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ABSTRACT

Testing Lack-of-Fit of Generalized Linear Models

via Laplace Approximation.

(May 2011)

Daniel Laurence Glab, B.S., University of Wisconsin-Madison;

M.S., Texas A&M University

Chair of Advisory Committee: Dr. Thomas E. Wehrly

In this study we develop a new method for testing the null hypothesis that the predictor

function in a canonical link regression model has a prescribed linear form. The class of

models, which we will refer to as canonical link regression models, constitutes arguably

the most important subclass of generalized linear models and includes several of the most

popular generalized linear models. In addition to the primary contribution of this study,

we will revisit several other tests in the existing literature. The common feature among the

proposed test, as well as the existing tests, is that they areall based on orthogonal series

estimators and used to detect departures from a null model.

Our proposal for a new lack-of-fit test is inspired by the recent contribution of Hart

and is based on a Laplace approximation to the posterior probability of the null hypoth-

esis. Despite having a Bayesian construction, the resulting statistic is implemented in a

frequentist fashion. The formulation of the statistic is based on characterizing departures

from the predictor function in terms of Fourier coefficients, and subsequent testing that all

of these coefficients are 0. The resulting test statistic canbe characterized as a weighted

sum of exponentiated squared Fourier coefficient estimators, whereas the weights depend

on user-specified prior probabilities. The prior probabilities provide the investigator the

flexibility to examine specific departures from the prescribed model. Alternatively, the use

of noninformative priors produces a new omnibus lack-of-fitstatistic.
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We present a thorough numerical study of the proposed test and the various exist-

ing orthogonal series-based tests in the context of the logistic regression model. Simula-

tion studies demonstrate that the test statistics under consideration possess desirable power

properties against alternatives that have been identified in the existing literature as being

important.
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CHAPTER I

INTRODUCTION

1.1 Overview

In this chapter we will define the class of models known as generalized linear models (Sec-

tion 1.2) as well as the canonical link regression model (Section 1.2.3), which may arguably

be the most familiar, if not most important, subclass within generalized linear models. In

addition to defining these models we present several examples (Sections 1.2.3, 1.2.3 and

1.2.3) and selected theoretical results which are utilized in the subsequent chapters (Sec-

tion 1.3). We will also formally present the problem of testing lack of fit for such classes of

models. Finally, we will conclude this chapter by providing an overview of the remainder

of this dissertation.

1.2 The Generalized Linear Model

The class of linear models for which the distribution of the response variable is in the

general exponential family is called thegeneralized linear model(GLM). GLMs constitute

one of the most important model classes for data analysis since most of the nonnormal

regression models used in practice are members of this class, see, e.g. McCullagh and

Nelder (1989), Fahrmeir and Tutz (2001), Shao (2003).

More to make the definition more formal and precise, we will assume the following

throughout the remainder of this chapter: Suppose the data(x1, y1), . . . , (xn, yn) are ob-

served where, fori = 1, . . . , n, xi is a fixed vector of covariates andyi is a scalar response

for theith subject.

This dissertation follows the style ofBiometrics.
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1.2.1 Response Distribution

A GLM consists of a responseY with independent observationsy1, . . . , yn, each of which

have an exponential family probability density function ormass function of form

f(yi; θi, ψ) = exp{[yiθi − b(θi)]/a(ψ) + c(yi, ψ)}, (1.1)

wherea(·), b(·) andc(·) are known functions; in practice,c(·) need not be specified ex-

plicitly. The parameterθi is called the canonical parameter and, in the context of a GLM,

the value ofθi may vary fori = 1, . . . , n as a function of covariates; that is,θi = θ(xi).

The parameterψ is the unknown dispersion parameter that allows a more flexible relation-

ship between the mean and variance than the traditional least squares regression model. In

particular, forYi with a probability density or mass function given by (1.1) wehave

E(Yi) = b′(θi) ≡ µi (1.2)

and

var(Yi) = a(ψ)b′′(θi) ≡ a(ψ)v(µi) (1.3)

where the variance functionv(µ) is uniquely determined by the specific exponential family

through the relationv(µ) = b′′(θ). Several important distributions are special cases of

(1.1), including the Poisson and binomial.

1.2.2 Components of the Exponential Family Regression Model

Using the exponential family for a regression analysis requires three specifications. First,

we need to specify therandom componentof the model; that is, we have to choose which

member of (1.1) will be taken as the response distribution. Since b(θi) uniquely deter-
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mines each member of (1.1), specifying the random componentamounts to selectingb(·)

to produce a distribution which reflects the observed data type for the response.

The systematic componentof an exponential family regression model refers to the

specification of the function used to obtain an estimate the unknown regression function,

which is denoted byη. Sinceη is a function of the covariates, we will writeηi = η(xi),

i = 1, . . . , n. In general,η can be estimated using either a parametric or nonparamet-

ric regression model. Examples of nonparametric regression models include the general-

ized additive model (Hastie and Tibshirani, 1986, 1987, 1990) and the single index model

(Ichimura, 1993). A GLM estimates a vectorη = (η1, . . . , ηn)
T as a function of the ex-

planatory variables through a linear model

η(xi;β) =

p∑

j=1

βjγj(xi), i = 1, . . . , n. (1.4)

whereγ1, . . . , γp are known functions,β = (β1, . . . , βp)
T an unknown parameter vector.

This linear combination of explanatory variables is calledthe linear predictor. Usually,

γ1(xi) = 1 for all i, in which caseβ1 will be regarded as the coefficient of an intercept

in the model. The linearity distinguishes GLMs from other exponential family regression

models such as generalized additive models or single index models, which use more general

regression functions.

The third component of an exponential family regression model is alink functionthat

connects the random and systematic components. The model linksµi to ηi through the

formula

h(µi) = ηi, (1.5)

where the link functionh is a monotonic, differentiable function. Hence the link function

“links” the mean response to the explanatory variables. Since µi = b′(θi), there is an



4

implied relationship

g(θi) = ηi (1.6)

betweenθi andβ.

The link functionh(µ) = µ, called theidentity link, hasηi = µi. It specifies a linear

model for the mean itself. The choice ofh(µi) such thatθi = h(µi) or

θi = ηi (1.7)

is called thecanonical-link function.

In a canonical link regression model, the analyst has more control over specification

of the systematic component than any other component comprising the model. We have

noted that specification of the response distribution is dictated primarily by the observed

data type. Furthermore, since the canonical link requires that θi = h(µi) while µi =

b′(θi), specification ofh(·) depends upon the specification ofb(·). In other words, for the

canonical link regression model, the link is implicitly specified upon specification of the

response distribution. A few examples will be discussed in the following subsection.

1.2.3 Canonical Link Models

Canonical link models constitute some of the most commonly used models within the class

of GLMs. In this section we present canonical link models corresponding to several of the

most familiar response distributions.

The normal regression model

Supposeyi, i = 1, . . . , n have been observed from a normally distributed response, i.e.,



5

Yi = µi + εi, i = 1, . . . , n,

µi = µ(xi), ε1, . . . , εn are i.i.d.N(0, 1). We can write the response density as

ϕ(yi) =
1√
2πσ

exp

{
−(yi − µi)

2

2σ2

}
= exp

{
yiµi − µ2

i /2

σ2
− y2i

2σ2
− log(

√
2πσ)

}
(1.8)

Thus, taking

θi = µi (1.9)

it is clear thatYi has an exponential family distribution as in (1.1) with

a(ψ) = σ2, b(η(xi)) = [η(xi)]
2/2, c(yi, ψ) = −y2i /(2σ2)− log(

√
2πσ)

where we setψ = σ. From (1.7) and (1.12) we see that the canonical link model for normal

data is obtained by takingh in (1.5) to be the identity link,h(µi) = µi, so that

η(xi) = h(µi) = µi = θi. (1.10)

The logistic regression model

Suppose now that the observed response is binary, that is,yi = 0, 1, i = 1, . . . , n. In this

case one would be inclined to proceed as ifyi is a realization of theBernoulli(µi) random

variableYi whereµi = µ(xi) ∈ (0, 1), i = 1, . . . , n denotes the probability of “success”

for theith individual. The probability mass function ofYi is given by
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P (Yi = yi) = µyi
i (1− µi)

1−yi = exp

{
yilog

(
µi

1− µi

)
− log(1− µi)

}
, yi = 0, 1

(1.11)

Thus, taking

θi = log

(
µi

1− µi

)
(1.12)

it is clear thatYi has an exponential family distribution as in (1.1) with

a(ψ) = 1, b(θi) = log(1− µi), c(y, ψ) ≡ 0. (1.13)

Note the absence of a nuisance parameterψ for this response distribution. From (1.7) and

(1.12) we see that the canonical link model for Bernoulli data is obtained by takingh in

(1.5) to be the logistic link, log{µi/(1− µi)}, so that

η(xi) = h(µi) = log{µi/(1− µi)} = θi. (1.14)

This in turn implies that the probability of success can be expressed as follows

µ(xi) =
exp{η(xi)}

1 + exp{η(xi)}
. (1.15)

The Poisson regression model

Supposeyi, i = 1, . . . , n denote counts so that the response values are nonnegative integers.

In this case a reasonable distribution forYi is the Poisson distribution. Then the probability

mass function ofYi is given by

P (Yi = yi) =
eµiµyi

i

yi!
= exp {yilog(µi) + µi − log(yi!)} , yi = 0, 1, 2, . . . (1.16)
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Thus, taking

θi = log(µi) (1.17)

it is clear thatYi has an exponential family distribution as in (1.1) with

a(ψ) = 1, b(θi) = µi, c(y, ψ) ≡ 0. (1.18)

As in the case of logistic regression, the response distribution does not have a nuisance

parameterψ. From (1.7) and (1.17) we see that the canonical link model for Poisson data

is obtained by takingh in (1.5) to be the log link,h(µi) = logµi, so that

η(xi) = h(µi) = logµi = θi. (1.19)

1.3 Selected Estimation and Inference Results

To make our discussion of generalized linear models more complete, we feel that it is

beneficial to briefly review of some fundamental results on estimation and inference applied

to generalized linear models (particularly, canonical link regression models). While the

results described in this section will be familiar to the reader, this discussion provides an

opportunity to further establish terminology and notationconventions that will be used

repeatedly throughout the remainder of this dissertation.The results summarized in this

section both provide the impetus for pursuing the method we propose as well as justification

for its use.

In the context of generalized linear models, both estimation and inference are based

on (log-)likelihoods. In light of (1.7), we write the log-likelihood function for a canonical

link model explicitly in terms of a specified regression function as follows
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l(β, ψ) =
∑n

i=1 logf(yi; η(xi;β), ψ)

=
∑n

i=1{[yiη(xi;β)− b(η(xi;β))]/a(ψ) + c(yi, ψ)},

(1.20)

wherea(·), b(·) andc(·) are defined as in 1.1.

1.3.1 Regularity Conditions

Several assumptions are required to ensure that inference results we will review in this sec-

tion actually hold and that the parameter estimators possess certain desirable properties.

While there is no unique collection of assumptions, there are several generally accepted

conditions that have been adopted in the literature. These assumptions are often referred

to as (“standard” or “general”)regularity conditions. Regularity conditions mainly relate

to identifiability of the parameters; existence and behavior derivatives of the response den-

sity with respect to the parameters; existence of third moments of y; and convergence of

the Hessian of the log-likelihood scaled by the sample size,l(β, ψ), to a positive definite

limit as the sample size tends to infinity. We will defer a formal presentation of regularity

conditions until Chapter IV where we will use them explicitly. A collection of regularity

conditions that are appropriate for application to GLMs is presented in Shao (2003).

1.3.2 Estimation

In a generalized linear model, the parameter of interest isβ. This parameter is usually esti-

mated by maximum likelihood estimation. Possible candidates for the maximum likelihood

estimates are the roots of the score function

sn(β̂) = 0 (1.21)
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whereβ̂T = (β̂1, . . . , β̂p) denotes the estimated value ofβ and

sn(β) =
∂l(β, ψ)

∂β
=

1

a(ψ)

n∑

i=1

{
[yi − b′(η(xi;β))]

∂η(xi;β)

∂β

}

=
1

a(ψ)

n∑

i=1

{[yi − b′(η(xi;β))]Γi} .

(1.22)

Note that an MLE ofβ can be obtained without estimatingψ. Obtaining an estimate ofψ by

maximum likelihood estimation is generally difficult in practice, so several other alternative

estimators have been suggested (Fahrmeir and Tutz, 2001; McCullagh and Nelder, 1989).

A closed form solution of the MLE of̂β is not available for most GLMs. Thus, numer-

ical techniques such as the Newton-Raphson or the Fisher-scoring methods are required to

obtain estimates. These two methods are identical for canonical link regression models and

are summarized by the following iteration procedure:

β̂(t+1)
n = β̂(t)

n − [J(β̂(t)
n )]−1sn(β̂

(t)
n ), t = 0, 1, . . . , (1.23)

whereJ(β̂mk) = J(β)|
β=β̂

andJ(βmk) is the Hessian of the log-likelihood

J(β) = −∂
2l(β, ψ)

∂β∂βT
= (ΓTW (β)Γ) (1.24)

whereW (β) = diag{w1(β), . . . , wn(β)}, andw−1
j (β) = h′(µj(β))

2v(µj(β)) (McCul-

lagh and Nelder, 1989). The matrixJ(β) is often called theinformation matrix.

A numerical approximation to an MLE that we will find particularly useful is called the

“one-step” MLE and can be obtained by taking the first iteration of the Newton-Raphson

procedure (i.e.,t = 0)

β̂(1)
n = β̂(0)

n − [J(β̂(0)
n )]−1sn(β̂

(0)
n )
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whereβ̂(0)
n is the initial value.

1.3.3 Statistical Properties of Estimators

Under general regularity conditions the following hold forβ̂ (Shao, 2003)

(i) There is a unique sequence{β̂n} such that

P (sn(β̂n) = 0) → 1 and β̂n
p→ β,

(ii) Let In(β) = Var(sn(β)). Then

[In(β)]
1/2(β̂n − β) d→ Np(0, Ip).

whereIp is ap× p identity matrix.

(iii) If ψ in (1.1) is known or the p.d.f. in (1.1) indexed by(β, ψ) satisfies the suitable

conditions, thenIn(β) = J(β), that is,β̂n is asymptotically efficient.

If an initial estimate,β̂(0)
n , is

√
n-consistent forβ, then the one-step MLÊβ(1)

n is asymp-

totically efficient under the same conditions (Shao, 2003).

1.3.4 Likelihood-based Inference on Regression Coefficients

In our subsequent discussion, we will often encounter basichypothesis testing techniques

designed to assess the contribution of a subset of the covariates to the linear predictor

of a GLM. While such methods of testing are well-known (particularly in the context of

traditional linear model theory), we will take this opportunity to briefly review two test

statistics that can be used to carry out such tests and highlight their properties as well

as establish notational conventions that will be utilized throughout the remainder of this

dissertation.



11

Let β be partitioned asβ = (β1,β2). Suppose, without loss of generality, that we

wish to investigate the contribution of the subset of covariates corresponding toβ2. Thus,

it is of interest to test

H0 : β2 = 0, β1, ψ unrestricted (1.25)

against

H1 : β1, β2, ψ unrestricted. (1.26)

We will distinguish the parameter estimates obtained from the models corresponding to

these hypotheses by denoting the unrestricted MLE underH1 as β̂ = (β̂1, β̂2) and the

MLE under the restriction ofH0 asβ̃ = (β̃1, 0). Correspondingly,̂ψ andψ̃ are consistent

estimators ofψ underH1 andH0, respectively.

The likelihood ratio statistic

L = −2{l(β̃)− l(β̂)}

compares the unrestricted maximuml(β̂) = l(β̂1, β̂2, ψ̂) of the (log-)likelihood with the

maximuml(β̃) = l(β̃1, 0, ψ̃) obtained for the restricted MLẼβ, computed underH0 (note

that the dependence upon the dispersion parameterψ is suppressed for convenience).H0

will be rejected in favor ofH1 if the unrestricted maximuml(β̂) is significantly larger than

l(β̃), implying thatL is large.

Alternatively, a test based on thescore statisticrejectsH0 when the value of

S = [s(β̃)]TJ−1(β̃)s(β̃) (1.27)

is large, wheres(β) is the score function andJ(β) is the information matrix. The score

test is based on the rationale that the statisticS measures the distance between the score
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function evaluated at the estimates obtained under the nullhypothesis and the zero vector

in a fashion similar to that of the Mahalanobis distance. However, by (1.21),s(β̂) = 0 and

henceS measures the discrepancy betweens(β̂) ands(β̃). If H0 is not true, the estimates

of β̂ andβ̃ will differ so thats(β̃) will be significantly different from0, which in turn leads

to a large value ofS and rejection ofH0. It is worth noting that (1.27) can be simplified

to an expression involving a subvector of the score vector and submatrix of the inverse

information matrix each constructed to conform with the partitioning ofβ.

UnderH0, bothL andS are asymptoticallyχ2(r), r = dim(β2), provided that reg-

ularity conditions such as those described in Section 1.3.1hold. Under such regularity

conditions, the Taylor series expansion can be used to express the likelihood ratio in terms

of the score statistic as follows

−2{l(β̃)− l(β̂)} = [s(β̃)]TJ−1(β̃)s(β̃) +Op(n
−1/2).

Thus, the score statistic is asymptotically equivalent to the likelihood ratio statistic. In fact,

this representation along with the asymptotic normality ofs(β) is a key step in demonstrat-

ing thatL has a chi-square limiting distribution (Shao, 2003).

Generally, the likelihood ratio statisticL is preferred for moderate sample sizes (Fahrmeir

and Tutz, 2001). However, by the asymptotic equivalence ofL andS cited above, it is rea-

sonable to useS for larger sample sizes since the two test statistics will tend to agree

closely. In such casesS is often preferred because its computation only requires anesti-

mate from the null (i.e., constrained) model. This propertyof the score statistic is especially

convenient in situations where there are multiple tests under consideration.
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1.4 Testing the Fit of a Parametric Model

In order for a model such as a GLM to be of practical use, we musthave some assurance

that it provides a reasonably accurate description of the data. Tests of fit provide a means

of assessing how well a statistical model fits the observed data. Some of the more familiar

tests of fit achieve this objective rather explicitly by directly measuring the discrepancy

between observed values and the values expected under the proposed model.

In our discussion we will assume that the model under consideration can be thought

of as a “final model” in that it represents a regression model determined via a formal model

building analysis. In particular, we assume that to the bestof our knowledge, the model

contains those variables that should be in the model and thatthe variables have been entered

in the correct functional form.

In general, tests of fit fall mainly into two categories: (a) parametric methods designed

to detect specific types of departures from the prescribed model, and (b) nonparametric

methods. Parametric tests embed the model under consideration in a wider class of (para-

metric) models and check if the data can be better described by the more general model. If

not, we stay with our fitted model. On the other hand, a nonparametric test of a parametric

hypothesis does not evaluate specific parametric alternatives, but rather tests unspecific hy-

potheses of the form ‘the model fits’ versus the alternative ‘the model does not fit’. Such

tests are appealing in that, for a sufficiently large sample size, they are able to detect vir-

tually any departure from the hypothesized parametric model. While we will discuss tests

from each of the two categories cited, we will focus primarily on nonparametric tests.

One approach for constructing nonparametric tests is to embed the null model in a

much wider class of parametric models that increases without bound asn → ∞. The

class of parametric models constitutes a collection of alternative models against which

the null is tested. This strategy for constructing tests will be studied extensively in this
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dissertation. While this approach may sound similar to the parametric methods described

above, it is distinct from parametric tests in that these arenot designed to detect specific

departures. That is, the class of alternatives is formulated in order to approximate any

possible departure from the null model and the departures approximated by the collection

of alternative models grows asn→ ∞.

1.4.1 The Lack-of-Fit Test

For the exponential regression model described in Section 1.2 consider a test of whetherη

belongs to a specified parametric family,

H0 : η(·) ∈ {η(·;β) : β ∈ B} (1.28)

where the parameter spaceB is a subset ofRp with p a finite positive integer.

In this context, our interest is in tests that are sensitive to essentially any departure

from a proposed parametric model forη. Stated more precisely,H0 is contrasted with the

nonparametric alternative

Ha : η(·) /∈ {η(·;β) : β ∈ B}. (1.29)

Since this formulation leaves the functional form ofη unspecified, the test we have just

described constitutes a nonparametric test of the regression function.

In the context of regression, such a test is usually referredto as alack-of-fit test.

An analogous procedure for testing whether a set of independent identically distributed

observations arises from a given class of probability distributions is more often called a

goodness-of-fittest; however, several authors working in the regression context have used

the term “goodness-of-fit” in reference to their proposed method. Consequently, we will

use the terms lack-of-fit and goodness-of-fit somewhat interchangeably, but we will often



15

refer to such testing methods generically “test of fit”.

1.4.2 Smoothing-based Tests of Fit

Lack-of-fit tests may be constructed by means of nonparametric smoothers. The motivation

for the use of nonparametric function estimates as a means tovalidate parametric models

comes from the notion that a well-constructed nonparametric estimate will be free of any

unjustified restrictions which may be imposed by specification of a parametric model. That

is, by imposing minimum structure on the regression function, a nonparametric curve esti-

mate is designed to reflectonly the evidence which is available from the data. This notion is

summed up in the familiar expression, “nonparametric methods let the data speak for them-

selves.” Thus, if one accepts the notion that the nonparametric estimate depicts the data

well, then a fitted parametric model which produces a meaningful departure from a given

nonparametric estimate may be viewed as an inadequate fit forthe observed data. This is

the fundamental premise for pursuing lack-of-fit tests based on nonparametric smoothing.

Smoothing-based tests have the following desirable characteristics, (Hart, 1997):

1. They are omnibus in the sense of being consistent against each member of a very

large class of alternative hypotheses.

2. They tend to be more powerful than competing omnibus tests.

3. The corresponding nonparametric function estimate provides insight to the nature of

the lack of fit.

There are two ways to utilize smoothing methods in testing the fit of a parametric

model: either compare a nonparametric estimate ofη(x) to the parametric model or else

examine a smoothed version of the residuals (obtained from the parametric model) for
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departures from zero. In the former approach one obtains both a parametric and a nonpara-

metric estimate of the regression function and then proceeds to examine some measure of

discrepancy (e.g., Kullback-Leibler difference) betweenthe two estimates. Following the

logic discussed above, one would reject the parametric model if a nontrivial discrepancy

were observed. In the latter approach one obtains residualsfor the parametric model and

subsequently obtains a nonparametric estimate of the underlying residual function. In this

case, if the parametric model holds, one would expect that the underlying residual func-

tion is identically0. Thus, nontrivial departures from0 in the nonparametric estimate of

the residual function would lead to rejection of the parametric model. Smoothed resid-

ual methods are generally easier to implement and possess desirable theoretical properties

(Hart, 1997). Thus, as we will see in the subsequent chapters, residual-based methods have

received more attention in the literature.

1.5 Discussion

In Chapters II and III we will review and discuss two distinctstrands of research which

provide various means of testing the fit of GLMs. In Chapter IVpropose and examine a

test for canonical link regression models which is inspiredby a recent contribution to the

series based lack-of-fit testing literature. In Chapter V westudy the power properties of

the test proposed in Chapter IV in a logistic regression setting via simulation and compare

the test’s performance with some of the more widely acceptedtests discussed in Chapter

II. In Chapter VI we will discuss our final conclusions based on findings from the previous

chapters and identify future directions for research.

In Chapter II we will review the first of two collections, which focuses on testing the

fit of an important special case of generalized linear models, the logistic regression model.

As we will describe in greater detail in Chapter II, examining the fit of a logistic regression
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model presents some practical problems which are unique to this specific model. Hence,

while some of the methods discussed in Chapter II apply to anyGLM, most have been

developed specifically for logistic regression models and address the binary nature of the

response. A few of these methods have gained rather wide acceptance and are viewed as

the preferred means to the test the logistic regression model.

Next, in Chapter III we will discuss the second strand of development which provides

an alternative approach to testing the fit of a regression model by utilizing orthogonal series

estimators to detect departures from a proposed null model.Several of these tests have

been applied in a canonical link regression setting and thuscan be used to test the fit of

a logistic regression model. This line of development has emerged out of the literature

for nonparametric tests of fit which have been inspired by theKolmogorov-Smirnov and

Cramér-von Mises tests of goodness-of-fit.

With our review we intend to provide answers to the followingquestions for the two

collections of literature identified above in an effort to justify further examination of our

proposal:

1. What are the contributions which have been made to the lack-of-fit testing literature

within each of the two collections of literature?

2. How do these two collections of literature differ each other?

3. How do the contributions within each collection differ from each other and in what

ways are they similar?

4. What has the literature revealed in regards to the relative performance of these tests

in settings often encountered in practice?

With regard to the last question, we note that while tests based on parametric families will

be discussed briefly in Section 2.6, we will primarily focus on omnibus tests of fit. Hart
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(2009) explains that no one omnibus test will ever be superior (in terms of power) to every

other omnibus test. Thus, we will compare the tests on the basis of the “overall” power

properties reported in the literature and other factors, such as simplicity and how widely

they can be applied.

Finally, it is interesting to note that the bibliographies of these two collections of re-

search contain few common references. Most of these common references are devoted to

general issues such as GLMs and their properties rather thantesting methodology. Fur-

thermore, it is even more rare that articles in one collection research cites articles from the

other. Consequently, there has been no resolution to the issue of the relative performance

of the methods from these two collections of research. It is our hope that the findings of

Chapter V will provide some measure of resolution to this question.
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CHAPTER II

TESTS OF FIT FOR LOGISTIC REGRESSION MODELS

2.1 Overview

Given the wide use and applicability of the logistic regression model to analyze data from

essentially every field of applied science, finding means to validate fitted models is a rather

urgent issue. As a consequence, there has been a great deal ofresearch devoted to develop-

ment of methods to assess the adequacy a fitted logistic regression model. These techniques

include residual analysis, diagnostic measures such as pseudoR2 measures as well as for-

mal tests of overall fit of the model. While residual analysisand diagnostic measures can

provide useful insight, their interpretation is open to subjectivity. On the other hand, formal

tests of fit are equipped withp-values which can be more objectively interpreted. Further-

more, while residual analysis can be extremely valuable forassessing the fit of a model, it

can only provide insight on a case by case basis. Tests of fit, however, combine all evidence

existing in the data into a single indicator of overall fit. The focus of the remainder of our

discussion will be on tests of fit.

The literature on tests of fit for logistic regression is vast. To help prioritize the topics

of this chapter, we will primarily concentrate on tests which have been studied in two

review articles. These articles are Hosmer, Hosmer, Le Cessie, and Lemeshow (1997) and

Kuss (2002) and are devoted to comparison of several well-known tests of fit for the logistic

regression model. The focus of these papers was mainly on global tests of fit with special

attention given to the efficacy of these tests in the presenceof sparse data, an issue which

we will discuss later in this chapter.

The rest of this chapter is organized as follows. In Section 2.2, we will discuss some

basic notation and terminology conventions which are applicable to all of the tests studied
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in this chapter. In Section 2.3, we will discuss several tests related to Pearson’s chi-square

test. In Section 2.4, we will discuss tests which make directuse of nonparametric function

estimation in order to assess model fit. In Section 2.5, we will discuss a specification test

which has been utilized to evaluate model fit. In Section 2.6 the goodness-of-link test

for logistic regression will be reviewed. In Section 2.7, weconclude the chapter with a

summary of progress made in lack-of-fit tests for logistic regression models and present an

approach to testing the fit of a logistic regression model which is often overlooked in the

literature and was not considered among the tests studied inHosmer et al. (1997).

2.2 Background and Fundamental Concepts

In Section 1.2.3, we reviewed the logistic regression modeland discussed its use to estimate

the probability of an event of interest for binary response data. In this section we revisit the

binary response setting and introduce some notational conventions and commonly observed

features of such data.

Suppose that our fitted model containsp independent variables,x = (x1, . . . , xp)
T,

and letJ denote the number of distinct values ofx observed. We will refer to each of these

distinct values ofx as a “covariate pattern”, while the collection of individuals sharing a

covariate pattern are referred to as a “covariate class”. For j = 1, 2, . . . , J(n) we denote

the jth covariate class byx∗
j , the size of the covariate class withx = x∗

j by mj , and

the number of individuals for whichyj = 1 by y∗j =
∑n

i=1 yiI{xi=x
∗

j}. It follows that
∑
mj = n. Note that in general,J(n) is a function ofn since increasing the sample

could lead to new covariate patterns. The distinction betweenJ(n) andn is important in

our subsequent discussion because most goodness-of-fit tests for generalized linear models

(and hence logistic regression models) are assessed over the distinct fitted values of the

model (of which there areJ(n)–each corresponding to a distinct covariate pattern) and not
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the individual observations (Hosmer and Lemeshow, 2000; Fahrmeir and Tutz, 2001).

Binary response data are often referred to as “sparse” when asizeable proportion

of mj ’s are small with the extreme case occurring whenmi = 1 for eachi (i.e., each

covariate pattern is observed only once). McCullagh and Nelder (1989, p.120) explain

that sparseness should not be misinterpreted as an indication that the data contain little

information about the underlying model. As we will discuss later in this section, sparse

data presents problems for two of the more commonly used classical global tests of fit for

logistic regression models. Methods which evaluate the fit for sparse data models are of

particular interest because, as Kuss (2002) states, sparseness appears to be “more the rule

than the exception in today’s data sets”. This is due to the fact that sparse data is generally

a consequence of the inclusion of continuous covariates in the set of candidate explanatory

variables used to fit the model (Hosmer et al., 1997). Sparseness can also result in data sets

consisting of a relatively large number of explanatory variables.

2.3 Chi-square Tests of Fit

Two summary statistics often used to assess the adequacy of generalized linear models are

the residual deviance (likelihood ratio) and Pearson chi-square. The Pearson statistic has

the following general formula

X2 =

J(n)∑

i=1

r̂2j (2.1)

where

r̂j =
êj√
v(µ̂i)

, j = 1, . . . , J(n), (2.2)

in which êj = y∗j − ŷj, ŷj is the fitted value corresponding to thejth covariate pat-

tern andv(µ̂i) is as defined in Section 1.2.1. For binary response data,ŷj = mj π̂j and

v(µ̂i) = mj π̂j(1 − π̂j). êj is often called a “response residual” and is simply an applica-
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tion of the usual residual definition for the Gaussian linearmodel. r̂j is called a Pearson

residual and is clearly obtained by rescalingêj . While we will not pursue a discussion

of direct examination of residuals to assess model adequacy, we will observe that several

other test statistics can be expressed in terms of residuals. Recognizing how these statistics

depend on residuals will help us compare how the statistics operate and simplify some of

our notation. These expressions also help simplify arguments for justifying fundamental

theoretical results.

The (residual) deviance is the GLM analog of the residual sumof squares in the linear

regression and is defined as follows

D = 2φ

J(n)∑

j=1

{li(µ̂i)− li(yi)} , (2.3)

whereµ̂i, v(µ̂i) are the estimated mean and variance function, respectively, andli(yi) is the

individual log-likelihood wherêµi is replaced byyi (the maximum likelihood achievable).

For binary response data we can write (2.3) in terms of Bernoulli log-likelihood functions

to obtain

D = −2

J(n)∑

j=1

{
y∗j log

(
y∗j
mj π̂j

)
+ (mj − y∗j )log

(
mj − y∗j
mj(1− π̂j)

)}
, (2.4)

whereψ is omitted from the notation since the response distribution in this case does not

depend on a dispersion parameter.

Large values ofX2 andD typically indicate lack-of-fit. For binary response data,

significance can be assessed by comparing these statistics with theχ2(J(n)− p− 1) distri-

bution for largen provided that certain conditions hold. In particular, one must be able to

assume thatmj π̂j (1− π̂j) → ∞ for eachj = 1, . . . , J(n) if n were permitted to approach

∞ while J(n) remains constant (McCullagh and Nelder, 1989, p.118). Hencemj → ∞

for j = 1, . . . , J(n) while J(n) must remain constant in order forX2 andD to have an
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asymptotic chi-square distribution.

McCullagh and Nelder (1989, p.120) explain that when the data are sparse, the de-

viance function and Pearson’s statistic fail to satisfy conditions required in order to attain

the asymptotic chi-square distribution used to evaluate significance of tests based on these

statistics. Obviously, whenmj = 1 for a sizable portion of the data, it is unreasonable to

assume the conditions described above hold. Consequently,large values ofX2 orD cannot

necessarily provide evidence for lack of fit. Furthermore, in extreme cases these statistics

can fail to measure a discrepancy between the fitted model andobserved data.

To illustrate their last point, McCullagh and Nelder (1989)consider (2.4) in the strictly

sparse case for whichmj = 1, j = 1, . . . , J(n). Note thatylogy = (1− y)log(1− y) = 0

when y = 0 or 1 and according to Section 2.2,y∗j = yj for mj = 1. Further, η̂j =

log(π̂j/(1− π̂j)) = xT
j β̂. Noting thatJ(n) = n we see that (2.4) simplifies to

D = −2
∑n

j=1

{
yj log

(
yj
π̂j

)
+ (1− yj)log

(
1− yj
1− π̂j

)}

= −2
∑n

j=1

{
π̂j log

(
π̂j

1− π̂j

)
+ log(1− π̂j)

}

= −2β̂TXTY − 2
∑

log(1− π̂j)

= −2η̂Tπ̂ − 2
∑

log(1− π̂j)

(2.5)

sinceXTY = XTµ̂ is the maximum-likelihood equation. Inspection of (2.5) reveals that

for mj = 1, D is a function ofY only throughβ̂. Hence, given̂β, D has a condition-

ally degenerate distribution. Consequently,D is incapable of measuring the discrepancy

between the fitted values from the model and the observed response values when the data

is strictly sparse and hence cannot be used to test the fit of the logistic regression model.
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For the remainder of this section we will review several proposals which have been

offered in the existing literature to overcome the shortcomings of the traditional chi-square

tests of fit for binary response models described above. There are three approaches that

have been used in an effort to resolve these problems:

1. modify the reference distribution for assessing significance as was considered in Mc-

Cullagh (1985, 1986) and Osius and Rojek (1992);

2. consider modifying existing test statistics as was proposed in Farrington (1996) and

Copas (1989);

3. group observations as has been suggested by Hosmer and Lemeshow (1980) and

Tsiatis (1980).

2.3.1 Tests Based on Modified Limiting Distributions forX2 andD

McCullagh and Nelder (1989) assert that when themj are small but mostly greater than

one, eitherD orX2 may be used to test the fit of a logistic regression model. However, it is

apparent from the above discussion that theχ2 distribution cannot be used to assess signif-

icance for these statistics. There have been two basic approaches presented in the literature

for obtaining an appropriate reference distribution forD andX2 when the assumption of

largemj is not reasonable.

Tests based on the conditional distributions ofX2 andD givenβ̂

McCullagh (1985, 1986) argued that goodness of fit should be assessed using the condi-

tional distribution of the statistic rather than its marginal distribution in the case where the

observed data are extensive but sparse (i.e., largen, smallmi). McCullagh proposes stan-

dardizingX2 orD by their conditional asymptotic moments given the parameter estimates
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β̂. Statistical significance is then assessed using the standard normal distribution as the

reference distribution for the standardized statistic.

McCullagh (1985) obtained approximations to the first threemoments of the uncondi-

tional and conditional distributions of the PearsonX2-statistic for canonical link regression

models models which, as demonstrated in Section 1.2.3, includes the logistic regression

model. By conditioning on a sufficient statistic of the parameter estimates, the dependence

upon β̂ is removed fromX2. Consequently, this method accounts for the fact that the

parameters from the logistic regression model have been estimated rather than fixed in ad-

vance. Approximate formulae for the conditional mean and variance ofX2 for logistic

regression models can be found in McCullagh and Nelder (1989),

E(X2|β̂) ' (n− p− 1)− 1

2

n∑

i=1

(1− 6v̂i)V̂ii+
1

2

∑

ij

miv̂i(1− 2π̂j)V̂iiV̂ij(1− 2π̂j), (2.6)

and

var(X2|β̂) ' (n− p− 1)− 1

2

n∑

i=1

{
2n + nρ̂4 −

∑

ij

(1− 2π̂i)(1− 2π̂j)V̂ij

}
, (2.7)

whereVij are the elements ofV = X(XTWX)−1XT, the approximate covariance matrix

of η̂ andρ4 = n−1
∑

[κi4/(κ
i
2)

2] with κi2, κ
i
4 being the second and fourth cumulants ofYi,

respectively. Although similar results could be derived for D, they are too complex for

practical use (McCullagh, 1986; McCullagh and Nelder, 1989).

Tests based on the marginal distributions ofX2 andD

Osius and Rojek (1992) derived tests are based on first-ordernormal approximations of

the power-divergence statistics of Cressie and Read (1984). This class of tests, denoted
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SDλ, is indexed by a real numberλ ∈ R and includes bothX2 andD as special cases

corresponding toλ = 1, 0, respectively. A statistical test can be performed by standardizing

SDλ by estimated values of the large sample approximations of the mean and variance for

SDλ and comparing the resulting value to the standard normal distribution. Osius and

Rojek (1992) derived asymptotic moments forSDλ in logistic regression under sparseness

assumptions (N,M → ∞ whereM =
∑N

i mi), however, moments in closed form can

only be calculated forλ = 1, that is,X2. For strictly binary data, Osius and Rojek show

that the conditional and unconditional moments are asymptotically equivalent, at least to

first order. Thus, one would expect similar conclusions to bereached in using Osius and

Rojek’s and McCullagh’s tests (see Section 2.3.1).

For logistic regression, Osius and Rojek’s moment approximations yield the following

estimator of the mean for which no calculation is necessary

Ê(X2) = J(n). (2.8)

The variance may be estimated by

v̂ar(X2) = RSS (2.9)

which is the residual sum of squares of an ordinary weighted linear regression of the vari-

ablecj = (1−2π̂j)/vj, j = 1, . . . , J(n) on the covariates with weightsvj = mj π̂j(1− π̂j),

j = 1, . . . , J(n). Hosmer et al. (1997) found that, for small samples of strictly binary

response data, better distributional results can be obtained if an estimate of the conditional

mean and variance obtained by McCullagh (see (2.6) and (2.6)) were used instead of (2.8)

and (2.9). This finding makes sense given earlier comments regarding the relationship be-

tween conditional and unconditional moments for binary data (i.e., the magnitude of error

of the first order approximation should increase with smaller samples).
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2.3.2 Modified Test Statistics

Farrington test

Revisiting the conditioning principle cited in Section 2.3.1, Farrington (1996) extended the

results of McCullagh (1985) to models with non-canonical links. However, rather than

using the Pearson statistic, Farrington used an estimatingequations approach proposed in

Moore (1986) to obtain a modification to Pearson’s statisticby the addition of a first-order

component. The statistic (expressed in terms suitable for logistic regression)

X2
F = X2 +

J(n)∑

j=1

−(1− 2π̂j)

mj π̂j(1− π̂j)
(y∗j −mj π̂j) (2.10)

is shown to have minimum variance within the family considered, whereX2 is the Pearson

statistic discussed earlier in this chapter. Significance can be assessed using the standard

normal distribution with the standardized statistic. The standardized statistic can be ob-

tained using approximate moments forX2
F which can be calculated in closed form.

X2
F is shown to induce local orthogonality with the regression parameters (Farrington,

1996). That is, the Farrington statistic removes the dependence upon̂β from the distribu-

tion ofX2, which produces substantial simplifications of the moment approximations and

increased power. Consequently, Farrington’s statistic can be considered as an improvement

of the McCullagh method. However, the Farrington test has the structural deficiency that

whenmi ≡ 1, thenX2
F ≈ N . In this case, the test will never reject the null hypothesisof a

good fit.

Extensions of Farrington’s method have been considered by Paul and Deng (2000)

who examined analogous modifications to the deviance statistic and Paul and Deng (2002)

who introduced a score statistic inspired by Farrington (1996). We will not pursue these

tests further since they were not studied in any of the comparison articles cited in the
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Overview of this chapter: Hosmer et al. (1997), Hosmer and Hjort (2002), or Kuss (2002).

Copas unweighted sum of squares test

Copas (1989) has proposed using the unweighted residual sum-of-squares to test equality

of proportions in a2× C contingency table. Hosmer et al. (1997) have studied a modified

version of this statistic in order to assess the adequacy of logistic regression model. In the

context of binary response regression, the statistic is written as

S =

J(n)∑

j=1

(y∗j −mj π̂j)
2 (2.11)

whereπ̂j is the predicted response probability for thejth covariate pattern. Copas argued

that, for large samples, significance for his test may be assessed using a chi-square distri-

bution. Consequently, Hosmer et al. (1997) use a chi-squaredistribution as the reference

distribution for the modified statistic.

Note the similarity betweenS and the Pearson statistic for binary response data,X2.

S is the sum of squared residual values whichresemblethe “response” residuals discussed

earlier in this chapter, whileX2 is the sum of squared Pearson residuals. On the surface

this may not appear to be a profound difference, however, Copas (1989) explains that by

dropping the denominator in each component of the sum, less weight is given to covariate

patterns for which the value ofmi is small.

Hosmer et al. (1997) and Kuss (2002) studied this test in the context of logistic regres-

sion. In this case Hosmer et al. (1997) argue that statistical significance can be assessed

using the followingz−statistic:

z =
S − trace(V )√

V ar[S − trace(V )]
, (2.12)
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which has a large sample standard normal distribution. In (2.12)trace(V ) is a large sample

approximation of the mean ofS. Hosmer et al. (1997) derived the following approxima-

tions for the asymptotic moments for their version ofS:

E[S − trace(V )] ≈ 0,

V ar[S − trace(V )] ≈ d′(I −M)V d,

in which di = 1 − 2π̂i, i = 1, . . . , n; V is given byV = diag[v̂i : i = 1, . . . , n] where

v̂i = π̂i(1− π̂i) andM = V X(XTV X)−1X
T

. In practice, an estimate of the variance can

be obtained from the residual sum-of-squares from the regression ofd̂ onX with weights

V̂ .

2.3.3 Tests Based on Grouping Observations

Hosmer-Lemeshow tests

Hosmer and Lemeshow (1980) devised a chi-square-inspired test of fit for binary response

models which imposes a grouping strategy to create the conditions which permit use of the

standard large sample theory discussed at the beginning of this section. More precisely,

their approach is to aggregate then observations into a fixed number of groups,g, which

effectively produces2 × g contingency table. Then a Pearson-like statistic that compares

the observed and expected cell frequencies of the resultingtable can be calculated using

X2
HL =

g∑

l=1

(ol − nlπ̄l)
2

nlπ̄l(1− π̄l)
. (2.13)

In the above formulanl denotes the number of observations in thelth group,ol is the
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number of successes in thelth group and̄πl is the average probability

π̄l =
1

nl

m(nl)∑

k=1

mkp̂k, (2.14)

wherem(nl) is the number of unique patterns in thelth group.

The rationale for this approach is borrowed from goodness-of-fit literature for sparse

contingency tables (Hosmer and Lemeshow, 1980). This logicpermits them to conjecture

thatX2
HL will have a chi-square distribution sincenl → ∞ asn → ∞ while g is taken to

be fixed. While they do not justify this claim rigorously, Hosmer and Lemeshow (1980)

use simulation results to argue that the distribution ofX2 is roughly approximated by chi-

squared withdf = g − 2 (Hosmer and Lemeshow, 1980).

Some comments clarifying the construction of theg groups are in order. To this end, it

is useful to view the data in terms of2×J(n) contingency table. The two rows correspond

to the values possible values of the binary outcome variabley and theJ(n) columns corre-

spond to the assumed number of distinct values observed for the covariates in the model.

The observed cell frequencies are the number of “successes”or “failures” recorded for each

covariate pattern. Collapsing the columns of the2× J(n) table into a2× g table to which

formulas (2.13) and (2.14) can be applied. The columns of thecollapsed table (i.e., the

groups) are determined by dividing the sorted predicted probabilities intog partitions and

subsequently assigning observations to groups corresponding these partitions.

Hosmer and Lemeshow (1980) proposed two approaches for creating the partitions

for the (sorted) predicted probabilities. In the first strategy, observations corresponding to

the sorted estimated logistic probabilities are partitioned intog groups with approximately

n/g observations in each group. An alternative approach is based on dividing the interval

[0, 1] into g fixed subintervals and assigning observations to a group when its correspond-

ing predicted probability falls into that group’s subinterval. The first grouping strategy is
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generally preferred over the fixed intervals approach because it is possible for the number

of observations differ greatly across the groups when fixed subintervals are used. Typically

g is taken to be10 in either strategy (Hosmer and Lemeshow, 2000).

The Hosmer-Lemeshow test is generally regarded as the standard test for assessing

the fit of logistic regression models. This is evident in thatit has been implemented in all

major statistical packages. However, the test has some noteworthy deficiencies that have

been revealed in the literature (Hosmer et al., 1997).

In general, test statistics which are constructed from fixedgroups, such as the Hosmer-

Lemeshow statistic, have been shown to be dependent upon thechoice of the groups (Hos-

mer et al., 1997). According to Bertolini, D’Amico, Nardi, Tinazzi, and Apolone (2000),

such problems arise when test is applied to a data set which isnot strictly sparse (i.e.,

ties exist). In this situation it is often unclear to which group a given observation should

be assigned. Hence algorithms which calculate the test statistic using different methods for

grouping observations will often lead to different conclusions. This fact is noteworthy given

that various statistical packages implement the test utilizing different algorithms making it

possible for conflicting conclusions to be reached regarding a model’s adequacy for a given

dataset when multiple software packages are utilized (Pigeon and Heyse, 1999). Hosmer

et al. (1997) reported results from fitting the same data set in several statistical packages,

obtaining identical values for the estimated parameters but six different values for thep-

value of the Hosmer-Lemeshow test ranging from0.02 to 0.16. An even more alarming

discrepancy was reported in Pigeon and Heyse (1999) who found p-values ranging from

0.02 to 0.45 for a single data set.

In addition to the deficiency described above, there have been other concerns about the

Hosmer-Lemeshow test raised in the literature. Pigeon and Heyse (1999) reveal problems

with the validity of theχ2-distribution in assessing significance of the Hosmer-Lemeshow

statistic which they argue results from the constructing groups based on ranked probabil-
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ity estimates. Moreover, le Cessie and van Houwelingen (1991) argue that the Hosmer-

Lemeshow strategy of grouping observations based on rankedprobabilities produces tests

that lack power to detect departures from the model in regions of the ‘x’ space that yield the

same estimated probabilities. Pulksenis and Robinson (2002) have proposed a solution to

the problem revealed by le Cessie and van Houwelingen using atwo-stage modification of

the Hosmer-Lemeshow test; however, the conditions required to implement this approach

have been criticized as being limited (Kuss, 2002).

Finally, it should be noted that Tsiatis (1980) proposed a chi-square lack-of-fit test for

the logistic regression model which differs from the approach developed by Hosmer and

Lemeshow in that it is based on partitioning the space of covariates intog distinct, fixed

groups. While Tsiatis’ method appears to have been cited often by researchers who have

applied it in their work, it was not studied in either of the review papers used to guide our

discussion. Thus, we will not discuss this method further.

2.3.4 Remarks

It is interesting to note that both the McCullagh and Farrington tests are derived condi-

tionally on sufficient statistics of the parameter estimates. Hence they both account for the

additional error resulting from estimating the parametersof the logistic regression model.

However, recall that we noted in Section 2.3.1 that Osius andRojek (1992) demonstrated

that conditional moments of the Pearson statistic can be approximated, at least to first order,

by the unconditional moments. Thus, it seems reasonable to anticipate similar conclusions

would be reached using both tests to assess the fit of a model.
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2.4 Smoothing-based Tests of Fit

An alternative to trying to amend the deficiencies with the chi-square tests is to consider

tests based on nonparametric smoothers. The rationale for pursuing tests based on non-

parametric smoothing techniques was discussed in Section 1.4.2. These approaches in-

clude both tests based on smoothed residuals and tests whichcompare a nonparametric

estimate to a parametric estimate. Tests of the latter type have been developed for logis-

tic regression in Xiang and Wahba (1995) and for generalizedlinear models in Azzalini,

Bowman, and Härdle (1989). The approach taken in Xiang and Wahba (1995) uses sym-

metrized Kullback-Leibler distance between smoothing spline and parametric estimates of

the model, while Azzalini et al. (1989) base their approach on comparing the parametric

and nonparametric estimates using a pseudo-likelihood ratio test statistic. However, we

will focus our discussion on the smoothed residuals method for binary response models in-

troduced in le Cessie and van Houwelingen (1991) since it wasstudied in the review paper

of Hosmer et al. (1997). Furthermore, a residual smoothing method would generally be

preferable for reasons cited in Section 1.4.2.

In addition to le Cessie and van Houwelingen’s test cited above, we will also discuss

a test proposed in Royston (1992) which was also studied in Hosmer et al. (1997) and is

based on residual cusums. We find it appropriate to include a discussion of these methods

in our section smoothing-based tests of fit because Eubank and Hart (1993) demonstrated

that cusum-based tests are special cases of a wider class of tests based on nonparametric

function estimation ideas. However, cusum-based tests differ from the residual smoothing

approach of le Cessie and van Houwelingen (1991) in that cusum-based tests do not require

specification of a smoothing parameter. Tests with this feature are often called “nonadap-

tive”. We will discuss the distinction between adaptive andnonadaptive tests further in the

next chapter.
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2.4.1 Kernel-smoothed Residual Tests

le Cessie and van Houwelingen (1991) proposed testing the fitof a binary response model

by applying the procedure of Nadaraya (1964) and Watson (1964) to the standardized resid-

uals as follows

r̂S(x) =

∑n
j=1 r̂jKp[H

−1(x− xj)]∑n
j=1Kp[H−1(x− xj)]

, (2.15)

wherer̂j denotes thejth standardized residual (see Section 2.3),H = diag[h1, . . . , hp] is a

diagonal matrix of bandwidths, andKp(·) denotes the multiplicative kernel

Kp(x) =

p∏

l=1

K(xl), (2.16)

in which K is a symmetric, nonnegative, univariate kernel function with finite support

[−a, a] satisfying
∫ a

−a
K(x)dx = 0 and

∫ a

−a
K2(x)dx = 1. Note thatKp(·) is defined so

that the same univariate kernel is applied to each covariate; however, covariate-specific

bandwidths,hl are used. The bandwidth parameter controls the degree of smoothing and,

in general, depends on the kernel, the sample size,n, and the number of covariates as well

as the unknown model (Hart, 1997). To reduce the number of bandwidth parameters to 1

le Cessie and van Houwelingen (1991) definehl = hnsl, wherehn is a global bandwidth

parameter depending onn andsl is the standard deviation of thelth covariate. le Cessie

and van Houwelingen (1991) recommend choosinghl so that roughly
√
n observations

contribute to the calculation of eachrS.

As we discussed in Section 1.4.2, the rationale for examining smoothed standard-

ized residuals for insight into model fit is motivated by the recognition that under the

null hypothesis of correct model specification, the smoothed standardized residualŝrS(xi),
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i = 1, . . . , n, can each be considered an estimator of zero. This observation motivates

the test statistic proposed by le Cessie and van Houwelingen(1991) which is given by the

formula

T =
1

n

n∑

i=1

r̂2S(xi)w(xi) (2.17)

where

w(xi) =
{∑n

j=1Kp[H
−1(xi − xj)]}2∑n

j=1K
2
p [H

−1(xi − xj)]
. (2.18)

The test resulting fromT is reasoned to circumvent problems cited for the Hosmer-Lemeshow

test and they have been found to have better (though not uniformly better) power properties

than several other commonly used tests for logistic regression (Hosmer et al., 1997).

le Cessie and van Houwelingen demonstrate that for large samples, the distribution of

T can be approximated bybχ2
v, whereχ2

v is a chi-square random variable withv degrees

of freedom andb a constant. The values ofv andc are determined byb = 2Ê(T )/v̂ar(T ),

v = 2Ê2(T )/v̂ar(T ) and Ê(T ) and v̂ar(T ) are the estimated mean and variance ofT .

Clearly, evaluation of significance for le Cessie and van Houwelingen’s test requires a

means to obtain estimates of moments ofT .

Hosmer et al. (1997) provide simplified approximations ofE(T ) andvar(T ) for the

special case of logistic regression. Hosmer et al. obtainedthese approximations by means

of a first-order approximation ofT , T ∼= eTAre, wheree is the column vector of residuals,

Ar = (I −M)TQr(I −M), Qr = V −1/2(WTD−1
r W )V −1/2,M = V X(XTV X)−1XT is

the logistic regression version of the hat matrix,W is then × n matrix of weights whose

(i, l)th element iswi,l = Km(xi − xl), Dr is ann × n diagonal matrix that contains the

diagonal elements of the matrixWWT, andV defined as in 2.29. Well-known results for
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moments of quadratic forms, Seber (1977), yield that

E(T ) = trace(ArV ) (2.19)

and

var(T ) =

n∑

i=1

a2riivi(1− 6vi) + 2trace(ArV ArV ). (2.20)

Hosmer et al. (1997) reported problems with calculatingvar(T ) in their simulations,

so they used a more computationally efficient approximationof var(T ) which was pre-

sented in le Cessie and van Houwelingen (1991)

v̂ar(T ) ∼= 2

(
2

3

)p
trace(WWT)

n2
(2.21)

for the v̂ar(T ). This approximation leads to a reduction of the order of computation to

evaluate the matrixAr from n4 to n2.

2.4.2 Residual Cusum Tests

Several contributions have been made to literature on testsof fit that utilize a cumulative

sum (cusum) of residuals from the estimated model. The motivation for pursuing tests

based on cusum processes is that if the fitted model is the correct model, then partial sums

should vary in an unsystematic manner about zero as the indexof the process varies.

Su and Wei (1991), Beran and Millar (1992), and Royston (1992) have proposed lack-

of-fit tests based on cusums with applications to logistic regression. More recently Stute

and Zhu (2002) introduced a residual cusum-based test statistic to assess the validity of

a generalized linear model which was inspired by a collection of work Stute developed

with various colleagues: Stute (1997), Stute, Gonzalez Mantiega, and Presedo Quindimil
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(1998), and Stute, Thies, and Zhu (1998). We will limit our attention to the method of

Royston (1992) which was studied in Hosmer et al. (1997). Hosmer et al. cite the con-

venient large sample results presented for the statistics studied in Royston (1992) as being

advantageous over competing methods. By contrast, Su and Wei (1991) and Beran and

Millar (1992) required computationally intensive bootstrap procedures to implement their

proposals.

Royston (1992) proposed two statistics designed to detect monotonic and quadratic

departures from linearity in the logit. Both statistics arebased on the cumulative sum of

residuals

ql = −
l∑

i=1

(y(i) − π̂(i)) (2.22)

whereπ̂(i) is theith largest estimated logistic probability andy(i) is the associated value of

the outcome variable. Royston (1992) assumed that the observations had been sorted ac-

cording to a specific covariate of interest, while Hosmer et al. (1997) studied Royston’s test

by sorting according to estimated probabilities (note thatRoyston’s original assumptions

are consistent with typical assumptions in the related literature). The statistic for detecting

monotone departures is

C1 = max
1≤l≤n

|ql|. (2.23)

The statistic for detecting quadratic departures is

C2 = max
1≤l≤n/2

|ql − qn−l|. (2.24)

The monotone test is a special case of Su and Wei’s test in the case of a single covariate,
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while both monotone and the quadratic tests are a special case of the test statistics derived

in Beran and Miller.

Royston presented his method primarily as a means to graphically determine whether

or not a fitted model adequately represents the relationshipbetween the predicted probabil-

ity and a single covariate of interest (this is why Royston assumed observations ordered ac-

cording to the covariate of interest). Royston did not specifically advocate the use of these

statistics as global tests of fit, however as we stated above,he provides easily computed

transformations of the two statistics that allow calculation of p-values using the standard

normal distribution. Furthermore, Hosmer et al. (1997) argue that since the tests are de-

signed to be sensitive to monotonic and quadratic departures in the logit, Royston’s statistic

seems potentially beneficial.

Inlow (2001) has criticized the large sample approximations proposed for these statis-

tics. In particular, he has argued that Royston’s formulas do not take into account whether

or not the model is specifieda priori or estimated from the data. Moreover, simulation

studies ultimately revealed some power deficiencies of thistest (Hosmer et al., 1997).

2.5 The Information Matrix Specification Test

A general specification test that has been used to assess the adequacy of the logistic regres-

sion model is the information matrix (IM) test. This test wasoriginally proposed by White

(1982) for general testing of likelihood specification. Lechner (1991), Thomas (1993) and

Aparicio and Villanua (2001) have all considered tests based on a special case of White’s

statistic for binary response models which was first presented in Orme (1988). The IM

test is based on the well-known information-matrix equivalence theorem which essentially

states that when the model is correctly specified, the following expression holds
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−E
(

∂2l

∂β∂βT

)
= E

(
∂l

∂β

∂l

∂βT

)
(2.25)

whereβ is the vector of regression coefficients andl is the log-likelihood for the logistic

regression model (see Sections 1.2.3 and 1.3). In words, (2.25) states that the information

matrix can be expressed as either the expected value of the Hessian of the likelihood or the

expected value of the outer product of first-order partial derivatives of the likelihood. A test

statistic is formed by comparing the elements of the two different estimators of the infor-

mation matrix obtained by utilizing each of these expressions. These two estimators should

give comparable results under a satisfactory model fit. The IM test has been criticized for

being difficult to compute in practice (Hosmer and Lemeshow,2000); however, it has been

shown to possess reasonable power even with strictly sparsedata (Kuss, 2002).

Kuss (2002) presents an explicit expression of the IM statistic for logistic regression

models which evaluates the difference of the diagonal elements of the two estimators results

in the((p+ 1)× 1)-vector

d̂ =
1

n

n∑

i=1

(yi − π̂i)(1− 2π̂i)zi (2.26)

with zi = (1, x2i1, . . . , x
2
ip)

T where the components of̂d sum to0 in the case of a good model

fit. After standardization with an appropriate variance, the test statistic can be compared

to aχ2
p+1-distribution. Note that the IM-test is calculated for the individual and not for the

grouped observations so we do not expect problems with sparse data.
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2.6 Goodness of Link Tests

As mentioned in Section 1.2.2, a link function must be specified in order to completely

specify a GLM. For binary response data, the logistic link function is the most commonly

used; however, there are alternatives to the logistic link and using different links can have

a profound impact on the specification of the linear predictor (Collett, 1991). That is,

the choice of link function and the structure of the predictor function are interdependent.

Consequently, examination of the adequacy of a given link function has to be made on

the basis of a final model. In this section we will discuss someselected approaches for

assessing the adequacy of the logistic link function.

2.6.1 Tests Based on Parametric Families of Link Functions

The goodness-of-link test differs from the tests of fit described above in that it utilizes a

parametric family to assess the adequacy of the specified link; that is, there is a pre-specified

family of alternatives against which the fitted model is tested. Pregibon (1980) proposed

a general approach for testing adequacy of link specification based on a parametric family

of link functions. Several families of link functions have been proposed in the literature

and are typically formulated as parametric generalizations of the logit and probit models.

Generally, these families have been proposed in order to more adequately model binary

response data. However, these families have proven useful in detecting possible inadequacy

of logit and probit models. We will now discuss an approach for using families of link

functions to test the adequacy of a specified link which was introduced by Pregibon (1980).

Let g denote the correct, though unknown link function. As an alternative to the

logistic link, consider a functiong(π;α) withα ∈ A ⊂ R
d such thatg(π;α0) = log

(
π

1−π

)

for someα0 ∈ A. It is assumed thatg ∈ G{g(π;α) : α ∈ A}. Thus, an estimate ofg can

be obtained by means of a maximum likelihood estimate ofα.
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In order to utilize the collection of link functions defined by g(π;α) to detect depar-

tures from the logistic link,g(π;α0), Pregibon (1980) proposed a first-order Taylor series

expansion ofg(π;α) aboutα0

g(π;α) ≈ g(π;α0) + (α−α0)
T ∂g(π;α)

∂α

∣∣∣∣
α=α0

. (2.27)

Letα∗ ∈ A be the value which yields the true model; that is,g = g(π;α∗) = Xβ. Then

assuming thatα∗ andα0 are sufficiently close, theng can be approximated byg(π;α0) so

that

g(π;α0) = g(π;α∗) + [g(π;α0)− g(π;α∗)]

= Xβ + γz

(2.28)

whereγ = α∗ −α0 andz = ∂g(π;α)/∂α|α=α0
.

The variablez is often referred to as a “constructed variable” and can be viewed as

compensating for the departure of the logistic link function hypothesized in the null model

from the true link function. Thus, a test of the hypothesisH0 : γ = 0 in equation (2.28)

provides a test of the adequacy of the logistic link function. In principle, this hypothesis

can be tested by means of a likelihood ratio, score, or Wald test. Note thatz depends on

π, which are unknown. Consequently, in practice the fitted response probabilities obtained

from fitting a logistic regression model are used to construct zi’s corresponding to each

observation. Of course, the procedure described above can be modified in order to test the

adequacy of other link functions, such as the probit link.
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2.6.2 Stukel Generalized Logistic Link Function

The family of link functions presented in Stukel (1988) has gained the widest acceptance for

testing adequacy of the logistic link function. Furthermore, the test resulting from applying

the method of Pregibon to Stukel’s link family was recommended by Hosmer et al. (1997)

because of its superior power relative to other tests considered. The Stukel model extends

the standard logit link function with two additional parametersα = (α1, α2) and is defined

in terms of the CDF, as follows:

FS(η;α) =
ehα(η)

1 + ehα(η)
(2.29)

in which, forη ≤ 0, hα is defined as

hα(η) =





α−1
1 (exp(α1|η|)− 1), α1 > 0

η α1 = 0

−α−1
1 log(1− α1|η|), α1 < 0.

(2.30)

Forη ≤ 0, hα is defined as

hα(η) =





−α−1
2 (exp(α2|η|)− 1), α2 > 0

η α2 = 0

α−1
2 log(1− α2|η|), α2 < 0.

(2.31)

The parametersα1 andα2 control both the symmetry and tail weight of the generalized

link function. If α1 = α2, the corresponding probability curveFS(η;α) is symmetric. Tail

weight is dictated by the particular values ofα1 andα2. For instance, the generalized

logistic link function approximates the probit link whenα1 = α2 ≈ 0.165 while this link
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Table 1. Coefficients for Stukel’s generalized logistic model.
Link α1 α2

logistic 0 0
probit 0.165 0.165
complimentary log-log 0.620 −0.037
Laplace −0.077 −0.077

function reduces to the usual linear logistic model whenα1 = 0 andα2 = 0. Table 1 lists

several well-known link functions approximated byhα(·) along with the corresponding

values ofα1 andα2 that yield the approximation.

Applying the approach described in Section 2.6.1, a two degree-of-freedom test of

the hypothesis that both parameters are equal to zero can be obtained. Recall that the test

can be implemented by means of a score, Wald or likelihood ratio test of the coefficients

corresponding to the constructed variables resulting froma Taylor’s expansion. For the

Stukel link function these constructed variables can be written asz1 = 1
2
η̂2I(η̂ ≥ 0) and

z2 = −1
2
η̂2I(η̂ < 0), η̂ = xTβ̂, whereI(·) is the usual indicator function.

Alternative general families of link functions to that given by Stukel have been sug-

gested by Pregibon (1980), Prentice (1976), Aranda-Ordaz (1981), and Guerrero and John-

son (1982). Among the more popular of these alternatives is the link family introduced by

Prentice for which Brown (1982) developed a different two-parameter score test. While the

Prentice model offers the same level of flexibility in modeling departures from the logistic

link as the Stukel family, the test utilizing the Stukel family is more direct and easier to

implement (Stukel, 1988).

2.7 Discussion

It should be noted that despite the superior power properties cited for some of the tests dis-

cussed in this chapter, none of these tests had uniformly good power against all departures
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from the null model considered in Hosmer et al. (1997) and Kuss (2002). That is, all of the

tests studied in these two papers have weaknesses and power properties reported therein.

Recognizing the apparent absence of a test with desirable power properties against a

wide variety of alternatives, several authors who have written on the subject of evaluating

the fit of a logistic regression model ultimately conclude that is advisable to use a com-

bination of residual analysis, diagnostic measures andmultiple tests. In other words, one

should avoid the temptation to naively accept results from asingle model assessment. See,

for instance, McCullagh and Nelder (1989), Hosmer and Lemeshow (2000) and Agresti

(2002).

Two of the more authoritative sources on the theory and application of the generalized

linear model have offered a particularly intriguing recommendation for evaluating the fit

of a logistic regression model. After noting the deficiencies ofD or X2 as well as their

modifications (see Section 2.3), Agresti (2002, p.177) and McCullagh and Nelder (1989,

p.122) discussed alternative approaches to evaluating thefit of a logistic regression model

which can be used to supplement assessments determined by means of global tests of fit

such as the ones discussed in this chapter. They point out that lack-of-fit can be detected

by comparing the working model with more complex models in which nonlinear effects

(such as quadratic terms) or interactions are added to the working model and observing the

reduction in deviance. If a more complex model does not result in a better fit of the data,

then we have assurance that working model is reasonable.

Agresti (2002) and McCullagh and Nelder (1989) both advocate examining complex

models which reflect the scientific context of the model. While this advice sounds ap-

pealing, unfortunately, it is often the case that there is not a clear scientific motivation for

additional terms. Furthermore, it is very plausible that deficiencies in the fit of the model

cannot be explained by scientific reasoning. In the absence of scientifically relevant ad-

ditions to the working model, one is relegated to examining arbitrary departures from the
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model or simply accepting the working model without any further scrutiny.

To conclude, we view the lack of a uniformly powerful test of fit for the logistic regres-

sion model as an indication that there is still a need for additional research in the testing

literature. Furthermore, we present the sentiments conveyed in the recommendations of

Agresti (2002) and McCullagh and Nelder (1989) as evidence that our proposed direction

of research is well-founded and provides an intuitively desirable means of evaluating the

fit of a logistic regression model. More specifically, in the next chapter we discuss a sys-

tematic, unambiguous way of considering general departures from a working model. This

approach is based on well-developed theoretical principles and ultimately provides direc-

tion toward a new test of fit that can be applied to the logisticregression model.
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CHAPTER III

SERIES-BASED LACK-OF-FIT TESTS

3.1 Overview

In the previous chapter we presented a review of some widely-used methods for testing the

fit of a logistic regression model. In this chapter we will discuss the existing literature on

lack-of-fit tests which makes use of orthogonal series to detect departures from a parametric

model. Though we will a focus on applications to GLMs and closely related problems, it

should be noted that the principles upon which these methodsare based extend beyond

the generalized linear model setting. These concepts have been applied to a variety of

modeling scenarios such as spectral analysis and testing the goodness of fit of a probability

distribution (Aerts, Claeskens, and Hart, 1999).

The literature on series-based methods on testing the fit of probability models is vast

to say the least, and hence, our review will not be exhaustive. Rather, our survey of the

literature on series-based lack-of-fit tests will be focussed on a relatively small number of

references. However, given that our proposed method has been inspired by this literature,

we will discuss these methods in greater detail. Thus, we intend to impart an understanding

of how these tests work as well as document the benefits and drawbacks associated with the

various tests. In doing so, we will present a collection of terminology and concepts which

we believe the reader may find useful in our subsequent discussion. Ultimately, we will to

reveal a new direction for research as well as motivation forour pursuit of this direction.

The rest of this chapter will be organized as follows. In Section 3.2, we will discuss

some basic concepts which are applicable to all of the tests studied in this chapter. In Sec-

tion 3.3, we will discuss series-based tests of fit for generalized linear models. In Section

3.4, we will discuss a recently developed method which makesuse of the Laplace approxi-
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mation in the derivation of the test statistic. In Section 3.6, we conclude the chapter with a

summary of progress made in series-based lack-of-fit tests and present a new direction for

research.

3.2 Background and Fundamental Concepts

3.2.1 Model Assumptions

In this chapter we will limit our attention to the class of generalized linear models which

has been studied in relevant literature. In particular, we will focus on the canonical link

regression model described in Section 1.2.3. However, as weexplained in Section 1.2.3

this covers arguably the most important models within the larger class of GLMs, including

the logistic regression model.

Recall from Section 1.2 that we assume the data(x1, y1), . . . , (xn, yn) are observed

where, fori = 1, . . . , n, xi is a fixed vector of covariates andyi is a scalar response for

theith subject. In light of the definitions given in Section 1.2, the response distribution for

the canonical link regression model can be expressed directly in terms of the covariates as

follows

f(y; η(xi),ψ) = exp{[yη(xi)− b(η(xi))]/a(ψ) + c(y, ψ)}, (3.1)

wherea(·), b(·) andc(·) are known functions,η(·) is an unknown function andψ an un-

known, real-valued dispersion parameter (i.e.,k = 1).

3.2.2 Inference Problem

Some comments regarding series-based tests of fit for canonical link models are in order.

Recall that in Section 1.2.2 construction of a generalized linear model requires specifying

three components. In general, specification of any one of these components of the model
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may influence the other two components. Hence, given the limited flexibility in the spec-

ification of the components of a canonical link regression model (see Section 1.2.2), the

null hypothesis for a global test of the fit of a canonical linkregression model can be stated

directly as follows

H0 : η(x) =

p∑

j=1

βjγj(x) ≡ η(x;β), ∀x, (3.2)

where, as described in Chapter I,η(x;β) is a parametric model proposed forη(·) in which

γ1, . . . , γp are known functions andβ = (β1, . . . , βp)
T an unknown parameter vector. Re-

call that an intercept term can be accommodated by definingγ1(x) ≡ 1, ∀x. A useful and

widely studied special case of (3.2) for whichη(x;β) = β1 for all x is referred to as the

“no-effect” hypothesis. The resulting hypothesis test is called a “test of no-effect”.

3.2.3 Series Expansion

We start by briefly discussing some basic ideas regarding howseries representations of

functions satisfying general conditions can be utilized toformulate nonparametric estima-

tors with properties which prove useful in testing the fit of aproposed function. In the

interest of convenience and clarity, we will assume for the remainder of this section that

x ∈ R and usex to denote this continuous, real-valued covariate. Observethat if η and

γ1, . . . , γp satisfy general conditions, then we can express the unknownregression function

η(·) in terms of its departure fromη(·;β) as

η(x) = η(x;β) + ∆(x), (3.3)

where∆ has the series representation

∆(x) =

∞∑

k=0

φkuk(x), x ∈ [a, b], a, b ∈ R (3.4)
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for constantsφ0, φ1, . . ., where{u1(·), u2(·), . . .} is a collection of known functions that are

continuous on the range ofx and that span a “large” space of functions. It is not required

that theuj ’s be orthogonal; however, orthogonality is desirable in that it simplifies practical

computation and enhances clarity of proofs of theoretical results. In the GLM setting spe-

cialized orthogonality conditions are required to attain such simplification (see Section??).

Furthermore, it is understood that eachuk is not a linear combinationγ1, . . . , γp. We will

refer to theuk’s as the basis functions of a series representation of∆. Popular examples

for basis functions include trigonometric functions, wavelets and orthogonal Legendre or

Hermite polynomials.

A reasonable approach to approximating the function of interest would be to truncate

the sum in (3.4) after the firstj terms. The representation specified by (3.3) and (3.4)

motivates approximations ofη(·) constructed by considering only finite contributions to

the sum as follows:

η(x; θ1, . . . , θp+j) = η(x; θ1, . . . , θp) +
∑j

k=1 θp+kuk(x)

= η(x;β) +
∑j

k=1 φkuk(x) =: ηj(x), j = 1, 2, . . .

(3.5)

where we defineθk = βk for k = 1, . . . , p andθk = φk−p for k = p+1, . . . , p+j. The above

formulation produces a sequence{η(·; θ1, . . . , θp+j) : j = 1, 2, . . .} of approximators ofη

with the property thatη(·; θ1, . . . , θp+j) ≡ η(·; θ1, . . . , θp+j, 0) for eachj = 1, 2, . . . and all

allowable parameter valuesθ1, . . . , θp+j. In other words, the models forη are nested in that

a model of a given order contains all terms contained in everymodel of a smaller order and

they become increasingly complex asj increases. Furthermore, asj → ∞, functions of the

form η(·; θ1, . . . , θp+j) span the space of all functions of interest. For convenience, we will

denote thejth alternative specification ofη by ηj(x). That is, in the context of series-based
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alternatives formulated above we haveηj(x) ≡ η(x; θ1, . . . , θp+j).

Now observe that the null hypothesis (3.2) is equivalent to

H0 : φ1 = φ2 = · · · = 0. (3.6)

Thus, an omnibus test of (3.2) can be obtained by using the series-based function approx-

imators to construct alternatives toη(·;β). The maximum likelihood estimator ofηj(x)

is

η̂j(x) = η(x; θ̂1, . . . , θ̂p) +
∑j

k=1 θ̂p+kuk(x), j = 0, 1, . . . , Kn, (3.7)

whereθ̂k, k = 1, . . . , p+ j are maximum likelihood estimators withKn ≤ n. Note that the

finite sum would capture any portion of the residual deviancewhich is left “unexplained”

by the proposed (null) model (assuming without loss of generality that there are no redun-

dant terms contained in the linear predictor and the finite series; if this were the case, the

redundant basis function is simply discarded from the collection of basis functions used in

the finite series).

The truncated series described above can be viewed as a nonparametric estimator of

an unknown regression function. Since the order of the sum varies across the candidate

models, the order of the series-based regression estimatorplays the role of smoothing pa-

rameter. The order of the truncated series estimator is sometimes referred to as a truncation

point. In many settings this property is enough to ensure that there exist tests based on the

modelsη1, . . . , ηKn
that are consistent against any continuous alternative toH0, so long

asKn tends to∞ at an appropriate rate with the sample size (Aerts et al., 1999; Aerts,

Claeskens, and Hart, 2004).
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3.3 Tests of Fit for Generalized Linear Models

Lack-of-fit tests applicable to GLMs have been developed in the collection of papers by

Aerts et al. (1999), (2000) and (2004). Aerts et al. (1999) and (2000) approach the problem

using the concepts of an order selection-based test, while Aerts et al. (2004) uses a Bayesian

rationale to motivate a test statistic formulation which ultimately leads to a statistic that

explicitly depends on squared Fourier coefficients in a similar fashion to the cusum or

Neyman smooth tests. It is worth emphasizing that, in the context of generalized linear

regression, the methods proposed in Aerts et al. (1999), (2000) and (2004) require that the

regression model be a member of the subclass of GLMs known as canonical link models

described in Sections 1.2.2 and 1.2.3.

All of the tests proposed in this collection of papers can be viewed as generalizations of

existing methods for testing the fit of Gaussian-based regression models. A comprehensive

discussion of Gaussian-based methodology developed priorto 1997 can be found in Hart

(1997). Much of the work we will review in this chapter utilizes model selection criteria

and appears to be directly inspired by Eubank and Hart (1992)which developed many of

these techniques for Gaussian-based models.

3.3.1 Testing the Fit of a GLM with a Single Regressor via Automated Order Selection

In this case several alternatives are formulated in terms ofdepartures from the proposed null

model in which the departure is modeled in terms of finite series approximations described

above. The idea underlying the method presented in Aerts et al. (1999) is to use a model

selection criterion such as AIC, BIC, etc. to select the “best” model for η(·) from the

estimated modelŝη0, η̂1, . . . , η̂Kn
. The null model is rejected if it is not selected by the

model criterion. Moreover, while it is of primary interest to evaluate the fit of the null

model, the approach just described somewhat serendipitously provides an estimate ofη(·)
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in the event that the null model is found to be inadequate.

Several different selection criteria are proposed and examined, including a criterion

inspired by the Akaike information criterion (AIC) and others based on various score statis-

tics. Aerts et al. (1999) demonstrate that their tests are consistent against essentially any

alternative hypothesis. Furthermore, they demonstrate via simulation that their test pos-

sesses competitive power properties.

AIC-inspired criteria

In a likelihood context, a popular method of model selectionis the AIC. Aerts et al. (1999)

define the modified AIC by

MAIC(r;Cn) = Lr − Cnr, r = 0, 1, . . . , Rn, (3.8)

whereCn is some constant larger than1, Rn could be either fixed or tending to infinity

with n andLr = 2(lr − l0), r = 0, 1, . . . , Rn, is the loglikelihood ratio corresponding to

the approximatorηr(·), in which the loglikelihoodlr = l(ηr, ψ) can be written explicitly as

follows

l(ηr, ψ) =

n∑

i=1

{[yiηr(xi)− b(ηr(xi))]/a(ψ) + c(yi, ψ)}, (3.9)

Note that the maximizer of AIC and BIC is equal to the maximizer of MAIC(r) when

Cn = 2 andCn = log(n), respectively. Now let̂rCn
be the maximizer ofMAIC(r;Cn).

A possible test ofH0 against a general alternative is to rejectH0 if the maximizer,r̂Cn
,

of MAIC(r;Cn) is larger than0. By appropriate choice ofCn the asymptotic type I error

probability of the test,

reject H0 when r̂Cn
> 0, (3.10)
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can be any number between0 and1. Under certain regularity conditions given in Theorem

1 of Aerts et al. (1999), the limiting level of this test (asn→ ∞) is about.29 when the AIC

penalty constant,Cn = 2, is used. Values ofCn yielding other test levels can be obtained

following a proposal of Eubank and Hart (1992). For example,a test of asymptotic level

.05 is obtained by usingCn = 4.18. (See Hart 1997, p. 178, for values ofCn leading to

other test levels.)

Score-based criteria

The proposed AIC-based tests can be written in terms of the likelihood ratio statisticLr

for testing hypothesis (3.2) against the alternative thatη(·) has the formηr(·). The score

statistic provides a computationally attractive approximation of the likelihood ratio statistic

which only requires fitting the null model. Aerts et al. (1999) identify this feature of the

score statistic as being particularly advantageous for application of their method since it is

plausible that a large number of alternative models may be required to carry out the test in

some circumstances. Aerts et al. (1999) explain that the Wald statistic can also be used as

an approximation to the likelihood ratio statistic. However, the authors cite need to obtain

“unrestricted” maximum likelihood estimators and the Waldstatistic’s lack of invariance

under equivalent reparameterizations of nonlinear restrictions as being drawbacks to using

it as an approximation in their setting.

Analogous to the definition of MAIC, Aerts et al. (1999) and Aerts et al. (2000) define

thescore information criteria(SIC),

SIC(r;Cn) = Sr − Cnr, r = 0, 1, . . . , (3.11)

whereCn, Rn are as defined above andSr is the score statistic described in Section 1.3.4

applied to the null hypothesis (3.6). For canonical link regression models (Section 1.2.3),



54

the score statistic can be written as

Sr =
r∑

j=1

nφ̂2
j

a(ψ̂0)
, (3.12)

where

φ̂k =
1

n

n∑

i=1

[yi − b′(η(xi; β̂
0))]ûk(xi), k = 1, . . . , K. (3.13)

Aerts et al. (2000) point out that expression (3.12) has essentially the same form as the

statistic of Neyman’s classical smooth test (Hart, 1997).

As in the modified information criteria discussed in the previous section, an apparently

sensible test of (3.2) is one that rejectsH0 when the maximizer,̃rCn
, of SIC(r, Cn) is larger

than0. Theorem 3 of Aerts et al. (1999) asserts that underH0, r̃Cn
andr̂Cn

have the same

limiting distribution.

Tests based on order selection

While one may conduct a test based directly on the order selected by MAIC or SIC, other

related statistics have been proposed. We will review several of these statistics in this sec-

tion. For convenience we will discuss these tests in the context of SIC though, in principle,

analogous tests can be constructed for the MAIC.

Aerts et al. (1999) present alternate, equivalent expressions for the test statistics re-

viewed in the previous sections. For example, observe that the SIC test rejectsH0 if and

only if SIC(r;Cn) > 0 for somer in {0, 1, . . . , Rn}, which is equivalent to rejectingH0

whenTOS > Cn, with

TOS = max
1≤r≤Rn

{Sr/r}. (3.14)

Note thatCn acts as both the penalty constant in SIC and the critical value of TOS. Thus,
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takingCn = 4.18, the results in a test with limiting size of0.05 as noted for the order

selection test (3.10). This test has been studied in the context of Gaussian response mod-

els in Eubank and Hart (1992). Recalling expression (3.12),we can see that (3.14) can

be written explicitly in terms of sample Fourier coefficients which closely resembles the

well-known data-driven Neyman smooth-type statistic in the context of Gaussian response

models (Hart, 1997).

Among the other statistics, Aerts et al. (2000) studied the score statistics correspond-

ing to models chosen by the score analogs of AIC and BIC:

Sa = Sr̂a

wherer̂a = argmax0≤r≤Rn
SIC(r; 2);

Sb = Sr̂b

wherer̂b = argmax1≤r≤Rn
SIC(r; log(n)). Observe that̂rb maximizesSIC(r; logn) over

1, . . . , Rn rather than0, 1, . . . , Rn. This definition accounts for a consistency property of

BIC-type order selection criteria (Aerts et al., 2000).

Another statistic studied in Aerts et al. (2000) is a standardized version ofSa

Ta =
Sr̂a − r̂a

max(1, r̂
1/2
a )

; (3.15)

Aerts et al. claim that standardizingSa greatly stabilizes the null distribution of the statis-

tic, which leads to a meaningful improvement in the power forTa. It is further claimed

that the null distribution ofSb is already quite stable which makes standardization ofSb

unnecessary.

Finally, Aerts et al. (2000) considered using the AIC-type score criterion evaluated at

its maximum as lack-of-fit statistic



56

Tmax = SIC(r̂a; 2). (3.16)

Use of this statistic was first considered by Parzen (1977) totest lack-of-fit of time series

models.

Aerts et al. (2000) provide large sample approximations forthe null distributions

of the statistics reviewed in this section. LetZ1, Z2, . . . be a sequence of independent

and identically distributed standard normal random variables, defineV0 = 0, Vr = Z2
1 +

Z2
2 + · · · + Z2

r , for r = 1, 2, . . ., andr̃ to be the value ofr that maximizesVr − 2r over

r = 0, 1, . . .. If the null hypothesis (3.6) and the assumptions of Theorem1 of Aerts

et al. (2000) hold, then the aforementioned theorem ensuresthatSa, Sb, Ta, TOS, andTmax

converge in distribution toVr̃, V1, (Vr̃ − r̃)/max(1, r̃1/2), maxr≥1(Vr/r), andVr̃ − 2r̃,

respectively asn→ ∞.

3.3.2 Extension to Multiple Regression

Aerts et al. (2000) extend the proposal of Aerts et al. (1999)described in Section 3.3.1

to multiple regression. Aerts et al. (2000) explain that care must be taken with how one

constructs the sequence of alternatives to test the adequacy of η(·;β) in order to ensure that

the resulting test will possess desirable power properties. To demonstrate how this works,

we follow the example described in Aerts et al. (2000) and consider the case in whichη is

an unknown function of the covariatesx1 andx2. In this context, the null hypothesis (3.2)

can be written as

H0 : η ∈ {η(·, ·;β) : β ∈ B}. (3.17)

In analogy to the case of only one covariate, an alternative model obtained from a series

expansion which uses basis functionsuj may be expressed as
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η(x1, x2) = η(x1, x2;β) +
∑∑

j,k∈Λ
φjkuj(x1)uk(x2) (3.18)

whereΛ is the index set for a given alternative model. It is evident from (3.18) that the

index setΛ uniquely determines a given alternative since it specifies the particular subset

of basis functions which compose that alternative. Furthermore, the definition ofΛ will,

in general, depend on the specification of null model. For example, suppose we wish to

test the null modelη(x1, x2;β) = β0 + β1u1(x1) + β2u2(x2), then it is obvious that neither

u1(x1) noru2(x2) should be included in the sequence representing the alternative model. In

light of this dependence upon the null model, Aerts et al. (2000) limited their discussion to

the situation where the functionη(x1, x2;β) is constant in order to make notation simpler.

Under the no-effect null hypothesis,Λ is a subset of{(j, k) : 0 ≤ j, k < n, j + k > 0}.

Aerts et al. (2000) present tests which generalize the score-based model selection cri-

teria in Section 3.3.1 using multivariate alternatives specified by (3.18). However, likelihood-

based model selection criteria presented in Section 3.3.1 can be generalized in the same

manner. The resulting model selection criteria corresponding to the log-likelihood ratio

and score statistics are given by

MAIC(Λ;Cn) = LΛ,n − CnN(Λ),

SIC(Λ;Cn) = SΛ,n − CnN(Λ),
(3.19)

respectively, whereN(Λ) denotes the number of elements inΛ. Critical points andp-values

of the lack-of-fit tests can be obtained via asymptotic distribution theory or by use of the

bootstrap.

To carry out this test in practice,SIC(Λ;Cn) must be maximized over some collection

of subsetsΛ1,Λ2, . . . ,Λmn
. Aerts et al. (2000) require that this collection ofΛj ’s satisfy

the following assumptions
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1. Λ1 ⊂ Λ2 ⊂ · · · ⊂ Λmn
and

2. N(Λmn
) → ∞ in such a way that, for each(j, k) 6= (0, 0) (j, k ≥ 0), (j, k) is inΛmn

for all n sufficiently large.

The first assumption imposed on the index sets is required so that corresponding models

emulate the hierarchical (i.e., nested) fashion in which model sequences are constructed

in the single covariate setting. Without this assumption the distributions of the resultant

statistics will, in general, depend on parameters of the null model, even whenn → ∞

(Aerts et al., 2000). The second assumption is needed in order to ensure that the test is

consistent against virtually any alternative toH0, Aerts et al..

Figure 1 shows four possible model sequences Aerts et al. (2000) discussed for two

covariate setting described above. The first few models in the sequences are graphically

represented by plotting the number of the step in which the basis elements enter the model

for each index(j, k). For the model sequence depicted in Figure 1 (a),u1(x1), u1(x2) and

the interactionu1(x1)u1(x2) terms are added in step 1; that is,Λ1 = {(0, 1), (1, 0), (1, 1)}.

In step 2 the following terms are added:u1(x1), u1(x2), u2(x1)u1(x2), u1(x1)u2(x2) and

u2(x1)u2(x2) so thatΛ2 = {(0, 1), (1, 0), (1, 1), (0, 2), (2, 0), (1, 2), (2, 1), (2, 2)}. Note

thatΛ1 ⊂ Λ2. This model sequence adds2j + 1 terms to the previous model at stepj.

Inspection of (3.19) reveals that penalization against a given model is linearly related to

the number of parameters in the model which, in turn, grows rather fast as the number of

models considered increases. This clearly limits the number of models from this sequence

which can be compared with the null model and, consequently,tests based on this sequence

will possess undesirable power properties. This problem isless severe in the sequence

depicted in Figure 1 (b), where onlyj + 1 terms are added at each step. Figures 1 (c) and

(d) are even more parsimonious. The sequence illustrated inFigure 1 (c) includes the main

effects corresponding to frequencyj at step2j − 1 andj interaction terms at step2j. The
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sequence described in Figure 1 (d) is clearly the most parsimonious in that no more than

two new terms are added at each step. Aerts et al. (2000) statethat there exist other model

sequences leading to omnibus tests.

The large sample results of the statistics reviewed in Section 3.3.1 can be generalized

to accommodate the multiple regression approach describedin this section. LetZjk, for

k = 1, . . . , Nj andj = 1, 2, . . ., be independent and identically distributed standard normal

random variables whereNj = N(Λj) − N(Λj−1), for j = 1, 2, . . . with Λ0 = ∅ and

Λj corresponding to a suitable sequence of alternatives such as those described above for

j = 1, 2, . . .. Then Theorem 1 of Aerts et al. (2000) generalizes withVr andr̃ defined as

follows:

V0 = 0, Vr =

r∑

j=1

Nj∑

k=1

Z2
jk (r = 1, 2, . . .), (3.20)

andr̃ = argmax{Vr − 2N(Λr) : r = 0, 1, . . .}.

Since the techniques described in this section rely on nonparametric smoothers, one

would expect that these methods are vulnerable to the curse of dimensionality. Aerts et al.

(2000) explain that that for an omnibus test that places the same emphasis on allp covari-

ates, the upper bound on the order of the series-based alternatives,Rn, must not exceed

n1/p. The consequence is that higher order alternatives cannot be included in the model

sequence and hence the ability of these tests to detect higher frequency departures from

the null can quickly diminish as the dimension of thex-space increases. This limitation

can be circumvented to an extent by formulating model sequences with the ability to detect

specific departures from the null model.

Aerts et al. (2000) explain how to choose a path in a way to detect specific departures
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Fig. 1.Four examples of model sequences in two dimensions.
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of interest. For example, one can specify model sequences inorder to test the adequacy of

the specified link function in a generalized linear model (see Section 3.3.2) or the presence

of interaction whenη(·;β) is specified to be an additive model (see Section 3.3.2).

Additive models

Additive models are a well-known tool for circumventing thecurse of dimensionality. Ad-

ditive models are formulated to provide an estimate of the marginal effect of a covariate on

the response. Thus, if one assumes an absence of interactioneffects (or at least presumes

that such effects are negligible), then alternatives to thenull model (3.2) can be constructed

using additive models. For example, in the two-covariate setting alternatives to (3.17) can

be written as

η(x1, x2) = η(x1, x2;β) +
kr∑

j=1

φjuj(x1) +
lr∑

j=1

φjuj(x2), (3.21)

wherekr ≥ kr−1 andlr ≥ lr−1 for r = 2, 3, . . ..

Aerts et al. (2000) refer to a type of test as adiagonal testwhich is based on sequences

of nested models constructed from these alternatives. For this test Aerts et al. insist that

kr = lr while letting kr increase by1 at each step, so thatΛj = {(1, 0), (0, 1), (2, 0),

(0, 2), . . . , (j, 0), (0, j)}. The resulting path{(kr, lr) : r ≥ 1} corresponding to this test

proceeds along the diagonal{(kr, kr) : r ≥ 1} and hence the name “diagonal” test. Note

that in this strategy only two terms are added to each subsequent model; however, as we

noted in Section 3.3.2, the number of additional terms may grow without bound. The

asymptotic distribution theory of Aerts et al. (2000) yields Vr = (Z2
1 + Z2

2 ) + · · · +

(Z2
2r−1 + Z2

2r). This approach can be extended in a fairly direct way to models with more

than two covariates.
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A goodness-of-link test

Aerts et al. (2000) describe how their method can be utilizedto test the adequacy of the

specified link. In this case the hypothesized model is contrasted with alternative models of

the form

η(x1, x2) = η(x1, x2;β) +
∑

j∈Λ
φjuj{η(x1, x2;β)}. (3.22)

This construction provides an alternative approach to the tests discussed in Section 2.6.

However, it seems worth noting that this formulation bears some resemblance to the tradi-

tional goodness-of-link methods discussed in the previouschapter. In particular, theuj ’s

play a similar role to the constructed variables utilized inthe classical goodness-of-link

test reviewed in Section 2.6.1. Aerts et al.’s proposal clearly differs from the technique

reviewed earlier in that it utilizes nonparametric methodsto detect departures from the link

function, while the traditional goodness-of-link test utilizes generalized parametric link

models to detect departures from a proposed link.

The ‘max’ tests in models with any number of covariates

The ‘max’ test described in Aerts et al. (2000) provides a wayof constructing an omnibus

test from multiple specialized tests. To clarify, considerthe two-covariate case in which

specialized alternative models are constructed as follows

η(x1, x2) = η(x1, x2;β) +
∑

j∈Λ
φjuj(xk) (k = 1, 2), (3.23)

where departures from the null model are investigated for only one of the covariates.

Clearly, such an alternative would useful only if one presumes thatxk alone is respon-
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sible for lack of fit of the null model. However, by taking the maximum of the test statistic

values obtained by using this sequence of alternatives for each of the covariates separately,

one can obtain a test that is sensitive to departures from thenull model caused by either of

the two covariates.

Aerts et al. (2000) explain how the idea described above can be applied to models

with p > 2 covariates using sequences for alternative models described in Section 3.3.2. In

this case, one would use the following alternative for each pair of covariates separately

η(x1, . . . , xp) = η(x1, . . . , xp;β) +
∑

(j,k)∈Λ
φj,kuj(xr)uk(xs), (3.24)

where1 ≤ r 6= s ≤ p andΛ is an index set formulated to follow one of the paths reviewed

in Section 3.3.2. The test statistic is then taken to be the maximum of all d(d − 1)/2 test

statistics.

Finally, the level of a test constructed in a manner described above can be controlled

by using either Bonferroni’s inequality or by a bootstrap method. Aerts et al. (2000) ex-

plain that in situations where the number of covariatesp is large, one might find a bootstrap

procedure preferable since application of Bonferroni’s inequality will result in a very con-

servative test.

3.3.3 Bayesian-Motivated Tests of Function Fit

Aerts et al. (2004) propose a Bayes-inspired nonparametrictest of (3.2). In particular, they

use the BIC approximation to the posterior probability ofH0 as a criterion for detecting

departures from the proposed null model. The motivation forthis approach is that one

would generally interpret a sufficiently small value of thisprobability as evidence refuting

the null model and would consequently be inclined to rejectH0. A Bayesian would directly
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use the estimated value of the posterior probability approximation to assess the plausibility

of H0. However, Aerts et al. (2004) provide the asymptotic distribution for a statistic they

derived from the posterior distribution, so that one may assess significance in a traditional

frequentist fashion. Aerts et al. (2004) to be the first peer-reviewed article to study lack-of-

fit tests based on posterior probabilities; however, a test based on this premise was studied

by Hart (1997) in the special case of Gaussian-based regression models.

Test statistic and distribution theory

Formulation of the posterior probability requires consideration of a collection of alternative

models denotedM1, . . . ,MK , where eachMj corresponds to a different parametric spec-

ification for the functionη. The model which assumes thatH0 is true will be calledM0.

Lety = (y1, . . . , yn) denote the observed response values. With this notation we can apply

Bayes’ Theorem to express the posterior probability of the null model as

P (M0|y) =
pr(y|M0)pr(M0)∑K
j=0 pr(y|Mj)pr(Mj)

=

{
1 +

K∑

j=1

pr(Mj)

pr(M0)

pr(y|Mj)

pr(y|M0)

}−1

=

{
1 +

∑K
j=1

pr(Mj)

pr(M0)
exp [log(pr(y|Mj))− log(pr(y|M0))]

}−1

(3.25)

wherepr(Mj), j = 0, 1, . . . , K denotes the prior probability of thejth model andpr(y|Mj)

represents the marginal likelihood of the under thejth model. Evaluatingpr(y|Mj) is often

difficult in practice. Aerts et al. use the following versionof the BIC which is a well-known

and easily computed approximation ofpr(y|Mj):
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log(pr(y|Mj)) = log
(∫

Θj
pr(y|θj,Mj)π(θj|Mj)θj

)

≈ log(pr(y|Mj, θ̂j))−
1

2
mj logn =: BICj

(3.26)

wherepr(y|Mj, θ̂j) is the likelihood corresponding to modelMj andmj is the dimension

of modelMj . Using noninformative priors for the model probabilities,that is,pr(Mj) =

pr(M0), j = 1, . . . , K, (3.25) can be reexpressed in terms of (3.26) as follows

P (M0|y) ≈
{
1 +

∑K
j=1 exp [BICj − BIC0]

}−1

=
{
1 +

∑K
j=1 n

−(1/2)(mj−m0) exp[Lj/2]
}−1

=: πBIC

(3.27)

whereLj = log(Lj/L0), i.e., the log-likelihood ratio of theMj andM0 models.

Clearly from (3.27), small values ofP (M0|y) are evident in small values ofπBIC.

Furthermore, small values ofπBIC clearly correspond to large values of

√
n(1− πBIC) =

S̃n

1 + S̃n/
√
n

(3.28)

where

S̃n =
K∑

k=1

exp {Lk/2} . (3.29)

It can be shown thatLk can be approximated by the score statisticnφ̂2
j/a(ψ̂0) written

explicitly in terms of Fourier coefficient estimators

φ̂k =
1

n

n∑

i=1

[yi − b′(η(xi; β̂
0))]ûk(xi), k = 1, . . . , K (3.30)



66

in which ûk(·), k = 1, . . . , K denote basis functions that have been scaled to produce the

required orthogonality conditions (this approximation will be discussed further in Chapter

IV). Thus, we may in turn approximatẽSn by

Sn,BIC =

K∑

k=1

exp

{
nφ̂2

j

2a(ψ̂0)

}
. (3.31)

The quantitynφ̂2
j/a(ψ̂0) is known to have the same limiting distribution as the log-likelihood

ratioL1k under the null hypothesis and general regularity conditions, which suggests that

under general conditions the limiting distribution ofS̃K is the same as that ofSn (Aerts

et al., 2004).

Tests based on (3.27) may be implemented in either a Bayesianor frequentist fashion.

A Bayesian would directly use the estimated value of the posterior probability approxima-

tion to assess the plausibility ofH0, while a frequentist would determine the null distribu-

tion of πn, and then rejectH0 at level of significanceα if and only if πn is smaller than an

quantile of this distribution. Methods of the latter type which are derived from Bayesian

principles, but used in frequentist fashion are referred toasfrequentist-Bayes(Hart, 2009).

The issue of choosing alternative modelsM1,M2, . . . requires special consideration

for this test. As with all series-based tests, the alternative models used to construct the test

are extremely important in ensuring consistency of the testagainst virtually any departure

from the null model (see Section 3.2.3). Aerts et al. (2004) consider two main types of

alternative models.

Nested alternatives

The first type of alternative model considered is the class ofnested alternatives discussed

in Section 3.2.3. Recall that asj → ∞, functions of the form (3.5) span the space of all

functions that are continuous on[0, 1]. Aerts et al. explain that as long asK tends to∞
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at an appropriate rate with the sample size, this property isgenerally enough to ensure that

there exist tests based on the modelsM1, . . . ,MK that are consistent against any continuous

alternative toH0.

Applying Theorem 2 of Aerts et al. (2004) to canonical link regression models implies

that whenπBIC is constructed using nested models, then there exists a sequence{Kn}

tending to infinity such that underH0, we have

n1/2


1−

{
1 +

Kn∑

j=1

exp (BICj − BIC0)

}−1

 d→ exp

(
1

2
χ2
1

)
(3.32)

asn→ ∞.

This means that the power of a test based on (3.27) and constructed from nested al-

ternatives will depend solely on the alternative of smallest dimension. This conclusion

effectively defeats the purpose of applyingπBIC using the nested alternatives of Section

3.2.3. Clearly, there is no added benefit to considering a series of dimension larger than

p+ 1 when constructingπBIC.

Singleton alternatives

In an effort to rectify the apparent shortcoming of nested alternatives noted above, Aerts

et al. (2004) formulated a class of alternative models whichthey refer to as singletons.

Singletons contain only one more parameter than the null model, η(·;β) and hence are not

nested within each other. To illustrate this class of alternatives in the case whereη is a

function defined on[0, 1], a candidate forηj is

η(x;β) + φj cos(πjx). (3.33)
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Note that this collection of alternatives does not necessarily contain η, even in the limit.

However, Aerts et al. (2004) argue that the resulting test will usually be consistent as long

asM0 is not the best approximation toη among theM0,M1,M2, . . .. In the case whereη is

continuous andη /∈ N , there will exist ak such that the MLE ofφk in η(x;β)+φk cos(πkx)

consistently estimates a nonzero quantity. Aerts et al. claim that such a property implies

the existence of a consistent test.

UnderH0 and regularity conditions presented in Aerts et al. (2004),the authors show

that whenSn,BIC is constructed using singleton models, then

Sn,BIC − aK
bK

d→ S (3.34)

asn andK tend to infinity, where in the notation of Samorodnitsky and Taqqu (1994),S

has the stable distributionS1(1, 1, 0) and

aK =

√
π

2
· K√

logK
and bK =

KaK√
π

∫ ∞

1

sin(x/aK)

x2
√

logx
dx, K = 1, 2, . . . . (3.35)

The method used by Aerts et al. to prove the result quoted above requires that the number

of alternatives,K, approach infinity at a rate no faster thano(n1/8).

Comments

In principle, the alternative models considered need not belimited to the two classes cited

above. In practice, however, there are limitations. For example, one intuitively appealing

class of alternatives is the collection of all models of the form

η(x;β) +
∑

j∈A
φjuj(x) (3.36)
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whereA is an arbitrary subset of0, 1, . . . , K for someK. Note that this collection of

alternatives contains both collections of nested and singleton alternatives as well as a vast

collection of other possible alternatives. Unfortunately, such alternatives are problematic if

K grows with sample size. In particular, this collection of alternatives requires that2K+1

models must be fitted, which becomes prohibitively large very quickly.

The approach presented in Aerts et al. (2004) does have a couple of drawbacks. First,

the asymptotic distribution for the test statistic is relatively complex making the test po-

tentially difficult to implement in practice. Also, this test has some undesirable power

properties including an inability of the test to detect1/
√
n-local alternatives.

3.4 Lack-of-Fit Tests Based on Laplace Approximations

Hart (2009) revisits the notion of testing lack-of-fit usingstatistics based on approximation

of the posterior probability of the null hypothesis in a frequentist fashion. A key difference

in the proposal made in Hart (2009) from the approach introduced in Aerts et al. (2004) is

that the former uses the method of Laplace to approximate posterior probabilities whereas

the latter uses BIC. The motivation for pursuing a test statistic based on the Laplace method

is that it is known to yield a more refined, accurate approximation of the posterior proba-

bility (Kass and Raftery, 1995; Raftery, 1996). Consequently, one would presume that the

resulting test statistic will possess improved power properties over tests based on the BIC

approximation.

3.4.1 Model Assumptions

Another noteworthy difference between Hart (2009) and Aerts et al. (2004) is that Hart

(2009) assumes a special case of the model conditions presented in Section 3.2.1 in which

the response is normally distributed. Consequently, the method as presented in Hart (2009)
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is not justified for use in all models described in Section 3.2.1. That is, the observations

Y1, . . . , Yn are assumed to be generated from the model

Yi = η(xi) + εi, i = 1, . . . , n, (3.37)

wherex1, . . . ,xn are fixed,d-dimensional design points, and the unobserved errorsε1, . . . , εn

are independent and identically distributed asN(0, σ2).

3.4.2 Test Statistic and Distribution Theory

Under the assumption of normal response data, the null hypothesis (3.6) is tested using the

following statistic

Bn =

n∑

j=1

ρj exp

(
nφ̂2

j

2σ̂2

)
, (3.38)

whereρj = πj/(1− πj). It is assumed thatφ1, . . . , φn are a priori independent with

P (φj = 0) = 1− πj , j = 1, . . . , n, (3.39)

whereπj < 1 for all j and, given thatφj 6= 0, φj has densityη, j = 1, . . . , n. Furthermore,

given thatπj 6= 0, πj has densityg, j = 1, . . . , n.

Now suppose thatg is Lipschitz continuous around0 and there existsδ < 1 such

that
∑∞

j=1 π
δ
j < ∞. Hart (2009) proceeds to demonstrate that under

√
n-local alternatives

defined asφj = 1√
n
λj, n = 1, 2, . . ., j = 1, . . . , n where it is assumed thatλj → ∞ as

j → ∞,Bn converges in distribution to

g(0)

∞∑

j=1

πj
1− πj

exp
[
(Zj + λj/σ)

2/2
]
, (3.40)
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which is an almost surely convergent series (Cline, 1983) whereZ1, Z2, . . . are i.i.d. stan-

dard normal random variables.

3.4.3 Comments

Simulation studies presented in Hart (2009) demonstrate that the frequentist-Bayes tests

presented therein have good power against a wide variety of departures from the null

model. In comparison to other well-known omnibus tests, thesimulation results reveal

that this test has superior power against high frequency alternatives while performing com-

petitively against low frequency alternatives. The omnibus tests against which the Laplace

based test was compared included two particularly relevantnonadaptive tests as well as an

adaptive test which utilizes a selection criteria based on acompromise of the AIC and BIC

proposed by Inglot and Ledwina (1996). Such power properties are remarkable given that

examination of (3.38) reveals thatBn is nonadaptive.

Hart (2009) notes that modification of the statistic and its limiting distribution are

required in order to ensure that use of this statistic is valid for more general models. As

we will demonstrate explicitly in Chapter IV, when applyingLaplace approximations to

more general models, the statistic analogous toBn will be a weighted sum of likelihood

ratiosL̂0/L̂j, whereL̂0 andL̂j , j = 1, . . . , K, are maximized likelihoods of the null and

K alternative models, respectively. WritingLj = 2log(L̂0/L̂j), we have

L̂j

L̂0

= exp

(Lj

2

)
, (3.41)

and if the null is nested within each alternative, then understandard regularity conditions

eachLj will have an asymptoticχ2 distribution under the null hypothesis. In short, the

“sum of exponentials” phenomenon can be attributed to two factors: (i) the use of a poste-

rior probability to testH0, and (ii) consideration of more than two models. When the null
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is compared to just one other model, our frequentist-Bayes test is essentially the same as a

likelihood ratio test.

3.5 Nonadaptive Tests

To this point we have neglected to address a key characteristic that distinguishes the various

tests described above. Examination of the tests derived from posterior probabilities reveals

that neither requires explicit specification of a truncation point. It is worth noting that the

proposals of Aerts et al. (2004) impose a a condition on the rate of growth of the order

of the sum relative to the sample size. A consequence of the assumption of a Gaussian

response in Hart (2009) is that no such constraint is required.

This differs from the approach of Aerts et al. (1999) and Aerts et al. (2000), which

are both based on data-driven selection of the truncation point. Tests utilizing data selected

values of a smoothing parameter (in our case, the truncationpoint) are often referred to

as “adaptive” tests, while tests that do not use data-drivenvalues are, of course, called

“nonadaptive”. Hart (2009) explains that nonadaptive tests have been generally dismissed

in favor of well-constructed adaptive tests because the former tend to have good power only

against certain types of alternatives. This has been demonstrated in simulation studies as

well as in formal analysis of power under local alternatives(Eubank and Hart, 1993; Hart,

1997). Consequently, the power properties reported for themethod introduced in Hart

(2009) are particularly striking in that they defy the generally accepted notions regarding

the relative performance of adaptive and nonadaptive tests.

To clarify which aspects of his proposed method are responsible for the superior power

properties, Hart (2009) compared the formulae of three nonadaptive tests in the case of

Gaussian response models. In the remainder of this section we will review some of con-

clusions reached in that comparison. Table 2 shows the formulae for the statistics of Hart
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(2009),Bn, to the BIC-based statistic of Aerts et al. (2004),Sn,BIC, and a cusum-based

statistic similar to those discussed in Section 2.4.2 expressed in terms of Fourier coeffi-

cients (see Hart (1997)). Brief inspection of Table 2 reveals rather obvious similarities in

the forms of these statistics. This resemblance is particularly interesting because both of

these statistics have been reported to have unsatisfactorypower properties; however, Hart

(2009) explains that the ways in whichBn differs from the BIC and cusum statistics actu-

ally lead to improved power. Consequently, this comparisonleads to new insights regarding

the apparent deficiencies of the BIC and cusum statistics.

Table 2. Three nonadaptive lack-of-fit statistics.

Aerts, et al. (2004): Sn,BIC =
∑K

k=1 exp
{
nφ̂2

k/2σ̂
2
}

Hart (2009): Bn =
∑K

k=1 ρk exp
{
nφ̂2

k/2σ̂
2
}

cusum approximation: Cn = 2
∑K

k=1wk,nφ̂
2
k/σ̂

2

In comparing the form of the Laplace based statistic in (3.38) to that of the BIC based

statistic in (3.29), one sees that the latter is sum of exponentiated squared, normalized

Fourier coefficients while the former is composed of aweightedsum of exponentiated

squared, normalized Fourier coefficients. It turns out thatthe superior power reported for

the Laplace based statistic is a consequence a stabilizing effect of these prior weights (Hart,

2009). These prior weights have the added benefit of allowingthe investigator to adapt

the test in order to detect specific departures from the null model. Alternatively, using

noninformative priors yields omnibus lack-of-fit statistics. Finally, a consequence which

is evident in the derivations presented in Hart (2009) is that Bn arises naturally from a

posterior probability constructed from generally formulated Bayesian model averages. On
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the other hand, the formulation of the posterior probability used in Aerts et al. (2004) was

limited to singleton models. Hart (2009) comments that suchmodels would rarely be used

in function estimation, which in turn makes the formulationfrom which the BIC based test

statistic was derived seem somewhat contrived by comparison.

A similar comparison of the form ofBn to that ofCn reveals thatCn is a weighted

sum of squared normalized Fourier coefficients while is composed of a weighted sum of

exponentiatedsquared, normalized Fourier coefficients. Hart (2009) found that in the spe-

cial case whereρj = wj,n = j−2, j = 1, . . . , n, Bn has better overall power thanCn. The

superior power properties ofBn against higher frequency alternatives have been attributed

to the exponentiation of the Fourier coefficients (Hart, 2009). This discovery led Hart

(2009) to conclude that the deficiencies reported for the cusum statistic are a consequence

of using a relatively ineffective function of each Fourier coefficient rather than excessive

downweighting.

3.6 Discussion

In reviewing the literature on series-based tests of fit we have found that adaptive methods

share the following features:

1. they are generally easy to implement;

2. most possess desirable power properties;

Furthermore, we noted that nonadaptive tests typically do not share these properties with

the notable exception of the Laplace based statistic reviewed in Section 3.4.

One point that we touched on briefly in this chapter is that series-based lack-of-fit tests

for generalized linear models have been inspired by well-established tests for Gaussian-

based models. In the next chapter we will pursue this line of reasoning and revisit the recent
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proposal of Hart (2009) in the context of generalized linearmodels. Given the relative ease

of implementation of this method as well as its desirable power properties reported in Hart

(2009), we contend that such a development presents a promising direction for further

research. Thus, we intend to propose an analogous statisticwhich is suitable for testing

the fit of generalized linear models as well as provide justification that has not yet been

presented in the existing literature for such a proposal.



76

CHAPTER IV

A LACK-OF-FIT TEST FOR GENERALIZED LINEAR MODELS BASED ON

LAPLACE APPROXIMATION

4.1 Overview

In Chapter III we reviewed several series-based lack-of-fittests. Among the methods re-

viewed, we discussed two that share a special distinction inthat they are both derived from

approximations of the posterior probability of a hypothesized model (i.e., null model). The

method of Aerts et al. (2004) applies to a rather general class of models, but as we reported

previously, it has several shortcomings. Hart (2009) presents a lack-of-fit test that over-

comes the shortcomings of Aerts et al., but the class of models for which the method was

formulated was limited in comparison to the model assumptions considered by Aerts et al.

In this chapter we will apply the ideas from Hart (2009) to thegeneralized linear model

conditions addressed in Aerts et al. (2004). Thus, borrowing concepts from both sources

we will obtain a lack-of-fit test for generalized linear models that retains the desirable prop-

erties cited for Hart’s method.

In Section 4.2 we will state the general model assumptions and discuss suitable alter-

native models for developing our test (see Section 4.2.1) and the appropriate orthogonality

conditions (see Section 4.2.3). In Section 4.3 we will formulate the posterior probability

of a hypothesized model and subsequently derive the test statistic under the assumptions of

Section 4.2. In Section 4.4 the properties of the statisticsbased on likelihood ratios and their

null-equivalent score statistics will be studied. This examination will include identifying

the appropriate limiting distribution for each statistic and examination of the score-based

statistic’s power against local alternatives (see Section4.4.2).
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4.2 Model Assumptions and Inference Problem

Suppose the data(x1, y1), . . . , (xn, yn) are observed, wherexi is a vector of covariates and

yi is a scalar response. Our focus will be on canonical link regression models which were

introduced in Section 1.2.3. Assuming the covariates to be fixed and the observations to be

independent, the log-likelihood function can be written as

l(η, ψ) =

n∑

i=1

{[yiη(xi)− b(η(xi))]/a(ψ) + c(yi, ψ)}, (4.1)

wherea(·), b(·) andc(·) are known functions,η is an unknown function andψ an unknown

dispersion parameter (see Section 1.2). We consider testing the null hypothesis

H0 : η(x) =

p∑

j=1

βjγj(x) ≡ η(x;β), (4.2)

whereγ1, . . . , γp are known functions, andβ = (β1, . . . , βp)
T is an unknown parameter

vector. Note that an intercept term can be accommodated by defining γ1(x) ≡ 1, ∀x. The

asymptotic maximizer of the expected log-likelihood

1

n

n∑

i=1

[b′(η(xi))η(xi;β)− b(η(xi;β))], (4.3)

with respect toβ is denotedβ0 = (β0
1 , . . . , β

0
p)

T, which is the true parameter vector when

H0 is true and provides a best null approximation toη whenH0 is false.

4.2.1 Alternative Models

We will pursue an omnibus test of (4.2). Put simply, this requires that the test we develop

has the ability to detect departures from (4.2) within a verywide class of alternative models.

To this end, we will consider a collection of alternative models which differ only in their

specification ofη(x) andψ; that is, for each alternative, the data will be assumed to have
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log-likelihood given by (4.1). Furthermore, these alternative formulations ofη(x) need not

be nested within each other.

The specific forms of our alternatives will be based on Fourier-type regression mod-

els. LetU = {u1, u2, . . . , uK} whereK < n − p is a fixed, user-specified integer and

u1, u2, . . . , uK denote basis functions such as cosines, wavelets, or orthogonal polynomi-

als. Now form = 0, 1, . . . , K, definenm =
(
K
m

)
and letSm1, . . . , Smnm

be thenm subsets

of {1, . . . , K} of sizem. For eachm andk, letSmk = {1, . . . , K} \ Smk. The alternatives

considered will be of the form

ηmk(x) = η(x;β) +
∑

j∈Smk

φjuj(x); k = 1, . . . , nm, m = 1, . . . , K, (4.4)

where forj ∈ Smk, we haveuj ∈ U ; that is,uj ’s used to estimate each alternative will be

limited to the pre-specified collectionU . Inspection of (4.4) reveals that the null hypothesis

(4.2) is “nested” within each of the alternative models. In fact by definition ofSmk, for

m = 0, we haveS01 = ∅ andη01(x) = η(x;β), whereη(x;β) denotes the null model

defined in (4.2). This is an important feature of these alternatives which will be utilized in

the development of the test statistic and its sampling distribution.

For notational convenience, letMmk denote the probability model corresponding to

ηmk for k = 1, . . . , nm, m = 1, . . . , K and letM0 denote the model corresponding to the

null hypothesis (4.2). Furthermore, the log-likelihood corresponding to each model will be

written as follows

l(ηmk, ψ) =

n∑

i=1

{[yiηmk(xi)− b(ηmk(xi))]/a(ψ) + c(yi, ψ)}, (4.5)

which reflects our desire to have the competing specifications of (4.1) differ only in their

specification of the linear predictor, andψ.

We now discuss some issues that must be considered regardingK. From the above



79

formulation,K can be regarded as the highest frequency considered in the Fourier-type

alternatives characterized by (4.4). Thus, one would typically be inclined to prefer that

K be fairly “large” so that we have some assurance that the union of M0, Mmk, k =

1, . . . , nm, m = 1, . . . , K should come close to spanning the space of all possibilitiesfor

η.

It would appear that a test statistic based on the alternatives specified in (4.4) pro-

vides a means of detecting a wide range of departures fromH0 and would hence provide

assurance of an omnibus test. Unfortunately, alternative models specified by (4.4) have a

major defect. Such alternatives become problematic because the number of models that

must be fitted is
∑K

m=0 nm = 2K , which will clearly be large ifK is chosen to be large

(as suggested above). The number of alternatives which mustbe fitted to the data becomes

prohibitively large even for relatively small samples. Despite the fact that the collection of

alternatives defined by (4.4) is impractical, this definition provides a conceptually useful

starting point for developing a test statistic. During the development of the test statistic we

will revisit this issue and address it as we derive the statistic.

4.2.2 Notation

We will now introduce some notation in order to obtain more convenient and concise ex-

pressions for the models defined thus far. We start by noting that the problem we have

described so far bears a striking resemblance to a variable selection problem presented in

Wang and George (2007), so some of the notation which followshas been inspired by that

reference.

For k = 1, . . . , nm, m = 1, . . . , K, let Tmk = [Γ Umk] be ann × (p + m) matrix,

whereΓ = [γ1 γ2 · · · γp], with γj = (γj(x1), γj(x2), . . . , γj(xn))
T for j = 1, . . . , p and

similarly, Umk = [uj ]j∈Smk
with uj = (uj(x1), uj(x2), . . . , uj(xn))

T for j = 1, . . . , K.

Accordingly defineθmk = (βT,φT
mk)

T, whereβ = (β1, . . . , βp)
T, andφmk = (φj)

T
j∈Smk

.
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The vectorθm0 is (βT, 0T
m)

T, while θ0m = ((β0)T, 0T
m)

T denotes the maximizer of (4.3)

when parameterized as a function ofθ. With this notation we expressη under modelMmk

for k = 1, . . . , nm, m = 1, . . . , K as

ηmk(x) = η(x;β) +
∑

j∈Smk

φjuj(x). (4.6)

Now note that maximum likelihood estimators of these parameters will depend on the

specific model fit to the data. In order to distinguish parameter estimates from various

models, letθ̂mk = (β̂T
mk, φ̂

T
mk)

T, whereβ̂mk = (β̂mk1, . . . , β̂mkp)
T, andφ̂mk = (φ̂j)

T
j∈Smk

denote the corresponding values estimated for modelMmk from the sample data and̂ηmk

denotes the value ofηmk estimated by substitutinĝβmk and φ̂mk into (4.6). Finally, the

estimated value of the dispersion parameter under modelMmk is denoted bya(ψ̂mk).

4.2.3 Orthogonality Conditions

To produce test statistics that are meaningful and powerful, we impose the following or-

thonormality conditions which were introduced in Aerts et al. (2004) to accommodate

models such as the type described in Section 4.2:

n∑

i=1

γj(xi)uk(xi)b
′′(η(xi;β

0)) = 0, j = 1, 2, . . . , p, k = 1, 2, . . . , K, (4.7)

and

1

n

n∑

i=1

b′′(η(xi;β
0))uj(xi)uk(xi) =





1 if j = k,

0 if j 6= k.
(4.8)

In practice, an approximation to (4.7) and (4.8) can be obtained as follows. First, ob-

tain(β̂0, ψ̂0), the maximizer of the null likelihood function, and let̂W be then×n diagonal

matrix with diagonal elementsb′′(η(xi; β̂
0)), i = 1, . . . , n. We assume that̂β0 converges in
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probability toβ0. Now, choose a set of functionsv1, v2, . . . that are a basis for all functions

of interest and letV = [v1,v2, · · · ,vK ] wherevj = (vj(x1), vj(x2), . . . , vj(xn))
T for j =

1, . . . , K. Then apply a Gram-Schmidt procedure to the columns of the matrix [Ŵ 1/2Γ V ]

to obtain a collection of vectorŝv1, v̂2, . . . , v̂K . Finally, takingûj =
√
n × Ŵ−1/2v̂j pro-

duces a collection of vectorŝuj = (ûj(x1), ûj(x2), . . . , ûj(xn))
T for j = 1, . . . , K with

components which possess the desired properties.

4.3 Derivation of Test Statistics

To test the null hypothesis (4.2), we shall consider the approach presented in Hart (2009).

This requires that we first propose a prior distribution for the Fourier coefficientsφ1, . . . , φK ,

and then compute the posterior probability,P (M0|D), of the null model which is denoted

by M0. One would be inclined to rejectH0 when the statisticP (M0|D) is sufficiently

small. A frequentist would determine the cutoff point for rejection by deriving the fre-

quency distribution ofP (M0|D) underH0 and then choosing an appropriate Type I error

probability.

In order to simplify our subsequent discussion and derivations, we will not consider

assigning a prior to the dispersion parameter,ψ. However, sinceH0 can be characterized in

terms ofφ1, . . . , φK (see Chapter III), the Fourier coefficients are the parameters of primary

interest. Thus, imposing priors on these parameters is essential in formulating the posterior

probability.

4.3.1 Applying the Laplace Approximation

We now consider the general recommendations made in Hart (2009) for modifying the

Laplace approximation approach presented therein so that it is appropriate for the condi-

tions assumed in Section 4.2. It will be assumed thatφ1, . . . , φK are a priori independent
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with

P (φj = 0) = 1− πj , j = 1, . . . , K, (4.9)

whereπj < 1 for all j and, given thatφj 6= 0, φj has densityg, j = 1, . . . , K.

We will assess the validity ofH0 in (4.2) by calculating its posterior probability. From

Bayes Theorem we can express the posterior probability ofM0 as follows

P (M0|D) =
p0(D)

pmarg(D)
=

{
1 +

n∑

m=1

nm∑

k=1

∏

j∈Smk

(
πj

1− πj

)
Bmk

}−1

, (4.10)

where

p0(D) = P (D|M0)

n∏

j=1

(1− πj), (4.11)

pmarg(D) = p0(D) +

K∑

m=1

nm∑

k=1

P (D|Mmk)
∏

j∈Smk

πj
∏

j∈Smk

(1− πj), (4.12)

andBmk denotes the Bayes factor defined as follows

Bmk =
P (D|Mmk)

P (D|M0)
, (4.13)

with

P (D|Mmk) =

∫

θmk

pr(D|θmk,Mmk)×
∏

j∈Smk

g(φj)dθmk. (4.14)

In the above expressions theD denotes “data” andP (D|M) denotes the marginal likeli-

hood for the data under modelM whilepr(D|θ,M) denotes the conditional distribution of
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the data, given modelM and its parameter. Note that when viewed as a function ofθ one

typically refers topr(D|θ,M) as the “likelihood” ofθ. In our casepr(D|θmk,Mmk) ∝

exp{l(ηmk, ψ)} wherel(ηmk, ψ) was defined in (4.5).

We now apply a common variant of the “pure” Laplace approximation in which the

prior is evaluated at the maximum likelihood estimate ofθ̂ rather than at the posterior

mode; see Kass and Raftery (1995). This yields

P (D|Mmk) ≈ (2π)(m+p)/2|J−1
mk(θ̂mk)|1/2pr(D|θ̂mk,Mmk)×

∏
j∈Smk

g(φ̂j), (4.15)

whereJmk(θ̂mk) denotes the Hessian matrix−∂l(ηmk , ψ)/∂θmk∂θ
T
mk evaluated at̂θmk;

J0(θ̂0) is defined similarly. That is,Jmk(θ̂mk) andJ0(θ̂0) represent the information matri-

ces for modelsMmk andM0, respectively. The approximation given in (4.15) implies

B̂mk ≈
(2π)(m+p)/2|J−1

mk(θ̂mk)|1/2pr(D|θ̂mk,Mmk)
∏

j∈Smk
g(φ̂j)

(2π)p/2|J−1
0 (θ̂0)|1/2pr(D|θ̂0,M0)

= (2π)m/2

(
|J−1

mk(θ̂mk)|
|J−1

0 (θ̂0)|

)1/2

exp

{Lmk

2

}∏
j∈Smk

g(φ̂j).

(4.16)

In equation (4.16)Lmk = 2log(pr(D|θ̂mk,Mmk)/pr(D|θ̂0,M0)) wherepr(D|θ̂0,M0) and

pr(D|θ̂mk,Mmk), are the maximized likelihoods of the null model,M0, and the alternative

modelMmk, respectively. Note thatLmk is the standard likelihood-ratio test statistic which

will have an asymptoticχ2 distribution under the null hypothesis whenM0 is nested within

Mmk and standard regularity conditions hold. Models as defined in Section 4.2 are nested

and are known to satisfy standard regularity conditions.

From inspection of (4.10) it is clear that the frequentist test that rejectsH0 for small

values ofP̂ (M0|D) (i.e., P (M0|D) evaluated at̂Bmk k = 1, . . . , nm, m = 1, . . . , K) is
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equivalent to one that rejects for large values of

(2π)−1/2
K∑

m=1

nm∑

k=1

( ∏

j∈Smk

πj
1− πj

)
B̂mk. (4.17)

Thus, applying the approximation from (4.16) leads to rejection ofH0 for large values of

En,K :=

K∑

m=1

nm∑

k=1

(2π)(m−1)/2

( ∏

j∈Smk

πj
1− πj

g(φ̂j)

)
|J−1

mk(θ̂mk)|1/2
|J−1

0 (θ̂0)|1/2
exp

{Lmk

2

}
. (4.18)

We now examine how the limiting distribution ofEn,K depends on the collection of

alternative models used to construct it. The following theorem was inspired by Theorem 1

of Aerts et al. (2004).

The following are assumptions needed in our proofs of theoretical results presented

throughout this chapter:

A1. The design pointsx1, . . . ,xn are fixed and confined to a compact subsetS of Rd for

all n.

A2. The functionsγ1, . . . , γp, u1, u2, . . . satisfy the following conditions:

(i) There existsB∗
1 <∞ such that

sup
1≤j≤p, x∈S

|γj(x)| < B∗
1 and

(ii) there exists a sequence of positive constants{Bj : j = 1, 2, . . .} such that

sup
1≤j≤K, x∈S

|uj(x)| < BK , K = 1, 2, . . . .

A3. The functionsu1, u2, . . . satisfy (4.7) and (4.8) and̂u1, . . . , ûK are constructed from

γ1, . . . , γp, v1, v2, . . . as described in Section 4.2.3.
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A4. The dispersion parametera(ψ0) is positive, and fork = 1, . . . , nm,m = 1, . . . , K the

MLEs ψ̂mk andθ̂mk of ψ0 andθ0, respectively, are such thatE(a(ψ̂mk)−a(ψ0))
2 and

E‖θ̂mk − θ0‖2 exist and are eachO(n−1).

A5. LetB be the parameter space forβ. There exists a compact, connected subsetN of B

such thatβ0 ∈ N and, for eachx ∈ S, η(x;β) is a continuous function ofβ onN .

A6. The functionb is such thatb′′ is nonnegative andb′′′ exists and is bounded by a constant

B∗
2 for all β and allx ∈ S.

A7. The prior density ofφk, g, is bounded and Lipschitz continuous fork = 1, . . . , K.

A8. n−1J0(θ0) → J∗
0 asn→ ∞ whereJ∗

0 is somep× p positive definite matrix.

Assumptions A1.-A6. are based on conditions imposed in Aerts et al. (2004), A7. is

a condition used in Hart (2009), and A8. is a necessary assumption which is discussed in

Fahrmeir and Tutz (2001).

Theorem4.3.1. Let A be a set containing only the finite collection of models,Mmk, k =

1, . . . , nm,m = 1, . . . , K defined in Section 4.2.1. Then underH0, we have

n1/2En,K
d→ g(0)a1/2(ψ0)

K∑

k=1

πk
1− πk

exp(Vk/2) as n→ ∞ (4.19)

whereV1, . . . , VK are independently distributed random variables each having theχ2
1 dis-

tribution.

Proof. Throughout the proof letC1, C2, . . . denote positive constants that depend on neither

n norK. We will make use of the decompositionEn,K = ∆1 +∆2 where

∆1 =
K∑

k=1

πk
1− πk

g(φ̂k)

(
|J−1

1k (θ̂1k)|
|J−1

0 (θ̂0)|

)1/2

exp

{L1k

2

}
(4.20)

and



86

∆2 =

K∑

m=2

nm∑

k=1

(2π)(m−1)/2

( ∏

j∈Smk

πj
1− πj

g(φ̂j)

)
|J−1

mk(θ̂mk)|1/2
|J−1

0 (θ̂0)|1/2
exp

{Lmk

2

}
. (4.21)

Defining

Dn =

(
|n−1Jmk(θ̂mk)|
|n−1J0(θ̂0)|

)−1/2

exp

{Lmk

2

}
,

we now show that∆2 = op(1):

|∆2| =

K∑

m=2

nm∑

k=1

(2π)(m−1)/2

( ∏

j∈Smk

πj
1− πj

g(φ̂j)

)
n−m/2Dn

≤ n−1
K∑

m=2

nm∑

k=1

(2π)(m−1)/2

( ∏

j∈Smk

πj
1− πj

g(φ̂j)

)
Dn

≤ n−1
K∑

m=2

Cm
1 (2π)(m−1)/2

nm∑

k=1

( ∏

j∈Smk

πj
1− πj

)
Dn

= C2n
−1Op(1) = Op(n

−1).

In the above calculations, the first inequality follows fromthe fact thatn−m/2 ≤ n−1

for m ≥ 2, while the second inequality follows from A7.; that is, the fact thatg is bounded

by a constant, call itC1. The concluding equality is a consequence ofexp{Lmk/2} =

Op(1) and |n−1Jmk(θ̂mk)|/|n−1J0(θ̂0)| = Op(1), while exp{Lmk/2} = Op(1) follows

from the fact that if a sequence of random variables converges in distribution, then it must

also be bounded in probability (Serfling, 1980). UnderH0 we are assured by McCul-

lagh and Nelder (1989) thatLmk has a limiting chi-square distribution withm degrees
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of freedom, which leads us to conclude that the sequence isOp(1). The assertion that

|n−1Jmk(θ̂mk)|/|n−1J0(θ̂0)| = Op(1) will be addressed in the subsequent discussion.

We will now examine the limit of the ratio|n−1Jmk(θ̂mk)|/|n−1J0(θ̂0)|. First, under

the assumed orthogonality conditions (4.7) and (4.8), the information matrix simplifies to

Jmk(θmk) = −∂
2l(ηmk, ψ)

∂θmk∂θTmk

=




−∂
2l(ηmk, ψ)

∂β∂βT
0m×p

0p×m (n/a(ψ)) Im




(4.22)

where

∂2l(ηmk, ψ)

∂βq∂βr
= − 1

a(ψ)

n∑

i=1

{γr(xi)γq(xi)b
′′(ηmk(xi))} for all q, r = 1, . . . , p.

andIm is them × m identity matrix. According to Theorem 13.3.8 of Harville and from

examination of (4.22), fork = 0, 1, . . . , nm,m = 1, . . . , K we may write

∣∣∣n−1Jmk(θ̂mk)
∣∣∣ =

(
a(ψ̂mk)

)−m

∣∣∣∣∣−
1

n

∂2l(η̂mk, ψ̂mk)

∂β∂βT

∣∣∣∣∣ . (4.23)

Now observe that sincêθmk is consistent forθ0 by assumption A4. and that|n−1Jmk(θ̂mk)|

is a continuous function of̂θmk, we may apply Theorem 1.7.ii on p. 24 of Serfling (1980)

and assumption A8. (with some algebra) to (4.23) and get

∣∣∣n−1Jmk(θ̂mk)
∣∣∣ p→ (a(ψ0))

−m |J∗
0 | . (4.24)

Finally,J∗
0 is assumed to be positive definite, so that|J∗

0 | > 0. Thus, noting that|n−1Jmk(θ̂mk)|

converges to a degenerate random variable, we may apply Slutsky’s theorem to conclude

that
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|n−1Jmk(θ̂mk)|/|n−1J0(θ̂0)| p→ (a(ψ0))
−m . (4.25)

Moreover, it is now obvious that|n−1Jmk(θ̂mk)|/|n−1J0(θ̂0)| = Op(1).

To conclude this proof, we now argue that

√
n∆1

d→ g(0)a1/2(ψ0)
K∑

k=1

πk
1− πk

exp(Vk/2) as n→ ∞.

Rewrite
√
n∆1 as

√
n∆1 = An +∆n11 +∆n12 (4.26)

where

An = g(0)a1/2(ψ0)

K∑

k=1

πk
1− πk

exp

{L1k

2

}
, (4.27)

∆n11 =

K∑

k=1

πk
1− πk

[
g(φ̂k)− g(0)

]( |n−1J1k(θ̂1k)|
|n−1J0(θ̂0)|

)−1/2

exp

{L1k

2

}
(4.28)

and

∆n12 = g(0)a1/2(ψ0)

K∑

k=1

πk
1− πk



(
a(ψ0)

|n−1J1k(θ̂1k)|
|n−1J0(θ̂0)|

)−1/2

− 1


 exp

{L1k

2

}
.(4.29)

First note thatg is Lipschitz continuous by A8. so that for some constantC4 > 0, |g(φ̂k)−

g(0)| ≤ C4|φ̂k| = Op(n
−1/2). Hence∆n11

p→ 0. Furthermore, from (4.25), we have

|n−1J1k(θ̂1k)|/|n−1J0(θ̂0)| p→ (a(ψ0))
−1 asn → ∞, and so∆n12

p→ 0. Finally,L1k
d→ Vk

asn → ∞ by the more general result on the convergence ofLmk cited above. The desired
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convergence follows from Slutsky’s Theorem.

Theorem 4.3.1 shows thatEn,K (or equivalently, the Laplace-based approximation of

the posterior probability ofH0, P (M0|D)) generally depends only on the models having

the smallest number of elements. This is the same conclusionreached in Aerts et al. (2004)

for the test statistic considered therein. So whileEn,K provides a model average over a

wide collection of possible alternative models, one may limit attention to a specific subclass

of models and produce an asymptotically equivalent statistic. This observation motivates

consideration of the following test statistic

S̃L
K = a1/2(ψ̂0)

K∑

k=1

πk
1− πk

g(φ̂k) exp

{L1k

2

}
(4.30)

whereL1k = 2log(pr(D|θ̂1k,M1k)/pr(D|θ̂0,M0)). From inspection of (4.30) it is ap-

parent that̃SL
K is composed of likelihood ratio test statistics comparingM0 to M1k, k =

1, . . . , K. This fact was noted in Hart (2009), however, its application to models described

in Section 4.2 was not pursued in that paper.

Referring to Theorem 4.3.1, we see that the prior density,g, results in a multiplicative

constant,g(0), in the limiting distribution ofS̃L
K . Thus,g appears to be of little benefit,

which in turn leads us to takeg be a constant (i.e., the improper uniform prior). Likewise,

we observe thata1/2(ψ̂0) also results in a multiplicative constant. Furthermore,a1/2(ψ̂0)

does not account for the influence of the added terms corresponding to singleton alterna-

tives. Ultimately, we may drop the multipliersa1/2(ψ̂0) andg(φ̂k), k = 1, . . . , K from S̃L
K

to further simplify the test statistic. This leads us to the following statistic, which we will

refer to as the “Bayes sum” statistic

SL
K =

K∑

k=1

πk
1− πk

exp

{L1k

2

}
. (4.31)
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Given the definition ofMmk, we can see that each alternativeM1k has the form

η(x;β) + φkuk(x), k = 1, . . . , K. (4.32)

These types of alternatives were considered extensively inAerts et al. (2004) and are called

“singletons”. They have the noteworthy feature that they contain only one more parameter

thanM0 (i.e., a single Fourier-type coefficient). Furthermore, since each singleton contains

M0, theLj ’s can be viewed as valid likelihood ratio test statistics (assuming the necessary

regularity conditions hold).

Further reassurance that tests based onSL
K will be effective (i.e., sensitive to departures

fromM0) is provided by Aerts et al. (2004). Aerts et al. (2004) note that for tests based on

singletons to be consistent, it is usually enough that the best approximation toη among the

models entertained is not the null model.

4.3.2 Score-based Test Statistic

In practice, applyingSL
K involves computingK likelihood ratios, which in turn requires

fitting the null model plus each of theK singleton alternatives under consideration. Since

we wish our test ofH0 to be nonparametric,K should be fairly “large” and consequently

the computational demands of fittingK+1models could prohibit use ofSL
K . To circumvent

this potential obstacle, Aerts et al. (2004) proposed a score analog of their BIC statistic.

The score analog is obtained by replacing each of theK likelihood ratio statistics with its

corresponding score approximation (i.e., score statistic), which is known to have the same

limiting distribution under the null hypothesis and general regularity conditions. The score

statistic is computationally preferable to the likelihoodratio statistic in that it only requires

estimation of the null model.

In order to see how the rationale described above can be applied toSL
K we start by

noting that fork = 1, . . . , K, L1k can be viewed as the likelihood ratio test statistic for
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testing the following hypothesis

H0 : φk = 0. (4.33)

Recall from the discussion of Section 1.3.3 that underH0 and general regularity conditions

L1k can be approximated by a quadratic form composed of the information matrix and the

score function evaluated at the MLE of the coefficients from the null model (see Section

1.3.4). The asymptotically equivalent score statistic canbe expressed as follows

Sk = [s(θ̂
(0)
1k )]

TJ(θ̂
(0)
1k )s(θ̂

(0)
1k )

=
n

a(ψ̂0)

[
1

n

n∑

i=1

[yi − b′(η(xi; β̂
0))]ûk(xi)

]2
,

(4.34)

wheres(·) is the score function andJ is the Hessian matrix. Note thatSk simplifies since

the firstp elements of∂l(η̂1k , ψ̂0)/∂θ1k are0 by definition of the MLE.

Now recognize that
1

n

n∑

i=1

[yi − b′(η(xi; β̂
0))]ûk(xi) is a one-step estimator ofφk ob-

tained by taking the initial value ofφk to be0 (as specified byH0) with the estimate ofβ

computed assumingH0 to be true. Applying the definition presented in Section 1.3

θ̂
(1)
1k = θ̂

(0)
1k − [J(θ̂

(0)
1k )]

−1s(θ̂
(0)
1k )

=




(
a(ψ̂0)ΓTW (β̂0)Γ

)−1
n∑

i=1

[yi − b′(η(xi; β̂
0))]Γi

1

n

n∑

i=1

[yi − b′(η(xi; β̂
0))]ûk(xi)




(4.35)

where
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−∂
2l(η1k, ψ)

∂β∂βT
= (ΓTW (β)Γ) (4.36)

with W (β) = diag{w1(β), . . . , wn(β)}, andwj(β) = b′′(η1k(xi)).

Hence we define

φ̂k =
1

n

n∑

i=1

[yi − b′(η(xi; β̂
0))]ûk(xi), k = 1, . . . , K. (4.37)

Finally, the above observations lead us to define the statistic SK by

SK =

K∑

k=1

πk
1− πk

exp

{
nφ̂2

k

2a(ψ̂0)

}
. (4.38)

From the above discussion, it is clear that the quantitynφ̂2
k/a(ψ̂

0) has the same lim-

iting distribution as the log-likelihood ratioL1k under the null hypothesis, which suggests

that under general conditions the limiting distribution ofSL
K is the same as that ofSK .

Thus, in the following discussion, we limit our attention toSK recognizing that the same

result will hold forSL
K .

4.4 Statistical Properties, Asymptotic Distribution Theory

Our study of the large sample distribution theory for the Bayes sum statistic is divided into

two parts. First, we will examine the asymptotic propertiesof the Fourier-type coefficients

under local alternatives. We will then examine the implications of the observed properties

onSL
K andSK .

4.4.1 Asymptotic Behavior of Fourier Coefficients

We now examine the limiting behavior of the statistics presented above. We will need the

following assumption for our subsequent theorem:
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A9. E(ξ̂j − ξj)
2 = O(n−1), j = 1, . . . , p+K, where theξjs andξ̂js are the coefficients

arising from application of the Gram-Schmidt process for known and estimatedβ,

respectively.

Theorem4.4.1. For k = 1, . . . , K, whereK is any positive integer, definêφk as in (4.37).

Assume that the functionη in our generalized linear model has the form

ηn(x) = η(x;β0) +
K∑

j=1

φjuj(x) (4.39)

where

φk =
φ∗
k√
n
, n = 1, 2, . . . , k = 1, . . . , K, (4.40)

with |φ∗
k| < ∞, k = 1, . . . , K. Suppose also thatmax1≤i≤nE[yi − b′(ηn(xi))]

4 < ∞

uniformly in n. Then we have

√
n

a1/2(ψ̂0)
(φ̂1, . . . , φ̂K)

T d→ N

(
1

a1/2(ψ0)
φ∗, IK

)
(4.41)

asn→ ∞ whereφ∗ = (φ∗
1, . . . , φ

∗
K)

T andIK is theK ×K identity matrix.

Proof. Throughout the proof letC1, C2, . . . denote positive constants that depend on neither

n nor K. Our approach will be based on examining the components of the following

decomposition of the Fourier coefficient estimators:

φ̂k = φ̃k + e1k + e2k + e3k (4.42)

where fork = 1, . . . , K,
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φ̃k =
1

n

n∑

i=1

[yi − b′(ηn(xi))]uk(xi),

e1k =
1

n

n∑

i=1

[b′(ηn(xi))− b′(η(xi;β
0))]uk(xi),

e2k =
1

n

n∑

i=1

[b′(η(xi;β
0))− b′(η(xi; β̂

0))]uk(xi),

e3k =
1

n

n∑

i=1

[yi − b′(η(xi; β̂
0))][ûk(xi)− uk(xi)].

(4.43)

The following proof will be organized into two main parts:

(a) showing that the estimated coefficientsφ̂k can be approximated bỹφk (i.e.,e1k, e2k,

ande3k are negligible relative tõφk); and

(b) obtaining the joint large-sample distribution of theφ̃k’s.

In addressing part (a), we start withe1k and observe that under local alternatives, for

k = 1, . . . , K we have:

b′(ηn(xi))− b′(η(xi;β
0)) = (ηn(xi)− η(xi;β

0))b′′(η(xi;β
0))

+
1

2
(ηn(xi)− η(xi;β

0))2b′′′(η̃
(1)
i )

= b′′(η(xi;β
0))

K∑

j=1

φjuj(xi)

+
1

2
b′′′(η̃

(1)
i )

[
K∑

j=1

φjuj(xi)

]2
,

(4.44)
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whereη̃(1)i is some point interior to the interval joiningη(xi;β
0) andηn(xi). Thus,

e1k = φk +O(n−1), (4.45)

where we have used A2 (ii), A6, (4.8), and (4.40).

We now examinee2k. Applying a Taylor’s expansion, we obtain

e2k = −1

n

n∑

i=1

[
(η(xi; β̂

0)− η(xi;β
0))b′′(η(xi;β

0))

+
1

2
(η(xi; β̂

0)− η(xi;β
0))2b′′′(η̃

(2)
i )
]
uk(xi)

(4.46)

whereη̃(2)i is some point interior to the interval joiningη(xi; β̂
0) andη(xi;β

0). The as-

sumed orthogonality conditions (4.7) imply that (4.46) simplifies to

e2k = − 1

2n

n∑

i=1

(η(xi; β̂
0)− η(xi;β

0))2 × b′′′(η̃
(2)
i )uk(xi), (4.47)

and we have

|e2k| ≤
(
1

n

n∑

i=1

b′′′(η̃
(2)
i )2u2k(xi)

)1/2

max
1≤i≤n

(η(xi; β̂
0)− η(xi;β

0))2/2

≤ C2‖β̂0 − β0‖2 = Op(n
−1)

(4.48)

where the last line follows from A4 and A6.

Now by assumption A9, we may writee3k in terms of coefficients obtained through

the Gram-Schmidt process and find:

e3k =
∑p+k

j=1(ξ̂jk − ξjk)
1
n

∑n
i=1[yi − b′(η(xi; β̂

0))]vj(xi) = Op(n
−1). (4.49)
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The limiting behavior follows from the fact that1
n

∑n
i=1[yi−b′(η(xi; β̂

0))]vj(xi) = Op(n
−1/2),

which in turn follows from decomposing1
n

∑n
i=1[yi−b′(η(xi; β̂

0))]vj(xi) in a manner sim-

ilar to our decomposition of̂φk in (4.42) and examining its components in essentially the

same way that we have analyzede1k ande2k.

We now proceed to address part (b). By applying our findings from part (a) regarding

the rates of convergence fore1k, e2k, ande3k, we find that for any arbitrary real-valued

constantsb1, . . . , bK , we have

K∑

k=1

bk

√
nφ̂k

a1/2(ψ̂0)
=

K∑

k=1

bk

√
nφ̃k

a1/2(ψ̂0)
+

K∑

k=1

bk

√
ne1k

a1/2(ψ̂0)

+

K∑

k=1

bk

√
ne2k

a1/2(ψ̂0)
+

K∑

k=1

bk

√
ne3k

a1/2(ψ̂0)

=
K∑

k=1

bk

√
nφ̃k

a1/2(ψ̂0)
+

K∑

k=1

bk
φ∗
k

a1/2(ψ̂0)
+ op(1).

(4.50)

Furthermore, for some point̃a on the line segment connectinga(ψ̂0) anda(ψ0), we may

write

1

a1/2(ψ̂0)
− 1

a1/2(ψ0)
= − 1

a3/2(ψ0)
(a(ψ̂0)− a(ψ0)) +

1

(ã)5/2
(a(ψ̂0)− a(ψ0))2, (4.51)

so that by assumption A4, we find that

K∑

k=1

bk

√
nφ̃k

a1/2(ψ̂0)
+

K∑

k=1

bk
φ∗
k

a1/2(ψ̂0)

=
K∑

k=1

bk

√
nφ̃k

a1/2(ψ0)
+

K∑

k=1

bk
φ∗
k

a1/2(ψ0)
+Op(n

−1/2)

(4.52)
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Now observe that by definition of̃φk we may write

K∑

k=1

bk

√
nφ̃k

a1/2(ψ0)
=

√
n

a1/2(ψ0)

K∑

k=1

bk

[
1

n

n∑

i=1

[yi − b′(ηn(xi))]uk(xi)

]

=
n−1/2

a1/2(ψ0)

n∑

i=1

[
{yi − b′(ηn(xi))}

K∑

k=1

bkuk(xi)

]
.

(4.53)

For i = 1, . . . , n defineri = (n × a(ψ0))−1/2[yi − b′(ηn(xi))]
∑K

k=1 bkuk(xi) andσ2
n =

∑n
i=1 var(ri). Under local alternatives, we haveE(ri) = 0 and

var(ri) = var

(
n−1/2

a1/2(ψ0)
[yi − b′(ηn(xi))]

K∑

k=1

bkuk(xi)

)

=
1

n
b′′(ηn(xi))

(
K∑

k=1

bkuk(xi)

)2

=
1

n
b′′(η(xi;β

0))

(
K∑

k=1

bkuk(xi)

)2

+
1

n
(ηn(xi)− η(xi;β

0))b′′′(η̃
(3)
i )

(
K∑

k=1

bkuk(xi)

)2

(4.54)

for some point̃η(3)i interior to the interval joiningηn(xi) andη(xi;β
0). We then have
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σ2
n =

1

n

n∑

i=1

b′′(η(xi;β
0))

(
K∑

k=1

bkuk(xi)

)2

+
1

n

n∑

i=1

(ηn(xi)− η(xi;β
0))b′′′(η̃

(3)
i )

(
K∑

k=1

bkuk(xi)

)2

=
K∑

k=1

b2k(xi) + ∆n

(4.55)

where

|∆n| =

∣∣∣∣∣∣
1

n

n∑

i=1

(ηn(xi)− η(xi;β
0))b′′′(η̃

(3)
i )

(
K∑

k=1

bkuk(xi)

)2
∣∣∣∣∣∣

≤ 1√
n
B3

KB
∗
2

∣∣∣∣∣
K∑

j=1

φ∗
j

∣∣∣∣∣

(
K∑

k=1

bk

)2

= o(n−1/2).

(4.56)

It clearly follows thatσ3
n → (

∑K
k=1 b

2
k)

3/2 asn→ ∞. Sincemax1≤i≤nE[yi−b′(ηn(xi))]
4 <

∞ uniformly in n by assumption, we have

∑n
i=1E|ri|3 =

∑n
i=1E

∣∣∣∣∣
n−1/2

a1/2(ψ0)
[yi − b′(ηn(xi))]

K∑

k=1

bkuk(xi)

∣∣∣∣∣

3

=
n−3/2

a3/2(ψ0)

n∑

i=1

E|[yi − b′(ηn(xi))]|3 ×
∣∣∣∣∣

K∑

k=1

bkuk(xi)

∣∣∣∣∣

3

≤ n−3/2

a3/2(ψ0)
B3

K

∣∣∣∣∣
K∑

k=1

bk

∣∣∣∣∣

3

× C3.

(4.57)

We now check the Liapunov Condition (Resnick, 1999) and observe:
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1

σ3
n

n∑

i=1

E|ri|3 → 0 as n→ ∞. (4.58)

The Lindeberg condition follows as a consequence, so that bythe Lindeberg-Feller CLT

along with (4.55) and (4.56), we find that

K∑

k=1

bk

√
nφ̃k

a1/2(ψ0)

d→ Z as n→ ∞, (4.59)

where

Z
D
= b1Z1 + · · ·+ bKZK ∼ N

(
0,

K∑

k=1

b2k

)
, (4.60)

with Z1, . . . , ZK being independent standard normal random variables. Recalling that

b1, . . . , bK were arbitrarily chosen real-valued constants, from the Cramér-Wold theorem

we conclude that

√
n

a1/2(ψ0)
(φ̃1, . . . , φ̃K)

T d→ N (0, IK) , as n→ ∞. (4.61)

whereIK is theK ×K identity matrix. Thus, it follows from (4.52) and (4.50) that

√
n

a1/2(ψ̂0)
(φ̂1, . . . , φ̂K)

T d→ N(φ∗, IK), as n→ ∞. (4.62)

Note that the above result characterizes the joint asymptotic normality of score statis-

tics corresponding toK (singleton) alternative models rather than a score statistic for a

singleK-dimensional parameter model, which is a well-known result. It is important to

recognize that the resulting score statistics are uncorrelated and hence independent. This

finding will be essential in the formulation of our next result.
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4.4.2 Asymptotic Distribution Theory forSL
K andSK

We now consider the limiting distribution ofSK under both the null hypothesis and local

alternatives that converge to the null at rate1/
√
n.

Corollary 4.4.1. Fork = 1, . . . , K, whereK is any integer, definêφk as in (4.37). Assume

that the functionη in our generalized linear model has the form

ηn(x) = η(x;β0) +
K∑

j=1

φjuj(x) (4.63)

where

φk =
φ∗
k√
n
, n = 1, 2, . . . , k = 1, . . . , K, (4.64)

with |φ∗
k| < ∞, k = 1, . . . , K. Suppose also thatmax1≤i≤nE[yi − b′(ηn(xi))]

4 < ∞

uniformly in n. Under these model assumptions and assumptions A1-A9, we have

SK
d→

K∑

k=1

πk
1− πk

exp
{
(Zk + φ∗

k/a
1/2(ψ0))2/2

}
(4.65)

asn tends to infinity whereZ1, Z2, . . . , ZK be i.i.d. standard normal random variables.

Proof. From Theorem 4.4.1, we have fork = 1, . . . , K

√
n

a1/2(ψ̂0)
φ̂k

d→ Zk + φ∗
k/a

1/2(ψ0) (4.66)

asn → ∞. Lettingf(t1, . . . , tK) =
∑K

k=1
πk

1−πk
exp(t2k/2), the desired result follows from

Theorem 1.7 (iii) of Serfling (1980) by noting thatf is a Borel function.

Now recall that the null hypothesis (4.2) is equivalent to

H0 : φ1 = φ2 = · · · = 0. (4.67)
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Furthermore, the exponents ofSL
K andSK are equivalent underH0. Thus, we may use the

previous result forSK to characterize the asymptotic distribution ofSL
K underH0.

Corollary 4.4.2. Let SL
K be as defined in (4.31) and suppose that

max1≤i≤nE[yi − b′(η(x;β0))]4 <∞ uniformly in n. Under these model assumptions and

assumptions A1-A9 andH0, we have

SL
K

d→
K∑

k=1

πk
1− πk

exp
{
Z2

k/a(ψ
0)/2

}
(4.68)

asn tends to infinity whereZ1, Z2, . . . , ZK be i.i.d. standard normal random variables.

Proof. Fork = 1, . . . , K, whereK is any integer, definêφk as in (4.37). Now consider the

following decomposition ofSK :

SL
K = SK +∆n1 (4.69)

where

∆n1 =
K∑

k=1

πk
1− πk

exp
{
nφ̂2

k/2a(ψ̂
0)
}
[exp(Rkn)− 1] (4.70)

with Rkn = (L1k − Sk)/2. Obviously,

|∆n1| ≤ max
1≤k≤K

| exp(Rkn)− 1|
K∑

k=1

πk
1− πk

exp
{
nφ̂2

k/2a(ψ̂
0)
}

(4.71)

By Taylor’s theorem we have

exp(Rkn)− 1 = Rkn exp(R̃kn) (4.72)

for R̃kn such that|R̃kn| ≤ |Rkn|. Define

∆n2 = max
1≤k≤K

| exp(Rkn)− 1|, (4.73)
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which implies

∆n2 ≤ max
1≤k≤K

|Rkn|| exp(Rkn)|. (4.74)

Noting thatRkn = (L1k − Sk)/2 = Op(n
−1/2) (Fahrmeir and Tutz, 2001), we find that

|∆n2| = Op(n
−1/2) and hence|∆n1| = Op(n

−1/2).

Corollary 4.4.2 may appear intuitive and verifying it may initially seem pedantic.

However, the result is useful and its validity is worth investigating. In particular, while the

presence of chi-squared variables in the limit is predictable based on elementary asymptotic

theory for parametric models, it is not as obvious that the weighted sum in the limit should

be composed ofindependentexponentiated variates. One may conjecture independence

based on the use of orthogonal basis functions in the construction of the test statistic, how-

ever, this would not be a sufficiently convincing observation to conclude that the individual

chi-squared variates are truly independent. Furthermore,the independence of the exponen-

tiated variates obviously makes simulating a reference distribution much more convenient.

Without having established independence, one would be compelled to identify the nature

of dependence among the exponentiated variates.

4.4.3 Choice of Prior Probabilities

In this section we briefly discuss some issues regarding specification of prior distributions

when applying a Bayes sum statistic in practice. There are several important distinctions

that need to be made between our case and the setting studied in Hart (2009) that influence

the recommendations for specifying prior probabilities.

The distribution theory presented for the statistic studied in Hart (2009) was developed

in a manner which permitted the upper bound of summation to increase to infinity with the
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sample size. Moreover, it should be noted that each term of the weighted sum converges in

distribution toexp {χ2
1} which does not have finite first moment and, thus, does not satisfy

conditions required for application of the central limit theorem. However, by imposing

suitable conditions on the prior probabilities Hart (2009)was able to invoke a result of Cline

(1983) which ensures the convergence of infinite (weighted)sums of random variables of

the type produced by the test statistic. Thus, Hart (2009) noted that taking theπj ’s to

be proper prior probabilities (a condition which is implicit in assumptions imposed on

the prior probabilities) has a stabilizing effect on the statistic. Furthermore, Hart (2009)

emphasized that these prior probabilities distinguish this test statistic from the BIC-based

nonadaptive statistic studied in Aerts et al.(2004) and areresponsible for the improved

power observed in the simulation studies presented in Hart (2009).

Contrary to Hart (2009), we have assumed thatK is fixed in our case. Thus, in the

distribution theory we have presented in this chapter, the prior probabilities need not satisfy

conditions such as those imposed in Hart (2009) to ensure convergence of the test statistic

in our setting. However, there are some practical issues to keep in mind. In particular, one

would typically presume that higher frequency departures from the null model would likely

correspond to random noise. Thus, unless one were interested in detecting specific alterna-

tives of interest, it would generally be advisable to specify theπj ’s decrease monotonically

to 0 as the frequency (i.e.,j) increases.

4.5 Discussion

In this chapter we have sought to extend the ideas from Hart (2009) to the generalized

linear model conditions addressed in Aerts et al. (2004). The result of this pursuit is a new

lack-of-fit test for a special class of canonical link regression models. Our derivation and

subsequent examination of the test statistic yielded several noteworthy theoretical findings.
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Our first step in developing a test statistic was to formulatethe posterior probability of

a hypothesized model. The alternative models utilized in the construction of this posterior

probability were based on characterizing departures from the predictor function in terms of

Fourier coefficients. As we have noted, testing the hypothesis that the linear predictor has

a specified parametric form is equivalent to testing that allof these coefficients are 0. A

closed-form approximation of this posterior probability was then obtained by applying the

Laplace approximation to the integrals that compose the marginal likelihood of the data.

Rather than evaluating this probability directly, this statistic is used in frequentist fashion

by means of a reference distribution. To this end, we examinethe limit distribution of the

statistic obtained from the posterior probability and showthat, under the null hypothesis,

this distribution is completely determined by the alternative models with the fewest pa-

rameters. This is noteworthy because the posterior probability is constructed from a very

general, nonparametric class of alternative models. Upon recognition of the result involv-

ing the limiting distribution under the null, we propose a simplified test statistic that is a

weighted sum of exponentiated likelihood ratios testing the effect of the additional Fourier

terms. The weights depend on user-specified prior probabilities. From this statistic, we

obtained a statistic that consists of a weighted sum of exponentiated squared Fourier coeffi-

cient estimates by substituting the likelihood ratios withtheir corresponding score statistics.

We refer to both versions of the statistic as the “Bayes sum” statistics.

With two simplified versions of the test statistic having been identified, we turned

our attention to studying the large sample properties of these statistics. Our study focused

on the score-based statistic, and, in particular, we the examined asymptotic distribution

of the Fourier coefficient estimators under local alternatives. To our knowledge, no such

result has appeared in the literature for techniques addressing generalized linear models.

We were subsequently able to characterize the limiting behavior of the score-based statis-

tic under both the null hypothesis and local alternatives that converge to the null at rate
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1/
√
n. Noting that under the null hypothesis, the score-based statistic provides a large

sample approximation of the likelihood ratio-based test statistic, our conclusions reached

for the former statistic led to a more convenient and accessible characterization of the null

distribution for the latter statistic.

Finally, we offered some practical guidelines regarding the specification of prior prob-

abilities in the test statistic. In presenting these guidelines, we noted some key differences

between our statistic and the proposal of Hart (2009).
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CHAPTER V

NUMERICAL RESULTS

5.1 Overview

In this chapter we will present a numerical study in order to obtain greater insight into

our proposed method as well as several existing tests of fit. Our primary objective is to

demonstrate the properties of the statistics presented in the previous chapter and assess

their adequacy in detecting lack of fit in various situations. We will also address the need

for further research on existing lack-of-fit tests based on orthogonal series, as has been

noted in Aerts et al. (1999). Also, we intend to bridge a gap that exists between two

parallel and distinct research efforts that have applications to testing the fit of the logistic

regression model. Thus, we contend that our proposed numerical study will provide several

new insights into testing the fit of the logistic regression model as well as establishing

the power properties of some rather promising series-basedtests against a broad range of

departures from the null model.

Recognizing the trade-off between breadth and depth of sucha study, we will opt for

depth and pursue a thorough numerical study of one of the mostwidely used canonical link

regression models, the logistic regression model. While the method presented in Chapter

IV could be applied to any model satisfying the conditions described in Section 1.2 we will

focus on investigating the performance of the statistic in the context of logistic regression

because of the reported shortcomings with the better-knownmethods for testing the fit of

such models. This approach to execution of our numerical study will serve three purposes.

First, by focusing on a single model, we will be able to examine the performance of

our proposed test in detecting a wider variety of departuresfrom the assumed model. In

particular, we will study the selected test statistics in the simulation settings presented in
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Hosmer et al. (1997) and Kuss (2002). Hosmer et al. and Kuss considered a wide variety of

different situations that one might encounter in practice for the logistic regression model.

Hence we will be able to obtain a more extensive picture of thepower properties of the tests

selected for our study than if we were to study a few settings for several different models.

Furthermore, we will have assurance that the settings will actually be meaningful since we

are duplicating situations that have been considered in studies from authoritative sources.

Second, while Aerts et al. (1999, 2000) demonstrate via simulation that their test pos-

sesses competitive power properties, they cite a need for more extensive numerical studies

on existing lack-of-fit tests based on orthogonal series. Tothe best of our knowledge, fur-

ther numerical studies have not yet been pursued. Thus, our proposed simulation study

provides an opportunity to further explore the performance, applicability and limitations of

these tests (particularly, the multivariate extensions) within the context of binary response

regression. For example, while most of the simulation settings considered in Aerts et al.

(1999), (2000) and (2004) were limited to testing no effect,we will examine a variety of

departures from the logistic regression model which betterreflect the types of model mis-

specification encountered in practice. Studying these tests will also permit us to evaluate

the performance of our proposed method against the existingseries-based lack-of-fit test

literature. Consequently, we feel that our proposed simulation study will contribute to the

understanding of existing series-based tests of fit as well as provide a deeper understanding

of our proposed method of Chapter IV.

Finally, as the reader may have already noticed, much of the literature discussed in

Chapter II predates the introduction of series-based techniques to accommodate generalized

linear models discussed in Chapter III. Consequently, the performance of series-based tests

of fit introduced in Aerts et al. (1999), (2000) and (2004) have not been compared to the

performance of the tests presented in Chapter II for testingthe fit of the logistic regression.

By using the simulation settings which have been studied in Hosmer et al. (1997) and Kuss
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(2002), we will be able to compare our findings with those which have been reported in

these two sources. This will provide a means for comparison between the two collections

of research.

The rest of this chapter will be organized as follows. In Section 5.2 we will use

findings from numerical studies presented in the relevant literature to identify and prioritize

a collection of test statistics that will be examined in our study. In Section 5.3 we study type

I error and power properties of the series-based tests in thecontext of strictly sparse data

(see Section 2.2). Power will be examined through progressively more severe departures

from a hypothesized null model. In Section 5.4 power will be examined against fixed

departures from the null model with gradual departures fromsparsity. Section 5.5 presents

an illustrative example of the method presented in Chapter IV. Finally, in Section 5.6 we

will conclude with a discussion of our findings.

5.2 Test Statistics

In this section we identify the various test statistics we will use in our numerical studies

and briefly discuss the rationale for examining those tests.These statistics will be limited

to those that utilize orthogonal series estimators with applications to logistic regression

models.

The primary statistic of interest in our study is the Bayes sum statistic studied in Chap-

ter IV, which can be written as follows for logistic regression models:

SK =

K∑

k=1

πk
1− πk

exp
{
nφ̂2

k/2
}

(5.1)

where

φ̂k =
1

n

n∑

i=1

[yi − b′(η(xi; β̂
0))]ûk(xi), k = 1, . . . , K (5.2)
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is the Fourier coefficient estimator for the singleton model. We tookπk/(1 − πk) = k−2

anduk’s to be cosine functions.

As we discussed in Chapter III, the existing literature thataddresses testing the fit of

logistic regression models is essentially limited to Aertset al. (1999, 2000, 2004), which

cover methods applicable to canonical link regression models. The collection of statistics

presented and studied in these papers is fairly extensive. Thus, we will economize our ef-

forts by prioritizing statistics based on the performance and applicability of these statistics

reported in the literature. Since Aerts et al. (2000) generalize the principle ideas of Aerts

et al. (1999) to multivariate regression models, we will focus primarily on the findings of

Aerts et al. (2000).

In their simulations, Aerts et al. (2000) studied the following statistics:

Sa = Sr̂a

wherer̂a = argmax0≤r≤Rn
SIC(r; 2);

Sb = Sr̂b

wherer̂b = argmax1≤r≤Rn
SIC(r; logn);

Ta =
Sr̂a − r̂a

max(1, r̂
1/2
a )

; TOS = max
1≤r≤Rn

Sr

r
; Tmax = SIC(r̂a; 2);

where SIC is the score information criterion andSr represents the score statistic corre-

sponding to therth (nested) alternative model (see Chapter III). While likelihood-based

criteria could have been considered, the score statistic used in constructing the criteria only

requires fitting the null model which makes it particularly convenient for practical use. It

is worth noting that Aerts et al. identifiedTa andTmax as having the best overall power

properties; however, they commented that more studies wererequired before making final
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recommendations. Thus, we will include all of the above statistics.

We will exclude from our study the Bayesian-motivated statistic introduced in Aerts

et al. (2004) which we reviewed in Section 3.5. This test was cited as possessing unde-

sirable power properties in Aerts et al. (2004) and Hart (2009). Moreover, the limiting

distribution for this test statistic is a stable distribution, which may be somewhat inconve-

nient for practical use.

Before proceeding to the simulation results, a few commentsare in order regarding

how we implement all of the statistics we will use in the simulation study. First, unless

otherwise specified, we will present the results observed for each of the statistics cited

above using cosine basis functions. The choice is somewhat arbitrary, but in order to avoid

any possible confounding in the simulation results, we willuse this collection of basis

functions throughout the study. Second, we note that the order of the Bayes sum statistic,

K, imposes an upper limit on the frequency of the cosine functions used in constructing

the statistic. To ensure that cosine terms of the same frequencies are used to construct

order selection tests, we impose the same upper bound on the frequency of the collection

of nested alternatives used to obtain the order selection test. This is important since higher

frequency basis terms might be more advantageous for detecting subtle departures from

the null model and if higher frequencies were used for one statistic and not the others,

then there would exist potential bias in favor of one constructed using the higher frequency

basis functions. While we will use the same frequencies for all statistics we will, however,

vary this common value of the upper bound in order to assess its possible impact on the

frequency of rejection in the resulting statistics.
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5.3 Simulation Results for Strictly Sparse Data

In this section we will present results of simulations to examine the behavior of the tests

discussed in Section 5.2 when the observed data are strictlysparse (i.e., binary response

without replications). The simulation settings under which these statistics will be studied

are selected to replicate several of those studied in Hosmeret al. (1997). These simulation

settings address each of the following main issues in the context of a logistic regression

model:

1. the adequacy of the proposed null distribution of the statistics as well as the associ-

ated type I error rate;

2. power of the tests of fit to detect omission of a quadratic term;

3. power of the tests of fit to detect omission of the main effect for a dichotomous

variable and its interaction with a continuous variable.

In carrying out our simulation study,1000 random samples of sizesn = 100 or 500

were generated as follows. Each replicate data set is constructed by first generating the

covariate values and then creating the outcome by comparingan independently generated

value from theU(0, 1) distribution,u, to the true logistic probability wherey = 1 if u ≤

π(x) andy = 0 otherwise. Throughout our simulations we will take the simulation size to

be 1000 and we will evaluate the significance at a levelα = 0.05. This yields yields a95%

margin of error of1.96 ×
√
0.05 ∗ (1− 0.05)/1000 = 0.014 for the rejection probability

estimate obtained in each simulation setting. A more conservative upper bound on this

margin of error is, of course, given by1.96×
√
0.5 ∗ (1− 0.5)/1000 = 0.031.
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5.3.1 Evaluation of Null Distribution and Test Level

To examine the type I error rate of the tests, we consider several different situations where

the data are generated from one of several different logistic regression models, each of

which is based on the following general model:

log

(
π(x1, x2, x3)

1− π(x1, x2, x3)

)
= β0 + β1x1 + β2x2 + β3x3. (5.3)

Hosmer et al. (1997) chose the various distributions of the covariates and their correspond-

ing coefficients to produce distributions of probabilitiesin the(0, 1) interval that one might

encounter in practice. Table 3 summarizes the various combinations of covariate distribu-

tions and true coefficient values for the logistic regression model (5.3), along with the re-

sulting expected values for the smallest, largest, and three quartiles of the distribution of lo-

gistic probabilities for a sample of size100. Whenx1 ∼ U(−6, 6) with β0 = β2 = β3 = 0,

the resulting distribution of the probabilities is symmetric with mostly small or large prob-

abilities. Takingx1 ∼ U(−1, 1) produces a distribution with most probabilities in the

center of the(0, 1) interval. Forx1 ∼ χ2(4), yields a distribution mostly small probabil-

ities and few large probabilities. The probabilities are more uniformly distributed for the

other covariate distributions.

Evaluation of null distribution and test level for univariate models

The resulting per cent of times that Bayes sum and order selection-based tests lead to

rejection of the null hypothesis for the univariate models summarized in Table 3 is reported

in Table 4 and Table 5, respectively. Furthermore, we obtainthe per cent of times each

test in our study rejects the null hypothesis across severalvalues of the truncation point,K.

These values indicate that most of these tests reject the null hypothesis at a rate reasonably

close to the nominal five percent level. Moreover, the per cent rejection was rather similar
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Table 3. Situations used to examine the null distribution oftest statistics. For each covariate

distribution,π(1), π(n) andQ1 Q2 Q3 are, respectively, the expected values for

the smallest, largest values and the three quartiles of the distribution of logistic

probabilities for a sample of size100.

Covariate distribution Logistic coefficients Distribution of logistic probabilities

β0 β1 β2 β3 π(1) Q1 Q2 Q3 π(n)

U(−6, 6) 0 0.8 0 0 0.009 0.087 0.50 0.913 0.991

U(−4.5, 4.5) 0 0.8 0 0 0.029 0.144 0.50 0.865 0.971

U(−3, 3) 0 0.8 0 0 0.087 0.231 0.50 0.769 0.913

U(−1, 1) 0 0.8 0 0 0.313 0.400 0.50 0.600 0.687

N(0, 1.5) 0 0.8 0 0 0.057 0.304 0.50 0.696 0.943

χ2(4) −4.9 0.65 0 0 0.009 0.025 0.062 0.202 0.965

3 indep.U(−6, 6) 0 0.8/3 0.8/3 0.8/3 0.028 0.234 0.50 0.767 0.972

3 indep.N(0, 1.5) 0 0.8/3 0.8/3 0.8/3 0.134 0.369 0.50 0.628 0.861

Indep.U(−6, 6), −1.3 0.8/3 0.8/3 0.65/3 0.052 0.204 0.386 0.608 0.928

N(0, 1.5) andχ2(4)

across the various values considered for the truncation point.

Perhaps most problematic test is the one based on the score analog of the BIC,Sb.

This test clearly tends to reject too often at a sample size ofn = 100; however, the per cent

of times the null hypothesis is rejected approaches the nominalα = 0.05 when the sample

size increases to500. This reflects the findings of Aerts et al. (1999, 2000) who found that

the type I error rate for this test was inflated in the settingsconsidered therein.

The one univariate simulation setting which was uniformly problematic across all tests

was the case with covariate distributed asχ2(4). In this case none of the tests appears to

reject the null hypothesis often enough. Hosmer et al. (1997) found that the statistics con-

sidered in their study tended to vary about the nominal five percent level, yet the observed

departure of these statistics fromα = 0.05 level was typically no less than the departure

observed for the series-based tests.



114

Table 4. Performance of the Bayes sum test when the correct (and fitted) logistic model

is determined by (5.3) with corresponding coefficient values specified in Table 3.

Simulated per cent rejection at theα = 0.05 level is reported using sample sizes

of 100 and 500 with 1000 replications. For each covariate distribution, per cent

rejection was evaluated at various values of truncation point,K.
Statistic K covariate distribution

U(−6, 6) U(−4.5, 4.5) U(−3, 3) U(−1, 1) N(0, 1.5) χ2(4)
100 500 100 500 100 500 100 500 100 500 100 500

SK 2 4.3 5.3 4.0 6.1 4.8 4.2 4.6 4.4 5.1 4.6 2.4 3.5

3 5.5 5.7 4.9 6.2 4.9 4.5 4.7 4.3 5.9 5.6 2.5 3.3

4 5.6 5.7 4.8 6.0 5.0 4.6 4.8 4.2 5.9 5.6 2.6 3.4

7 5.4 5.9 4.5 5.9 4.6 4.8 4.1 4.2 6.4 5.9 2.6 3.1

11 5.3 5.7 4.2 5.7 4.2 4.6 4.1 3.9 6.2 6.0 2.6 3.3

15 5.4 6.0 4.4 6.0 4.3 4.6 4.2 4.2 6.7 6.0 2.6 3.2

Finally, we can see from Table 4 that the Bayes sum test exhibits behavior similar to

the other order selection-based tests; however, it appearsto be more conservative than these

tests.

Evaluation of null distribution and test level for multivariate models

For the multivariate models, we limited the truncation point to be no greater than4 since

a truncation point greater than4 would require inclusion of at least125 additional terms

to the alternative models, which is infeasible for a sample of sizen = 100. Also, for the

order-selection based statistics, we consider generalizations of two of the model sequences

recommended by Aerts et al. (2000): sequences (c) and (d) illustrated in Figure 1 of

Chapter III. For the Bayes sum statistic, we apply the following multivariate extension

of formula 5.1

SK =

K∑

j=1

K∑

k=1

K∑

l=1

πjkl
1− πjkl

exp
{
nφ̂2

jkl/2
}

(5.4)
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Table 5. Performance of the order selection-based test whenthe correct (and fitted) logistic

model is determined by (5.3) with corresponding coefficientvalues specified in

Table 3. Simulated per cent rejection at theα = 0.05 level is reported using sample

sizes of 100 and 500 with 1000 replications. For each covariate distribution, per

cent rejection was evaluated at various values of truncation point,K.
Statistic K covariate distribution

U(−6, 6) U(−4.5, 4.5) U(−3, 3) U(−1, 1) N(0, 1.5) χ2(4)
100 500 100 500 100 500 100 500 100 500 100 500

Sa 2 5.3 5.2 4.8 4.6 5.0 3.7 5.9 4.0 5.1 5.4 2.5 3.0

3 7.3 7.0 5.2 5.8 6.0 4.9 5.9 4.4 6.1 5.0 2.6 2.7

4 7.3 8.0 5.7 5.7 6.0 5.4 5.2 5.2 7.1 6.4 2.6 2.8

7 6.2 6.1 5.7 7.0 5.3 5.1 4.8 4.0 7.9 7.6 3.1 2.4

11 6.3 6.5 5.2 6.1 4.4 5.3 5.1 4.3 8.4 7.5 3.3 2.4

15 6.6 6.5 5.3 5.7 4.4 5.1 4.8 4.3 9.1 8.8 3.6 2.5

Sb 2 6.0 6.2 6.2 6.7 7.6 5.1 8.6 5.3 8.5 5.7 3.0 4.1

3 7.2 6.6 7.4 6.9 8.8 5.6 9.3 5.8 9.0 6.3 3.1 4.3

4 7.2 6.3 7.2 6.8 8.5 5.2 9.0 5.4 9.5 6.3 3.2 4.4

7 7.1 6.6 7.3 6.9 8.4 5.3 9.0 5.7 10.1 6.4 3.2 4.4

11 7.2 6.6 7.3 6.9 8.6 5.3 9.2 5.7 10.3 6.3 3.2 4.4

15 7.2 6.8 7.3 6.9 8.7 5.7 9.2 5.9 9.3 6.3 3.3 4.4

Ta 2 4.9 5.2 4.7 6.1 5.0 3.9 4.9 3.8 5.3 5.3 2.5 3.2

3 6.1 5.8 4.9 6.1 5.2 4.3 4.8 4.1 6.3 6.2 2.6 3.3

4 6.1 6.1 4.7 6.1 5.3 4.4 4.8 4.2 6.8 6.2 2.7 3.1

7 5.9 7.3 4.6 6.3 5.6 4.8 5.1 4.0 8.2 7.2 3.0 2.9

11 6.1 6.9 4.8 6.4 5.3 4.6 5.1 4.1 8.0 7.1 3.2 3.2

15 6.0 6.6 4.7 6.2 5.2 4.6 5.1 3.9 8.0 7.6 3.2 3.2

TOS 2 4.4 5.2 4.1 5.7 5.2 4.2 5.1 4.3 5.8 4.7 2.4 3.9

3 5.0 5.4 4.5 5.9 5.2 4.3 4.7 4.4 5.8 5.4 2.6 3.7

4 5.1 5.5 4.6 5.9 5.3 4.4 4.7 4.3 6.0 5.2 2.7 4.0

7 5.1 5.9 4.7 5.9 5.2 4.6 4.7 4.5 6.4 5.5 2.8 4.2

11 5.2 5.8 4.9 5.9 5.5 4.4 5.1 4.3 6.6 5.3 2.7 4.1

15 5.1 5.8 4.7 5.9 5.3 4.6 4.7 4.5 5.5 5.6 2.7 3.8

Tmax 2 5.1 5.1 4.7 5.8 4.8 3.8 4.9 3.6 5.0 5.5 2.7 3.1

3 6.5 6.1 5.8 5.9 5.6 4.3 5.2 4.4 6.3 6.0 2.7 3.1

4 6.0 6.2 4.8 5.9 5.4 4.4 5.1 4.2 6.6 6.2 2.6 3.0

7 6.2 7.1 4.5 6.7 5.8 4.7 5.7 4.1 7.7 7.2 2.7 2.8

11 6.3 6.8 4.7 6.4 5.4 4.3 5.6 4.1 7.8 7.1 2.8 2.9

15 6.4 6.6 4.9 6.1 5.4 4.0 5.3 3.5 7.8 7.6 3.0 2.7
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Table 6. Performance of the Bayes sum test when the correct (and fitted) logistic model

is determined by (5.3) with corresponding coefficient values specified in Table 3.

Simulated per cent rejection at theα = 0.05 level is reported using sample sizes

of 100 and 500 with 1000 replications. For each covariate distribution, per cent

rejection was evaluated at various values of truncation point,K.
Statistic K covariate distribution

3 indep. 3 indep. Indep.U(−6, 6)

N(0, 1.5) N(0, 1.5) N(0, 1.5), χ2(4)

100 500 100 500 100 500

SK 2 4.7 4.4 5.8 4.7 6.3 4.4

3 6.0 4.2 5.3 4.1 6.6 6.7

4 6.0 4.2 6.2 4.8 7.7 7.9

whereφ̂jkl is the Fourier coefficient estimator for the singleton modelusing cosine basis

function. We tookπjkl/(1− πjkl) = (jkl)−2.

The resulting per cent of times that Bayes sum and order selection-based tests led to

rejection of the null hypothesis for the hypothesized (and true) multivariate models sum-

marized in Table 3 is reported in Table 6 and Table 7, respectively. Furthermore, we obtain

the per cent of times each test in our study rejects the null hypothesis across several values

of the truncation point,K. These values indicate that most of these tests reject the null

hypothesis at a rate reasonably close to the nominal five percent level. The type I error rate

appears to typically be slightly inflated whenn = 100, but not by an alarming amount.

Moreover, the per cent rejection was rather similar across the various values considered for

the truncation point.

5.3.2 Detecting Omission of a Quadratic Term

To evaluate the power to detect the omission of a quadratic term, Hosmer et al. (1997)

utilized the following simulation strategy. For each valueof the covariate, the response was

generated using the following model:
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Table 7. Performance of the order selection-based tests when the correct (and fitted) logistic

model is determined by (5.3) with corresponding coefficientvalues specified in

Table 3. Simulated per cent rejection at theα = 0.05 level is reported using sample

sizes of 100 and 500 with 1000 replications. For each covariate distribution, per

cent rejection was evaluated at various values of truncation point,K.
Statistic K covariate distribution

3 indep. 3 indep. Indep.U(−6, 6)

N(0, 1.5) N(0, 1.5) N(0, 1.5), χ2(4)

100 500 100 500 100 500

Sa, 2 7.0 5.5 5.8 5.5 6.9 5.2

sequence (c) 3 6.7 5.7 5.7 5.0 6.8 7.1

4 6.9 5.7 4.9 5.2 6.7 7.6

Sa, 2 7.0 5.5 5.8 5.5 6.9 5.2

sequence (d) 3 7.1 5.7 5.5 5.0 6.4 7.2

4 7.1 5.8 4.7 5.2 6.8 7.6

Sb, 2 6.7 4.9 6.5 5.5 6.0 5.6

sequence (c) 3 6.4 5.6 6.6 5.6 6.1 5.7

4 6.5 5.0 6.3 5.8 6.1 5.8

Sb, 2 6.7 4.9 6.5 5.5 6.0 5.6

sequence (d) 3 6.4 5.6 6.6 5.6 6.1 5.7

4 6.5 5.0 6.3 5.8 6.1 5.8

Ta, 2 6.2 5.5 5.2 6.3 6.4 6.0

sequence (c) 3 6.3 4.9 5.6 5.4 7.2 7.4

4 6.1 4.9 5.5 5.6 7.0 7.6

Ta, 2 6.2 5.5 5.2 6.3 6.4 6.0

sequence (d) 3 6.7 5.0 5.6 4.5 7.2 7.1

4 6.4 5.1 5.1 5.5 6.9 7.5

TOS, 2 5.9 4.7 6.0 5.3 6.0 6.3

sequence (c) 3 5.9 5.1 6.1 5.4 6.4 6.8

4 5.9 4.4 5.6 5.5 6.2 6.8

TOS, 2 5.9 4.7 6.0 5.3 6.0 6.3

sequence (d) 3 5.9 5.1 6.2 5.4 6.4 6.9

4 5.9 4.4 5.7 5.5 6.3 7.0

Tmax, 2 6.2 5.1 5.6 5.8 6.4 6.1

sequence (c) 3 6.0 5.1 5.5 5.2 6.7 7.0

4 5.9 5.0 5.2 5.6 6.8 7.3

Tmax, 2 6.2 5.1 5.6 5.8 6.4 6.1

sequence (d) 3 5.9 5.0 5.5 5.2 6.9 7.0

4 5.8 5.1 5.3 5.7 6.9 7.4
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log

(
π(x)

1− π(x)

)
= β0 + β1x+ β2x

2 (5.5)

where the distribution of the covariate,x, will be taken to beU(−3, 3). Hosmer et al. chose

the values of the coefficients so thatπ(−1.5) = 0.05, π(3) = 0.95 andπ(−3) = J and

J = 0.01, 0.05, 0.1, 0.2 and0.4. The coefficients satisfying these conditions are presented

in Table 8. This scheme produces models for which the departure from linearity becomes

progressively more pronounced.

Table 8. Coefficients used in (5.5) to evaluate power to detect the omission of a quadratic

term.
J Logistic coefficients

β0 β1 β2
0.01 -1.138 1.257 0.035

0.05 -1.963 0.981 0.218

0.10 -2.337 0.857 0.301

0.20 -2.742 0.722 0.391

0.40 -3.232 0.558 0.500

Tables 9 and 10 summarize the per cent rejected across the various departures from

linearity for the Bayes sum and order selection tests, respectively. For both types of statistic,

we see that the power is rather low for smaller values ofJ . Power does increase rather

rapidly as the departure from linearity becomes more pronounced. Hosmer et al. (1997)

found that all of the tests they studied, except the Royston monotone test (see Section 2.4),

exhibited a similar increase in power as the departure from linearity increased. Most of the

series-based tests detect an omitted quadratic term at least as well as the best performing

test statistic considered in Hosmer et al. The one clear exception is the test based on the
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Table 9. Performance of the Bayes sum test in detecting an omitted quadratic term. Simu-

lated per cent rejection at theα = 0.05 level using sample sizes of 100 and 500

with 1000 replications are reported. For each covariate distribution per cent rejec-

tion was evaluated at various values of truncation point. See text for definition of

J .
Statistic K correct model

J = 0.01 J = 0.05 J = 0.1 J = 0.2 J = 0.4
100 500 100 500 100 500 100 500 100 500

SK 2 6.6 8.0 35.6 90.5 57.4 99.6 85.2 100 97.3 100

3 7.0 8.1 36.6 91.1 57.9 99.7 85.4 100 97.3 100

4 7.8 7.9 36.6 90.8 58.0 99.7 85.5 100 97.3 100

7 7.9 7.8 36.4 90.5 57.3 99.5 85.0 100 97.2 100

11 7.6 7.7 36.0 90.1 56.9 99.4 84.5 100 97.1 100

15 7.8 7.9 36.3 90.3 57.6 99.4 84.8 100 97.1 100

score analog to the AIC,Sa, which is still rather competitive for smaller values of the

truncation point (i.e.,K = 2, 3, and 4).

Finally, power is enhanced markedly with an increase in sample size, however, this is

to be expected. For samples of size500 power is about 90 percent or greater for even slight

departures from linearity.

5.3.3 Detecting Omission of a Dichotomous Variable and Its Interaction

To evaluate the power to detect the omission of the main effect for a dichotomous variable

and its interaction with a continuous variable, the following simulation setting was studied

by Hosmer et al. (1997). For each combination of realized values for the covariates, the

response was generated using the following model:

log

(
π(x, d)

1− π(x, d)

)
= β0 + β1x+ β2d+ β3xd (5.6)
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Table 10. Performance of the order selection-based tests indetecting an omitted quadratic

term. Simulated per cent rejection at theα = 0.05 level using sample sizes of

100 and 500 with 1000 replications are reported. For each covariate distribution

per cent rejection was evaluated at various values of truncation point. See text for

definition ofJ .
Statistic K correct model

J = 0.01 J = 0.05 J = 0.1 J = 0.2 J = 0.4
100 500 100 500 100 500 100 500 100 500

Sa 2 5.7 9.3 33.8 88.9 56.0 99.3 81.0 100 97.1 100

3 6.6 8.1 32.4 88.2 53.6 99.3 77.7 100 96.8 100

4 8.7 8.1 31.6 86.2 51.0 99.0 76.3 100 95.4 100

7 8.8 7.1 31.4 79.2 47.4 98.5 73.6 100 92.7 100

11 8.3 7.7 30.8 77.8 47.0 98.1 69.9 100 91.0 100

15 8.4 8.1 30.5 76.4 46.7 97.6 67.6 100 89.8 100

Sb 2 9.0 9.5 39.9 90.5 62.0 99.4 86.5 100 97.7 100

3 9.6 9.9 40.9 90.9 62.3 99.4 87.0 100 97.7 100

4 9.7 9.5 40.8 90.7 62.2 99.4 86.9 100 97.7 100

7 9.8 9.8 40.8 91.0 62.2 99.4 86.8 100 97.7 100

11 9.9 9.8 41.0 90.9 62.3 99.4 87.0 100 97.7 100

15 9.9 10.0 41.0 91.0 62.4 99.4 87.0 100 97.7 100

Ta 2 6.6 8.0 36.2 90.2 57.9 99.6 84.6 100 97.4 100

3 7.2 8.1 36.3 91.4 58.1 99.7 83.8 100 97.5 100

4 8.0 8.5 35.8 90.7 57.8 99.5 83.3 100 97.3 100

7 8.3 8.9 35.8 90.4 58.0 99.4 82.6 100 97.1 100

11 8.6 8.6 36.7 89.9 58.3 99.4 83.1 100 96.8 100

15 8.7 8.9 36.8 89.3 58.1 99.4 82.8 100 96.9 100

TOS 2 6.9 8.0 37.0 90.5 58.7 99.6 85.4 100 97.3 100

3 6.9 8.0 37.0 90.8 58.3 99.6 85.4 100 97.3 100

4 7.2 7.8 37.1 90.5 58.3 99.6 85.4 100 97.3 100

7 7.5 8.2 37.3 90.9 58.4 99.6 85.5 100 97.3 100

11 7.7 7.8 37.8 90.6 58.9 99.6 85.7 100 97.3 100

15 7.5 8.0 37.5 90.7 58.6 99.6 85.6 100 97.3 100

Tmax 2 6.6 8.0 35.7 90.1 57.8 99.6 84.3 100 97.3 100

3 7.1 8.0 36.3 90.9 58.0 99.6 83.5 100 97.3 100

4 8.4 8.9 36.1 91.2 57.5 99.4 83.2 100 97.2 100

7 8.3 9.6 35.7 90.9 58.4 99.4 81.9 100 97.0 100

11 8.3 9.1 36.4 90.0 58.0 99.4 81.9 100 97.1 100

15 8.5 8.7 36.8 89.7 57.8 99.4 82.0 100 97.1 100
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where the distribution of the continuous covariate,x, will be taken to beU(−3, 3) and the

dichotomous covariate,d, is generated from the Bernoulli(1/2) and was independent of the

continuous covariate. Hosmer et al. (1997) chose the four parameters such thatπ(−3, 0) =

0.1, π(−3, 1) = 0.1, π(3, 0) = 0.2 andπ(3, 1) = 0.2 + I whereI = 0.1, 0.3, 0.5 and0.7.

The coefficients satisfying these conditions are presentedin Table 11. Thus, the interaction

becomes progressively more pronounced across the four models.

Table 11. Coefficients used in (5.6) to evaluate power to detect the omission of a interaction

term.
J Logistic coefficients

β0 β1 β2 β3
0.10 -1.792 0.135 0.269 0.090

0.30 -1.792 0.135 0.693 0.231

0.50 -1.792 0.135 1.117 0.372

0.70 -1.792 0.135 1.792 0.597

The resulting empirical power of the Bayes sum and order selection tests are reported

in Table 12 and Table 13, respectively. Unfortunately, all of the series-based tests exhibit

poor power properties. Despite the fact that the power of thetests does increase modestly

for larger sample sizes and when the departure from the simple linear logistic regression

model increases, the power is too low to assure us that these tests will be able to detect this

type of misspecification in practice. In this simulation setting, the power properties of the

series-based tests are somewhat similar to those reported in Hosmer et al. (1997) for the

statistics studied therein. One noteworthy difference is that for I = 0.1, 0.3, and 0.5 per

cent rejection actually decreases as the sample size increases. In particular, the per cent of

times the null hypothesis is rejected appears to converge tothe nominal five percent level

for several of the tests. In spite of this behavior, none of the tests of Hosmer et al. reject

appreciably more than the series-based tests.
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Table 12. Performance of the Bayes sum test in detecting an omitted dichotomous variable

and its interaction. Simulated per cent rejection at theα = 0.05 level using sample

sizes of 100 and 500 with 1000 replications are reported. Foreach covariate

distribution per cent rejection was evaluated at various values of truncation point.

See text for definition ofI.

Statistic K I = 0.1 I = 0.3 I = 0.5 I = 0.7

100 500 100 500 100 500 100 500

SK 2 6.0 4.3 5.3 4.3 6.0 4.0 6.9 12.0

3 6.0 4.2 5.5 4.5 6.1 4.6 6.6 11.7

4 6.0 4.4 5.4 4.6 6.1 4.9 6.0 11.5

7 5.3 4.0 5.2 4.4 5.7 4.8 6.0 11.4

11 4.9 4.1 5.1 4.8 5.7 4.9 5.7 11.7

15 5.6 4.3 5.3 4.9 6.0 4.9 6.3 11.7

To better understand the power properties in this setting, recall that the series-based

test statistics assess departures from the linear predictor specified in the null hypothesis by

utilizing alternatives that only involve variables included in the null model. This formula-

tion of the test statistics suggests that the series-based tests should be at a disadvantage in

detecting departures involving variables that are not included in the null model. Identify-

ing the cause of low power is not as immediately obvious for some of the tests studied in

Hosmer et al.

5.4 Simulation Results Under Departures from Sparsity

In this section we will present results of simulations to examine the behavior of the tests

discussed in Section 5.2 under departures from strictly sparse data. The simulation settings

under which these statistics will be studied are selected toreplicate several of those studied

in Kuss (2002). These simulation settings address each of the following main issues in the

context of a logistic regression:
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Table 13. Performance of the order selection-based tests indetecting an omitted dichoto-

mous variable and its interaction. Simulated per cent rejection at theα = 0.05

level using sample sizes of 100 and 500 with 1000 replications are reported. For

each covariate distribution per cent rejection was evaluated at various values of

truncation point. See text for definition ofI.

Statistic K I = 0.1 I = 0.3 I = 0.5 I = 0.7

100 500 100 500 100 500 100 500

Sa 2 5.3 5.1 5.9 4.5 6.8 4.4 8.2 10.3

3 5.2 5.3 6.0 4.4 5.5 4.0 7.6 8.9

4 4.9 5.8 6.1 5.2 5.4 4.9 6.1 7.4

7 4.2 5.6 4.6 4.7 4.8 4.3 4.4 6.0

11 4.6 5.3 5.7 5.0 4.5 4.7 4.2 5.3

15 4.7 5.3 6.0 4.4 4.6 4.3 4.5 5.2

Sb 2 8.8 6.1 8.6 5.2 9.5 4.6 11.5 13.5

3 9.1 6.5 8.5 5.6 9.7 5.1 11.3 14.1

4 9.5 6.5 9.0 5.7 10.0 5.1 11.8 14.2

7 9.7 6.5 9.3 5.7 10.4 5.1 12.2 14.2

11 9.7 6.3 9.4 5.3 10.6 4.8 12.4 13.7

15 9.2 6.4 8.4 5.4 9.8 4.9 11.1 13.8

Ta 2 6.0 4.5 5.8 4.1 6.4 4.6 7.2 12.2

3 5.6 5.1 5.3 4.3 5.9 5.1 7.0 12.1

4 4.9 5.5 5.1 4.8 5.6 5.1 6.9 10.3

7 4.3 5.2 5.2 5.0 5.9 4.9 6.5 10.2

11 4.4 5.2 5.1 5.2 6.5 5.1 6.2 9.8

15 4.2 5.1 4.4 4.5 5.6 5.1 5.6 9.3

TOS 2 6.1 4.5 5.3 4.3 6.3 3.8 7.4 12.5

3 6.2 4.7 5.0 4.5 5.9 4.2 7.0 12.5

4 6.4 4.5 5.3 4.6 6.1 4.1 7.1 12.1

7 6.4 4.5 5.3 4.6 6.1 4.2 7.1 12.1

11 6.5 4.4 5.5 4.3 6.3 4.0 7.3 11.8

15 5.8 4.5 5.1 4.6 5.4 4.2 6.3 12.2

Tmax 2 5.9 5.0 6.0 4.2 6.6 4.5 7.4 11.9

3 5.0 5.0 5.6 4.4 6.0 4.9 7.3 11.5

4 4.7 5.5 5.2 4.5 6.0 5.3 7.0 10.5

7 4.4 5.3 5.3 4.7 5.2 4.4 6.1 9.1

11 3.9 5.3 5.6 5.2 5.7 4.2 6.0 8.6

15 3.7 5.4 4.6 5.2 5.4 4.4 5.7 8.6
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1. Missing covariate.

2. Wrong functional form of the covariate.

3. Misspecified link function.

4. Overdispersion.

Each of the above issues will be studied by examining a fixed departure from a hypothesized

model and varying the number of observations sharing a givencovariate pattern. Recall

from Section 2.2 that we denote this number bymi. Examination of varyingmi was of

interest in Kuss (2002) because several well-know test statistics that worked well for sparse

data have exhibited problems in data sets that were not sparse (see Chapter II). Conversely,

several other statistics that work well for non-sparse dataare invalid for strictly sparse data.

By construction, the order selection and Bayes sum statistics should be valid regardless of

whether the data are sparse or not. However, we feel that it isof important to examine

the sensitivity of the series-based tests under varying levels of sparsity in order to assess if

there are appreciable changes in power across the various values ofmi.

For each simulation setting and level of sparsity,1000 random samples of sizes,n =

100 or 500 were generated in a manner similar to that described earlierin this chapter for

sparse data. In order to evaluate the effect of sparseness oneach test, Kuss (2002) varied

the number of individuals within the data set sharing the same covariate pattern. For four

of his simulation settings, Kuss used values ofmi = 1, 2, 5, 10, wheremi denotes the

number of times each covariate pattern is observed within the sample (see Section 2.2). In

addition to these settings, Kuss studied a setting (labeled1-2) in which half of the covariate

patterns within each replicated sample have a single observation and the other half have

two observations. Another setting (labeled1-10) has roughly 64 per cent of the covariate

patterns have a single observation, 21 per cent have two observations, 9 per cent have
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five observations and 6 per cent have ten observations. To better clarify this last setting,

consider the case wheren = 100: 30 distinct covariate patterns were observed once each

(mi = 1), 10 distinct covariate patterns were observed two times each (i.e., 10 covariate

patterns withmi = 2 yielding20 observations), 4 distinct covariate patterns were observed

five times each (mi = 5), and 3 distinct covariate patterns were observed10 ten times

each (mi = 10), resulting in30 + 20 + 20 + 30 = 100 individual observations from

30 + 10 + 4 + 3 = 47 distinct covariate patterns. Obviously, forn = 500, multiply all

the numbers by 5. This last constellation was formulated to reflect a distribution across

covariate patterns which is often encountered in practice (Kuss, 2002).

Missing covariate

To evaluate the power to detect a missing covariate across various departures from sparsity,

Kuss (2002) generated data using the following model:

log

(
π(x1, x2)

1− π(x1, x2)

)
= 0 + 0.405x1 + 0.223x2; (5.7)

wherexi ∼ U(−6, 6), i = 1, 2. We fit the following simple logistic regression model to

the resulting data: log(π(x)/(1− π(x))) = β0 + β1x1. That is, we fit the model as ifx2

had been excluded in the model building process.

The resulting empirical power of the Bayes sum and order selection tests are reported

in Table 14 and Table 15, respectively. It is clear that the series-based tests do not exhibit

particularly good power in detecting a missing covariate. However, this is not surprising in

light of the observed power of the series-based test to detect the omission of the main effect

for a dichotomous variable and its interaction with a continuous variable: in both cases a

variable had been suppressed. Clearly, as we move further away from strictly sparse data,

the power of the series-based tests does improve. Unfortunately, these tests do not improve
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Table 14. Performance of the Bayes sum test in detecting missing covariate. Simulated per

cent rejection at theα = 0.05 level using sample sizes of 100 and 500 with 1000

replications are reported. For each covariate distribution per cent rejection was

evaluated at various values of truncation point. See text for explanation of the

various constellationsmi.
Statistic K Constellation ofmi

1 1-2 2 1-10 5 10
100 500 100 500 100 500 100 500 100 500 100 500

SK 2 6.0 4.7 4.5 5.9 6.1 6.4 8.1 11.2 12.9 9.2 19.2 18.7

3 6.5 4.9 4.8 6.5 7.3 6.2 8.2 12.8 13.8 10.7 23.0 21.6

4 6.5 4.7 4.6 5.8 7.5 6.2 9.3 13.6 14.2 12.0 24.6 24.4

7 6.2 4.9 4.3 5.7 7.3 6.7 8.8 13.8 14.8 12.5 28.6 26.5

11 5.7 5.0 4.3 5.6 6.7 6.2 8.2 14.2 14.7 13.1 30.1 29.0

15 6.1 5.2 4.5 5.8 7.4 6.5 9.1 13.4 15.8 13.4 28.8 31.2

sufficiently to provide any assurance that these tests wouldbe able to detect a missing

covariate in practice. The power was consistent across the various values of the truncation

point considered.

Kuss (2002) found that Osius-Rojek, McCullagh and Farrington tests have good power

for a missing covariate when the sample size is500 (recall from Chapter II that these three

tests are somewhat similar in that they are all based on various modifications of the Pearson

chi-square test). Note that no test among the collection discussed in Kuss (2002) was

observed to have good power for sample size of100.

Wrong functional form

To evaluate the power to detect a missing covariate across various departures from sparsity,

Kuss (2002) generated data using the following model:

log

(
π(x)

1− π(x)

)
= 0.405x2 (5.8)
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Table 15. Performance of the order selection-based tests indetecting missing covariate.

Simulated per cent rejection at theα = 0.05 level using sample sizes of 100

and 500 with 1000 replications are reported. For each covariate distribution per

cent rejection was evaluated at various values of truncation point. See text for

explanation of the various constellationsmi.

Statistic K Constellation ofmi

1 1-2 2 1-10 5 10
100 500 100 500 100 500 100 500 100 500 100 500

Sa 2 5.8 5.2 5.4 5.6 5.9 7.2 9.0 12.3 11.5 9.8 18.3 20.4

3 6.3 5.2 5.6 5.5 7.1 6.8 11.0 13.8 14.8 11.4 23.4 24.2

4 6.2 4.6 5.9 4.9 8.5 5.7 10.6 14.3 14.2 14.0 28.6 26.8

7 5.4 4.5 6.1 5.7 9.4 6.9 12.5 14.7 16.5 15.9 34.5 34.6

11 5.0 3.5 5.9 5.0 8.1 7.0 12.7 17.6 21.2 19.3 47.0 43.6

15 4.9 3.4 6.0 5.5 7.2 7.0 12.9 18.6 23.4 21.8 62.9 50.0

Sb 2 9.6 6.0 9.2 7.2 8.7 7.3 12.6 14.3 16.9 11.0 24.7 21.5

3 10.3 6.1 9.6 7.4 10.2 7.6 13.6 14.8 18.4 12.1 27.8 23.4

4 10.8 6.1 10.0 7.4 10.0 7.5 13.8 14.5 18.6 12.5 29.6 23.6

7 11.3 6.1 9.9 7.3 10.0 7.6 13.5 15.3 18.9 12.0 30.5 24.5

11 11.4 6.0 10.5 7.7 10.4 7.6 13.7 14.1 19.0 12.9 30.3 23.4

15 10.2 6.1 9.9 7.3 10.4 7.8 13.9 14.7 18.8 12.0 31.0 24.6

Ta 2 7.0 5.1 4.7 5.6 6.5 6.2 8.2 12.6 12.3 9.7 19.6 20.2

3 7.3 5.5 4.2 6.2 7.6 6.0 8.8 14.0 13.7 11.0 22.6 23.1

4 7.2 5.1 5.2 6.2 8.3 5.8 9.6 14.0 14.2 11.9 26.9 26.7

7 6.6 5.1 5.3 5.5 8.4 6.7 10.6 16.3 16.7 14.6 32.5 32.2

11 5.7 4.8 5.1 5.5 8.2 6.1 11.0 17.1 18.7 17.7 40.0 39.4

15 5.0 4.7 5.6 6.2 7.7 5.9 11.9 18.7 19.8 18.5 51.8 46.7

TOS 2 6.4 5.2 5.1 6.3 5.9 5.8 9.0 12.4 12.6 8.9 20.0 17.5

3 6.2 5.1 5.0 6.2 6.4 5.9 9.3 12.8 13.3 10.2 20.5 19.5

4 6.4 4.9 5.9 6.3 6.5 5.8 8.5 12.5 12.6 10.6 21.9 20.2

7 6.4 4.9 4.5 5.3 6.6 6.0 8.5 13.7 13.6 11.0 23.1 21.8

11 6.6 4.6 5.7 6.4 6.7 5.8 8.5 12.2 13.9 11.7 22.8 20.8

15 5.7 4.9 5.3 6.2 6.7 5.8 9.1 12.8 13.2 10.8 23.6 22.3

Tmax 2 7.1 5.2 4.7 6.0 6.0 6.1 8.1 12.4 12.3 9.4 19.9 20.8

3 7.0 5.4 4.3 6.1 7.3 5.6 9.2 14.6 13.9 11.7 22.5 24.9

4 6.9 4.9 4.9 6.2 7.8 5.8 9.8 14.8 14.3 13.1 27.4 27.9

7 6.3 4.8 5.2 5.9 9.0 6.6 11.9 16.2 16.4 14.9 33.0 33.8

11 6.0 4.9 5.4 5.1 9.1 6.3 12.1 17.2 18.5 17.2 40.7 39.6

15 5.0 4.8 5.8 5.6 9.0 6.3 12.0 17.9 19.3 17.7 51.3 45.6
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Table 16. Performance of the Bayes sum test in detecting wrong functional form of the

covariate. Simulated per cent rejection at theα = 0.05 level using sample sizes of

100 and 500 with 1000 replications are reported. For each covariate distribution

per cent rejection was evaluated at various values of truncation point. See text for

explanation of the various constellationsmi.
Statistic K Constellation ofmi

1 1-2 2 1-10 5 10

100 500 100 500 100 500 100 500 100 500 100 500

SK 2 84.2 100 87.1 100 89.7 100 88.6 100 94.6 100 97.9 99.7

3 88.6 100 91.1 100 93.3 100 93.0 100 97.2 100 99.0 100

4 89.1 100 91.7 100 93.8 100 94.7 100 97.2 100 98.8 100

7 91.3 100 94.1 100 96.4 100 97.7 100 99.2 100 99.0 100

11 91.6 100 94.4 100 97.1 100 97.8 100 99.9 100 99.1 100

15 92.1 100 95.3 100 97.4 100 97.9 100 99.9 100 99.1 100

wherexi ∼ U(−6, 6), i = 1, 2. Again, we fit the following simple logistic regression

model to the resulting data: log(π(x)/(1− π(x))) = β0 + β1x.

Table 16 and Table 17 report the empirical power of the Bayes sum and order selection

tests, respectively. The resulting power in this setting is, as one might expect, very similar

to the power we observed for a missing quadratic term in Section 5.3.2 at the more severe

departures from linearity. However, in this case, we can observe the effect of sparsity. For

n = 100, it is clear that the power to detect the misspecified functional form of the linear

predictor is enhanced noticeably for constellations providing greater degree of replication

at each observed covariate value. The series-based tests lead to rejection in (almost) every

dataset whenn = 500 regardless of truncation point or degree of sparsity.

5.4.1 Evaluating Power Under Misspecification of the Link Function

To evaluate the power to detect misspecification of the link function, Kuss (2002) used the

following model to generate the response:
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Table 17. Performance of the order selection-based tests indetecting wrong functional form

of the covariate. Simulated per cent rejection at theα = 0.05 level using sample

sizes of 100 and 500 with 1000 replications are reported. Foreach covariate

distribution per cent rejection was evaluated at various values of truncation point.

See text for explanation of the various constellationsmi.
Statistic K Constellation ofmi

1 1-2 2 1-10 5 10
100 500 100 500 100 500 100 500 100 500 100 500

Sa 2 91.6 100 92.8 100 93.9 100 92.2 100 96.0 100 98.7 99.9

3 91.6 100 94.1 100 96.2 100 95.3 100 97.9 100 99.1 100

4 91.7 100 93.8 100 94.8 100 96.5 100 97.7 100 99.2 100

7 93.2 100 94.0 100 96.7 100 98.3 100 99.8 100 99.1 100

11 91.6 100 94.6 100 98.1 100 99.2 100 00.0 100 99.1 100

15 92.2 100 95.5 100 98.3 100 99.8 100 00.0 100 99.1 100

Sb 2 92.6 100 93.3 100 94.4 100 92.1 100 96.4 100 99.0 99.7

3 94.8 100 96.2 100 97.1 100 95.9 100 97.9 100 99.3 100

4 95.0 100 96.3 100 97.3 100 96.6 100 98.0 100 99.3 100

7 95.8 100 97.0 100 97.7 100 97.8 100 99.3 100 99.3 100

11 96.0 100 97.1 100 97.8 100 98.2 100 99.7 100 99.3 100

15 96.0 100 97.1 100 97.8 100 98.2 100 99.9 100 99.3 100

Ta 2 87.1 100 89.3 100 91.4 100 89.9 100 95.3 100 98.2 99.8

3 90.6 100 93.5 100 95.2 100 94.8 100 97.4 100 99.1 100

4 91.6 100 94.4 100 95.3 100 95.8 100 97.8 100 99.2 100

7 94.5 100 96.5 100 97.5 100 98.7 100 99.6 100 99.3 100

11 95.8 100 97.1 100 98.5 100 99.4 100 100 100 99.3 100

15 96.3 100 98.0 100 98.8 100 99.9 100 100 100 99.3 100

TOS 2 81.3 100 84.2 100 87.6 100 86.8 99.8 94.1 100 97.5 99.7

3 85.9 100 89.0 100 92.2 100 92.7 99.9 96.4 100 99.0 100

4 86.8 100 90.3 100 92.7 100 93.8 100 97.0 100 99.0 100

7 89.1 100 92.4 100 94.9 100 96.4 100 99.0 100 99.2 100

11 90.1 100 92.2 100 95.5 100 96.9 100 99.5 100 99.3 100

15 89.8 100 92.2 100 95.1 100 96.6 100 99.8 100 99.3 100

Tmax 2 88.4 100 90.0 100 92.2 100 90.6 100 95.4 100 98.5 99.8

3 91.4 100 93.6 100 95.6 100 95.1 100 97.6 100 99.1 100

4 92.2 100 94.8 100 95.6 100 96.2 100 97.9 100 99.2 100

7 94.9 100 96.6 100 97.6 100 98.8 100 99.7 100 99.3 100

11 96.0 100 97.3 100 98.7 100 99.3 100 100 100 99.3 100

15 96.3 100 98.0 100 99.0 100 99.8 100 100 100 99.3 100
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log[−log(1− π(x))] = 0.405x (5.9)

wherexi ∼ U(−6, 6). Again, we fit the following simple logistic regression model to the

resulting data: log(π(x)/(1− π(x))) = β0 + β1x.

Aerts et al. (2000) describe how the series-based alternatives in the order selection

based tests can modified to provide a way of testing the adequacy of the link function. In

the case of logistic regression the alternatives are of the form

log

(
π(x)

1− π(x)

)
= xTβ +

∑

k∈Λ
φkuk{xTβ} (5.10)

These alternatives constitute a dimension-reducing nonparametric estimator often referred

to as the “single-index model”. Hence the test using this class of alternatives has been

referred to as the “single-index test.”

The resulting empirical power of the Bayes sum and order selection tests to detect

link misspecification is reported in Table 18 and Table 19, respectively. The power of the

series-based tests to detect misspecification of the link function appears to depend heavily

on the sample size, the degree of sparsity, and the truncation point used in constructing the

statistic. As in most of the settings studied previously in this chapter, there is a great deal

of similarity among the various tests, however, it is worth noting thatSb andTOS appear to

be somewhat more conservative than the other tests across a majority of the combinations

of sample size, constellation, and truncation point. This is somewhat remarkable given that

Sb has consistently been the least conservative of all of the order selection tests in the other

simulation settings studied. It is also worth mentioning that, for larger samples and larger

values of the truncation point, the Bayes sum test appears topossess power properties that

fall rather close to the midpoint between the most conservative tests (Sb, TOS) and the least
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Table 18. Performance of the Bayes sum test in detecting misspecified link. Simulated per

cent rejection at theα = 0.05 level using sample sizes of 100 and 500 with 1000

replications are reported. For each covariate distribution per cent rejection was

evaluated at various values of truncation point. See text for explanation of the

various constellationsmi.
Statistic K Constellation ofmi

1 1-2 2 1-10 5 10
100 500 100 500 100 500 100 500 100 500 100 500

SK 2 9.0 7.5 9.7 9.2 13.4 10.7 18.7 12.9 25.6 16.3 38.9 33.8

3 19.6 13.4 20.5 17.4 27.4 25.3 28.6 30.2 34.9 51.9 46.5 74.1

4 19.8 12.6 21.7 17.4 28.2 25.4 29.6 30.4 34.5 52.5 45.4 74.7

7 20.1 18.9 22.0 25.9 28.3 34.7 30.4 39.6 35.0 61.6 45.2 81.1

11 19.2 23.7 20.7 30.7 27.5 39.6 28.5 46.8 33.2 65.9 44.7 84.5

15 19.7 26.1 22.5 32.0 27.6 42.6 28.6 49.2 33.0 66.8 46.6 85.3

conservative (Sa, Ta, Tmax).

5.4.2 Overdispersion

To evaluate the power to detect misspecification of the link function, Kuss (2002) used the

following model to generate the response:

log

(
π(x)

1− π(x)

)
= b+ 0.405x (5.11)

wherexi ∼ U(−6, 6), E(b) = 0 andvar(b) = 0.323. Again, we fit the following simple

logistic regression model to the resulting data: log(π(x)/(1− π(x))) = β0 + β1x.

Table 20 and Table 21 report the empirical power of the Bayes sum and order selection

tests, respectively. The series-based tests possess no power to detect possible presence of

overdispersion. In fact, it appears that several of the tests converge to the nominal five per

cent level specified for the test.



132

Table 19. Performance of the order selection-based tests indetecting misspecified link. Sim-

ulated per cent rejection at theα = 0.05 level using sample sizes of 100 and 500

with 1000 replications are reported. For each covariate distribution per cent rejec-

tion was evaluated at various values of truncation point. See text for explanation

of the various constellationsmi.
Statistic K Constellation ofmi

1 1-2 2 1-10 5 10
100 500 100 500 100 500 100 500 100 500 100 500

Sa 2 9.5 7.0 10.0 8.3 13.0 8.9 17.4 12.6 28.5 16.2 42.8 35.6

3 27.2 16.6 31.0 23.1 38.0 29.3 39.2 36.1 46.4 58.3 51.7 78.1

4 24.2 17.7 28.6 23.0 34.4 30.1 35.6 37.1 39.4 59.6 46.0 78.7

7 28.3 29.8 29.8 34.3 33.0 48.7 32.5 55.1 37.1 73.7 38.7 88.2

11 27.5 40.6 29.1 46.6 33.2 58.4 32.1 66.4 35.0 80.6 38.6 92.0

15 25.8 45.8 29.4 53.6 31.7 64.0 30.6 71.2 32.1 84.7 49.2 93.9

Sb 2 11.4 08.1 12.8 10.1 17.6 12.1 22.3 14.4 31.7 18.0 47.9 36.5

3 20.6 11.2 22.9 14.7 31.3 21.8 32.0 24.9 39.3 46.1 54.4 69.8

4 20.7 11.0 23.9 14.5 31.4 22.4 32.4 25.3 40.0 46.3 55.4 70.0

7 21.2 11.9 24.3 16.6 31.3 23.2 34.1 28.0 40.2 49.6 55.6 72.6

11 21.3 12.0 23.7 17.0 32.0 23.2 33.4 28.4 39.1 49.1 56.2 72.8

15 21.3 12.1 23.7 16.6 31.0 22.6 33.1 28.0 39.9 49.7 57.1 72.8

Ta 2 9.5 6.8 10.1 9.5 13.7 9.3 18.6 12.1 27.9 16.5 40.6 33.5

3 21.0 13.5 23.6 17.9 29.5 25.6 31.9 31.6 37.1 53.8 48.2 75.6

4 21.2 13.6 23.3 19.5 28.7 26.3 31.2 32.5 38.0 55.2 48.5 76.7

7 24.6 24.1 27.0 29.8 32.0 40.4 34.9 48.3 40.0 68.2 48.9 85.9

11 26.5 34.7 28.1 40.8 31.4 51.9 36.5 60.8 40.1 77.2 52.0 90.9

15 26.6 40.4 29.1 49.0 32.2 57.9 34.5 67.1 38.1 82.8 58.2 93.6

TOS 2 9.5 7.7 9.7 9.1 13.7 10.3 18.3 12.0 25.9 16.6 38.9 33.6

3 14.8 11.3 16.0 14.4 21.2 21.3 25.1 24.9 31.2 47.5 42.5 70.3

4 15.0 11.0 16.9 14.7 21.3 22.2 25.2 26.4 32.1 47.9 43.3 71.0

7 15.6 14.6 17.3 19.6 21.3 26.7 26.6 32.7 33.0 55.1 43.5 76.3

11 16.1 16.1 17.1 21.6 21.3 29.7 26.2 36.4 32.0 55.5 45.4 78.0

15 16.0 16.6 16.5 21.7 20.9 29.3 25.2 33.7 31.5 56.7 46.6 78.0

Tmax 2 9.3 6.8 10.4 9.2 13.3 9.4 18.7 12.6 28.2 16.3 41.6 34.2

3 22.0 13.6 24.8 19.6 31.4 26.7 33.2 33.0 39.5 54.7 49.9 76.0

4 22.1 14.1 25.3 21.3 30.7 27.3 32.8 34.4 40.0 56.3 49.8 77.3

7 25.9 24.6 28.1 30.6 33.8 43.0 36.0 49.4 41.7 68.7 51.4 86.3

11 27.7 33.8 29.2 40.4 34.3 52.3 37.6 60.9 42.2 77.3 53.4 90.9

15 27.6 39.0 29.9 47.6 35.0 57.0 36.3 65.3 40.8 81.8 58.6 93.2
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Table 20. Performance of the Bayes sum test in detecting overdispersed data. Simulated per

cent rejection at theα = 0.05 level using sample sizes of 100 and 500 with 1000

replications are reported. For each covariate distribution per cent rejection was

evaluated at various values of truncation point. See text for explanation of the

various constellationsmi.
Statistic K Constellation ofmi

1 1-2 2 1-10 5 10
100 500 100 500 100 500 100 500 100 500 100 500

SK 2 3.6 4.4 4.5 4.2 4.4 4.4 4.5 5.7 4.1 6.3 6.0 5.1

3 3.5 4.8 5.0 4.6 4.8 4.8 4.8 6.0 4.1 6.2 5.7 5.4

4 3.2 4.9 4.7 4.9 5.4 4.8 4.6 5.4 3.7 6.3 5.7 5.2

7 3.6 4.6 4.4 4.8 5.0 5.0 4.7 5.4 3.3 6.2 4.9 6.1

11 3.8 4.8 4.5 5.1 5.1 4.8 4.7 4.9 3.2 6.1 5.0 5.3

15 3.7 5.1 4.6 4.9 5.6 4.9 5.2 5.5 3.3 6.5 5.6 5.4

5.5 Examples

In this section we present examples to illustrate the application of the Bayes sum statistic

developed in the previous chapter. The examples we considerfocus on analyses of well-

known datasets that have appeared in the literature. Furthermore, these are datasets for

which adequacy of a proposed logistic regression model has been examined. The motiva-

tion in revisiting these examples is to see if our method agrees with findings that have been

established and accepted in the literature as well as provide an opportunity to clarify use of

the method in practice.

In each of the examples presented below, we have estimated the p-value using the

proportion of times simulated replicates from the asymptotic null distribution exceeded the

test statistic value calculated for the dataset. We will use50000 replicates from the asymp-

totic null distribution to obtain eachp-value estimate. We will also present the results of

test statistics based on likelihood ratios (LRs) and their score approximation. The rationale
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Table 21. Performance of the order selection-based tests indetecting overdispersed data.

Simulated per cent rejection at theα = 0.05 level using sample sizes of 100

and 500 with 1000 replications are reported. For each covariate distribution per

cent rejection was evaluated at various values of truncation point. See text for

explanation of the various constellationsmi.
Statistic K Constellation ofmi

1 1-2 2 1-10 5 10
100 500 100 500 100 500 100 500 100 500 100 500

Sa 2 3.1 4.1 4.8 4.1 4.9 4.8 5.2 6.0 4.4 6.2 5.9 5.9

3 4.0 5.2 5.4 4.7 5.0 5.1 5.0 4.6 4.5 7.0 5.8 5.1

4 3.3 4.8 5.4 4.9 5.7 4.5 4.4 5.0 4.8 6.4 6.3 4.2

7 4.0 4.7 5.5 5.3 5.9 5.4 5.5 4.9 4.8 5.4 4.7 4.4

11 4.0 5.5 5.4 4.4 6.0 5.8 5.8 4.9 4.9 4.6 5.8 4.6

15 4.1 5.7 5.5 4.7 5.1 5.4 5.0 5.0 4.9 4.9 22.1 5.1

Sb 2 5.5 5.5 7.4 5.5 7.2 5.5 7.7 7.4 7.5 7.2 9.1 6.4

3 5.9 5.7 7.9 5.6 7.8 5.7 8.4 7.3 7.9 7.2 10.2 6.0

4 5.6 5.7 7.9 5.6 7.8 5.7 7.9 7.5 7.7 7.3 9.4 6.3

7 5.9 6.3 8.3 5.2 8.0 5.6 8.4 7.0 8.1 7.2 9.4 6.0

11 5.9 6.2 7.8 5.2 7.8 6.3 8.1 7.0 7.4 7.2 9.4 6.4

15 5.9 6.4 7.9 5.6 8.0 5.8 8.3 7.5 7.8 7.3 9.4 6.5

Ta 2 3.2 4.9 4.4 4.0 5.0 4.6 4.9 6.1 3.9 5.6 6.6 5.3

3 3.4 5.2 4.6 4.3 5.3 5.2 4.9 5.3 3.8 6.0 6.3 4.8

4 3.4 4.7 4.7 4.5 5.0 5.4 4.7 5.7 3.8 6.6 6.2 4.8

7 3.3 4.3 4.9 4.8 5.1 5.2 5.7 6.1 4.6 6.2 5.4 5.1

11 3.4 4.6 5.0 4.4 4.6 5.2 5.8 5.7 3.9 6.4 5.7 5.1

15 3.5 4.6 5.1 4.3 4.7 4.4 5.7 5.8 3.9 5.8 13.0 5.3

TOS 2 3.4 4.1 4.9 4.6 4.2 4.3 4.7 5.6 4.3 6.0 6.5 5.4

3 3.5 4.2 4.8 4.7 4.4 4.6 4.7 5.5 4.2 6.2 6.5 4.8

4 3.6 4.2 5.0 4.7 4.5 4.8 4.7 5.8 4.1 6.2 6.1 4.9

7 3.6 4.7 5.2 4.1 4.6 4.5 4.7 5.3 3.9 5.5 6.1 4.9

11 3.6 4.7 4.9 4.1 4.5 4.9 4.5 5.3 3.9 6.2 5.9 5.4

15 3.6 4.5 4.9 4.4 4.6 4.7 4.7 5.6 4.1 6.0 5.9 5.6

Tmax 2 3.1 4.8 4.4 4.0 5.1 4.8 5.2 6.1 3.3 5.8 6.4 5.2

3 3.2 5.1 4.9 4.4 5.3 4.8 4.9 5.6 3.5 6.2 6.2 4.9

4 3.0 4.9 5.0 4.5 5.1 5.0 4.7 5.4 3.8 6.4 5.2 4.7

7 3.2 4.1 5.1 4.6 5.0 4.9 5.6 6.0 4.0 6.2 5.1 4.9

11 3.2 4.1 5.3 4.2 5.2 5.3 5.3 5.6 4.1 6.4 5.3 5.0

15 3.3 4.3 5.3 4.2 5.2 4.8 5.2 5.9 4.1 6.6 12.2 5.2
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for presenting both test statistics is that the score-basedtest statistic is an asymptotic ap-

proximation of the LR-based statistic. Consequently, these statistics can lead to different

conclusions if the sample size is not sufficiently large.

5.5.1 Kyphosis Data

We will apply our method in the context of the well-known and thoroughly-studied kypho-

sis data set presented in Hastie and Tibshirani (1990, pp. 301-303). Data were collected

on 83 patients undergoing corrective spinal surgery. The objective was to determine im-

portant risk factors for kyphosis following surgery. The risk factors are age in years, the

starting vertebrae level of the surgery and the number of levels involved. Two of the cases

in this data set have been identified in the literature as being outliers. These cases have

been removed leaving us with 81 total cases.

Hastie and Tibshirani (1990) used this dataset to exemplifyhow one could use a non-

parametric extension of the GLM known as the generalized additive model (GAM) to guide

the specification of a GLM. Upon obtaining a “final” GAM fit selected via a stepwise proce-

dure, Hastie and Tibshirani considered several parametricapproximations to the estimated

GAM. After comparing these approximations, they concludedthat the following model of-

fered the best approximation since it is parsimonious yet itcaptures the functional form of

the nonparametric fit:

log

(
π(x1, x2)

1− π(x1, x2)

)
= β0 + β1x1 + β2x

2
1 + β3(x2 − 12)× I(x2 > 12), (5.12)

wherex1 denotes the patients age,x2 denotes the starting vertebrae level of the surgery and

π(x1, x2) denotes the probability of kyphosis at given values ofx1 andx2.

To better clarify this parametric specification, observe Figures 2 and 3. These fig-

ures display nonparametric estimates of the marginal relationship between each of the risk
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Table 22. Test statistic values andp-values for the Bayes sum statistic for the kyphosis data

null model taken to be the logistic regression model given in(5.12).
K Value ofSK p-value
2 0.369 0.823

3 0.314 0.756

4 0.409 0.922

factors and the log odds of kyphosis of these respective relationships. Nonparametric es-

timates such as GAMs are advantageous for parametric model building since they can be

viewed as an objective assessment of the unknown functionalrelationship; that is, we “let

the data speak for themselves”. From Figure 2, we note a clearquadratic relationship age

and the estimated logit proportions of the presence of kyphosis.

In this setting we apply a multivariate extension of the Bayes sum statistic using poly-

nomial basis functions in a manner similar to that describedin Section 5.3.1, however, we

will use the likelihood ratio-based statistic. The resultsof applying the Bayes sum test

to the parametric model specified in (5.12) are presented in Table 22. The largep-values

provide an indication that the proposed parametric model should not be rejected.

In the interest of examining the performance of our test whenapplied to real data, we

will compare the findings of the test of the logistic regression model specified by (5.12)

with a test of a model which is intended to constitute misspecification. That is, we will now

consider a test of the following model

log

(
π(x1, x2)

1− π(x1, x2)

)
= β0 + β1x1 + β2x2, (5.13)

where as in the previous model(s)π denotes the probability of kyphosis at a given valuex1,

x2 with x1, x2 denoting the patients age andx2 the starting vertebrae level of the surgery,

respectively.
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Fig. 2.Estimated relationship between age and the log odds of kyphosis forn = 81 patients.

The nonparametric curve estimate was obtained using a smoothing spline fit. The

parametric model was obtained by modeling the log odds with the parametric linear

predictor: β0 + β1x+ β2x
2 wherex denotes the age variable.
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Fig. 3.Estimated relationship between starting vertebrae level of the surgery (i.e., “start”)

and the log odds of kyphosis forn = 81 patients. The nonparametric curve

estimate was obtained using a smoothing spline fit. The parametric model

was obtained by modeling the log odds with the parametric linear predictor:

β0 + β3(x− 12)× I(x > 12) wherex denotes the start variable.
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Table 23. Test statistic values andp-values for the Bayes sum statistic for the kyphosis data

null model taken to be the logistic regression model given in(5.13).
K Value ofSK p-value
2 2.350 0.032

3 2.538 0.054

4 2.721 0.067

Based on the results of our simulation studies of a missing quadratic term and misspec-

ified functional form of the linear predictor presented in Sections 5.3 and 5.4, respectively,

we anticipate that the Bayes sum test will detect the inadequacy of the simple logistic re-

gression model and reject the null hypothesis that the proposed linear predictor is correct.

Table 23 summarizes the test statistic values andp-values for a test of (5.13) using the like-

lihood ratio-based version of the Bayes sum statistic. The test clearly indicates a lack of fit

for model (5.13). Examination of the results of applying theBayes sum test to the models

specified in equations (5.12) and (5.13) along with the findings of Hastie and Tibshirani

(1990) leads us to conclude that our test is capable of distinguishing adequately specified

models from misspecified models.

5.5.2 Coronary Artery Disease Diagnostic Data

Here we analyze a dataset which has been presented as an example in Harrell (2001). This

dataset is from the Duke University Cardiovascular DiseaseDatabank and consists of 3504

patients and 6 variables. One of the analyses conducted on this dataset involved predicting

the probability of significant (>= 75% diameter narrowing in at least one important coro-

nary artery) coronary disease. In particular, Harrell (2001) examined the adequacy of the

following logit model
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log

(
π(x1, x2)

1− π(x1, x2)

)
= β0 + β1x1 + β2x2 (5.14)

whereπ denotes the probability of significant coronary artery disease,x1 denotes a respon-

dent’s sex (x1 = 0 for males,1 for females) andx2 denotes a respondent’s age.

As in the example discussed in Section 5.5.1, we examine a nonparametric estimate of

the relationship between age and log odds of significant coronary disease for this data in or-

der to get a visual impression of the degree of departure fromthe model proposed in (5.14).

We estimate this relationship separately for men and women in Figure 4, noting that if the

specification of (5.14) were correct, then the plot should consist of parallel straight lines.

From Figure 4, we can see that while the nonparametric curve estimate for males may be

adequately approximated by a straight line, there is noticeable nonlinear relationship be-

tween age and the log odds of significant coronary artery disease for women. Furthermore,

there appears to be a possible interaction between the age and sex variables not accounted

for in the specification in (5.14).

The results of the Bayes sum test are presented in Table 24. While not significant at

theα = 0.05 level, thep-values are rather small providing a suggestion of lack of fit. It

seems noteworthy that the departure from linearity depicted in Figure 4 is not as severe as

that which was observed Figures 2 and 3 for the kyphosis data.Moreover, thep-values

observed in the kyphosis example are distinctly smaller than thep-values obtained in this

example. In the present example, it is clear that thep-values are small enough to indicate

possible lack of fit, but not excessively small to qualify as formal rejection of (5.14) at the

α = 0.05 level. Thus, it appears that the test possesses the ability reflect the severity of the

departure.
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Fig. 4.Estimated relationship between age and the log odds of significant coronary artery

disease for2405 male patients and1099 female patients. The estimated curves were

obtained using a regression spline fits. Spline fits are applied to the subsets of males

and females, separately.
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Table 24. Test statistic values andp-values for the Bayes sum statistic for the Cardiac

Catheterization data with null model taken to be the logistic regression model

given in (5.14).
K Value ofSK p-value
2 5.046 0.118

3 6.734 0.089

4 7.024 0.087

7 7.130 0.090

11 7.194 0.094

15 7.234 0.092

5.6 Discussion

In this chapter we presented an extensive numerical study that revealed new insights into

the performance and applicability of the series-based tests within the context of logistic re-

gression. We observed by means of simulation that these statistics possess desirable power

properties against several alternatives that have been identified in the existing literature as

being important. These power properties are competitive with and in some cases superior

to the properties of some of the better known tests of fit that have been studied in the litera-

ture. In addition to establishing relative performance against existing tests, our simulation

results also provide a scope of the departures that the series-based statistics can detect. Fi-

nally, this simulation study has permitted us an opportunity to investigate the properties of

the Bayes sum statistic developed in Chapter IV.

It is evident from the empirical power values presented for omission of a quadratic

term in Section 5.3 and for misspecified functional form of a covariate in Section 5.4, the

series-based tests perform best in detecting departures involving variables that have been

included in the model. Indeed, we observed that none of the series-based lack-of-fit tests

provide meaningful power to detect misspecification due to variables not included in the
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model. This was revealed in the results of the tests in two settings: the missing covariate

simulation setting of Section 5.4 and the setting for detecting omission of a dichotomous

variable and its interaction of Section 5.3. Two points should be kept in mind with re-

gards these findings. First, the two settings in which the series-based tests performed in-

adequately led to poor power for test statistics studied in Hosmer et al. (1997) and Kuss

(2002). Second, when detecting departures in terms of variables that were actually included

in the model, all of the tests performed extremely well, and several of these tests exhibited

superior power properties when compared to the best performing tests studied in Hosmer

et al. and Kuss.

In addition to the simulations that examined misspecification of the linear predictor,

we also considered other departures from the specified model. Many of these departures

were not well detected, however, most existing tests do not perform much better in these

settings. Furthermore, we did find that the series-based statistics performed acceptably in

detecting departures from the logistic link function undercertain circumstances. Given the

formulation of the series-based tests, these results are not surprising.

We found that the series-based tests can provide desirable power in detecting some

types of misspecification for data with replicate covariatepatterns as well as for sparse

data. Furthermore, replication appears to enhance the performance of the series-based

statistics. This is noteworthy that the test can be used regardless of the degree of sparsity

and be expected to detect misspecification. As we discussed in Chapter II, this property is

not shared by most of the existing tests of fit for logistic regression models. Consequently,

we assert that the series-based tests are particularly beneficial in data sets exhibiting near

sparsity (i.e., there are few replicated covariate patterns). In such situations one cannot be

certain of the validity of tests designed for sparse data or tests requiring replication.

In addition to the above conclusions, we found that throughout our simulation study

that the behavior of the Bayes sum statistic and the behaviorof the order selection based
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tests are generally similar. One noteworthy deviation fromthe agreement observed among

these various tests was due to a test based on a score analog ofthe BIC criteria. This test

tended reject the null hypothesis more often than the other statistics. This agreement among

these tests is particularly interesting because the Bayes sum statistic is nonadaptive, and

nonadaptive tests like the cusum test have been observed to have poor power properties in

comparison to tests that use test statistics based on data-driven smoothing parameters (i.e.,

order selection-based tests). This finding is consistent with simulation results described in

Hart (2009). We noticed that the value ofK did not have a great deal of influence on the

power of the test.
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CHAPTER VI

CONCLUSION

In this dissertation we sought to contribute to the development of techniques for assessing

the adequacy of generalized linear models. In particular, we have focused on lack-of-fit

tests based on characterizing departures from the predictor function in terms of Fourier

coefficients and subsequently testing that all of these coefficients are 0. In the pursuit of

our objective, we developed a new lack-of-fit test for canonical link regression models and

examined several other well-known lack-of-fit tests. Our approach for testing lack-of-fit is

based on the ideas of Hart (2009). That is, we use as a test statistic a Laplace approximation

to the posterior probability of the null hypothesis. Ratherthan evaluating this probability

directly, this statistic is used in frequentist fashion by means of a reference distribution.

Our examination of the Laplace approximation-based test statistic yielded several

noteworthy theoretical findings. First, we show that under the null hypothesis, the limit

distribution of the statistic formulated from posterior probability is completely determined

by the alternative models with the fewest parameters. In ourformulation of the posterior

probability, these models are the so-called singleton alternatives. This is remarkable be-

cause the posterior probability is constructed from a very general, nonparametric class of

alternative models. This leads us to a test statistic that isa weighted sum of exponentiated

likelihood ratios, where the weights depend on user-specified prior probabilities. Replac-

ing the likelihood ratios with their corresponding score statistics produces a statistic that

consists of a weighted sum of exponentiated squared Fouriercoefficient estimates. Hence

we refer to these statistics as the “Bayes sum” statistics. The prior probabilities which

provide the investigator the flexibility to examine specificdepartures from the prescribed

model. Alternatively, the use of noninformative priors produces a new omnibus lack-of-fit

statistic. We then established the limiting distribution of the score version of the test statis-
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tic under both the null hypothesis and local alternatives that converge to the null at rate

1/
√
n. An interesting aspect of this result is that we obtained this result by characteriz-

ing the distribution of the coefficients under local alternatives. To our knowledge, no such

result has appeared in the literature for techniques addressing generalized linear models.

Under the null hypothesis, the score-based statistic provides a large sample approximation

of the likelihood ratio-based test statistic. Our result also provides a null distribution for

the likelihood ratio test.

Our extensive simulation study of the series-based tests within the context of logistic

regression reveals that these statistics possess desirable power properties against several

alternatives that have been identified in the existing literature as being important. Moreover,

these power properties are competitive, and in some cases superior to, some of the better

known tests of fit that have been studied in the literature. Inparticular, the Bayes sum and

order selection-based tests perform well in detecting misspecification in the linear predictor.

While we noted that other departures from the fitted model arenot well detected, most

existing tests do not perform much better in these settings.For the departures that the

series-based tests could detect, we found that the series-based tests were less sensitive to

the degree of sparsity than other existing methods. The simulation results also provide a

scope of the departures that the Bayes sum statistic can detect.

Several questions have arisen that should be addressed in future research. First, is it

possible to generalize the distribution theory further in order to permit the order of the sum

to tend to infinity with the sample size. Robustness of prior probability selection is also of

interest.

Ultimately, we conclude that the desirable properties reported in Hart (2009) apply in

this generalized setting. Indeed, as we have noted above theBayes sum statistic is easily

calculated (relative to other series-based tests), it has aconvenient reference distribution,

and it has good power against some important departures froma proposed null model.
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