rather
urgent issue. As a consequence, there has been a great cessdarich devoted to develop-
ment of methods to assess the adequacy a fitted logisticssagnemodel. These techniques
include residual analysis, diagnostic measures such aslp$® measures as well as for-
mal tests of overall fit of the model. While residual analysisl diagnostic measures can
provide useful insight, their interpretation is open tojsabvity. On the other hand, formal
tests of fit are equipped withrvalues which can be more objectively interpreted. Further
more, while residual analysis can be extremely valuabl@$sessing the fit of a model, it
can only provide insight on a case by case basis. Tests obtigVver, combine all evidence
existing in the data into a single indicator of overall fit.elMocus of the remainder of our
discussion will be on tests of fit.

The literature on tests of fit for logistic regression is vdsthelp prioritize the topics
of this chapter, we will primarily concentrate on tests whitave been studied in two
review articles. These articles are Hosmer, Hosmer, Lei€emsd Lemeshow (1997) and
Kuss (2002) and are devoted to comparison of several wellvkriests of fit for the logistic
regression model. The focus of these papers was mainly dralgiests of fit with special
attention given to the efficacy of these tests in the presehsparse data, an issue which
we will discuss later in this chapter.

The rest of this chapter is organized as follows. In Secti@)&e will discuss some

basic notation and terminology conventions which are apple to all of the tests studied
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in this chapter. In Section 2.3, we will discuss severaktesiated to Pearson’s chi-square
test. In Section 2.4, we will discuss tests which make dwsetof nonparametric function
estimation in order to assess model fit. In Section 2.5, wedituss a specification test
which has been utilized to evaluate model fit. In Section B& goodness-of-link test
for logistic regression will be reviewed. In Section 2.7, eanclude the chapter with a
summary of progress made in lack-of-fit tests for logistgression models and present an
approach to testing the fit of a logistic regression modekWlig often overlooked in the

literature and was not considered among the tests studigdsmer et al. (1997).

2.2 Background and Fundamental Concepts

In Section 1.2.3, we reviewed the logistic regression maddldiscussed its use to estimate
the probability of an event of interest for binary responatadIn this section we revisit the
binary response setting and introduce some notationakrions and commonly observed
features of such data.

Suppose that our fitted model contajnindependent variablex, = (zy,...,z,)7,
and letJ denote the number of distinct valuessobbserved. We will refer to each of these
distinct values of as a “covariate pattern”, while the collection of individsiaharing a
covariate pattern are referred to as a “covariate classf.jFoe 1,2,...,J(n) we denote
the jth covariate class by?, the size of the covariate class with= x; by m;, and
the number of individuals for which; = 1 by 7 = > Yilx,=xzy. It follows that
>-m; = n. Note that in general/(n) is a function ofn since increasing the sample
could lead to new covariate patterns. The distinction betwEn) andn is important in
our subsequent discussion because most goodness-otdfitdegeneralized linear models
(and hence logistic regression models) are assessed @vdistinct fitted values of the

model (of which there ard(n)—each corresponding to a distinct covariate pattern) ahd no
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the individual observations (Hosmer and Lemeshow, 2000¢rRair and Tutz, 2001).
Binary response data are often referred to as “sparse” whaneable proportion
of m;’s are small with the extreme case occurring when = 1 for each: (i.e., each
covariate pattern is observed only once). McCullagh andi&e{1989, p.120) explain
that sparseness should not be misinterpreted as an imfichiat the data contain little
information about the underlying model. As we will discuatel in this section, sparse
data presents problems for two of the more commonly usedickgylobal tests of fit for
logistic regression models. Methods which evaluate theofisparse data models are of
particular interest because, as Kuss (2002) states, sieassappears to be “more the rule
than the exception in today’s data sets”. This is due to tbetfeat sparse data is generally
a consequence of the inclusion of continuous covariatdsiset of candidate explanatory
variables used to fit the model (Hosmer et al., 1997). Spasseran also result in data sets

consisting of a relatively large number of explanatory abies.

2.3 Chi-square Tests of Fit

Two summary statistics often used to assess the adequaeyefalized linear models are
the residual deviance (likelihood ratio) and Pearson ghiase. The Pearson statistic has

the following general formula

J(n)
X*=>"7 (2.1)
=1

where
~ €

r ) jzl,
! V(i)

in whiche; = y: — ¥, y; is the fitted value corresponding to thiéh covariate pat-

L J(n), (2.2)

tern andv(y;) is as defined in Section 1.2.1. For binary response data; m,7; and

~

v(p;) = m;m;(1 —7;). €; is often called a “response residual” and is simply an applic
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tion of the usual residual definition for the Gaussian lineadel. 7; is called a Pearson
residual and is clearly obtained by rescalilg While we will not pursue a discussion
of direct examination of residuals to assess model adequacyvill observe that several
other test statistics can be expressed in terms of residRatgnizing how these statistics
depend on residuals will help us compare how the statispesate and simplify some of
our notation. These expressions also help simplify argusnen justifying fundamental
theoretical results.

The (residual) deviance is the GLM analog of the residual sigguares in the linear

regression and is defined as follows

J(n)
D= 2¢Z {0i(i) — Lyt (2.3)

whereji;, v(1i;) are the estimated mean and variance function, respectaray; (v;) is the
individual log-likelihood whergi; is replaced byy; (the maximum likelihood achievable).
For binary response data we can write (2.3) in terms of Bdlilog-likelihood functions

to obtain

J(n) % *
where is omitted from the notation since the response distriloutiothis case does not
depend on a dispersion parameter.

Large values ofX? and D typically indicate lack-of-fit. For binary response data,
significance can be assessed by comparing these statigtiahen?(.J(n) —p — 1) distri-
bution for largen provided that certain conditions hold. In particular, onestrbe able to
assume thaty;7; (1 — 7;) — oo foreachj = 1,..., J(n) if n were permitted to approach
oo while J(n) remains constant (McCullagh and Nelder, 1989, p.118). Eenc— oo

for j = 1,...,J(n) while J(n) must remain constant in order f6f* and D to have an
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asymptotic chi-square distribution.

McCullagh and Nelder (1989, p.120) explain that when the daé sparse, the de-
viance function and Pearson’s statistic fail to satisfydibons required in order to attain
the asymptotic chi-square distribution used to evalugeifscance of tests based on these
statistics. Obviously, whem,; = 1 for a sizable portion of the data, it is unreasonable to
assume the conditions described above hold. Consequendlg,values of{? or D cannot
necessarily provide evidence for lack of fit. Furthermomnegxtreme cases these statistics
can fail to measure a discrepancy between the fitted modedlasetved data.

To illustrate their last point, McCullagh and Nelder (1986hsider (2.4) in the strictly
sparse case for which,; =1, j = 1,...,J(n). Note thatylogy = (1 — y)log(1 —y) =0
wheny = 0 or 1 and according to Section 2.2; = y; for m; = 1. Further,i); =

log(7;/(1 —7;)) = xJTB Noting that/(n) = n we see that (2.4) simplifies to

. : 1 — s
D =25, {uoa (L) +(1-yioa(;=2)]
J J

n ~ /ﬂ\- ~
= -2 Zj:l {leog (1 _J%) + |Og(1 — Wj)}

J

(2.5)

= —28"XTY — 2% log(1 — 7;)

= =2nTw — 23 log(1 — 7;)

sinceX™Y = XTp is the maximum-likelihood equation. Inspection of (2.5)aals that
for m; = 1, D is a function ofY only throughﬁ. Hence, giverﬁ, D has a condition-
ally degenerate distribution. Consequentlyjs incapable of measuring the discrepancy
between the fitted values from the model and the observedmespralues when the data

is strictly sparse and hence cannot be used to test the fiedbgistic regression model.
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For the remainder of this section we will review several @sgls which have been
offered in the existing literature to overcome the shorticws of the traditional chi-square
tests of fit for binary response models described above. eTaer three approaches that

have been used in an effort to resolve these problems:

1. modify the reference distribution for assessing sigaifae as was considered in Mc-

Cullagh (1985, 1986) and Osius and Rojek (1992);

2. consider modifying existing test statistics as was psepan Farrington (1996) and

Copas (1989);

3. group observations as has been suggested by Hosmer areshem (1980) and
Tsiatis (1980).

2.3.1 Tests Based on Modified Limiting Distributions %6t and D

McCullagh and Nelder (1989) assert that whentheare small but mostly greater than
one, eitherD or X? may be used to test the fit of a logistic regression model. Wewé is
apparent from the above discussion thatAelistribution cannot be used to assess signif-
icance for these statistics. There have been two basic agpipes presented in the literature
for obtaining an appropriate reference distribution foand X? when the assumption of

largem; is not reasonable.

Tests based on the conditional distributions\of and D givenB

McCullagh (1985, 1986) argued that goodness of fit shouldsBessed using the condi-
tional distribution of the statistic rather than its masggidistribution in the case where the
observed data are extensive but sparse (i.e., largenallm;). McCullagh proposes stan-

dardizingX? or D by their conditional asymptotic moments given the parametémates
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B. Statistical significance is then assessed using the sthmdamal distribution as the
reference distribution for the standardized statistic.

McCullagh (1985) obtained approximations to the first thmegnents of the uncondi-
tional and conditional distributions of the Pearséh-statistic for canonical link regression
models models which, as demonstrated in Section 1.2.3)desl the logistic regression
model. By conditioning on a sufficient statistic of the paesen estimates, the dependence
upon@ is removed fromX?2. Consequently, this method accounts for the fact that the
parameters from the logistic regression model have beanasd rather than fixed in ad-
vance. Approximate formulae for the conditional mean andawae of X2 for logistic

regression models can be found in McCullagh and Nelder (1989

~ 1 & o~ 1 R JPP R
E(X*|B) ~ (n—p—1)=5 > (1=60)Vii+5 > midi(1 —27,)ViiVi(1 - 27)), (2.6)
ij

1=1

and

var(X2(B) =~ (n —p—1) — % 3 {2n gy — Y (1 27)(1 - 2@)%} . (27

i=1 ij
whereV;; are the elements &f = X(XTWX)~'XT, the approximate covariance matrix
of p andp, = n=1' > [k} /(k%)?] with k5, k) being the second and fourth cumulantsypf
respectively. Although similar results could be derived fo, they are too complex for

practical use (McCullagh, 1986; McCullagh and Nelder, 989

Tests based on the marginal distributions®f and D

Osius and Rojek (1992) derived tests are based on first-oi@®enal approximations of

the power-divergence statistics of Cressie and Read (19B4is class of tests, denoted
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SD,, is indexed by a real number € R and includes bothX? and D as special cases
corresponding ta = 1, 0, respectively. A statistical test can be performed by saediding
S D, by estimated values of the large sample approximationseofrtban and variance for
SD, and comparing the resulting value to the standard norméiilaliton. Osius and
Rojek (1992) derived asymptotic moments D, in logistic regression under sparseness
assumptionsN, M — oo whereM = va m;), however, moments in closed form can
only be calculated foA = 1, that is,X?2. For strictly binary data, Osius and Rojek show
that the conditional and unconditional moments are asytigaity equivalent, at least to
first order. Thus, one would expect similar conclusions tedzehed in using Osius and
Rojek’s and McCullagh’s tests (see Section 2.3.1).

For logistic regression, Osius and Rojek’s moment appraxions yield the following

estimator of the mean for which no calculation is necessary

E(X?) = J(n). (2.8)

The variance may be estimated by

var(X?) = RSS (2.9)

which is the residual sum of squares of an ordinary weightesht regression of the vari-
ablec; = (1—-27;)/v;, j =1,...,J(n) on the covariates with weights = m,7;(1—7;),

j=1,...,J(n). Hosmer et al. (1997) found that, for small samples of dyrisinary

response data, better distributional results can be addafran estimate of the conditional
mean and variance obtained by McCullagh (see (2.6) and) (¥ used instead of (2.8)
and (2.9). This finding makes sense given earlier commeggsdeng the relationship be-
tween conditional and unconditional moments for binanadae., the magnitude of error

of the first order approximation should increase with smaignples).
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2.3.2 Modified Test Statistics
Farrington test

Revisiting the conditioning principle cited in Section A.3Farrington (1996) extended the
results of McCullagh (1985) to models with non-canonicakd. However, rather than
using the Pearson statistic, Farrington used an estimatjogtions approach proposed in
Moore (1986) to obtain a modification to Pearson’s statlsfithe addition of a first-order

component. The statistic (expressed in terms suitabletpstic regression)

J(n)

—(1— 2%-)
X% = X? —(—=27) Y MmT 2.1
F + Z mj%j(l . %]) (y] m]ﬂ-]) ( O)

j=1
is shown to have minimum variance within the family consatemwhereX? is the Pearson
statistic discussed earlier in this chapter. Significaraselze assessed using the standard
normal distribution with the standardized statistic. Tkendardized statistic can be ob-
tained using approximate moments f6f. which can be calculated in closed form.

X?% is shown to induce local orthogonality with the regressiaremeters (Farrington,
1996). That is, the Farrington statistic removes the depecel uporﬁ from the distribu-
tion of X2, which produces substantial simplifications of the momeptraximations and
increased power. Consequently, Farrington’s statistidoeaconsidered as an improvement
of the McCullagh method. However, the Farrington test hassthuctural deficiency that
whenm; = 1, thenX2 ~ N. In this case, the test will never reject the null hypothe$is
good fit.

Extensions of Farrington’s method have been considereday &d Deng (2000)
who examined analogous modifications to the deviance stadisd Paul and Deng (2002)
who introduced a score statistic inspired by Farringtor0@)9 We will not pursue these

tests further since they were not studied in any of the corsgararticles cited in the
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Overview of this chapter: Hosmer et al. (1997), Hosmer aratt{002), or Kuss (2002).

Copas unweighted sum of squares test

Copas (1989) has proposed using the unweighted residuabsguares to test equality
of proportions in & x C' contingency table. Hosmer et al. (1997) have studied a neadifi
version of this statistic in order to assess the adequaaygistic regression model. In the

context of binary response regression, the statistic igtemras

J(n)

S=> (y; — my7,)? (2.11)

j=1
where7; is the predicted response probability for tjth covariate pattern. Copas argued
that, for large samples, significance for his test may besasskusing a chi-square distri-
bution. Consequently, Hosmer et al. (1997) use a chi-sqailiatebution as the reference
distribution for the modified statistic.

Note the similarity betweel and the Pearson statistic for binary response déta,
S'is the sum of squared residual values winetemblehe “response” residuals discussed
earlier in this chapter, whil&(? is the sum of squared Pearson residuals. On the surface
this may not appear to be a profound difference, howevera€¢p989) explains that by
dropping the denominator in each component of the sum, leggwis given to covariate
patterns for which the value of; is small.

Hosmer et al. (1997) and Kuss (2002) studied this test indheext of logistic regres-
sion. In this case Hosmer et al. (1997) argue that statistigaificance can be assessed

using the following: —statistic:

L S — trace(V)
VVar[S — trace(V)]’

(2.12)




29

which has a large sample standard normal distribution..it?)2race(V') is a large sample
approximation of the mean &f. Hosmer et al. (1997) derived the following approxima-

tions for the asymptotic moments for their versionsof

E[S —trace(V)] =~ 0,

VarlS —trace(V)] ~ d'(I — M)Vd,

inwhichd; = 1—-2m,i=1,...,n; Vis given byV = diag[v; : i = 1,...,n] where
0 =m(1—7)andM = VX(XTVX)~'X . In practice, an estimate of the variance can
be obtained from the residual sum-of-squares from the ssge ofd on X with weights

V.
2.3.3 Tests Based on Grouping Observations

Hosmer-Lemeshow tests

Hosmer and Lemeshow (1980) devised a chi-square-insmstat fit for binary response
models which imposes a grouping strategy to create the sonslwhich permit use of the
standard large sample theory discussed at the beginnirtgsoééction. More precisely,
their approach is to aggregate thebservations into a fixed number of groupswhich

effectively produceg x g contingency table. Then a Pearson-like statistic that ey

the observed and expected cell frequencies of the resuittbig can be calculated using

9 —\2
X2 = M_ 213
HL lz:;nlﬂ-l(l_ﬂ-l) ( )

In the above formulay; denotes the number of observations in tte group, o; is the



30

number of successes in thé group andr, is the average probability

m(ny)
1 N
T =— § Mg Dk (2.14)
k=1

ny

wherem(n;) is the number of unique patterns in ttle group.

The rationale for this approach is borrowed from goodnddg-titerature for sparse
contingency tables (Hosmer and Lemeshow, 1980). This logimits them to conjecture
that X7, will have a chi-square distribution sineg — co asn — oo while g is taken to
be fixed. While they do not justify this claim rigorously, Hosr and Lemeshow (1980)
use simulation results to argue that the distributiotkéfis roughly approximated by chi-
squared withif = g — 2 (Hosmer and Lemeshow, 1980).

Some comments clarifying the construction of thgroups are in order. To this end, it
is useful to view the data in terms fx J(n) contingency table. The two rows correspond
to the values possible values of the binary outcome varighled the/(n) columns corre-
spond to the assumed number of distinct values observetidardvariates in the model.
The observed cell frequencies are the number of “succeesésiilures” recorded for each
covariate pattern. Collapsing the columns of 2he J(n) table into & x ¢ table to which
formulas (2.13) and (2.14) can be applied. The columns otdllapsed table (i.e., the
groups) are determined by dividing the sorted predictethgivdities intog partitions and
subsequently assigning observations to groups corregpptitese partitions.

Hosmer and Lemeshow (1980) proposed two approaches faingehe partitions
for the (sorted) predicted probabilities. In the first s#ggt observations corresponding to
the sorted estimated logistic probabilities are partegishimtog groups with approximately
n/g observations in each group. An alternative approach isthasalividing the interval
[0, 1] into ¢ fixed subintervals and assigning observations to a groupniteeorrespond-

ing predicted probability falls into that group’s subintak. The first grouping strategy is
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generally preferred over the fixed intervals approach beeéus possible for the number
of observations differ greatly across the groups when fixgdgervals are used. Typically
g is taken to bd 0 in either strategy (Hosmer and Lemeshow, 2000).

The Hosmer-Lemeshow test is generally regarded as theasthiekt for assessing
the fit of logistic regression models. This is evident in tihditas been implemented in all
major statistical packages. However, the test has somevadtey deficiencies that have
been revealed in the literature (Hosmer et al., 1997).

In general, test statistics which are constructed from fgedips, such as the Hosmer-
Lemeshow statistic, have been shown to be dependent upchdiee of the groups (Hos-
mer et al., 1997). According to Bertolini, D’Amico, Nardijriazzi, and Apolone (2000),
such problems arise when test is applied to a data set whinbtistrictly sparse (i.e.,
ties exist). In this situation it is often unclear to whiclogp a given observation should
be assigned. Hence algorithms which calculate the teststatsing different methods for
grouping observations will often lead to different conahuns. This fact is noteworthy given
that various statistical packages implement the testintdidifferent algorithms making it
possible for conflicting conclusions to be reached reggrdimodel’s adequacy for a given
dataset when multiple software packages are utilized (RPiged Heyse, 1999). Hosmer
et al. (1997) reported results from fitting the same datarsséveral statistical packages,
obtaining identical values for the estimated parametetsisudifferent values for the-
value of the Hosmer-Lemeshow test ranging fro2 to 0.16. An even more alarming
discrepancy was reported in Pigeon and Heyse (1999) whalfptualues ranging from
0.02 to 0.45 for a single data set.

In addition to the deficiency described above, there have beer concerns about the
Hosmer-Lemeshow test raised in the literature. Pigeon aayd&1(1999) reveal problems
with the validity of they-distribution in assessing significance of the Hosmer-Lsmoe/

statistic which they argue results from the constructingugs based on ranked probabil-
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ity estimates. Moreover, le Cessie and van Houwelingeni188jue that the Hosmer-
Lemeshow strategy of grouping observations based on rgmikdxhbilities produces tests
that lack power to detect departures from the model in regodthe %’ space that yield the
same estimated probabilities. Pulksenis and Robinsor2{2t8ve proposed a solution to
the problem revealed by le Cessie and van Houwelingen usiwg-atage modification of
the Hosmer-Lemeshow test; however, the conditions reduagemplement this approach
have been criticized as being limited (Kuss, 2002).

Finally, it should be noted that Tsiatis (1980) proposedissqglare lack-of-fit test for
the logistic regression model which differs from the applodeveloped by Hosmer and
Lemeshow in that it is based on partitioning the space of ates intog distinct, fixed
groups. While Tsiatis’ method appears to have been citexhdfy researchers who have
applied it in their work, it was not studied in either of theiesv papers used to guide our

discussion. Thus, we will not discuss this method further.

2.3.4 Remarks

It is interesting to note that both the McCullagh and Fatengtests are derived condi-
tionally on sufficient statistics of the parameter estiraatéence they both account for the
additional error resulting from estimating the parametérthe logistic regression model.
However, recall that we noted in Section 2.3.1 that OsiusRmigk (1992) demonstrated
that conditional moments of the Pearson statistic can beappated, at least to first order,
by the unconditional moments. Thus, it seems reasonabl&itate similar conclusions

would be reached using both tests to assess the fit of a model.
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2.4 Smoothing-based Tests of Fit

An alternative to trying to amend the deficiencies with thestfuare tests is to consider
tests based on nonparametric smoothers. The rationalaufeuipg tests based on non-
parametric smoothing techniques was discussed in Sectib. 1These approaches in-
clude both tests based on smoothed residuals and tests wdngpare a nonparametric
estimate to a parametric estimate. Tests of the latter tgpe been developed for logis-
tic regression in Xiang and Wahba (1995) and for generalimexdr models in Azzalini,
Bowman, and Hardle (1989). The approach taken in Xiang aadb4/ (1995) uses sym-
metrized Kullback-Leibler distance between smoothingngphnd parametric estimates of
the model, while Azzalini et al. (1989) base their approacltomparing the parametric
and nonparametric estimates using a pseudo-likelihoadl tedt statistic. However, we
will focus our discussion on the smoothed residuals metbobdihary response models in-
troduced in le Cessie and van Houwelingen (1991) since itsteaied in the review paper
of Hosmer et al. (1997). Furthermore, a residual smoothiethod would generally be
preferable for reasons cited in Section 1.4.2.

In addition to le Cessie and van Houwelingen'’s test citedrapae will also discuss
a test proposed in Royston (1992) which was also studied sntdo et al. (1997) and is
based on residual cusums. We find it appropriate to includsausision of these methods
in our section smoothing-based tests of fit because Eubahkart (1993) demonstrated
that cusum-based tests are special cases of a wider classt®@baised on nonparametric
function estimation ideas. However, cusum-based tedeyr dibm the residual smoothing
approach of le Cessie and van Houwelingen (1991) in thatotisased tests do not require
specification of a smoothing parameter. Tests with thisufeadre often called “nonadap-
tive”. We will discuss the distinction between adaptive antadaptive tests further in the

next chapter.
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2.4.1 Kernel-smoothed Residual Tests

le Cessie and van Houwelingen (1991) proposed testing thédibinary response model
by applying the procedure of Nadaraya (1964) and Watso(lidGhe standardized resid-

uals as follows

2o TG H T (x — X))

—~ j=1
Ts(x) = =5 : (2.15)
S K x)
wherer; denotes thgth standardized residual (see Section 2B)= diag[h4, ..., h,|isa
diagonal matrix of bandwidths, arfd,(-) denotes the multiplicative kernel
Kp(x) =] K(x), (2.16)

=1

in which K is a symmetric, nonnegative, univariate kernel functiothwinite support
[—a, d] satisfying [* K(z)dz = 0and [* K?(z)dz = 1. Note thatK,,(-) is defined so
that the same univariate kernel is applied to each covarai®ever, covariate-specific
bandwidths},; are used. The bandwidth parameter controls the degree afteimg and,
in general, depends on the kernel, the sample sizand the number of covariates as well
as the unknown model (Hart, 1997). To reduce the number alwith parameters to 1
le Cessie and van Houwelingen (1991) define= h,s;, whereh,, is a global bandwidth
parameter depending onands; is the standard deviation of thith covariate. le Cessie
and van Houwelingen (1991) recommend choosingo that roughly,/n observations
contribute to the calculation of each.

As we discussed in Section 1.4.2, the rationale for exargisimoothed standard-
ized residuals for insight into model fit is motivated by tleEagnition that under the

null hypothesis of correct model specification, the smod#tandardized residuals(x; ),
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i = 1,...,n, can each be considered an estimator of zero. This obsamvaiotivates
the test statistic proposed by le Cessie and van Houweli(if#91) which is given by the

formula

Ta(x)w(x;) (2.17)

where

w(x;) = {305 KpH 1 (xi — x)]}?
Z 2?21 K2HY(x; —x5)]

The test resulting frorf’ is reasoned to circumvent problems cited for the Hosmerdsérow

(2.18)

test and they have been found to have better (though notrarlifdetter) power properties
than several other commonly used tests for logistic regregslosmer et al., 1997).

le Cessie and van Houwelingen demonstrate that for largelsanthe distribution of
T can be approximated b2, wherey? is a chi-square random variable withdegrees
of freedom and a constant. The values ofandc are determined by = 2E(T) /vai(T),
v = 2E2(T)/var(T) and E(T) andvax(T) are the estimated mean and variancel'of
Clearly, evaluation of significance for le Cessie and van wilingen’s test requires a
means to obtain estimates of moment§ of

Hosmer et al. (1997) provide simplified approximationgf’) andvar(7") for the
special case of logistic regression. Hosmer et al. obtaimesk approximations by means
of a first-order approximation @f, T' = eT A,.e, wheree is the column vector of residuals,
A =T =M QI —M),Q, =V V2(WTDW)V2 M =VX(XTVX)'XTis
the logistic regression version of the hat matfix,is then x n matrix of weights whose
(¢,1)th element isw;; = K,,(z; — x;), D, is ann x n diagonal matrix that contains the

diagonal elements of the matrix W™, andV defined as in 2.29. Well-known results for
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moments of quadratic forms, Seber (1977), yield that

E(T) = trace(A,V) (2.19)
and
var(T) = Z aZ,vi(1 — 6v;) + 2trace(A, VA, V). (2.20)
i=1

Hosmer et al. (1997) reported problems with calculatiag7") in their simulations,
so they used a more computationally efficient approximatibmar(7") which was pre-

sented in le Cessie and van Houwelingen (1991)

@i(T) =2 (3)p trace(WW7) 2.21)
3 n?

for the var(T'). This approximation leads to a reduction of the order of cotaon to

evaluate the matrix, from n* to n?.

2.4.2 Residual Cusum Tests

Several contributions have been made to literature on ¢ddisthat utilize a cumulative

sum (cusum) of residuals from the estimated model. The @b for pursuing tests
based on cusum processes is that if the fitted model is theatarrodel, then partial sums
should vary in an unsystematic manner about zero as the ofdbe process varies.

Su and Wei (1991), Beran and Millar (1992), and Royston (1 8&9%2e proposed lack-
of-fit tests based on cusums with applications to logistigression. More recently Stute
and Zhu (2002) introduced a residual cusum-based tesstgtaty assess the validity of
a generalized linear model which was inspired by a collectbwork Stute developed

with various colleagues: Stute (1997), Stute, GonzaleztMga, and Presedo Quindimil



37

(1998), and Stute, Thies, and Zhu (1998). We will limit ouweation to the method of
Royston (1992) which was studied in Hosmer et al. (1997). nitoset al. cite the con-
venient large sample results presented for the statigtidsesl in Royston (1992) as being
advantageous over competing methods. By contrast, Su an{19&l) and Beran and
Millar (1992) required computationally intensive boo#gtmprocedures to implement their
proposals.

Royston (1992) proposed two statistics designed to deteaibtonic and quadratic
departures from linearity in the logit. Both statistics aesed on the cumulative sum of

residuals

l

a=-> (o —7w) (2.22)

i=1
whereT ;) is theith largest estimated logistic probability ang) is the associated value of
the outcome variable. Royston (1992) assumed that the \@is®rs had been sorted ac-
cording to a specific covariate of interest, while Hosmet.gtl®97) studied Royston’s test
by sorting according to estimated probabilities (note fRayston’s original assumptions
are consistent with typical assumptions in the relatedditee). The statistic for detecting

monotone departures is

Cl = max |ql|. (223)

1<l<n

The statistic for detecting quadratic departures is

Cy = max |q — gl (2.24)
1<i<n/2

The monotone test is a special case of Su and Wei’s test inaeeaf a single covariate,
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while both monotone and the quadratic tests are a specilofdbe test statistics derived
in Beran and Miller.

Royston presented his method primarily as a means to gaphéetermine whether
or not a fitted model adequately represents the relationstypeen the predicted probabil-
ity and a single covariate of interest (this is why Roystosuased observations ordered ac-
cording to the covariate of interest). Royston did not dipeadly advocate the use of these
statistics as global tests of fit, however as we stated abim/@rovides easily computed
transformations of the two statistics that allow calcwatof p-values using the standard
normal distribution. Furthermore, Hosmer et al. (1997 uarthat since the tests are de-
signed to be sensitive to monotonic and quadratic deparintée logit, Royston’s statistic
seems potentially beneficial.

Inlow (2001) has criticized the large sample approximatiproposed for these statis-
tics. In particular, he has argued that Royston’s formutasaat take into account whether
or not the model is specifiea priori or estimated from the data. Moreover, simulation

studies ultimately revealed some power deficiencies ottésis(Hosmer et al., 1997).

2.5 The Information Matrix Specification Test

A general specification test that has been used to assesdcitpeary of the logistic regres-
sion model is the information matrix (IM) test. This test vaaginally proposed by White
(1982) for general testing of likelihood specification. haer (1991), Thomas (1993) and
Aparicio and Villanua (2001) have all considered tests asea special case of White’s
statistic for binary response models which was first presem Orme (1988). The IM
test is based on the well-known information-matrix equevale theorem which essentially

states that when the model is correctly specified, the fotigwexpression holds
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021 ol 0l
- (%%T) -F (%W) (229

whereg3 is the vector of regression coefficients dnd the log-likelihood for the logistic
regression model (see Sections 1.2.3 and 1.3). In word®5)(8tates that the information
matrix can be expressed as either the expected value of $&dteof the likelihood or the
expected value of the outer product of first-order partiavaéves of the likelihood. A test
statistic is formed by comparing the elements of the twceddiht estimators of the infor-
mation matrix obtained by utilizing each of these exprassid hese two estimators should
give comparable results under a satisfactory model fit. Mhéekt has been criticized for
being difficult to compute in practice (Hosmer and Lemes&0); however, it has been
shown to possess reasonable power even with strictly sgatagKuss, 2002).

Kuss (2002) presents an explicit expression of the IM gtatier logistic regression
models which evaluates the difference of the diagonal eitsred the two estimators results

inthe((p+ 1) x 1)-vector

~ 1 &
= =3 (g — 7)1 - 27)2 2.2
d n & (yi —7)( Ti)zi (2.26)
with z; = (1,27, ..., 27T where the components dum to0 in the case of a good model

fit. After standardization with an appropriate variances thst statistic can be compared
to a2, ,-distribution. Note that the IM-test is calculated for theividual and not for the

grouped observations so we do not expect problems withsplats.
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2.6 Goodness of Link Tests

As mentioned in Section 1.2.2, a link function must be spetifn order to completely
specify a GLM. For binary response data, the logistic linkdtion is the most commonly
used; however, there are alternatives to the logistic limk asing different links can have
a profound impact on the specification of the linear predi¢@ollett, 1991). That is,

the choice of link function and the structure of the predidtmction are interdependent.
Consequently, examination of the adequacy of a given limkction has to be made on
the basis of a final model. In this section we will discuss s@alected approaches for

assessing the adequacy of the logistic link function.

2.6.1 Tests Based on Parametric Families of Link Functions

The goodness-of-link test differs from the tests of fit ddsemt above in that it utilizes a
parametric family to assess the adequacy of the specifiedhat is, there is a pre-specified
family of alternatives against which the fitted model is ¢elstPregibon (1980) proposed
a general approach for testing adequacy of link specificdiassed on a parametric family
of link functions. Several families of link functions havedn proposed in the literature
and are typically formulated as parametric generalizatminthe logit and probit models.
Generally, these families have been proposed in order t@ radequately model binary
response data. However, these families have proven usafatécting possible inadequacy
of logit and probit models. We will now discuss an approachusing families of link
functions to test the adequacy of a specified link which wasduced by Pregibon (1980).
Let ¢ denote the correct, though unknown link function. As anrahéve to the
logistic link, consider a function(; o) with o € A C R? such thay(r; o) = log (=)
for someay € A. Itis assumed thaf € G{g(m; o) : @ € A}. Thus, an estimate gfcan

be obtained by means of a maximum likelihood estimatea.of
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In order to utilize the collection of link functions definegt b(7; ) to detect depar-
tures from the logistic linkg(; o), Pregibon (1980) proposed a first-order Taylor series

expansion ofy(m; a) aboute

T89<7T; 04)

e (2.27)

g(m a) = g(m; ap) + (@ — )

a=og
Let a* € A be the value which yields the true model; thatjss g(m; a*) = X3. Then
assuming thatv* anday, are sufficiently close, thespncan be approximated by 7; o) so

that

g(m e) = g(m ) + [g(m; ) — g(m; )]
(2.28)

=XB+~z

wherey = a* — ap andz = 9g(m; ) /0t _ g, -
The variablez is often referred to as a “constructed variable” and can beved as
compensating for the departure of the logistic link funetitypothesized in the null model
from the true link function. Thus, a test of the hypotheRjs: v = 0 in equation (2.28)
provides a test of the adequacy of the logistic link functiém principle, this hypothesis
can be tested by means of a likelihood ratio, score, or Waid tdote thatz depends on
m, which are unknown. Consequently, in practice the fittegoase probabilities obtained
from fitting a logistic regression model are used to constris corresponding to each

observation. Of course, the procedure described aboveecarodified in order to test the

adequacy of other link functions, such as the probit link.
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2.6.2 Stukel Generalized Logistic Link Function

The family of link functions presented in Stukel (1988) hasgd the widest acceptance for
testing adequacy of the logistic link function. Furtheredhe test resulting from applying
the method of Pregibon to Stukel’s link family was recommeshtdly Hosmer et al. (1997)
because of its superior power relative to other tests censitd The Stukel model extends
the standard logit link function with two additional paraersa = (a4, az) and is defined

in terms of the CDF, as follows:

eha(n)
Fs(mo) = 1w (2.29)
in which, forn <0, h,, is defined as
a;(exp(aalnl) = 1), a1 >0
ha(n) =19 7 a; =0 (2.30)
—aj'log(1 — aqn]), a5 <0.
Forn <0, h, is defined as
—ay ' (exp(agln|) — 1), @z >0
ha(n) =14 n ay =0 (2.31)

a5 tlog(1 — asln)), as < 0.

The parameters; anda; control both the symmetry and tail weight of the generalized
link function. If «; = v, the corresponding probability curvg (n; «) is symmetric. Tall
weight is dictated by the particular values @f and o;. For instance, the generalized

logistic link function approximates the probit link when = as ~ 0.165 while this link
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Table 1. Coefficients for Stukel’s generalized logistic ralod

Link aq Qa9
logistic 0 0
probit 0.165 0.165
complimentary log-log 0.620 —0.037
Laplace —-0.077 —0.077

function reduces to the usual linear logistic model when= 0 anda, = 0. Table 1 lists
several well-known link functions approximated by(-) along with the corresponding

values ofa; andas, that yield the approximation.

Applying the approach described in Section 2.6.1, a two egf-freedom test of
the hypothesis that both parameters are equal to zero cabnté@ed. Recall that the test
can be implemented by means of a score, Wald or likelihoad tast of the coefficients
corresponding to the constructed variables resulting feoaylor’'s expansion. For the
Stukel link function these constructed variables can bétewiasz; = $7°1(7 > 0) and
z=—3P (< 0),)= xT3, wherel(-) is the usual indicator function.

Alternative general families of link functions to that givey Stukel have been sug-
gested by Pregibon (1980), Prentice (1976), Aranda-Ort2&1(), and Guerrero and John-
son (1982). Among the more popular of these alternativdseisink family introduced by
Prentice for which Brown (1982) developed a different twavgmeter score test. While the
Prentice model offers the same level of flexibility in modgldepartures from the logistic
link as the Stukel family, the test utilizing the Stukel fédynis more direct and easier to

implement (Stukel, 1988).

2.7 Discussion

It should be noted that despite the superior power propettied for some of the tests dis-

cussed in this chapter, none of these tests had uniformlgt gower against all departures
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from the null model considered in Hosmer et al. (1997) andsK@802). That is, all of the
tests studied in these two papers have weaknesses and goperti@s reported therein.

Recognizing the apparent absence of a test with desirallergaroperties against a
wide variety of alternatives, several authors who havetaniotn the subject of evaluating
the fit of a logistic regression model ultimately concludettls advisable to use a com-
bination of residual analysis, diagnostic measuresraaliipletests. In other words, one
should avoid the temptation to naively accept results fraimgle model assessment. See,
for instance, McCullagh and Nelder (1989), Hosmer and Lémmws2000) and Agresti
(2002).

Two of the more authoritative sources on the theory and egotin of the generalized
linear model have offered a particularly intriguing recoemdation for evaluating the fit
of a logistic regression model. After noting the deficiesad D or X2 as well as their
modifications (see Section 2.3), Agresti (2002, p.177) amdCiMlagh and Nelder (1989,
p.122) discussed alternative approaches to evaluatiniif thfea logistic regression model
which can be used to supplement assessments determinedamg iwfeglobal tests of fit
such as the ones discussed in this chapter. They point dutithaof-fit can be detected
by comparing the working model with more complex models inoimonlinear effects
(such as quadratic terms) or interactions are added to thangomodel and observing the
reduction in deviance. If a more complex model does not tés@ better fit of the data,
then we have assurance that working model is reasonable.

Agresti (2002) and McCullagh and Nelder (1989) both adweatamining complex
models which reflect the scientific context of the model. WHhHis advice sounds ap-
pealing, unfortunately, it is often the case that there tsandear scientific motivation for
additional terms. Furthermore, it is very plausible thdtaiencies in the fit of the model
cannot be explained by scientific reasoning. In the absehseientifically relevant ad-

ditions to the working model, one is relegated to examinirteary departures from the
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model or simply accepting the working model without any Hertscrutiny.

To conclude, we view the lack of a uniformly powerful test ofdr the logistic regres-
sion model as an indication that there is still a need for tamlthl research in the testing
literature. Furthermore, we present the sentiments caw/ay the recommendations of
Agresti (2002) and McCullagh and Nelder (1989) as evidehaedur proposed direction
of research is well-founded and provides an intuitivelyiddsde means of evaluating the
fit of a logistic regression model. More specifically, in thexhchapter we discuss a sys-
tematic, unambiguous way of considering general deparfuoen a working model. This
approach is based on well-developed theoretical pringigtel ultimately provides direc-

tion toward a new test of fit that can be applied to the logiggression model.
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CHAPTER III

SERIES-BASED LACK-OF-FIT TESTS

3.1 Overview

In the previous chapter we presented a review of some wigsdyl methods for testing the
fit of a logistic regression model. In this chapter we willaliss the existing literature on
lack-of-fit tests which makes use of orthogonal series tedetepartures from a parametric
model. Though we will a focus on applications to GLMs and elgselated problems, it
should be noted that the principles upon which these methoeldased extend beyond
the generalized linear model setting. These concepts hewe applied to a variety of
modeling scenarios such as spectral analysis and tesgrgptitness of fit of a probability
distribution (Aerts, Claeskens, and Hart, 1999).

The literature on series-based methods on testing the fitobigbility models is vast
to say the least, and hence, our review will not be exhaustagher, our survey of the
literature on series-based lack-of-fit tests will be foeassn a relatively small number of
references. However, given that our proposed method hasibsgired by this literature,
we will discuss these methods in greater detail. Thus, vemohto impart an understanding
of how these tests work as well as document the benefits andbdcks associated with the
various tests. In doing so, we will present a collection afi@ology and concepts which
we believe the reader may find useful in our subsequent dismusUltimately, we will to
reveal a new direction for research as well as motivatiomtorpursuit of this direction.

The rest of this chapter will be organized as follows. In #&c8.2, we will discuss
some basic concepts which are applicable to all of the tastiéesl in this chapter. In Sec-
tion 3.3, we will discuss series-based tests of fit for gdimma linear models. In Section

3.4, we will discuss a recently developed method which makef the Laplace approxi-
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mation in the derivation of the test statistic. In Sectio®, 8ve conclude the chapter with a
summary of progress made in series-based lack-of-fit testpeesent a new direction for

research.

3.2 Background and Fundamental Concepts

3.2.1 Model Assumptions

In this chapter we will limit our attention to the class of gealized linear models which
has been studied in relevant literature. In particular, vilefacus on the canonical link
regression model described in Section 1.2.3. However, asxpkined in Section 1.2.3
this covers arguably the most important models within tingdaclass of GLMs, including
the logistic regression model.

Recall from Section 1.2 that we assume the datay,), .. ., (x,, y,) are observed
where, fori = 1,...,n, x; is a fixed vector of covariates ang is a scalar response for
theith subject. In light of the definitions given in Section 112 response distribution for
the canonical link regression model can be expressed liladerms of the covariates as

follows

flyin(xi),¥) = exp{[yn(x:) — b(n(x:))]/a(¥) + c(y, ¥)}, (3.1)

wherea(-), b(-) andc(-) are known functionsy(-) is an unknown function ang an un-

known, real-valued dispersion parameter (ke= 1).

3.2.2 Inference Problem

Some comments regarding series-based tests of fit for czaddimk models are in order.
Recall that in Section 1.2.2 construction of a generalizeebr model requires specifying

three components. In general, specification of any one sktikemponents of the model
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may influence the other two components. Hence, given theddrilexibility in the spec-
ification of the components of a canonical link regressiordet@gsee Section 1.2.2), the
null hypothesis for a global test of the fit of a canonical lregression model can be stated

directly as follows

Hy :n(x) = Zﬁm(X) =n(x;B8), Vx, (3.2)

where, as described in Chapten(x; 3) is a parametric model proposed fgr) in which
Y, - - ., 7, are known functions an@ = (3, ..., 3,)* an unknown parameter vector. Re-
call that an intercept term can be accommodated by definifig = 1, vx. A useful and
widely studied special case of (3.2) for whighx; 3) = ; for all x is referred to as the

“no-effect” hypothesis. The resulting hypothesis testalier a “test of no-effect”.

3.2.3 Series Expansion

We start by briefly discussing some basic ideas regarding dewes representations of
functions satisfying general conditions can be utilizetbtonulate nonparametric estima-
tors with properties which prove useful in testing the fit gbraposed function. In the
interest of convenience and clarity, we will assume for #mainder of this section that
x € R and user to denote this continuous, real-valued covariate. Obserakif » and
", - .., Satisfy general conditions, then we can express the unknegvession function

n(-) in terms of its departure from(-; 3) as

n(x) =n(x; B) + A(x), (3.3)

whereA has the series representation

Alz) =) dru(r), =€ ab], a,b R (3.4)
k=0
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for constantsb, ¢1, . .., where{u;(-), us(+), ...} is a collection of known functions that are
continuous on the range afand that span a “large” space of functions. It is not required
that theu,’s be orthogonal; however, orthogonality is desirable &t thsimplifies practical
computation and enhances clarity of proofs of theoretieslits. In the GLM setting spe-
cialized orthogonality conditions are required to attaiolssimplification (see Secti®?).
Furthermore, it is understood that eaghis not a linear combinatioty,, . . ., ,. We will
refer to theu,'s as the basis functions of a series representatio.oPopular examples
for basis functions include trigopnometric functions, wiate and orthogonal Legendre or
Hermite polynomials.

A reasonable approach to approximating the function of@siewould be to truncate
the sum in (3.4) after the first terms. The representation specified by (3.3) and (3.4)
motivates approximations of(-) constructed by considering only finite contributions to

the sum as follows:

(@301, 0p5) = 61, ...,0,) + 30 Opyrur()
(3.5)
= (@ 8) + X 9_; deunl(x) = m;(x), j=1.2,...

where we definé, = g, fork =1,...,pandf, = ¢,_,fork = p+1,...,p+j. The above
formulation produces a sequenfg-; 6;,...,60,+,) : 7 = 1,2,...} of approximators of)
with the property thag(-; 64, ...,6,1;) =n(-;61,...,0,.;,0) foreachj =1,2,...and all
allowable parameter valués, . . ., 6, ;. In other words, the models fgrare nested in that
a model of a given order contains all terms contained in enegel of a smaller order and
they become increasingly complexjasicreases. Furthermore, As+ oo, functions of the
formn(-;64,...,0,+;) span the space of all functions of interest. For conveniemneevill

denote thegth alternative specification ofby n;(z). That is, in the context of series-based
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alternatives formulated above we hayér) = n(x; 01, ..., 0,+;).

Now observe that the null hypothesis (3.2) is equivalent to

Hy:¢1=¢2=---=0. (3.6)

Thus, an omnibus test of (3.2) can be obtained by using thesskased function approx-
imators to construct alternatives #0¢-; 3). The maximum likelihood estimator of;(x)

is

nj(x) = n(x; @1, o 5,,) + Eizl @,Jrkuk(x), j=0,1,.... K,, (3.7)

whered,,, k = 1,...,p+j are maximum likelihood estimators witki, < n. Note that the
finite sum would capture any portion of the residual devianbeh is left “unexplained”
by the proposed (null) model (assuming without loss of galitgrthat there are no redun-
dant terms contained in the linear predictor and the finiteesgif this were the case, the
redundant basis function is simply discarded from the ctith@ of basis functions used in
the finite series).

The truncated series described above can be viewed as araorgiec estimator of
an unknown regression function. Since the order of the sumes/across the candidate
models, the order of the series-based regression estiplai® the role of smoothing pa-
rameter. The order of the truncated series estimator istsm@ereferred to as a truncation
point. In many settings this property is enough to ensuretltteae exist tests based on the
modelsny, ..., nk, that are consistent against any continuous alternativé,toso long
as K, tends tooo at an appropriate rate with the sample size (Aerts et al.9;18@rts,

Claeskens, and Hart, 2004).
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3.3 Tests of Fit for Generalized Linear Models

Lack-of-fit tests applicable to GLMs have been developedhedollection of papers by
Aerts et al. (1999), (2000) and (2004). Aerts et al. (1999)(@000) approach the problem
using the concepts of an order selection-based test, whitis &t al. (2004) uses a Bayesian
rationale to motivate a test statistic formulation whictimhtely leads to a statistic that
explicitly depends on squared Fourier coefficients in a lsinfashion to the cusum or
Neyman smooth tests. It is worth emphasizing that, in theestrof generalized linear
regression, the methods proposed in Aerts et al. (199900(26nd (2004) require that the
regression model be a member of the subclass of GLMs knowarasial link models
described in Sections 1.2.2 and 1.2.3.

All of the tests proposed in this collection of papers canibe/gd as generalizations of
existing methods for testing the fit of Gaussian-based ssgva models. A comprehensive
discussion of Gaussian-based methodology developedtprit®97 can be found in Hart
(1997). Much of the work we will review in this chapter utidig model selection criteria
and appears to be directly inspired by Eubank and Hart (188&)h developed many of

these techniques for Gaussian-based models.

3.3.1 Testing the Fit of a GLM with a Single Regressor via fated Order Selection

In this case several alternatives are formulated in terrdgpértures from the proposed null
model in which the departure is modeled in terms of finiteeseaipproximations described
above. The idea underlying the method presented in Aertls €1299) is to use a model
selection criterion such as AIC, BIC, etc. to select the tbesodel for n(-) from the
estimated model§y, 71, ...,7k,. The null model is rejected if it is not selected by the
model criterion. Moreover, while it is of primary interest ¢valuate the fit of the null

model, the approach just described somewhat serendipjitpres/ides an estimate off(-)
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in the event that the null model is found to be inadequate.

Several different selection criteria are proposed and @ah including a criterion
inspired by the Akaike information criterion (AIC) and otedvased on various score statis-
tics. Aerts et al. (1999) demonstrate that their tests ansistent against essentially any
alternative hypothesis. Furthermore, they demonstratesvnulation that their test pos-

sesses competitive power properties.

AIC-inspired criteria

In a likelihood context, a popular method of model selecistie AIC. Aerts et al. (1999)
define the modified AIC by

MAIC(r;Cy,) = L, — Cypr, 7=0,1,..., Ry, (3.8)

where(,, is some constant larger than R,, could be either fixed or tending to infinity
with n and L, = 2(l, — ly), r = 0,1,..., R,, is the loglikelihood ratio corresponding to
the approximator,(-), in which the loglikelihood,. = i(7,,¢) can be written explicitly as

follows

(e, ) = Z{[ymr(ﬂ?z) — b(ne(:))]/a(e) + c(yi, V) }, (3.9)

Note that the maximizer of AIC and BIC is equal to the maximiaé MAIC(r) when
C, = 2andC, = log(n), respectively. Now let., be the maximizer oMAIC(r; C,,).
A possible test offf, against a general alternative is to rejéty if the maximizer,r¢,,

of MAIC(r; C,,) is larger thar). By appropriate choice af’, the asymptotic type | error

probability of the test,

reject Hy when ¢, > 0, (3.10)
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can be any number betwe@mand1. Under certain regularity conditions given in Theorem
1 of Aerts et al. (1999), the limiting level of this test (as+ oc) is about29 when the AIC
penalty constant;,, = 2, is used. Values of’,, yielding other test levels can be obtained
following a proposal of Eubank and Hart (1992). For examal&est of asymptotic level
.05 is obtained by using’,, = 4.18. (See Hart 1997, p. 178, for values©f leading to

other test levels.)

Score-based criteria

The proposed AIC-based tests can be written in terms of kediHbod ratio statistiaC,
for testing hypothesis (3.2) against the alternative tiigthas the formy,.(-). The score
statistic provides a computationally attractive appraadion of the likelihood ratio statistic
which only requires fitting the null model. Aerts et al. (199®entify this feature of the
score statistic as being particularly advantageous foliggifwn of their method since it is
plausible that a large number of alternative models may feired to carry out the test in
some circumstances. Aerts et al. (1999) explain that thel \8fakistic can also be used as
an approximation to the likelihood ratio statistic. Howe\tke authors cite need to obtain
“unrestricted” maximum likelihood estimators and the Watdltistic’s lack of invariance
under equivalent reparameterizations of nonlinear girs as being drawbacks to using
it as an approximation in their setting.

Analogous to the definition of MAIC, Aerts et al. (1999) and#&eet al. (2000) define

thescore information criterig SIC),

SIC(r;Cy) =S, — Cor, 7=0,1,..., (3.11)

whereC,,, R,, are as defined above a is the score statistic described in Section 1.3.4

applied to the null hypothesis (3.6). For canonical linkresgion models (Section 1.2.3),
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the score statistic can be written as

r 7’L$2
S = =2 (3.12)
; a(to)
where
B =l — Vs BOe(x), k=1, K (3.13)

=1
Aerts et al. (2000) point out that expression (3.12) hasresdly the same form as the

statistic of Neyman’s classical smooth test (Hart, 1997).

As in the modified information criteria discussed in the jiwag section, an apparently
sensible test of (3.2) is one that rejeéigwhen the maximizer;., , of SIC(r, C,,) is larger
than0. Theorem 3 of Aerts et al. (1999) asserts that uridigrrc, andr, have the same

limiting distribution.

Tests based on order selection

While one may conduct a test based directly on the orderteeldxry MAIC or SIC, other
related statistics have been proposed. We will review swéithese statistics in this sec-
tion. For convenience we will discuss these tests in thesstatf SIC though, in principle,
analogous tests can be constructed for the MAIC.

Aerts et al. (1999) present alternate, equivalent exprasdor the test statistics re-
viewed in the previous sections. For example, observe ti@aStC test rejectél if and
only if SIC(r; C,,) > 0 for somer in {0,1,..., R,}, which is equivalent to rejecting/,

whenTpg > C,,, with

Tos = Qiﬁn{s’”/r}‘ (3.14)

Note thatC,, acts as both the penalty constant in SIC and the criticalevafd’rs. Thus,
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taking C,, = 4.18, the results in a test with limiting size ©f05 as noted for the order
selection test (3.10). This test has been studied in theegbaf Gaussian response mod-
els in Eubank and Hart (1992). Recalling expression (3.42)can see that (3.14) can
be written explicitly in terms of sample Fourier coefficisnthich closely resembles the
well-known data-driven Neyman smooth-type statistic i ¢tbntext of Gaussian response
models (Hart, 1997).

Among the other statistics, Aerts et al. (2000) studied theesstatistics correspond-

ing to models chosen by the score analogs of AIC and BIC:

Sa = S5,

wherer, = arg maxo<,<g, SIC(7;2);

Sy = S

wherer, = arg max;<,<g, SIC(r;log(n)). Observe that, maximizesSIC(r; logn) over
1,..., R, rather tharD, 1, ..., R,. This definition accounts for a consistency property of
BIC-type order selection criteria (Aerts et al., 2000).

Another statistic studied in Aerts et al. (2000) is a stadda&d version of5,

Sr, — Ty

max(1,72/%)’

(3.15)

Aerts et al. claim that standardizirtg greatly stabilizes the null distribution of the statis-
tic, which leads to a meaningful improvement in the powerfpr It is further claimed
that the null distribution ofS, is already quite stable which makes standardizatio,of
unnecessary.

Finally, Aerts et al. (2000) considered using the AIC-typers criterion evaluated at

its maximum as lack-of-fit statistic
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Tinax = SIC(7a; 2). (3.16)

Use of this statistic was first considered by Parzen (197%4black-of-fit of time series
models.

Aerts et al. (2000) provide large sample approximationstfier null distributions
of the statistics reviewed in this section. L8t, Z,,... be a sequence of independent
and identically distributed standard normal random vaeisbdefinel, = 0, V, = 72 +
Z2+4 -+ Z% forr = 1,2,..., and7 to be the value of that maximized/, — 2r over
r = 0,1,.... If the null hypothesis (3.6) and the assumptions of Theoteof Aerts
et al. (2000) hold, then the aforementioned theorem ensias,,, Sy, T, Tos, andT .«
converge in distribution td%, Vi, (Vi — 7)/max(1,7'/2), max,>:(V,/r), andV; — 27,

respectively as — oc.

3.3.2 Extension to Multiple Regression

Aerts et al. (2000) extend the proposal of Aerts et al. (1%83cribed in Section 3.3.1
to multiple regression. Aerts et al. (2000) explain thakaawust be taken with how one
constructs the sequence of alternatives to test the adgqtiat; 3) in order to ensure that
the resulting test will possess desirable power properfiesiemonstrate how this works,
we follow the example described in Aerts et al. (2000) andsar the case in whichis

an unknown function of the covariates andz,. In this context, the null hypothesis (3.2)

can be written as

Hy:ne{n(-,B): B e B} (3.17)

In analogy to the case of only one covariate, an alternativdahobtained from a series

expansion which uses basis functianganay be expressed as
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n(z1, z2) = (21, 225 B) + Z Z Gkt (1) ug (o) (3.18)

jkeA
whereA is the index set for a given alternative model. It is evideont (3.18) that the
index setA uniquely determines a given alternative since it specifiesparticular subset
of basis functions which compose that alternative. Funtoee, the definition of\ will,

in general, depend on the specification of null model. Formgta, suppose we wish to
test the null modeh(z1, x2; B) = Bo + Srui(x1) + Paus(xo), then it is obvious that neither
w1 (1) Noruy(x2) should be included in the sequence representing the ditermaodel. In
light of this dependence upon the null model, Aerts et alO@0imited their discussion to
the situation where the functiof(z, z2; 3) is constant in order to make notation simpler.
Under the no-effect null hypothesis,is a subset of (5, k) : 0 < j,k <n,j+ k > 0}.

Aerts et al. (2000) present tests which generalize the dzased model selection cri-
teriain Section 3.3.1 using multivariate alternativescHje by (3.18). However, likelihood-
based model selection criteria presented in Section 3a@hlbe generalized in the same
manner. The resulting model selection criteria correspuntb the log-likelihood ratio

and score statistics are given by

MAIC(A;C,) = Lan— CuN(A),
(3.19)

SIC(A;C) = San—C,N(A),
respectively, wheré/(A) denotes the number of elements\inCritical points angb-values
of the lack-of-fit tests can be obtained via asymptotic thation theory or by use of the
bootstrap.

To carry out this test in practice]C(A; C,,) must be maximized over some collection

of subsets\,, Ao, ..., A,,,. Aerts et al. (2000) require that this collection/ofs satisfy

the following assumptions
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1. AyCAyC---CA,, and

2. N(A,,,) — oo insuch away that, for eadh, k) # (0,0) (4, k > 0), (j, k) isinA,,,

for all n sufficiently large.

The first assumption imposed on the index sets is requiretaacorresponding models
emulate the hierarchical (i.e., nested) fashion in whicldeh@equences are constructed
in the single covariate setting. Without this assumptian distributions of the resultant
statistics will, in general, depend on parameters of thé model, even whem — oo
(Aerts et al., 2000). The second assumption is needed i twdensure that the test is
consistent against virtually any alternativefg, Aerts et al..

Figure 1 shows four possible model sequences Aerts et abOjaflscussed for two
covariate setting described above. The first few modelserstiquences are graphically
represented by plotting the number of the step in which tlséskelements enter the model
for each indexj, k). For the model sequence depicted in Figure 1@}y ), ui(x2) and
the interactionu; (z1)u, (z2) terms are added in step 1; thatAs, = {(0,1),(1,0), (1,1)}.

In step 2 the following terms are added;(x1), ui(x2), us(xi)ui(xs), ui(xr)us(xe) and
us(x1)us(xe) so thatA, = {(0,1),(1,0),(1,1),(0,2),(2,0),(1,2),(2,1),(2,2)}. Note
thatA; C A,. This model sequence addg + 1 terms to the previous model at stgp
Inspection of (3.19) reveals that penalization againstvargimodel is linearly related to
the number of parameters in the model which, in turn, growserafast as the number of
models considered increases. This clearly limits the nurobmodels from this sequence
which can be compared with the null model and, consequeatlis based on this sequence
will possess undesirable power properties. This problefass severe in the sequence
depicted in Figure 1 (b), where onjy+ 1 terms are added at each step. Figures 1 (c) and
(d) are even more parsimonious. The sequence illustratégjure 1 (c) includes the main

effects corresponding to frequengwt step2;j — 1 andj interaction terms at ste}y. The
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sequence described in Figure 1 (d) is clearly the most parsous in that no more than
two new terms are added at each step. Aerts et al. (2000)tstdtdnere exist other model

sequences leading to omnibus tests.

The large sample results of the statistics reviewed in 8&@@&i3.1 can be generalized
to accommodate the multiple regression approach desciibis section. LetZj;, for
kE=1,...,N;andj = 1,2, ..., beindependent and identically distributed standard abrm
random variables wherd’;, = N(A;) — N(A;_,), forj = 1,2,... with A; = § and
A; corresponding to a suitable sequence of alternatives sithoae described above for
j=1,2,.... Then Theorem 1 of Aerts et al. (2000) generalizes Witlandr defined as

follows:

r  Nj

Vo=0, V=Y 37 (r=12,..)), (3.20)

j=1 k=1
andr = argmax{V, —2N(A,) : r=0,1,...}.

Since the techniques described in this section rely on manpetric smoothers, one
would expect that these methods are vulnerable to the cidimensionality. Aerts et al.
(2000) explain that that for an omnibus test that places dngesemphasis on agilcovari-
ates, the upper bound on the order of the series-basedadies) 1?,,, must not exceed
n'/?. The consequence is that higher order alternatives camnotdtuded in the model
sequence and hence the ability of these tests to detectrHigioggiency departures from
the null can quickly diminish as the dimension of thespace increases. This limitation
can be circumvented to an extent by formulating model secpgewith the ability to detect
specific departures from the null model.

Aerts et al. (2000) explain how to choose a path in a way tootisfgecific departures
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Fig. 1. Four examples of model sequences in two dimensions.
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of interest. For example, one can specify model sequenamsiér to test the adequacy of
the specified link function in a generalized linear modeé(Section 3.3.2) or the presence

of interaction whem(-; 3) is specified to be an additive model (see Section 3.3.2).

Additive models

Additive models are a well-known tool for circumventing th@se of dimensionality. Ad-
ditive models are formulated to provide an estimate of thegmal effect of a covariate on
the response. Thus, if one assumes an absence of interaffgots (or at least presumes
that such effects are negligible), then alternatives tatilemodel (3.2) can be constructed
using additive models. For example, in the two-covariaterggalternatives to (3.17) can

be written as

Ny, ws) = n(wy, x2; B) + Y djui(r1) + > dju;(wa), (3.21)

j=1 j=1
wherek, > k,_; andl, > [,_; forr =2,3,....

Aerts et al. (2000) refer to a type of test agiagonal testvhich is based on sequences
of nested models constructed from these alternatives. i®tdst Aerts et al. insist that
k. = 1, while letting k, increase byl at each step, so that; = {(1,0),(0,1), (2,0),
0,2),...,(4,0),(0,7)}. The resulting patH (k,,[.) : = > 1} corresponding to this test
proceeds along the diagondlk,, k) : » > 1} and hence the name “diagonal” test. Note
that in this strategy only two terms are added to each sulesgauiodel; however, as we
noted in Section 3.3.2, the number of additional terms mayvgwrithout bound. The
asymptotic distribution theory of Aerts et al. (2000) yeld, = (Z2 + Z3) + --- +
(Z3._, + Z2 ). This approach can be extended in a fairly direct way to nwodéth more

than two covariates.
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A goodness-of-link test

Aerts et al. (2000) describe how their method can be utilipetdst the adequacy of the
specified link. In this case the hypothesized model is cetdthwith alternative models of

the form

n(@1, x2) = n(x1, 22; 8) + Z pjui{n(x1, x2; B)}. (3.22)

JEA

This construction provides an alternative approach to élséstdiscussed in Section 2.6.
However, it seems worth noting that this formulation bearss resemblance to the tradi-
tional goodness-of-link methods discussed in the previtiapter. In particular, the;’s
play a similar role to the constructed variables utilizedha classical goodness-of-link
test reviewed in Section 2.6.1. Aerts et al.’s proposalrbtfediffers from the technique
reviewed earlier in that it utilizes nonparametric methtwiddetect departures from the link
function, while the traditional goodness-of-link testliggs generalized parametric link

models to detect departures from a proposed link.

The ‘max’ tests in models with any number of covariates

The ‘max’ test described in Aerts et al. (2000) provides a wiagonstructing an omnibus
test from multiple specialized tests. To clarify, consitleg two-covariate case in which

specialized alternative models are constructed as follows

(@, 22) =0z, 22:8) + Y djuy(an) (k=1,2), (3.23)

JEA
where departures from the null model are investigated fdy one of the covariates.

Clearly, such an alternative would useful only if one presarthatz; alone is respon-
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sible for lack of fit of the null model. However, by taking thearimum of the test statistic
values obtained by using this sequence of alternativesafdr ef the covariates separately,
one can obtain a test that is sensitive to departures fromulhenodel caused by either of
the two covariates.

Aerts et al. (2000) explain how the idea described above eaapiplied to models
with p > 2 covariates using sequences for alternative models desdniSection 3.3.2. In

this case, one would use the following alternative for eaaih@f covariates separately

(@, ..., xp) =n(x1, ..., 20 0) + Z O (2 )ug(xs), (3.24)

(J,k)EN
wherel < r # s < pandA is an index set formulated to follow one of the paths reviewed
in Section 3.3.2. The test statistic is then taken to be thémam of all d(d — 1)/2 test
statistics.

Finally, the level of a test constructed in a manner desdrédi®ve can be controlled
by using either Bonferroni’s inequality or by a bootstraptihoel. Aerts et al. (2000) ex-
plain that in situations where the number of covariateslarge, one might find a bootstrap
procedure preferable since application of Bonferroniggjmality will result in a very con-

servative test.

3.3.3 Bayesian-Motivated Tests of Function Fit

Aerts et al. (2004) propose a Bayes-inspired nonparantesiof (3.2). In particular, they
use the BIC approximation to the posterior probabilityfaf as a criterion for detecting
departures from the proposed null model. The motivationtligs approach is that one
would generally interpret a sufficiently small value of thi®bability as evidence refuting

the null model and would consequently be inclined to rejéctA Bayesian would directly
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use the estimated value of the posterior probability appraion to assess the plausibility
of Hy. However, Aerts et al. (2004) provide the asymptotic disttion for a statistic they
derived from the posterior distribution, so that one maysssignificance in a traditional
frequentist fashion. Aerts et al. (2004) to be the first pegrewed article to study lack-of-
fit tests based on posterior probabilities; however, a t@séth on this premise was studied

by Hart (1997) in the special case of Gaussian-based regnasedels.

Test statistic and distribution theory

Formulation of the posterior probability requires consadi®n of a collection of alternative
models denoted/,, ..., M, where eachl/; corresponds to a different parametric spec-
ification for the functiory). The model which assumes théy is true will be calledi,.
Lety = (1, ..., y,) denote the observed response values. With this notatioraweaply

Bayes’ Theorem to express the posterior probability of thiemodel as

ey My)pr(My) pr(M,) pr(y|M;) |
PULY) = s (V) {”Z y|Mo>}

(3.25)

{1 PYE, EM§ exp [log (pr(y| ;) — log <pr<y|Mo>>J}_

wherepr(1f;), 7 =0,1,..., K denotes the prior probability of th#h model andr(y|17;)
represents the marginal likelihood of the under tremodel. Evaluatingr(y|)/;) is often
difficult in practice. Aerts et al. use the following versiofthe BIC which is a well-known

and easily computed approximationmfy|)/;):
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l0g(pr(y|M;)) = log (o, pr(y|6;, M;)m(8,1M;)6; )
(3.26)
~ 1
~ log(pr(y|M;, 6;)) — imjlogn =: BIC;

wherepr(y|M;, 8,) is the likelihood corresponding to model; andrm; is the dimension
of model M;. Using noninformative priors for the model probabilitiélsat is,pr(M;) =

pr(My),7=1,..., K, (3.25) can be reexpressed in terms of (3.26) as follows

K -1
P(Mly) =~ {1 + 3K exp [BIC, — BICO]}
(3.27)
K -1
= {1 + ijl n—(1/2)(m;—mo) exp[ﬁj/Q]} =: TRIC
whereL; = log(L,/Ly), i.e., the log-likelihood ratio of thé/; and\/, models.

Clearly from (3.27), small values aP(M,|y) are evident in small values ofgc.

Furthermore, small values af;;c clearly correspond to large values of

S

n(l—m =" 3.28
Vn( BIC) T 5. v (3.28)
where
N K
So=Y exp{L/2}. (3.29)
k=1

It can be shown thal, can be approximated by the score statisti€ /a (1) written

explicitly in terms of Fourier coefficient estimators

n

ok == [y =V (n(x; BONin(x), k=1,....K (3.30)

1=1
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in whichu(-), k = 1,..., K denote basis functions that have been scaled to produce the
required orthogonality conditions (this approximatiodlwe discussed further in Chapter

IV). Thus, we may in turn approxima@n by

K n$2
Sn,BIC = Zexp { J } . (331)

k=1 2“(@0)

The quantityzgg?/a(zzo) is known to have the same limiting distribution as the ldglihood
ratio £, under the null hypothesis and general regularity condstiovhich suggests that
under general conditions the limiting distribution 8f is the same as that of, (Aerts
et al., 2004).

Tests based on (3.27) may be implemented in either a Bayesfeeguentist fashion.
A Bayesian would directly use the estimated value of thegrastprobability approxima-
tion to assess the plausibility éf,, while a frequentist would determine the null distribu-
tion of 7,,, and then reject, at level of significancex if and only if 7, is smaller than an
quantile of this distribution. Methods of the latter typeiarhare derived from Bayesian
principles, but used in frequentist fashion are referreasfoequentist-Baye@Hart, 2009).

The issue of choosing alternative modeéls, M, ... requires special consideration
for this test. As with all series-based tests, the alteveatiodels used to construct the test
are extremely important in ensuring consistency of thedgatnst virtually any departure
from the null model (see Section 3.2.3). Aerts et al. (20@Hsider two main types of

alternative models.

Nested alternatives

The first type of alternative model considered is the classested alternatives discussed
in Section 3.2.3. Recall that gs— oo, functions of the form (3.5) span the space of all

functions that are continuous ¢ 1]. Aerts et al. explain that as long &S tends toco
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at an appropriate rate with the sample size, this propeggmerally enough to ensure that
there exist tests based on the modéls . . . , M that are consistent against any continuous
alternative toH,.

Applying Theorem 2 of Aerts et al. (2004) to canonical lingression models implies
that whenng is constructed using nested models, then there exists aseg{/,}

tending to infinity such that undef,, we have

K -1
- 1
nt/2 |1 — {1 + Z exp (BIC; — BICO)} A exp <§Xf) (3.32)

j=1
asn — oo.

This means that the power of a test based on (3.27) and cotestrirom nested al-
ternatives will depend solely on the alternative of smaltimension. This conclusion
effectively defeats the purpose of applying;c using the nested alternatives of Section
3.2.3. Clearly, there is no added benefit to considering i@sef dimension larger than

p + 1 when constructingg;c.

Singleton alternatives

In an effort to rectify the apparent shortcoming of nestadrahtives noted above, Aerts
et al. (2004) formulated a class of alternative models wilngy refer to as singletons.
Singletons contain only one more parameter than the nulleing@; 3) and hence are not
nested within each other. To illustrate this class of alibwes in the case whergis a

function defined ono0, 1], a candidate for); is

n(x; B) + ¢; cos(mjz). (3.33)
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Note that this collection of alternatives does not necdgseontain n, even in the limit.
However, Aerts et al. (2004) argue that the resulting teBtusually be consistent as long
asM, is not the best approximation tgamong the\l,, My, Ms, . . .. In the case whergis
continuous ang ¢ N, there will exist & such that the MLE of, in n(x; 3)+ ¢y, cos(mkz)
consistently estimates a nonzero quantity. Aerts et almclhat such a property implies
the existence of a consistent test.

Under H, and regularity conditions presented in Aerts et al. (200 authors show

that whenS,, z;¢ is constructed using singleton models, then

Sn,BIC — aK i} S (3.34)
bk

asn and K tend to infinity, where in the notation of Samorodnitsky ardiqu (1994)S
has the stable distributio$} (1, 1,0) and

NS K Kag [ sin(z/ak)

g = —— -

2 /logK 7 ), z2/logz

The method used by Aerts et al. to prove the result quotedeatemuires that the number

dr, K=1,2,.... (3.35)

of alternatives k', approach infinity at a rate no faster tham'/®).

Comments

In principle, the alternative models considered need ndintiged to the two classes cited
above. In practice, however, there are limitations. Formgda, one intuitively appealing

class of alternatives is the collection of all models of thenf

n(x;8) + Y bju;(x) (3.36)

JeEA
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where A is an arbitrary subset df, 1, ..., K for someK. Note that this collection of
alternatives contains both collections of nested and singlalternatives as well as a vast
collection of other possible alternatives. Unfortunatelych alternatives are problematic if
K grows with sample size. In particular, this collection deahatives requires that<+!
models must be fitted, which becomes prohibitively large erickly.

The approach presented in Aerts et al. (2004) does have #eooiugrawbacks. First,
the asymptotic distribution for the test statistic is risfally complex making the test po-
tentially difficult to implement in practice. Also, this tekas some undesirable power

properties including an inability of the test to deté¢t/n-local alternatives.

3.4 Lack-of-Fit Tests Based on Laplace Approximations

Hart (2009) revisits the notion of testing lack-of-fit usistgtistics based on approximation
of the posterior probability of the null hypothesis in a fueqtist fashion. A key difference
in the proposal made in Hart (2009) from the approach inttedun Aerts et al. (2004) is
that the former uses the method of Laplace to approximateposprobabilities whereas
the latter uses BIC. The motivation for pursuing a teststiatbased on the Laplace method
is that it is known to yield a more refined, accurate approxiomeof the posterior proba-
bility (Kass and Raftery, 1995; Raftery, 1996). Conseglyeahe would presume that the
resulting test statistic will possess improved power pridpe over tests based on the BIC

approximation.

3.4.1 Model Assumptions

Another noteworthy difference between Hart (2009) and f\ettal. (2004) is that Hart
(2009) assumes a special case of the model conditions peeserSection 3.2.1 in which

the response is normally distributed. Consequently, thoageas presented in Hart (2009)
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is not justified for use in all models described in SectionB3.Z'hat is, the observations

Y, ...,Y, are assumed to be generated from the model

Yi=nx;)+e, i=1,...,n, (3.37)

wherex, .. ., x, are fixedd-dimensional design points, and the unobserved etiors. , =,

are independent and identically distributed\é@), o2).

3.4.2 Test Statistic and Distribution Theory

Under the assumption of normal response data, the null hgsi (3.6) is tested using the

following statistic

B, — ij exp <n¢2> , (3.38)

wherep; = m; /(1 — 7;). Itis assumed thaty, ..., ¢, are a priori independent with

wherer; < 1 for all j and, given that; # 0, ¢; has density), j = 1, ..., n. Furthermore,
given thatr; # 0, m; has density, j =1,...,n

Now suppose thag is Lipschitz continuous around and there exists < 1 such
thatE] 17r] < oo. Hart (2009) proceeds to demonstrate that urderocal alternatives

defined asp; = %)\j, n=12..,7=1,...,nwhereitis assumed that — oo as

j — oo, B, converges in distribution to

Z — exp [(Z; + \;/0)?/2] (3.40)

Jj=1



71

which is an almost surely convergent series (Cline, 1983ra/H,, 75, . .. are i.i.d. stan-

dard normal random variables.

3.4.3 Comments

Simulation studies presented in Hart (2009) demonstratettie frequentist-Bayes tests
presented therein have good power against a wide varietyepértures from the null
model. In comparison to other well-known omnibus tests, dineulation results reveal
that this test has superior power against high frequeneyraltives while performing com-
petitively against low frequency alternatives. The omsitests against which the Laplace
based test was compared included two particularly relavanadaptive tests as well as an
adaptive test which utilizes a selection criteria based conapromise of the AIC and BIC
proposed by Inglot and Ledwina (1996). Such power propeetie remarkable given that
examination of (3.38) reveals th&, is nonadaptive.

Hart (2009) notes that modification of the statistic and itsiting distribution are
required in order to ensure that use of this statistic isdvilir more general models. As
we will demonstrate explicitly in Chapter 1V, when applyibgplace approximations to
more general models, the statistic analogou®towill be a weighted sum of likelihood
ratiosfo/fj, whereL, andfj, j =1,..., K, are maximized likelihoods of the null and

K alternative models, respectively. Writiny = 2Iog(f0/fj), we have

L (L,»)
—-— = €&X — s 341
7 Pl (3.41)

and if the null is nested within each alternative, then ursi@ndard regularity conditions
eachZ; will have an asymptotig? distribution under the null hypothesis. In short, the
“sum of exponentials” phenomenon can be attributed to twtofa: (i) the use of a poste-

rior probability to testH,, and (ii) consideration of more than two models. When thé nul
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is compared to just one other model, our frequentist-Bagstss essentially the same as a

likelihood ratio test.

3.5 Nonadaptive Tests

To this point we have neglected to address a key charaatehat distinguishes the various
tests described above. Examination of the tests derived frasterior probabilities reveals
that neither requires explicit specification of a truncagmint. It is worth noting that the
proposals of Aerts et al. (2004) impose a a condition on ttee shgrowth of the order
of the sum relative to the sample size. A consequence of egsion of a Gaussian
response in Hart (2009) is that no such constraint is reduire

This differs from the approach of Aerts et al. (1999) and Aettal. (2000), which
are both based on data-driven selection of the truncationt.ptests utilizing data selected
values of a smoothing parameter (in our case, the truncatdamt) are often referred to
as “adaptive” tests, while tests that do not use data-drixzdues are, of course, called
“nonadaptive”. Hart (2009) explains that nonadaptivestéstve been generally dismissed
in favor of well-constructed adaptive tests because thedotend to have good power only
against certain types of alternatives. This has been damaded in simulation studies as
well as in formal analysis of power under local alternatifigsbank and Hart, 1993; Hart,
1997). Consequently, the power properties reported fomibéhod introduced in Hart
(2009) are particularly striking in that they defy the geallgraccepted notions regarding
the relative performance of adaptive and nonadaptive.tests

To clarify which aspects of his proposed method are resptafir the superior power
properties, Hart (2009) compared the formulae of three dapiive tests in the case of
Gaussian response models. In the remainder of this sectonilvreview some of con-

clusions reached in that comparison. Table 2 shows the famrfar the statistics of Hart
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(2009), B,,, to the BIC-based statistic of Aerts et al. (2008),5;c, and a cusum-based
statistic similar to those discussed in Section 2.4.2 esgm@ in terms of Fourier coeffi-

cients (see Hart (1997)). Brief inspection of Table 2 reseather obvious similarities in

the forms of these statistics. This resemblance is paatilyuinteresting because both of
these statistics have been reported to have unsatisfgudargr properties; however, Hart
(2009) explains that the ways in whidh, differs from the BIC and cusum statistics actu-
ally lead to improved power. Consequently, this comparisads to new insights regarding

the apparent deficiencies of the BIC and cusum statistics.

Table 2. Three nonadaptive lack-of-fit statistics.

Aerts, et al. (2004): Sp,BIC = Zszl exp {nQAﬁz/%f\z}
Hart (2009): B, = Ele Pk €XP {’I’L;;i/232}
cusum approximation: Cp =255 wynd? 5>

In comparing the form of the Laplace based statistic in (Bt88hat of the BIC based
statistic in (3.29), one sees that the latter is sum of expieted squared, normalized
Fourier coefficients while the former is composed ofveightedsum of exponentiated
squared, normalized Fourier coefficients. It turns out thatsuperior power reported for
the Laplace based statistic is a consequence a stabiliffetg ef these prior weights (Hart,
2009). These prior weights have the added benefit of allowiegnvestigator to adapt
the test in order to detect specific departures from the naollieh Alternatively, using
noninformative priors yields omnibus lack-of-fit stattsti Finally, a consequence which
is evident in the derivations presented in Hart (2009) i¢ tha arises naturally from a

posterior probability constructed from generally formathBayesian model averages. On
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the other hand, the formulation of the posterior probabuged in Aerts et al. (2004) was
limited to singleton models. Hart (2009) comments that sucklels would rarely be used
in function estimation, which in turn makes the formulatfoom which the BIC based test
statistic was derived seem somewhat contrived by compariso

A similar comparison of the form oB,, to that of C,, reveals that’,, is a weighted
sum of squared normalized Fourier coefficients while is cosep of a weighted sum of
exponentiatedquared, normalized Fourier coefficients. Hart (2009) ébtlmat in the spe-
cial case wherg; = w;,, = j7%,j = 1,...,n, B, has better overall power tha,. The
superior power properties @f,, against higher frequency alternatives have been attdbute
to the exponentiation of the Fourier coefficients (Hart, 200This discovery led Hart
(2009) to conclude that the deficiencies reported for thermmustatistic are a consequence
of using a relatively ineffective function of each Fourierefficient rather than excessive

downweighting.

3.6 Discussion

In reviewing the literature on series-based tests of fit weliaund that adaptive methods

share the following features:

1. they are generally easy to implement;

2. most possess desirable power properties;

Furthermore, we noted that nonadaptive tests typicallyatshare these properties with
the notable exception of the Laplace based statistic readaw Section 3.4.

One point that we touched on briefly in this chapter is thaesdrased lack-of-fit tests
for generalized linear models have been inspired by wetlbtished tests for Gaussian-

based models. In the next chapter we will pursue this lineasoning and revisit the recent
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proposal of Hart (2009) in the context of generalized limaadels. Given the relative ease
of implementation of this method as well as its desirable grquvoperties reported in Hart
(2009), we contend that such a development presents a pngnusection for further
research. Thus, we intend to propose an analogous statisioh is suitable for testing
the fit of generalized linear models as well as provide justifon that has not yet been

presented in the existing literature for such a proposal.
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CHAPTER IV

A LACK-OF-FIT TEST FOR GENERALIZED LINEAR MODELS BASED ON
LAPLACE APPROXIMATION

4.1 Overview

In Chapter 11l we reviewed several series-based lack-defits. Among the methods re-
viewed, we discussed two that share a special distinctitimaitthey are both derived from
approximations of the posterior probability of a hypotkesimodel (i.e., null model). The
method of Aerts et al. (2004) applies to a rather generasdémodels, but as we reported
previously, it has several shortcomings. Hart (2009) prissa lack-of-fit test that over-
comes the shortcomings of Aerts et al., but the class of )sddewhich the method was
formulated was limited in comparison to the model assumigtamnsidered by Aerts et al.
In this chapter we will apply the ideas from Hart (2009) to tfemeralized linear model
conditions addressed in Aerts et al. (2004). Thus, borrgwiomcepts from both sources
we will obtain a lack-of-fit test for generalized linear mégithat retains the desirable prop-
erties cited for Hart's method.

In Section 4.2 we will state the general model assumptiodsigstuss suitable alter-
native models for developing our test (see Section 4.2.d }la@ appropriate orthogonality
conditions (see Section 4.2.3). In Section 4.3 we will folatel the posterior probability
of a hypothesized model and subsequently derive the téststander the assumptions of
Section 4.2. In Section 4.4 the properties of the statibs®d on likelihood ratios and their
null-equivalent score statistics will be studied. Thisrakaation will include identifying
the appropriate limiting distribution for each statistitdaexamination of the score-based

statistic’s power against local alternatives (see SedidrR).
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4.2 Model Assumptions and Inference Problem

Suppose the dai;, y1), . . ., (x5, y,) are observed, whese is a vector of covariates and
y; is a scalar response. Our focus will be on canonical linkeggjon models which were
introduced in Section 1.2.3. Assuming the covariates toxeelfand the observations to be

independent, the log-likelihood function can be written as

= > {lun(x0) = b (xo)] /() + ey, )} @4.1)

wherea(-), b(-) andc(-) are known functions; is an unknown function and an unknown

dispersion parameter (see Section 1.2). We consider gesgnnull hypothesis

Hy : n(x Zﬁm ) =n(x;8), (4.2)

wheren, ..., y, are known functlons, an@ = (41,...,05,)" is an unknown parameter
vector. Note that an intercept term can be accommodatedfbyrdey, (x) = 1, Vx. The

asymptotic maximizer of the expected log-likelihood

—Zb’ (x:))n(xi: B) — b(n(x:: B)), (4.3)

with respect tq3 is denoted3’ = (37, ... ,ﬁg) , Which is the true parameter vector when

H, is true and provides a best null approximatiomt@hen H, is false.

4.2.1 Alternative Models

We will pursue an omnibus test of (4.2). Put simply, this ieggithat the test we develop
has the ability to detect departures from (4.2) within a weide class of alternative models.
To this end, we will consider a collection of alternative retsdwhich differ only in their

specification ofy(x) andv; that is, for each alternative, the data will be assumed e ha
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log-likelihood given by (4.1). Furthermore, these altérreaformulations ofy(x) need not
be nested within each other.

The specific forms of our alternatives will be based on Fatigipe regression mod-
els. Lettd = {uy,uq,...,ux} WhereK < n — pis a fixed, user-specified integer and
uy,us, . . ., ux denote basis functions such as cosines, wavelets, or amiabgolynomi-
als. Now form = 0,1,..., K, definen,, = (%) and letS,.1, ..., Syn,, be then,, subsets
of {1,..., K} of sizem. For eachn andk, let S, = {1,..., K} \ S The alternatives

considered will be of the form

Tok(x) =0 B8) + Y djui(x); k=1, ny, m=1,... K, (4.4)

Jesmk

where forj € S,,,, we haveu; € U; that is,u;’s used to estimate each alternative will be
limited to the pre-specified collectidn. Inspection of (4.4) reveals that the null hypothesis
(4.2) is “nested” within each of the alternative models. aetfby definition ofS,,,;, for
m = 0, we haveSy; = (0 andny (x) = n(x;3), wheren(x; 3) denotes the null model
defined in (4.2). This is an important feature of these adtiévas which will be utilized in
the development of the test statistic and its samplingidigion.

For notational convenience, léf,,, denote the probability model corresponding to
Nmi fOrk =1,....n,, m=1,..., K and letM, denote the model corresponding to the
null hypothesis (4.2). Furthermore, the log-likelihoodresponding to each model will be

written as follows

LM ¥ Z{ Yittmk (%i) = (i (x0))]/ () + (i, )}, (4.5)

which reflects our desire to have the competing specificatadr{4.1) differ only in their
specification of the linear predictor, agd

We now discuss some issues that must be considered regdfdifgom the above
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formulation, K can be regarded as the highest frequency considered in tireeFtype
alternatives characterized by (4.4). Thus, one would sipide inclined to prefer that
K be fairly “large” so that we have some assurance that thenuoiad\/,, M,,.;., k =
1,...,n,, m=1,..., K should come close to spanning the space of all possibifities
7.

It would appear that a test statistic based on the alteemtyecified in (4.4) pro-
vides a means of detecting a wide range of departures figrand would hence provide
assurance of an omnibus test. Unfortunately, alternativéats specified by (4.4) have a
major defect. Such alternatives become problematic bectligsnumber of models that
must be fitted isZTKn:0 n,m = 2K, which will clearly be large ifK is chosen to be large
(as suggested above). The number of alternatives whichleugted to the data becomes
prohibitively large even for relatively small samples. pis the fact that the collection of
alternatives defined by (4.4) is impractical, this defimtgrovides a conceptually useful
starting point for developing a test statistic. During teeelopment of the test statistic we

will revisit this issue and address it as we derive the statis

4.2.2 Notation

We will now introduce some notation in order to obtain morevamient and concise ex-
pressions for the models defined thus far. We start by notiagthe problem we have
described so far bears a striking resemblance to a varialdeteon problem presented in
Wang and George (2007), so some of the notation which folluagsbeen inspired by that
reference.

Fork =1,...,n,, m=1,....K, letT,, = [[" U,x] be ann x (p + m) matrix,
wherel’ = [y; vy -+ ), With v; = (v;(x1),7j(%2), ..., 75(x)) " for j = 1,...,p and
similarly, U,.x = [uj]jes,, With w; = (u;(x1),uj(x2), ..., uj(x,))" for j = 1,... K.

Accordingly define,., = (8", ¢,,,,)", whered = (61,...,5,)", andd,, = (¢5)]cs, -
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The vectord,, is (8T,0%1)T, while 6° = ((3°)T,0%)" denotes the maximizer of (4.3)
when parameterized as a functionéfWith this notation we expressunder model,,,;.
fork=1,...,n,, m=1,...,K as
i (X) = 1(x;B) + D dju;(x (4.6)
JESmk
Now note that maximum likelihood estimators of these patamsevill depend on the

specific model fit to the data. In order to distinguish par@mestimates from various

models, leB,, = (8%, #%,)", whereB,.x = (Bukis - - - Bonkp) ™ aNAPys = (@)}esmk
denote the corresponding values estimated for maflgl from the sample data angl,,
denotes the value of,,, estimated by substituting,,» and @, into (4.6). Finally, the

estimated value of the dispersion parameter under magglis denoted byx(@mk).

4.2.3 Orthogonality Conditions

To produce test statistics that are meaningful and powenrfelimpose the following or-
thonormality conditions which were introduced in Aerts &t £004) to accommodate

models such as the type described in Section 4.2:

Z’yj X'l uk’ XZ (n(xlﬂﬁo)):07 j:]‘727"'7p7k:]‘727"'7K7 (4'7)

and

1<~ 0 1 ifj=k,
= W (i B)uy (i Ju(xi) = (4.8)
(g 0 ifj#k.
In practice, an approximation to (4.7) and (4.8) can be oethias follows. First, ob-
tain(3°, ¢'°), the maximizer of the null likelihood function, and lét be then x n diagonal

matrix with diagonal elements (n(x;; BO)), i=1,...,n. We assume tha" converges in
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probability to3°. Now, choose a set of functions, v,, . . . that are a basis for all functions
of interest and leV = [vy, va, - - -, vi| Wherev,; = (v;(x1),v;(X2), . . ., vj(x,))" for j =
1,..., K. Then apply a Gram-Schmidt procedure to the columns of theimﬁml“ V]
to obtain a collection of vectorg,, v, . .., V. Finally, takingu; = \/n x /W—WG]— pro-
duces a collection of vectois; = (u;(x1),u;(x2), ..., u;(x,))T forj = 1,..., K with

components which possess the desired properties.

4.3 Derivation of Test Statistics

To test the null hypothesis (4.2), we shall consider the @ggr presented in Hart (2009).
This requires that we first propose a prior distribution Fe Eourier coefficients,, . . ., ¢k,
and then compute the posterior probabil®(,/,|D), of the null model which is denoted
by M,. One would be inclined to rejed, when the statistid®(1/y|D) is sufficiently
small. A frequentist would determine the cutoff point fofe@ion by deriving the fre-
quency distribution ofP(1,|D) underH, and then choosing an appropriate Type | error
probability.

In order to simplify our subsequent discussion and deoweti we will not consider
assigning a prior to the dispersion parameteriowever, sincéi, can be characterized in
terms ofgy, . . ., ¢ (see Chapter Ill), the Fourier coefficients are the pararsetfgrimary
interest. Thus, imposing priors on these parameters isigaki@ formulating the posterior

probability.

4.3.1 Applying the Laplace Approximation

We now consider the general recommendations made in Ha@OjZ0r modifying the
Laplace approximation approach presented therein sottisaappropriate for the condi-

tions assumed in Section 4.2. It will be assumed that. ., ¢ are a priori independent
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with

wherer; < 1 for all j and, given thab; # 0, ¢; has density, j =1, ..., K.
We will assess the validity off, in (4.2) by calculating its posterior probability. From

Bayes Theorem we can express the posterior probabilitypés follows

P(M0|D)=Z%:{1+Zi 11 (17_”%)Bmk} : (4.10)

where
po(D) = P(D[M,) [J(1 = 7). (4.11)
7j=1
K nm
pmarg( +Z P D|Mmk’) H Uy H (1_7Tj)7 (412)
m=1 k=1 JES K jegmk

andB,,, denotes the Bayes factor defined as follows

 P(D| M)
with
P(D|Mmk):/o pr(D|Opi, Myi) X [ 9(65)d00i. (4.14)

jesmk
In the above expressions tii® denotes “data” and®’(D|)M) denotes the marginal likeli-

hood for the data under modl while pr(D|6, M) denotes the conditional distribution of
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the data, given modél/ and its parameter. Note that when viewed as a functichafe
typically refers topr(D|6@, M) as the “likelihood” off. In our casepr(D|0,,x, M)
exp{l(Nmk, )} wherel(n,.,, ) was defined in (4.5).

We now apply a common variant of the “pure” Laplace approxiamain which the
prior is evaluated at the maximum likelihood estimatefofather than at the posterior

mode; see Kass and Raftery (1995). This yields

P(D[Myy) & (27) 2| T 1 (8,1 [V2Dr(D| ik, M) % e, 9(05),  (4:15)

WhereJmk(émk) denotes the Hessian matixl(n,.x,v)/00,,,00F, evaluated af)Amk;
Jo(éo) is defined similarly. That iS]mk(§mk) andJO(éo) represent the information matri-

ces for models\/,,,, and M,, respectively. The approximation given in (4.15) implies

@m) R (0,) [ 2 Pr (DO, Myk) [jes,, 9(05)
(27)P/2|.J5 1 (80)[/2pr(D| 8y, My)

~1/(p 1/2 ~

In equation (4.16L,,,, = 2|Og(pr(D|§mk, Mmk)/pr(D|§0, My)) wherepr(D|§0, M,) and

mk

(4.16)

pr(D\émk, M,,.1), are the maximized likelihoods of the null mod#fy, and the alternative
modelM,,,,., respectively. Note that,,,;. is the standard likelihood-ratio test statistic which
will have an asymptotig? distribution under the null hypothesis whafy is nested within
M, and standard regularity conditions hold. Models as definegkiction 4.2 are nested
and are known to satisfy standard regularity conditions.

From inspection of (4.10) it is clear that the frequentist that rejectdd, for small

values of P(M,|D) (i.e., P(Mo|D) evaluated aB,; k = 1,..., 10y, m = 1,...,K) is
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equivalent to one that rejects for large values of

K nm
(2m) 2y ( I1 - f;_) Bt (4.17)

m=1 k=1 JESmk

Thus, applying the approximation from (4.16) leads to repecof H, for large values of

K -1(g \|1/2
_ o) ok (O [Y L
Enx =) 2m) ™2 [T (4 (EUT iy E T A PR
K (27) =9 AN (4.18)

JE€Smik

We now examine how the limiting distribution &, , depends on the collection of
alternative models used to construct it. The following tleeowas inspired by Theorem 1
of Aerts et al. (2004).

The following are assumptions needed in our proofs of the@leresults presented

throughout this chapter:

Al. The design pointsy, ..., x, are fixed and confined to a compact sukSef R¢ for

all n.
A2. The functionsy,, . .., v,, u1, us, . . . satisfy the following conditions:

(i) There existsB; < oo such that

sup |y;(x)| < B; and
1<5<p, xS

(i) there exists a sequence of positive constgits: j = 1,2, ...} such that

sup  |u;(x)| < B, K=1,2,....
1<j<K, x€8

A3. The functionsuy, us, . .. satisfy (4.7) and (4.8) and,, . . ., ux are constructed from

Y155 Yps U1, V2, ... @S described in Section 4.2.3.
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A4. The dispersion parametefi) is positive, and fok = 1,...,n,,m=1,..., K the
MLEs zzmk and@n;C of ¢y and@,, respectively, are such thE!(a(@mk) —a(vyp))? and

E||6,., — 6o ||? exist and are each (n1).

A5. Let B be the parameter space f@r There exists a compact, connected subself B

such thai3® € A and, for eackx € S, n(x; 3) is a continuous function g8 on \.

A6. The functiorb is such that” is nonnegative antl” exists and is bounded by a constant

B; forall gand allx € S.
A7. The prior density o, g, is bounded and Lipschitz continuous foe= 1, . . ., K.

A8. n7'Jy(6y) — J; asn — oo whereJ; is somep x p positive definite matrix.

Assumptions Al.-A6. are based on conditions imposed insfetral. (2004), A7. is
a condition used in Hart (2009), and A8. is a necessary assamphich is discussed in

Fahrmeir and Tutz (2001).

Theorem4.3.1 Let A be a set containing only the finite collection of modéls, ., k£ =

1,....,n,, m=1,..., K defined in Section 4.2.1. Then undég, we have

K

02 E, i % g(0)a (o) Y : Tk exp(V3,/2) asn — oo (4.19)
— Nk
k=1
whereVy, ..., Vi are independently distributed random variables each bahiey? dis-

tribution.

Proof. Throughoutthe prooflef;, Cs, . .. denote positive constants that depend on neither

n nor K. We will make use of the decompositiéf, x = A; + A, where

K A 1/2
_ Tk N | Jii, (O1x)] {ﬁ}
Ay = Z 1 7rk9<¢k) <7|J0_1(§0)| > exp (4.20)

k=1

and
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K nm - N -1/ \|1/2
Ay =" " (2m)m VP2 ( 11 1_7%9(@)) Me}(p {%} . (4.21)

5ESm |5 (8o)['/2

Defining

~ ~1/2
Dn e — eXp - 9
[n=1Jo(6o)] 2

we now show that\, = 0, (1):

K nm . R
Ao =303 emm (,H fﬁjgw) "D,

m=2 k=1

K Nom,
<o S S (I 2 o

= Con'0,(1) = Oy(n7t).

In the above calculations, the first inequality follows freime fact that,~™/2 < n~!
for m > 2, while the second inequality follows from A7.; that is, tlaef thatg is bounded
by a constant, call it";. The concluding equality is a consequenceqb{L,../2} =
0,(1) and [n " ok (Bi) | /In "1 Jo(80)| = O,(1), while exp{Li/2} = O,(1) follows
from the fact that if a sequence of random variables congargdistribution, then it must
also be bounded in probability (Serfling, 1980). Undéy we are assured by McCul-

lagh and Nelder (1989) that,., has a limiting chi-square distribution witth degrees
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of freedom, which leads us to conclude that the sequencg,($). The assertion that
10 e (B | /I Jo(80)| = O, (1) will be addressed in the subsequent discussion.
We will now examine the limit of the ratin =" J,..(6,)| /|~ Jo(8o)|. First, under

the assumed orthogonality conditions (4.7) and (4.8),tf@mation matrix simplifies to

_azl(nmka 'QD)

T aa292T Omxp
Pl | PP

Tt (O) = _
(Omi) 90,007,

(4.22)

0pxm (n/a(¥)) I

where

825(77mk,¢) _
98,08,

a(ip) Z {VT(Xi)Vq(Xi)b”(ﬁmk(Xi))} forallq, r=1,...,p.

and/,, is them x m identity matrix. According to Theorem 13.3.8 of Harvillecafrom

examination of (4.22), fok = 0,1,...,n,,, m=1,..., K we may write

—m

1 Ol (M {p\mk)

n_IJmk(émk)‘ = <a($mk)) n  0B0BT

(4.23)

Now observe that sina@,.;, is consistent fof, by assumption A4. and that=J,,,; (8, )|
is a continuous function d,,;., we may apply Theorem 1.7.ii on p. 24 of Serfling (1980)

and assumption A8. (with some algebra) to (4.23) and get

0" ik (B) | 2 (alo)) ™™ [ ] (4.24)

~

Finally, J; is assumed to be positive definite, so thét > 0. Thus, noting thaltn = J,,,x(0,,.1.)|
converges to a degenerate random variable, we may appk$®itheorem to conclude

that



88

[0 Tk (Bt |/ 10" To(80)| B (a(tho)) ™. (4.25)

Moreover, it is now obvious that =1 J,..x (B )| /|01 J0(60)| = 0,(1).

To conclude this proof, we now argue that

K
NN g(0)a*? (1) Z l ik exp(Vi/2) asn — oo.
k=1
Rewrite/nA; as
VAL = Ay + Apin + Ao (4.26)
where
Ko r L
_ 1/2 k Lk
Ao = 0000 S e { G @.27)
i oo | @0\ [ L
Apii = g(dn) — g(0)| [ 2Tk exp {—} (4.28)
o L In=1Jo(6o)| 2
and

K _1 ~ -1/2
Ao = g(0)a () 3 - o [(a(%)nﬁwm)> _ 1} exp {%} (4.29)

1= n=1J5(8)]

First note thay is Lipschitz continuous by A8. so that for some constant- 0, \g(ggk) -
9(0)] < Cilgg| = O,(n"'/2). HenceA,;; = 0. Furthermore, from (4.25), we have
L1 (010)] /I~ o (80)| 2 (a(o)) ™t asn — oo, and saA 15 % 0. Finally, L1 - V4

asn — oo by the more general result on the convergencg,gf cited above. The desired
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convergence follows from Slutsky’s Theorem. O

Theorem 4.3.1 shows that, x (or equivalently, the Laplace-based approximation of
the posterior probability of{,, P(M,|D)) generally depends only on the models having
the smallest number of elements. This is the same conclosemied in Aerts et al. (2004)
for the test statistic considered therein. So wlifile, provides a model average over a
wide collection of possible alternative models, one maytlatiention to a specific subclass
of models and produce an asymptotically equivalent statigthis observation motivates

consideration of the following test statistic

3L Q1200 T3 Lk
Sk =) Y TG | ) (4.30

K
where Ly, = 2|Og(pr(D|§1k,Mlk)/pr(D|§0,M0)). From inspection of (4.30) it is ap-
parent tha@lﬁ is composed of likelihood ratio test statistics comparidgto My, k =
1,..., K. This fact was noted in Hart (2009), however, its applicatmmodels described
in Section 4.2 was not pursued in that paper.

Referring to Theorem 4.3.1, we see that the prior dengityesults in a multiplicative
constantg(0), in the limiting distribution ofgfg. Thus, g appears to be of little benefit,
which in turn leads us to takebe a constant (i.e., the improper uniform prior). Likewise,
we observe that'/2(i,) also results in a multiplicative constant. Furthermaré? (i)
does not account for the influence of the added terms comelsp® to singleton alterna-
tives. Ultimately, we may drop the multipliers/?(1y) andg(¢y), k = 1,. .., K from Sk
to further simplify the test statistic. This leads us to thkoiving statistic, which we will

refer to as the “Bayes sum” statistic

L ~ Tk Ly,
SKzzl expy 5 (- (4.31)

k=1
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Given the definition of\/,,,;,, we can see that each alternatiMg, has the form
n(x; B) + dpup(x), k=1,... K. (4.32)

These types of alternatives were considered extensivélgits et al. (2004) and are called
“singletons”. They have the noteworthy feature that thaytam only one more parameter
than) (i.e., a single Fourier-type coefficient). Furthermoragcsieach singleton contains
M, theL;’s can be viewed as valid likelihood ratio test statisticgs(aming the necessary
regularity conditions hold).

Further reassurance that tests basefowill be effective (i.e., sensitive to departures
from M,) is provided by Aerts et al. (2004). Aerts et al. (2004) nbi for tests based on
singletons to be consistent, it is usually enough that tisé dggproximation t@y among the

models entertained is not the null model.

4.3.2 Score-based Test Statistic

In practice, applyingS% involves computingX likelihood ratios, which in turn requires
fitting the null model plus each of th& singleton alternatives under consideration. Since
we wish our test of{, to be nonparametridd should be fairly “large” and consequently
the computational demands of fittidi§+ 1 models could prohibit use ¢f%. To circumvent
this potential obstacle, Aerts et al. (2004) proposed aesanrlog of their BIC statistic.
The score analog is obtained by replacing each ofifHéelihood ratio statistics with its
corresponding score approximation (i.e., score sta}jstibich is known to have the same
limiting distribution under the null hypothesis and gemeegularity conditions. The score
statistic is computationally preferable to the likelihaatio statistic in that it only requires
estimation of the null model.

In order to see how the rationale described above can beedpgliSL we start by

noting that fork = 1,..., K, £, can be viewed as the likelihood ratio test statistic for
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testing the following hypothesis

Ho: ¢y, = 0. (4.33)

Recall from the discussion of Section 1.3.3 that undgand general regularity conditions
L1 can be approximated by a quadratic form composed of thenrdbon matrix and the
score function evaluated at the MLE of the coefficients frdw@ ull model (see Section

1.3.4). The asymptotically equivalent score statisticloamexpressed as follows
Se = [s(@))"I(O})s(81)

n 2 (4.34)
= % Z P b/ Xza ,60))]uk:(xz) )

wheres(-) is the score function and is the Hessian matrix. Note th&j, simplifies since
the firstp elements oﬂl(mk, ¢0)/8elk are( by definition of the MLE.

Now recognize thaP Z = U (n(x; ﬁo))]uk(xi) is a one-step estimator gf, ob-
tained by taking the |n|t|al value af,, to be0 (as specified byH,) with the estimate o8

computed assuming, to be true. Applying the definition presented in Section 1.3

(a(izo)FTW(éo)F> h Z[yi — ¥ (n(xi; B°))|T (4.35)

where
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Ol )
0BoBT

with W (3) = diag{w,(8), .. ., wa(B8)}, andw;(B) = b" (x(x;)).

Hence we define

= (I'"'w(B)I) (4.36)

n

O = g Dl =¥ lnles F)utx), k=1, K (4.37)

Finally, the above observations lead us to define the stafigt by

- Tk ”CEZ
Sk=)_ e . (4.38)

2a(¢°)

From the above discussion, it is clear that the quantiy/a(¢°) has the same lim-
iting distribution as the log-likelihood ratié,;, under the null hypothesis, which suggests
that under general conditions the limiting distribution$ff is the same as that dofy.
Thus, in the following discussion, we limit our attention§g recognizing that the same

result will hold for S%.

4.4 Statistical Properties, Asymptotic Distribution Theay

Our study of the large sample distribution theory for the &agum statistic is divided into
two parts. First, we will examine the asymptotic propertaéthe Fourier-type coefficients
under local alternatives. We will then examine the implmas of the observed properties

on SE andSk.

4.4.1 Asymptotic Behavior of Fourier Coefficients

We now examine the limiting behavior of the statistics pnésd above. We will need the

following assumption for our subsequent theorem:
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A9. E(Ej — &) =0(n"),j=1,...,p+ K, where the;s andgjs are the coefficients
arising from application of the Gram-Schmidt process foown and estimated,

respectively.

Theoremd.4.1 Fork = 1,..., K, whereK is any positive integer, defirfﬁ}C asin (4.37).

Assume that the functionin our generalized linear model has the form

K
(%) = n(x;8°) + Y dju;(x) (4.39)
j=1
where
¢k:j’%,n=1,2,...,k=1,...,K, (4.40)

with |¢5| < oo, k = 1,..., K. Suppose also thatax;<;<, E[y; — b'(n.(x;))]* < oo
uniformly in n. Then we have
NG
)

asn — oo Whereg* = (¢%, ..., ¢%)" andx is the K x K identity matrix.

(61, 0x)" 5N (al/%w())d)*, IK) (4.41)

Proof. Throughout the proof lef;, (s, . . . denote positive constants that depend on neither
n nor K. Our approach will be based on examining the componentseofdhowing

decomposition of the Fourier coefficient estimators:

gk = %c + €1 + e + 3 (4.42)

where fork =1, ..., K,
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S :_Z O (1 () s (%),

€1k Z b/ nn Xz - b/ (XZJ /30>)]uk(xl)7

(4.43)

ek Z n(xi; B%)) = b (n(x:; B°))Jur(x2),

s =5 Sl =¥ 10 B)kx0) = a(x0)

The following proof will be organized into two main parts:

(a) showing that the estimated coefficietz?mcan be approximated b&k (i.e.,eir, e,

andes; are negligible relative téfk); and
(b) obtaining the joint large-sample distribution of tE@s

In addressing part (a), we start with, and observe that under local alternatives, for

k=1,..., K we have:

W (ma(x:)) = V' (0(xi38°)) = (na(x:) — n(xi; 8°)0" (n(x:; 8))

) = noxi 80" i)
(4.44)

=" (n(xi;; 8%)) Z Pjui(x;)

_'_ b/// A(l

2
Z(bjuj X ] ’
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|

where7);’ is some point interior to the interval joiningx;; 3°) andn, (x;). Thus,

e =k +0(n"), (4.45)

where we have used A2 (i), A6, (4.8), and (4.40).

We now examines,.. Applying a Taylor's expansion, we obtain

== Z [(n(xis B%) = nixis B (n(xi; 8°))
(4.46)
1 2 /
5 (105 B%) — (i 89" ()] wn(x)
whereﬁi@) is some point interior to the interval joiningxi;ﬁo) andn(x;; 8°). The as-

sumed orthogonality conditions (4.7) imply that (4.46) glifes to

e%———z xi; B°) = n(xi; 8°)% x B (7 Jun(x:), (4.47)

and we have

n 1/2
ex] s(%Zb’"(%”)?ui(x») e (i3 B°) — n(xi; 8°)) /2

- 1<i<n
=1

(4.48)

< G)|B° - B2 = Oy(n71)
where the last line follows from A4 and AG.

Now by assumption A9, we may writg; in terms of coefficients obtained through

the Gram-Schmidt process and find:

Zp+k(5zk Er) 2 Sy — U (x4 B°)]vs(x:) = Op(nY). (4.49)
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The limiting behavior follows from the fact thaty """, [y;—b' (n(x;; BNv;(x;) = Op(n=12),
which in turn follows from decomposing>"""_, [y; — b/ (n(x;; ﬁo))]vj (x;) inamanner sim-
ilar to our decomposition crbk in (4.42) and examining its components in essentially the
same way that we have analyzeg ande,.

We now proceed to address part (b). By applying our findingmfpart (a) regarding
the rates of convergence fer,, e, andes,, we find that for any arbitrary real-valued

constant$,, ..., bx, we have

Z \/_Cbk Z \/_¢k Z \/ﬁelk

— a1/2 ?/)0 a1/2 wo a1/2
u \/_e \/_e
2k 3k
+;b al/2(¢) Z al/2 (4 (4.50)
K ~ K &
— Z +Y be——E— +0,(1).

= a1/2 = a1/2(¢0)

Furthermore, for some poifton the line segment connectimgzzo) anda(y°), we may
write
1 1 1 1

ey o) W T el — el (@5

so that by assumption A4, we find that

V1o
kz_: * a1/2(30) kZ:: ka1/2
(4.52)

X -
=D b~ a0 Zbk (7 +Op(n~'1?)

k=1
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Now observe that by definition af, we may write

n K 1 n

Zbk ;{;Z]B - al/\Z/(ZbO) Zbk [E Z V' (1n(x:) Uk(Xz)]
k=1 i=1

(4.53)

—1/2 n K
= T [{yi =V (na(x:))} Zbkukm)] -
k=1

=1

Fori = 1,...,n definer; = (n x a(¥°))"2[y; — b/ (. (x:))] Son_, brug(x;) ando? =

>, var(r;). Under local alternatives, we ha¥&r;) = 0 and

n-1/2
var(r;) = var ( V (na(x;)) Zbkuk (x;) )

)

(4.54)

2
1 /)
_'_E(nn(xi) (Xz;ﬁo b// %3 (E bkuk Xz )

for some poinﬁiﬁg) interior to the interval joining),, (x;) andn(x;; 3°). We then have
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K
= Bi(xi) + A,
k=1
where
1 & ’
|An| = n _1(nn(xz~) n(xi; BN (7) (Zbkuk xz>
(4.56)
1 K K 2
< —ByB;|> ¢} (Zbk> — o(n~1?),
\/ﬁ 7j=1 ’ k=1

It clearly follows thawr? — (3r, b3)¥2 asn — oo. Sincemax;<i<, Eyi—b (1,(x:))]* <

oo uniformly in n by assumption, we have

n-1/2

Z?:l E|ri|3 Zz B 1/2(w0)[ nn X;) Z brur(X;)

n-32

:a3/2 wo ZE| nn XZ | X

Z bkuk X,

k=1

(4.57)

n—3/2 .

SWK XCg.

We now check the Liapunov Condition (Resnick, 1999) and nlese
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1 n
FZEV’P — 0asn — o0. (4.58)
=1

The Lindeberg condition follows as a consequence, so thahéy indeberg-Feller CLT

along with (4.55) and (4.56), we find that

Zk 1\//2_3% —>Zasn—>oo, (4.59)
where
K
Z20Z 4 by~ N (0, Zbi) : (4.60)
k=1
with 7Z,,..., Zx being independent standard normal random variables. Rerahat
bi,...,bx were arbitrarily chosen real-valued constants, from thent@r-Wold theorem
we conclude that
N

wherel is the K x K identity matrix. Thus, it follows from (4.52) and (4.50) tha

\/’

22 V(G )T S N (g, I), s — oo, (4.62)

O

Note that the above result characterizes the joint asymsptotmality of score statis-
tics corresponding td¢ (singleton) alternative models rather than a score sStafist a
single K-dimensional parameter model, which is a well-known reslilts important to
recognize that the resulting score statistics are un@ie@land hence independent. This

finding will be essential in the formulation of our next resul
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4.4.2 Asymptotic Distribution Theory fét: and Sy

We now consider the limiting distribution d&fx under both the null hypothesis and local

alternatives that converge to the null at rate/n.

Corollary4.4.1 Fork =1,..., K, whereK is any integer, defin%k asin (4.37). Assume

that the functiom in our generalized linear model has the form

K
(%) = 1(x;8°) + Y dju;(x) (4.63)
j=1
where
¢k:j%,n=1,2,...,k:1,...,K, (4.64)

with |¢5| < oo, k = 1,..., K. Suppose also thatax;;<, E[y; — b'(n.(x;))]* < oo

uniformly in n. Under these model assumptions and assumptions A1-A9, vee ha

K
d Tk *

Sk = ; e {(Zk + ¢} /a2 (¥°))?/2) (4.65)
asn tends to infinity whereZ,, 75, . . ., Zx be i.i.d. standard normal random variables.
Proof. From Theorem 4.4.1, we have fbr=1,..., K

\/ﬁ o d x/ 1/2(,10
CLIT@O)% — Zp + op/a " (Y7) (4.66)
asn — oo. Letting f(ty,...,tx) = Zsz1 - exp(t/2), the desired result follows from

Theorem 1.7 (iii) of Serfling (1980) by noting thatis a Borel function.

Now recall that the null hypothesis (4.2) is equivalent to

H02¢1:¢2:"':O. (467)
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Furthermore, the exponents 8f andSx are equivalent undefy. Thus, we may use the

previous result folSk to characterize the asymptotic distributiongff underH,.

Corollary 4.4.2 Let S be as defined in (4.31) and suppose that
maxi<i<, Ely; — b'(n(x; 8°))]* < oo uniformly in n. Under these model assumptions and

assumptions A1-A9 anél, we have

K
L d Tk 2 0
SK_);l—Wk exp {Z;/a(y")/2} (4.68)
asn tends to infinity whereZ,, 7Z,, . .., Zx be i.i.d. standard normal random variables.

Proof. Fork =1,..., K, whereK is any integer, defin%k asin (4.37). Now consider the

following decomposition ob:

Sk = Sk + A (4.69)

where

A=< ikm exp {naz /m(@O)} lexp(Rpn) — 1] (4.70)

k=1
with Ry, = (L1x — Sk)/2. Obviously,

K
. Tk oy 70
Al < g lexp(t) = 1132 7o {ndh 20N} (@470

By Taylor’'s theorem we have

exp(Rin) — 1 = Ry exp(Ryn) (4.72)

for Ry, such that Ry,| < | Ry,|. Define

An2 = 12}985%( ‘ eXp(Rkn> - 1‘7 (473)
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which implies

< . .

Noting thatR,, = (L1x — Sk)/2 = O,(n~/?) (Fahrmeir and Tutz, 2001), we find that
|Ans| = O,(n~"/?) and henceA,,;| = O,(n"/?).
[l

Corollary 4.4.2 may appear intuitive and verifying it maytigly seem pedantic.
However, the result is useful and its validity is worth intigating. In particular, while the
presence of chi-squared variables in the limit is prediethbsed on elementary asymptotic
theory for parametric models, it is not as obvious that thgglated sum in the limit should
be composed oindependenexponentiated variates. One may conjecture independence
based on the use of orthogonal basis functions in the cantigtnuof the test statistic, how-
ever, this would not be a sufficiently convincing observatimconclude that the individual
chi-squared variates are truly independent. Furtherntioeandependence of the exponen-
tiated variates obviously makes simulating a referenceiloigion much more convenient.
Without having established independence, one would be eteapto identify the nature

of dependence among the exponentiated variates.

4.4.3 Choice of Prior Probabilities

In this section we briefly discuss some issues regardingfggaimon of prior distributions
when applying a Bayes sum statistic in practice. There arerageimportant distinctions
that need to be made between our case and the setting stadedti(2009) that influence
the recommendations for specifying prior probabilities.

The distribution theory presented for the statistic stddeHart (2009) was developed

in a manner which permitted the upper bound of summationdi@ase to infinity with the
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sample size. Moreover, it should be noted that each termeafitighted sum converges in
distribution toexp {x?} which does not have finite first moment and, thus, does nctfgati
conditions required for application of the central limietrem. However, by imposing
suitable conditions on the prior probabilities Hart (2088 able to invoke a result of Cline
(1983) which ensures the convergence of infinite (weighsed)s of random variables of
the type produced by the test statistic. Thus, Hart (2008%dh¢that taking ther;’s to
be proper prior probabilities (a condition which is implicit in assptions imposed on
the prior probabilities) has a stabilizing effect on thetistec. Furthermore, Hart (2009)
emphasized that these prior probabilities distinguiss st statistic from the BIC-based
nonadaptive statistic studied in Aerts et al.(2004) andrasponsible for the improved
power observed in the simulation studies presented in 12889).

Contrary to Hart (2009), we have assumed tRais fixed in our case. Thus, in the
distribution theory we have presented in this chapter, thog probabilities need not satisfy
conditions such as those imposed in Hart (2009) to ensuneecgence of the test statistic
in our setting. However, there are some practical issuesédp kn mind. In particular, one
would typically presume that higher frequency departur@sfthe null model would likely
correspond to random noise. Thus, unless one were intdnestietecting specific alterna-
tives of interest, it would generally be advisable to spettier;’s decrease monotonically

to 0 as the frequency (i.ej) increases.

4.5 Discussion

In this chapter we have sought to extend the ideas from H8A9Pto the generalized
linear model conditions addressed in Aerts et al. (2004 rBisult of this pursuit is a new
lack-of-fit test for a special class of canonical link regiea models. Our derivation and

subsequent examination of the test statistic yielded aémeteworthy theoretical findings.
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Our first step in developing a test statistic was to formutiageposterior probability of
a hypothesized model. The alternative models utilized encitnstruction of this posterior
probability were based on characterizing departures fraptedictor function in terms of
Fourier coefficients. As we have noted, testing the hypadghbat the linear predictor has
a specified parametric form is equivalent to testing thabhthese coefficients are 0. A
closed-form approximation of this posterior probabilitgssthen obtained by applying the
Laplace approximation to the integrals that compose theymalrlikelihood of the data.
Rather than evaluating this probability directly, thististiéc is used in frequentist fashion
by means of a reference distribution. To this end, we examhmiadimit distribution of the
statistic obtained from the posterior probability and shbet, under the null hypothesis,
this distribution is completely determined by the alten@models with the fewest pa-
rameters. This is noteworthy because the posterior prbtyaisi constructed from a very
general, nonparametric class of alternative models. Upoognition of the result involv-
ing the limiting distribution under the null, we propose mplified test statistic that is a
weighted sum of exponentiated likelihood ratios testirgefiect of the additional Fourier
terms. The weights depend on user-specified prior proliasili From this statistic, we
obtained a statistic that consists of a weighted sum of expitated squared Fourier coeffi-
cient estimates by substituting the likelihood ratios wifithir corresponding score statistics.
We refer to both versions of the statistic as the “Bayes suatistics.

With two simplified versions of the test statistic having beéentified, we turned
our attention to studying the large sample properties afelsatistics. Our study focused
on the score-based statistic, and, in particular, we thensed asymptotic distribution
of the Fourier coefficient estimators under local altenesti To our knowledge, no such
result has appeared in the literature for techniques asidigegeneralized linear models.
We were subsequently able to characterize the limiting\iehaf the score-based statis-

tic under both the null hypothesis and local alternatived ttonverge to the null at rate
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1/4/n. Noting that under the null hypothesis, the score-baseibstitaprovides a large
sample approximation of the likelihood ratio-based testistic, our conclusions reached
for the former statistic led to a more convenient and acbéssharacterization of the null
distribution for the latter statistic.

Finally, we offered some practical guidelines regardireggpecification of prior prob-
abilities in the test statistic. In presenting these gunds, we noted some key differences

between our statistic and the proposal of Hart (2009).
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CHAPTER V

NUMERICAL RESULTS

5.1 Overview

In this chapter we will present a numerical study in order bbaoh greater insight into
our proposed method as well as several existing tests of fir. pdimary objective is to
demonstrate the properties of the statistics presenteldeiptevious chapter and assess
their adequacy in detecting lack of fit in various situatiovie will also address the need
for further research on existing lack-of-fit tests based dghagonal series, as has been
noted in Aerts et al. (1999). Also, we intend to bridge a gagt #xists between two
parallel and distinct research efforts that have appbeatito testing the fit of the logistic
regression model. Thus, we contend that our proposed ncahstudy will provide several
new insights into testing the fit of the logistic regressiondal as well as establishing
the power properties of some rather promising series-bi@stsl against a broad range of
departures from the null model.

Recognizing the trade-off between breadth and depth of awthdy, we will opt for
depth and pursue a thorough numerical study of one of thewidsty used canonical link
regression models, the logistic regression model. Whigentiethod presented in Chapter
IV could be applied to any model satisfying the conditionsatioed in Section 1.2 we will
focus on investigating the performance of the statistiqign¢ontext of logistic regression
because of the reported shortcomings with the better-kmoettods for testing the fit of
such models. This approach to execution of our numericdlystull serve three purposes.

First, by focusing on a single model, we will be able to exasrtime performance of
our proposed test in detecting a wider variety of departtn@a the assumed model. In

particular, we will study the selected test statistics i $imulation settings presented in
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Hosmer et al. (1997) and Kuss (2002). Hosmer et al. and Kussidered a wide variety of
different situations that one might encounter in practmetfie logistic regression model.
Hence we will be able to obtain a more extensive picture opthveer properties of the tests
selected for our study than if we were to study a few settingséveral different models.
Furthermore, we will have assurance that the settings aiillaly be meaningful since we
are duplicating situations that have been considered diegdrom authoritative sources.

Second, while Aerts et al. (1999, 2000) demonstrate via lsition that their test pos-
sesses competitive power properties, they cite a need fog extensive numerical studies
on existing lack-of-fit tests based on orthogonal seriesth&est of our knowledge, fur-
ther numerical studies have not yet been pursued. Thus,ropoged simulation study
provides an opportunity to further explore the performaagpplicability and limitations of
these tests (particularly, the multivariate extensiongiwthe context of binary response
regression. For example, while most of the simulation sgéticonsidered in Aerts et al.
(1999), (2000) and (2004) were limited to testing no effeat, will examine a variety of
departures from the logistic regression model which beéfect the types of model mis-
specification encountered in practice. Studying thess tetitalso permit us to evaluate
the performance of our proposed method against the exis@rigs-based lack-of-fit test
literature. Consequently, we feel that our proposed sitirastudy will contribute to the
understanding of existing series-based tests of fit as wglt@vide a deeper understanding
of our proposed method of Chapter IV.

Finally, as the reader may have already noticed, much ofitki@ture discussed in
Chapter Il predates the introduction of series-based tquabs to accommodate generalized
linear models discussed in Chapter Ill. Consequently, @mopmance of series-based tests
of fit introduced in Aerts et al. (1999), (2000) and (2004) dnawot been compared to the
performance of the tests presented in Chapter Il for testiadit of the logistic regression.

By using the simulation settings which have been studiedasrier et al. (1997) and Kuss
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(2002), we will be able to compare our findings with those Whiave been reported in
these two sources. This will provide a means for comparisgiwéen the two collections
of research.

The rest of this chapter will be organized as follows. In #ec6.2 we will use
findings from numerical studies presented in the releveerdiure to identify and prioritize
a collection of test statistics that will be examined in dudy. In Section 5.3 we study type
| error and power properties of the series-based tests inahtxt of strictly sparse data
(see Section 2.2). Power will be examined through progrelsimore severe departures
from a hypothesized null model. In Section 5.4 power will b@rained against fixed
departures from the null model with gradual departures fsparsity. Section 5.5 presents
an illustrative example of the method presented in ChapteiFinally, in Section 5.6 we

will conclude with a discussion of our findings.

5.2 Test Statistics

In this section we identify the various test statistics wé use in our numerical studies
and briefly discuss the rationale for examining those tédtgse statistics will be limited
to those that utilize orthogonal series estimators withliaptions to logistic regression
models.

The primary statistic of interest in our study is the Bayems statistic studied in Chap-

ter IV, which can be written as follows for logistic regressimodels:

K
Sk = ; 1 7—Tk7rk exp {nqgi/Q} (5.1)
where
~ 1 <& ~
O = = 3 e =V (e D]k, k=1, K (5.2)
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is the Fourier coefficient estimator for the singleton mod#&k tookn, /(1 — 7)) = k2
anduy’s to be cosine functions.

As we discussed in Chapter lll, the existing literature #ddresses testing the fit of
logistic regression models is essentially limited to Aetsl. (1999, 2000, 2004), which
cover methods applicable to canonical link regression isodée collection of statistics
presented and studied in these papers is fairly extensives, Wwe will economize our ef-
forts by prioritizing statistics based on the performanoce applicability of these statistics
reported in the literature. Since Aerts et al. (2000) gdimrahe principle ideas of Aerts
et al. (1999) to multivariate regression models, we willus@rimarily on the findings of
Aerts et al. (2000).

In their simulations, Aerts et al. (2000) studied the foliogystatistics:

Sa = S5,

wherer, = arg maxo<,<g, SIC(7;2);

Sy = S5,

wherer, = arg max;<,<g, SIC(r;logn);

S’F - Aa Sr ~
airq/z; Tos = max —; Ty = SIC(Ta; 2))
max(1,7," ) 1<r<Rn T

where SIC is the score information criterion aSd represents the score statistic corre-

sponding to the'th (nested) alternative model (see Chapter Ill). Whileliit@od-based

criteria could have been considered, the score statistid insconstructing the criteria only
requires fitting the null model which makes it particularyngenient for practical use. It
is worth noting that Aerts et al. identifi€éd, andT,,., as having the best overall power

properties; however, they commented that more studies regrered before making final



110

recommendations. Thus, we will include all of the aboveistias.

We will exclude from our study the Bayesian-motivated statiintroduced in Aerts
et al. (2004) which we reviewed in Section 3.5. This test weslcas possessing unde-
sirable power properties in Aerts et al. (2004) and Hart @0Moreover, the limiting
distribution for this test statistic is a stable distrilmutj which may be somewhat inconve-
nient for practical use.

Before proceeding to the simulation results, a few commargsn order regarding
how we implement all of the statistics we will use in the siatidn study. First, unless
otherwise specified, we will present the results observecéach of the statistics cited
above using cosine basis functions. The choice is somewihiataaty, but in order to avoid
any possible confounding in the simulation results, we wié this collection of basis
functions throughout the study. Second, we note that therarfithe Bayes sum statistic,
K, imposes an upper limit on the frequency of the cosine fonstiused in constructing
the statistic. To ensure that cosine terms of the same freigge are used to construct
order selection tests, we impose the same upper bound oretiigehcy of the collection
of nested alternatives used to obtain the order selectginTais is important since higher
frequency basis terms might be more advantageous for dejesiibtle departures from
the null model and if higher frequencies were used for ontisitaand not the others,
then there would exist potential bias in favor of one corrd using the higher frequency
basis functions. While we will use the same frequencieslf@tatistics we will, however,
vary this common value of the upper bound in order to assegso#sible impact on the

frequency of rejection in the resulting statistics.
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5.3 Simulation Results for Strictly Sparse Data

In this section we will present results of simulations torexkee the behavior of the tests
discussed in Section 5.2 when the observed data are ssjdise (i.e., binary response
without replications). The simulation settings under whilhese statistics will be studied
are selected to replicate several of those studied in Hostredr (1997). These simulation
settings address each of the following main issues in théegbof a logistic regression

model:

1. the adequacy of the proposed null distribution of thasttes as well as the associ-

ated type | error rate;
2. power of the tests of fit to detect omission of a quadratimte

3. power of the tests of fit to detect omission of the main ¢ffec a dichotomous

variable and its interaction with a continuous variable.

In carrying out our simulation studyp00 random samples of sizes= 100 or 500
were generated as follows. Each replicate data set is cmtestr by first generating the
covariate values and then creating the outcome by companngdependently generated
value from thel/ (0, 1) distribution,«, to the true logistic probability wherg = 1 if u <
7(z) andy = 0 otherwise. Throughout our simulations we will take the dation size to

be 1000 and we will evaluate the significance at a level 0.05. This yields yields &5%

margin of error ofl.96 x /0.05 % (1 — 0.05)/1000 = 0.014 for the rejection probability

estimate obtained in each simulation setting. A more ceasige upper bound on this

margin of error is, of course, given By96 x /0.5 * (1 — 0.5) /1000 = 0.031.
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5.3.1 Evaluation of Null Distribution and Test Level

To examine the type | error rate of the tests, we considerakgdferent situations where
the data are generated from one of several different lagistiression models, each of

which is based on the following general model:

log < (@1, 22, 7o) ) = Bo + Brx1 + Boxa + Baxs. (5.3)

1 - 7T(.’,U1, T, .Ig)

Hosmer et al. (1997) chose the various distributions of twvaates and their correspond-
ing coefficients to produce distributions of probabilitieshe (0, 1) interval that one might
encounter in practice. Table 3 summarizes the various amatibins of covariate distribu-
tions and true coefficient values for the logistic regressimdel (5.3), along with the re-
sulting expected values for the smallest, largest, ane ttpartiles of the distribution of lo-
gistic probabilities for a sample of si2€0. Whenz; ~ U(—6,6) with 5y = 55 = f3 = 0,
the resulting distribution of the probabilities is symnetwith mostly small or large prob-
abilities. Takingz; ~ U(—1,1) produces a distribution with most probabilities in the
center of the(0, 1) interval. Forz, ~ x?(4), yields a distribution mostly small probabil-
ities and few large probabilities. The probabilities arerenoniformly distributed for the

other covariate distributions.

Evaluation of null distribution and test level for univateemodels

The resulting per cent of times that Bayes sum and order tsmtelsased tests lead to
rejection of the null hypothesis for the univariate modelsisarized in Table 3 is reported
in Table 4 and Table 5, respectively. Furthermore, we olitanper cent of times each
test in our study rejects the null hypothesis across sevahags of the truncation poini .
These values indicate that most of these tests reject thypdthesis at a rate reasonably

close to the nominal five percent level. Moreover, the pet pgaction was rather similar
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Table 3. Situations used to examine the null distributiotesf statistics. For each covariate
distribution, 71y, ) and Q; Q. Q3 are, respectively, the expected values for
the smallest, largest values and the three quartiles of igtgldition of logistic
probabilities for a sample of siZ&)0.

Covariate distribution Logistic coefficients Distributiof logistic probabilities

Bo B B2 B3 Ty @ Q2 Qs Ty

U(—6,6) 0 0.8 0 0 0.009 0.087 0.50 0.913 0.991
U(—4.5,4.5) 0 0.8 0 0 0.029 0.144 050 0.865 0.971
U(-3,3) 0 0.8 0 0 0.087 0.231 0.50 0.769 0.913
U(-1,1) 0 0.8 0 0 0.313 0.400 0.50 0.600 0.687
N(0,1.5) 0 0.8 0 0 0.057 0.304 0.50 0.696 0.943
X2 (4) —4.9 0.65 0 0 0.009 0.025 0.062 0.202 0.965
3indep.U(—6,6) 0 0.8/3 0.8/3 0.8/3 0.028 0.234 0.50 0.767 0.972

3indep.N(0,1.5) 0 0.8/3 0.8/3 0.8/3 0.134 0.369 050 0.628 0.861
Indep.U(-6,6), —1.3 0.8/3 0.8/3 0.65/3 0.052 0.204 0.386 0.608 0.928
N(0,1.5) andy?(4)

across the various values considered for the truncatiamt.poi

Perhaps most problematic test is the one based on the samgast the BIC,S,.
This test clearly tends to reject too often at a sample size-6fl00; however, the per cent
of times the null hypothesis is rejected approaches the mami= 0.05 when the sample
size increases ta00. This reflects the findings of Aerts et al. (1999, 2000) whanfibthat
the type | error rate for this test was inflated in the settomssidered therein.

The one univariate simulation setting which was unifornmyigematic across all tests
was the case with covariate distributedyd@$4). In this case none of the tests appears to
reject the null hypothesis often enough. Hosmer et al. (188hd that the statistics con-
sidered in their study tended to vary about the nominal fireqre level, yet the observed
departure of these statistics fram= 0.05 level was typically no less than the departure

observed for the series-based tests.
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Table 4. Performance of the Bayes sum test when the corredtfided) logistic model
is determined by (5.3) with corresponding coefficient valapecified in Table 3.
Simulated per cent rejection at the= 0.05 level is reported using sample sizes
of 100 and 500 with 1000 replications. For each covariat&idigion, per cent
rejection was evaluated at various values of truncationtpéi.

Statistic K covariate distribution

U(-6,6) U(—4.5,45) U(-3,3) U(-1,1) N(0,1.5) 2 (4)

100 500 100 500 100 500 100 500 100 500 100 500

43 5.3 40 6.1 48 42 46 44 51 46 24 35

5.5 5.7 49 62 49 45 47 43 59 56 25 3.3
5.6 5.7 48 60 50 46 48 42 59 56 26 34
54 5.9 45 59 46 48 41 42 64 59 26 3.1
11 53 5.7 42 57 42 46 41 39 62 60 26 3.3
15 54 6.0 44 60 43 46 42 42 6.7 60 26 3.2

Sk

N B N

Finally, we can see from Table 4 that the Bayes sum test @gtbehavior similar to
the other order selection-based tests; however, it appehesmore conservative than these

tests.

Evaluation of null distribution and test level for multivate models

For the multivariate models, we limited the truncation pambe no greater tha# since

a truncation point greater thanwould require inclusion of at leas25 additional terms
to the alternative models, which is infeasible for a sampleize n = 100. Also, for the
order-selection based statistics, we consider genetialiseof two of the model sequences
recommended by Aerts et al. (2000): sequences (c) and (dtrdited in Figure 1 of
Chapter Ill. For the Bayes sum statistic, we apply the follgvmultivariate extension

of formula 5.1

K K K
Sk=3331 jﬂfﬁjkl exp {ng/b\?kl /2} (5.4)
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Table 5. Performance of the order selection-based test theerorrect (and fitted) logistic
model is determined by (5.3) with corresponding coefficieaities specified in
Table 3. Simulated per cent rejection at the- 0.05 level is reported using sample
sizes of 100 and 500 with 1000 replications. For each cowadsstribution, per

cent rejection was evaluated at various values of truncgtoint, /.
Statistic K covariate distribution
U(-6,6) U(—4.5,45) U(-3,3) U(-1,1) N(0,1.5) X2 (4)
100 500 100 500 100 500 100 500 100 500 100 500
5.3 5.2 48 46 50 37 59 40 51 54 25 3.0

73 7.0 52 58 6.0 49 59 44 6.1 50 26 2.7
7.3 8.0 5.7 57 60 54 52 52 71 64 26 28
6.2 6.1 57 70 53 51 48 40 79 76 31 24
11 6.3 6.5 52 6.1 44 53 51 43 84 75 33 24
15 6.6 6.5 53 57 44 51 48 43 91 88 36 25

Sh 2 6.0 6.2 6.2 6.7 76 51 86 53 85 57 3.0 41
7.2 6.6 74 69 88 56 93 58 90 63 31 43
72 6.3 72 68 85 52 90 54 95 63 32 44
7 71 6.6 73 69 84 53 90 57 101 64 32 44

11 72 6.6 73 69 86 53 92 57 103 63 32 44

15 72 6.8 73 69 87 57 92 59 93 63 33 44

T, 2 49 52 4.7 6.1 50 39 49 38 53 53 25 32
6.1 5.8 49 6.1 52 43 48 41 63 6.2 26 3.3
6.1 6.1 47 6.1 53 44 48 42 68 62 27 31
7 59 73 46 63 56 48 51 40 82 72 3.0 29
11 6.1 6.9 48 64 53 46 51 41 80 71 32 32
15 6.0 6.6 4.7 6.2 52 46 51 39 80 76 32 32

Tos 2 44 52 41 5.7 52 42 51 43 58 47 24 39
5.0 54 45 59 52 43 47 44 58 54 26 3.7
5.1 5.5 46 59 53 44 47 43 60 52 27 40

7 51 59 4.7 59 52 46 47 45 64 55 28 42
11 52 538 49 59 55 44 51 43 66 53 27 41
15 51 538 4.7 59 53 46 47 45 55 56 2.7 3.8

Thax 2 51 5.1 4.7 58 48 38 49 36 50 55 27 31
6.5 6.1 58 59 56 43 52 44 63 60 2.7 3.1
6.0 6.2 48 59 54 44 51 42 66 62 26 3.0

7 62 7.1 45 6.7 58 47 57 41 17 72 27 28
11 6.3 6.8 4.7 64 54 43 56 41 78 71 28 29
15 64 6.6 49 6.1 54 40 53 35 78 7.6 3.0 27

N B~ 0D

A W

A~ W

AW

A W




116

Table 6. Performance of the Bayes sum test when the corredtfided) logistic model
is determined by (5.3) with corresponding coefficient valapecified in Table 3.
Simulated per cent rejection at the= 0.05 level is reported using sample sizes
of 100 and 500 with 1000 replications. For each covariat&idigion, per cent
rejection was evaluated at various values of truncationtpéi.

Statistic K covariate distribution
3 indep. 3 indep. Inded/(—6,6)
N(0,1.5) N(0,1.5) N(0,1.5), x*(4)
100 500 100 500 100 500
Sk 2 4.7 44 5.8 4.7 6.3 44
3 6.0 4.2 53 4.1 6.6 6.7
4 6.0 4.2 6.2 4.8 7779

Whereggjkl is the Fourier coefficient estimator for the singleton maakhg cosine basis
function. We tookr;; /(1 — i) = (jkI) ™2

The resulting per cent of times that Bayes sum and ordertgmielsased tests led to
rejection of the null hypothesis for the hypothesized (amé)t multivariate models sum-
marized in Table 3 is reported in Table 6 and Table 7, resgeygtiFurthermore, we obtain
the per cent of times each test in our study rejects the nplbthesis across several values
of the truncation pointX. These values indicate that most of these tests reject the nu
hypothesis at a rate reasonably close to the nominal fivepelevel. The type | error rate
appears to typically be slightly inflated when= 100, but not by an alarming amount.

Moreover, the per cent rejection was rather similar aclossarious values considered for

the truncation point.
5.3.2 Detecting Omission of a Quadratic Term
To evaluate the power to detect the omission of a quadratic, telosmer et al. (1997)

utilized the following simulation strategy. For each vatii¢he covariate, the response was

generated using the following model:
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Table 7. Performance of the order selection-based tests thirecorrect (and fitted) logistic
model is determined by (5.3) with corresponding coefficieaities specified in
Table 3. Simulated per cent rejection at the- 0.05 level is reported using sample
sizes of 100 and 500 with 1000 replications. For each cowadsstribution, per
cent rejection was evaluated at various values of truncgtoint, /.

Statistic K covariate distribution
3 indep. 3 indep. Inded/(—6,6)
N(0,1.5) N(0,1.5) N(0,1.5), x*(4)
100 500 100 500 100 500
Sas 2 7.0 5.5 58 5.5 6.9 5.2
sequence(c) 3 6.7 5.7 5.7 5.0 6.8 7.1
6.9 5.7 49 5.2 6.7 7.6
Sa, 2 7.0 5.5 5.8 5.5 6.9 5.2
sequence(d) 3 7.1 5.7 5.5 5.0 6.4 7.2
71 5.8 4.7 5.2 6.8 7.6
Shs 2 6.7 4.9 6.5 5.5 6.0 5.6
sequence(c) 3 64 5.6 6.6 5.6 6.1 5.7
6.5 5.0 6.3 5.8 6.1 5.8
Shs 2 6.7 4.9 6.5 5.5 6.0 5.6
sequence(d) 3 64 5.6 6.6 5.6 6.1 5.7
4 6.5 5.0 6.3 5.8 6.1 5.8
T,, 2 6.2 5.5 52 6.3 6.4 6.0
sequence(c) 3 6.3 49 5.6 54 72 74
6.1 4.9 55 5.6 70 76
T,, 2 6.2 5.5 52 6.3 6.4 6.0
sequence (d) 3 6.7 5.0 56 4.5 72 7.1
6.4 5.1 51 5.5 69 7.5
Tos, 2 59 4.7 6.0 5.3 6.0 6.3
sequence(c) 3 59 5.1 6.1 54 6.4 6.8
59 44 56 5.5 6.2 6.8
Tos, 2 59 4.7 6.0 5.3 6.0 6.3
sequence(d) 3 59 5.1 6.2 54 6.4 6.9
59 44 57 5.5 6.3 7.0
Tinax 2 6.2 5.1 5.6 5.8 6.4 6.1
sequence(c) 3 6.0 5.1 5.5 5.2 6.7 7.0
4 59 5.0 52 5.6 6.8 7.3
Tinax 2 6.2 5.1 56 5.8 6.4 6.1
sequence(d) 3 59 5.0 55 5.2 6.9 7.0

4 5.8 5.1 5.3 8.7 6.9 74
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|Og (%) = BO + 511’ + 521’2 (55)

where the distribution of the covariate,will be taken to bé/(—3, 3). Hosmer et al. chose
the values of the coefficients so that—1.5) = 0.05, 7(3) = 0.95 andn(—3) = J and

J =0.01,0.05,0.1,0.2 and0.4. The coefficients satisfying these conditions are presente
in Table 8. This scheme produces models for which the degaitom linearity becomes

progressively more pronounced.

Table 8. Coefficients used in (5.5) to evaluate power to detecomission of a quadratic
term.

J Logistic coefficients

Bo b1 B2
0.01 -1.138 1.257 0.035

0.05 -1.963 0.981 0.218
0.10 -2.337 0.857 0.301
0.20 -2.742 0.722 0.391
0.40 -3.232 0.558 0.500

Tables 9 and 10 summarize the per cent rejected across tioevaepartures from
linearity for the Bayes sum and order selection tests, rdsfedy. For both types of statistic,
we see that the power is rather low for smaller valueg .ofPower does increase rather
rapidly as the departure from linearity becomes more prooed. Hosmer et al. (1997)
found that all of the tests they studied, except the Roystonatone test (see Section 2.4),
exhibited a similar increase in power as the departure finaatity increased. Most of the
series-based tests detect an omitted quadratic term ataleagell as the best performing

test statistic considered in Hosmer et al. The one cleamixteis the test based on the
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Table 9. Performance of the Bayes sum test in detecting attemhgjuadratic term. Simu-
lated per cent rejection at the = 0.05 level using sample sizes of 100 and 500
with 1000 replications are reported. For each covariateibligion per cent rejec-
tion was evaluated at various values of truncation poine t8gt for definition of

J.
Statistic K correct model
J =0.01 J =0.05 J=0.1 J=0.2 J=0.4
100 500 100 500 100 500 100 500 100 500
Sk 6.6 80 356 90.5 574 99.6 852 100 97.3 100

70 81 36.6 91.1 579 99.7 8.4 100 97.3 100
78 79 36.6 908 58.0 99.7 8.5 100 97.3 100
79 78 364 905 573 99.5 85.0 100 97.2 100
11 76 7.7 360 90.1 56.9 994 845 100 97.1 100
15 78 79 363 903 576 994 848 100 97.1 100

N B~ 0N

score analog to the AICS,, which is still rather competitive for smaller values of the
truncation point (i.e. KX = 2,3, and 4).

Finally, power is enhanced markedly with an increase in samsipe, however, this is
to be expected. For samples of si® power is about 90 percent or greater for even slight

departures from linearity.

5.3.3 Detecting Omission of a Dichotomous Variable andriteriaction

To evaluate the power to detect the omission of the maintefile@ dichotomous variable
and its interaction with a continuous variable, the follog/simulation setting was studied
by Hosmer et al. (1997). For each combination of realizedesfor the covariates, the

response was generated using the following model:

|Og (M) = 50 + le + Bgd + 53.Td (56)
1 —7(x,d)
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Table 10. Performance of the order selection-based teststacting an omitted quadratic
term. Simulated per cent rejection at the= 0.05 level using sample sizes of
100 and 500 with 1000 replications are reported. For eachra@ie distribution
per cent rejection was evaluated at various values of ttiorcpoint. See text for

definition of J.

Statistic K correct model

J =0.01 J =10.05 J=0.1 J=0.2 J=04
100 500 100 500 100 500 100 500 100 500
57 9.3 33.8 889 56.0 99.3 81.0 100 97.1 100

6.6 81 324 882 536 993 77.7 100 96.8 100
87 81 316 86.2 51.0 99.0 763 100 954 100
88 71 314 792 474 985 73.6 100 92.7 100
11 83 7.7 308 77.8 47.0 981 699 100 91.0 100
15 84 81 305 764 46.7 976 67.6 100 &89.8 100

Sh 2 90 95 399 905 620 994 86.5 100 97.7 100
3 96 99 409 909 623 994 87.0 100 97.7 100

4 97 95 408 90.7 622 994 86.9 100 97.7 100

7 9.8 9.8 408 91.0 622 994 86.8 100 97.7 100

11 99 9.8 41.0 909 623 994 870 100 97.7 100

15 99 100 41.0 91.0 624 994 870 100 97.7 100

T, 2 66 80 362 90.2 579 99.6 84.6 100 97.4 100
3 72 81 363 914 581 99.7 838 100 97.5 100

4 80 85 358 90.7 578 99.5 833 100 97.3 100

7 83 89 358 904 58.0 994 826 100 97.1 100

11 86 86 36.7 899 583 994 831 100 96.8 100

15 87 89 36.8 893 581 994 828 100 96.9 100

Tos 2 69 80 370 905 587 99.6 854 100 97.3 100
3 69 80 370 90.8 583 99.6 854 100 97.3 100

4 72 78 371 905 583 99.6 854 100 97.3 100

7 75 82 373 909 584 99.6 85.5 100 97.3 100

11 77 78 378 90.6 589 99.6 8.7 100 97.3 100

15 75 80 375 90.7 58.6 99.6 85.6 100 97.3 100

Tinax 2 66 80 357 90.1 578 99.6 843 100 97.3 100
3 71 80 363 909 580 99.6 835 100 97.3 100

4 84 89 361 912 575 994 832 100 97.2 100

7 83 9.6 357 909 584 994 819 100 97.0 100

11 83 9.1 364 90.0 58.0 994 819 100 97.1 100

15 85 87 36.8 89.7 57.8 994 820 100 97.1 100

Sa
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where the distribution of the continuous covariatewill be taken to be/(—3, 3) and the
dichotomous covariatd, is generated from the Bernoulli/2) and was independent of the
continuous covariate. Hosmer et al. (1997) chose the faanpeters such that(—3,0) =
0.1, 7(—3,1) = 0.1, 7(3,0) = 0.2 and7(3,1) = 0.2 + I wherel = 0.1,0.3,0.5 and0.7.
The coefficients satisfying these conditions are presdantédble 11. Thus, the interaction

becomes progressively more pronounced across the fourlsnode

Table 11. Coefficients used in (5.6) to evaluate power toati¢tie omission of a interaction
term.

J Logistic coefficients

Bo b1 B2 B3
0.10 -1.792 0.135 0.269 0.090

0.30 -1.792 0.135 0.693 0.231
0.50 -1.792 0.135 1.117 0.372
0.70 -1.792 0.135 1.792 0.597

The resulting empirical power of the Bayes sum and ordecteletests are reported
in Table 12 and Table 13, respectively. Unfortunately, alihe series-based tests exhibit
poor power properties. Despite the fact that the power ofdbts does increase modestly
for larger sample sizes and when the departure from the sitif@ar logistic regression
model increases, the power is too low to assure us that thstsewill be able to detect this
type of misspecification in practice. In this simulationtsef, the power properties of the
series-based tests are somewhat similar to those repartddsmer et al. (1997) for the
statistics studied therein. One noteworthy differencdéd for/ = 0.1,0.3, and 0.5 per
cent rejection actually decreases as the sample size s&seln particular, the per cent of
times the null hypothesis is rejected appears to convergfgetaominal five percent level
for several of the tests. In spite of this behavior, none eftdsts of Hosmer et al. reject

appreciably more than the series-based tests.
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Table 12. Performance of the Bayes sum test in detecting dteaindichotomous variable
and its interaction. Simulated per cent rejection atthe 0.05 level using sample
sizes of 100 and 500 with 1000 replications are reported. €agh covariate
distribution per cent rejection was evaluated at variolisesaof truncation point.
See text for definition of.

Statistic K I1=01 I1=03 I1=05 1=07
100 500 100 500 100 500 100 500

Sk 6.0 43 53 43 60 40 69 120
6.0 42 55 45 61 46 6.6 11.7
6.0 44 54 46 61 49 6.0 115
5.3 4.0 52 44 57 48 6.0 114
11 49 41 51 48 57 49 57 11.7

15 56 43 53 49 6.0 49 6.3 11.7

To better understand the power properties in this settegll that the series-based
test statistics assess departures from the linear predipteified in the null hypothesis by
utilizing alternatives that only involve variables inckdliin the null model. This formula-
tion of the test statistics suggests that the series-basesighould be at a disadvantage in
detecting departures involving variables that are notuiget in the null model. Identify-
ing the cause of low power is not as immediately obvious fonsof the tests studied in

Hosmer et al.

5.4 Simulation Results Under Departures from Sparsity

In this section we will present results of simulations torakee the behavior of the tests
discussed in Section 5.2 under departures from strictlgsgpdata. The simulation settings
under which these statistics will be studied are selecteetiicate several of those studied
in Kuss (2002). These simulation settings address eacledbtlowing main issues in the

context of a logistic regression:
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Table 13. Performance of the order selection-based teststecting an omitted dichoto-
mous variable and its interaction. Simulated per cent tiejeat thea = 0.05
level using sample sizes of 100 and 500 with 1000 replicatame reported. For
each covariate distribution per cent rejection was evatliat various values of
truncation point. See text for definition 6f

Statistic K I1=0.1 1=03 1=05 1=07
100 500 100 500 100 500 100 500

Sa 2 53 51 59 45 68 44 82 10.3
3 52 53 60 44 55 40 76 89
4 49 58 6.1 52 54 49 61 74
7 42 56 46 47 48 43 44 6.0
11 46 53 57 50 45 47 42 53

15 47 53 60 44 46 43 45 52

Sh 2 88 61 86 52 95 46 11.5 135
3 91 65 85 56 97 51 113 141
4 95 65 90 57 100 51 11.8 14.2
7 97 65 93 57 104 51 122 14.2
11 97 63 94 53 106 48 124 13.7
15 92 64 84 54 98 49 11.1 138

T, 2 60 45 58 41 64 46 72 122
3 56 51 53 43 59 51 7.0 121
4 49 55 51 48 56 51 69 103
7 43 52 52 50 59 49 6.5 102
11 44 52 51 52 65 51 6.2 98
15 42 51 44 45 56 51 56 93

Tos 2 61 45 53 43 63 38 74 125
3 62 47 50 45 59 42 70 125
4 64 45 53 46 61 41 71 121
7 64 45 53 46 6.1 42 71 121
11 65 44 55 43 63 40 7.3 118
15 58 45 51 46 54 42 63 122

Tinax 2 59 50 60 42 66 45 74 119
3 50 50 56 44 60 49 713 115
4 47 55 52 45 60 53 7.0 105
7 44 53 53 47 52 44 61 9.1
11 39 53 56 52 57 42 60 86
15 37 54 46 52 54 44 5T 86
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1. Missing covariate.
2. Wrong functional form of the covariate.
3. Misspecified link function.

4. Overdispersion.

Each of the above issues will be studied by examining a fixpddere from a hypothesized
model and varying the number of observations sharing a giesariate pattern. Recall
from Section 2.2 that we denote this numberrhby. Examination of varyingn; was of
interest in Kuss (2002) because several well-know tegsstatthat worked well for sparse
data have exhibited problems in data sets that were notesf(ssge Chapter Il). Conversely,
several other statistics that work well for non-sparse deganvalid for strictly sparse data.
By construction, the order selection and Bayes sum stistiould be valid regardless of
whether the data are sparse or not. However, we feel thatit important to examine
the sensitivity of the series-based tests under varyingldesf sparsity in order to assess if
there are appreciable changes in power across the varitues\vatm,.

For each simulation setting and level of sparsity)0 random samples of sizes,=
100 or 500 were generated in a manner similar to that described eanlibrs chapter for
sparse data. In order to evaluate the effect of sparsenesgobntest, Kuss (2002) varied
the number of individuals within the data set sharing theesaovariate pattern. For four
of his simulation settings, Kuss used valuesnaf = 1,2, 5,10, wherem; denotes the
number of times each covariate pattern is observed witlarsample (see Section 2.2). In
addition to these settings, Kuss studied a setting (lablel®dn which half of the covariate
patterns within each replicated sample have a single oasenvand the other half have
two observations. Another setting (labeled0) has roughly 64 per cent of the covariate

patterns have a single observation, 21 per cent have twawatsms, 9 per cent have



125

five observations and 6 per cent have ten observations. Ter lmdarify this last setting,
consider the case where= 100: 30 distinct covariate patterns were observed once each
(m; = 1), 10 distinct covariate patterns were observed two timeh ¢ee., 10 covariate
patterns withn; = 2 yielding 20 observations), 4 distinct covariate patterns were observe
five times each; = 5), and 3 distinct covariate patterns were obseriden times
each {n; = 10), resulting in30 + 20 + 20 4+ 30 = 100 individual observations from

30 + 10 + 4 + 3 = 47 distinct covariate patterns. Obviously, for= 500, multiply all

the numbers by 5. This last constellation was formulatecefleet a distribution across

covariate patterns which is often encountered in pracKcesg, 2002).

Missing covariate

To evaluate the power to detect a missing covariate acrossigadepartures from sparsity,

Kuss (2002) generated data using the following model:

og (M) — 0+ 0.4052, + 0.2232y: (5.7)

1 —7m(xq, 22)
wherex; ~ U(—6,6), i = 1,2. We fit the following simple logistic regression model to
the resulting data: logr(z)/(1 — n(z))) = Sy + f1x1. That is, we fit the model as if,
had been excluded in the model building process.

The resulting empirical power of the Bayes sum and ordecseletests are reported
in Table 14 and Table 15, respectively. It is clear that thieesébased tests do not exhibit
particularly good power in detecting a missing covariatewldver, this is not surprising in
light of the observed power of the series-based test to titieomission of the main effect
for a dichotomous variable and its interaction with a cambins variable: in both cases a
variable had been suppressed. Clearly, as we move furtregr fiam strictly sparse data,

the power of the series-based tests does improve. Unfdaelynthese tests do not improve
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Table 14. Performance of the Bayes sum test in detectingngissvariate. Simulated per
cent rejection at ther = 0.05 level using sample sizes of 100 and 500 with 1000
replications are reported. For each covariate distrilougier cent rejection was
evaluated at various values of truncation point. See taxefplanation of the
various constellations;.

Statistic K Constellation ofn;
1 1-2 2 1-10 5 10

100 500 100 500 100 500 100 500 100 500 100 500
6.0 47 45 59 61 64 81 11.2 129 92 192 187

65 49 48 65 73 6.2 82 128 138 10.7 23.0 21.6
65 47 46 58 75 6.2 93 136 142 12.0 246 244
62 49 43 57 73 6.7 88 13.8 148 125 286 26.5
11 57 50 43 56 6.7 62 82 142 147 131 301 29.0
15 61 52 45 58 74 65 91 134 158 134 288 31.2

Sk
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sufficiently to provide any assurance that these tests woeldble to detect a missing
covariate in practice. The power was consistent acrossaheus values of the truncation
point considered.

Kuss (2002) found that Osius-Rojek, McCullagh and Farongésts have good power
for a missing covariate when the sample siz&0$ (recall from Chapter Il that these three
tests are somewhat similar in that they are all based onuanmdifications of the Pearson
chi-square test). Note that no test among the collectiooudsed in Kuss (2002) was

observed to have good power for sample siz&0of

Wrong functional form

To evaluate the power to detect a missing covariate acrogsigadepartures from sparsity,

Kuss (2002) generated data using the following model:

log (%) = 0.4052° (5.8)



127

Table 15. Performance of the order selection-based testietecting missing covariate.
Simulated per cent rejection at the = 0.05 level using sample sizes of 100
and 500 with 1000 replications are reported. For each cateadistribution per
cent rejection was evaluated at various values of truncgimnt. See text for
explanation of the various constellatioms.

Statistic K Constellation ofn;

1 1-2 2 1-10 5 10
100 500 100 500 100 500 100 500 100 500 100 500
5.8 5.2 54 5.6 59 7.2 9.0 123 11.5 9.8 183 20.4

6.3 52 56 55 71 68 11.0 13.8 148 114 234 242
6.2 46 59 49 85 57 106 143 142 140 28.6 26.8
54 45 6.1 57 94 69 125 147 16.5 159 345 346
11 50 35 59 50 81 70 127 176 21.2 193 47.0 43.6
15 49 34 60 55 72 70 129 186 234 21.8 629 50.0

Sh 2 96 60 92 72 87 73 126 143 169 11.0 247 21.5
103 61 96 74 102 7.6 13.6 148 184 12.1 27.8 234
108 6.1 100 74 100 7.5 13.8 145 186 125 29.6 23.6
7 113 6.1 99 73 100 7.6 135 153 189 12.0 30.5 24.5

11 114 6.0 105 7.7 104 76 137 141 19.0 129 303 234

15 102 61 99 73 104 7.8 139 147 188 12.0 31.0 24.6

T, 2 70 51 47 56 65 6.2 82 126 123 9.7 196 20.2
73 55 42 62 76 60 88 140 13.7 11.0 226 23.1
72 51 52 62 83 58 96 140 142 119 269 26.7
7 66 51 H3 55 84 6.7 106 163 16.7 14.6 32.5 32.2
11 57 48 51 55 82 6.1 11.0 17.1 187 17.7 40.0 394
15 50 47 56 62 7.7 59 119 187 198 185 51.8 46.7

Tos 2 64 52 51 63 59 58 90 124 126 89 200 17.5
62 51 50 62 64 59 93 128 133 102 205 195
64 49 59 63 65 58 85 125 126 106 21.9 20.2

7 64 49 45 53 6.6 60 85 137 136 11.0 23.1 218
11 6.6 46 57 64 6.7 58 &85 122 139 11.7 22.8 208
15 57 49 53 62 6.7 58 91 128 132 10.8 23.6 223

Thax 2 71 52 47 60 6.0 6.1 81 124 123 94 199 20.8
70 54 43 61 73 56 92 146 139 11.7 225 249
69 49 49 62 78 58 98 148 143 131 274 279

7 63 48 52 59 90 66 119 162 164 149 33.0 338
11 60 49 54 51 91 63 121 172 185 172 40.7 39.6
15 50 48 58 56 9.0 6.3 120 179 193 177 513 45.6

Sa
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Table 16. Performance of the Bayes sum test in detecting gvfonctional form of the
covariate. Simulated per cent rejection atdhe 0.05 level using sample sizes of
100 and 500 with 1000 replications are reported. For eachrae distribution
per cent rejection was evaluated at various values of ttiorcpoint. See text for

explanation of the various constellations.
Statistic K Constellation ofn;
1 1-2 2 1-10 5 10

100 500 100 500 100 500 100 500 100 500 100 500
84.2 100 87.1 100 89.7 100 8&88.6 100 94.6 100 97.9 99.7
88.6 100 91.1 100 93.3 100 93.0 100 97.2 100 99.0 100
89.1 100 91.7 100 93.8 100 94.7 100 97.2 100 98.8 100
91.3 100 94.1 100 96.4 100 97.7 100 99.2 100 99.0 100
11 91.6 100 944 100 97.1 100 97.8 100 99.9 100 99.1 100
15 92.1 100 953 100 974 100 979 100 99.9 100 99.1 100

Sk
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wherez; ~ U(—6,6), i = 1,2. Again, we fit the following simple logistic regression
model to the resulting data: Idg(z)/(1 — 7(z))) = o + Frz.

Table 16 and Table 17 report the empirical power of the Bayasand order selection
tests, respectively. The resulting power in this settingssone might expect, very similar
to the power we observed for a missing quadratic term in 8e&i3.2 at the more severe
departures from linearity. However, in this case, we carenlesthe effect of sparsity. For
n = 100, it is clear that the power to detect the misspecified fumetidorm of the linear
predictor is enhanced noticeably for constellations phmg greater degree of replication
at each observed covariate value. The series-based tadtwlesjection in (almost) every

dataset when = 500 regardless of truncation point or degree of sparsity.

5.4.1 Evaluating Power Under Misspecification of the LinkEtion

To evaluate the power to detect misspecification of the limiction, Kuss (2002) used the

following model to generate the response:
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Table 17. Performance of the order selection-based tedet@tting wrong functional form
of the covariate. Simulated per cent rejection atd¢he 0.05 level using sample
sizes of 100 and 500 with 1000 replications are reported. gagh covariate
distribution per cent rejection was evaluated at variolisesof truncation point.

See text for explanation of the various constellations
Statistic K Constellation ofn;
1 1-2 2 1-10 5 10

100 500 100 500 100 500 100 500 100 500 100 500
91.6 100 92.8 100 93.9 100 92.2 100 96.0 100 98.7 99.9
91.6 100 94.1 100 96.2 100 953 100 979 100 99.1 100
91.7 100 93.8 100 94.8 100 96.5 100 97.7 100 99.2 100
93.2 100 94.0 100 96.7 100 983 100 99.8 100 99.1 100
11 91.6 100 946 100 98.1 100 99.2 100 00.0 100 99.1 100
15 92.2 100 955 100 98.3 100 99.8 100 00.0 100 99.1 100

Sh 2 926 100 93.3 100 944 100 921 100 96.4 100 99.0 99.7
94.8 100 96.2 100 97.1 100 959 100 979 100 99.3 100
95.0 100 96.3 100 97.3 100 96.6 100 98.0 100 99.3 100
7 958 100 970 100 97.7 100 978 100 99.3 100 99.3 100

11 96.0 100 97.1 100 97.8 100 98.2 100 99.7 100 99.3 100

15 96.0 100 97.1 100 97.8 100 982 100 99.9 100 99.3 100

T, 2 87.1 100 89.3 100 91.4 100 89.9 100 953 100 98.2 99.8
90.6 100 93.5 100 952 100 94.8 100 974 100 99.1 100
91.6 100 944 100 953 100 958 100 97.8 100 99.2 100
7 945 100 96.5 100 97.5 100 987 100 99.6 100 99.3 100
11 958 100 97.1 100 985 100 994 100 100 100 99.3 100
15 96.3 100 98.0 100 988 100 99.9 100 100 100 99.3 100

Tos 2 813 100 84.2 100 87.6 100 86.8 99.8 94.1 100 97.5 99.7
85.9 100 89.0 100 92.2 100 927 99.9 964 100 99.0 100
86.8 100 90.3 100 92.7 100 93.8 100 97.0 100 99.0 100

7 8.1 100 924 100 949 100 96.4 100 99.0 100 99.2 100
11 90.1 100 92.2 100 955 100 969 100 99.5 100 99.3 100
15 89.8 100 922 100 95.1 100 96.6 100 99.8 100 99.3 100

Tnax 2 884 100 90.0 100 922 100 90.6 100 954 100 98.5 99.8
91.4 100 93.6 100 95.6 100 951 100 97.6 100 99.1 100
92.2 100 94.8 100 95.6 100 96.2 100 979 100 99.2 100

7 949 100 96.6 100 97.6 100 98.8 100 99.7 100 99.3 100
11 96.0 100 97.3 100 987 100 99.3 100 100 100 99.3 100
15 96.3 100 98.0 100 99.0 100 99.8 100 100 100 99.3 100
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log[—log(1 — m(x))] = 0.405z (5.9)

wherez; ~ U(—6,6). Again, we fit the following simple logistic regression motethe
resulting data: logr(z)/(1 — w(x))) = Bo + S1.

Aerts et al. (2000) describe how the series-based alteasain the order selection
based tests can modified to provide a way of testing the adgadfahe link function. In

the case of logistic regression the alternatives are ofdima f

l0g (17:(—:())()) — X84 Y b X8 (5.10)

keA
These alternatives constitute a dimension-reducing rranpetric estimator often referred
to as the “single-index model”. Hence the test using this<laf alternatives has been
referred to as the “single-index test.”

The resulting empirical power of the Bayes sum and ordercgeletests to detect
link misspecification is reported in Table 18 and Table 18peetively. The power of the
series-based tests to detect misspecification of the linktfon appears to depend heavily
on the sample size, the degree of sparsity, and the trungadiot used in constructing the
statistic. As in most of the settings studied previouslyhis thapter, there is a great deal
of similarity among the various tests, however, it is wortting thatS, andThs appear to
be somewhat more conservative than the other tests acroapatynof the combinations
of sample size, constellation, and truncation point. Thsamewhat remarkable given that
Sy has consistently been the least conservative of all of theraelection tests in the other
simulation settings studied. It is also worth mentioningtttior larger samples and larger
values of the truncation point, the Bayes sum test appeggdsess power properties that

fall rather close to the midpoint between the most conseevédsts £, Tos) and the least
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Table 18. Performance of the Bayes sum test in detectingoesited link. Simulated per
cent rejection at ther = 0.05 level using sample sizes of 100 and 500 with 1000
replications are reported. For each covariate distrilougier cent rejection was
evaluated at various values of truncation point. See taxefplanation of the
various constellations;.

Statistic K Constellation ofn;
1 1-2 2 1-10 5 10

100 500 100 500 100 500 100 500 100 500 100 500
90 75 97 92 134 107 187 129 256 16.3 389 338

196 134 205 174 274 253 286 30.2 349 519 465 741
19.8 12,6 21.7 174 282 254 29.6 304 345 525 454 747
20.1 189 22.0 259 283 347 304 396 350 616 452 81.1
11 19.2 237 20.7 30.7 275 39.6 285 46.8 332 659 44.7 845
15 19.7 26.1 225 32.0 276 426 28.6 49.2 330 66.8 46.6 85.3
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conservative§,, Ty, Trax)-

5.4.2 Overdispersion

To evaluate the power to detect misspecification of the limiction, Kuss (2002) used the

following model to generate the response:

m(@) \ _

wherez; ~ U(—6,6), E(b) = 0 andvar(b) = 0.323. Again, we fit the following simple
logistic regression model to the resulting data: (ogr)/(1 — 7 (x))) = 5o + S

Table 20 and Table 21 report the empirical power of the Bayasand order selection
tests, respectively. The series-based tests possess ®o fwodetect possible presence of
overdispersion. In fact, it appears that several of thes tamtiverge to the nominal five per

cent level specified for the test.
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Table 19. Performance of the order selection-based ted&t@ating misspecified link. Sim-
ulated per cent rejection at the= 0.05 level using sample sizes of 100 and 500
with 1000 replications are reported. For each covariatebigion per cent rejec-
tion was evaluated at various values of truncation poiné t8gt for explanation

of the various constellations;.
Statistic K Constellation ofn;
1 1-2 2 1-10 5 10
100 500 100 500 100 500 100 500 100 500 100 500
9.5 7.0 10.0 83 13.0 89 174 126 285 16.2 42.8 35.6

2r2 166 31.0 231 38.0 293 392 36.1 464 583 51.7 781
242 177 286 23.0 344 301 356 371 394 59.6 46.0 787
28.3 298 29.8 343 33.0 487 325 551 371 737 387 88.2
11 275 406 29.1 46.6 332 584 321 664 350 806 386 92.0
15 25.8 458 294 53.6 31.7 64.0 30.6 71.2 321 84.7 49.2 939

Sh 2 114 081 128 10.1 176 121 223 144 31.7 180 479 36.5
3 206 11.2 229 147 313 21.8 320 249 393 46.1 544 69.8

4 20.7 11.0 239 145 314 224 324 253 400 46.3 554 70.0

7 212 119 243 16.6 31.3 232 34.1 28.0 40.2 49.6 55.6 726

11 213 120 237 17.0 32.0 232 334 284 39.1 491 56.2 72.8

15 21.3 121 237 16.6 31.0 226 33.1 28.0 399 49.7 57.1 728

T, 2 95 68 101 95 13.7 93 186 121 279 165 40.6 33.5
3 21.0 135 236 179 295 256 319 316 371 538 482 756

4 212 13.6 233 195 287 263 31.2 325 38.0 552 485 T76.7

7 246 241 270 29.8 32.0 404 349 483 40.0 682 489 859

11 265 34.7 281 40.8 314 519 36.5 60.8 40.1 772 52.0 90.9

15 26.6 404 29.1 49.0 322 579 345 67.1 381 828 582 93.6

Tos 2 95 77 97 91 137 103 183 120 259 166 389 33.6
3 148 113 160 144 21.2 213 251 249 312 475 425 70.3

4 15.0 11.0 169 14.7 21.3 222 252 264 321 479 433 710

7 156 14.6 173 19.6 21.3 26.7 26.6 32.7 33.0 551 435 76.3

11 16.1 161 171 21.6 21.3 29.7 26.2 364 32.0 555 454 78.0

15 16.0 16.6 16.5 21.7 20.9 293 252 33.7 315 56.7 46.6 78.0

Tnax 2 93 68 104 92 133 94 187 126 282 163 41.6 34.2
3 220 136 248 196 314 26.7 332 33.0 395 547 499 76.0

4 221 141 253 213 307 273 328 344 400 56.3 498 773

7 259 246 281 306 33.8 43.0 360 494 41.7 687 514 86.3

11 277 338 292 404 343 523 376 609 422 773 534 90.9

15 276 390 299 476 350 570 36.3 653 40.8 81.8 58.6 93.2

Sa

N B~ 0N
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Table 20. Performance of the Bayes sum test in detectinglimgarsed data. Simulated per
cent rejection at ther = 0.05 level using sample sizes of 100 and 500 with 1000
replications are reported. For each covariate distrilougier cent rejection was
evaluated at various values of truncation point. See taxefplanation of the

various constellations;.

Statistic K Constellation ofn;

1 1-2 2 1-10 5 10
100 500 100 500 100 500 100 500 100 500 100 500
36 44 45 42 44 44 45 57 41 63 6.0 5.1

3.5 48 50 46 48 48 48 6.0 41 62 57 54
3.2 49 47 49 54 48 46 54 37 63 57 5.2
36 46 44 48 50 50 47 54 33 62 49 6.1
11 38 48 45 51 51 48 47 49 32 6.1 50 53
15 37 51 46 49 56 49 52 55 33 65 56 54

Sk

N B 0N

5.5 Examples

In this section we present examples to illustrate the agitin of the Bayes sum statistic
developed in the previous chapter. The examples we confsides on analyses of well-
known datasets that have appeared in the literature. Fortre, these are datasets for
which adequacy of a proposed logistic regression model @éas bxamined. The motiva-
tion in revisiting these examples is to see if our methodegweth findings that have been
established and accepted in the literature as well as prandpportunity to clarify use of
the method in practice.

In each of the examples presented below, we have estimaggdviilue using the
proportion of times simulated replicates from the asymetadll distribution exceeded the
test statistic value calculated for the dataset. We willag8®0 replicates from the asymp-
totic null distribution to obtain eacp-value estimate. We will also present the results of

test statistics based on likelihood ratios (LRs) and there approximation. The rationale
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Table 21. Performance of the order selection-based tesistacting overdispersed data.
Simulated per cent rejection at the = 0.05 level using sample sizes of 100
and 500 with 1000 replications are reported. For each cateadistribution per
cent rejection was evaluated at various values of truncgimnt. See text for

explanation of the various constellatioms.
Statistic K Constellation ofn;
1 1-2 2 1-10 5 10

100 500 100 500 100 500 100 500 100 5HO0 100 500
31 41 48 41 49 48 52 6.0 44 6.2 59 59
40 52 54 47 50 51 50 46 45 70 58 5.1
33 48 54 49 57 45 44 50 48 64 63 4.2
40 47 b5 53 59 54 55 49 48 b4 47 44
11 40 55 54 44 60 58 58 49 49 46 58 46
15 41 57 55 47 51 54 50 50 49 49 221 51

Sh 2 55 55 74 55 72 55 v T4 75 72 91 64
3 59 57 79 56 78 57 84 73 79 72 102 6.0

4 56 57 79 56 78 bHT 79 v5 T T3 94 6.3

7 59 63 83 52 80 56 84 70 81 72 94 6.0

11 59 62 78 52 78 63 81 70 74 72 94 64

15 59 64 79 56 80 58 83 75 78 73 94 6.5

T, 2 32 49 44 40 50 46 49 61 39 56 66 53
3 34 52 46 43 53 52 49 53 38 6.0 63 48

4 34 47 47 45 50 b4 47 57 38 66 62 48

7 33 43 49 48 51 52 57 61 46 62 54 5.1

11 34 46 50 44 46 52 58 57 39 64 57 5.1

15 35 46 51 43 47 44 57 58 39 58 130 53

Tos 2 34 41 49 46 42 43 47 56 43 60 65 54
3 35 42 48 47 44 46 47 55 42 6.2 65 48

4 36 42 50 47 45 48 47 58 41 6.2 6.1 49

7 36 47 52 41 46 45 47 53 39 55 6.1 49

11 36 47 49 41 45 49 45 53 39 62 59 54

15 36 45 49 44 46 47 47 56 41 6.0 59 5.6

Tinax 2 31 48 44 40 51 48 52 61 33 58 64 52
3 32 51 49 44 53 48 49 56 35 62 62 49

4 30 49 50 45 51 50 47 54 38 64 52 47

7 32 41 51 46 50 49 56 60 40 62 51 49

11 32 41 53 42 52 53 53 56 41 64 53 50

15 33 43 53 42 52 48 52 59 41 6.6 122 5.2

Sa

~N B~ WON
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for presenting both test statistics is that the score-btessdstatistic is an asymptotic ap-
proximation of the LR-based statistic. Consequently, eérstatistics can lead to different

conclusions if the sample size is not sufficiently large.

5.5.1 Kyphosis Data

We will apply our method in the context of the well-known ahdroughly-studied kypho-
sis data set presented in Hastie and Tibshirani (1990, pp-388). Data were collected
on 83 patients undergoing corrective spinal surgery. Theatille was to determine im-
portant risk factors for kyphosis following surgery. Thekrifactors are age in years, the
starting vertebrae level of the surgery and the number @l$ewnvolved. Two of the cases
in this data set have been identified in the literature asgoeutliers. These cases have
been removed leaving us with 81 total cases.

Hastie and Tibshirani (1990) used this dataset to exemiptify one could use a non-
parametric extension of the GLM known as the generalizediadanodel (GAM) to guide
the specification of a GLM. Upon obtaining a “final” GAM fit seted via a stepwise proce-
dure, Hastie and Tibshirani considered several paramggipcoximations to the estimated
GAM. After comparing these approximations, they concluthed the following model of-
fered the best approximation since it is parsimonious yedptures the functional form of

the nonparametric fit:

log (M) — Gt B + Bt + Byl —12) x I(02 > 12),  (5.12)

1 —m(xy, 22)
wherez; denotes the patients age,denotes the starting vertebrae level of the surgery and
m(x1, zo) denotes the probability of kyphosis at given values pandz,.
To better clarify this parametric specification, observguirés 2 and 3. These fig-

ures display nonparametric estimates of the marginalioalship between each of the risk
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Table 22. Test statistic values apdralues for the Bayes sum statistic for the kyphosis data
null model taken to be the logistic regression model give®ith2).

K Value of S p-value
2 0.369 0.823
3 0.314 0.756
4 0.409 0.922

factors and the log odds of kyphosis of these respectivéioakhips. Nonparametric es-
timates such as GAMs are advantageous for parametric maddirg since they can be
viewed as an objective assessment of the unknown functietelonship; that is, we “let
the data speak for themselves”. From Figure 2, we note a glesdratic relationship age
and the estimated logit proportions of the presence of kgisho

In this setting we apply a multivariate extension of the Bageem statistic using poly-
nomial basis functions in a manner similar to that describesection 5.3.1, however, we
will use the likelihood ratio-based statistic. The reswatsapplying the Bayes sum test
to the parametric model specified in (5.12) are presente@liteT22. The large-values

provide an indication that the proposed parametric modalishnot be rejected.

In the interest of examining the performance of our test wdqgplied to real data, we
will compare the findings of the test of the logistic regreasmodel specified by (5.12)
with a test of a model which is intended to constitute misgjpation. That is, we will now

consider a test of the following model

log (M) By + B + Bo, (5.13)

1 —7(zq,x2)

where as in the previous model¢siienotes the probability of kyphosis at a given valyge
x9 With x1, x5 denoting the patients age amglthe starting vertebrae level of the surgery,

respectively.
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Estimated relationship between age and the log odds of lefplarn = 81 patients.
The nonparametric curve estimate was obtained using a s$rmapspline fit. The
parametric model was obtained by modeling the log odds \Wwittperrametric linear
predictor: 3, + 12 + B.2% wherex denotes the age variable.
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Estimated relationship between starting vertebrae le¥¢he surgery (i.e., “start”)
and the log odds of kyphosis fer = 81 patients. The nonparametric curve
estimate was obtained using a smoothing spline fit. The peatr&anmodel
was obtained by modeling the log odds with the parametriedinpredictor:
Bo + Ps(x — 12) x I(z > 12) wherex denotes the start variable.



139

Table 23. Test statistic values apdralues for the Bayes sum statistic for the kyphosis data
null model taken to be the logistic regression model give®it3).

K Value of S p-value
2 2.350 0.032
3 2.538 0.054
4 2.721 0.067

Based on the results of our simulation studies of a missiaglciic term and misspec-
ified functional form of the linear predictor presented irctgms 5.3 and 5.4, respectively,
we anticipate that the Bayes sum test will detect the inaa@egof the simple logistic re-
gression model and reject the null hypothesis that the @eghéinear predictor is correct.
Table 23 summarizes the test statistic valuesyaundlues for a test of (5.13) using the like-
lihood ratio-based version of the Bayes sum statistic. €sedlearly indicates a lack of fit
for model (5.13). Examination of the results of applying Bayes sum test to the models
specified in equations (5.12) and (5.13) along with the figsgliof Hastie and Tibshirani
(1990) leads us to conclude that our test is capable of disishing adequately specified

models from misspecified models.

5.5.2 Coronary Artery Disease Diagnostic Data

Here we analyze a dataset which has been presented as anexamarrell (2001). This
dataset is from the Duke University Cardiovascular Dis&zsabank and consists of 3504
patients and 6 variables. One of the analyses conductedsodataset involved predicting
the probability of significant¥= 75% diameter narrowing in at least one important coro-
nary artery) coronary disease. In particular, Harrell @0&amined the adequacy of the

following logit model
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log (M) = By + Bizy + Pot (5.14)

1 —m(xy, 22)

wherer denotes the probability of significant coronary artery dgser, denotes a respon-
dent's sex{; = 0 for males,1 for females) and:, denotes a respondent’s age.

As in the example discussed in Section 5.5.1, we examine ganametric estimate of
the relationship between age and log odds of significant@syodisease for this data in or-
der to get a visual impression of the degree of departure fr@model proposed in (5.14).
We estimate this relationship separately for men and wom&ingure 4, noting that if the
specification of (5.14) were correct, then the plot shouldsgst of parallel straight lines.
From Figure 4, we can see that while the nonparametric cigtimnate for males may be
adequately approximated by a straight line, there is nalileenonlinear relationship be-
tween age and the log odds of significant coronary arteryadesé&r women. Furthermore,
there appears to be a possible interaction between the dgeearvariables not accounted
for in the specification in (5.14).

The results of the Bayes sum test are presented in Table 2#e Wit significant at
thea = 0.05 level, thep-values are rather small providing a suggestion of lack ofifit
seems noteworthy that the departure from linearity degictd-igure 4 is not as severe as
that which was observed Figures 2 and 3 for the kyphosis ddtareover, thep-values
observed in the kyphosis example are distinctly smallem thap-values obtained in this
example. In the present example, it is clear thatttvalues are small enough to indicate
possible lack of fit, but not excessively small to qualify asiial rejection of (5.14) at the
a = 0.05 level. Thus, it appears that the test possesses the akfliégt the severity of the

departure.
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Estimated relationship between age and the log odds offegni coronary artery
disease for405 male patients and099 female patients. The estimated curves were
obtained using a regression spline fits. Spline fits are &poitid the subsets of males
and females, separately.



142

Table 24. Test statistic values apevalues for the Bayes sum statistic for the Cardiac
Catheterization data with null model taken to be the logistigression model
given in (5.14).

K Value of S p-value
2 5.046 0.118
3 6.734 0.089
4 7.024 0.087
7 7.130 0.090

11 7.194 0.094

15 7.234 0.092

5.6 Discussion

In this chapter we presented an extensive numerical stuadyréirealed new insights into
the performance and applicability of the series-based teishin the context of logistic re-
gression. We observed by means of simulation that thegstgtsipossess desirable power
properties against several alternatives that have beaiifidd in the existing literature as
being important. These power properties are competitite amnd in some cases superior
to the properties of some of the better known tests of fit thaetbeen studied in the litera-
ture. In addition to establishing relative performanceiagjeexisting tests, our simulation
results also provide a scope of the departures that thesdgaiged statistics can detect. Fi-
nally, this simulation study has permitted us an opporjutaiinvestigate the properties of
the Bayes sum statistic developed in Chapter IV.

It is evident from the empirical power values presented foission of a quadratic
term in Section 5.3 and for misspecified functional form obaariate in Section 5.4, the
series-based tests perform best in detecting departwelviimg variables that have been
included in the model. Indeed, we observed that none of thessbased lack-of-fit tests

provide meaningful power to detect misspecification dueawables not included in the
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model. This was revealed in the results of the tests in twiingst the missing covariate
simulation setting of Section 5.4 and the setting for détgobmission of a dichotomous
variable and its interaction of Section 5.3. Two points dtdae kept in mind with re-
gards these findings. First, the two settings in which theesdrased tests performed in-
adequately led to poor power for test statistics studiedasrier et al. (1997) and Kuss
(2002). Second, when detecting departures in terms ofblasahat were actually included
in the model, all of the tests performed extremely well, agvksal of these tests exhibited
superior power properties when compared to the best perigrtasts studied in Hosmer
et al. and Kuss.

In addition to the simulations that examined misspecificatf the linear predictor,
we also considered other departures from the specified mddeahy of these departures
were not well detected, however, most existing tests do adbpm much better in these
settings. Furthermore, we did find that the series-baséidtsta performed acceptably in
detecting departures from the logistic link function undertain circumstances. Given the
formulation of the series-based tests, these results asnarising.

We found that the series-based tests can provide desirablerpn detecting some
types of misspecification for data with replicate covaripsgterns as well as for sparse
data. Furthermore, replication appears to enhance therpehce of the series-based
statistics. This is noteworthy that the test can be useddeégss of the degree of sparsity
and be expected to detect misspecification. As we discuasgdapter Il, this property is
not shared by most of the existing tests of fit for logisticresgion models. Consequently,
we assert that the series-based tests are particularlyitiahan data sets exhibiting near
sparsity (i.e., there are few replicated covariate pagderim such situations one cannot be
certain of the validity of tests designed for sparse datasistrequiring replication.

In addition to the above conclusions, we found that througloair simulation study

that the behavior of the Bayes sum statistic and the beha¥ittre order selection based
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tests are generally similar. One noteworthy deviation ftbmagreement observed among
these various tests was due to a test based on a score andhegBiCC criteria. This test
tended reject the null hypothesis more often than the othgs8cs. This agreement among
these tests is particularly interesting because the Baymsssatistic is nonadaptive, and
nonadaptive tests like the cusum test have been observedéqioor power properties in
comparison to tests that use test statistics based on daés-dmoothing parameters (i.e.,
order selection-based tests). This finding is consistetht sinulation results described in
Hart (2009). We noticed that the value &fdid not have a great deal of influence on the

power of the test.
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CHAPTER VI

CONCLUSION

In this dissertation we sought to contribute to the develepinof techniques for assessing
the adequacy of generalized linear models. In particularhave focused on lack-of-fit
tests based on characterizing departures from the predigtotion in terms of Fourier
coefficients and subsequently testing that all of theseficamfits are 0. In the pursuit of
our objective, we developed a new lack-of-fit test for canahlink regression models and
examined several other well-known lack-of-fit tests. Oysrapch for testing lack-of-fit is
based on the ideas of Hart (2009). That is, we use as a tastistat_aplace approximation
to the posterior probability of the null hypothesis. Ratti&n evaluating this probability
directly, this statistic is used in frequentist fashion bgans of a reference distribution.
Our examination of the Laplace approximation-based tegisst yielded several
noteworthy theoretical findings. First, we show that undher null hypothesis, the limit
distribution of the statistic formulated from posterioopability is completely determined
by the alternative models with the fewest parameters. Inf@wnulation of the posterior
probability, these models are the so-called singletonradteses. This is remarkable be-
cause the posterior probability is constructed from a venyegal, nonparametric class of
alternative models. This leads us to a test statistic theatngighted sum of exponentiated
likelihood ratios, where the weights depend on user-sgecrior probabilities. Replac-
ing the likelihood ratios with their corresponding scoratistics produces a statistic that
consists of a weighted sum of exponentiated squared Fawrédficient estimates. Hence
we refer to these statistics as the “Bayes sum” statistidse f@rior probabilities which
provide the investigator the flexibility to examine specd&partures from the prescribed
model. Alternatively, the use of noninformative priors guoces a new omnibus lack-of-fit

statistic. We then established the limiting distributidrniee score version of the test statis-
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tic under both the null hypothesis and local alternatived ttonverge to the null at rate
1/4/n. An interesting aspect of this result is that we obtained thsult by characteriz-

ing the distribution of the coefficients under local altéiviss. To our knowledge, no such
result has appeared in the literature for techniques asidigegeneralized linear models.
Under the null hypothesis, the score-based statistic gesva large sample approximation
of the likelihood ratio-based test statistic. Our resuogbrovides a null distribution for

the likelihood ratio test.

Our extensive simulation study of the series-based tesksnithe context of logistic
regression reveals that these statistics possess despalvker properties against several
alternatives that have been identified in the existingdii@e as being important. Moreover,
these power properties are competitive, and in some capesicuto, some of the better
known tests of fit that have been studied in the literaturgdrticular, the Bayes sum and
order selection-based tests perform well in detectingpeisigication in the linear predictor.
While we noted that other departures from the fitted modelnatewell detected, most
existing tests do not perform much better in these settirkgs. the departures that the
series-based tests could detect, we found that the seagesiliests were less sensitive to
the degree of sparsity than other existing methods. Thelatian results also provide a
scope of the departures that the Bayes sum statistic cactdete

Several questions have arisen that should be addressetliia fesearch. First, is it
possible to generalize the distribution theory furtherrides to permit the order of the sum
to tend to infinity with the sample size. Robustness of prrobgbility selection is also of
interest.

Ultimately, we conclude that the desirable properties regabin Hart (2009) apply in
this generalized setting. Indeed, as we have noted abov@ayes sum statistic is easily
calculated (relative to other series-based tests), it asaenient reference distribution,

and it has good power against some important departuresgnamposed null model.



147

REFERENCES

Aerts, M., Claeskens, G., and Hart, J. D. (1999). Testink dddit of a parametric function.

Journal of the American Statistical Associatiéh 869—-879.

Aerts, M., Claeskens, G., and Hart, J. D. (2000). Testing tddit in multiple regression.
Biometrika87, 405—-424.

Aerts, M., Claeskens, G., and Hart, J. D. (2004). Testink ¢diit of a parametric function.
Annals of Statistic82, 2580-2615.

Agresti, A. (2002). Categorical Data AnalysisNew York: John Wiley.

Aparicio, T. and Villanua, 1. (2001). The asymptoticallyieient version of the information
matrix test in binary choice models. a study of size and powéournal of Applied

Statistic28, 167-182.

Aranda-Ordaz, F. J. (1981). On two families of transforwrdito additivity for binary

response dataBiometrika68, 357—-363.

Azzalini, A., Bowman, A. W., and Hardle, W. (1989). Use ohparametric regression for
model checking.Biometrika76, 1-11.

Beran, R. J. and Millar, P. W. (1992). Tests of fit for logistiodels. Technical Report,

University of California, Berkeley.

Bertolini, G., D’Amico, R., Nardi, D., Tinazzi, A., and Apohe, G. (2000). One model,
several results: The paradox of the Hosmer-Lemeshow gagelnfefit test for the lo-

gistic regression modelJournal of Epidemiology and Biostatistibs251-253.



148

Brown, C. C. (1982). On a goodness of fit test for the logistmdel based on score
statistics. Communications in Statistics, Theory & Methdds 1087-1105.

Cline, D. (1983). Infinite series of random variables witgulkarly varying tails. Technical
Report, 83-24, University of British Columbia, Instituté Applied Mathematics and

Statistics.
Collett, D. (1991). Modelling Binary Data London: Chapman and Hall.

Copas, J. B. (1989). Unweighted sum of squares test for ptiops. Applied Statistics
38, 71-80.

Cressie, N. and Read, T. (1984). Multinomial goodnesstdésits. Journal of the Royal
Statistical Society, Series4b, 440-464.

Eubank, R. L. and Hart, J. D. (1992). Testing goodness-afi-fikggression via order selec-
tion criteria. Annals of Statistic80, 1412-1425.

Eubank, R. L. and Hart, J. D. (1993). Commonality of cusumpn Weumann and

smoothing-based goodness-of-fit tesBiometrika80, 89—98.

Fahrmeir, L. and Tutz, G. (2001 Multivariate Statistical Modelling Based on Generalized

Linear Models, 2nd edNew York: Springer.

Farrington, C. P. (1996). On assessing goodness of fit ofrgkred linear models to sparse

data. Journal of the Royal Statistical Society, SerieS&8349-360.

Guerrero, V. M. and Johnson, R. A. (1982). Use of the Box-Camdformation with binary

response modelsBiometrika69, 309-314.

Harrell, F. E. (2001).Regression Modeling Strategidsew York: Springer.



149

Hart, J. D. (1997).Nonparametric Smoothing and Lack-of-Fit Testew York: Springer.

Hart, J. D. (2009). Frequentist-Bayes lack-of-fit testseldagn Laplace approximations.
Journal of Statistical Theory and Practi@ 681-704.

Hastie, T. and Tibshirani, R. (1986). Generalized additnaalels. Statistical Scienca,
297-310.

Hastie, T. and Tibshirani, R. (1987). Generalized additivedels: Some applications.

Journal of the American Statistical Associati®? 371-386.

Hastie, T. J. and Tibshirani, R. J. (1990keneralized Additive Model®New York: Chap-

man and Hall.

Hosmer, D. W. and Hjort, N. L. (2002). Goodness-of-fit prasssfor logistic regression:

simulation results.Statistics in Medicin@1, 2723—2738.

Hosmer, D. W., Hosmer, T., Le Cessie, S., and Lemeshow, 87]19A comparison of
goodness-of-fit tests for the logistic regression modgtatistics in Medicind.6, 965—

980.

Hosmer, D. W. and Lemeshow, S. (1980). A goodness-of-fitfteghe multiple logistic

regression modelCommunications in Statistics, Theory & Meth@dR), 1043—-1069.

Hosmer, D. W. and Lemeshow, S. (200@pplied Logistic Regression, 2nd édew York:
John Wiley.

Ichimura, H. (1993). Semiparametric least squares (sld)vagighted sls estimation of

single-index models.Journal of Econometric§8, 71-120.

Inglot, T. and Ledwina, T. (1996). Asymptotic optimality d&ta-driven Neyman'’s tests
for uniformity. Annals of Statistic4, 1982—2019.



150

Inlow, M. (2001). On techniques for binary response modglidh.D. Dissertation, Texas

A&M University, Department of Statistics, College Station

Kass, R. E. and Ratftery, A. E. (1995). Bayes factodsurnal of the American Statistical
Associatiorf0, 773-795.

Kuss, O. (2002). Global goodness-of-fit tests in logistgression with sparse dat&tatis-
tics in Medicine21, 3789-3801.

le Cessie, S. and van Houwelingen, J. C. (1991). A goodnkesstest for binary regression

models, based on smoothing metho@iometrics47, 1267-1282.
Lechner, M. (1991). Testing logit models in practicémpirical Economic46, 177-98.

McCullagh, P. (1985). On the asymptotic distribution of Bea’s statistics in linear expo-

nential family models.International Statistical Revie®3, 61-67.

McCullagh, P. (1986). The conditional distribution of goeds-of-fit statistics for discrete

data. Journal of the American Statistical Associati®h 104-107.

McCullagh, P. and Nelder, J. A. (1989)Generalized Linear Models, 2nd ebllew York:

Chapman and Hall.

Moore, D. F. (1986). Asymptotic properties of moment estomafor overdispersed counts

and proportions.Biometrika73, 583-588.

Orme, C. (1988). The calculation of the information matesttfor binary data models.

The Manchester School of Economic & Social StuB&s870-76.

Osius, G. and Rojek, D. (1992). Normal goodness-of-fit testeultinomial models with
large degrees of freedomJournal of the American Statistical Associati®n, 1145—

1152.



151

Parzen, M. (1977). Multiple time series: Determining thdesrof approximating autore-
gressive schemes. Multivariate Analysis—IV, KrishnaiahP. R. (ed.), pp. 283-295.

Amsterdam: North-Holland.

Paul, S. R. and Deng, D. (2000). Goodness of fit of generalinedr models to sparse
data. Journal of the Royal Statistical Society, Serie683323-333.

Paul, S. R. and Deng, D. (2002). Score test for goodness dfféreralized linear models
to sparse dataSankhya, Series &4, 179-191.

Pigeon, J. G. and Heyse, J. F. (1999). A cautionary note ass@ssing the fit of logistic

regression modelsJournal of Applied Statistic6, 847—853.

Pregibon, D. (1980). Goodness of link tests for generalireshr models. Applied Statis-
tics 29, 15-24.

Prentice, R. L. (1976). A generalization of the probit angitonethods for dose response

curves. Biometrics32, 761-768.

Pulksenis, E. and Robinson, T. J. (2002). Two goodnesg-tddiis for regression models

with continuous covariatesStatistics in Medicin1, 79-93.

Raftery, A. E. (1996). Approximate Bayes factors and actiagrfor model uncertainty in

generalised linear modeldBiometrika83, 251—-266.
Resnick, S. 1. (1999) A Probability Path Boston: Birkhauser.

Royston, P. (1992). The use of cusums and other techniquesdelling continuous

covariates in logistic regressiorstatistics in Medicind1, 1115-1129.

Samorodnitsky, G. and Taqqu, M. S. (19943table non-Gaussian Processes: Stochastic

Models with Infinite VarianceLondon: Chapman and Hall.



152

Seber, G. A. F. (1977)Linear Regression Analysitdew York: John Wiley.

Serfling, R. J. (1980). Approximation Theorems of Mathematical Statistidéew York:
John Wiley.

Shao, J. (2003) Mathematical Statistics, 2nd etllew York: Springer.

Stukel, T. A. (1988). Generalized logistic regressialournal of the American Statistical

Associatior83, 426—-431.

Stute, W., Gonzalez Mantiega, W., and Presedo Quindimil1998). Bootstrap approxi-
mations in model checks for regressialournal of the American Statistical Association

93, 141-149.

Stute, W. (1997). Nonparametric model checks for regressiénnals of Statistic5,

613-641.

Stute, W.,, Thies, S., and Zhu, L.-X. (1998). Model checksrégression: An innovation

process approachAnnals of Statistic26, 1916—1934.

Stute, W. and Zhu, L.-X. (2002). Model checks for generailteear models. Scandina-
vian Journal of Statistic9, 535-545.

Su, J. Q. and Wei, L. J. (1991). A lack-of-fit test for the meanction in a generalized

linear model. Journal of the American Statistical Associati®® 420—426.

Thomas, J. M. (1993). On testing the logistic assumptionimaty dependent variable

models. Empirical Economic48, 381-92.

Tsiatis, A. A. (1980). A note on a goodness-of-fit test for kbgistic regression model.

Biometrika67, 250-251.



153

Wang, X. and George, E. I. (2007). Adaptive Bayesian catarivariable selection for

generalized linear modelsStatistica Sinicd 7, 667—690.

White, H. (1982). Maximum likelihood estimation of missgesx models. Econometrica

50, 1-25.

Xiang, D. and Wahba, G. (1995). Testing the generalizedatimeodel null hypothesis

versus ‘smooth’ alternatives. Technical Report, 953, ¥rsity of Wisconsin.



154

VITA

Daniel Laurence Glab was born in Chicago, lllinois. He atemhRiverside-Brookfield
High School in Brookfield, lllinois. In May 2000 he receivedBachelor of Science de-
gree in mathematics from University of Wisconsin-Madiséte continued his studies at
Texas A&M, earning a Master of Science degree in statistiddacember 2005 under the
supervision of Dr. Randall L. Eubank and then a Doctor of ¢&uphy degree in statistics
in May 2011 under the supervision of Dr. Thomas Wehrly. Helmameached through the
following address: Department of Statistics, Texas A&M msity, 3143 TAMU, College
Station, TX 77843-3143.



